Science.gov

Sample records for matrix metalloproteinase-2 gene

  1. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination.

  2. Serum levels of matrix metalloproteinases 2 and 9 and TGFBR2 gene screening in patients with ascending aortic dilatation.

    PubMed

    Símová, J; Skvor, J; Reissigová, J; Dudra, J; Lindner, J; Capek, P; Zvárová, J

    2013-01-01

    Development of ascending aortic dilatation (AAD) in about 10 % of patients operated for aortic valve disease (AVD) is probably based on intrinsic pathology of the aortic wall. This may involve an abnormality in the process of extracellular matrix remodelling. The present study evaluated the serum levels of specific metalloproteinases (MMP-2 and MMP-9) and investigated the gene for transforming growth factor receptor 2 (TGFBR2) in 28 patients with AVD associated with AAD (mean age 60.6 years), in 29 patients (68.9 years) with AVD without AAD, and in 30 healthy controls (45.3 years). The serum levels of MMPs were determined by ELISA. Further, we focused on genetic screening of the TGFBR2 gene. Plasma MMP-2 concentrations were significantly higher in the groups of patients compared to the controls: median 1315.0 (mean 1265.2 ± SD 391.3) in AVD with AAD, 1240.0 (1327.8 ± 352.5) in AVD without AAD versus 902.5 (872.3 ± 166.2) ng/ml in the healthy controls, in both cases P < 0.001. The serum levels of MMP-9 were significantly higher in AVD with AAD patients [107.0 (202.3 ± 313.0)] and in AVD without AAD patients [107.0 (185.8 ± 264.3)] compared to the healthy controls [14.5 (21.2 ± 24.8) ng/ml], in both cases P < 0.001. No significant correlation was observed between plasma MMP-2 and MMP-9 and ascending aorta diameter. Genetic screening did not reveal any variation in the TGFBR2 gene in the patients. Measurement of MMP levels is a simple and relatively rapid laboratory test that could be used as a biochemical indicator when evaluated in combination with imaging techniques.

  3. The cloning and expression of matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase 2 in normal canine lymph nodes and in canine lymphoma.

    PubMed

    Newman, R G; Kitchell, B E; Wallig, M A; Paria, B

    2008-04-01

    Matrix metalloproteinase-2 (MMP-2) and its inhibitor, tissue inhibitor of matrix metalloproteinase 2 (TIMP2), are known to be important in cancer. The purposes of this study were to determine the cDNA sequence of canine MMP-2 and to investigate the expression patterns of MMP-2 and TIMP2 in normal canine lymph nodes and spontaneously arising canine lymphomas. We cloned and sequenced a PCR product containing most (1901 base pairs) of the coding sequence of canine MMP-2 that translates into a 623 amino acid protein. The cDNA and deduced amino acid sequences are highly homologous to those of other mammalian species. Canine MMP-2 and TIMP2 mRNAs were detectable in the majority of normal lymph node and lymphomatous samples evaluated. No statistical difference was identified when comparing the expression of either gene with regard to normal versus neoplastic nodes, nodal versus extranodal lymphoma, lymphoma grade, or B versus T cell immunophenotype. PMID:17604063

  4. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2.

    PubMed

    Deshane, Jessy; Garner, Craig C; Sontheimer, Harald

    2003-02-01

    Primary brain tumors (gliomas) have the unusual ability to diffusely infiltrate the normal brain thereby evading surgical treatment. Chlorotoxin is a scorpion toxin that specifically binds to the surface of glioma cells and impairs their ability to invade. Using a recombinant His-Cltx we isolated and identified the principal Cltx receptor on the surface of glioma cells as matrix metalloproteinase-2 (MMP-2). MMP-2 is specifically up-regulated in gliomas and related cancers, but is not normally expressed in brain. We demonstrate that Cltx specifically and selectively interacts with MMP-2 isoforms, but not with MMP-1, -3, and -9, which are also expressed in malignant glioma cells. Importantly, we show that the anti-invasive effect of Cltx on glioma cells can be explained by its interactions with MMP-2. Cltx exerts a dual effect on MMP-2: it inhibits the enzymatic activity of MMP-2 and causes a reduction in the surface expression of MMP-2. These findings suggest that Cltx is a specific MMP-2 inhibitor with significant therapeutic potential for gliomas and other diseases that invoke the activity of MMP-2.

  5. The protective role of the -1306C>T functional polymorphism in matrix metalloproteinase-2 gene is associated with cervical cancer: implication of human papillomavirus infection.

    PubMed

    Singh, Neha; Hussain, Showket; Sharma, Upma; Suri, Vanita; Nijhawan, Raje; Bharadwaj, Mausumi; Sobti, R C

    2016-04-01

    Cervical cancer is the major reproductive health problem among women caused by persistent infection of high-risk human papillomavirus (HR-HPV). Metalloproteinase-2 (MMP-2) is an endopeptidase highly expressed in cervical cancer; however, the genetic link between aberrant expression of MMP-2 and cervical carcinogenesis is not known. The genotypic distribution, expression pattern of MMP-2 and HPV infection, was analyzed in a total of 300 fresh surgically resected cervical tissue biopsies. The MMP-2 C1306T (rs243865) promoter polymorphism dominant model (CC v/s CT + CT + TT) revealed that the CC genotype had a 4.33-fold significant increased risk for development of cervical cancer (OR = 4.33; 95 % CI = 2.36-4.02, p = 0.0001) compared to those with variant genotypes (-1306 CT + TT). The C allele was associated with 3-fold significant increased risk (OR = 2.95; 95 % CI = 1.90-4.60, p = 0.0002) compared to T allele. Interestingly, a significant correlation was found between high expression of MMP-2 protein and CC genotype in cancer patients (p = 0.001) compared to normal controls (p = 0.012). Further analysis showed that the risk of cancer was extremely pronounced in HPV positive patients (OR = 9.33; 95 % CI = 2.88-30.20, p = 0.0001) compared to HPV negative ones, implicating the possible interaction between -1306CC genotype and HPV infection in increasing the cancer risk (p = 0.0001). The leads from the present study suggest the protective role of gene variant -1306C>T at the promoter region of the MMP-2 against HPV-mediated cervical cancer. These findings substantiate the functional role of MMP-2 C1306T polymorphism in a significant downregulation of MMP-2 protein in women with variant genotype (CT/TT) compared to the normal wild CC genotype.

  6. Expression of matrix metalloproteinase-2 and survivin in endometrioid and nonendometrioid endometrial cancers and clinicopathologic significance

    PubMed Central

    Yilmaz, Evren; Koyuncuoglu, Meral; Görken, İlknur Bilkay; Saatli, Bahadir; Ulukus, Emine Cagnur; Saygili, Ugur

    2011-01-01

    Objective To determine matrix metalloproteinase-2 and survivin expressions in endometrial cancers, their relation to clinical and histologic parameters and to investigate any difference in the expression of these markers between endometrioid and nonendometrioid cancers. Methods Ninety-five patients with endometrial cancer, were included. Matrix metalloproteinase-2 and survivin expressions were analyzed immunohistochemically from paraffin-embedded tissues by using specific monoclonal antibodies. Results Survivin nuclear expression was higher in endometrioid cancer as compared to nonendometrioid cancer (p=0.040), but there was no difference for cytoplasmic survivin and matrix metalloproteinase-2 expressions between type I and type II carcinomas. Survivin cytoplasmic staining was significantly lower in patients with deep myometrial invasion (p=0.038). Nuclear expression of survivin is decreased in histologic grade 3 tumors compared to grade 1 and 2 tumors (p=0.013), but there is no difference between grade 1 and 2. We did not find any statistically significant difference between survivin or matrix metalloproteinase-2 expressions and survival. Conclusion Survivin and matrix metalloproteinase-2 are present in endometrioid and nonendometrioid cancers. Grade 1 and 2 tumors and carcinomas having myometrial invasion less than 50% have higher survivin expression. These results supports that, survivin may play an important role in early stage tumors and early phases of tumor development. We did not find any association between matrix metalloproteinase-2 expression and classical prognostic factors in endometrial cancer and both proteins were not associated with survival. PMID:21860734

  7. Significant relation of tissue inhibitor of matrix metalloproteinase-2 and its combination with matrix metalloproteinase-2 to survival of patients with cancer of uterine cervix.

    PubMed

    Wang, Po-Hui; Ko, Jiunn-Liang; Yang, Shun-Fa; Tsai, Hsiu-Ting; Tee, Yi-Torng; Han, Chih-Ping; Lin, Long-Yau; Chen, Shiuan-Chih; Shih, Yang-Tse

    2011-08-01

    Tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) has high affinity for matrix metalloproteinase-2 (MMP-2). Few studies simultaneously investigate their implication in prognosis of patients with cervical cancer. We used reverse transcription-polymerase chain reaction and immunohistochemical method for cervical tissues and microarrays to investigate the association among TIMP-2, MMP-2, clinicopathological parameters, and prognosis of patients with cancer. Our results showed that cancer tissues exhibited less TIMP-2 expression and patients with pelvic lymph node metastasis had less TIMP-2 expression. Positive TIMP-2 constellated with negative MMP-2 indicated lower recurrence probability and better overall survival. The protective effect of TIMP-2 expression may overcome the adverse effect of MMP-2 expression in terms of disease-free interval and overall survival while neither TIMP-2 nor MMP-2 alone can be used to predict outcome. We suggest that following patients other than those with positive TIMP-2 and negative MMP-2 expression more closely and intensely may improve their prognosis.

  8. Matrix metalloproteinases 2 and 9 in canine rheumatoid arthritis.

    PubMed

    Coughlan, A R; Robertson, D H; Bennett, D; May, C; Beynon, R J; Carter, S D

    1998-08-22

    Matrix metalloproteinases (MMPs) are considered important mediators of tissue damage in joint diseases. The levels of MMPs 2 and 9 were measured in samples of synovial fluid from 20 joints in seven dogs with rheumatoid arthritis by gelatin zymography. The results were compared with the actual gelatinolytic activity of the fluid measured in a gelatin-degradation ELISA. The gelatinolytic activity in synovial fluid from arthritic joints was markedly greater than that in fluid from disease-free joints. The zymographic activity attributable to MMP-9 (identified by Western blotting) was absent from synovial fluid from control joints but prominent in fluid from arthritic joints, and in these joints the presence of a 75 kDa form of MMP-9 was correlated with the gelatinolytic activity of the fluid measured by the ELISA (r = 0.81, P < 0.05). Synovial fluid from one dog with rheumatoid arthritis was examined before and after treatment with corticosteroids. After treatment its zymographic pattern had returned to normal. PMID:9770764

  9. Loss of matrix metalloproteinase 2 in platelets reduces arterial thrombosis in vivo

    PubMed Central

    Momi, Stefania; Falcinelli, Emanuela; Giannini, Silvia; Ruggeri, Loredana; Cecchetti, Luca; Corazzi, Teresa; Libert, Claude

    2009-01-01

    Platelet activation at a site of vascular injury is essential for the arrest of bleeding; however, excessive platelet activation at a site of arterial damage can result in the unwarranted formation of arterial thrombi, precipitating acute myocardial infarction, or ischemic stroke. Activation of platelets beyond the purpose of hemostasis may occur when substances facilitating thrombus growth and stability accumulate. Human platelets contain matrix metalloproteinase 2 (MMP-2) and release it upon activation. Active MMP-2 amplifies the platelet aggregation response to several agonists by potentiating phosphatidylinositol 3-kinase activation. Using several in vivo thrombosis models, we show that the inactivation of the MMP-2 gene prevented thrombosis induced by weak, but not strong, stimuli in mice but produced only a moderate prolongation of the bleeding time. Moreover, using cross-transfusion experiments and wild-type/MMP-2−/− chimeric mice, we show that it is platelet-derived MMP-2 that facilitates thrombus formation. Finally, we show that platelets activated by a mild vascular damage induce thrombus formation at a downstream arterial injury site by releasing MMP-2. Thus, platelet-derived MMP-2 plays a crucial role in thrombus formation by amplifying the response of platelets to weak activating stimuli. These findings open new possibilities for the prevention of thrombosis by the development of MMP-2 inhibitors. PMID:19808257

  10. An electrochemical peptide cleavage-based biosensor for matrix metalloproteinase-2 detection with exonuclease III-assisted cycling signal amplification.

    PubMed

    Wang, Ding; Yuan, Yali; Zheng, Yingning; Chai, Yaqin; Yuan, Ruo

    2016-05-01

    In this work, an electrochemical peptide biosensor was developed for matrix metalloproteinase-2 (MMP-2) detection by conversion of a peptide cleavage event into DNA detection with exonuclease III (Exo III)-assisted cycling signal amplification.

  11. Matrix Metalloproteinase-2 Polymorphisms in Chronic Heart Failure: Relationship with Susceptibility and Long-Term Survival.

    PubMed

    Beber, Ana Rubia C; Polina, Evelise R; Biolo, Andréia; Santos, Bruna L; Gomes, Daiane C; La Porta, Vanessa L; Olsen, Virgílio; Clausell, Nadine; Rohde, Luis E; Santos, Kátia G

    2016-01-01

    Circulating levels of matrix metalloproteinase-2 (MMP-2) predict mortality and hospital admission in heart failure (HF) patients. However, the role of MMP-2 gene polymorphisms in the susceptibility and prognosis of HF remains elusive. In this study, 308 HF outpatients (216 Caucasian- and 92 African-Brazilians) and 333 healthy subjects (256 Caucasian- and 77 African-Brazilians) were genotyped for the -1575G>A (rs243866), -1059G>A (rs17859821), and -790G>T (rs243864) polymorphisms in the MMP-2 gene. Polymorphisms were analyzed individually and in combination (haplotype), and positive associations were adjusted for clinical covariates. Although allele frequencies were similar in HF patients and controls in both ethnic groups, homozygotes for the minor alleles were not found among African-Brazilian patients. After a median follow-up of 5.3 years, 124 patients (40.3%) died (54.8% of them for HF). In Caucasian-Brazilians, the TT genotype of the -790G>T polymorphism was associated with a decreased risk of HF-related death as compared with GT genotype (hazard ratio [HR] = 0.512, 95% confidence interval [CI] 0.285-0.920). However, this association was lost after adjusting for clinical covariates (HR = 0.703, 95% CI 0.365-1.353). Haplotype analysis revealed similar findings, as patients homozygous for the -1575G/-1059G/-790T haplotype had a lower rate of HF-related death than those with any other haplotype combination (12.9% versus 28.5%, respectively; P = 0.010). Again, this association did not remain after adjusting for clinical covariates (HR = 0.521, 95% CI 0.248-1.093). Our study does not exclude the possibility that polymorphisms in MMP-2 gene, particularly the -790G>T polymorphism, might be related to HF prognosis. However, due to the limitations of the study, our findings need to be confirmed in further larger studies. PMID:27551966

  12. A Novel Intracellular Isoform of Matrix Metalloproteinase-2 Induced by Oxidative Stress Activates Innate Immunity

    PubMed Central

    Lovett, David H.; Mahimkar, Rajeev; Raffai, Robert L.; Cape, Leslie; Maklashina, Elena; Cecchini, Gary; Karliner, Joel S.

    2012-01-01

    Background Experimental and clinical evidence has pinpointed a critical role for matrix metalloproteinase-2 (MMP-2) in ischemic ventricular remodeling and systolic heart failure. Prior studies have demonstrated that transgenic expression of the full-length, 68 kDa, secreted form of MMP-2 induces severe systolic failure. These mice also had unexpected and severe mitochondrial structural abnormalities and dysfunction. We hypothesized that an additional intracellular isoform of MMP-2, which affects mitochondrial function is induced under conditions of systolic failure-associated oxidative stress. Methodology and Principal Findings Western blots of cardiac mitochondria from the full length MMP-2 transgenics, ageing mice and a model of accelerated atherogenesis revealed a smaller 65 kDa MMP-2 isoform. Cultured cardiomyoblasts subjected to transient oxidative stress generated the 65 kDa MMP-2 isoform. The 65 kDa MMP-2 isoform was also induced by hypoxic culture of cardiomyoblasts. Genomic database analysis of the MMP-2 gene mapped transcriptional start sites and RNA transcripts induced by hypoxia or epigenetic modifiers within the first intron of the MMP-2 gene. Translation of these transcripts yields a 65 kDa N-terminal truncated isoform beginning at M77, thereby deleting the signal sequence and inhibitory prodomain. Cellular trafficking studies demonstrated that the 65 kDa MMP-2 isoform is not secreted and is present in cytosolic and mitochondrial fractions, while the full length 68 kDa isoform was found only in the extracellular space. Expression of the 65 kDa MMP-2 isoform induced mitochondrial-nuclear stress signaling with activation of the pro-inflammatory NF-κB, NFAT and IRF transcriptional pathways. By microarray, the 65 kDa MMP-2 induces an innate immunity transcriptome, including viral stress response genes, innate immunity transcription factor IRF7, chemokines and pro-apoptosis genes. Conclusion A novel N-terminal truncated intracellular isoform of MMP-2 is

  13. Matrix Metalloproteinase-2 Polymorphisms in Chronic Heart Failure: Relationship with Susceptibility and Long-Term Survival

    PubMed Central

    Beber, Ana Rubia C.; Polina, Evelise R.; Biolo, Andréia; Santos, Bruna L.; Gomes, Daiane C.; La Porta, Vanessa L.; Olsen, Virgílio; Clausell, Nadine; Rohde, Luis E.

    2016-01-01

    Circulating levels of matrix metalloproteinase-2 (MMP-2) predict mortality and hospital admission in heart failure (HF) patients. However, the role of MMP-2 gene polymorphisms in the susceptibility and prognosis of HF remains elusive. In this study, 308 HF outpatients (216 Caucasian- and 92 African-Brazilians) and 333 healthy subjects (256 Caucasian- and 77 African-Brazilians) were genotyped for the -1575G>A (rs243866), -1059G>A (rs17859821), and -790G>T (rs243864) polymorphisms in the MMP-2 gene. Polymorphisms were analyzed individually and in combination (haplotype), and positive associations were adjusted for clinical covariates. Although allele frequencies were similar in HF patients and controls in both ethnic groups, homozygotes for the minor alleles were not found among African-Brazilian patients. After a median follow-up of 5.3 years, 124 patients (40.3%) died (54.8% of them for HF). In Caucasian-Brazilians, the TT genotype of the -790G>T polymorphism was associated with a decreased risk of HF-related death as compared with GT genotype (hazard ratio [HR] = 0.512, 95% confidence interval [CI] 0.285–0.920). However, this association was lost after adjusting for clinical covariates (HR = 0.703, 95% CI 0.365–1.353). Haplotype analysis revealed similar findings, as patients homozygous for the -1575G/-1059G/-790T haplotype had a lower rate of HF-related death than those with any other haplotype combination (12.9% versus 28.5%, respectively; P = 0.010). Again, this association did not remain after adjusting for clinical covariates (HR = 0.521, 95% CI 0.248–1.093). Our study does not exclude the possibility that polymorphisms in MMP-2 gene, particularly the -790G>T polymorphism, might be related to HF prognosis. However, due to the limitations of the study, our findings need to be confirmed in further larger studies. PMID:27551966

  14. Prognostic significance of matrix metalloproteinases 2 and 9 in endometrial cancer.

    PubMed

    Puljiz, Mario; Puljiz, Zeljko; Vucemilo, Tiha; Ramić, Snjezana; Knezević, Fabijan; Culo, Branimir; Alvir, Ilija; Tomica, Darko; Danolić, Damir

    2012-12-01

    We investigated the prognostic significance of matrix metalloproteinases 2 (MMP 2) and 9 (MMP 9) in endometrial cancer (EC). The expression of MMP 2 and MMP 9 was analyzed immunohistochemically in 73 primary EC patients. In most cases, the gelatinases were predominantly localized to epithelial cell of tumor origin. In univariate analysis histological type, tumor grade, FIGO (1988) surgical stage and high stromal MMP 2 expression were identified as a significant determinant for EC recurrence, while epithelial MMP 2 expression and epithelial and stromal MMP 9 expression were not. Multivariate analysis revealed a subgroup of patient age > or = 63.6 years with endometrioid adenocarcinoma and papillary serous carcinoma, all FIGO (2009) stage I disease where strong staining of stromal MMP 2 increase risk of EC recurrence (p = 0.037).

  15. Collagen and matrix metalloproteinase-2 and -9 in the ewe cervix during the estrous cycle.

    PubMed

    Rodríguez-Piñón, M; Tasende, C; Casuriaga, D; Bielli, A; Genovese, P; Garófalo, E G

    2015-09-15

    The cervical collagen remodeling during the estrous cycle of the ewe was examined. The collagen concentration determined by a hydroxyproline assay and the area occupied by collagen fibers (%C), determined by van Gieson staining, were assessed in the cranial and caudal cervix of Corriedale ewes on Days 1 (n = 6), 6 (n = 5), or 13 (n = 6) after estrous detection (defined as Day 0). In addition, the gelatinase activity by in situ and SDS-PAGE gelatin zymographies and matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9, respectively) expression by immunohistochemistry were determined. The collagen concentration and %C were lowest on Day 1 of the estrous cycle (P < 0.04), when MMP-2 activity was highest (P < 0.006) and the ratio of activated to latent MMP-2 trend to be highest (P = 0.0819). The MMP-2 activity was detected in 73% of the homogenized cervical samples, and its expression was mainly detected in active fibroblasts. By contrast, the MMP-9 activity was detected in 9% of the samples, and its scarce expression was associated with plasmocytes, macrophages, and lymphocytes. Matrix metalloproteinase-2 expression was maximal on Day 1 in the cranial cervix and on Day 13 in the caudal cervix and was lower in the cranial than in the caudal cervix (P < 0.0001). This time-dependent increase in MMP-2 expression that differed between the cranial and caudal cervix may reflect their different physiological roles. The decrease in the collagen content and increase in fibroblast MMP-2 activity in sheep cervix on Day 1 of the estrous cycle suggests that cervical dilation at estrus is due to the occurrence of collagen fiber degradation modulated by changes in periovulatory hormone levels.

  16. Matrix metalloproteinase-2 in oncostatin M-induced sarcomere degeneration in cardiomyocytes.

    PubMed

    Fan, Xiaohu; Hughes, Bryan G; Ali, Mohammad A M; Chan, Brandon Y H; Launier, Katherine; Schulz, Richard

    2016-07-01

    Cardiomyocyte dedifferentiation may be an important source of proliferating cardiomyocytes facilitating cardiac repair. Cardiomyocyte dedifferentiation and proliferation induced by oncostatin-M (OSM) is characterized by sarcomere degeneration. However, the mechanism underlying sarcomere degeneration remains unclear. We hypothesized that this process may involve matrix metalloproteinase-2 (MMP-2), a key protease localized at the sarcomere in cardiomyocytes. We tested the hypothesis that MMP-2 is involved in the sarcomere degeneration that characterizes cardiomyocyte dedifferentiation. Confocal immunofluorescence and biochemical methods were used to explore the role of MMP-2 in OSM-induced dedifferentiation of neonatal rat ventricular myocytes (NRVM). OSM caused a concentration- and time-dependent loss of sarcomeric α-actinin and troponin-I in NRVM. Upon OSM-treatment, the mature sarcomere transformed to a phenotype resembling a less-developed sarcomere, i.e., loss of sarcomeric proteins and Z-disk transformed into disconnected Z bodies, characteristic of immature myofibrils. OSM dose dependently increased MMP-2 activity. Both the pan-MMP inhibitor GM6001 and the selective MMP-2 inhibitor ARP 100 prevented sarcomere degeneration induced by OSM treatment. OSM also induced NRVM cell cycling and increased methyl-thiazolyl-tetrazolium (MTT) staining, preventable by MMP inhibition. These results suggest that MMP-2 mediates sarcomere degeneration in OSM-induced cardiomyocyte dedifferentiation and thus potentially contributes to cardiomyocyte regeneration.

  17. Castor oil polymer induces bone formation with high matrix metalloproteinase-2 expression.

    PubMed

    Saran, Wallace Rocha; Chierice, Gilberto Orivaldo; da Silva, Raquel Assed Bezerra; de Queiroz, Alexandra Mussolino; Paula-Silva, Francisco Wanderley Garcia; da Silva, Léa Assed Bezerra

    2014-02-01

    The aim of this study was to evaluate the modulation of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) expression in newly formed bone tissue at the interface between implants derived from castor oil (Ricinus communis) polymer and the tibia medullary canal. Forty-four rabbits were assigned to either Group 1 (n = 12; control) or Group 2 (n = 30), which had the tibial medullary canals reamed bilaterally and filled with polymer. CT scans showed no space between the material surface and the bone at the implant/bone marrow interface, and the density of the tissues at this interface was similar to the density measured of other regions of the bone. At 90 days postimplantation, the interface with the polymer presented a thick layer of newly formed bone tissue rich in osteocytes. This tissue exhibited ongoing maturation at 120 and 150 days postimplantation. Overall, bone remodeling process was accompanied by positive modulation of MMP-2 and low MMP-9 expression. Differently, in control group, the internal surface close to the medullary canal was lined by osteoblasts, followed by a bone tissue zone with few lacunae filled with osteocytes. Maturation of the tissue of the medullary internal surface occurred in the inner region, with the bone being nonlamellar.

  18. Hydrogen peroxide-induced necrotic cell death in cardiomyocytes is independent of matrix metalloproteinase-2.

    PubMed

    Ali, Mohammad A M; Kandasamy, Arulmozhi D; Fan, Xiaohu; Schulz, Richard

    2013-09-01

    Matrix metalloproteinase-2 (MMP-2) is well known to proteolyse both extracellular and intracellular proteins. Reactive oxygen species activate MMP-2 at both transcriptional and post-translational levels, thus MMP-2 activation is considered an early event in oxidative stress injury. Although hydrogen peroxide is widely used to trigger oxidative stress-induced cell death, the type of cell death (apoptosis vs. necrosis) in cardiomyocytes is still controversial depending on the concentration used and the exposure time. We carefully investigated the mode of cell death in neonatal rat cardiomyocytes induced by different concentrations (50-500 μM) of hydrogen peroxide at various time intervals after exposure and determined whether MMP-2 is implicated in hydrogen peroxide-induced cardiomyocyte death. Treating cardiomyocytes with hydrogen peroxide led to elevated MMP-2 level/activity with maximal effects seen at 200 μM. Hydrogen peroxide caused necrotic cell death by disrupting the plasmalemma as evidenced by the release of lactate dehydrogenase in a concentration- and time-dependent manner as well as the necrotic cleavage of PARP-1. The absence of both caspase-3 cleavage/activation and apoptotic cleavage of PARP-1 illustrated the weak contribution of apoptosis. Pre-treatment with selective MMP inhibitors did not protect against hydrogen peroxide-induced necrosis. In conclusion hydrogen peroxide increases MMP-2 level/activity in cardiomyocytes and induces necrotic cell death, however, the later effect is MMP-2 independent.

  19. Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction.

    PubMed

    Mohammad, Ghulam; Kowluru, Renu A

    2010-09-01

    In the pathogenesis of diabetic retinopathy, retinal mitochondria become dysfunctional resulting in accelerated apoptosis of its capillary cells. Matrix metalloproteinase-2 (MMP2) is considered critical in cell integrity and cell survival, and diabetes activates MMP2 in the retina and its capillary cells. This study aims at elucidating the mechanism by which MMP2 contributes to the development of diabetic retinopathy. Using isolated bovine retinal endothelial cells, the effect of regulation of MMP2 (by its siRNA and pharmacological inhibitor) on superoxide accumulation and mitochondrial dysfunction was evaluated. The effect of inhibiting diabetes-induced retinal superoxide accumulation on MMP2 and its regulators was investigated in diabetic mice overexpressing mitochondrial superoxide dismutase (MnSOD). Inhibition of MMP2 ameliorated glucose-induced increase in mitochondrial superoxide and membrane permeability, prevented cytochrome c leakage from the mitochondria, and inhibited capillary cell apoptosis. Overexpression of MnSOD protected the retina from diabetes-induced increase in MMP2 and its membrane activator (MT1-MMP), and decrease in its tissue inhibitor (TIMP-2). These results implicate that, in diabetes, MMP2 activates apoptosis of retinal capillary cells by mitochondrial dysfunction increasing their membrane permeability. Understanding the role of MMP2 in the pathogenesis of diabetic retinopathy should help lay ground for MMP2-targeted therapy to retard the development of retinopathy in diabetic patients.

  20. Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis

    PubMed Central

    Sampieri, Clara Luz; de la Peña, Sol; Ochoa-Lara, Mariana; Zenteno-Cuevas, Roberto; León-Córdoba, Kenneth

    2010-01-01

    AIM: To assess expression of matrix metalloproteinases 2 (MMP2) and MMP9 in gastric cancer, superficial gastritis and normal mucosa, and to measure metalloproteinase activity. METHODS: MMP2 and MMP9 mRNA expression was determined by quantitative real-time polymerase chain reaction. Normalization was carried out using three different factors. Proteins were analyzed by quantitative gelatin zymography (qGZ). RESULTS: 18S ribosomal RNA (18SRNA) was very highly expressed, while hypoxanthine ribosyltransferase-1 (HPRT-1) was moderately expressed. MMP2 was highly expressed, while MMP9 was not detected or lowly expressed in normal tissues, moderately or highly expressed in gastritis and highly expressed in cancer. Relative expression of 18SRNA and HPRT-1 showed no significant differences. Significant differences in MMP2 and MMP9 were found between cancer and normal tissue, but not between gastritis and normal tissue. Absolute quantification of MMP9 echoed this pattern, but differential expression of MMP2 proved conflictive. Analysis by qGZ indicated significant differences between cancer and normal tissue in MMP-2, total MMP-9, 250 and 110 kDa bands. CONCLUSION: MMP9 expression is enhanced in gastric cancer compared to normal mucosa; interpretation of differential expression of MMP2 is difficult to establish. PMID:20333791

  1. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves matrix metalloproteinase-2 modulation by homocysteine.

    PubMed

    Liu, Tingjiao; Lin, Jinghan; Ju, Ting; Chu, Lei; Zhang, Liming

    2015-08-01

    Arterial calcification is common in vascular diseases and involves conversion of vascular smooth muscle cells (VSMCs) to an osteoblast phenotype. Clinical studies suggest that the development of atherosclerosis can be promoted by homocysteine (HCY), but the mechanisms remain unclear. Here, we determined whether increases in HCY levels lead to an increase in VSMC calcification and differentiation, and examined the role of an extracellular matrix remodeler, matrix metalloproteinase-2 (MMP-2). Rat VSMCs were exposed to calcification medium in the absence or presence of HCY (10, 100 or 200 μmol/L) or an MMP-2 inhibitor (10(-6) or 10(-5) mol/L). MTT assays were performed to determine the cytotoxicity of the MMP-2 inhibitor in calcification medium containing 200 μmol/L HCY. Calcification was assessed by measurements of calcium deposition and alkaline phosphatase (ALP) activity as well as von Kossa staining. Expression of osteocalcin, bone morphogenetic protein (BMP)-2, and osteopontin, and MMP-2 was determined by immunoblotting. Calcification medium induced osteogenic differentiation of VSMCs. HCY promoted calcification, increased osteocalcin and BMP-2 expression, and decreased expression of osteopontin. MMP-2 expression was increased by HCY in a dose-dependent manner in VSMCs exposed to both control and calcification medium. The MMP-2 inhibitor decreased the calcium content and ALP activity, and attenuated the osteoblastic phenotype of VSMCs. Vascular calcification and osteogenic differentiation of VSMCs were positively regulated by HCY through increased/restored MMP-2 expression, increased expression of calcification proteins, and decreased anti-calcification protein levels. In summary, MMP-2 inhibition may be a protective strategy against VSMC calcification. PMID:25987498

  2. Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood.

    PubMed

    Wang, Yuhui; Shen, Pei; Li, Chunya; Wang, Yanying; Liu, Zhihong

    2012-02-01

    Matrix metalloproteinase-2 (MMP-2) is a very important biomarker in blood. Presently, sensitive and selective determination of MMP-2 directly in blood samples is still a challenging job because of the high complexity of the sample matrix. In this work, we reported a new homogeneous biosensor for MMP-2 based on fluorescence resonance energy transfer (FRET) from upconversion phosphors (UCPs) to carbon nanoparticles (CNPs). A polypeptide chain (NH(2)-GHHYYGPLGVRGC-COOH) comprising both the specific MMP-2 substrate domain (PLGVR) and a π-rich motif (HHYY) was designed and linked to the surface of UCPs at the C terminus. The FRET process was initiated by the π-π interaction between the peptide and CNPs, which thus quenched the fluorescence of the donor. Upon the cleavage of the substrate by the protease at the amide bond between Gly and Val, the donor was separated from the acceptor while the π-rich motif stayed on the acceptor. As a result, the fluorescence of the donor was restored. The fluorescence recovery was found to be proportional to the concentration of MMP-2 within the range from 10-500 pg/mL in an aqueous solution. The quantification limit of this sensor was at least 1 order of magnitude lower than that of other reported assays for MMP-2. The sensor was used to determine the MMP-2 level directly in human plasma and whole blood samples with satisfactory results obtained. Owing to the hypersensitivity of the method, clinical samples of only less than 1 μL were needed for accurate quantification, which can be meaningful in MMP-2-related clinical and bioanalytical applications.

  3. Methodological aspects of QM/MM calculations: A case study on matrix metalloproteinase-2.

    PubMed

    Vasilevskaya, Tatiana; Khrenova, Maria G; Nemukhin, Alexander V; Thiel, Walter

    2016-07-15

    We address methodological issues in quantum mechanics/molecular mechanics (QM/MM) calculations on a zinc-dependent enzyme. We focus on the first stage of peptide bond cleavage by matrix metalloproteinase-2 (MMP-2), that is, the nucleophilic attack of the zinc-coordinating water molecule on the carbonyl carbon atom of the scissile fragment of the substrate. This step is accompanied by significant charge redistribution around the zinc cation, bond cleavage, and bond formation. We vary the size and initial geometry of the model system as well as the computational protocol to demonstrate the influence of these choices on the results obtained. We present QM/MM potential energy profiles for a set of snapshots randomly selected from QM/MM-based molecular dynamics simulations and analyze the differences in the computed profiles in structural terms. Since the substrate in MMP-2 is located on the protein surface, we investigate the influence of the thickness of the water layer around the enzyme on the QM/MM energy profile. Thin water layers (0-2 Å) give unrealistic results because of structural reorganizations in the active-site region at the protein surface. A 12 Å water layer appears to be sufficient to capture the effect of the solvent; the corresponding QM/MM energy profile is very close to that obtained from QM/MM/SMBP calculations using the solvent macromolecular boundary potential (SMBP). We apply the optimized computational protocol to explain the origin of the different catalytic activity of the Glu116Asp mutant: the energy barrier for the first step is higher, which is rationalized on structural grounds. © 2016 Wiley Periodicals, Inc. PMID:27140531

  4. Distribution and relative activity of matrix metalloproteinase-2 in human coronal dentin

    PubMed Central

    Boushell, Lee W; Kaku, Masaru; Mochida, Yoshiyuki; Yamauchi, Mitsuo

    2011-01-01

    The presence of matrix metalloproteinase-2 (MMP-2) in dentin has been reported, but its distribution and activity level in mature human coronal dentin are not well understood. The purpose of this study was to determine the MMP-2 distribution and relative activity in demineralized dentin. Crowns of twenty eight human molars were sectioned into inner (ID), middle (MD), and outer dentin (OD) regions and demineralized. MMP-2 was extracted with 0.33 mol·L−1 EDTA/2 mol·L−1 guanidine-HCl, pH 7.4, and MMP-2 concentration was estimated with enzyme-linked immunoabsorbant assay (ELISA). Further characterization was accomplished by Western blotting analysis and gelatin zymography. The mean concentrations of MMP-2 per mg dentin protein in the dentin regions were significantly different (P=0.043): 0.9 ng (ID), 0.4 ng (MD), and 2.2 ng (OD), respectively. The pattern of MMP-2 concentration was OD>ID>MD. Western blotting analysis detected ∼66 and ∼72 kDa immunopositive proteins corresponding to pro- and mature MMP-2, respectively, in the ID and MD, and a ∼66 kDa protein in the OD. Gelatinolytic activity consistent with MMP-2 was detected in all regions. Interestingly, the pattern of levels of Western blot immunodetection and gelatinolytic activity was MD>ID>OD. The concentration of MMP-2 in human coronal dentin was highest in the region of dentin that contains the dentinoenamel junction and least in the middle region of dentin. However, levels of Western blot immunodetection and gelatinolytic activity did not correlate with the estimated regional concentrations of MMP-2, potentially indicating region specific protein interactions. PMID:22010577

  5. Matrix metalloproteinase-2 of human carotid atherosclerotic plaques promotes platelet activation. Correlation with ischaemic events.

    PubMed

    Lenti, Massimo; Falcinelli, Emanuela; Pompili, Marcella; de Rango, Paola; Conti, Valentina; Guglielmini, Giuseppe; Momi, Stefania; Corazzi, Teresa; Giordano, Giuseppe; Gresele, Paolo

    2014-06-01

    Purified active matrix metalloproteinase-2 (MMP-2) is able to promote platelet aggregation. We aimed to assess the role of MMP-2 expressed in atherosclerotic plaques in the platelet-activating potential of human carotid plaques and its correlation with ischaemic events. Carotid plaques from 81 patients undergoing endarterectomy were tested for pro-MMP-2 and TIMP-2 content by zymography and ELISA. Plaque extracts were incubated with gel-filtered platelets from healthy volunteers for 2 minutes before the addition of a subthreshold concentration of thrombin receptor activating peptide-6 (TRAP-6) and aggregation was assessed. Moreover, platelet deposition on plaque extracts immobilised on plastic coverslips under high shear-rate flow conditions was measured. Forty-three plaque extracts (53%) potentiated platelet aggregation (+233 ± 26.8%), an effect prevented by three different specific MMP-2 inhibitors (inhibitor II, TIMP-2, moAb anti-MMP-2). The pro-MMP-2/TIMP-2 ratio of plaques potentiating platelet aggregation was significantly higher than that of plaques not potentiating it (3.67 ± 1.21 vs 1.01 ± 0.43, p<0.05). Moreover, the platelet aggregation-potentiating effect, the active-MMP-2 content and the active MMP-2/pro-MMP-2 ratio of plaque extracts were significantly higher in plaques from patients who developed a subsequent major cardiovascular event. In conclusion, atherosclerotic plaques exert a prothrombotic effect by potentiating platelet activation due to their content of MMP-2; an elevated MMP-2 activity in plaques is associated with a higher rate of subsequent ischaemic cerebrovascular events. PMID:24499865

  6. alpha-Chaconine inhibits angiogenesis in vitro by reducing matrix metalloproteinase-2.

    PubMed

    Lu, Ming-Kun; Chen, Pei-Hsieng; Shih, Yuan-Wei; Chang, Ya-Ting; Huang, En-Tze; Liu, Cheng-Ruei; Chen, Pin-Shern

    2010-01-01

    alpha-Chaconine, a naturally occurring steroidal glycoalkaloid in potato sprouts, was found to possess anti-carcinogenic properties, such as inhibiting proliferation, migration, invasion, and inducing apoptosis of tumor cells. However, the effect of alpha-chaconine on tumor angiogenesis remains unclear. In the present study, we examined the effect of alpha-chaconine on angiogenesis in vitro. Data demonstrated that alpha-chaconine inhibited proliferation of bovine aortic endothelial cells (BAECs) in a dose-dependent manner. When treated with non-toxic doses of alpha-chaconine, cell migration, invasion and tube formation were markedly suppressed. Furthermore, alpha-chaconine reduced the expression and activity of matrix metalloproteinase-2 (MMP-2), which is involved in angiogenesis. Our biochemical assays indicated that alpha-chaconine potently suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), phosphatidylinositide-3 kinase (PI3K) and Akt, while it did not affect phosphorylation of extracellular signal regulating kinase (ERK) and p38. In addition, alpha-chaconine significantly increased the cytoplasmic level of inhibitors of kappaBalpha (IkappaBalpha) and decreased the nuclear level of nuclear factor kappa B (NF-kappaB), suggesting that alpha-chaconine could inhibit NF-kappaB activity. Furthermore, the treatment of inhibitors specific for JNK (SP600125), PI3K (LY294002) or NF-kappaB (pyrrolidine dithiocarbamate) to BAECs reduced tube formation. Taken together, the results suggested that alpha-chaconine inhibited migration, invasion and tube formation of BAECs by reducing MMP-2 activities, as well as JNK and PI3K/Akt signaling pathways and inhibition of NF-kappaB activity. These findings reveal a new therapeutic potential for alpha-chaconine on anti-angiogenic therapy.

  7. A stromal interaction molecule 1 variant up-regulates matrix metalloproteinase-2 expression by strengthening nucleoplasmic Ca2+ signaling.

    PubMed

    Chen, Fengrong; Zhu, Liping; Cai, Lei; Zhang, Jiwei; Zeng, Xianqin; Li, Jiansha; Su, Yuan; Hu, Qinghua

    2016-04-01

    Very recent studies hold promise to reveal the role of stromal interaction molecule 1 (STIM1) in non-store-operated Ca2+ entry. Here we showed that in contrast to cytoplasmic membrane redistribution as previously noted, human umbilical vein endothelial STIM1 with a T-to-C nucleotide transition resulting in an amino acid substitution of leucine by proline in the signal peptide sequence translocated to perinuclear membrane upon intracellular Ca2+ depletion, amplified nucleoplasmic Ca2+ signaling through ryanodine receptor-dependent pathway, and enhanced the subsequent cAMP responsive element binding protein activity, matrix metalloproteinase-2 (MMP-2) gene expression, and endothelial tube forming. The abundance of mutated STIM1 and the MMP-2 expression were higher in native human umbilical vein endothelial cells of patients with gestational hypertension than controls and were significantly correlated with blood pressure. These findings broaden our understanding about structure-function bias of STIM1 and offer unique insights into its application in nucleoplasmic Ca2+, MMP-2 expression, endothelial dysfunction, and pathophysiological mechanism(s) of gestational hypertension. PMID:26775216

  8. Role of Matrix Metalloproteinases 2 and 9 in Lacrimal Gland Disease in Animal Models of Sjögren's Syndrome

    PubMed Central

    Aluri, Hema S.; Kublin, Claire L.; Thotakura, Suharika; Armaos, Helene; Samizadeh, Mahta; Hawley, Dillon; Thomas, William M.; Leavis, Paul; Makarenkova, Helen P.; Zoukhri, Driss

    2015-01-01

    Purpose Chronic inflammation of the lacrimal gland results in changes in the composition of the extracellular matrix (ECM), which is believed to compromise tissue repair. We hypothesized that increased production/activity of matrix metalloproteinases (MMPs), especially MMP-2 and -9, in inflamed lacrimal glands modifies the ECM environment, therefore disrupting tissue repair. Methods The lacrimal glands from female MRL/lpr and male NOD mice along with their respective control strains were harvested and divided into three pieces and processed for histology, immunohistochemistry, zymography, Western blotting, and RNA analyses. In another study, MRL/lpr mice were treated for 5 weeks with a selective MMP2/9 inhibitor peptide or a control peptide. At the end of treatment, the lacrimal glands were excised and the tissue was processed as described above. Results There was a 2.5- and 2.7-fold increase in MMP2 gene expression levels in MRL/lpr and NOD mice, respectively. Matrix metalloproteinase 2 and 9 enzymatic activities and protein expression levels were significantly upregulated in the lacrimal glands of MRL/lpr and NOD mice compared to controls. Treatment with the MMP2/9 inhibitor resulted in decreased activity of MMP-2 and -9 both in vitro and in vivo. Importantly, MMP2/9 inhibitor treatment of MRL/lpr mice improved aqueous tear production and resulted in reduced number and size of lymphocytic foci in diseased lacrimal glands. Conclusions We conclude that MMP2/9 expression and activity are elevated in lacrimal glands of two murine models of Sjögren's syndrome, suggesting that manipulation of MMP2/9 activity might be a potential therapeutic target in chronically inflamed lacrimal glands. PMID:26244298

  9. Targeting antitumor effect of rhTNF-α fusion protein mediated by matrix metalloproteinase-2.

    PubMed

    Shao, Xin; Ren, Hui; Wang, Yue-Li; Wang, Fa; Hou, Gan; Huang, Di-Nan

    2015-02-01

    The aim of this study was to examine the tumor therapy, targeting effects and side effects of tumor-targeting rhTNF-α fusion protein mediated by matrix metalloproteinase-2 in an animal model in order to provide experimental data for future development of drugs. The median lethal dose (LD50) was obtained from acute toxicity experiments. The A549 lung cancer xenograft model was established, and then randomly divided into the saline, standard substance, and low-, middle- and high-dose fusion protein experiment groups. Each group was administered drugs for 18 days. The length and width of the xenografts were measured every three days, after which the xenograft growth curve was drawn. The mice were sacrificed in each group following treatment and the tumor volume and weight were measured. The targeting, effectiveness and toxicity of the transformed fusion protein, and pathological changes of tumor and organ tissues were examined by hematoxylin and eosin (H&E) staining. Additionally, biochemical markers were used to detect damage of various organs after protein processing. Cell apoptosis and angiogenesis were determined using terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL) testing and immunohistochemistry, respectively, in different dose groups. Tumor growth was markedly retarded in the high-dose experimental and standard hTNF-α groups with antitumor rates of 85.91 and 72.25%, respectively, as compared with the control group. Furthermore, the tumor tissue showed obvious apoptosis (the apoptotic index was 78.78 and 66.65%, respectively) and pathological changes in the high-dose experimental and standard hTNF-α groups. Tumor angiogenesis in each fusion protein group was inhibited (P<0.01) and the biochemical markers of various organs were greatly reduced in the high-dose experimental group (P<0.05). This finding indicated that slight toxic effects of fusion proteins were evident for the heart, liver and kidney. The reforming fusion protein

  10. Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas

    PubMed Central

    Liu, Hong-Yan; Gu, Wei-Jun; Wang, Cheng-Zhi; Ji, Xiao-Jian; Mu, Yi-Ming

    2016-01-01

    Abstract The extracellular matrix is important for tumor invasion and metastasis. Normal function of the extracellular matrix depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The objective of this meta-analysis was to assess the relationship between expression of MMP-9, MMP-2, and TIMP-2 and invasion of pituitary adenomas. We searched Pubmed, Embase, and the Chinese Biomedical Database up to October 2015. RevMan 5.1 software (Cochrane Collaboration, Copenhagen, Denmark) was used for statistical analysis. We calculated the standardized mean difference (SMD) for data expressed as mean ± standard deviation because of the difference in the detection method. Twenty-four studies (1320 patients) were included. MMP-9 expression was higher in the patients with invasive pituitary adenomas (IPAs) than patients with noninvasive pituitary adenomas (NIPAs) with detection methods of IHC [odds ratio (OR) = 5.48, 95% confidence interval (CI) = 2.61–11.50, P < 0.00001), and reverse transcriptase-polymerase chain reaction (SMD = 2.28, 95% CI = 0.91–3.64, P = 0.001). MMP-2 expression was also increased in patients with IPAs at the protein level (OR = 3.58, 95% CI = 1.63–7.87, P = 0.001), and RNA level (SMD = 3.91, 95% CI = 1.52–6.29, P = 0.001). Meta-analysis showed that there was no difference in TIMP-2 expression between invasive and NIPAs at the protein level (OR = 0.38, 95% CI = 0.06–2.26, P = 0.29). MMP-9 expression in prolactinomas and nonfunctioning pituitary adenomas was also no difference (OR = 1.03, 95% CI = 0.48–2.20, P = 0.95). The results indicated that MMP-9 and -2 may be correlated with invasiveness of pituitary adenomas, although their relationship with functional status of pituitary adenomas is still not clear. TIMP-2 expression in IPAs needs to be investigated further. PMID:27310993

  11. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients

    PubMed Central

    Tamborino, Carmine; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Dujmovic, Irena

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process. PMID:27555667

  12. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients.

    PubMed

    Trentini, Alessandro; Castellazzi, Massimiliano; Cervellati, Carlo; Manfrinato, Maria Cristina; Tamborino, Carmine; Hanau, Stefania; Volta, Carlo Alberto; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Dujmovic, Irena; Fainardi, Enrico

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process. PMID:27555667

  13. A novel matrix metalloproteinase-2 inhibitor triazolylmethyl aziridine reduces melanoma cell invasion, angiogenesis and targets ERK1/2 phosphorylation.

    PubMed

    Romanchikova, Nadezhda; Trapencieris, Pēteris; Zemītis, Jānis; Turks, Māris

    2014-12-01

    A novel matrix metalloproteinase-2 (MMP-2) inhibitor JaZ-30, which belongs to the class of C(2)-monosubstituted aziridine - aryl-1,2,3-triazole conjugates, was developed. MTT and crystal violet assays were used to determine cytotoxicity- IC(50) values of compound JaZ-30 on melanoma cell line B16 4A5. Our study proves the anti-cancer properties of JaZ-30 with a wide spectrum of activities. JaZ-30 was revealed as selective inhibitor of matrix metalloproteinase-2. JaZ-30-mediated decrease of Vascular Endothelial Growth Factor (VEGF) secretion results in inhibition of angiogenesis, performed with the human umbilical vein endothelial cell line (HUVEC-2) on Matrigel. A novel inhibitor decreases invasive properties of melanoma cells measured in Matrigel chambers assay. JaZ-30 downregulates phosphorylation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) in melanoma cells stimulated by phorbol-12-myristate-13-acetate (PMA). Our findings propose a novel MMP-2 inhibitor JaZ-30 as an attractive potential agent for melanoma treatment.

  14. Matrix Metalloproteinase-2 Knockout and Heterozygote Mice Are Protected from Hydronephrosis and Kidney Fibrosis after Unilateral Ureteral Obstruction

    PubMed Central

    Tveitarås, Maria K.; Skogstrand, Trude; Leh, Sabine; Helle, Frank; Chatziantoniou, Christos; Reed, Rolf K.; Hultström, Michael

    2015-01-01

    Matrix Metalloproteinase-2 (Mmp2) is a collagenase known to be important in the development of renal fibrosis. In unilateral ureteral obstruction (UUO) the obstructed kidney (OK) develops fibrosis, while the contralateral (CL) does not. In this study we investigated the effect of UUO on gene expression, fibrosis and pelvic remodeling in the kidneys of Mmp2 deficient mice (Mmp2-/-), heterozygous animals (Mmp2+/-) and wild-type mice (Mmp2+/+). Sham operated animals served as controls (Cntrl). UUO was prepared under isoflurane anaesthesia, and the animals were sacrificed after one week. UUO caused hydronephrosis, dilation of renal tubules, loss of parenchymal thickness, and fibrosis. Damage was most severe in Mmp2+/+ mice, while both Mmp2-/- and Mmp2+/- groups showed considerably milder hydronephrosis, no tubular necrosis, and less tubular dilation. Picrosirius red quantification of fibrous collagen showed 1.63±0.25% positivity in OK and 0.29±0.11% in CL (p<0.05) of Mmp2+/+, Mmp2-/- OK and Mmp2-/- CL exhibited only 0.49±0.09% and 0.23±0.04% (p<0.05) positivity, respectively. Mmp2+/- OK and Mmp2+/- CL showed 0.43±0.09% and 0.22±0.06% (p<0.05) positivity, respectively. Transcriptomic analysis showed that 26 genes (out of 48 examined) were differentially expressed by ANOVA (p<0.05). 25 genes were upregulated in Mmp2+/+ OK compared to Mmp2+/+ CL: Adamts1, -2, Col1a1, -2, -3a1, -4a1, -5a1, -5a2, Dcn, Fbln1, -5, Fmod, Fn1, Itga2, Loxl1, Mgp, Mmp2, -3, Nid1, Pdgfb, Spp1, Tgfb1, Timp2, Trf, Vim. In Mmp2-/- and Mmp2+/- 18 and 12 genes were expressed differentially between OK and CL, respectively. Only Mmp2 was differentially regulated when comparing Mmp2-/- OK and Mmp2+/- OK. Under stress, it appears that Mmp2+/- OK responds with less Mmp2 upregulation than Mmp2+/+ OK, suggesting that there is a threshold level of Mmp2 necessary for damage and fibrosis to occur. In conclusion, reduced Mmp2 expression during UUO protects mice against hydronephrosis and renal fibrosis

  15. Alterations in enhancer of zeste homolog 2, matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 expression are associated with ex vivo and in vitro bone metastasis in renal cell carcinoma.

    PubMed

    Wang, Jiang; Ren, Ye; Guo, Xin; Cheng, Hao; Ye, Yaping; Qi, Jun; Yang, Caihong; You, Hongbo

    2015-05-01

    Renal cell carcinoma (RCC) has a high potential for bone metastasis; however, the molecular mechanisms underlying this metastasis have remained to be elucidated. The present study aimed to explore the expression levels of enhancer of zeste homolog 2 (EZH2), matrix metalloproteinase-2 (MMP2) and tissue inhibitor of metalloproteinase-2 (TIMP2) as determinants of RCC-associated bone metastasis. Their expression was evaluated in a newly generated RCC cell subline that has a high potential for bone metastasis, in tissue specimens from metastasized bone tissues from patients with RCC and in RCC tissues without metastasis. A total of 25 RCC tissue specimens without metastasis and 13 RCC tissue specimens with bone metastasis were acquired for immunohistochemical analysis of EZH2, MMP2 and TIMP2 protein expression. The expression levels of EZH2, MMP2 and TIMP2 mRNA and protein were analyzed in the ACHN and ACHN-BO5 cell lines using western blot and reverse transcription polymerase chain reaction (PCR) analyses. Methylation-specific PCR was also used to analyze TIMP2 promoter methylation. EZH2 and MMP2 proteins were found to be expressed at higher levels in tissues from patients where RCC had metastasized to the bone as compared with those in RCC patients without metastasis, whereas there was no significant difference in the expression of TIMP2 protein between the two tissues. Furthermore, the expression of EZH2 protein was correlated with MMP2 expression, but there was no significant correlation between the expression of EZH2 and TIMP2 proteins. The in vitro results using cell lines confirmed the ex vivo findings, indicating that the expression levels of EZH2 and MMP2 protein and mRNA were higher in ACHN-BO5 cells than those in ACHN cells. By contrast, TIMP2 protein and mRNA expression levels were lower in ACHN-BO5 cells than those in the parental ACHN cells. The TIMP2 promoter was highly methylated in ACHN-BO5 cells compared with that in ACHN cells. Upregulation of EZH2

  16. O-6-methylguanine-DNA Methyltransferase Inhibits Gastric Carcinoma Cell Migration and Invasion by Downregulation of Matrix Metalloproteinase 2.

    PubMed

    Li, Chenglong; Deng, Li; Shen, Hugang; Meng, Qingyou; Qian, Aimin; Sang, Hongfei; Xia, Jiazeng; Li, Xiaoqiang

    2016-01-01

    MGMT plays a key role in many kinds of cancers. However, the molecular mechanisms of MGMT involvement in gastric cancer (GC) are poorly elucidated. Here, we investigated the role of MGMT in GC cell migration, invasion and metastatic potential. Our data showed that MGMT expression was negatively correlated with lymph node metastasis and late TNM stages. These findings were accompanied by downregulation of matrix metalloproteinase 2 (MMP2). Loss of MGMT expression induced increases in GC cell metastasis and invasion potential in vitro and in vivo. These effects were reversed by inhibition of MGMT and MMP2. MGMT overexpression downregulated MMP2 protein levels, whereas this effect was counteracted by MGMT siRNA. In summary, MGMT is involved in gastric carcinogenesis via downregulation of MMP2. The MGMT/MMP2 pathway plays an essential role in GC metastasis and may be a potential therapeutic target for GC treatment. PMID:27291049

  17. Activation of toll-like receptor-2 by endogenous matrix metalloproteinase-2 modulates dendritic-cell-mediated inflammatory responses.

    PubMed

    Godefroy, Emmanuelle; Gallois, Anne; Idoyaga, Juliana; Merad, Miriam; Tung, Navpreet; Monu, Ngozi; Saenger, Yvonne; Fu, Yichun; Ravindran, Rajesh; Pulendran, Bali; Jotereau, Francine; Trombetta, Sergio; Bhardwaj, Nina

    2014-12-11

    Matrix metalloproteinase-2 (MMP-2) is involved in several physiological mechanisms, including wound healing and tumor progression. We show that MMP-2 directly stimulates dendritic cells (DCs) to both upregulate OX40L on the cell surface and secrete inflammatory cytokines. The mechanism underlying DC activation includes physical association with Toll-like receptor-2 (TLR2), leading to NF-κB activation, OX40L upregulation on DCs, and ensuing TH2 differentiation. Significantly, MMP-2 polarizes T cells toward type 2 responses in vivo, in a TLR2-dependent manner. MMP-2-dependent type 2 polarization may represent a key immune regulatory mechanism for protection against a broad array of disorders, such as inflammatory, infectious, and autoimmune diseases, which can be hijacked by tumors to evade immunity.

  18. Activation of Toll-like receptor-2 by endogenous matrix metalloproteinase-2 modulates dendritic cell-mediated inflammatory responses

    PubMed Central

    Godefroy, Emmanuelle; Gallois, Anne; Idoyaga, Juliana; Merad, Miriam; Tung, Navpreet; Monu, Ngozi; Saenger, Yvonne; Fu, Yichun; Nair, Rajesh; Pulendran, Bali; Jotereau, Francine; Trombetta, Sergio; Bhardwaj, Nina

    2015-01-01

    SUMMARY Matrix metalloproteinase-2 (MMP-2) is involved in several physiological mechanisms, including wound healing and tumor progression. We show that MMP-2 directly stimulates dendritic cells (DCs) to both up-regulate OX40L on the cell surface and secrete inflammatory cytokines. The mechanism underlying DC activation includes physical association with Toll-like receptor-2 (TLR2), leading to NF-κB activation, OX40L up-regulation on DCs and ensuing TH2 differentiation. Significantly, MMP-2 polarizes T cells towards type-2 responses in vivo, in a TLR2-dependent manner. MMP-2-dependent type-2 polarization may represent a key immune regulatory mechanism to protect against a broad array of disorders, such as inflammatory, infectious and autoimmune diseases, which can be hijacked by tumors to evade immunity. PMID:25466255

  19. Role of Matrix Metalloproteinases 2 in Spinal Cord Injury-Induced Neuropathic Pain.

    PubMed

    Miranpuri, Gurwattan S; Schomberg, Dominic T; Alrfaei, Bahauddeen; King, Kevin C; Rynearson, Bryan; Wesley, Vishwas S; Khan, Nayab; Obiakor, Kristen; Wesley, Umadevi V; Resnick, Daniel K

    2016-03-01

    Neuropathic pain (NP) affects approximately 4 million people in the United States with spinal cord injury (SCI) being a common cause. Matrix metalloproteinases (MMPs) play an integral role in mediating inflammatory responses, cellular signaling, cell migration, extracellular matrix degradation and tissue remodeling and repair. As such, they are major components in the pathogenesis of secondary injury within the central nervous system. Other gene regulatory pathways, specifically MAPK/extracellular signaling-regulated kinase (ERK) and Wnt/β-catenin, are also believed to participate in secondary injury likely intersect. The study aims to examine the MMP-2 signaling pathway associated with ERK and Wnt/β-catenin activity during contusion SCI (cSCI)-induced NP in a rat model. This is an experimental study investigating the implication of MMP-2 in SCI-induced NP and its association with the cellular and molecular changes in the interactions between extracellular signaling kinase and β-catenin. Adult Sprague-Dawley rats received cSCI injury by NYU impactor by dropping 10 g weight from a height of 12.5 mm. Locomotor functional recovery of injured rats was measured on post cSCI day 1, and weekly thereafter for 6 weeks using Basso, Beattie and Bresnahan scores. Thermal hyperalgesia (TH) testing was performed on days 21, 28, 35 and 42 post cSCI. The expression and/or activity of MMP-2, β-catenin and ERK were studied following harvest of spinal cord tissues between 3 and 6 weeks post cSCI. All experiments were funded by the department of Neurological Surgery at the University of Wisconsin, School of Medicine and Public Health having no conflict of interest. MMP-2 and β-catenin expression were elevated and gradually increased from days 21 to 42 compared to sham-operated rats and injured rats that did not exhibit TH. The expression of phosphorylated ERK (phospho-ERK) increased on day 21 but returned to baseline levels on day 42 whereas total ERK levels remained relatively

  20. Role of Matrix Metalloproteinases 2 in Spinal Cord Injury-Induced Neuropathic Pain

    PubMed Central

    Miranpuri, Gurwattan S.; Schomberg, Dominic T.; Alrfaei, Bahauddeen; King, Kevin C.; Rynearson, Bryan; Wesley, Vishwas S.; Khan, Nayab; Obiakor, Kristen; Wesley, Umadevi V.; Resnick, Daniel K.

    2016-01-01

    Neuropathic pain (NP) affects approximately 4 million people in the United States with spinal cord injury (SCI) being a common cause. Matrix metalloproteinases (MMPs) play an integral role in mediating inflammatory responses, cellular signaling, cell migration, extracellular matrix degradation and tissue remodeling and repair. As such, they are major components in the pathogenesis of secondary injury within the central nervous system. Other gene regulatory pathways, specifically MAPK/extracellular signaling-regulated kinase (ERK) and Wnt/β-catenin, are also believed to participate in secondary injury likely intersect. The study aims to examine the MMP-2 signaling pathway associated with ERK and Wnt/β-catenin activity during contusion SCI (cSCI)-induced NP in a rat model. This is an experimental study investigating the implication of MMP-2 in SCI-induced NP and its association with the cellular and molecular changes in the interactions between extracellular signaling kinase and β-catenin. Adult Sprague-Dawley rats received cSCI injury by NYU impactor by dropping 10 g weight from a height of 12.5 mm. Locomotor functional recovery of injured rats was measured on post cSCI day 1, and weekly thereafter for 6 weeks using Basso, Beattie and Bresnahan scores. Thermal hyperalgesia (TH) testing was performed on days 21, 28, 35 and 42 post cSCI. The expression and/or activity of MMP-2, β-catenin and ERK were studied following harvest of spinal cord tissues between 3 and 6 weeks post cSCI. All experiments were funded by the department of Neurological Surgery at the University of Wisconsin, School of Medicine and Public Health having no conflict of interest. MMP-2 and β-catenin expression were elevated and gradually increased from days 21 to 42 compared to sham-operated rats and injured rats that did not exhibit TH. The expression of phosphorylated ERK (phospho-ERK) increased on day 21 but returned to baseline levels on day 42 whereas total ERK levels remained relatively

  1. Activities of matrix metalloproteinases and tissue inhibitor of metalloproteinase-2 in idiopathic hemotympanum and otitis media with effusion

    PubMed Central

    Moon, Sung K.; Linthicum, Fred H.; Yang, Hae Dong; Lee, Seung Joo; Park, Keehyun

    2008-01-01

    Conclusion The expression profile of matrix metalloproteinases (MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) was specific to the type of middle ear effusion. Further studies are necessary for elucidating its correlation with the sequelae of otitis media with effusion (OME) and idiopathic hemotympanum. Objectives We aimed to investigate the relative activities of gelatinases (MMP-2 and 9), stromelysin-1 (MMP-3), matrilysin-1 (MMP-7) as well as measuring TIMP-2 levels in the serous and mucous effusions of OME and hemorrhagic effusion of the idiopathic hemotympanum. Method Middle ear effusions were collected from patients with OME and idiopathic hemotympanum, and were classified as mucoid, serous or hemorrhagic. MMP activity in the effusion samples was examined by gelatin and casein zymography. Levels of TIMP-2 were measured by ELISA. Human temporal bones sections, with and without otitis media (OM), were examined histologically. Results One case showed tympanic membrane thinning in the OM group, but none in the control group. While MMP-2 was present in all effusions, the active form of MMP-2 was found only in mucous effusions. MMP-3 and MMP-7 activity was detected only in the mucous effusions. MMP-9 exhibited activity in all effusions, with the highest levels in mucous effusions. TIMP-2 levels were markedly elevated in serous effusions. PMID:17851959

  2. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2.

    PubMed

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02-0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe.

  3. Tissue inhibitor of metalloproteinases-2 is expressed in the interstitial matrix in adult mouse organs and during embryonic development.

    PubMed Central

    Blavier, L; DeClerck, Y A

    1997-01-01

    Tissue inhibitor of metalloproteinases-2 (TIMP-2) is a member of a family of inhibitors of matrix-degrading metalloproteinases. A better insight into the role of this inhibitor during development and in organ function was obtained by examining the temporospatial expression of TIMP-2 in mice. Northern blot analysis indicated high levels of TIMP-2 mRNA in the lung, skin, reproductive organs, and brain. Lower levels of expression were found in all other organs with the exception of the liver and gastrointestinal tissue, which were negative of these tissues with complete absence of TIMP-2 mRNA in the epithelium. In the testis, TIMP-2 was present in the Leydig cells, and in the brain, it was expressed in pia matter and in neuronal tissues. TIMP-2 expression in the placenta increased during late gestation and was particularly abundant in spongiotrophoblasts In mouse embryo (day 10.5-18.5), TIMP-2 mRNA was abundant in mesenchymal tissues that surrounded developing epithelia and maturing skeleton. The pattern of expression significantly differs from that observed with TIMP-1 and TIMP-3, therefore, suggesting specific roles for each inhibitor during tissue remodeling and development. Images PMID:9285822

  4. α-Solanine inhibits human melanoma cell migration and invasion by reducing matrix metalloproteinase-2/9 activities.

    PubMed

    Lu, Ming-Kun; Shih, Yuan-Wei; Chang Chien, Tzu-Tsung; Fang, Li-Heng; Huang, Hsiang-Ching; Chen, Pin-Shern

    2010-01-01

    α-Solanine, a naturally occurring steroidal glycoalkaloid in potato sprouts, was found to possess anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis of tumor cells. However, the effect of α-solanine on cancer metastasis remains unclear. In the present study, we examined the effect of α-solanine on metastasis in vitro. Data demonstrated that α-solanine inhibited proliferation of human melanoma cell line A2058 in a dose-dependent manner. When treated with non-toxic doses of α-solanine, cell migration and invasion were markedly suppressed. Furthermore, α-solanine reduced the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9, which are involved in the migration and invasion of cancer cells. Our biochemical assays indicated that α-solanine potently suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), phosphatidylinositide-3 kinase (PI3K) and Akt, while it did not affect phosphorylation of extracellular signal regulating kinase (ERK). In addition, α-solanine significantly decreased the nuclear level of nuclear factor kappa B (NF-κB), suggesting that α-solanine inhibited NF-κB activity. Taken together, the results suggested that α-solanine inhibited migration and invasion of A2058 cells by reducing MMP-2/9 activities. It also inhibited JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for α-solanine in anti-metastatic therapy.

  5. The Impact of Matrix Metalloproteinase 2 on Prognosis and Clinicopathology of Breast Cancer Patients: A Systematic Meta-Analysis

    PubMed Central

    Chen, Yiping; Wang, Xiaochen; Chen, Guodi; Dong, Caixia; Zhang, Depu

    2015-01-01

    Backgrounds Matrix metalloproteinase 2 (MMP-2) plays a crucial role in the progression of breast cancer (BC). The prognostic role of MMP-2 expression in BC patients has been widely reported, but the results were inconsistent. Thus, a meta-analysis was conducted to gain a better insight into the impact of MMP-2 expression on survival and clinicopathological features of BC patients. Methods Identical search strategies were used to search relevant literatures in electronic databases update to August 1, 2014. Individual hazard ratios (HRs) and odds ratios (ORs) with their 95% confidence intervals (CIs) were extracted and pooled to evaluate the strength of the association between positive MMP-2 expression and survival results and clinicopathological features of BC patients. Begg’s tests, Egger’s tests and funnel plots were used to evaluate publication bias. Heterogeneity and sensitivity analysis were also assessed. All the work was completed using STATA. Results Pooled HRs and 95% CIs suggested that MMP-2 expression had an unfavorable impact on both OS (HR: 1.53, 95% CI: 1.29–1.82) and DFS/RFS/DDFS (HR: 1.41, 95% CI: 1.07–1.86) in BC patients. Furthermore, MMP-2 expression was significantly associated with lymph node metastasis (positive vs negative: OR 1.91, 95% CI 1.17–3.12). Conclusion In conclusion, positive MMP-2 expression might be a significant predictive factor for poor prognosis in patients with BC. PMID:25816052

  6. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2

    PubMed Central

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02–0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe. PMID:27143876

  7. Synovial fluid matrix metalloproteinase-2 and -9 activities in dogs suffering from joint disorders

    PubMed Central

    MURAKAMI, Kohei; MAEDA, Shingo; YONEZAWA, Tomohiro; MATSUKI, Naoaki

    2016-01-01

    The activity of matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fluids (SF) sampled from dogs with joint disorders was investigated by gelatin zymography and densitometry. Pro-MMP-2 showed similar activity levels in dogs with idiopathic polyarthritis (IPA; n=17) or canine rheumatoid arthritis (cRA; n=4), and healthy controls (n=10). However, dogs with cranial cruciate ligament rupture (CCLR; n=5) presented significantly higher pro-MMP-2 activity than IPA and healthy dogs. Meanwhile, dogs with IPA exhibited significantly higher activity of pro- and active MMP-9 than other groups. Activity levels in pro- and active MMP-9 in cRA and CCLR dogs were not significantly different from those in healthy controls. Different patterns of MMP-2 and MMP-9 activity may reflect the differences in the underlying pathological processes. PMID:26902805

  8. Distribution and activity levels of matrix metalloproteinase 2 and 9 in canine and feline osteosarcoma.

    PubMed

    Gebhard, Christiane; Fuchs-Baumgartinger, Andrea; Razzazi-Fazeli, Ebrahim; Miller, Ingrid; Walter, Ingrid

    2016-01-01

    Overexpression of matrix metalloproteinases (MMPs) has been associated with increased tumor aggressiveness and metastasis dissemination. We investigated whether the contrasting metastatic behavior of feline and canine osteosarcoma is related to levels and activities of MMP2 and MMP9. Zymography and immunohistochemistry were used to determine expression levels of MMP2 and MMP9 in canine and feline osteosarcoma. Using immunohistochemistry, increased MMP9 levels were identified in most canine osteosarcomas, whereas cat samples more often displayed moderate levels. High levels of pro-MMP9, pro-MMP2, and active MMP2 were detected by gelatin zymography in both species, with significantly higher values for active MMP2 in canine osteosarcoma. These findings indicate that MMP2 is probably involved in canine and feline osteosarcoma and their expression and activity could be associated with the different metastatic behavior of canine and feline osteosarcoma. PMID:26733734

  9. Activation of matrix metalloproteinase-2 and -9 by 2- and 4-hydroxyestradiol.

    PubMed

    Paquette, Benoit; Bisson, Martine; Therriault, Hélène; Lemay, Rosalie; Paré, Mélanie; Banville, Pascale; Cantin, André M

    2003-10-01

    Breast cancer patients frequently develop metastases. This process requires the degradation of extracellular matrix proteins which act as a barrier to tumour cell passage. These proteins can be degraded by proteases, mainly the matrix metalloproteinases (MMPs). MMP-2 and -9 which are frequently detected in breast cancer tissues. ProMMPs are released from cancer cells, and their activation is considered to be a crucial step in metastases development. In breast cancer, estrogen metabolism is altered favouring the accumulation of 2- and 4-hydroxyestradiol (2- and 4-OHE(2)). These estradiol metabolites can generate free radicals. Since reactive species are known activators of proMMPs, this study was designed to determine if the free radicals generated by 2- and 4-OHE(2) can activate proMMP-2 and -9. Activation of MMPs by hydroxyestradiol was determined by monitoring the cleavage of a fluorogenic peptide and by zymography analysis. Both estradiol metabolites activated the MMP-2 and -9. 4-OHE(2) was a more potent activator than 2-OHE(2), which reflects its higher capacity to generate free radicals. ProMMPs activation was mainly mediated through O(2)*-, although the free radical HO* also activated the proMMPs but to a lesser extent. ProMMPs activation was not observed with estrogens that cannot generate free radicals, i.e. estradiol, estrone, 2- and 4-methoxyestradiol, and 16alpha-hydroxyestrone. These results demonstrate that 2- and 4-OHE(2) at a concentration as low as 10(-8)M can activate the proMMP-2 and -9 and might play an important role in the invasion of breast cancer cells.

  10. Matrix metalloproteinases-2 and -9 in cervical cancer: different roles in tumor progression.

    PubMed

    Rauvala, M; Aglund, K; Puistola, U; Turpeenniemi-Hujanen, T; Horvath, G; Willén, R; Stendahl, U

    2006-01-01

    The incidence of uterine cervical cancer has increased slightly in Western countries, with an increase in relatively young women. Overexpression of matrix metalloproteinases (MMPs)-2 and -9 has turned out as a prognostic factor in many cancers. We compared the expression of the proteins MMP-2 and MMP-9 in cervical primary tumors with clinical outcome and risk factors of cervical cancer. One hundred sixty-one patients with cervical cancer treated in Umeå University Hospital or Sahlgrenska University Hospital, Sweden, between 1991 and 1995 were included in the study. Paraffin-embedded tissue samples obtained prior to treatment were examined immunohistochemically by specific antibodies for MMP-2 and MMP-9. Forty-two percent of the tumors were intensively positive for MMP-2 and 31% for MMP-9. Nineteen percent of the samples were intensively positive for both proteinases and 47% negative or weak for both. Overexpression of MMP-2 seemed to predict unfavorable survival under Kaplan-Meier analysis and in the multivariate analysis. Early sexual activity and low parity seemed to correlate to overexpression of MMP-2. MMP-9 was not associated with survival or sexual behavior. Intensive MMP-9 was noted in grade 1 tumors. We conclude that MMP-2 and MMP-9 have different roles in uterine cervical cancer. MMP-2 could be associated with aggressive behavior, but MMP-9 expression diminishes in high-grade tumors.

  11. Matrix metalloproteinase-2 is elevated in midtrimester amniotic fluid prior to the development of preeclampsia

    PubMed Central

    Lavee, Michal; Goldman, Shlomit; Daniel-Spiegel, Etty; Shalev, Eliezer

    2009-01-01

    Objective To evaluate levels of matrix metalloproteinases (MMP) and their inhibitors (TIMP) in second trimester amniotic fluid of women with hypertensive disorders compared to normotensive women. Study Design Amniotic fluid was obtained from 133 women undergoing genetic second trimester amniocentesis. Zymography was performed for MMP characterization and an MMP-2 ELISA kit was used to determine MMP-2 levels. TIMP-2 expression was evaluated using western blot. Results Mean amniotic fluid MMP-2 and TIMP-2 levels were significantly higher in women who developed a hypertensive disorder compared to normotensive women (P < 0.0004 and P < 0.01, respectively). When subdivided into subgroups, amniotic fluid from women who eventually developed preeclampsia or superimposed preeclampsia showed significantly higher MMP-2 levels than normotensive women (P < 0.05). However, no statistical difference in MMP-2 levels was found between patients with gestational hypertension and normotensive patients. Conclusion Higher amniotic fluid MMP-2 and TIMP-2 levels are found in women who eventually develop preeclampsia. PMID:19698156

  12. Matrix Metalloproteinase-2 Mediates Intestinal Immunopathogenesis in Campylobacter Jejuni-Infected Infant Mice

    PubMed Central

    Alutis, Marie E.; Grundmann, Ursula; Hagen, Ulrike; Fischer, André; Kühl, Anja A.; Göbel, Ulf B.; Bereswill, Stefan; Heimesaat, Markus M.

    2015-01-01

    Increased levels of the matrix metalloproteinases (MMPs)-2 and -9 (also referred to gelatinase-A and -B, respectively) can be detected in the inflamed gut. We have recently shown that synthetic gelatinase blockage reduces colonic apoptosis and pro-inflammatory immune responses following murine Campylobacter (C.) jejuni infection. In order to dissect whether MMP-2 and/or MMP-9 is involved in mediating C. jejuni-induced immune responses, infant MMP-2–/–, MMP-9–/–, and wildtype (WT) mice were perorally infected with the C. jejuni strain B2 immediately after weaning. Whereas, at day 2 postinfection (p.i.), fecal C. jejuni B2 loads were comparable in mice of either genotype, mice expelled the pathogen from the intestinal tract until day 4 p.i. Six days p.i., colonic MMP-2 but not MMP-9 mRNA was upregulated in WT mice. Remarkably, infected MMP-2–/– mice exhibited less frequent abundance of blood in feces, less distinct colonic histopathology and apoptosis, lower numbers of effector as well as innate and adaptive immune cells within the colonic mucosa, and higher colonic IL-22 mRNA levels as compared to infected WT mice. In conclusion, these results point towards an important role of MMP-2 in mediating C. jejuni-induced intestinal immunopathogenesis. PMID:26495129

  13. Elevated serum brain natriuretic peptide and matrix metalloproteinases 2 and 9 in Wilson's disease.

    PubMed

    Cheng, Nan; Wang, Honghao; Dong, Jianjian; Pan, Suyue; Wang, Xun; Han, Yongsheng; Han, Yongzhu; Yang, Renmin

    2015-08-01

    Wilson's disease (WD) is a disease of copper metabolism characterized by excessive copper deposition in the body. It is reported abnormal copper metabolism has been associated with cardiovascular disease. BNP and MMP2/9 were biomarkers of congestive heart failure (CHF). There is rare study to explore whether serum concentrations of BNP, MMP2, and or MMP9 are altered in patients with WD. In this study we determine whether serum concentrations of brain natriuretic peptide (BNP) and matrix metalloproteinases (MMP) 2 and 9 are increased in patients with WD. Serum BNP, MMP2 and MMP9 were measured by an ELISA in 34 patients with hepatic WD, in 68 patients with neurological WD, and in 33 healthy controls. We found serum BNP levels were higher in patients with neurological WD than in healthy controls (p = 0.033). Serum MMP2 levels were higher in patients with hepatic (p = 0.009) and neurologic (p = 0.0004) WD than in controls. Serum MMP9 levels were higher in patients with neurologic WD than in patients with hepatic WD (p = 0.002) and controls (p = 0.00005), and were higher in patients with hepatic WD than in controls (p = 0.03). Serum BNP levels were negatively correlated with ceruloplasmin (p = 0.017, r = -0.215), while serum (p = 0.019, r = -0.221) and MMP9 (p = 0.011, r = -0.231) in patients with WD were negatively correlated with ceruloplasmin. BNP, MMP2, and MMP9 may reflect the deposition of copper in the heart.

  14. Matrix metalloproteinases 2 and 9 and MMP9/NGAL complex activity in women with PCOS.

    PubMed

    Ranjbaran, Javad; Farimani, Marzieh; Tavilani, Heidar; Ghorbani, Marzieh; Karimi, Jamshid; Poormonsefi, Faranak; Khodadadi, Iraj

    2016-04-01

    It is believed that matrix metalloproteinases (MMPs) play important roles in follicular development and pathogenesis of polycystic ovary syndrome (PCOS). However, conflicting results are available about the alteration of MMP2 and MMP9 concentrations or activities in PCOS. In fact, there is no study entirely investigating both concentration and activity of these MMPs and serum levels of their tissue inhibitors TIMP2 and TIMP1, as well as lipocalin-bound form of MMP9 (MMP9/NGAL). Therefore, the thoroughness of previous studies is questionable. This study was conducted to determine circulatory concentration of MMP2, MMP9, MMP9/NGAL complex, TIMP1 and TIMP2 as well as gelatinase activities of MMP2, MMP9 and MMP9/NGAL complex in women with PCOS and controls. Mean age and BMI as well as serum levels of total cholesterol, triacylglycerol, HDL-C, LDL-C, fasting blood sugar (FBS), insulin, estradiol and sex hormone-binding globulin did not differ between groups, whereas a marked decrease in FSH and significant increases in LH, LH/FSH ratio, testosterone and free androgen index were observed. Women with PCOS and controls showed closed concentrations of MMP2, MMP9, MMP9/NGAL, TIMP1 and TIMP2. Gelatinase activity of MMP9 was found significantly higher in PCOS than in controls (64.53±15.32 vs 44.61±18.95 respectively) while patients and healthy subjects showed similar activities of MMP2 and MMP9/NGAL complex. Additionally, PCOS patients showed a higher MMP9/TIMP1 ratio compared with control women. Direct correlations were also observed between circulatory MMP9 level and the concentration and activity of MMP9/NGAL complex. In conclusion, based on the results of present study, we believe that MMP9 may be involved in the pathogenesis of PCOS.

  15. Molecular design of a highly selective and strong protein inhibitor against matrix metalloproteinase-2 (MMP-2).

    PubMed

    Higashi, Shouichi; Hirose, Tomokazu; Takeuchi, Tomoka; Miyazaki, Kaoru

    2013-03-29

    Synthetic inhibitors of matrix metalloproteinases (MMPs), designed previously, as well as tissue inhibitors of metalloproteinases (TIMPs) lack enzyme selectivity, which has been a major obstacle for developing inhibitors into safe and effective MMP-targeted drugs. Here we designed a fusion protein named APP-IP-TIMP-2, in which the ten amino acid residue sequence of APP-derived MMP-2 selective inhibitory peptide (APP-IP) is added to the N terminus of TIMP-2. The APP-IP and TIMP-2 regions of the fusion protein are designed to interact with the active site and the hemopexin-like domain of MMP-2, respectively. The reactive site of the TIMP-2 region, which has broad specificity against MMPs, is blocked by the APP-IP adduct. The recombinant APP-IP-TIMP-2 showed strong inhibitory activity toward MMP-2 (Ki(app) = 0.68 pm), whereas its inhibitory activity toward MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, or MT1-MMP was six orders of magnitude or more weaker (IC50 > 1 μm). The fusion protein inhibited the activation of pro-MMP-2 in the concanavalin A-stimulated HT1080 cells, degradation of type IV collagen by the cells, and the migration of stimulated cells. Compared with the decapeptide APP-IP (t½ = 30 min), APP-IP-TIMP-2 (t½ ≫ 96 h) showed a much longer half-life in cultured tumor cells. Therefore, the fusion protein may be a useful tool to evaluate contributions of proteolytic activity of MMP-2 in various pathophysiological processes. It may also be developed as an effective anti-tumor drug with restricted side effects.

  16. Altered Serum Levels of Matrix Metalloproteinase-2, -9 in Response to Electroconvulsive Therapy for Mood Disorders

    PubMed Central

    Shibasaki, Chiyo; Itagaki, Kei; Abe, Hiromi; Kajitani, Naoto; Okada-Tsuchioka, Mami

    2016-01-01

    Background: Inflammatory processes could underlie mood disorders. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMP) are inflammation-related molecules. The current study sought an association between mood disorders and systemic levels of MMPs and TIMPs. Methods: Serum was obtained from patients with mood disorders (n=21) and patients with schizophrenia (n=13) scheduled to undergo electroconvulsive therapy. Serum was also obtained from healthy controls (n=40). Clinical symptoms were assessed by the Hamilton Rating Score for Depression and the Brief Psychiatric Rating Scale. Serum levels of MMPs and TIMPs were quantified by ELISA. Results: The serum levels of MMP-2 in mood disorder patients, but not in schizophrenia patients, prior to the first electroconvulsive therapy session (baseline) was significantly lower than that of healthy controls. At baseline, levels of MMP-9 and TIMP-2, -1 were not different between patients with mood disorder and schizophrenia and healthy controls. After a course of electroconvulsive therapy, MMP-2 levels were significantly increased in mood disorder patients, but MMP-9 levels were significantly decreased in both mood disorder and schizophrenia patients. In mood disorder patients, there was a significant negative correlation between depressive symptoms and serum levels of MMP-2 and a positive correlation between depressive symptoms and MMP-9. In addition, alterations of serum levels of MMP-2 and MMP-9 were significantly correlated each other and were associated with certain depressive symptoms. Conclusion: A change in inflammatory homeostasis, as indicated by MMP-2 and MMP-9, could be related to mood disorders, and these markers appear to be sensitive to electroconvulsive therapy. PMID:26912606

  17. Expressions of Matrix Metalloproteinases 2, 7, and 9 in Carcinogenesis of Pancreatic Ductal Adenocarcinoma

    PubMed Central

    Januszewska, Joanna; Sidorkiewicz, Iwona; Niewiński, Andrzej; Lewczuk, Łukasz; Kędra, Bogusław; Guzińska-Ustymowicz, Katarzyna

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal disease, usually diagnosed in an advanced stage which gives a slight chance of recovery. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that participate in tissue remodeling and stimulate neovascularization and inflammatory response. The aim of the study was to evaluate the expression of MMP-2, MMP-7, and MMP-9 in normal ducts, tumor pancreatic adenocarcinoma cells, and peritumoral stroma in correlation with clinicohistopathological parameters. The study material was obtained from 29 patients with pancreatic ductal adenocarcinoma. The expressions of MMP-2, MMP-7, and MMP-9 were performed by immunohistochemical technique. Microvessel density (MVD) was visualized by special immunostaining. The expressions of MMP-2, MMP-7, and MMP-9 were mainly observed in tumor cells and peritumoral stroma. MMP-2 expression in cancer cells was correlated with female gender, stronger inflammation, and histopathological type of cancer (R = 0.460, p = 0.013; R = 0.690, p = 0.0001; R = −0.440, p = 0.005, resp.). The expression of MMP-7 in tumor cells was found to positively correlate with the presence of necrosis and negatively correlate with MVD (R = 0.402, p = 0.031; R = −0.682, p = 0.000). We also showed that positive MMP-9 expression in tumor cells was associated with MVD (R = 0.368, p = 0.084); however, it was not statistically significant. Our results demonstrate that MMP-2, MMP-7, and MMP-9 expressions correlate with various morphological features of the PDAC tumor such as inflammation, necrosis, and formation of the new blood vessels. PMID:27429508

  18. Implication of matrix metalloproteinases 2 and 9 in ceramide 1-phosphate-stimulated macrophage migration.

    PubMed

    Ordoñez, Marta; Rivera, Io-Guané; Presa, Natalia; Gomez-Muñoz, Antonio

    2016-08-01

    Cell migration is a complex biological function involved in both physiologic and pathologic processes. Although this is a subject of intense investigation, the mechanisms by which cell migration is regulated are not completely understood. In this study we show that the bioactive sphingolipid ceramide 1-phosphate (C1P), which is involved in inflammatory responses, causes upregulation of metalloproteinases (MMP) -2 and -9 in J774A.1 macrophages. This effect was shown to be dependent on stimulation of phosphatidylinositol 3-kinase (PI3K) and extracellularly regulated kinases 1-2 (ERK1-2) as demonstrated by treating the cells with specific siRNA to knockdown the p85 regulatory subunit of PI3K, or ERK1-2. Inhibition of MMP-2 or MMP-9 pharmacologically or with specific siRNA to silence the genes encoding these MMPs abrogated C1P-stimulated macrophage migration. Also, C1P induced actin polymerization and potently increased phosphorylation of the focal adhesion protein paxillin, which are essential factors in the regulation of cell migration. As expected, blockade of paxillin activation with specific siRNA significantly reduced actin polymerization. In addition, inhibition of actin polymerization with cytochalasin D completely blocked C1P-induced MMP-2 and -9 expression as well as C1P-stimulated macrophage migration. It was also observed that pertussis toxin (Ptx) inhibited Akt, ERK1-2, and paxillin phosphorylation, and completely blocked cell migration. The latter findings support the notion that C1P-stimulated macrophage migration is a receptor mediated effect, and point to MMP-2 and -9 as possible therapeutic targets to control inflammation.

  19. [State of the liver antioxidant system and content of matrix metalloproteinase-2 of the large intestine under the effect of maleimide derivative in experimental colorectal carcinogenesis in rats].

    PubMed

    Filins'ka, O M; Iablons'ka, S V; Mandryk, S Ia; Kharchuk, I V; Ostrovs'ka, H V; Rybal'chenko, V K

    2010-01-01

    The maleimide derivative--1-(4-Cl-benzyl)-3-Cl-4-(CF3-phenylamino)-1H-pyrrol-2.5-dione (MI-1) with cytostatic activity did not cause substantial changes of liver antioxidant system and level of matrix metalloproteinase-2 in intestinal mucosa after chronic treatment (for 20 weeks). MI-1 did not cause significant changes in the content of thiobarbituric-active products and plasma membrane protein carbonyl groups in the rat liver. However activities of superoxide dismutase, glutathione peroxidase, and content of reduced glutathione were decreased in both doses--0.027 and 2.7 mg/kg. The level of matrix metalloproteinase-2 in intestinal mucosa was decreased just in maximum dose--2.7 mg/kg. The contents of thiobarbituric-active products, protein carbonyl groups, reduced glutathione, matrix metalloproteinase-2, activities of glutathione peroxidase and glutathione-S-transferase in the liver cells have increased in 1.2-dimethylhydrazine-induced colon cancer in rats. The activities of enzymes of the first line of antioxidant defense--superoxide dismutase and catalase were decreased to 40%. The maleimide derivative prevents development of oxidation stress and partially reduce them to control level.

  20. Downregulation of matrix metalloproteinase-2 (MMP-2) utilizing adenovirus-mediated transfer of small interfering RNA (siRNA) in a novel spinal metastatic melanoma model.

    PubMed

    Tsung, Andrew J; Kargiotis, Odysseas; Chetty, Chandramu; Lakka, Sajani S; Gujrati, Meena; Spomar, Daniel G; Dinh, Dzung H; Rao, Jasti S

    2008-03-01

    Matrix metalloproteinases (MMPs) comprise a class of secreted zinc-dependent endopeptidases implicated in the metastatic potential of tumor cells due to their ability to degrade the extracellular matrix (ECM) and basement membrane. Matrix metalloproteinase-2 (MMP-2) has been detected in high levels and correlates with invasiveness in human melanoma. We have studied the effect of adenovirus-mediated transfer of small interfering RNA (siRNA) against MMP-2 in the human melanoma cell line A2058. The delivery of these double-stranded RNA molecules represents an efficient technology in silencing disease-causing genes with known sequences at the post-transcriptional level. siRNA against MMP-2 mRNA (Ad-MMP-2) was found to decrease MMP-2 protein expression and activity in melanoma cells as demonstrated by western blotting and gelatin zymography. Furthermore, infection of cells with Ad-MMP-2 inhibited cellular migration and invasion as indicated by spheroid and matrigel assays. We also observed dose-dependent suppression of vascular network formation in an angiogenesis assay. Finally, we developed a nude mouse spinal metastatic model to investigate the local effects of tumor metastasis. Intravenous tail vein injection with Ad-MMP-2 on days 5, 9 and 11 after tumor implantation resulted in complete retention of neurological function as compared to control and scrambled vector (Ad-SV)-treated groups that showed complete paraplegia by day 14+/-2 days. Hematoxylin and eosin staining revealed decreased tumor size in the Ad-MMP-2-treated animals. This novel experimental model revealed that adenoviral-mediated transfer of RNA interference against MMP-2 results in the retention of neurological function and significantly inhibited tumor growth.

  1. Preliminary evidence for a matrix metalloproteinase-2 (MMP-2)-dependent shedding of soluble CD40 ligand (sCD40L) from activated platelets.

    PubMed

    Reinboldt, Stephan; Wenzel, Folker; Rauch, Bernhard H; Hohlfeld, Thomas; Grandoch, Maria; Fischer, Jens W; Weber, Artur-Aron

    2009-09-01

    Platelets are the major source of soluble CD40 ligand (sCD40L) in the blood. It has been demonstrated that CD40L is cleaved from the surface of activated platelets to release sCD40L. However, the enzyme involved in sCD40L shedding has not been identified yet. Using a panel of pharmacological inhibitors of serine, cysteine, aspartate, or metalloproteinases, preliminary evidence is presented for the hypothesis that matrix metalloproteinase-2 (MMP-2) might be the protease, primarily responsible for CD40L cleavage from platelet surface. PMID:19811225

  2. Elevation of hemopexin-like fragment of matrix metalloproteinase-2 tissue levels inhibits ischemic wound healing and angiogenesis

    PubMed Central

    Nedeau, AE; Gallagher, K; Liu, J; Velazquez, O

    2012-01-01

    Objective Matrix metalloproteinase-2 (MMP-2) degrades type IV collagen and enables endothelial cell (EC) migration during angiogenesis and wound healing. PEX2 is a byproduct of activated MMP-2 autocatalysis and competitively inhibits newly activated MMP-2 from EC surface binding and migration. We hypothesize that PEX2 is elevated during limb ischemia, contributing to poor wound healing by interfering with angiogenesis. We aim to identify elevated PEX2 in ischemic murine hindlimb muscle and demonstrate poor healing with decreased capillary density. Methods Western blot was used to identify PEX2 in hindlimbs of FVB/NJ mice with surgically induced ischemia. The PEX2 effect on healing was evaluated by calculating area of exposed muscle after wounding the dorsum of mice and performing daily injections with recombinant PEX2 (hrPEX2). Additionally, wounds were injected with lentivirus expressing PEX2 (PEX2-LV), harvested on post operative day 7 (POD 7), fixed and sectioned for staining with hematoxylin and eosin (H&E). Epithelial gap was assessed with light microscopy. Capillary density was evaluated after wounding Tie2-GFP+ transgenic FVB mice (ECs labeled green) and viral transduction with PEX2-LV. Wounds were harvested on POD 7, frozen in liquid nitrogen, sectioned and stained with Hoechst. Vessel density was assessed via fluorescence microscopy as average number of capillaries per ten high powered fields (HPF). Paired Student’s t-test was used to assess differences between the groups. Results PEX2 was elevated 5.5-fold (±2.0, P= .005) on POD 2 and 2.9-fold (±0.69, P= .004) on POD 4 in gastrocnemius muscles of ischemic hindlimbs. The wound surface area, or lack of granulation tissue and exposed muscle, decreased daily in all mice, but was greater in the hrPEX mice by 12% to 16% (P< .004). Wounds in the control group were completely covered with granulation tissue by POD 3, whereas wounds injected with hrPEX2 were not completely covered by POD 7, but continued to

  3. Relationship between expression of matrix metalloproteinase-2 and matrix metalloproteinase-9 and invasion ability of cervical cancer cells.

    PubMed

    Kato, Yasuhito; Yamashita, Tsuyoshi; Ishikawa, Mutsuo

    2002-01-01

    Constitutive overexpression of matrix metalloproteinases (MMPs) is frequently observed in malignant tumors. MMPs are a family of zinc endopeptidases consisting of at least 20 different members. In particular, MMP-2 and MMP-9 are reported to be closely associated with invasion and metastasis in several cancers. We investigated whether expression of MMP-2 and MMP-9 is associated with invasion ability of seven cervical cancer cells by administration of o-phenanthroline as MMP inhibitor. In two cell lines, Siha and Caski, MMP-2 mRNA and protein were expressed at high levels. After treatment with o-phenanthroline, the rate of invasion in these two cell lines was significantly decreased. In contrast, in the other two cell lines, HT-3 and Caski, high levels of MMP-9 mRNA and protein were expressed but there was no decrease in the rate of invasion in these cells after treatment with o-phenanthroline. The data suggest that expression level of MMP-2 mRNA may regulate with invasion ability of cervical cancer.

  4. Characterization of Xenopus Tissue Inhibitor of Metalloproteinases-2: A Role in Regulating Matrix Metalloproteinase Activity during Development

    PubMed Central

    Fiorentino, Maria; Shi, Yun-Bo

    2012-01-01

    Background Frog metamorphosis is totally dependent on thyroid hormone (T3) and mimics the postembryonic period around birth in mammals. It is an excellent model to study the molecular basis of postembryonic development in vertebrate. We and others have shown that many, if not all, matrix metalloproteinases (MMPs), which cleave proteins of the extracellular matrix as well as other substrates, are induced by T3 and important for metamorphosis. MMP activity can be inhibited by tissue inhibitors of metalloproteinase (TIMPs). There are 4 TIMPs in vertebrates and their roles in postembryonic development are poorly studied. Methodology/Principal Findings We analyzed the TIMP2 genes in Xenopus laevis and the highly related species Xenopus tropicalis and discovered that TIMP2 is a single copy gene in Xenopus tropicalis as in mammals but is duplicated in Xenopus laevis. Furthermore, the TIMP2 locus in Xenopus tropicalis genome is different from that in human, suggesting an evolutionary reorganization of the locus. More importantly, we found that the duplicated TIMP2 genes were similarly regulated in the developing limb, remodeling intestine, resorbing tail during metamorphosis. Unexpectedly, like its MMP target genes, the TIMP2 genes were upregulated by T3 during both natural and T3-induced metamorphosis. Conclusions/Significance Our results indicate that TIMP2 is highly conserved among vertebrates and that the TIMP2 locus underwent a chromosomal reorganization during evolution. Furthermore, the unexpected upregulation of TIMP2 genes during metamorphosis suggests that proper balance of MMP activity is important for metamorphosis. PMID:22693555

  5. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    SciTech Connect

    Peng, P.-L.; Hsieh, Y.-S.; Wang, C.-J.; Hsu, J.-L.; Chou, F.-P. . E-mail: fpchou@csmu.edu.tw

    2006-07-01

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reduction in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-{kappa}B, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment.

  6. Effects of Dietary Copper-Methionine on Matrix Metalloproteinase-2 in the Lungs of Cold-Stressed Broilers as an Animal Model for Pulmonary Hypertension.

    PubMed

    Bagheri Varzaneh, Mina; Rahmani, Hamidreza; Jahanian, Rahman; Mahdavi, Amir Hossein; Perreau, Corinne; Perrot, Gwenn; Brézillon, Stéphane; Maquart, François-Xavier

    2016-08-01

    The objective of the present study was to investigate the effects of different levels of copper (as supplemental copper-methionine) on ascites incidence and matrix metalloproteinase-2 (MMP-2) changes in the lungs of cold-stressed broilers. For this purpose, 480 1-day-old Ross 308 broiler chickens were randomly assigned to six treatments. Treatments consisted of two ambient temperatures (thermoneutral and cold stress) each combined with 0, 100, and 200 mg supplemental copper/kg as copper-methionine in a 2 × 3 factorial arrangement in a completely randomized design with four replicates. Ascites was diagnosed based on abdominal and pericardial fluid accumulation at 45 days of age. Fourty-eight broilers were killed at 38 and 45 days of age, and their lungs were collected for biological analysis. Results showed that MMP-2 increased in the lungs of ascitic broilers and that copper-methionine supplementation significantly reduced MMP-2 in cold-stressed broiler chickens. Treatments did not affect tissue inhibitor of metalloproteinase-2 (TIMP-2) at 38 and 45 days of age, and no difference was observed between 100 and 200 mg/kg copper-methionine treatments. In conclusion, copper-methionine at higher than conventional levels of supplementation decreased ascites incidence in low temperature through reduced MMP-2 concentration. Further research is warranted to investigate the effect of copper on MMP-2 concentrations in other tissues with high oxygen demand. PMID:26749413

  7. Matrix metalloproteinase 2-sensitive multifunctional polymeric micelles for tumor-specific co-delivery of siRNA and hydrophobic drugs.

    PubMed

    Zhu, Lin; Perche, Federico; Wang, Tao; Torchilin, Vladimir P

    2014-04-01

    Co-delivery of hydrophilic siRNA and hydrophobic drugs is one of the major challenges for nanomaterial-based medicine. Here, we present a simple but multifunctional micellar platform constructed by a matrix metalloproteinase 2 (MMP2)-sensitive copolymer (PEG-pp-PEI-PE) via self-assembly for tumor-targeted siRNA and drug co-delivery. The micellar nanocarrier possesses several key features for siRNA and drug delivery, including (i) excellent stability; (ii) efficient siRNA condensation by PEI; (iii) hydrophobic drug solubilization in the lipid "core"; (iv) passive tumor targeting via the enhanced permeability and retention (EPR) effect; (v) tumor targeting triggered by the up-regulated tumoral MMP2; and (vi) enhanced cell internalization after MMP2-activated exposure of the previously hidden PEI. These cooperative functions ensure the improved tumor targetability, enhanced tumor cell internalization, and synergistic antitumor activity of co-loaded siRNA and drug. PMID:24529391

  8. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.

    PubMed

    Miyazaki, Daigo; Nakamura, Akinori; Fukushima, Kazuhiro; Yoshida, Kunihiro; Takeda, Shin'ichi; Ikeda, Shu-ichi

    2011-05-01

    Matrix metalloproteases (MMPs) are a family of endopeptidases classified into subgroups based on substrate preference in normal physiological processes such as embryonic development and tissue remodeling, as well as in various disease processes via degradation of extracellular matrix components. Among the MMPs, MMP-9 and MMP-2 have been reported to be up-regulated in skeletal muscles in the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. A recent study showed that deletion of the MMP9 gene in mdx, a mouse model for DMD, improved skeletal muscle pathology and function; however, the role of MMP-2 in the dystrophin-deficient muscle is not well known. In this study, we aimed at verifying the role of MMP-2 in the dystrophin-deficient muscle by using mdx mice with genetic ablation of MMP-2 (mdx/MMP-2(-/-)). We found impairment of regenerated muscle fiber growth with reduction of angiogenesis in mdx/MMP-2(-/-) mice at 3 months of age. Expression of vascular endothelial growth factor-A (VEGF-A), an important angiogenesis-related factor, decreased in mdx/MMP-2(-/-) mice at 3 months of age. MMP-2 had not a critical role in the degradation of dystrophin-glycoprotein complex (DGC) components such as β-dystroglycan and β-sarcoglycan in the regeneration process of the dystrophic muscle. Accordingly, MMP-2 may be essential for growth of regenerated muscle fibers through VEGF-associated angiogenesis in the dystrophin-deficient skeletal muscle.

  9. Effects of eplerenone on the activation of matrix metalloproteinase-2 stimulated by high glucose and interleukin-1β in human cardiac fibroblasts.

    PubMed

    Chi, J F; Uzui, H; Guo, H Y; Ueda, T; Lee, J D

    2014-01-01

    The aim of this study was to determine the influence of high glucose (HG) and interleukin (IL)-1β on human cardiac fibroblast (HCF) functions, and to evaluate the effects of eplerenone in these responses. HCFs were cultured in normal or HG media in the absence or presence of IL-1β and/or eplerenone. We assessed matrix metalloproteinase-2 (MMP-2) activity in the supernatant by in-gel zymography, and determined mRNA expression levels of MMP-2 and tissue inhibitor of metalloproteinase-2 (TIMP-2) by reverse transcription-polymerase chain reaction. Equimolar D-mannitol was used as an osmotic control. HG stimulated MMP-2 activity and promoted MMP-2 mRNA synthesis. Increased effects were also observed in equimolar D-mannitol treatments, but these effects were weaker compared to those of glucose. The combination of HG and IL-1β resulted in a 2-fold increase in MMP-2 activity and mRNA expression compared with HG or IL-1β alone. Increases in HG- or IL-1β-induced MMP-2 activity and mRNA expression were blocked by eplerenone. Neither HG nor IL-1β affected TIMP-2 mRNA expression. HG increased MMP-2 activity by regulation of MMP- 2 mRNA expression in HCFs through osmotic and non-osmotic pathways. Synergistic effects of IL-1β added to HG media on MMP-2 activity and mRNA expression were observed in HCFs. Eplerenone normalized the effect of MMP-2 activity and HG- or IL-1β-induced expression in HCFs.

  10. High Levels of 17β-Estradiol Are Associated with Increased Matrix Metalloproteinase-2 and Metalloproteinase-9 Activity in Tears of Postmenopausal Women with Dry Eye

    PubMed Central

    Shen, Guanglin; Ma, Xiaoping

    2016-01-01

    Purpose. To determine the serum levels of sex steroids and tear matrix metalloproteinases (MMP) 2 and 9 concentrations in postmenopausal women with dry eye. Methods. Forty-four postmenopausal women with dry eye and 22 asymptomatic controls were enrolled. Blood was drawn and analyzed for serum levels of sex steroids and lipids. Then, the following tests were performed: tear collection, Ocular Surface Disease Index (OSDI) questionnaire, fluorescein tear film break-up time (TBUT), corneal fluorescein staining, Schirmer test, and conjunctival impression cytology. The conjunctival mRNA expression and tear concentrations of MMP-2 and MMP-9 were measured. Results. Serum 17β-estradiol levels were significantly higher in the dry eye subjects than in the controls (P = 0.03), whereas there were no significant differences in levels of testosterone, dehydroepiandrosterone sulfate (DHEA-S), and progesterone. Tear MMP-2 and MMP-9 concentrations (P < 0.001), as well as the MMP-9 mRNA expression in conjunctival samples (P = 0.02), were significantly higher in dry eye subjects than in controls. Serum 17β-estradiol levels were positively correlated with tear MMP-2 and MMP-9 concentrations and negatively correlated with Schirmer test values. Conclusions. High levels of 17β-estradiol are associated with increased matrix metalloproteinase-2 and metalloproteinase-9 activity in tears of postmenopausal women with dry eye. PMID:26904272

  11. Serum Concentrations of Endothelin-1 and Matrix Metalloproteinases-2, -9 in Pre-Hypertensive and Hypertensive Patients with Type 2 Diabetes

    PubMed Central

    Kostov, Krasimir; Blazhev, Alexander; Atanasova, Milena; Dimitrova, Anelia

    2016-01-01

    Endothelin-1 (ET-1) is one of the most potent vasoconstrictors known to date. While its plasma or serum concentrations are elevated in some forms of experimental and human hypertension, this is not a consistent finding in all forms of hypertension. Matrix metalloproteinases -2 and -9 (MMP-2 and MMP-9), which degrade collagen type IV of the vascular basement membrane, are responsible for vascular remodeling, inflammation, and atherosclerotic complications, including in type 2 diabetes (T2D). In our study, we compared concentrations of ET-1, MMP-2, and MMP-9 in pre-hypertensive (PHTN) and hypertensive (HTN) T2D patients with those of healthy normotensive controls (N). ET-1, MMP-2, and MMP-9 were measured by ELISA. Concentrations of ET-1 in PHTN and N were very similar, while those in HTN were significantly higher. Concentrations of MMP-2 and MMP-9 in PHTN and HTN were also significantly higher compared to N. An interesting result in our study is that concentrations of MMP-2 and MMP-9 in HTN were lower compared to PHTN. In conclusion, we showed that increased production of ET-1 in patients with T2D can lead to long-lasting increases in blood pressure (BP) and clinical manifestation of hypertension. We also demonstrated that increased levels of MMP-2 and MMP-9 in pre-hypertensive and hypertensive patients with T2D mainly reflect the early vascular changes in extracellular matrix (ECM) turnover. PMID:27490532

  12. Matrix Metalloproteinase 2 as a Potential Mediator of Vascular Smooth Muscle Cell Migration and Chronic Vascular Remodeling in Hypertension.

    PubMed

    Belo, V A; Guimarães, Danielle A; Castro, Michele Mazzaron

    2015-01-01

    For vascular remodeling in hypertension, it is essential that vascular smooth muscle cells (VSMCs) reshape in order to proliferate and migrate. The extracellular matrix (ECM) needs to be degraded to favor VSMC migration. Many proteases, including matrix metalloproteinases (MMPs), contribute to ECM proteolysis and VSMC migration. Bioactive peptides, hemodynamic forces and reactive oxygen-nitrogen species regulate MMP-2 expression and activity. Increased MMP-2 activity contributes to hypertension-induced maladaptive arterial changes and sustained hypertension. New ECM is synthesized to supply VSMCs with bioactive mediators, which stimulate hypertrophy. MMP-2 stimulates the interaction of VSMCs with newly formed ECM, which triggers intracellular signaling via integrins to induce a phenotypic switch and persistent migration. VSMCs switch from a contractile to a synthetic phenotype in order to migrate and contribute to vascular remodeling in hypertension. MMPs also disrupt growth factors bound to ECM, thus contributing to their capacity to regulate VSMC migration. This review sheds light on the proteolytic effects of MMP-2 on ECM and non-ECM substrates in the vasculature and how these effects contribute to VSMC migration in hypertension. The inhibition of MMP activity as a therapeutic target may make it possible to reduce arterial maladaptation caused by hypertension and prevent the resulting fatal cardiovascular events. PMID:26731549

  13. CIL-102 induces matrix metalloproteinase-2 (MMP-2)/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability.

    PubMed

    Liu, Wen-Hsin; Chen, Yeh-Long; Chang, Long-Sen

    2012-12-01

    This study explores the CIL-102 suppression mechanism on matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in human leukemia K562 cells. CIL-102 attenuated K562 cell invasion with decreased MMP-2/MMP-9 protein expression and mRNA levels. Moreover, CIL-102 reduced luciferase activity of MMP-2/MMP-9 promoter constructs and MMP-2/MMP-9 mRNA stability. CIL-102 treatment induced JNK and p38 MAPK activation but reduced the phospho-ERK level. Transfection of constitutively active MEK1 restored MMP-2 and MMP-9 promoter activity in CIL-102-treated cells, while suppression of p38 MAPK/JNK activation abolished CIL-102-induced MMP-2/MMP-9 mRNA decay. CIL-102-induced p38 MAPK/JNK activation led to protein phosphatase 2A-mediated tristetraprolin (TTP) down-regulation. The reduction in TTP-KH-type splicing regulatory protein (KSRP) complexes formation promoted KSRP-mediated MMP-2/MMP-9 mRNA decay in CIL-102-treated K562 cells. Moreover, CIL-102 reduced invasion and MMP-2/MMP-9 expression in breast and liver cancer cells. Taken together, our data indicate that CIL-102 induces MMP-2/MMP-2 down-regulation via simultaneous suppression of genetic transcription and mRNA stability, and suggest a potential utility for CIL-102 in reducing MMP-2/MMP-9-mediated cancer progression.

  14. Data of the natural and pharmaceutical angiotensin-converting enzyme inhibitor isoleucine-tryptophan as a potent blocker of matrix metalloproteinase-2 expression in rat aorta.

    PubMed

    Kopaliani, Irakli; Martin, Melanie; Zatschler, Birgit; Müller, Bianca; Deussen, Andreas

    2016-09-01

    The present data are related to the research article entitled "Whey peptide isoleucine-tryptophan inhibits expression and activity of matrix metalloproteinase-2 in rat aorta" [1]. Here we present data on removal of endothelium from aorta, endothelium dependent aortic relaxation and inhibition of expression of pro-MMP2 by di-peptide isoleucine-tryptophan (IW). Experiments were performed in rat aortic endothelial cells (EC) and smooth muscle cells (SMC) in vitro, along with isolated rat aorta ex vivo. The cells and isolated aorta were stimulated with angiotensin II (ANGII) or angiotensin I (ANGI). ACE activity was inhibited by treatment with either IW or captopril (CA). Losartan was used as a blocker of angiotensin type-1 receptor. IW inhibited MMP2 protein expression induced with ANGI in a dose-dependent manner. IW was effective both in ECs and SMCs, as well as in isolated aorta. Similarly, captopril (CA) inhibited ANGI-induced MMP2 protein expression in both in vitro and ex vivo. Neither IW nor CA inhibited ANGII-induced MMP2 protein expression in contrast to losartan. The data also displays that removal of endothelium in isolated rat aorta abolished the endothelium-dependent relaxation induced with acetylcholine. However, SMC-dependent relaxation induced with sodium nitroprusside remained intact. Finally, the data provides histological evidence of selective removal of endothelial cells from aorta. PMID:27508250

  15. Ablation of EIF5A2 induces tumor vasculature remodeling and improves tumor response to chemotherapy via regulation of matrix metalloproteinase 2 expression

    PubMed Central

    Chen, Jie-Wei; Bai, Hai-Yan; Li, Yan; Liao, Yi-Ji; Li, Chang-Peng; Tian, Xiao-Peng; Kung, Hsiang-Fu; Guan, Xin-Yuan; Xie, Dan

    2014-01-01

    Hepatocellular carcinoma (HCC) is a highly vascularized tumor with poor clinical outcome. Our previous work has shown that eukaryotic initiation factor 5A2 (EIF5A2) over-expression enhances HCC cell metastasis. In this study, EIF5A2 was identified to be an independent risk factor for poor disease-specific survival among HCC patients. Both in vitro and in vivo assays indicated that ablation of endogenous EIF5A2 inhibited tumor angiogenesis by reducing matrix metalloproteinase 2 (MMP-2) expression. Given that MMP-2 degrades collagen IV, a main component of the vascular basement membrane (BM), we subsequently investigated the effect of EIF5A2 on tumor vasculature remodeling using complementary approaches, including fluorescent immunostaining, transmission electron microscopy, tumor perfusion assays and tumor hypoxia assays. Taken together, our results indicate that EIF5A2 silencing increases tumor vessel wall continuity, increases blood perfusion and improves tumor oxygenation. Additionally, we found that ablation of EIF5A2 enhanced the chemosensitivity of HCC cells to 5-Fluorouracil (5-FU). Finally, we demonstrated that EIF5A2 might exert these functions by enhancing MMP-2 activity via activation of p38 MAPK and JNK/c-Jun pathways. Conclusion: This study highlights an important role of EIF5A2 in HCC tumor vessel remodeling and indicates that EIF5A2 represents a potential therapeutic target in the treatment of HCC. PMID:25071013

  16. Matrix Metalloproteinase 2-sensitive Multifunctional Polymeric Micelles for Tumor-specific Co-delivery of siRNA and Hydrophobic Drugs

    PubMed Central

    Zhu, Lin; Perche, Federico; Wang, Tao; Torchilin, Vladimir P

    2014-01-01

    Co-delivery of hydrophilic siRNA and hydrophobic drugs is one of the major challenges for nanomaterial-based medicine. Here, we present a simple but multifunctional micellar platform constructed by a matrix metalloproteinase 2 (MMP2)-sensitive copolymer (PEG-pp-PEI-PE) via self-assembly for tumor-targeted siRNA and drug co-delivery. The micellar nanocarrier possesses several key features for siRNA and drug delivery, including (i) excellent stability; (ii) efficient siRNA condensation by PEI; (iii) hydrophobic drug solubilization in the lipid “core”; (iv) passive tumor targeting via the enhanced permeability and retention (EPR) effect; (v) tumor targeting triggered by the up-regulated tumoral MMP2; and (vi) enhanced cell internalization after MMP2-activated exposure of the previously hidden PEI. These cooperative functions ensure the improved tumor targetability, enhanced tumor cell internalization, and synergistic antitumor activity of co-loaded siRNA and drug. PMID:24529391

  17. Olfactory ensheathing cells (OECs) degrade neurocan in injured spinal cord by secreting matrix metalloproteinase-2 in a rat contusion model.

    PubMed

    Yui, Sho; Fujita, Naoki; Chung, Cheng-Shu; Morita, Maresuke; Nishimura, Ryohei

    2014-11-01

    The mechanism by which olfactory ensheathing cells (OECs) exert their potential to promote functional recovery after transplantation into spinal cord injury (SCI) tissue is not fully understood, but the relevance of matrix metalloproteinases (MMPs) has been suggested. We evaluated the expression of MMPs in OECs in vitro and the MMP secretion by OECs transplanted in injured spinal cord in vivo using a rat SCI model. We also evaluated the degradation of neurocan, which is one of the axon-inhibitory chondroitin sulfate proteoglycans, using SCI model rats. The in vitro results showed that MMP-2 was the dominant MMP expressed by OECs. The in vivo results revealed that transplanted OECs secreted MMP-2 in injured spinal cord and that the expression of neurocan was significantly decreased by the transplantation of OECs. These results suggest that OECs transplanted into injured spinal cord degraded neurocan by secreting MMP-2.

  18. The influence of matrix metalloproteinase-2, -9, and -12 promoter polymorphisms on Iranian patients with oesophageal squamous cell carcinoma

    PubMed Central

    Ziaee, Abed-Ali; Yazdanbod, Mansour; Shahpanah, Mitra; Setayeshgar, Aziz; Nassiri, Mojgan

    2015-01-01

    Aim of the study Matrix metalloproteinases (MMPs) are a zinc-dependant endopeptidase family that can degrade extracellular matrix components. Their dysregulation has been proven in several diseases, including cancer. Genetic variations in MMP promoter regions can alter their expression. The aim of the present study is to investigate the correlation of MMP-2 (-1306C/T), MMP-9 (-1562C/T), and MMP-12 (-82A/G) single nucleotide polymorphisms (SNPs) with oesophageal squamous cell carcinoma (ESCC) initiation and progression susceptibility in Iranian patients. Material and methods MMP-2 (-1306C/T), MMP-9 (-1562C/T), and MMP-12 (-82A/G) SNPs were detected using polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) technique in 70 patients and 60 healthy controls. The genotypes and allele distributions were statistically compared in patients and controls. The correlation of MMP-2 (-1306C/T) and MMP-9 (-1562C/T) polymorphisms with clinicopathological features were investigated in 53 patients. Results No statistically significant differences were observed in genotype and allele frequencies of MMP-2 (-1306C/T) and MMP-9 (-1562C/T) between patients and controls (p > 0.05). In addition, no relevance was observed in MMP-2 (-1306C/T) and MMP-9 (-1562C/T) SNPs and clinicopathological features. There was no nucleotide variation in MMP-12 (-82) in the case and control groups. Conclusions This study indicates that these three SNPs may have no significant association in ESCC risk in Iranian patients. PMID:26557778

  19. Yellow wine polyphenolic compounds inhibit matrix metalloproteinase-2, -9 expression and improve atherosclerotic plaque in LDL-receptor-knockout mice.

    PubMed

    Zhai, Xiaoya; Chi, Jufang; Tang, Weiliang; Ji, Zheng; Zhao, Fei; Jiang, Chengjian; Lv, Haitao; Guo, Hangyuan

    2014-01-01

    Many epidemiological studies have strongly suggested an inverse correlation between dietary polyphenol consumption and reduced risks of cardiovascular diseases. Yellow rice wine is a Chinese specialty and one of the three most ancient wines in the world (Shaoxing rice wine, beer, and grape wine). There is a large amount of polyphenol substances in yellow rice wine. This experiment was designed to study the potential beneficial effects of yellow wine polyphenolic compounds (YWPC) from yellow rice wine on progression of atherosclerosis in vivo and to further explore its underlying mechanisms. Six-week-old male LDL-receptor-knockout mice were treated with high-fat diet to establish the mouse model with atherosclerosis. Animals received 10, 30, or 50 mg/kg per day of YWPC or 10 mg/kg per day rosuvastatin or water (vehicle) for 14 weeks. The results indicated that YWPC and rosuvastatin significantly decreased circulating total cholesterol and low-density lipoprotein cholesterol. Compared to the control group, the atherosclerosis lesion area in the rosuvastatin-intervention group and YWPC at doses of 10, 30, and 50 mg/kg per day intervention groups decreased by 74.14%, 18.51%, 40.09%, and 38.42%, respectively. YWPC and rosuvastatin decreased the expression and activity of matrix metalloproteinases (MMP)-2, 9, whereas the expression of the endogenous inhibitors of these proteins, namely, tissue inhibitors of matrix metalloproteinases (TIMP)-1, 2, increased when compared to the control group. It can be concluded that the YWPC is similar to the benefic effects of rosuvastatin on cardiovascular system. These effects may be attributed to their anti-atherosclerotic actions by lowering lipid and modulating the activity and expression of MMP-2, 9 and TIMP-1, 2.

  20. Dexamethasone Ameliorates H2S-Induced Acute Lung Injury by Alleviating Matrix Metalloproteinase-2 and -9 Expression

    PubMed Central

    Su, Chenglei; Chen, Junjie; Zhu, Baoli; Zhang, Hengdong; Xiao, Hang; Zhang, Jinsong

    2014-01-01

    Acute lung injury (ALI) is one of the fatal outcomes after exposure to high levels of hydrogen sulfide (H2S), and the matrix metalloproteinases (MMPs) especially MMP-2 and MMP-9 are believed to be involved in the development of ALI by degrading the extracellular matrix (ECM) of blood-air barrier. However, the roles of MMP-2 and MMP-9 in H2S-induced ALI and the mechanisms of dexamethasone (DXM) in treating ALI in clinical practice are still largely unknown. The present work was aimed to investigate the roles of MMP-2 and MMP-9 in H2S-induced ALI and the protective effects of DXM. In our study, SD rats were exposed to H2S to establish the ALI model and in parallel, A549 cells were incubated with NaHS (a H2S donor) to establish cell model. The lung HE staining, immunohistochemisty, electron microscope assay and wet/dry ratio were used to identify the ALI induced by H2S, then the MMP-2 and MMP-9 expression in both rats and A549 cells were detected. Our results revealed that MMP-2 and MMP-9 were obviously increased in both mRNA and protein level after H2S exposure, and they could be inhibited by MMP inhibitor doxycycline (DOX) in rat model. Moreover, DXM significantly ameliorated the symptoms of H2S-induced ALI including alveolar edema, infiltration of inflammatory cells and the protein leakage in BAFL via up-regulating glucocorticoid receptor(GR) to mediate the suppression of MMP-2 and MMP-9. Furthermore, the protective effects of DXM in vivo and vitro study could be partially blocked by co-treated with GR antagonist mifepristone (MIF). Our results, taken together, demonstrated that MMP-2 and MMP-9 were involved in the development of H2S-induced ALI and DXM exerted protective effects by alleviating the expression of MMP-2 and MMP-9. Therefore, MMP-2 and MMP-9 might represent novel pharmacological targets for the treatment of H2S and other hazard gases induced ALI. PMID:24722316

  1. Activation and localization of matrix metalloproteinase-2 and -9 in the skeletal muscle of the muscular dystrophy dog (CXMDJ)

    PubMed Central

    Fukushima, Kazuhiro; Nakamura, Akinori; Ueda, Hideho; Yuasa, Katsutoshi; Yoshida, Kunihiro; Takeda, Shin'ichi; Ikeda, Shu-ichi

    2007-01-01

    Background Matrix metalloproteinases (MMPs) are key regulatory molecules in the formation, remodeling and degradation of all extracellular matrix (ECM) components in both physiological and pathological processes in various tissues. The aim of this study was to examine the involvement of gelatinase MMP family members, MMP-2 and MMP-9, in dystrophin-deficient skeletal muscle. Towards this aim, we made use of the canine X-linked muscular dystrophy in Japan (CXMDJ) model, a suitable animal model for Duchenne muscular dystrophy. Methods We used surgically biopsied tibialis cranialis muscles of normal male dogs (n = 3) and CXMDJ dogs (n = 3) at 4, 5 and 6 months of age. Muscle sections were analyzed by conventional morphological methods and in situ zymography to identify the localization of MMP-2 and MMP-9. MMP-2 and MMP-9 activity was examined by gelatin zymography and the levels of the respective mRNAs in addition to those of regulatory molecules, including MT1-MMP, TIMP-1, TIMP-2, and RECK, were analyzed by semi-quantitative RT-PCR. Results In CXMDJ skeletal muscle, multiple foci of both degenerating and regenerating muscle fibers were associated with gelatinolytic MMP activity derived from MMP-2 and/or MMP-9. In CXMDJ muscle, MMP-9 immunoreactivity localized to degenerated fibers with inflammatory cells. Weak and disconnected immunoreactivity of basal lamina components was seen in MMP-9-immunoreactive necrotic fibers of CXMDJ muscle. Gelatinolytic MMP activity observed in the endomysium of groups of regenerating fibers in CXMDJ did not co-localize with MMP-9 immunoreactivity, suggesting that it was due to the presence of MMP-2. We observed increased activities of pro MMP-2, MMP-2 and pro MMP-9, and levels of the mRNAs encoding MMP-2, MMP-9 and the regulatory molecules, MT1-MMP, TIMP-1, TIMP-2, and RECK in the skeletal muscle of CXMDJ dogs compared to the levels observed in normal controls. Conclusion MMP-2 and MMP-9 are likely involved in the pathology of dystrophin

  2. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis

    PubMed Central

    Ray, Amlan K.; DasMahapatra, Pramathes; Swarnakar, Snehasikta

    2016-01-01

    Endometriosis is characterized by the ectopic development of the endometrium which relies on angiogenesis. Although studies have identified the involvement of different matrix metalloproteinases (MMPs) in endometriosis, no study has yet investigated the role of MMP-2 in endometriosis-associated angiogenesis. The present study aims to understand the regulation of MMP-2 activity in endothelial cells and on angiogenesis during progression of ovarian endometriosis. Histological and biochemical data showed increased expressions of vascular endothelial growth factor (VEGF), VEGF receptor-2, cycloxygenase (COX)-2, von Willebrand factor along with angiogenesis during endometriosis progression. Women with endometriosis showed decreased MMP-2 activity in eutopic endometrium as compared to women without endometriosis. However, ectopic ovarian endometrioma showed significantly elevated MMP-2 activity with disease severity. In addition, increased MT1MMP and decreased tissue inhibitors of metalloproteinases (TIMP)-2 expressions were found in the late stages of endometriosis indicating more MMP-2 activation with disease progression. In vitro study using human endothelial cells showed that prostaglandin E2 (PGE2) significantly increased MMP-2 activity as well as tube formation. Inhibition of COX-2 and/or phosphorylated AKT suppressed MMP-2 activity and endothelial tube formation suggesting involvement of PGE2 in regulation of MMP-2 activity during angiogenesis. Moreover, specific inhibition of MMP-2 by chemical inhibitor significantly reduced cellular migration, invasion and tube formation. In ovo assay showed decreased angiogenic branching upon MMP-2 inhibition. Furthermore, a significant reduction of lesion numbers was observed upon inhibition of MMP-2 and COX-2 in mouse model of endometriosis. In conclusion, our study establishes the involvement of MMP-2 activity via COX-2-PGE2-pAKT axis in promoting angiogenesis during endometriosis progression. PMID:27695098

  3. Magnobovatol inhibits smooth muscle cell migration by suppressing PDGF-Rβ phosphorylation and inhibiting matrix metalloproteinase-2 expression

    PubMed Central

    KANG, HYREEN; AHN, DONG HYEON; PAK, JHANG HO; SEO, KYEONG-HWA; BAEK, NAM-IN; JANG, SUNG-WUK

    2016-01-01

    The migration of vascular smooth muscle cells (VSMCs) may play a crucial role in the pathogenesis of vascular diseases, such as atherosclerosis and post-angioplasty restenosis. Platelet-derived growth factor (PDGF)-BB is a potent mitogen for VSMCs and plays an important role in the intimal accumulation of VSMCs. Magnobovatol, a new neolignan from the fruits of Magnolia obovata, has been shown to have anticancer properties. However, the effects of magnobovatol on VSMCs are unknown. In the present study, we examined the effects of magnobovatol on the PDGF-BB-induced migration of mouse and human VSMCs, as well as the underlying mechanisms. Magnobovatol significantly inhibited the PDGF-BB-induced migration of mouse and human VSMCs without inducing cell death (as shown by MTT assay and wound healing assay). Additionally, we demonstrated that magnobovatol significantly blocked the PDGF-BB-induced phosphorylation of the PDGF receptor (PDGF-R), Akt and extracellular signal-regulated kinase (ERK)1/2 by inhibiting the activation of the PDGF-BB signaling pathway. Moreover, in both mouse and human VSMCs, magnobovatol inhibited PDGF-induced matrix metalloproteinase (MMP)-2 expression at the mRNA and protein level, as well as the proteolytic activity of MMP-2 (as shown by western blot analysis, RT-PCR, gelatin zymography and ELISA). In addition, the sprout outgrowth formation of aortic rings induced by PDGF-BB was inhibited by magnobovatol (as shown by aortic ring assay). Taken together, our findings indicate that magnobovatol inhibits VSMC migration by decreasing MMP-2 expression through PDGF-R and the ERK1/2 and Akt pathways. Our data may improve the understanding of the anti-atherogenic effects of magnobovatol in VSMCs. PMID:27049716

  4. The G12 family proteins upregulate matrix metalloproteinase-2 via p53 leading to human breast cell invasion.

    PubMed

    Kim, Eun-Sook; Jeong, Jae-Boon; Kim, Seonhoe; Lee, Kyung-Min; Ko, Eunyoung; Noh, Dong-Young; Hwang, Ki-Tae; Ha, Ji Hee; Lee, Chang Ho; Kim, Sang Geon; Moon, Aree

    2010-11-01

    Although mounting evidence suggests a role for G(12) proteins, G(α12) and G(α13), in tumor progression, a direct role of G(12) proteins has not been determined. This study aims to elucidate the molecular mechanism for a tumorigenic and invasive potential of G(α12) and G(α13) in MCF10A human breast epithelial cells. Here, we report, for the first time, that G(α12) and G(α13) induce upregulation of matrix metalloproteinase (MMP)-2 leading to the invasive and migratory phenotypes in MCF10A cells. We further show that p53 is an important transcription factor for induction of MMP-2 transcriptional activation by G(α12/13). G(α12/13)-induced MMP-2 upregulation, invasion, and migration are dependent on the activation of Ras, Rac1, MKK3/6, p38, and Akt. Using human breast tissue samples, we demonstrate that the expression levels of G(α12) and MMP-2 are strongly correlated with the pathogenically diagnosed cancer (P < 0.0001). Moreover, the expression of G(α12) shows a strong correlation with that of MMP-2 in human breast cancer tissues, implicating the in vivo tumorigenic potential of G(α12). Taken together, this study elucidated the role of G(12) proteins in regulating processes for MMP-2 expression and malignant phenotypic conversion of MCF10A human breast epithelial cells, providing a molecular basis for the promoting role of G(α12) and G(α13) in breast cell invasion.

  5. Robust Therapeutic Efficacy of Matrix Metalloproteinase-2-Cleavable Fas-1-RGD Peptide Complex in Chronic Inflammatory Arthritis

    PubMed Central

    Sa, Keum Hee; Sung, Shijin; Park, Jae Yong; Jo, Dong-Gyu; Park, Jae Hyung; Kim, In San; Kang, Young Mo

    2016-01-01

    Objective Therapeutic agents that are transformable via introducing cleavable linkage by locally enriched MMP-2 within inflamed synovium would enhance therapeutic efficacy on chronic inflammatory arthritis. Transforming growth factor-β-inducible gene-h3 (βig-h3), which consists of four fas-1 domains and an Arg-Gly-Asp (RGD) motif, intensifies inflammatory processes by facilitating adhesion and migration of fibroblast-like synoviocyte in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to investigate whether a MMP-2-cleavable peptide complex consisting of a fas-1 domain and an RGD peptide blocks the interaction between βig-h3 and resident cells and leads to the amelioration of inflammatory arthritis. Methods We designed βig-h3-derivatives, including the fourth fas-1 domain truncated for H1 and H2 sequences of mouse (MFK00) and MMP-2-cleavable peptide complex (MFK902). MMP-2 selectivity was examined by treatment with a series of proteases. MFK902 efficacy was determined by the adhesion and migration assay with NIH3T3 cells in vitro and collagen-induced arthritis (CIA) model using male DBA/1J mice in vivo. The mice were treated intraperitoneally with MFK902 at different dosages. Results MFK902 was specifically cleaved by active MMP-2 in a concentration-dependent manner, and βig-h3-mediated adhesion and migration were more effectively inhibited by MFK902, compared with RGD or MFK00 peptides. The arthritis activity of murine CIA, measured by clinical arthritis index and incidence of arthritic paws, was significantly ameliorated after treatment with all dosages of MFK902 (1, 10, and 30 mg/kg). MFK902 ameliorated histopathologic deterioration and reduced the expression of inflammatory mediators simultaneously with improvement of clinical features. In addition, a favorable safety profile of MFK902 was demonstrated in vivo. Conclusion The present study revealed that MMP-2-cleavable peptide complex based on βig-h3 structure is a potent and safe

  6. Immunohistochemical expression of matrix metalloproteinase-1, matrix metalloproteinase-2 and matrix metalloproteinase-9, myofibroblasts and Ki-67 in actinic cheilitis and lip squamous cell carcinoma.

    PubMed

    Bianco, Bianca C; Scotti, Fernanda M; Vieira, Daniella S C; Biz, Michelle T; Castro, Renata G; Modolo, Filipe

    2015-10-01

    Matrix metalloproteinases (MMPs), myofibroblasts (MFs) and epithelial proliferation have key roles in neoplastic progression. In this study immunoexpression of MMP-1, MMP-2 and MMP-9, presence of MFs and the epithelial proliferation index were investigated in actinic cheilitis (AC), lip squamous cell carcinoma (LSCC) and mucocele (MUC). Thirty cases of AC, thirty cases of LSCC and twenty cases of MUC were selected for immunohistochemical investigation of the proteins MMP-1, MMP-2, MMP-9, α-smooth muscle actin (α-SMA) and Ki-67. The MMP-1 expression in the epithelial component was higher in the AC than the MUC and LSCC. In the connective tissue, the expression was higher in the LSCC. MMP-2 showed lower epithelial and stromal immunostaining in the LSCC when compared to the AC and MUC. The epithelial staining for MMP-9 was higher in the AC when compared to the LSCC. However, in the connective tissue, the expression was lower in the AC compared to other lesions. The cell proliferation rate was increased in proportion to the severity of dysplasia in the AC, while in the LSCC it was higher in well-differentiated lesions compared to moderately differentiated. There were no statistically significant differences in number of MFs present in the lesions studied. The results suggest that MMPs could affect the biological behaviour of ACs and LSCCs inasmuch as they could participate in the development and progression from premalignant lesions to malignant lesions. PMID:26515234

  7. Slit2-Robo1 signaling promotes the adhesion, invasion and migration of tongue carcinoma cells via upregulating matrix metalloproteinases 2 and 9, and downregulating E-cadherin

    PubMed Central

    Zhao, Yuan; Zhou, Feng-Li; Li, Wei-Ping; Wang, Jing; Wang, Li-Jing

    2016-01-01

    Whether Slit homologue 2 (Slit2) inhibits or promotes tumor cell migration remains controversial, and the role of Slit2-Roundabout 1 (Robo1) signaling in oral cancer remains to be fully elucidated. The aim of the present study was to investigate the role of Slit2-Robo1 signaling in the adhesion, invasion and migration of tongue carcinoma cells, and the mechanism by which Slit2-Robo1 signaling inhibits or promotes tumor cell migration. Tca8113 tongue carcinoma cells were treated with the monoclonal anti-human Robo1 antibody, R5, to inhibit the Slit2-Robo1 signaling pathway, with immunoglobulin (Ig)G2b treatment as a negative control. The expression levels of Slit2 and Robo1 were determined using flow cytometry. The effects of R5 on the adhesion, invasion and migration of Tca8113 tongue carcinoma cells were investigated. Gelatin zymography was used to investigate the activity of matrix metalloproteinase 2 (MMP2) and MMP9. Western blot analysis was used to evaluate the expression levels of E-cadherin in Tca8113 cells treated with 10 µg/ml of either R5 or IgG2b. Slit2 and Robo1 proteins were found to be expressed in the Tca8113 cells. R5 significantly inhibited the adhesion, invasion and migration of Tca8113 cells in vitro. R5 also inhibited the activities of MMP2 and MMP9, and increased the expression of E-cadherin in the Tca8113 cells. These results suggested that Slit2-Robo1 signaling promoted the adhesion, invasion and migration of tongue carcinoma cells by upregulating the expression levels of MMP2 and MMP9 and, downregulating the expression of E-cadherin. PMID:27431199

  8. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    PubMed Central

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-01-01

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. PMID:26080028

  9. Preparation and evaluation of the effect of Fe3 O4 @piroctone olamine magnetic nanoparticles on matrix metalloproteinase-2: a preliminary in vitro study.

    PubMed

    Shakibaie, Mojtaba; Haghiri, Mahboobe; Jafari, Mandana; Amirpour-Rostami, Sahar; Ameri, Alieh; Forootanfar, Hamid; Mehrabani, Mitra

    2014-01-01

    In the present study, Fe3 O4 magnetic nanoparticles were synthesized by the coprecipitation of Fe(2+) and Fe(3+) ions and used as a nanocarrier for the production of piroctone-olamine-loaded Fe3 O4 nanoparticles (Fe3 O4 @PO NPs). The nanocrystalline structure of the prepared iron oxide species was confirmed by the X-ray diffraction spectroscopy method. Particle size distribution analysis showed that the size of Fe3 O4 @PO NPs was in the range of 5-55 nm. The magnetization curve of Fe3 O4 @PO NPs (with saturation magnetization of 28.2 emu/g) confirmed its ferromagnetic property. Loading of PO on the surface of Fe3 O4 NPs qualitatively verified by Fourier transform infrared spectrum obtained from Fe3 O4 @PO NPs. Cytotoxicity studies on the human fibrosarcoma cell line (HT-1080) revealed higher inhibitory effect of Fe3 O4 @PO NPs (50% cell death [IC50 ] of 8.1 µg/mL) as compared with Fe3 O4 NPs (IC50 of 117.1 µg/mL) and PO (IC50 of 71.2 µg/mL) alone. In the case of human normal fibroblast (Hs68), the viability percentage was found to be 75% in the presence of Fe3 O4 @PO NPs (120 µg/mL). Gelatin zymography showed 17.2% and 34.6% inhibition of matrix metalloproteinase-2 (MMP-2) in the presence of Fe3 O4 @PO and PO, respectively, at the same concentration of 40 µg/mL, whereas Fe3 O4 NPs did not inhibit MMP-2 at any concentration. PMID:24716879

  10. Angiotensin II increases matrix metalloproteinase 2 expression in human aortic smooth muscle cells via AT1R and ERK1/2

    PubMed Central

    Wang, Chunmao; Qian, Xiangyang; Sun, Xiaogang

    2015-01-01

    Increased levels of angiotensin II (Ang II) and activated matrix metalloproteinase 2 (MMP-2) produced by human aortic smooth muscle cells (human ASMCs) have recently been implicated in the pathogenesis of thoracic aortic aneurysm (TAA). Additionally, angiotensin II type 1 receptor (AT1R)-mediated extracellular signal-regulated kinase (ERK)1/2 activation contributes to TAA development in Marfan Syndrome. However, there is scant data regarding the relationship between Ang II and MMP-2 expression in human ASMCs. Therefore, we investigated the effect of Ang II on MMP-2 expression in human ASMCs and used Western blotting to identify the Ang II receptors and intracellular signaling pathways involved. Reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence data demonstrated that Ang II receptors were expressed on human ASMCs. Additionally, Ang II increased the expression of Ang II type 2 receptor (AT2R) but not AT1R at both the transcriptional and translational levels. Furthermore, Western blotting showed that Ang II increased MMP-2 expression in human ASMCs in a dose- and time-dependent manner. This response was completely inhibited by the AT1R inhibitor candesartan but not by the AT2R blocker PD123319. In addition, Ang II–induced upregulation of MMP-2 was mediated by the activation of ERK1/2, whereas p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) had no effect on this process. In conclusion, these results indicate that Ang II can increase the expression of MMP-2 via AT1 receptor and ERK1/2 signaling pathways in human ASMCs and suggest that antagonists of AT1R and ERK1/2 may be useful for treating TAAs. PMID:25767191

  11. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2.

    PubMed

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs.

  12. Casticin Inhibits A375.S2 Human Melanoma Cell Migration/Invasion through Downregulating NF-κB and Matrix Metalloproteinase-2 and -1.

    PubMed

    Wu, Zih-Yun; Lien, Jin-Cherng; Huang, Yi-Ping; Liao, Ching-Lung; Lin, Jen-Jyh; Fan, Ming-Jen; Ko, Yang-Ching; Hsiao, Yu-Ping; Lu, Hsu-Feng; Chung, Jing-Gung

    2016-01-01

    Casticin is one of the main components from Fructus Viticis, which is widely used as an anti-inflammatory agent. The mechanism of how casticin affects melanoma cell migration and invasion is still not well known. Here we studied the anti-metastasis effects of casticin on A375.S2 melanoma cells by using a non-lethal concentration. First; we used an adhesion assay to test the A375.S2 cells' adhesion ability after treatment with casticin. We next investigated the cell migration ability after casticin treatment by using a wound healing assay to prove that the migration of A375.S2 cells can be inhibited by casticin and double checked the results using the transwell-migration assay. The suppressive effects on matrix metalloproteinase-2; and -9 (MMP-2; and -9) activities were examined by gelatin zymography. Furthermore, western blotting was used to investigate the protein level changes in A375.S2 cells. We found that p-EGFR; Ras and p-ERK1/2 are decreased by casticin, indicating that casticin can down-regulate the migration and invasion ability of A375.S2 cells via the p-EGFR/Ras/p-ERK pathway. The NF-κB p65 and p-ERK levels in nuclear proteins are also decreased by treatment with casticin. An EMSA assay also discovered that the NF-κB p65 and DNA interaction is decreased. NF-κB p65 protein level was examined by immunofluorescence staining and also decreased. Our findings suggest that casticin has anti-metastatic potential by decreasing the invasiveness of A375.S2 cells. We also found that casticin suppressed A375.S2 cell proliferation and cell adhesion ability, but did not affect cell death, as examined using cytometry and a collagen adhesion assay. Based on these observations, casticin could be used as an inhibitor of migration and invasion of human melanoma cells in the future. PMID:27007357

  13. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    SciTech Connect

    Eum, Sung Yong Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  14. Effect of Androgen Blockade on HER-2 and Matrix Metalloproteinase-2 Expression on Bone Marrow Micrometastasis and Stromal Cells in Men with Prostate Cancer

    PubMed Central

    Murray, N. P.; Reyes, E.; Badinez, L.; Orellana, N.; Fuentealba, C.; Olivares, R.; Porcell, J.; Dueñas, R.

    2013-01-01

    Introduction. HER-2 has been associated with castrate resistant prostate cancer and matrix metalloproteinase-2 (MMP-2) in the dissemination and invasion of tumor cells as well as activating angiogenesis. We present an immunocytochemical study of the effect of androgen blockade on the expression of HER-2 and MMP-2 in bone marrow micrometastasis and the surrounding stromal cells in men with prostate cancer. Methods and Patients. A cross-sectional study of men with prostate cancer. Touch preps were obtained from bone marrow biopsies of men with prostate cancer, before and after radical prostatectomy and during androgen blockade. Micrometastasis detected with anti-PSA immunocytochemistry underwent processing with anti-HER-2 and anti-MMP-2 immunocytochemistry. Patients were defined as HER-2 positive or negative, MMP-2 negative or an MMP-2 pattern described as border or central and stromal MMP-2 defined as positive or negative. The expression of the biomarkers was compared before and after primary treatment and during androgen blockade in relation to the serum PSA at the time of sampling and duration of androgen blockade. Results. 191 men participated, 35 men before surgery and 43 after surgery; there were no significant differences in HER-2 expression between groups, there was no MMP-2 expression centrally or stromal expression of MMP-2. In men with androgen blockade, HER-2 expression was significantly higher; there was a trend for increasing HER-2 expression up to 5 years; central MMP-2 expression significantly increased after 3 years, while stromal MMP-2 significantly increased after 6 years. MMP-2 expression both in micrometastasis and stroma was significantly associated with HER-2 expression. Expression of MMP-2 at the border of the micrometastasis was not associated with HER-2 expression and occurred in the absence of androgen blockade. Conclusions. Androgen blockade decreases serum PSA by eliminating HER-2 negative prostate cancer cells. However, there is early

  15. TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase-2) activity in the extracellular environment after pro-MMP-2 activation by MT1 (membrane type 1)-MMP.

    PubMed Central

    Bernardo, M Margarida; Fridman, Rafael

    2003-01-01

    The matrix metalloproteinase (MMP)-2 has a crucial role in extracellular matrix degradation associated with cancer metastasis and angiogenesis. The latent form, pro-MMP-2, is activated on the cell surface by the membrane-tethered membrane type 1 (MT1)-MMP, in a process regulated by the tissue inhibitor of metalloproteinase (TIMP)-2. A complex of active MT1-MMP and TIMP-2 binds pro-MMP-2 forming a ternary complex, which permits pro-MMP-2 activation by a TIMP-2-free neighbouring MT1-MMP. It remains unclear how MMP-2 activity in the pericellular space is regulated in the presence of TIMP-2. To address this question, the effect of TIMP-2 on MMP-2 activity in the extracellular space was investigated in live cells, and their isolated plasma membrane fractions, engineered to control the relative levels of MT1-MMP and TIMP-2 expression. We show that both free and inhibited MMP-2 is detected in the medium, and that the net MMP-2 activity correlates with the level of TIMP-2 expression. Studies to displace MT1-MMP-bound TIMP-2 in a purified system with active MMP-2 show minimal displacement of inhibitor, under the experimental conditions, due to the high affinity interaction between TIMP-2 and MT1-MMP. Thus inhibition of MMP-2 activity in the extracellular space is unlikely to result solely as a result of TIMP-2 dissociation from its complex with MT1-MMP. Consistently, immunoblot analyses of plasma membranes, and surface biotinylation experiments show that the level of surface association of TIMP-2 is independent of MT1-MMP expression. Thus low-affinity binding of TIMP-2 to sites distinct to MT1-MMP may have a role in regulating MMP-2 activity in the extracellular space generated by the ternary complex. PMID:12755684

  16. The Effect of Autologous Platelet-Rich Gel on the Dynamic Changes of the Matrix Metalloproteinase-2 and Tissue Inhibitor of Metalloproteinase-2 Expression in the Diabetic Chronic Refractory Cutaneous Ulcers

    PubMed Central

    Li, Lan; Chen, Dawei; Wang, Chun; Liu, Guanjian; Ran, Xingwu

    2015-01-01

    Aim. To investigate the dynamic changes on the expression of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) in the diabetic chronic refractory cutaneous ulcers after the autologous platelet-rich gel (APG) treatment. Methods. The study was developed at the Diabetic Foot Care Centre, West China Hospital. The granulation tissues from the target wounds were taken before and within 15 days after APG application. The expression of MMP-2 and TIMP-2 as well as transforming growth factor-β1 (TGF-β1) in the granulation tissue was detected by q TR-PCR and IHC. The relationship between the expression level of MMP-2 and TIMP-2 and their ratio and that of TGF-β1 was analyzed. Results. The expression of MMP-2 (P < 0.05) was suppressed, and the expression of TIMP-2 (P < 0.05) was promoted, while the ratio of MMP-2/TIMP-2 (P < 0.05) was decreased after APG treatments. The expression of TGF-β1 had negative correlation with the ratio of MMP-2/TIMP-2 (P < 0.05) and positive correlation with the expression of TIMP-2 (P < 0.05). Conclusions. APG treatment may suppress the expression of MMP-2, promoting that of the TIMP-2 in the diabetic chronic refractory cutaneous wounds. TGF-β1 may be related to these effects. PMID:26221614

  17. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    SciTech Connect

    Wan Rong; Mo Yiqun; Zhang Xing; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2008-12-01

    Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO{sub 2} to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of some transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO{sub 2} and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO{sub 2}, at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression{sub ..} Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO{sub 2}. Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of metalloproteinases 2

  18. Molecular Docking Analysis of Selected Clinacanthus nutans Constituents as Xanthine Oxidase, Nitric Oxide Synthase, Human Neutrophil Elastase, Matrix Metalloproteinase 2, Matrix Metalloproteinase 9 and Squalene Synthase Inhibitors

    PubMed Central

    Narayanaswamy, Radhakrishnan; Isha, Azizul; Wai, Lam Kok; Ismail, Intan Safinar

    2016-01-01

    Background: Clinacanthus nutans (Burm. f.) Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (XO), nitric oxide synthase (NOS), human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), and squalene synthase (SQS) using Discovery Studio Version 3.1. Also, molecular physicochemical, bioactivity, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and toxicity prediction by computer assisted technology analyzes were also carried out. Results: The molecular physicochemical analysis revealed that four ligands, namely clinacoside A–C and cycloclinacoside A1 showed nil violations and complied with Lipinski's rule of five. As for the analysis of bioactivity, all the 11 selected constituents of C. nutans exhibited active score (>0) toward enzyme inhibitors descriptor. ADMET analysis showed that the ligands except orientin and isoorientin were predicted to have Cytochrome P4502D6 inhibition effect. Docking studies and binding free energy calculations revealed that clinacoside B exhibited the least binding energy for the target enzymes except for XO and SQS. Isovitexin and isoorientin showed the potentials in the docking and binding with all of the six targeted enzymes, whereas vitexin and orientin docked and bound with only NOS and HNE. Conclusion: This present study has paved a new insight in understanding these 11 C. nutans ligands as potential inhibitors against XO, NOS, HNE, MMP 2, MMP 9, and SQS. SUMMARY Isovitexin and isoorientin (Clinacanthus nutans constituent) showed potentials in the docking and binding with all of the six targeted

  19. Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas: A systematic review and meta-analysis of case-control trials.

    PubMed

    Liu, Hong-Yan; Gu, Wei-Jun; Wang, Cheng-Zhi; Ji, Xiao-Jian; Mu, Yi-Ming

    2016-06-01

    The extracellular matrix is important for tumor invasion and metastasis. Normal function of the extracellular matrix depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The objective of this meta-analysis was to assess the relationship between expression of MMP-9, MMP-2, and TIMP-2 and invasion of pituitary adenomas.We searched Pubmed, Embase, and the Chinese Biomedical Database up to October 2015. RevMan 5.1 software (Cochrane Collaboration, Copenhagen, Denmark) was used for statistical analysis. We calculated the standardized mean difference (SMD) for data expressed as mean ± standard deviation because of the difference in the detection method.Twenty-four studies (1320 patients) were included. MMP-9 expression was higher in the patients with invasive pituitary adenomas (IPAs) than patients with noninvasive pituitary adenomas (NIPAs) with detection methods of IHC [odds ratio (OR) = 5.48, 95% confidence interval (CI) = 2.61-11.50, P < 0.00001), and reverse transcriptase-polymerase chain reaction (SMD = 2.28, 95% CI = 0.91-3.64, P = 0.001). MMP-2 expression was also increased in patients with IPAs at the protein level (OR = 3.58, 95% CI = 1.63-7.87, P = 0.001), and RNA level (SMD = 3.91, 95% CI = 1.52-6.29, P = 0.001). Meta-analysis showed that there was no difference in TIMP-2 expression between invasive and NIPAs at the protein level (OR = 0.38, 95% CI = 0.06-2.26, P = 0.29). MMP-9 expression in prolactinomas and nonfunctioning pituitary adenomas was also no difference (OR = 1.03, 95% CI = 0.48-2.20, P = 0.95).The results indicated that MMP-9 and -2 may be correlated with invasiveness of pituitary adenomas, although their relationship with functional status of pituitary adenomas is still not clear. TIMP-2 expression in IPAs needs to be investigated further. PMID:27310993

  20. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells

    PubMed Central

    Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke. PMID:26881424

  1. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells.

    PubMed

    Song, Haoming; Cheng, Youjun; Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke.

  2. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells.

    PubMed

    Song, Haoming; Cheng, Youjun; Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke. PMID:26881424

  3. Proanthocyanidins from the American Cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways.

    PubMed

    Déziel, Bob A; Patel, Kunal; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert A R

    2010-10-15

    Prostate cancer is one of the most common cancers in the Western world, and it is believed that an individual's diet affects his risk of developing cancer. There has been an interest in examining phytochemicals, the secondary metabolites of plants, in order to determine their potential anti-cancer activities in vitro and in vivo. In this study we document the effects of proanthocyanidins (PACs) from the American Cranberry (Vaccinium macrocarpon) on matrix metalloproteinase (MMP) activity in DU145 human prostate cancer cells. Cranberry PACs decreased cellular viability of DU145 cells at a concentration of 25 µg/ml by 30% after 6 h of treatment. Treatment of DU145 cells with PACs resulted in an inhibition of both MMPs 2 and 9 activity. PACs increased the expression of TIMP-2, a known inhibitor of MMP activity, and decreased the expression of EMMPRIN, an inducer of MMP expression. PACs decreased the expression of PI-3 kinase and AKT proteins, and increased the phosphorylation of both p38 and ERK1/2. Cranberry PACs also decreased the translocation of the NF-κB p65 protein to the nucleus. Cranberry PACs increased c-jun and decreased c-fos protein levels. These results suggest that cranberry PACs decreases MMP activity through the induction and/or inhibition of specific temporal MMP regulators, and by affecting either the phosphorylation status and/or expression of MAP kinase, PI-3 kinase, NF-κB and AP-1 pathway proteins. This study further demonstrates that cranberry PACs are a strong candidate for further research as novel anti-cancer agents.

  4. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage.

    PubMed

    Liu, Jie; Jin, Xinchun; Liu, Ke J; Liu, Wenlan

    2012-02-29

    Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here, we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran and promoted the secretion of metalloproteinase-2 and -9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT (2-[[(4-phenoxyphenyl)sulfonyl]methyl]-thiirane) or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity, and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2 h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis.

  5. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage.

    PubMed

    Liu, Jie; Jin, Xinchun; Liu, Ke J; Liu, Wenlan

    2012-02-29

    Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here, we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran and promoted the secretion of metalloproteinase-2 and -9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT (2-[[(4-phenoxyphenyl)sulfonyl]methyl]-thiirane) or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity, and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2 h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis. PMID:22378877

  6. Quercetin inhibits migration and invasion of SAS human oral cancer cells through inhibition of NF-κB and matrix metalloproteinase-2/-9 signaling pathways.

    PubMed

    Lai, Wan-Wen; Hsu, Shu-Chun; Chueh, Fu-Shih; Chen, Ya-Yin; Yang, Jai-Sing; Lin, Jing-Pin; Lien, Jin-Cherng; Tsai, Chung-Hung; Chung, Jing-Gung

    2013-05-01

    Quercetin, a principal flavanoid compound in onions, has been shown to possess a wide spectrum of pharmacological properties, including anticancer activities. Our earlier study showed that quercetin induced cytotoxic effects on SAS human oral cancer cells. In this study, we found that quercetin significantly reduced wound closure of SAS cells in culture plates after 12- and 24-h treatments. Results indicated that quercetin inhibited the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9, as measured by western blotting and gelatin zymography. The results from western blotting also showed that quercetin reduced the protein levels of MMP-2, -7, -9 and -10, vascular endothelial growth factor (VEGF), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65, inductible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), urokinase-type plasminogen activator (uPA), phosphatidylinositide-3 kinases (PI3K), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IKBα), IKB-α/β, phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor kinase, alpha/beta (p-IKKα/β), focal adhesion kinase (FAK), son of sevenless homolog-1 (SOS1), growth factor receptor-bound protein-2 (GRB2), mitogen-activated protein kinase kinase kinase-3 (MEKK3), MEKK7, extracellular-signal-regulated kinase 1/2 (ERK1/2), p-ERK1/2, c-Jun N-terminal kinase 1/2 (JNK1/2), p38, p-p38, Jun proto-oncogene (c-JUN) and p-c-JUN but it did not affect Ras homolog gene family, member A (RhoA), Protein kinase C (PKC) and rat sarcoma viral oncogene homolog (RAS) in SAS cells. Confocal laser microscopy also showed that quercetin promoted the expressions of RhoA and Rho-associated, coiled-coil containing protein kinase-1 (ROCK1), but inhibited the expression of NF-κB p65 in SAS cells. It is concluded from these data that inhibition of migration and invasion of SAS cells by quercetin is associated with the down

  7. Quercetin inhibits migration and invasion of SAS human oral cancer cells through inhibition of NF-κB and matrix metalloproteinase-2/-9 signaling pathways.

    PubMed

    Lai, Wan-Wen; Hsu, Shu-Chun; Chueh, Fu-Shih; Chen, Ya-Yin; Yang, Jai-Sing; Lin, Jing-Pin; Lien, Jin-Cherng; Tsai, Chung-Hung; Chung, Jing-Gung

    2013-05-01

    Quercetin, a principal flavanoid compound in onions, has been shown to possess a wide spectrum of pharmacological properties, including anticancer activities. Our earlier study showed that quercetin induced cytotoxic effects on SAS human oral cancer cells. In this study, we found that quercetin significantly reduced wound closure of SAS cells in culture plates after 12- and 24-h treatments. Results indicated that quercetin inhibited the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9, as measured by western blotting and gelatin zymography. The results from western blotting also showed that quercetin reduced the protein levels of MMP-2, -7, -9 and -10, vascular endothelial growth factor (VEGF), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65, inductible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), urokinase-type plasminogen activator (uPA), phosphatidylinositide-3 kinases (PI3K), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IKBα), IKB-α/β, phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor kinase, alpha/beta (p-IKKα/β), focal adhesion kinase (FAK), son of sevenless homolog-1 (SOS1), growth factor receptor-bound protein-2 (GRB2), mitogen-activated protein kinase kinase kinase-3 (MEKK3), MEKK7, extracellular-signal-regulated kinase 1/2 (ERK1/2), p-ERK1/2, c-Jun N-terminal kinase 1/2 (JNK1/2), p38, p-p38, Jun proto-oncogene (c-JUN) and p-c-JUN but it did not affect Ras homolog gene family, member A (RhoA), Protein kinase C (PKC) and rat sarcoma viral oncogene homolog (RAS) in SAS cells. Confocal laser microscopy also showed that quercetin promoted the expressions of RhoA and Rho-associated, coiled-coil containing protein kinase-1 (ROCK1), but inhibited the expression of NF-κB p65 in SAS cells. It is concluded from these data that inhibition of migration and invasion of SAS cells by quercetin is associated with the down

  8. Activation of pro-(matrix metalloproteinase-2) (pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63 kDa active species.

    PubMed Central

    Lafleur, M A; Hollenberg, M D; Atkinson, S J; Knäuper, V; Murphy, G; Edwards, D R

    2001-01-01

    Thrombin, a critical enzyme in the coagulation cascade, has also been associated with angiogenesis and activation of the zymogen form of matrix metalloproteinase-2 (MMP-2 or gelatinase-A). We show that thrombin activated pro-MMP-2 in a dose- and time-dependent manner in cultured human umbilical-vein endothelial cells (HUVECs) to generate a catalytically active 63 kDa protein that accumulated as the predominant form in the conditioned medium. This 63 kDa thrombin-activated MMP-2 is distinct from the 62 kDa species found following concanavalin A or PMA stimulated pro-MMP-2 activation. Hirudin and leupeptin blocked thrombin-induced pro-MMP-2 activation, demonstrating that the proteolytic activity of thrombin is essential. However, activation was also dependent upon membrane-type-MMP (MT-MMP) action, since it was blocked by EDTA, o-phenanthroline, hydroxamate metalloproteinase inhibitors, tissue inhibitor of metalloproteinase-2 (TIMP-2) and TIMP-4, but not TIMP-1. Thrombin inefficiently cleaved recombinant 72 kDa pro-MMP-2, but efficiently cleaved the 64 kDa MT-MMP-processed intermediate form in the presence of cells. Thrombin also rapidly (within 1 h) increased cellular MT-MMP activity, and at longer time points (>6 h) it increased expression of MT1-MMP mRNA and protein. Thus signalling via proteinase-activated receptors (PARs) may play a role in thrombin-induced MMP-2 activation, though this does not appear to involve PAR1, PAR2, or PAR4 in HUVECs. These results indicate that in HUVECs the activation of pro-MMP-2 by thrombin involves increased MT-MMP activity and preferential cleavage of the MT-MMP-processed 64 kDa MMP-2 form in the presence of cells. The integration of these proteinase systems in the vascular endothelium may be important during thrombogenesis and tissue remodelling associated with neovascularization. PMID:11415441

  9. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases.

    PubMed

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-08-29

    Matrix metalloproteinases (MMPs) are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases' activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5-25 μg/mL) of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively) or their specific components (0.5-25 μmol/L), before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases.

  10. Red Grape Skin Polyphenols Blunt Matrix Metalloproteinase-2 and -9 Activity and Expression in Cell Models of Vascular Inflammation: Protective Role in Degenerative and Inflammatory Diseases.

    PubMed

    Calabriso, Nadia; Massaro, Marika; Scoditti, Egeria; Pellegrino, Mariangela; Ingrosso, Ilaria; Giovinazzo, Giovanna; Carluccio, Maria Annunziata

    2016-01-01

    Matrix metalloproteinases (MMPs) are endopeptidases responsible for the hydrolysis of various components of extracellular matrix. MMPs, namely gelatinases MMP-2 and MMP-9, contribute to the progression of chronic and degenerative diseases. Since gelatinases' activity and expression are regulated by oxidative stress, we sought to evaluate whether supplementation with polyphenol-rich red grape skin extracts modulated the matrix-degrading capacity in cell models of vascular inflammation. Human endothelial and monocytic cells were incubated with increasing concentrations (0.5-25 μg/mL) of Negroamaro and Primitivo red grape skin polyphenolic extracts (NSPE and PSPE, respectively) or their specific components (0.5-25 μmol/L), before stimulation with inflammatory challenge. NSPE and PSPE inhibited, in a concentration-dependent manner, endothelial invasion as well as the MMP-9 and MMP-2 release in stimulated endothelial cells, and MMP-9 production in inflamed monocytes, without affecting tissue inhibitor of metalloproteinases (TIMP)-1 and TIMP-2. The matrix degrading inhibitory capacity was the same for both NSPE and PSPE, despite their different polyphenolic profiles. Among the main polyphenols of grape skin extracts, trans-resveratrol, trans-piceid, kaempferol and quercetin exhibited the most significant inhibitory effects on matrix-degrading enzyme activities. Our findings appreciate the grape skins as rich source of polyphenols able to prevent the dysregulation of vascular remodelling affecting degenerative and inflammatory diseases. PMID:27589705

  11. Interleukin-1 and tumor necrosis factor-alpha induce collagenolysis and bone resorption by regulation of matrix metalloproteinase-2 in mouse calvarial bone cells.

    PubMed

    Kang, Bong-Seok; Park, Young-Guk; Cho, Jin-Young; Kim, June-Ki; Lee, Tae-Kyun; Kim, Dong-Wook; Gu, Yeun-Hwa; Suzuki, Ikukatsu; Chang, Young-Chae; Kim, Cheorl-Ho

    2003-08-01

    Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) greatly induces osteoclast formation and stimulates bone resorption of mouse calvaria in culture. We examined the effects of the two cytokines on the collagenolysis and bone resorption by induction of matrix metalloproteinases (MMPs). The cells were analyzed using zymographic analysis. It was shown that the mouse calvarial osteoblasts constitutively synthesize progelatinase-A (MMP-2). Interleukin-1beta markedly enhanced the messenger RNAs (mRNAs) expression of MMP-2 (gelatinase A), but slightly MMP-9 (gelatinase B), which associated with increases in bone matrix degradation. Both pro- and active-forms of MMP-2 were detected in the conditioned medium collected from calvarial cultures, and IL-1beta markedly stimulated both pro- and active-forms of the MMP-2. The expression of MMP-2 mRNAs could be detected, and they were markedly enhanced by IL-1beta on days 1 and 2. These results demonstrate that the potency of induction of MMP-2 by IL-1beta and TNF-alpha is closely linked to the respective bone-resorbing activity, suggesting that MMP-2-dependent degradation of bone matrix plays a key role in bone resorption induced by these cytokines. On the other hand, when the mouse osteoblasts were stimulated with parathyroid hormone, 1,25(OH)2D3, mononuclear cell conditioned medium (MCM) and IL-1 as bone resorption agents, collagenolysis was increased by producing the active gelatinase. Interleukin-1 in stimulating bone resorption was examined using fetal mouse long bone organ culture. Interleukin-1 stimulated bone resorption and produced marked resorption when present simultaneously. Furthermore, treatment of indomethacin and dexamethasone clearly abolished the responses of IL-1alpha and IL-1beta.

  12. Matrix metalloproteinases 2 and 9 and their tissue inhibitors in the follicular fluid of patients with polycystic ovaries undergoing in vitro fertilisation.

    PubMed

    Baka, Stavroula; Zourla, Konstantina; Kouskouni, Evangelia; Makrakis, Evangelos; Demeridou, Stella; Tzanakaki, Despoina; Hassiakos, Dimitris; Creatsas, George

    2010-01-01

    The present study was undertaken to investigate the levels of matrix metalloproteinase (MMP)-2, MMP-9 and their tissue inhibitors (TIMP-2 and TIMP-1, respectively) in the follicular fluid of 39 patients with polycystic ovary syndrome (PCOS) and compare them with the levels found in 56 age- and weight-matched normally ovulating women, all undergoing in vitro fertilisation (IVF) treatment. Significantly higher levels of MMP-2 and MMP-9 (p=0.02 and p<0.001, respectively) as well as TIMP-2 and TIMP-1 (p=0.006 and p<0.001, respectively) were found in the PCOS group compared to controls. Women who achieved pregnancy had higher TIMP-1 levels compared to the non-pregnant ones in the control group (p=0.01). In conclusion, women with PCOS exhibited significantly increased gelatinolytic activity compared with controls of similar age and body mass index, thus indicating a more intense extracellular matrix remodelling in this group of patients during IVF treatment due to multiple follicular development and cyst formation.

  13. Matrix metalloproteinases 2 and 9 and their tissue inhibitors in the follicular fluid of patients with polycystic ovaries undergoing in vitro fertilisation.

    PubMed

    Baka, Stavroula; Zourla, Konstantina; Kouskouni, Evangelia; Makrakis, Evangelos; Demeridou, Stella; Tzanakaki, Despoina; Hassiakos, Dimitris; Creatsas, George

    2010-01-01

    The present study was undertaken to investigate the levels of matrix metalloproteinase (MMP)-2, MMP-9 and their tissue inhibitors (TIMP-2 and TIMP-1, respectively) in the follicular fluid of 39 patients with polycystic ovary syndrome (PCOS) and compare them with the levels found in 56 age- and weight-matched normally ovulating women, all undergoing in vitro fertilisation (IVF) treatment. Significantly higher levels of MMP-2 and MMP-9 (p=0.02 and p<0.001, respectively) as well as TIMP-2 and TIMP-1 (p=0.006 and p<0.001, respectively) were found in the PCOS group compared to controls. Women who achieved pregnancy had higher TIMP-1 levels compared to the non-pregnant ones in the control group (p=0.01). In conclusion, women with PCOS exhibited significantly increased gelatinolytic activity compared with controls of similar age and body mass index, thus indicating a more intense extracellular matrix remodelling in this group of patients during IVF treatment due to multiple follicular development and cyst formation. PMID:20555001

  14. Dual Inhibitory Pathways of Metallofullerenol Gd@C82(OH)22 on Matrix Metalloproteinase-2: Molecular insight into drug-like nanomedicine

    PubMed Central

    Kang, Seung-gu; Araya-Secchi, Raul; Wang, Deqiang; Wang, Bo; Huynh, Tien; Zhou, Ruhong

    2014-01-01

    Cancer metastasis is an important criterion to evaluate tumor malignancy. Matrix metalloproteinases (MMPs) play a crucial role in cancer proliferation and migration by virtue of their proteolytic functions in angiogenesis and extracelluar matrix (ECM) degradation, making them potential targets of anti-metastaic therapeutics. Recently we showed with both in vivo and in vitro experiments that metallofullerenol Gd@C82(OH)22 can effectively inhibit MMP-2 and MMP-9 with high antitumoral efficacy. Furthermore, our in silico study revealed that Gd@C82(OH)22 could indirectly inhibit the proteolysis of MMP-9 via allosteric modulation exclusively at the ligand specificity S1′ loop. Here, we expand our study toward another gelatinase, MMP-2, using molecular dynamics simulations. Despite the high structural similarity with 64.3% sequence identity, their responses to Gd@C82(OH)22 were quite different. Toward MMP-2, Gd@C82(OH)22 could block either the Zn2+-catalylitic site directly or the S1′ loop indirectly. Surface electrostatics uniquely determines the initial adsorption of Gd@C82(OH)22 on MMP-2, and then its further location of the most favorable binding site(s). These findings not only illustrated how the inhibitory mechanism of Gd@C82(OH)22 is distinguished between the two gelatinase MMPs with atomic details, but also shed light on the de novo design of anti-metastatic nanotherapeutics with enhanced target specificity. PMID:24758941

  15. Dual Inhibitory Pathways of Metallofullerenol Gd@C82(OH)22 on Matrix Metalloproteinase-2: Molecular insight into drug-like nanomedicine

    NASA Astrophysics Data System (ADS)

    Kang, Seung-Gu; Araya-Secchi, Raul; Wang, Deqiang; Wang, Bo; Huynh, Tien; Zhou, Ruhong

    2014-04-01

    Cancer metastasis is an important criterion to evaluate tumor malignancy. Matrix metalloproteinases (MMPs) play a crucial role in cancer proliferation and migration by virtue of their proteolytic functions in angiogenesis and extracelluar matrix (ECM) degradation, making them potential targets of anti-metastaic therapeutics. Recently we showed with both in vivo and in vitro experiments that metallofullerenol Gd@C82(OH)22 can effectively inhibit MMP-2 and MMP-9 with high antitumoral efficacy. Furthermore, our in silico study revealed that Gd@C82(OH)22 could indirectly inhibit the proteolysis of MMP-9 via allosteric modulation exclusively at the ligand specificity S1' loop. Here, we expand our study toward another gelatinase, MMP-2, using molecular dynamics simulations. Despite the high structural similarity with 64.3% sequence identity, their responses to Gd@C82(OH)22 were quite different. Toward MMP-2, Gd@C82(OH)22 could block either the Zn2+-catalylitic site directly or the S1' loop indirectly. Surface electrostatics uniquely determines the initial adsorption of Gd@C82(OH)22 on MMP-2, and then its further location of the most favorable binding site(s). These findings not only illustrated how the inhibitory mechanism of Gd@C82(OH)22 is distinguished between the two gelatinase MMPs with atomic details, but also shed light on the de novo design of anti-metastatic nanotherapeutics with enhanced target specificity.

  16. The tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+ stimulates matrix metalloproteinase-2 expression by fibroblast cultures.

    PubMed

    Siméon, A; Emonard, H; Hornebeck, W; Maquart, F X

    2000-09-22

    Glycyl-histidyl-lysine-Cu2+ (GHK-Cu) is a tripeptide-copper complex known to be a potent wound healing agent. We previously showed its ability to stimulate in vitro and in vivo the synthesis of extracellular matrix components. The aim of this study was to determine the effects of GHK-Cu on MMP-2 synthesis by dermal fibroblasts in culture. We showed that GHK-Cu increased MMP-2 levels in conditioned media of cultured fibroblasts. This effect was reproduced by copper ions but not by the tripeptide GHK alone. This stimulation was accompanied by an increase of MMP-2 mRNA level. We also showed that GHK-Cu increased the secretion of the tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-2. Taken together, our results underline that GHK-Cu is not only an activator of connective tissue production but also of the remodeling of the extracellular matrix. It is able to modulate MMP expression by acting directly on wound fibroblasts. PMID:11045606

  17. Inhibitory Effects of Isorhamnetin on the Invasion of Human Breast Carcinoma Cells by Downregulating the Expression and Activity of Matrix Metalloproteinase-2/9.

    PubMed

    Li, Chenglin; Yang, Dan; Zhao, Yuanwei; Qiu, Yu; Cao, Xin; Yu, Yanyan; Guo, Hao; Gu, Xiaoke; Yin, Xiaoxing

    2015-01-01

    Matrix metalloproteinases (MMPs) play an active role in facilitating the invasion of cancer cells with excessive extracellular matrix (ECM) degradation. In the present study, we investigated the antiinvasive effects of isorhamnetin, a naturally occurring flavonoid, on MDA-MB-231 human breast carcinoma cells. The results indicated that isorhamnetin significantly inhibited the adhesion, migration, and invasion of the cells in vitro. Moreover, isorhamnetin suppressed the activity and expression of MMP-2 and MMP-9, which were determined by gelatin zymography, real-time PCR, and Western blot analysis, respectively. Besides, isorhamnetin had little effect on the secretion of urokinase plasminogen activator. Further elucidation of the mechanism revealed that isorhamnetin exerted an inhibitory effect on the phosphorylation of p38 and STAT3, although it had no effect on ERK1/2 and JNK. Taken together, these data demonstrated that isorhamnetin could significantly inhibit the invasion of MDA-MB-231 cells by downregulating the expression and activity of MMP-2 and MMP-9, which was potentially associated with the suppression of p38 MAPK and STAT3. Therefore, the findings provide new evidence for the anti-cancer activity of isorhamnetin. PMID:26359917

  18. Differential Expression of Matrix Metalloproteinase-2 Expression in Disseminated Tumor Cells and Micrometastasis in Bone Marrow of Patients with Nonmetastatic and Metastatic Prostate Cancer: Theoretical Considerations and Clinical Implications—An Immunocytochemical Study

    PubMed Central

    Murray, Nigel P.; Reyes, Eduardo; Tapia, Pablo; Badínez, Leonardo; Orellana, Nelson

    2012-01-01

    Matrix metalloproteinase-2 (MMP-2) is important in the dissemination and invasion of tumor cells and activates angiogenesis. We present an immunocytochemical study of MMP-2 expression in circulating prostate cells (CPCs), disseminated tumor cells (DTCs), and micrometastasis (mM) in bone marrow of men with prostate cancer. Methods and Patients. Tumor cells were identified with anti-PSA immunocytochemistry. Positive samples underwent processing with anti-MMP-2, its expression was compared with Gleason score, concordance of expression, and metastatic and nonmetastatic disease. Results. 215 men participated, CPCs were detected in 62.7%, DTCs in 62.2%, and mM in 71.4% in nonmetastatic cancer; in metastatic cancer all had CPCs, DTCs, and mM detected. All CPCs and DTCs expressed MMP-2; in mM MMP-2 expression was positively associated with increasing Gleason score. MMP-2 expression in CPCs and DTCs showed concordance. In low grade tumors, mM and surrounding stromal cells were MMP-2 negative, with variable expression in high grade tumors; in metastatic disease, both mM and stromal cells were MMP-2 positive. Conclusions. CPCs and DTCs are different from mM, with inhibition of MMP-2 expression in mM of low grade tumors. With disease progression, MMP-2 expression increases in both mM and surrounding stromal cells, with implications for the use of bisphosphonates or MMP-2 inhibitors. PMID:23227342

  19. Use of matrix metalloproteinases 2 and 9 and white blood cell counts in monitoring the treatment and predicting the survival of horses with septic arthritis.

    PubMed

    Kidd, J A; Barr, A R S; Tarlton, J F

    2007-09-01

    Thirty-nine samples of synovial fluid were collected from the joints of 32 horses with suspected septic arthritis and 39 samples were collected from horses euthanased for non-orthopaedic conditions. The white blood cell counts (WBCC) were determined and the pro and active forms of matrix metalloproteinases (MMPs) 2 and 9 were measured by gelatin zymography and image analysis in each sample. The initial measurements of the ratio of proMMP9:proMMp2 and WBCC were good prognostic indicators of the survival of the horses. There was no significant relationship between the interval between the injury and the horse being referred for treatment and either the WBCC or the levels of MMP2 and MMP9 initially, and no evidence that this interval significantly affected the chances of the horses surviving.

  20. Intrafollicular levels of matrix metalloproteinases-2 and -9 in patients with polycystic ovaries are not associated with pregnancy rate during IVF cycle.

    PubMed

    Baka, Stavroula; Zourla, Konstantina; Malamitsi-Puchner, Ariadne; Makrakis, Evangelos; Kaparos, George; Demeridou, Stella; Moustakarias, Theodore; Tzanakaki, Despoina; Hassiakos, Dimitris; Kouskouni, Evangelia

    2009-01-01

    This study aimed to detect the levels of matrix metalloproteinases (MMP)-2 and -9, using enzyme-linked immunosorbent assays, in the follicular fluid of 35 patients with polycystic ovaries, compare them with the levels found in 35 normally ovulating women enrolled in their first in vitro fertilization (IVF) cycle and then correlate them with pregnancy rates in these two groups. Levels of MMP-9 were found significantly increased in women with polycystic ovaries when compared with the controls, while MMP-2 levels were higher in women with polycystic ovaries without reaching statistical significance. The two groups did not differ in age, in the number of embryos transferred or in pregnancy rates. In conclusion, the results indicated an increased gelatinolytic activity in patients with polycystic ovaries after ovarian stimulation for IVF treatment without detecting any association between levels of MMP-2 and 9 and IVF pregnancy rates. PMID:19368130

  1. Claudin-4 expression in gastric cancer cells enhances the invasion and is associated with the increased level of matrix metalloproteinase-2 and -9 expression

    PubMed Central

    HWANG, TSANN-LONG; CHANGCHIEN, TZU-TSUNG; WANG, CHEE-CHAN; WU, CHI-MING

    2014-01-01

    Claudin-4 is a member of a large family of transmembrane proteins known as claudins, which are essential for the formation and maintenance of tight junctions. Our previous studies have revealed that claudin-4 proteins are overexpressed in metastatic gastric cancer. To clarify the roles of claudin-4 in gastric cancer metastasis, human gastric adenocarcinoma (AGS) cells constitutively expressing wild-type claudin-4 were generated. Expression of claudin-4 in AGS cells was found to increase cell invasion and migration, as measured by Boyden invasion chamber assays. Moreover, the claudin-4-expressing AGS cells were found to have increased matrix metalloproteinase (MMP)-2 and -9 expression, indicating that claudin-mediated increased invasion may be mediated through the activation of the MMP protein. Overall, the results suggest that claudin-4 overexpression may promote gastric cancer metastasis through the increased invasion of gastric cancer cells. PMID:25120725

  2. Anti-tumor effects of Rubratoxin B on cell toxicity, inhibition of cell proliferation, cytotoxic activity and matrix metalloproteinase-2,9.

    PubMed

    Wang, Tao; Zhang, Yi; Wang, Yi; Pei, Yue-hu

    2007-06-01

    Terrestrial fungi are a prolific source of metabolites with significant biological activities. Many important anticancer, antifungal and antibacterial chemotherapeutics are either microbial metabolites or semisynthetic derivatives. Investigating the metabolites of fungi may increase the chance of finding novel compounds. A bioassay-guided fractionation of soil fungus Penicillium purpurogenum fermentation, yielded the metabolite Rubratoxin B using morphological deformation of Pyricularia oryzae mycelia. Analysis by flow cytometry showed that Rubratoxin B inhibited the cell cycle progression of tsFT210 cells in the G2/M phase at the concentration of 24 microM. Cytotoxic activity analysis showed that Rubratoxin B has a cytotoxic activity and IC50 was 67.3 +/- 1.4 microM on human fibrosarcoma cell (HT1080), and Rubratoxin B exhibited inhibitory activities against matrix metalloproteinase (MMP)-2 and 9 on HT 1080 cells with an inhibitory rate of 61.5% and 74.7% at 30 microM, respectively. PMID:17306501

  3. Matrix Metalloproteinase 2 (MMP-2) Plays a Critical Role in the Softening of Common Carp Muscle during Chilled Storage by Degradation of Type I and V Collagens.

    PubMed

    Xu, Chao; Wang, Cheng; Cai, Qiu-Feng; Zhang, Qian; Weng, Ling; Liu, Guang-Ming; Su, Wen-Jin; Cao, Min-Jie

    2015-12-30

    Matrix metalloproteinases (MMPs) are proposed to play important roles in the degradation of collagens, thus causing the post-mortem softening of fish muscle, although the specific mechanism remains largely unresolved. Previously, we reported the existence of gelatinase-like proteinases in common carp (Cyprinus carpio) muscle. The primary structures of these proteinases, however, have never been investigated. In the present study, two MMPs with molecular masses of 66 and 65 kDa were purified to homogeneity from common carp muscle by ammonium sulfate fractionation and a series of column chromatographies. Matrix-assisted laser desorption/ionization-tandem time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS) analysis indicated that they are completely identical to MMP-2 from common carp. During chilled storage of common carp at 4 °C, the enzymatic activity of MMP-2 increased to 212% in 12 h while the texture profile increased over the first 2 h and gradually decreased. On the other hand, type V collagen was purified to homogeneity and a specific polyclonal antibody against this protein was prepared. Both type I and V collagens were effectively hydrolyzed by MMP-2 at 30 °C and even at 4 °C. Furthermore, injection of metalloproteinase proteinase inhibitor EDTA into the blood vessel of live common carp suppressed post-mortem tenderization significantly. All of these results confirmed that MMP-2 is a major proteinase responsible for the degradation of collagens, resulting in the softening of fish muscle during chilled storage. PMID:26653826

  4. Enhancement of Matrix Metalloproteinase-2 (MMP-2) as a Potential Chondrogenic Marker during Chondrogenic Differentiation of Human Adipose-Derived Stem Cells.

    PubMed

    Arai, Yoshie; Park, Sunghyun; Choi, Bogyu; Ko, Kyoung-Won; Choi, Won Chul; Lee, Joong-Myung; Han, Dong-Wook; Park, Hun-Kuk; Han, Inbo; Lee, Jong Hun; Lee, Soo-Hong

    2016-01-01

    Human adipose-derived stem cells (hASCs) have a capacity to undergo adipogenic, chondrogenic, and osteogenic differentiation. Recently, hASCs were applied to various fields including cell therapy for tissue regeneration. However, it is hard to predict the direction of differentiation of hASCs in real-time. Matrix metalloproteinases (MMPs) are one family of proteolytic enzymes that plays a pivotal role in regulating the biology of stem cells. MMPs secreted by hASCs are expected to show different expression patterns depending on the differentiation state of hASCs because biological functions exhibit different patterns during the differentiation of stem cells. Here, we investigated proteolytic enzyme activity, especially MMP-2 activity, in hASCs during their differentiation. The activities of proteolytic enzymes and MMP-2 were higher during chondrogenic differentiation than during adipogenic and osteogenic differentiation. During chondrogenic differentiation, mRNA expression of MMP-2 and the level of the active form of MMP-2 were increased, which also correlated with Col II. It is concluded that proteolytic enzyme activity and the level of the active form of MMP-2 were increased during chondrogenic differentiation, which was accelerated in the presence of Col II protein. According to our findings, MMP-2 could be a candidate maker for real-time detection of chondrogenic differentiation of hASCs. PMID:27322256

  5. Quercetin Improves Postischemic Recovery of Heart Function in Doxorubicin-Treated Rats and Prevents Doxorubicin-Induced Matrix Metalloproteinase-2 Activation and Apoptosis Induction

    PubMed Central

    Barteková, Monika; Šimončíková, Petra; Fogarassyová, Mária; Ivanová, Monika; Okruhlicová, Ľudmila; Tribulová, Narcisa; Dovinová, Ima; Barančík, Miroslav

    2015-01-01

    Quercetin (QCT) is flavonoid that possesses various biological functions including anti-oxidative and radical-scavenging activities. Moreover, QCT exerts some preventive actions in treatment of cardiovascular diseases. The aim of present study was to explore effects of prolonged administration of QCT on changes induced by repeated application of doxorubicin (DOX) in rat hearts. We focused on the ultrastructure of myocardium, matrix metalloproteinases (MMPs), biometric parameters, and apoptosis induction. Our aim was also to examine effects of QCT on ischemic tolerance in hearts exposed to chronic effects of DOX, and to determine possible mechanisms underlying effects of QCT. Our results showed that QCT prevented several negative chronic effects of DOX: (I) reversed DOX-induced blood pressure increase; (II) mediated improvement of deleterious effects of DOX on ultrastructure of left ventricle; (III) prevented DOX-induced effects on tissue MMP-2 activation; and (iv) reversed effects of DOX on apoptosis induction and superoxide dismutase inhibition. Moreover, we showed that rat hearts exposed to effects of QCT were more resistant to ischemia/reperfusion injury. Effects of QCT on modulation of ischemic tolerance were linked to Akt kinase activation and connexin-43 up-regulation. Taken together, these results demonstrate that prolonged treatment with QCT prevented negative chronic effects of DOX on blood pressure, cellular damage, MMP-2 activation, and apoptosis induction. Moreover, QCT influenced myocardial responses to acute ischemic stress. These facts bring new insights into mechanisms of QCT action on rat hearts exposed to the chronic effects of DOX. PMID:25872140

  6. Stereoselective suppressive effects of protopanaxadiol epimers on UV-B-induced reactive oxygen species and matrix metalloproteinase-2 in human dermal keratinocytes.

    PubMed

    Oh, Sun-Joo; Lee, Sihyeong; Kho, Ye Eun; Kim, Kyunghoon; Jin, Chang Duck; Lim, Chang-Jin

    2015-01-01

    This study aimed to assess the skin-related anti-photoaging activities of the 2 epimeric forms of protopanaxadiol (PPD), 20(S)-PPD and 20(R)-PPD, in cultured human keratinocytes (HaCaT cells). The anti-photoaging activity was evaluated by analyzing the levels of reactive oxygen species (ROS) and matrix metalloproteinases (MMPs), as well as cell viability for HaCaT cells under UV-B irradiation. The activities for MMP-2 and -1 in conditioned medium were determined using gelatin zymography, and MMP-2 protein in the conditioned medium was detected using Western blot analysis. 20(S)-PPD, but not 20(R)-PPD, suppressed UV-B-induced ROS elevation. Neither of the epimers, at the concentrations used, exhibited cytotoxicity, irrespective of UV-B irradiation. 20(S)-PPD, but not 20(R)-PPD, exhibited an inhibitory effect on UV-B-induced MMP-2 activity and expression in HaCaT cells. In brief, only 20(S)-PPD, a major metabolic product of PPD-type ginsenosides, inhibits UV-B-induced ROS and MMP-2 elevation, implying its stereospecific anti-photoaging activity on the skin. PMID:25405256

  7. Enhancement of Matrix Metalloproteinase-2 (MMP-2) as a Potential Chondrogenic Marker during Chondrogenic Differentiation of Human Adipose-Derived Stem Cells

    PubMed Central

    Arai, Yoshie; Park, Sunghyun; Choi, Bogyu; Ko, Kyoung-Won; Choi, Won Chul; Lee, Joong-Myung; Han, Dong-Wook; Park, Hun-Kuk; Han, Inbo; Lee, Jong Hun; Lee, Soo-Hong

    2016-01-01

    Human adipose-derived stem cells (hASCs) have a capacity to undergo adipogenic, chondrogenic, and osteogenic differentiation. Recently, hASCs were applied to various fields including cell therapy for tissue regeneration. However, it is hard to predict the direction of differentiation of hASCs in real-time. Matrix metalloproteinases (MMPs) are one family of proteolytic enzymes that plays a pivotal role in regulating the biology of stem cells. MMPs secreted by hASCs are expected to show different expression patterns depending on the differentiation state of hASCs because biological functions exhibit different patterns during the differentiation of stem cells. Here, we investigated proteolytic enzyme activity, especially MMP-2 activity, in hASCs during their differentiation. The activities of proteolytic enzymes and MMP-2 were higher during chondrogenic differentiation than during adipogenic and osteogenic differentiation. During chondrogenic differentiation, mRNA expression of MMP-2 and the level of the active form of MMP-2 were increased, which also correlated with Col II. It is concluded that proteolytic enzyme activity and the level of the active form of MMP-2 were increased during chondrogenic differentiation, which was accelerated in the presence of Col II protein. According to our findings, MMP-2 could be a candidate maker for real-time detection of chondrogenic differentiation of hASCs. PMID:27322256

  8. Perfluorooctanoic acid enhances colorectal cancer DLD-1 cells invasiveness through activating NF-κB mediated matrix metalloproteinase-2/-9 expression

    PubMed Central

    Miao, Chen; Ma, Jun; Zhang, Yajie; Chu, Yimin; Li, Ji; Kuai, Rong; Wang, Saiyu; Peng, Haixia

    2015-01-01

    Objective: Perfluorooctanoic acid (PFOA) is widely used in consumer products and detected in human serum. Our study meant to elucidate the uncovered molecular mechanisms underlying the PFOA induced colorectal cancer cell DLD-1 invasion and matrix metalloproteinases (MMP) expression. Methods and results: Trans-well filter assay appeared that PFOA treatment stimulated DLD-1 cells invasion significantly. Meanwhile, the results of luciferase reporter, quantitative real-time PCR, western blotting, and gelatin zymography showed that PFOA induced MMP-2/-9 expression and enzyme activation levels consistently (P < 0.05 each). Subsequently, western blotting and immunofluorescence assay demonstrated that PFOA could enhance nuclear factor kappaB (NF-κB) activity by stimulating NF-κB translocation into nuclear in DLD-1 cells. Furthermore, JSH-23, a well-known NF-κB inhibitor, could reverse the PFOA induced colorectal cancer cell invasion and MMP-2/-9 expression. Conclusions: Our study confirmed that PFOA could induce colorectal cancer cell DLD-1 invasive ability and MMP-2/-9 expression through activating NF-κB, which deserves more concerns on environmental pollutant-resulted public health risk. PMID:26617761

  9. Overexpression of myeloid zinc finger 1 suppresses matrix metalloproteinase-2 expression and reduces invasiveness of SiHa human cervical cancer cells.

    PubMed

    Tsai, Su-Ju; Hwang, Jin-Ming; Hsieh, Shu-Ching; Ying, Tsung-Ho; Hsieh, Yi-Hsien

    2012-08-24

    Myeloid zinc finger 1 (MZF1) gene belongs to the Kruppel family of zinc finger transcription factors. MZF1 has been suggested to play an important role in the tumorigenesis, invasion, and apoptosis of various tumor cells. However, the role of MZF1 in human cervical cancer remains unclear. To investigate the molecular mechanisms of MZF1 and its functional role in human cervical cancer cell migration and invasion, we experimented on stable SiHa cells overexpressing MZF1. We found that MZF1 overexpression inhibits the migratory and invasive abilities of SiHa cervical cancer cells. In addition, the overexpression of MZF1 significantly reduces MMP-2 protein and mRNA levels. Luciferase and ChIP assays suggested that MZF1 directly binds to MMP-2 gene regulatory sequences in vivo and suppresses MMP-2 promoter activity in vitro. This study shows that MZF-1 represses MMP-2 transcription and suggests that this repression may be linked to inhibition of human cervical cancer cell migration and metastasis.

  10. Matrix Metalloproteinase-2, Squamous Cell Carcinoma Antigen, and Tissue Polypeptide-Specific Antigen Expression in Egyptian Patients with Cervical Carcinoma: Relationship with Prognosis

    PubMed Central

    Ahmed, Maha Imam; Salahy, Eman-El; Tawfiq, Hassan; Khalifa, Ali; Hassan, Manal M.

    2004-01-01

    Matrix metalloproteinases (MMPs), a family of proteolytic enzymes produced by both stromal and tumor cells, appear to have a key role in the events leading to local invasion and metastasis by malignant neoplasms. In the present study, we evaluated the role of MMP-2, squamous cell carcinoma antigen (SCCA), and tissue polypeptide – specific antigen (TPS) in cervical neoplasia. Using Western blotting and enzyme immunoassay (EIA), we analyzed 50 patients with cervical carcinoma (CC) and 25 normal controls for expression of MMP-2 in tissue cell lysates. We also quantified SCCA and TPS with microparticle immunoassay and EIA, respectively. The results were correlated with human papilloma virus (HPV) infection, clinicopathological findings, and disease outcome. The cutoff point for each marker was estimated from receiver operating characteristic curves. Logistic regression analysis was performed to estimate the odds ratio (OR) and 95% confidence interval (CI) for each marker. MMP-2, SCCA, and TPS protein expression were significantly higher in patients with CC than in normal controls. While TPS was the best marker for discriminating between patients and controls, MMP-2 was associated with an advanced tumor stage (OR, 13.9 [95% CI, 1.4-133.9]) and poor histological grade (OR, 10.2 [95% CI, 1.7-60.5]). Moreover, independent of the effect of an advanced CC stage and grade, the patients' age, and the presence of HPV infection, MMP-2 was considered a strong predictor for CC recurrence (OR, 8.1 [95% CI, 1.3- 49.1]). Tissue markers may be used to select high-risk patients for early detection of and adjuvant therapy for recurrence. Our MMP-2 findings are particularly relevant to the development of protease inhibitors as a new cancer therapy approach. PMID:15665394

  11. Romidepsin induces cell cycle arrest, apoptosis, histone hyperacetylation and reduces matrix metalloproteinases 2 and 9 expression in bortezomib sensitized non-small cell lung cancer cells.

    PubMed

    Karthik, Selvaraju; Sankar, Renu; Varunkumar, Krishnamoorthy; Ravikumar, Vilwanathan

    2014-04-01

    Histone deacetylase (HDAC) inhibitors have been proven to be effective therapeutic agents to kill cancer cells through inhibiting HDAC activity or altering the structure of chromatin. We recently reported that chemotherapy by the HDAC inhibitor, romidepsin activates the anti- apoptotic transcription factor NF-κB in A549 non-small cell lung cancer (NSCLC) cells and fails to induce significant levels of apoptosis. We also demonstrated that NF-κB inhibition with proteasome inhibitor bortezomib enhanced HDAC inhibitor induced mitochondrial injury and sensitize A549 NSCLC cells to apoptosis through the generation of reactive oxygen species. In this study, we investigate whether combined treatment with romidepsin and bortezomib would induce apoptosis in A549 NSCLC cells by activating cell cycle arrest, enhanced generation of p21 and p53, down-regulation of matrix metalloproteinases (MMPs) 2,9 also altering the acetylation status of histone proteins. Our data show that combination of romidepsin and bortezomib caused cell cycle arrest at Sub G0-G1 transition, up-regulation of cell cycle protein p21 and tumour suppressor protein p53. In addition, romidepsin down-regulated the expression of MMP-2,9 and hyperacetylation of histone H3 and H4 in bortezomib sensitised A549 NSCLC cells. From this study we concluded that romidepsin and bortezomib cooperatively inhibit A549 NSCLC cell proliferation by altering the histone acetylation status, expression of cell cycle regulators and MMPs. Romidepsin along with bortezomib might be an effective treatment approach for A549 NSCLC cells.

  12. STAT3 and ERK Signaling Pathways Are Implicated in the Invasion Activity by Oncostatin M through Induction of Matrix Metalloproteinases 2 and 9

    PubMed Central

    Ko, Hyun Sun; Park, Byung Joon; Choi, Sae Kyung; Kang, Hee Kyung; Kim, Ahyoung; Kim, Ho Shik; Park, In Yang

    2016-01-01

    Purpose Our previous studies have shown that oncostatin M (OSM) promotes trophoblast invasion activity through increased enzyme activity of matrix metalloproteinase (MMP)-2 and -9. We further investigated OSM-induced intracellular signaling mechanisms associated with these events in the immortalized human trophoblast cell line HTR8/SVneo. Materials and Methods We investigated the effects of OSM on RNA and protein expression of MMP-2 and -9 in the first-trimester extravillous trophoblast cell line (HTR8/SVneo) via Western blot. The selective signal transducer and activator of transcription (STAT)3 inhibitor, stattic, STAT3 siRNA, and extracellular signal-regulated kinase (ERK) siRNA were used to investigate STAT3 and ERK activation by OSM. The effects of STAT3 and ERK inhibitors on OSM-induced enzymatic activities of MMP-2 and -9 and invasion activity were further determined via Western blot and gelatin zymography. Results OSM-induced MMP-2 and -9 protein expression was significantly suppressed by STAT3 inhibition with stattic and STAT3 siRNA silencing, whereas the ERK1/2 inhibitor (U0126) and ERK silencing significantly suppressed OSM-induced MMP-2 protein expression. OSM-induced MMP-2 and MMP-9 enzymatic activities were significantly decreased by stattic pretreatment. The increased invasion activity induced by OSM was significantly suppressed by STAT3 and ERK1/2 inhibition, though to a greater extent by STAT3 inhibition. Conclusion Both STAT3 and ERK signaling pathways are involved in OSM-induced invasion activity of HTR8/SVneo cells. Activation of STAT3 appears to be critical for the OSM-mediated increase in invasiveness of HTR8/SVneo cells. PMID:26996579

  13. Effect of photodynamic therapy combined with torasemide on the expression of matrix metalloproteinase 2 and sodium-potassium-chloride cotransporter 1 in rat peritumoral edema and glioma

    PubMed Central

    LI, BO; MENG, CHAO; ZHANG, XUFENG; CONG, DAMIN; GAO, XIN; GAO, WANLONG; JU, DONGHUI; HU, SHAOSHAN

    2016-01-01

    Peritumoral edema is a key stage in the infiltration and recurrence of glioma. Photodynamic therapy (PDT) increases the extent of peritumoral edema, which leads to a decrease in the effectiveness of PDT in treating glioma. The present study evaluated the effects of PDT combined with torasemide on the levels of matrix metalloproteinase (MMP) 2 and sodium-potassium-chloride cotransporter (NKCC) 1 in peritumoral edema regions of rat glioma. Adult male Wistar rats were inoculated with rat glioma C6 cells, and the presence of glioma was confirmed using magnetic resonance imaging 7 days subsequent to injection. The rats were randomly assigned to 4 groups (n=15): Control group, the rats received no treatment; PDT group, the rats received PDT at 80 J/cm2 for 10 min; torasemide group, the rats received 5 mg/kg torasemide intraperitoneally; and PDT + torasemide group, the rats received 5 mg/kg torasemide intraperitoneally for 3 days following PDT at 80 J/cm2 for 10 min. A total of 5 rats from each group were sacrificed 21 days following injection and the peritumoral edema tissues were harvested. MMP2 and NKCC1 expression levels were detected in the tissues using immunohistochemistry and western blot analysis. The mRNA expression levels of MMP2 and NKCC1 were observed using reverse transcription-quantitative polymerase chain reaction. Peritumoral edema was measured using a wet-to-dry weight (W/D) ratio, and survival times of the remaining 10 rats in each group were evaluated. Compared with the control group, tumor growth was significantly suppressed in the PDT group and the survival time was prolonged through a reduction in the expression of MMP2 (P<0.05), and an increased W/D ratio resulted in significantly increased expression of NKCC1 (P<0.05). Compared with the PDT group, the expression of NKCC1 and the W/D ratio in the PDT + torasemide group were significantly decreased (P<0.05), while no significant difference was observed in the expression levels of MMP2. In conclusion

  14. Serum matrix metalloproteinase 2 and tissue inhibitor of matrix metalloproteinases 2 in esophageal cancer patients.

    PubMed

    Groblewska, Magdalena; Mroczko, Barbara; Kozlowski, Miroslaw; Niklinski, Jacek; Laudanski, Jerzy; Szmitkowski, Maciej

    2012-01-01

    The positive expression of MMP-2 and TIMP-2 were found in esophageal cancer (EC) tissue and correlated with cancer stage and clinico-pathological features of tumor and patients' survival. However, little is known about serum levels of those proteins in EC patients. The aim of the present study was to investigate the diagnostic significance of MMP-2 and TIMP-2 serum levels in EC patients in relation to clinico-pathological features of cancer. The study included 53 EC patients and 92 healthy controls. The serum levels of MMP-2, TIMP-2 and classical tumor markers CEA (carcinoembryonic antigen) and SCC (squamous cell carcinoma antigen) were assayed. The prognostic values and diagnostic criteria for the biomarkers tested were defined. Serum levels of MMP-2, TIMP-2 in EC patients were significantly lower, whereas CEA and SCC significantly higher than in control group. The diagnostic sensitivity of TIMP-2 (57%) was higher than those for other biomarkers tested and increased in combination with SCC (70%). Area under ROC curve for TIMP-2 (0.8698) was larger than for other proteins. In Cox's univariate analysis only SCC serum levels were significant prognostic factors for EC patients' survival. The results suggest the limited value of serum analyses of MMP-2 for tumor staging and prognosis in EC and the better usefulness of TIMP-2 than MMP-2 as a tumor marker in the diagnosis of EC, especially in combined use with SCC.

  15. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma.

    PubMed

    Chang, Liang; Zhao, Dan; Liu, Hui-Bin; Wang, Qiu-Shi; Zhang, Ping; Li, Chen-Long; Du, Wen-Zhong; Wang, Hong-Jun; Liu, Xing; Zhang, Zhi-Ren; Jiang, Chuan-Lu

    2015-11-01

    Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N‑terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase‑2 (MMP‑2) and MMP‑9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP‑2 and ‑9. Furthermore, it was found that MMP‑2- and MMP‑9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH‑induced upregulation of MMP‑2 and ‑9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP‑2 and ‑9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway. PMID:26299938

  16. Gypenosides inhibits migration and invasion of human oral cancer SAS cells through the inhibition of matrix metalloproteinase-2 -9 and urokinase-plasminogen by ERK1/2 and NF-kappa B signaling pathways.

    PubMed

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Lu, Pei-Jung; Weng, Jing-Ru; Chueh, Fu-Shin; Wood, W Gibson; Chung, Jing-Gung

    2011-05-01

    Gypenosides (Gyp), found in Gynostemma pentaphyllum Makino, has been used as a folk medicine in the Chinese population for centuries and is known to have diverse pharmacologic effects, including anti-proliferative and anti-cancer actions. However, the effects of Gyp on prevention from invasion and migration of oral cancer cells are still unsatisfactory. The purpose of this study was to investigate effects of Gyp treatment on migration and invasion of SAS human oral cancer cells. SAS cells were cultured in the presence of 90 and 180 μg/mL Gyp for 24 and 48 hours. Gyp induced cytotoxic effects and inhibited SAS cells migration and invasion in dose- and time-dependent response. Wound-healing assay and boyden chamber assay were carried out to investigate Gyp-inhibited migration and invasion of SAS cells. Gyp decreased the abundance of several proteins, including nuclear factor-kappa B (NF-κB), cyclooxygenase-2 (COX-2), extracellular signal-regulated kinase 1/2 (ERK1/ 2), matrix metalloproteinase-9, -2 (MMP-9, -2), sevenless homolog (SOS), Ras, urokinase-type plasminogen activator (uPA), focal adhesion kinase (FAK) and RAC-alpha serine/threonine-protein kinase (Akt), in a time-dependent manner. In addition, Gyp decreased mRNA levels of MMP-2, MMP-7, MMP-9 but did not affect FAK and Rho A mRNA levels in SAS cells. These results provide evidences for the role of Gyp as a potent anti-metastatic agent, which can markedly inhibit the metastatic and invasive capacity of oral cancer cells. The inhibition of NF-κB and MMP-2, -7 and -9 signaling may be one of the mechanisms that is present in Gyp-inhibited cancer cell invasion and migration.

  17. Altered Matrix Metalloproteinase-2 and -9 Expression/Activity Links Placental Ischemia and Anti-angiogenic sFlt-1 to Uteroplacental and Vascular Remodeling and Collagen Deposition in Hypertensive Pregnancy

    PubMed Central

    Li, Wei; Mata, Karina M.; Mazzuca, Marc Q.; Khalil, Raouf A.

    2014-01-01

    Preeclampsia is a complication of pregnancy manifested as maternal hypertension and often fetal growth restriction. Placental ischemia could be an initiating event, but the linking mechanisms leading to hypertension and growth restriction are unclear. We have shown an upregulation of matrix metalloproteinases (MMPs) during normal pregnancy (Norm-Preg). To test the role of MMPs in hypertensive-pregnancy (HTN-Preg), maternal and fetal parameters, MMPs expression, activity and distribution, and collagen and elastin content were measured in uterus, placenta and aorta of Norm-Preg rats and in rat model of reduced uteroplacental perfusion pressure (RUPP). Maternal blood pressure was higher, and uterine, placental and aortic weight, and the litter size and pup weight were less in RUPP than Norm-Preg rats. Western blots and gelatin zymography revealed decreases in amount and gelatinase activity of MMP-2 and MMP-9 in uterus, placenta and aorta of RUPP compared with Norm-Preg rats. Immunohistochemistry confirmed reduced MMPs in uterus, placenta and aortic media of RUPP rats. Collagen, but not elastin, was more abundant in uterus, placenta and aorta of RUPP than Norm-Preg rats. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1) decreased MMPs in uterus, placenta and aorta of Norm-Preg rats, and vascular endothelial growth factor (VEGF) reversed the decreases in MMPs in tissues of RUPP rats. Thus placental ischemia and anti-angiogenic sFlt-1 decrease uterine, placental and vascular MMP-2 and MMP-9, leading to increased uteroplacental and vascular collagen, and growth-restrictive remodeling in HTN-Preg. Angiogenic factors and MMP activators may reverse the decrease in MMPs and enhance growth-permissive remodeling in preeclampsia. PMID:24704473

  18. α-Mangostin suppresses lipopolysaccharide-induced invasion by inhibiting matrix metalloproteinase-2/9 and increasing E-cadherin expression through extracellular signal-regulated kinase signaling in pancreatic cancer cells

    PubMed Central

    YUAN, JIANGTAO; WU, YAOLU; LU, GUIFANG

    2013-01-01

    Invasion and metastasis are major factors in the poor prognosis of pancreatic cancer, which remains one of the most aggressive and lethal diseases worldwide. α-mangostin, a major xanthone compound identified in the pericarp of mangosteen (Garcinia mangostana, Linn; GML), possesses unique biological activities, including antioxidant, antitumor and anti-inflammatory effects. Whether α-mangostin is able to inhibit the invasive ability of pancreatic cancer cells has not been elucidated. In the present study, α-mangostin was shown to inhibit the invasive ability of the pancreatic cancer cell lines MIAPaCa-2 and BxPC-3. The results showed that α-mangostin inhibited the growth of the pancreatic cancer cells in a dose- and time-dependent manner. At concentrations of <5 μM, α-mangostin had no significant effects on cytotoxicity, but significantly inhibited the invasion and migration of pancreatic cancer cells and the expression of matrix metalloproteinase (MMP)-2 and MMP-9, while increasing the expression of E-cadherin. The present data also showed that α-mangostin exerted an inhibitory effect on the phosphorylation of extracellular-signal-regulated kinase (ERK). Furthermore, the reduction of ERK phosphorylation by small interfering RNA (siRNA) potentiated the effect of α-mangostin. Taken together, the data suggest that α-mangostin inhibited the invasion and metastasis of pancreatic cancer cells by reducing MMP-2 and MMP-9 expression, increasing E-cadherin expression and suppressing the ERK signaling pathway. The present study suggests that α-mangostin may be a promising agent against pancreatic cancer. PMID:23833675

  19. Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor 2 Axis Can Promote Mouse and Human Primary Mast Cell Angiogenic Potential through Upregulation of Vascular Endothelial Growth Factor-A and Matrix Metalloproteinase-2

    PubMed Central

    Chumanevich, Alena; Wedman, Piper; Oskeritzian, Carole A.

    2016-01-01

    Mast cells (MC) are present in most vascularized tissues around the vasculature likely exerting immunomodulatory functions. Endowed with diverse mediators, resident MC represent first-line fine-tuners of local microenvironment. Sphingosine-1-phosphate (S1P) functions as a pluripotent signaling sphingolipid metabolite in health and disease. S1P formation occurs at low levels in resting MC and is upregulated upon activation. Its export can result in type 2 S1P receptor- (S1PR2-) mediated stimulation of MC, further fueling inflammation. However, the role of S1PR2 ligation in proangiogenic vascular endothelial growth factor- (VEGF-) A and matrix metalloproteinase- (MMP-) 2 release from MC is unknown. Using a preclinical MC-dependent model of acute allergic responses and in vitro stimulated primary mouse bone marrow-derived MC (BMMC) or human primary skin MC, we report that S1P signaling resulted in substantial amount of VEGF-A release. Similar experiments using S1pr2-deficient mice or BMMC or selective S1P receptor agonists or antagonists demonstrated that S1P/S1PR2 ligation on MC is important for VEGF-A secretion. Further, we show that S1P stimulation triggered transcriptional upregulation of VEGF-A and MMP-2 mRNA in human but not in mouse MC. S1P exposure also triggered MMP-2 secretion from human MC. These studies identify a novel proangiogenic axis encompassing MC/S1P/S1PR2 likely relevant to inflammation. PMID:26884643

  20. The anti-fibrotic effect of liver growth factor is associated with decreased intrahepatic levels of matrix metalloproteinases 2 and 9 and transforming growth factor beta 1 in bile duct-ligated rats.

    PubMed

    Díaz-Gil, Juan J; García-Monzón, Carmelo; Rúa, Carmen; Martín-Sanz, Paloma; Cereceda, Rosa M; Miquilena-Colina, María E; Machín, Celia; Fernández-Martínez, Amalia; García-Cañero, Rarael

    2008-05-01

    Liver growth factor (LGF), a mitogen for liver cells, behaves as an anti-fibrotic agent even in extrahepatic sites, but its mechanistic basis is unknown. We aimed to determine the intrahepatic expression pattern of key modulators of liver fibrosis in bile duct-ligated rats (BDL) after injection of LGF. BDL rats received either LGF (4.5 microg/ratXdose, two doses/week, at time 0 or 2 or 5w after operation, depending on the group (BDL+LGF groups, n=20) or saline (BDL+S groups, n=20). Groups were compared in terms of fibrosis (histomorphometry), liver function (aminopyrine breath test), matrix metalloproteinases MMP-2 and MMP-9, transforming growth factor beta 1 (TGF-beta1) and liver endoglin content (Western blotting), and serum tissue inhibitor of metalloproteinases 1 (TIMP-1) levels (ELISA). In BDL+LGF rats, the fibrotic index was significantly lower at 5w, p=0.006, and at 8w, p=0.04, than in BDL+S rats. Liver function values in BDL+LGF rats were higher than those obtained in BDL+S rats (80% at 5w and 79% at 8w, versus 38% and 29%, p<0.01, taking healthy controls as 100%). Notably, in BDL+LGF rats the intrahepatic expression levels of both MMPs were lower at 2w (MMP-2, p=0.03; MMP-9, p=0.05) and 5w (MMP-2, p=0.05, MMP-9, p=0.04). In addition, the hepatic TGF-beta1 level in BDL+LGF rats was lower at 2w (36%, p=0.008), 5w (50%) and 8wk (37%), whereas intrahepatic endoglin expression remained constant in all BDL rats studied. LGF ameliorates liver fibrosis and improves liver function in BDL rats. The LGF-induced anti-fibrotic effect is associated with a decreased hepatic level of MMP-2, MMP-9 and TGF-beta1 in fibrotic rats.

  1. Recombinant snake venom metalloproteinase inhibitor BJ46A inhibits invasion and metastasis of B16F10 and MHCC97H cells through reductions of matrix metalloproteinases 2 and 9 activities.

    PubMed

    Ji, Ming-Kai; Shi, Yi; Xu, Jian-Wen; Lin, Xu; Lin, Jian-Yin

    2013-06-01

    Studies have shown that the recombinant BJ46a (rBJ46a) protein can reduce matrix metalloproteinase (MMP) activities and inhibit invasion and metastasis of melanoma cells. Here, we optimized the Pichia pastoris system to evaluate rBJ46a protein as an anticancer agent. The Enzchek gelatinase/collagenase assay showed that rBJ46a inhibited MMP activities (IC50=0.119 mg/ml). Kinetic analyses using a series of double reciprocal Lineweaver-Burk plots (1/V vs. 1/S) showed a competitive mode of inhibition with rBJ46a with inhibitory efficiency against MMPs (Ki=13.6 nmol/l). Matrigel invasion assays showed significant activity of rBJ46a on tumor cells. For lung colonization assays, C57BL/6 mice were inoculated in the lateral tail vein with B16F10 cells and were treated with three i.v. injections of rBJ46a (1, 2, and 4 mg/kg) 24 h before cell inoculation, and 2 and 24 h after cell inoculation. Administration of rBJ46a suppressed lung tumor colony formation significantly. For spontaneous metastasis assays, MHCC97H cells were inoculated subcutaneously into nude mice. After 24 h, rBJ46a was administered by i.p. injections: 1, 2, and 4 mg/kg once daily for 6 days. rBJ46a decreased lung tumor colony formation significantly. Gelatin zymography showed that MMP2/MMP9 enzymatic activities in tumor cells were suppressed by rBJ46a in a dose-dependent manner, and the Km values of rBJ46a against MMP2 and MMP9 activities that were expressed in both B16F10 and MHCC97H cells were 3.6 and 1.4 μmol/l, respectively. Thus, rBJ46a can inhibit the invasion and metastasis of tumor cells by reducing MMP2/MMP9 activities, indicating that rBJ46a may be a novel therapeutic agent for antimetastasis of tumor cells. PMID:23442578

  2. Matrix metalloproteinases-2/9-sensitive peptide-conjugated polymer micelles for site-specific release of drugs and enhancing tumor accumulation: preparation and in vitro and in vivo evaluation

    PubMed Central

    Zhang, Xiaoyan; Wang, Xiaofei; Zhong, Weitong; Ren, Xiaoqing; Sha, Xianyi; Fang, Xiaoling

    2016-01-01

    Since elevated expression of matrix metalloproteinase (MMP)-2 and MMP-9 is commonly observed in several malignant tumors, MMPs have been widely reported as key factors in the design of drug delivery systems. Several strategies have been proposed to develop MMPs-responsive nanoparticles to deliver chemotherapeutics to malignant solid tumors. A stimuli-responsive drug delivery system, which could be cleaved by MMPs, was proposed in this study. By inserting an MMP-2/9 cleavable oligopeptide GPVGLIGK-NH2 (GK8) as spacer between α-tocopherol succinate (α-TOS) and methoxy-polyethylene glycol molecular weight (MW 2000 Da) activated by N-hydroxysuccinimide (mPEG2K-NHS), mPEG2K-GK8-α-TOS (TGK) was synthesized as the primary ingredient for MMP-2/9-sensitive micelles composed of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and TGK (n:n =40:60, TGK micelles). mPEG2K-α-TOS (T2K) was similarly synthesized as nonsensitive control. The TGK micelles showed better stability than nonsensitive micelles composed of TPGS and T2K (n:n =40:60, T2K micelles) owing to the inserted peptide. Fluorescence resonance energy transfer results indicated that TGK micelles could be successfully cleaved by MMP-2/9. Effective drug release was demonstrated in the presence of collagenase type IV, a mixture of MMP-2 and MMP-9. Compared with nonsensitive micelles, docetaxel (DTX)-loaded TGK micelles showed a fold higher cellular uptake in HT1080 cells. While the half-maximal inhibitory concentration (IC50) of TGK and T2K micelles were similar (P>0.05) in MCF-7 cells (MMP-2/9 underexpression), the IC50 values of the aforementioned micelles were 0.064±0.006 and 0.122±0.009 μg/mL, respectively, in HT1080 cells (MMP-2/9 overexpression). The MMP-2/9-sensitive micelles also demonstrated desired tumor targeting and accumulation ability in vivo. The results of in vivo antitumor effect evaluation indicate that TGK micelles are potent against solid tumors while maintaining minimum systemic

  3. Cloning and regulation of rat tissue inhibitor of metalloproteinases-2 in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Cook, T. F.; Burke, J. S.; Bergman, K. D.; Quinn, C. O.; Jeffrey, J. J.; Partridge, N. C.

    1994-01-01

    Rat tissue inhibitor of metalloproteinases-2 (TIMP-2) was cloned from a UMR 106-01 rat osteoblastic osteosarcoma cDNA library. The 969-bp full-length clone demonstrates 98 and 86% sequence identity to human TIMP-2 at the amino acid and nucleic acid levels, respectively. Parathyroid hormone (PTH), at 10(-8) M, stimulates an approximately twofold increase in both the 4.2- and 1.0-kb transcripts over basal levels in UMR cells after 24 h of exposure. The PTH stimulation of TIMP-2 transcripts was not affected by the inhibitor of protein synthesis, cycloheximide (10(-5) M), suggesting a primary effect of the hormone. This is in contradistinction to regulation of interstitial collagenase (matrix metalloproteinase-1) by PTH in these same cells. Nuclear run-on assays demonstrate that PTH causes an increase in TIMP-2 transcription that parallels the increase in message levels. Parathyroid hormone, in its stimulation of TIMP-2 mRNA, appears to act through a signal transduction pathway involving protein kinase A (PKA) since the increase in TIMP-2 mRNA is reproduced by treatment with the cAMP analogue, 8-bromo-cAMP (5 x 10(-3) M). The protein kinase C and calcium pathways do not appear to be involved due to the lack of effect of phorbol 12-myristate 13-acetate (2.6 x 10(-6) M) and the calcium ionophore, ionomycin (10(-7) M), on TIMP-2 transcript abundance. In this respect, regulation of TIMP-2 and collagenase in osteoblastic cells by PTH are similar. However, we conclude that since stimulation of TIMP-2 transcription is a primary event, the PKA pathway must be responsible for a direct increase in transcription of this gene.

  4. Gene evolution and functions of extracellular matrix proteins in teeth

    PubMed Central

    Yoshizaki, Keigo; Yamada, Yoshihiko

    2013-01-01

    The extracellular matrix (ECM) not only provides physical support for tissues, but it is also critical for tissue development, homeostasis and disease. Over 300 ECM molecules have been defined as comprising the “core matrisome” in mammals through the analysis of whole genome sequences. During tooth development, the structure and functions of the ECM dynamically change. In the early stages, basement membranes (BMs) separate two cell layers of the dental epithelium and the mesenchyme. Later in the differentiation stages, the BM layer is replaced with the enamel matrix and the dentin matrix, which are secreted by ameloblasts and odontoblasts, respectively. The enamel matrix genes and the dentin matrix genes are each clustered in two closed regions located on human chromosome 4 (mouse chromosome 5), except for the gene coded for amelogenin, the major enamel matrix protein, which is located on the sex chromosomes. These genes for enamel and dentin matrix proteins are derived from a common ancestral gene, but as a result of evolution, they diverged in terms of their specific functions. These matrix proteins play important roles in cell adhesion, polarity, and differentiation and mineralization of enamel and dentin matrices. Mutations of these genes cause diseases such as odontogenesis imperfect (OI) and amelogenesis imperfect (AI). In this review, we discuss the recently defined terms matrisome and matrixome for ECMs, as well as focus on genes and functions of enamel and dentin matrix proteins. PMID:23539364

  5. Analysis of skin patch test results and metalloproteinase-2 levels in a patient with contact dermatitis

    PubMed Central

    Czajkowski, Rafał; Kowaliszyn, Bogna; Żbikowska-Gotz, Magdalena; Bartuzi, Zbigniew

    2015-01-01

    Introduction The complex course of skin reactions that contact eczema involves is due in part to abnormalities of the extracellular matrix function. Proteins that degrade extracellular matrix components include metalloproteinases (MMP), which are divided into subcategories depending on the chemical structure and substrate specificity. Aim To analyse patch test results in contact dermatitis patients and to assess MMP-2 levels during skin lesion exacerbation and remission. Material and methods Fifty patients suffering from contact eczema were qualified to the study and 20 healthy volunteers as a control group. The study group patients had epidermal skin tests performed with the “European Standard” set. To assess the MMP-2 level in serum, venous blood was drawn, twice from study group patients – during contact dermatitis exacerbation and remission periods – and once from control group patients. Assessment of MMP-2 in serum was done with ELISA immunoassay. To verify the proposed hypotheses, parametric and nonparametric significance tests were used. Results Hands were the most frequent location of contact dermatitis. Nickel (II) sulphate was the most frequent sensitizing substance. Mean MMP-2 levels were statistically higher in the study group both in contact dermatitis exacerbation and remission periods than in the control group. There was no statistically significant difference between MMP-2 levels and skin patch test results. Conclusions Nickel is one of the most allergenic contact allergens in patients with contact dermatitis. Metalloproteinase-2 is a good marker of contact dermatitis in various stages of the disease. PMID:26161054

  6. Defining specificities, genes, antigens, and antibodies- A matrix approach.

    PubMed

    Wohlgemuth, A

    1978-12-01

    We study the consequences of assigning single letter symbols to operationally defined entities such as genes, antigens, specificities, and antibodies. If this is to be done and if reagents are not specific in recognizing the products of single genes or single antigens, then these entities must be defined by a 'definition matrix' to avoid mislabeling a matrix of data. A method is given whereby for a given matrix of data all possible definition matrices consistent with this data can be obtained. In particular, all the ways of labeling by the complex-complex code of Hirschfeld can be so obtained.

  7. Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis▿ †

    PubMed Central

    Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.

    2007-01-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800

  8. From mechanotransduction to extracellular matrix gene expression in fibroblasts.

    PubMed

    Chiquet, Matthias; Gelman, Laurent; Lutz, Roman; Maier, Silke

    2009-05-01

    Tissue mechanics provide an important context for tissue growth, maintenance and function. On the level of organs, external mechanical forces largely influence the control of tissue homeostasis by endo- and paracrine factors. On the cellular level, it is well known that most normal cell types depend on physical interactions with their extracellular matrix in order to respond efficiently to growth factors. Fibroblasts and other adherent cells sense changes in physical parameters in their extracellular matrix environment, transduce mechanical into chemical information, and integrate these signals with growth factor derived stimuli to achieve specific changes in gene expression. For connective tissue cells, production of the extracellular matrix is a prominent response to changes in mechanical load. We will review the evidence that integrin-containing cell-matrix adhesion contacts are essential for force transmission from the extracellular matrix to the cytoskeleton, and describe novel experiments indicating that mechanotransduction in fibroblasts depends on focal adhesion adaptor proteins that might function as molecular springs. We will stress the importance of the contractile actin cytoskeleton in balancing external with internal forces, and describe new results linking force-controlled actin dynamics directly to the expression of specific genes, among them the extracellular matrix protein tenascin-C. As assembly lines for diverse signaling pathways, matrix adhesion contacts are now recognized as the major sites of crosstalk between mechanical and chemical stimuli, with important consequences for cell growth and differentiation.

  9. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    PubMed

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( < 0.05) protein synthesis rates and decreased ( < 0.05) protein degradation rates when compared to control cultures. Treatment of fused BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( < 0.05) TBA-mediated increases in protein synthesis rate. Alternatively, inhibition of GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( < 0.05) ability of TBA to decrease protein degradation rate. Additionally, fused BSC cultures treated with 10 n

  10. Active G protein-coupled receptors (GPCR), matrix metalloproteinases 2/9 (MMP2/9), heparin-binding epidermal growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) are necessary for trenbolone acetate-induced alterations in protein turnover rate of fused bovine satellite cell cultures.

    PubMed

    Thornton, K J; Kamanga-Sollo, E; White, M E; Dayton, W R

    2016-06-01

    Trenbolone acetate (TBA), a testosterone analog, increases protein synthesis and decreases protein degradation in fused bovine satellite cell (BSC) cultures. However, the mechanism through which TBA alters these processes remains unknown. Recent studies indicate that androgens improve rate and extent of muscle growth through a nongenomic mechanism involving G protein-coupled receptors (GPCR), matrix metalloproteinases (MMP), heparin-binding epidermal growth factor (hbEGF), the epidermal growth factor receptor (EGFR), erbB2, and the insulin-like growth factor-1 receptor (IGF-1R). We hypothesized that TBA activates GPCR, resulting in activation of MMP2/9 that releases hbEGF, which activates the EGFR and/or erbB2. To determine whether the proposed nongenomic pathway is involved in TBA-mediated alterations in protein turnover, fused BSC cultures were treated with TBA in the presence or absence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R, and resultant protein synthesis and degradation rates were analyzed. Assays were replicated at least 9 times for each inhibitor experiment utilizing BSC cultures obtained from at least 3 different steers that had no previous exposure to steroid compounds. As expected, fused BSC cultures treated with 10 n TBA exhibited increased ( < 0.05) protein synthesis rates and decreased ( < 0.05) protein degradation rates when compared to control cultures. Treatment of fused BSC cultures with 10 n TBA in the presence of inhibitors for GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R suppressed ( < 0.05) TBA-mediated increases in protein synthesis rate. Alternatively, inhibition of GPCR, MMP2/9, hbEGF, EGFR, erbB2, or IGF-1R in the presence of 10 n TBA each had no ( > 0.05) effect on TBA-mediated decreases in protein degradation. However, inhibition of both EGFR and erbB2 in the presence of 10 n TBA resulted in decreased ( < 0.05) ability of TBA to decrease protein degradation rate. Additionally, fused BSC cultures treated with 10 n

  11. Tissue inhibitor of metalloproteinase-2 stimulates mesenchymal growth and regulates epithelial branching during morphogenesis of the rat metanephros.

    PubMed

    Barasch, J; Yang, J; Qiao, J; Tempst, P; Erdjument-Bromage, H; Leung, W; Oliver, J A

    1999-05-01

    Development of the embryonic kidney results from reciprocal signaling between the ureteric bud and the metanephric mesenchyme. To identify the signaling molecules, we developed an assay in which metanephric mesenchymes are rescued from apoptosis by factors secreted from ureteric bud cells (UB cells). Purification and sequencing of one such factor identified the tissue inhibitor of metalloproteinase-2 (TIMP-2) as a metanephric mesenchymal growth factor. Growth activity was unlikely due to TIMP-2 inhibition of matrix metalloproteinases because ilomastat, a synthetic inhibitor of these enzymes, had no mesenchymal growth action. TIMP-2 was also involved in morphogenesis of the ureteric bud, inhibiting its branching and changing the deposition of its basement membrane; these effects were due to TIMP-2 inhibition of matrix metalloproteinases, as they were reproduced by ilomastat. Thus, TIMP-2 regulates kidney development by at least 2 distinct mechanisms. In addition, TIMP-2 was secreted from UB cells by mesenchymal factors that are essential for ureteric bud development. Hence, the mesenchyme synchronizes its own growth with ureteric morphogenesis by stimulating the secretion of TIMP-2 from the ureteric bud.

  12. Bacoside A downregulates matrix metalloproteinases 2 and 9 in DEN-induced hepatocellular carcinoma.

    PubMed

    Janani, Panneerselvam; Sivakumari, Kanakarajan; Geetha, Arumugam; Yuvaraj, Sambandam; Parthasarathy, Chandrakesan

    2010-03-01

    Cancer metastasis is a complex multi-step process, responsible for a majority of cancer-related deaths by affecting the critical organs and causing complications in therapies. Hepatocellular carcinoma is a multi-factorial disease and is the third most common cause of cancer related mortality worldwide. Clinical and experimental studies have shown that MMP-2 and MMP-9 are involved in tumor invasion and metastases and their elevated expression has been associated with poor prognosis. Our recent studies showed a strong anti-oxidant and hepatoprotective effects of bacoside A (BA) against carcinogen. Nevertheless the effect of BA on the activities and expression of MMP-2 and MMP-9 during hepatocellular carcinoma is not yet recognized. Therefore, the present study was designed to assess the same. Results of gelatin zymography study showed that BA co-treatment significantly decreased the activities of MMP-2 and MMP-9, which is increased during hepatocellular carcinoma. Further immunoblot analysis showed decreased expression of MMP-2 and MMP-9 in rats co-treated with BA compared to DEN-induced hepatocellular carcinoma. Our results reveal that BA exerts its anti-metastatic effect against DEN-induced hepatocellular carcinoma by inhibiting the activities and expressions of MMP-2 and MMP-9.

  13. [Single mechanism of remodelling extracellular matrix in thymus and pineal gland at aging].

    PubMed

    Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M

    2011-01-01

    The expression of matrix metalloproteinase 2 and 9 in thymus and pineal gland has been verified. These data demonstrate single mechanism of remodelling extracellular matrix in thymus and pineal gland at aging.

  14. Expression of genes encoding extracellular matrix proteins: a macroarray study.

    PubMed

    Futyma, Konrad; Miotła, Paweł; Różyńska, Krystyna; Zdunek, Małgorzata; Semczuk, Andrzej; Rechberger, Tomasz; Wojcierowski, Jacek

    2014-12-01

    Endometrial cancer (EC) is one of the most common gynecological malignancies in Poland, with well-established risk factors. Genetic instability and molecular alterations responsible for endometrial carcinogenesis have been systematically investigated. The aim of the present study was to investigate, by means of cDNA macroarrays, the expression profiles of genes encoding extracellular matrix (ECM) proteins in ECs. Tissue specimens were collected during surgical procedures from 40 patients with EC, and control tissue was collected from 9 patients with uterine leiomyomas. RNA was isolated and RT-PCR with radioisotope-labeled cDNA was performed. The levels of ECM protein gene expression in normal endometrial tissues were compared to the expression of these genes in EC specimens. Statistically significant differences in gene expression, stratified by clinical stage of the ECs, were detected for aggrecan, vitronectin, tenascin R, nidogen and two collagen proteins: type VIII chain α1 and type XI chain α2. All of these proteins were overexpressed in stage III endometrial carcinomas compared to levels in stage I and II uterine neoplasms. In conclusion, increased expression of genes encoding ECM proteins may play an important role in facilitating accelerated disease progression of human ECs.

  15. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks

    PubMed Central

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S.; Celniker, Susan E.; Yu, Bin; Frise, Erwin

    2016-01-01

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior–posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data. PMID:27071099

  16. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks.

    PubMed

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S; Celniker, Susan E; Yu, Bin; Frise, Erwin

    2016-04-19

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set ofDrosophilaearly embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation ofDrosophilaexpression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with theDrosophiladata suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.

  17. Prognostic Value of Tissue Inhibitor of Metalloproteinase-2 Expression in Patients with Non–Small Cell Lung Cancer: A Systematic Review and Meta-Analysis

    PubMed Central

    Zhu, Lin; Yu, Hong; Liu, Shi-Yuan; Xiao, Xiang-Sheng; Dong, Wei-Hua; Chen, Yi-Nan; Xu, Wei; Zhu, Tong

    2015-01-01

    Background and Objectives Tissue inhibitor of metalloproteinase-2 (TIMP-2) is a small secretory glycoprotein with anti–matrix metalloproteinase activity. Data on the value of TIMP-2 as a prognostic factor in non–small cell lung cancer (NSCLC) are discordant and remain controversial. A systematic review and meta-analysis was performed to explore this issue. Methods We identified the relevant literature by searching the PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure, SinoMed, and Wanfang Data databases (search terms: “non-small cell lung cancer” or “NSCLC” or “Lung Carcinoma, Non-Small-Cell”, “Tissue Inhibitor of Metalloproteinase-2” or “TIMP-2”, and “prognosis” or “prognostic” or “survive”) for updates prior to March 1, 2014. The pooled hazard ratio (HR) of overall survival with a 95% confidence interval (95% CI) was used to evaluate the strength of the association between positive TIMP-2 expression and survival in patients with NSCLC. Results We included 12 studies in our systematic review; five studies involving 399 patients with NSCLC were meta-analyzed. The pooled HR of all included patients was 0.57 (95% CI: 0.43–0.77), and the HRs of subgroup analysis according to stage (I–IV), testing method (immunohistochemistry) and high TIMP-2 expression percentage (<50%) were 0.63 (95% CI: 0.43–0.92), 0.55 (95% CI: 0.41–0.74), and 0.50 (95% CI: 0.28–0.88), respectively. These data suggested that high TIMP-2 expression is associated with favorable prognosis in NSCLC. The meta-analysis did not reveal heterogeneity or publication bias. Conclusions TIMP-2 expression indicates favorable prognosis in patients with NSCLC; as a protective factor, it could help predict outcome and may guide clinical therapy in the future. PMID:25905787

  18. Reconstruct modular phenotype-specific gene networks by knowledge-driven matrix factorization

    PubMed Central

    Yang, Xuerui; Zhou, Yang; Jin, Rong; Chan, Christina

    2009-01-01

    Motivation: Reconstructing gene networks from microarray data has provided mechanistic information on cellular processes. A popular structure learning method, Bayesian network inference, has been used to determine network topology despite its shortcomings, i.e. the high-computational cost when analyzing a large number of genes and the inefficiency in exploiting prior knowledge, such as the co-regulation information of the genes. To address these limitations, we are introducing an alternative method, knowledge-driven matrix factorization (KMF) framework, to reconstruct phenotype-specific modular gene networks. Results: Considering the reconstruction of gene network as a matrix factorization problem, we first use the gene expression data to estimate a correlation matrix, and then factorize the correlation matrix to recover the gene modules and the interactions between them. Prior knowledge from Gene Ontology is integrated into the matrix factorization. We applied this KMF algorithm to hepatocellular carcinoma (HepG2) cells treated with free fatty acids (FFAs). By comparing the module networks for the different conditions, we identified the specific modules that are involved in conferring the cytotoxic phenotype induced by palmitate. Further analysis of the gene modules of the different conditions suggested individual genes that play important roles in palmitate-induced cytotoxicity. In summary, KMF can efficiently integrate gene expression data with prior knowledge, thereby providing a powerful method of reconstructing phenotype-specific gene networks and valuable insights into the mechanisms that govern the phenotype. Contact: krischan@msu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19542155

  19. Regulation of reactionary dentin formation by odontoblasts in response to polymicrobial invasion of dentin matrix

    PubMed Central

    Charadram, Nattida; Farahani, Ramin M; Harty, Derek; Rathsam, Catherine; Swain, Michael V; Hunter, Neil

    2011-01-01

    Odontoblast synthesis of dentin proceeds through discrete but overlapping phases characterized by formation of a patterned organic matrix followed by remodelling and active mineralization. Microbial invasion of dentin in caries triggers an adaptive response by odontoblasts, culminating in formation of a structurally altered reactionary dentin, marked by biochemical and architectonic modifications including diminished tubularity. Scanning electron microscopy of the collagen framework in reactionary dentin revealed a radically modified yet highly organized meshwork as indicated by fractal and lacunarity analyses. Immuno-gold labelling demonstrated increased density and regular spatial distribution of dentin sialoprotein (DSP) in reactionary dentin. DSP contributes putative hydroxyapatite nucleation sites on the collagen scaffold. To further dissect the formation of this altered dentin matrix, the associated enzymatic machinery was investigated. Analysis of extracted dentin matrix indicated increased activity of matrix metalloproteinase-2 (MMP-2) in the reactionary zone referenced to physiologic dentin. Likewise, gene expression analysis of micro-dissected odontoblast layer revealed up-regulation of MMP-2. Parallel up-regulation of tissue inhibitor of metalloproteinase-2 (TIMP-2) and membrane type 1- matrix metalloproteinase (MT1-MMP) was observed in response to caries. Next, modulation of odontoblastic dentinogenic enzyme repertoire was addressed. In the odontoblast layer expression of Toll-like receptors was markedly altered in response to bacterial invasion. In carious teeth TLR-2 and the gene encoding the corresponding adaptor protein MyD88 were down-regulated whereas genes encoding TLR-4 and adaptor proteins TRAM and Mal/TIRAP were up-regulated. TLR-4 signalling mediated by binding of bacterial products has been linked to up-regulation of MMP-2. Further, increased expression of genes encoding components of the TGF-β signalling pathway, namely SMAD-2 and SMAD-4

  20. Regulation of reactionary dentin formation by odontoblasts in response to polymicrobial invasion of dentin matrix.

    PubMed

    Charadram, Nattida; Farahani, Ramin M; Harty, Derek; Rathsam, Catherine; Swain, Michael V; Hunter, Neil

    2012-01-01

    Odontoblast synthesis of dentin proceeds through discrete but overlapping phases characterized by formation of a patterned organic matrix followed by remodelling and active mineralization. Microbial invasion of dentin in caries triggers an adaptive response by odontoblasts, culminating in formation of a structurally altered reactionary dentin, marked by biochemical and architectonic modifications including diminished tubularity. Scanning electron microscopy of the collagen framework in reactionary dentin revealed a radically modified yet highly organized meshwork as indicated by fractal and lacunarity analyses. Immuno-gold labelling demonstrated increased density and regular spatial distribution of dentin sialoprotein (DSP) in reactionary dentin. DSP contributes putative hydroxyapatite nucleation sites on the collagen scaffold. To further dissect the formation of this altered dentin matrix, the associated enzymatic machinery was investigated. Analysis of extracted dentin matrix indicated increased activity of matrix metalloproteinase-2 (MMP-2) in the reactionary zone referenced to physiologic dentin. Likewise, gene expression analysis of micro-dissected odontoblast layer revealed up-regulation of MMP-2. Parallel up-regulation of tissue inhibitor of metalloproteinase-2 (TIMP-2) and membrane type 1- matrix metalloproteinase (MT1-MMP) was observed in response to caries. Next, modulation of odontoblastic dentinogenic enzyme repertoire was addressed. In the odontoblast layer expression of Toll-like receptors was markedly altered in response to bacterial invasion. In carious teeth TLR-2 and the gene encoding the corresponding adaptor protein MyD88 were down-regulated whereas genes encoding TLR-4 and adaptor proteins TRAM and Mal/TIRAP were up-regulated. TLR-4 signalling mediated by binding of bacterial products has been linked to up-regulation of MMP-2. Further, increased expression of genes encoding components of the TGF-β signalling pathway, namely SMAD-2 and SMAD-4

  1. Single-cell differences in matrix gene expression do not predict matrix deposition

    PubMed Central

    Cote, Allison J.; McLeod, Claire M.; Farrell, Megan J.; McClanahan, Patrick D.; Dunagin, Margaret C.; Raj, Arjun; Mauck, Robert L.

    2016-01-01

    Mesenchymal stem cells (MSCs) display substantial cell-to-cell heterogeneity, complicating their use in regenerative medicine. However, conventional bulk assays mask this variability. Here we show that both chondrocytes and chondrogenically induced MSCs exhibit substantial mRNA expression heterogeneity. Single-molecule RNA FISH to measure mRNA expression of differentiation markers in single cells reveals that sister cell pairs have high levels of mRNA variability, suggesting that marker expression is not heritable. Surprisingly, this variability does not correlate with cell-to-cell differences in cartilage-like matrix production. Transcriptome-wide analysis suggests that no combination of markers can predict functional potential. De-differentiating chondrocytes also show a disconnect between mRNA expression of the cartilage marker aggrecan and cartilage-like matrix accumulation. Altogether, these quantitative analyses suggest that sorting subpopulations based on these markers would only marginally enrich the progenitor population for ‘superior' MSCs. Our results suggest that instantaneous mRNA abundance of canonical markers is tenuously linked to the chondrogenic phenotype at the single-cell level. PMID:26936319

  2. Construction and use of gene expression covariation matrix

    PubMed Central

    Hennetin, Jérôme; Pehkonen, Petri; Bellis, Michel

    2009-01-01

    Background One essential step in the massive analysis of transcriptomic profiles is the calculation of the correlation coefficient, a value used to select pairs of genes with similar or inverse transcriptional profiles across a large fraction of the biological conditions examined. Until now, the choice between the two available methods for calculating the coefficient has been dictated mainly by technological considerations. Specifically, in analyses based on double-channel techniques, researchers have been required to use covariation correlation, i.e. the correlation between gene expression changes measured between several pairs of biological conditions, expressed for example as fold-change. In contrast, in analyses of single-channel techniques scientists have been restricted to the use of coexpression correlation, i.e. correlation between gene expression levels. To our knowledge, nobody has ever examined the possible benefits of using covariation instead of coexpression in massive analyses of single channel microarray results. Results We describe here how single-channel techniques can be treated like double-channel techniques and used to generate both gene expression changes and covariation measures. We also present a new method that allows the calculation of both positive and negative correlation coefficients between genes. First, we perform systematic comparisons between two given biological conditions and classify, for each comparison, genes as increased (I), decreased (D), or not changed (N). As a result, the original series of n gene expression level measures assigned to each gene is replaced by an ordered string of n(n-1)/2 symbols, e.g. IDDNNIDID....DNNNNNNID, with the length of the string corresponding to the number of comparisons. In a second step, positive and negative covariation matrices (CVM) are constructed by calculating statistically significant positive or negative correlation scores for any pair of genes by comparing their strings of symbols

  3. A distance difference matrix approach to identifying transcription factors that regulate differential gene expression

    PubMed Central

    De Bleser, Pieter; Hooghe, Bart; Vlieghe, Dominique; van Roy, Frans

    2007-01-01

    We introduce a method that considers target genes of a transcription factor, and searches for transcription factor binding sites (TFBSs) of secondary factors responsible for differential responses among these targets. Based on the distance difference matrix concept, the method simultaneously integrates statistical overrepresentation and co-occurrence of TFBSs. Our approach is validated on datasets of differentially regulated human genes and is shown to be highly effective in detecting TFBSs responsible for the observed differential gene expression. PMID:17504544

  4. Shrinkage covariance matrix approach based on robust trimmed mean in gene sets detection

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Ramli, Norazan Mohamed; Ghani, Nor Azura Md; Aripin, Rasimah; Yusop, Noorezatty Mohd

    2015-02-01

    Microarray involves of placing an orderly arrangement of thousands of gene sequences in a grid on a suitable surface. The technology has made a novelty discovery since its development and obtained an increasing attention among researchers. The widespread of microarray technology is largely due to its ability to perform simultaneous analysis of thousands of genes in a massively parallel manner in one experiment. Hence, it provides valuable knowledge on gene interaction and function. The microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints. Therefore, the sample covariance matrix in Hotelling's T2 statistic is not positive definite and become singular, thus it cannot be inverted. In this research, the Hotelling's T2 statistic is combined with a shrinkage approach as an alternative estimation to estimate the covariance matrix to detect significant gene sets. The use of shrinkage covariance matrix overcomes the singularity problem by converting an unbiased to an improved biased estimator of covariance matrix. Robust trimmed mean is integrated into the shrinkage matrix to reduce the influence of outliers and consequently increases its efficiency. The performance of the proposed method is measured using several simulation designs. The results are expected to outperform existing techniques in many tested conditions.

  5. [Matrix metalloproteinases 2 and 9, their endogenous regulators, and angiotensin-converting enzyme in cervical squamous cell carcinoma].

    PubMed

    Timoshenko, O S; Kugaevskaya, E V; Gureeva, T A; Zavalishina, L E; Andreeva, Yu Yu; Solov'eva, N I

    2015-01-01

    Цель исследования — изучение особенностей экспрессии матриксных металлопротеиназ-2 и -9 (ММП-2, ММП-9), их тканевого ингибитора ТИМП-2, активатора плазминогена урокиназного типа (уАП), а также ангиотензинпревращающего фермента (АПФ) при плоскоклеточной карциноме шейки матки (ПКШМ). Материал и методы. Исследование проведено на образцах опухолевой ткани и морфологически нормальной ткани, прилегающей к опухоли. Использованы энзиматические методы с применением специфических субстратов, методы зимографии и иммуногистохимии. Результаты. Установлено, что существенное влияние на инвазивный потенциал ПКШМ оказывает увеличение экспрессии ММП-9 и уАП, а также снижение экспрессии ТИМП-2, в меньшей степени — изменение экспрессии ММП-2. ММП-9 может служить маркером инвазивного роста. Повышенная активность АПФ в раке подтверждает участие этого фермента в опухолевой прогрессии. В прилегающей к опухоли морфологически нормальной ткани обнаружена существенная экспрессия ММП-2 и ММП-9, и в ряде случаев — повышенная активность уАП и АПФ, что вносит дополнительный вклад в увеличение инвазивного потенциала опухоли. Заключение. Полученные данные важны для понимания механизмов прогрессии рака, имеют прогностическое значение и могут влиять на терапевтическую стратегию в отношении пациента.

  6. Magnesium ions mitigate biofilm formation of Bacillus species via downregulation of matrix genes expression

    PubMed Central

    Oknin, Hilla; Steinberg, Doron; Shemesh, Moshe

    2015-01-01

    The objective of this study was to investigate the effect of Mg2+ ions on biofilm formation by Bacillus species, which are considered as problematic microorganisms in the food industry. We found that magnesium ions are capable to inhibit significantly biofilm formation of Bacillus species at 50 mM concentration and higher. We further report that Mg2+ ions don't inhibit bacterial growth at elevated concentrations; hence, the mode of action of Mg2+ ions is apparently specific to inhibition of biofilm formation. Biofilm formation depends on the synthesis of extracellular matrix, whose production in Bacillus subtilis is specified by two major operons: the epsA-O and tapA operons. We analyzed the effect of Mg2+ ions on matrix gene expression using transcriptional fusions of the promoters for eps and tapA to the gene encoding β galactosidase. The expression of the two matrix operons was reduced drastically in response to Mg2+ ions suggesting about their inhibitory effect on expression of the matrix genes in B. subtilis. Since the matrix gene expression is tightly controlled by Spo0A dependent pathway, we conclude that Mg2+ ions could affect the signal transduction for biofilm formation through this pathway. PMID:26441856

  7. Application of random matrix theory to microarray data for discovering functional gene modules

    SciTech Connect

    Luo, F.; Zhong, Jianxin; Yang, Y. F.; Zhou, Jizhong

    2006-03-01

    We show that spectral fluctuation of coexpression correlation matrices of yeast gene microarray profiles follows the description of the Gaussian orthogonal ensemble (GOE) of the random matrix theory (RMT) and removal of small values of the correlation coefficients results in a transition from the GOE statistics to the Poisson statistics of the RMT. This transition is directly related to the structural change of the gene expression network from a global network to a network of isolated modules.

  8. Securin promotes migration and invasion via matrix metalloproteinases in glioma cells

    PubMed Central

    YAN, HAICHENG; WANG, WEI; DOU, CHANGWU; TIAN, FUMING; QI, SONGTAO

    2015-01-01

    Human securin, encoded by pituitary tumor transforming gene 1, is implicated in several oncogenic processes in the pathogenesis of brain tumors, including glioma. The aim of the present study was to examine the effect of securin on the migration and invasion of glioma cells. The results revealed that the overexpression of securin in glioma LN-229 cells significantly increased the invasion and transmigration abilities. By contrast, these abilities were significantly reduced by the downregulation of securin in glioma U373 cells. Furthermore, the results demonstrated that securin overexpression and downregulation significantly increased and decreased the levels of matrix metalloproteinase 2 and 9, respectively. These findings indicate a promotive role for securin in glioma migration and invasion, which may involve the action of matrix metalloproteinases. PMID:26137166

  9. Genomic Organization of channel catfish, Ictalurus punctatus, matrix metalloproteinase-9-gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned and sequenced MMP-9 genomic DNA by using a Unversal GenomeWalker kit. The co...

  10. Genomic imprinting controls matrix attachment regions in the Igf2 gene.

    PubMed

    Weber, Michaël; Hagège, Hélène; Murrell, Adele; Brunel, Claude; Reik, Wolf; Cathala, Guy; Forné, Thierry

    2003-12-01

    Genomic imprinting at the Igf2/H19 locus originates from allele-specific DNA methylation, which modifies the affinity of some proteins for their target sequences. Here, we show that AT-rich DNA sequences located in the vicinity of previously characterized differentially methylated regions (DMRs) of the imprinted Igf2 gene are conserved between mouse and human. These sequences have all the characteristics of matrix attachment regions (MARs), which are known as versatile regulatory elements involved in chromatin structure and gene expression. Combining allele-specific nuclear matrix binding assays and real-time PCR quantification, we show that retention of two of these Igf2 MARs (MAR0 and MAR2) in the nuclear matrix fraction depends on the tissue and is specific to the paternal allele. Furthermore, on this allele, the Igf2 MAR2 is functionally linked to the neighboring DMR2 while, on the maternal allele, it is controlled by the imprinting-control region. Our work clearly demonstrates that genomic imprinting controls matrix attachment regions in the Igf2 gene.

  11. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    PubMed

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance.

  12. Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold.

    PubMed

    Zitnik, Marinka; Zupan, Blaž

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker's yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps.

  13. Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold.

    PubMed

    Zitnik, Marinka; Zupan, Blaž

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker's yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps. PMID:24297565

  14. Utilizing cell-matrix interactions to modulate gene transfer to stem cells inside hyaluronic acid hydrogels.

    PubMed

    Gojgini, Shiva; Tokatlian, Talar; Segura, Tatiana

    2011-10-01

    The effective delivery of DNA locally would increase the applicability of gene therapy in tissue regeneration, where diseased tissue is to be repaired in situ. One promising approach is to use hydrogel scaffolds to encapsulate and deliver plasmid DNA in the form of nanoparticles to the diseased tissue, so that cells infiltrating the scaffold are transfected to induce regeneration. This study focuses on the design of a DNA nanoparticle-loaded hydrogel scaffold. In particular, this study focuses on understanding how cell-matrix interactions affect gene transfer to adult stem cells cultured inside matrix metalloproteinase (MMP) degradable hyaluronic acid (HA) hydrogel scaffolds. HA was cross-linked to form a hydrogel material using a MMP degradable peptide and Michael addition chemistry. Gene transfer inside these hydrogel materials was assessed as a function of polyplex nitrogen to phosphate ratio (N/P = 5 to 12), matrix stiffness (100-1700 Pa), RGD (Arg-Gly-Asp) concentration (10-400 μM), and RGD presentation (0.2-4.7 RGDs per HA molecule). All variables were found to affect gene transfer to mouse mensenchymal stem cells culture inside the DNA loaded hydrogels. As expected, higher N/P ratios lead to higher gene transfer efficiency but also higher toxicity; softer hydrogels resulted in higher transgene expression than stiffer hydrogels, and an intermediate RGD concentration and RGD clustering resulted in higher transgene expression. We believe that the knowledge gained through this in vitro model can be utilized to design better scaffold-mediated gene delivery for local gene therapy.

  15. Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) deficient mice display motor deficits.

    PubMed Central

    Jaworski, Diane M.; Soloway, Paul; Caterina, John; Falls., William A.

    2005-01-01

    The degradation of the extracellular matrix is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Matrix components of the basement membrane play critical roles in the development and maintenance of the neuromuscular junction (NMJ), yet almost nothing is known about the regulation of MMP and TIMP expression in either the presynaptic or postsynaptic compartments. Here, we demonstrate that TIMP-2 is expressed by both spinal motor neurons and skeletal muscle. To determine whether motor function is altered in the absence of TIMP-2, motor behavior was assessed using a battery of tests (e.g., RotaRod, balance beam, hindlimb extension, grip strength, loaded grid and gait analysis). TIMP-2−/− mice fall off the RotaRod significantly faster than wild-type littermates. In addition, hindlimb extension is reduced and gait is both splayed and lengthened in TIMP-2−/− mice. Motor dysfunction is more pronounced during early postnatal development. A preliminary analysis revealed NMJ alterations in TIMP-2−/− mice. Juvenile TIMP-2−/− mice have increased nerve branching and acetylcholine receptor expression. Adult TIMP-2−/− endplates are enlarged and more complex. This suggests a role for TIMP-2 in NMJ sculpting during development. In contrast to the increased NMJ nerve branching, cerebellar Purkinje cells have decreased neurite outgrowth. Thus, the TIMP-2−/− motor phenotype is likely due to both peripheral and central defects. The tissue specificity of the nerve branching phenotype suggests the involvement of different MMPs and/or extracellular matrix molecules underlying the TIMP-2−/− motor phenotype. PMID:16216006

  16. Porcine dentin matrix protein 1: gene structure, cDNA sequence, and expression in teeth.

    PubMed

    Kim, Jung-Wook; Yamakoshi, Yasuo; Iwata, Takanori; Hu, Yuan Yuan; Zhang, Hengmin; Hu, Jan C-C; Simmer, James P

    2006-02-01

    Dentin matrix protein 1 (DMP1) is an acidic non-collagenous protein that is necessary for the proper biomineralization of bone, cartilage, cementum, dentin, and enamel. Dentin matrix protein 1 is highly phosphorylated and potentially glycosylated, but there is no experimental data identifying which specific amino acids are modified. For the purpose of facilitating the characterization of DMP1 from pig, which has the advantage of large developing teeth for obtaining protein in quantity and extensive structural information concerning other tooth matrix proteins, we characterized the porcine DMP1 cDNA and gene structure, raised anti-peptide immunoglobulins that are specific for porcine DMP1, and detected DMP1 protein in porcine tooth extracts and histological sections. Porcine DMP1 has 510 amino acids, including a 16-amino acid signal peptide. The deduced molecular weight of the secreted, unmodified protein is 53.5 kDa. The protein has 93 serines and 12 threonines in the appropriate context for phosphorylation, and four asparagines in a context suitable for glycosylation. Dentin matrix protein 1 protein bands with apparent molecular weights between 30 and 45 kDa were observed in partially purified dentin extracts. In developing teeth, immunohistochemistry localized DMP1 in odontoblasts and the dentinal tubules of mineralized dentin and in ameloblasts, but not in the enamel matrix.

  17. Interactions between the nuclear matrix and an enhancer of the tryptophan oxygenase gene

    SciTech Connect

    Kaneoka, Hidenori; Miyake, Katsuhide; Iijima, Shinji

    2009-10-02

    The gene for tryptophan oxygenase (TO) is expressed in adult hepatocytes in a tissue- and differentiation-specific manner. The TO promoter has two glucocorticoid-responsive elements (GREs), and its expression is regulated by glucocorticoid hormone in the liver. We found a novel GRE in close proximity to a scaffold/matrix attachment region (S/MAR) that was located around -8.5 kb from the transcriptional start site of the TO gene by electrophoretic mobility shift and chromatin immunoprecipitation (ChIP) assays. A combination of nuclear fractionation and quantitative PCR analysis showed that the S/MAR was tethered to the nuclear matrix in both fetal and adult hepatocytes. ChIP assay showed that, in adult hepatocytes, the S/MAR-GRE and the promoter proximal regions interacted with lamin and heterogeneous nuclear ribonucleoprotein U in a dexamethasone dependent manner, but this was not the case in fetal cells, suggesting that developmental stage-specific expression of the TO gene might rely on the binding of the enhancer (the -8.5 kb S/MAR-GRE) and the promoter to the inner nuclear matrix.

  18. Discovering gene functional relationships using FAUN (Feature Annotation Using Nonnegative matrix factorization)

    PubMed Central

    2010-01-01

    Background Searching the enormous amount of information available in biomedical literature to extract novel functional relationships among genes remains a challenge in the field of bioinformatics. While numerous (software) tools have been developed to extract and identify gene relationships from biological databases, few effectively deal with extracting new (or implied) gene relationships, a process which is useful in interpretation of discovery-oriented genome-wide experiments. Results In this study, we develop a Web-based bioinformatics software environment called FAUN or Feature Annotation Using Nonnegative matrix factorization (NMF) to facilitate both the discovery and classification of functional relationships among genes. Both the computational complexity and parameterization of NMF for processing gene sets are discussed. FAUN is tested on three manually constructed gene document collections. Its utility and performance as a knowledge discovery tool is demonstrated using a set of genes associated with Autism. Conclusions FAUN not only assists researchers to use biomedical literature efficiently, but also provides utilities for knowledge discovery. This Web-based software environment may be useful for the validation and analysis of functional associations in gene subsets identified by high-throughput experiments. PMID:20946597

  19. A polygenic burden of rare variants across extracellular matrix genes among individuals with adolescent idiopathic scoliosis.

    PubMed

    Haller, Gabe; Alvarado, David; Mccall, Kevin; Yang, Ping; Cruchaga, Carlos; Harms, Matthew; Goate, Alison; Willing, Marcia; Morcuende, Jose A; Baschal, Erin; Miller, Nancy H; Wise, Carol; Dobbs, Matthew B; Gurnett, Christina A

    2016-01-01

    Adolescent idiopathic scoliosis (AIS) is a complex inherited spinal deformity whose etiology has been elusive. While common genetic variants are associated with AIS, they explain only a small portion of disease risk. To explore the role of rare variants in AIS susceptibility, exome sequence data of 391 severe AIS cases and 843 controls of European ancestry were analyzed using a pathway burden analysis in which variants are first collapsed at the gene level then by Gene Ontology terms. Novel non-synonymous/splice-site variants in extracellular matrix genes were significantly enriched in AIS cases compared with controls (P = 6 × 10(-9), OR = 1.7, CI = 1.4-2.0). Specifically, novel variants in musculoskeletal collagen genes were present in 32% (126/391) of AIS cases compared with 17% (146/843) of in-house controls and 18% (780/4300) of EVS controls (P = 1 × 10(-9), OR = 1.9, CI = 1.6-2.4). Targeted resequencing of six collagen genes replicated this association in combined 919 AIS cases (P = 3 × 10(-12), OR = 2.2, CI = 1.8-2.7) and revealed a highly significant single-gene association with COL11A2 (P = 6 × 10(-9), OR = 3.8, CI = 2.6-7.2). Importantly, AIS cases harbor mainly non-glycine missense mutations and lack the clinical features of monogenic musculoskeletal collagenopathies. Overall, our study reveals a complex genetic architecture of AIS in which a polygenic burden of rare variants across extracellular matrix genes contributes strongly to risk. PMID:26566670

  20. Effects of enamel matrix genes on dental caries are moderated by fluoride exposures.

    PubMed

    Shaffer, John R; Carlson, Jenna C; Stanley, Brooklyn O C; Feingold, Eleanor; Cooper, Margaret; Vanyukov, Michael M; Maher, Brion S; Slayton, Rebecca L; Willing, Marcia C; Reis, Steven E; McNeil, Daniel W; Crout, Richard J; Weyant, Robert J; Levy, Steven M; Vieira, Alexandre R; Marazita, Mary L

    2015-02-01

    Dental caries (tooth decay) is the most common chronic disease, worldwide, affecting most children and adults. Though dental caries is highly heritable, few caries-related genes have been discovered. We investigated whether 18 genetic variants in the group of non-amelogenin enamel matrix genes (AMBN, ENAM, TUFT1, and TFIP11) were associated with dental caries experience in 13 age- and race-stratified samples from six parent studies (N = 3,600). Linear regression was used to model genetic associations and test gene-by-fluoride interaction effects for two sources of fluoride: daily tooth brushing and home water fluoride concentration. Meta-analysis was used to combine results across five child and eight adult samples. We observed the statistically significant association of rs2337359 upstream of TUFT1 with dental caries experience via meta-analysis across adult samples (p < 0.002) and the suggestive association for multiple variants in TFIP11 across child samples (p < 0.05). Moreover, we discovered two genetic variants (rs2337359 upstream of TUFT1 and missense rs7439186 in AMBN) involved in gene-by-fluoride interactions. For each interaction, participants with the risk allele/genotype exhibited greater dental caries experience only if they were not exposed to the source of fluoride. Altogether, these results confirm that variation in enamel matrix genes contributes to individual differences in dental caries liability, and demonstrate that the effects of these genes may be moderated by protective fluoride exposures. In short, genes may exert greater influence on dental caries in unprotected environments, or equivalently, the protective effects of fluoride may obviate the effects of genetic risk alleles.

  1. Effects of enamel matrix genes on dental caries are moderated by fluoride exposures

    PubMed Central

    Shaffer, John R.; Carlson, Jenna C.; Stanley, Brooklyn O. C.; Feingold, Eleanor; Cooper, Margaret; Vanyukov, Michael M.; Maher, Brion S.; Slayton, Rebecca L.; Willing, Marcia C.; Reis, Steven E.; McNeil, Daniel W.; Crout, Richard J.; Weyant, Robert J.; Levy, Steven M.; Vieira, Alexandre R.; Marazita, Mary L.

    2014-01-01

    Dental caries (tooth decay) is the most common chronic disease, worldwide, affecting most children and adults. Though dental caries is highly heritable, few caries-related genes have been discovered. We investigated whether 18 genetic variants in the group of nonamelogenin enamel matrix genes (AMBN, ENAM, TUFT1, and TFIP11) were associated with dental caries experience in 13 age- and race-stratified samples from six parent studies (N=3,600). Linear regression was used to model genetic associations and test gene-byfluoride interaction effects for two sources of fluoride: daily tooth brushing and home water fluoride concentration. Meta-analysis was used to combine results across five child and eight adult samples. We observed the statistically significant association of rs2337359 upstream of TUFT1 with dental caries experience via meta-analysis across adult samples (p<0.002) and the suggestive association for multiple variants in TFIP11 across child samples (p<0.05). Moreover, we discovered two genetic variants (rs2337359 upstream of TUFT1 and missense rs7439186 in AMBN) involved in gene-by-fluoride interactions. For each interaction, participants with the risk allele/genotype exhibited greater dental caries experience only if they were not exposed to the source of fluoride. Altogether, these results confirm that variation in enamel matrix genes contributes to individual differences in dental caries liability, and demonstrate that the effects of these genes may be moderated by protective fluoride exposures. In short, genes may exert greater influence on dental caries in unprotected environments, or equivalently, the protective effects of fluoride may obviate the effects of genetic risk alleles. PMID:25373699

  2. Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) regulates myogenesis and β1 integrin expression in vitro

    PubMed Central

    Lluri, Gentian; Langlois, Garret D.; Soloway, Paul D.; Jaworski, Diane M.

    2008-01-01

    Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2−/− myotube formation. When differentiated in horse serum-containing medium, TIMP-2−/− myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2−/− myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with β1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2−/− myotube size and induces increased MMP-9 activation and decreased β1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on β1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and β1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo. PMID:17678891

  3. Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates myogenesis and {beta}1 integrin expression in vitro

    SciTech Connect

    Lluri, Gentian; Langlois, Garret D.; Soloway, Paul D.; Jaworski, Diane M.

    2008-01-01

    Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2{sup -/-} myotube formation. When differentiated in horse serum-containing medium, TIMP-2{sup -/-} myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2{sup -/-} myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with {beta}1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2{sup -/-} myotube size and induces increased MMP-9 activation and decreased {beta}1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on {beta}1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and {beta}1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo.

  4. Identification, characterization, and expression of dentin matrix protein 1 gene in Xenopus laevis.

    PubMed

    Yonekura, Tomoko; Homma, Hiromi; Sakurai, Atsuo; Moriguchi, Mitsuko; Miake, Yasuo; Toyosawa, Satoru; Shintani, Seikou

    2013-12-01

    Dentin matrix protein 1 (DMP1) is an acidic extracellular matrix protein expressed mainly in bone and dentin, and is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family. The DMP1 gene, however, appears to evolve rapidly in comparison with other SIBLING genes, even though such functionally important molecules usually evolve more slowly than less important ones. The purpose of this study was to identify and characterize an ortholog of the DMP1 gene in an amphibian (Xenopus laevis; X. laevis) to clarify molecular evolutionary alterations in DMP1 associated with calcified tissues in tetrapods. Furthermore, we analyzed the mRNA expression of this gene to elucidate its functional change in bone and developing tooth germ in comparison with amniote DMP1s. The similarities of the deduced amino acid sequence of X. laevis DMP1 to that of the corresponding amniote proteins were low, although they did share several unique features specific to DMP1 and have similar properties. Expression of X. laevis DMP1 mRNA was predominant in osteocytes and odontoblasts, but only transiently observed in ameloblasts, as in amniotes. These results suggest that DMP1 has conserved several functions during tetrapod evolution. This indicates that continuity of biochemical properties has been more important in maintaining DMP1 functionality than that of the sequence of amino acid residues, which has undergone change over the course of molecular evolution.

  5. Vesicular stomatitis virus matrix protein inhibits host cell-directed transcription of target genes in vivo.

    PubMed Central

    Black, B L; Lyles, D S

    1992-01-01

    Infection by vesicular stomatitis virus (VSV) results in a rapid inhibition of host cell transcription and translation. To determine whether the viral matrix (M) protein was involved in this inhibition of host cell gene expression, an M protein expression vector was cotransfected with a target gene vector, encoding the target gene, encoding chloramphenicol acetyltransferase (CAT). Expression of M protein caused a decrease in CAT activity in a gene dosage-dependent manner, and inhibition was apparent by 12 h posttransfection. The inhibitory effect of M protein was quite potent. The level of M protein required for a 10-fold inhibition of CAT activity was less than 1% of the level of M protein produced during the sixth hour of VSV infection. Northern (RNA) analysis of cotransfected cells showed that expression of M protein caused a reduction in the steady-state level of the vector-encoded mRNAs. Expression of both CAT and M mRNAs was reduced in cells cotransfected with a plasmid encoding M protein, indicating that expression of small amounts of M protein from plasmid DNA inhibits further expression of both M and CAT mRNAs. Nuclear runoff transcription analysis demonstrated that expression of M protein inhibited transcription of the target genes. This is the first report of a viral gene product which is capable of inhibiting transcription in vivo in the absence of any other viral component. Images PMID:1318397

  6. Inhibition of influenza A virus matrix and nonstructural gene expression using RNA interference.

    PubMed

    McMillen, Cynthia M; Beezhold, Donald H; Blachere, Francoise M; Othumpangat, Sreekumar; Kashon, Michael L; Noti, John D

    2016-10-01

    Influenza antiviral drugs that use protein inhibitors can lose their efficacy as resistant strains emerge. As an alternative strategy, we investigated the use of small interfering RNA molecules (siRNAs) by characterizing three siRNAs (M747, M776 and M832) targeting the influenza matrix 2 gene and three (NS570, NS595 and NS615) targeting the nonstructural protein 1 and 2 genes. We also re-examined two previously reported siRNAs, M331 and M950, which target the matrix 1 and 2 genes. Treatment with M331-, M776-, M832-, and M950-siRNAs attenuated influenza titer. M776-siRNA treated cells had 29.8% less infectious virus than cells treated with the previously characterized siRNA, M950. NS570-, NS595- and NS615-siRNAs reduced nonstructural protein 1 and 2 expression and enhanced type I interferon expression by 50%. Combination siRNA treatment attenuated 20.9% more infectious virus than single siRNA treatment. Our results suggest a potential use for these siRNAs as an effective anti-influenza virus therapy.

  7. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    SciTech Connect

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V. . E-mail: reddysv@musc.edu

    2007-01-01

    Osteoclast differentiation is tightly regulated by receptor activator of NF-{kappa}B ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity in RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity

  8. Pentosan polysulfate inhibits atherosclerosis in Watanabe heritable hyperlipidemic rabbits: differential modulation of metalloproteinase-2 and -9.

    PubMed

    Lupia, Enrico; Zheng, Feng; Grosjean, Fabrizio; Tack, Ivan; Doublier, Sophie; Elliot, Sharon J; Vlassara, Helen; Striker, Gary E

    2012-02-01

    Pentosan polysulfate (PPS), a heparinoid compound essentially devoid of anticoagulant activity, modulates cell growth and decreases inflammation. We investigated the effect of PPS on the progression of established atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits. After severe atherosclerosis developed on an atherogenic diet, WHHL rabbits were treated with oral PPS or tap water for 1 month. The aortic intima-to-media ratio and macrophage infiltration were reduced, plaque collagen content was increased, and plaque fibrous caps were preserved by PPS treatment. Plasma lipid levels and post-heparin hepatic lipase activity remained unchanged. However, net collagenolytic activity in aortic extracts was decreased, and the levels of matrix metalloproteinase (MMP)-2 and tissue inhibitor of metalloproteinase (TIMP) activity were increased by PPS. Moreover, PPS treatment decreased tumor necrosis factor α (TNFα)-stimulated proinflammatory responses, in particular activation of nuclear factor-κB and p38, and activation of MMPs in macrophages. In conclusion, oral PPS treatment prevents progression of established atherosclerosis in WHHL rabbits. This effect may be partially mediated by increased MMP-2 and TIMP activities in the aortic wall and reduced TNFα-stimulated inflammation and MMP activation in macrophages. Thus, PPS may be a useful agent in inhibiting the progression of atherosclerosis.

  9. The use of EST expression matrixes for the quality control of gene expression data.

    PubMed

    Milnthorpe, Andrew T; Soloviev, Mikhail

    2012-01-01

    EST expression profiling provides an attractive tool for studying differential gene expression, but cDNA libraries' origins and EST data quality are not always known or reported. Libraries may originate from pooled or mixed tissues; EST clustering, EST counts, library annotations and analysis algorithms may contain errors. Traditional data analysis methods, including research into tissue-specific gene expression, assume EST counts to be correct and libraries to be correctly annotated, which is not always the case. Therefore, a method capable of assessing the quality of expression data based on that data alone would be invaluable for assessing the quality of EST data and determining their suitability for mRNA expression analysis. Here we report an approach to the selection of a small generic subset of 244 UniGene clusters suitable for identification of the tissue of origin for EST libraries and quality control of the expression data using EST expression information alone. We created a small expression matrix of UniGene IDs using two rounds of selection followed by two rounds of optimisation. Our selection procedures differ from traditional approaches to finding "tissue-specific" genes and our matrix yields consistency high positive correlation values for libraries with confirmed tissues of origin and can be applied for tissue typing and quality control of libraries as small as just a few hundred total ESTs. Furthermore, we can pick up tissue correlations between related tissues e.g. brain and peripheral nervous tissue, heart and muscle tissues and identify tissue origins for a few libraries of uncharacterised tissue identity. It was possible to confirm tissue identity for some libraries which have been derived from cancer tissues or have been normalised. Tissue matching is affected strongly by cancer progression or library normalisation and our approach may potentially be applied for elucidating the stage of normalisation in normalised libraries or for cancer

  10. Mutations in the collagen XII gene define a new form of extracellular matrix-related myopathy.

    PubMed

    Hicks, Debbie; Farsani, Golara Torabi; Laval, Steven; Collins, James; Sarkozy, Anna; Martoni, Elena; Shah, Ashoke; Zou, Yaqun; Koch, Manuel; Bönnemann, Carsten G; Roberts, Mark; Lochmüller, Hanns; Bushby, Kate; Straub, Volker

    2014-05-01

    Bethlem myopathy (BM) [MIM 158810] is a slowly progressive muscle disease characterized by contractures and proximal weakness, which can be caused by mutations in one of the collagen VI genes (COL6A1, COL6A2 and COL6A3). However, there may be additional causal genes to identify as in ∼50% of BM cases no mutations in the COL6 genes are identified. In a cohort of -24 patients with a BM-like phenotype, we first sequenced 12 candidate genes based on their function, including genes for known binding partners of collagen VI, and those enzymes involved in its correct post-translational modification, assembly and secretion. Proceeding to whole-exome sequencing (WES), we identified mutations in the COL12A1 gene, a member of the FACIT collagens (fibril-associated collagens with interrupted triple helices) in five individuals from two families. Both families showed dominant inheritance with a clinical phenotype resembling classical BM. Family 1 had a single-base substitution that led to the replacement of one glycine residue in the triple-helical domain, breaking the Gly-X-Y repeating pattern, and Family 2 had a missense mutation, which created a mutant protein with an unpaired cysteine residue. Abnormality at the protein level was confirmed in both families by the intracellular retention of collagen XII in patient dermal fibroblasts. The mutation in Family 2 leads to the up-regulation of genes associated with the unfolded protein response (UPR) pathway and swollen, dysmorphic rough-ER. We conclude that the spectrum of causative genes in extracellular matrix (ECM)-related myopathies be extended to include COL12A1. PMID:24334769

  11. Comparison between metalloproteinases-2 and -9 in healthy subjects, diabetics, and subjects with acute coronary syndrome.

    PubMed

    Derosa, Giuseppe; D'Angelo, Angela; Scalise, Filippo; Avanzini, Maria A; Tinelli, Carmine; Peros, Emmanouil; Fogari, Elena; Cicero, Arrigo F G

    2007-11-01

    We hypothesized that matrix metalloproteinase (MMP)-2, -9, and tissue inhibitor metalloproteinase-1, -2 (TIMP-1, -2) would be abnormal in diabetes and in acute coronary syndromes (ACS). We measured MMP-2, -9, and TIMP-1, -2 plasma levels in healthy subjects (controls), in type 2 diabetic patients, in nondiabetic patients with ACS (ACS) and in diabetic patients with ACS (DACS). We enrolled 165 controls, 181 diabetic patients, 78 ACS, and 46 DACS. We measured also BMI (body mass index), HbA(1c) (glycated hemoglobin) FPG (fasting plasma glucosa), FPI (fasting plasma insulin), HOMA index (homeostasis model assessment index), SBP (systolic blood pressure), DBP (diastolic blood pressure), TC (total cholesterol), LDL-C (low density lipoprotein cholesterol), HDL-C (high-density lipoprotein cholesterol), Tg (triglycerides), Lp(a) (lipoprotein(a)) PAI-1 (plasminogen activator inhibitor-1), Hct (homocysteine), Fg (fibrinogen), and hs-CRP (high-sensitivity C-reactive protein). A significant increase of BMI was observed in the diabetic group, in ACS and DACS patients compared to controls. A significant increase of SBP and DBP resulted in the diabetic and DACS groups, while only SBP improvement was present in ACS patients with respect to controls. A decrease in SBP and DBP was observed in the ACS group, while SBP variation was present in DACS patients compared to diabetics, and DBP increase was obtained in the DACS group with respect to ACS patients. TC, LDL-C, Tg, and Lp(a) increase was present in diabetics, while TC, Tg, and Lp(a) improvement was present in ACS and DACS patients with a significant decrease of HDL-C levels in diabetic, ACS, and DACS groups compared to controls. A decrease in LDL-C was obtained in ACS and DACS groups, while HDL-C increase was observed in these patients with respect to diabetics. Tg levels were higher in the DACS group compared to diabetics and ACS patients, respectively. Increases in PAI-1, Hct, Fg, and hs-CRP were present in diabetic and DACS

  12. OSG-GEM: Gene Expression Matrix Construction Using the Open Science Grid

    PubMed Central

    Poehlman, William L.; Rynge, Mats; Branton, Chris; Balamurugan, D.; Feltus, Frank A.

    2016-01-01

    High-throughput DNA sequencing technology has revolutionized the study of gene expression while introducing significant computational challenges for biologists. These computational challenges include access to sufficient computer hardware and functional data processing workflows. Both these challenges are addressed with our scalable, open-source Pegasus workflow for processing high-throughput DNA sequence datasets into a gene expression matrix (GEM) using computational resources available to U.S.-based researchers on the Open Science Grid (OSG). We describe the usage of the workflow (OSG-GEM), discuss workflow design, inspect performance data, and assess accuracy in mapping paired-end sequencing reads to a reference genome. A target OSG-GEM user is proficient with the Linux command line and possesses basic bioinformatics experience. The user may run this workflow directly on the OSG or adapt it to novel computing environments. PMID:27499617

  13. OSG-GEM: Gene Expression Matrix Construction Using the Open Science Grid.

    PubMed

    Poehlman, William L; Rynge, Mats; Branton, Chris; Balamurugan, D; Feltus, Frank A

    2016-01-01

    High-throughput DNA sequencing technology has revolutionized the study of gene expression while introducing significant computational challenges for biologists. These computational challenges include access to sufficient computer hardware and functional data processing workflows. Both these challenges are addressed with our scalable, open-source Pegasus workflow for processing high-throughput DNA sequence datasets into a gene expression matrix (GEM) using computational resources available to U.S.-based researchers on the Open Science Grid (OSG). We describe the usage of the workflow (OSG-GEM), discuss workflow design, inspect performance data, and assess accuracy in mapping paired-end sequencing reads to a reference genome. A target OSG-GEM user is proficient with the Linux command line and possesses basic bioinformatics experience. The user may run this workflow directly on the OSG or adapt it to novel computing environments. PMID:27499617

  14. Dependence of Enhancer-Mediated Transcription of the Immunoglobulin μ Gene on Nuclear Matrix Attachment Regions

    NASA Astrophysics Data System (ADS)

    Forrester, William C.; van Genderen, Courtney; Jenuwein, Thomas; Grosschedl, Rudolf

    1994-08-01

    Transcription of the immunoglobulin μ heavy chain locus is regulated by an intronic enhancer that is flanked on both sides by nuclear matrix attachment regions (MARs). These MARs have now been shown to be essential for transcription of a rearranged μ gene in transgenic B lymphocytes, but they were not required in stably transfected tissue culture cells. Normal rates of transcriptional initiation at a variable region promoter and the formation of an extended deoxyribonuclease I (DNase I)-sensitive chromatin domain were dependent on MARs, although DNase I hypersensitivity at the enhancer was detected in the absence of MARs. Thus, transcriptional activation of the μ gene during normal lymphoid development requires a synergistic collaboration between the enhancer and flanking MARs.

  15. Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness.

    PubMed

    Keeney, Michael; Onyiah, Sheila; Zhang, Zhe; Tong, Xinming; Han, Li-Hsin; Yang, Fan

    2013-12-01

    Non-viral gene delivery holds great promise for promoting tissue regeneration, and offers a potentially safer alternative than viral vectors. Great progress has been made to develop biodegradable polymeric vectors for non-viral gene delivery in 2D culture, which generally involves isolating and modifying cells in vitro, followed by subsequent transplantation in vivo. Scaffold-mediated gene delivery may eliminate the need for the multiple-step process in vitro, and allows sustained release of nucleic acids in situ. Hydrogels are widely used tissue engineering scaffolds given their tissue-like water content, injectability and tunable biochemical and biophysical properties. However, previous attempts on developing hydrogel-mediated non-viral gene delivery have generally resulted in low levels of transgene expression inside 3D hydrogels, and increasing hydrogel stiffness further decreased such transfection efficiency. Here we report the development of biodegradable polymeric vectors that led to efficient gene delivery inside poly(ethylene glycol) (PEG)-based hydrogels with tunable matrix stiffness. Photocrosslinkable gelatin was maintained constant in the hydrogel network to allow cell adhesion. We identified a lead biodegradable polymeric vector, E6, which resulted in increased polyplex stability, DNA protection and achieved sustained high levels of transgene expression inside 3D PEG-DMA hydrogels for at least 12 days. Furthermore, we demonstrated that E6-based polyplexes allowed efficient gene delivery inside hydrogels with tunable stiffness ranging from 2 to 175 kPa, with the peak transfection efficiency observed in hydrogels with intermediate stiffness (28 kPa). The reported hydrogel-mediated gene delivery platform using biodegradable polyplexes may serve as a local depot for sustained transgene expression in situ to enhance tissue engineering across broad tissue types.

  16. Simultaneous Non-Negative Matrix Factorization for Multiple Large Scale Gene Expression Datasets in Toxicology

    PubMed Central

    Lee, Clare M.; Mudaliar, Manikhandan A. V.; Haggart, D. R.; Wolf, C. Roland; Miele, Gino; Vass, J. Keith; Higham, Desmond J.; Crowther, Daniel

    2012-01-01

    Non-negative matrix factorization is a useful tool for reducing the dimension of large datasets. This work considers simultaneous non-negative matrix factorization of multiple sources of data. In particular, we perform the first study that involves more than two datasets. We discuss the algorithmic issues required to convert the approach into a practical computational tool and apply the technique to new gene expression data quantifying the molecular changes in four tissue types due to different dosages of an experimental panPPAR agonist in mouse. This study is of interest in toxicology because, whilst PPARs form potential therapeutic targets for diabetes, it is known that they can induce serious side-effects. Our results show that the practical simultaneous non-negative matrix factorization developed here can add value to the data analysis. In particular, we find that factorizing the data as a single object allows us to distinguish between the four tissue types, but does not correctly reproduce the known dosage level groups. Applying our new approach, which treats the four tissue types as providing distinct, but related, datasets, we find that the dosage level groups are respected. The new algorithm then provides separate gene list orderings that can be studied for each tissue type, and compared with the ordering arising from the single factorization. We find that many of our conclusions can be corroborated with known biological behaviour, and others offer new insights into the toxicological effects. Overall, the algorithm shows promise for early detection of toxicity in the drug discovery process. PMID:23272042

  17. How Changes in Extracellular Matrix Mechanics and Gene Expression Variability Might Combine to Drive Cancer Progression

    PubMed Central

    Bischof, Ashley G.; Mannix, Robert J.; Tobin, Heather; Bar-Yam, Yaneer; Bellin, Robert M.; Ingber, Donald E.

    2013-01-01

    Changes in extracellular matrix (ECM) structure or mechanics can actively drive cancer progression; however, the underlying mechanism remains unknown. Here we explore whether this process could be mediated by changes in cell shape that lead to increases in genetic noise, given that both factors have been independently shown to alter gene expression and induce cell fate switching. We do this using a computer simulation model that explores the impact of physical changes in the tissue microenvironment under conditions in which physical deformation of cells increases gene expression variability among genetically identical cells. The model reveals that cancerous tissue growth can be driven by physical changes in the microenvironment: when increases in cell shape variability due to growth-dependent increases in cell packing density enhance gene expression variation, heterogeneous autonomous growth and further structural disorganization can result, thereby driving cancer progression via positive feedback. The model parameters that led to this prediction are consistent with experimental measurements of mammary tissues that spontaneously undergo cancer progression in transgenic C3(1)-SV40Tag female mice, which exhibit enhanced stiffness of mammary ducts, as well as progressive increases in variability of cell-cell relations and associated cell shape changes. These results demonstrate the potential for physical changes in the tissue microenvironment (e.g., altered ECM mechanics) to induce a cancerous phenotype or accelerate cancer progression in a clonal population through local changes in cell geometry and increased phenotypic variability, even in the absence of gene mutation. PMID:24098430

  18. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    SciTech Connect

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  19. The heat shock cognate 80 gene of tomato is flanked by matrix attachment regions.

    PubMed

    Chinn, A M; Comai, L

    1996-12-01

    Matrix attachment regions (MARs) are thought to participate in the organization and segregation of independent chromosomal loop domains. Although there are several reports on the action of MARs in the context of heterologous genes, information is more limited on the role of MARs associated with plant genes. Transgenic studies suggest that the upstream, intron and downstream regions of the developmentally regulated heat shock cognate 80 gene (HSC80) of tomato participate in chromatin organization. In this study, we tested the in vitro affinity of the HSC80 gene to chromosomal scaffolds prepared from shoot apices of tomato. We found that a 1.5 kb upstream region and a 1.4 kb downstream region, but not the intron region, are MARs. These MARs interact with tomato and pea scaffolds and bind regardless of the expression status of HSC80 in the tissue from which the nuclei were isolated. Comparison to two known yeast MARs, ARS1 and CENIII, showed that the HSC80 5'MAR binds more avidly to tomato scaffolds than ARS1, while no binding of CENIII was observed. Competition binding between the two HSC80 MARs indicated that the 5'MAR can outcompete the 3'MAR and not vice versa. Last, we observed that the interaction of the 3'MAR with the scaffold could result in an electrophoretic mobility shift resistant to SDS, protease, and phenol treatment. In conclusion, MARs whose binding properties can be clearly differentiated are closely flanking the HSC80 gene. The discovery of MARs in regions which have a distinct function in HSC80 transgenes but not in transient expression assays, is consistent with a chromosomal scaffold role in HSC80 gene regulation.

  20. Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes

    PubMed Central

    2013-01-01

    Background Secondary edentulism (toothlessness) has evolved on multiple occasions in amniotes including several mammalian lineages (pangolins, anteaters, baleen whales), birds, and turtles. All edentulous amniote clades have evolved from ancestors with enamel-capped teeth. Previous studies have documented the molecular decay of tooth-specific genes in edentulous mammals, all of which lost their teeth in the Cenozoic, and birds, which lost their teeth in the Cretaceous. By contrast with mammals and birds, tooth loss in turtles occurred in the Jurassic (201.6-145.5 Ma), providing an extended time window for tooth gene degradation in this clade. The release of the painted turtle and Chinese softshell turtle genomes provides an opportunity to recover the decayed remains of tooth-specific genes in Testudines. Results We queried available genomes of Testudines (Chrysemys picta [painted turtle], Pelodiscus sinensis [Chinese softshell turtle]), Aves (Anas platyrhynchos [duck], Gallus gallus [chicken], Meleagris gallopavo [turkey], Melopsittacus undulatus [budgerigar], Taeniopygia guttata [zebra finch]), and enamelless mammals (Orycteropus afer [aardvark], Choloepus hoffmanni [Hoffmann’s two-toed sloth], Dasypus novemcinctus [nine-banded armadillo]) for remnants of three enamel matrix protein (EMP) genes with putative enamel-specific functions. Remnants of the AMBN and ENAM genes were recovered in Chrysemys and retain their original synteny. Remnants of AMEL were recovered in both testudines, although there are no shared frameshifts. We also show that there are inactivated copies of AMBN, AMEL and ENAM in representatives of divergent avian lineages including Galloanserae, Passeriformes, and Psittaciformes, and that there are shared frameshift mutations in all three genes that predate the basal split in Neognathae. Among enamelless mammals, all three EMP genes exhibit inactivating mutations in Orycteropus and Choloepus. Conclusions Our results highlight the power of

  1. Matrix metalloproteinase-3 gene promoter polymorphisms: A potential risk factor for pelvic organ prolapse

    PubMed Central

    Karachalios, Charalampos; Bakas, Panagiotis; Kaparos, Georgios; Demeridou, Styliani; Liapis, Ilias; Grigoriadis, Charalampos; Liapis, Aggelos

    2016-01-01

    Pelvic organ prolapse (POP) is a common multifactorial condition. Matrix metalloproteinases (MMPs) are enzymes capable of breaking down various connective tissue elements. Single-nucleotide polymorphisms (SNPs) in regulatory areas of MMP-encoding genes can alter their transcription rate, and therefore the possible effect on pelvic floor supporting structures. The insertion of an adenine (A) base in the promoter of the MMP-3 gene at position −1612/−1617 produces a sequence of six adenines (6A), whereas the other allele has five (5A). The aim of the present study was to investigate the possible association of MMP-3 gene promoter SNPs with the risk of POP. The patient group comprised 80 women with clinically significant POP [Stage II, III or IV; POP quantification (POP-Q) system]. The control group consisted of 80 females without any or important pelvic floor support defects (Stages 0 or I; POP-Q system). All the participants underwent the same preoperative evaluation. SNP detection was determined with whole blood sample DNA analysis by quantitative polymerase chain reaction (PCR) in LightCycler® PCR platforms, using the technique of sequence-specific hybridization probe-binding assays and melting temperature curve analysis. The results showed there was no statistically significant difference between 5A/5A, 5A/6A and 6A/6A MMP-3 gene promoter variants in the two study groups (P=0.4758). Therefore, MMP-3 gene promoter SNPs alone is insufficient to increase the genetic susceptibility to POP development. PMID:27588175

  2. Matrix metalloproteinase gene expressions might be oxidative stress targets in gastric cancer cell lines

    PubMed Central

    Gencer, Salih; Cebeci, Anil

    2013-01-01

    Objective Oxidative stress is linked to increased risk of gastric cancer and matrix metalloproteinases (MMPs) are important in the invasion and metastasis of gastric cancer. We aimed to analyze the effect of the accumulation of oxidative stress in the gastric cancer MKN-45 and 23132/87 cells following hydrogen peroxide (H2O2) exposure on the expression patterns of MMP-1, MMP-3, MMP-7, MMP-9, MMP-10, MMP-11, MMP-12, MMP-14, MMP-15, MMP-17, MMP-23, MMP-28, and β-catenin genes. Methods The mRNA transcripts in the cells were determined by RT-PCR. Following H2O2 exposure, oxidative stress in the viable cells was analyzed by 2',7'-dichlorofluorescein diacetate (DCFH-DA). Caffeic acid phenethyl ester (CAPE) was used to eliminate oxidative stress and the consequence of H2O2 exposure and its removal on the expressions of the genes were evaluated by quantitative real-time PCR. Results The expressions of MMP-1, MMP-7, MMP-14, MMP-15, MMP-17 and β-catenin in MKN-45 cells and only the expression of MMP-15 in 23132/87 cells were increased. Removal of the oxidative stress resulted in decrease in the expressions of MMP genes of which the expressions were increased after H2O2 exposure. β-catenin, a transcription factor for many genes including MMPs, also displayed decreased levels of expression in both of the cell lines following CAPE treatment. Conclusions Our data suggest that there is a remarkable link between the accumulation of oxidative stress and the increased expressions of MMP genes in the gastric cancer cells and MMPs should be considered as potential targets of therapy in gastric cancers due to its continuous exposure to oxidative stress. PMID:23825909

  3. Gene expression based mouse brain parcellation using Markov random field regularized non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Haynor, David R.; Thompson, Carol L.; Lein, Ed; Hawrylycz, Michael

    2009-02-01

    Understanding the geography of genetic expression in the mouse brain has opened previously unexplored avenues in neuroinformatics. The Allen Brain Atlas (www.brain-map.org) (ABA) provides genome-wide colorimetric in situ hybridization (ISH) gene expression images at high spatial resolution, all mapped to a common three-dimensional 200μm3 spatial framework defined by the Allen Reference Atlas (ARA) and is a unique data set for studying expression based structural and functional organization of the brain. The goal of this study was to facilitate an unbiased data-driven structural partitioning of the major structures in the mouse brain. We have developed an algorithm that uses nonnegative matrix factorization (NMF) to perform parts based analysis of ISH gene expression images. The standard NMF approach and its variants are limited in their ability to flexibly integrate prior knowledge, in the context of spatial data. In this paper, we introduce spatial connectivity as an additional regularization in NMF decomposition via the use of Markov Random Fields (mNMF). The mNMF algorithm alternates neighborhood updates with iterations of the standard NMF algorithm to exploit spatial correlations in the data. We present the algorithm and show the sub-divisions of hippocampus and somatosensory-cortex obtained via this approach. The results are compared with established neuroanatomic knowledge. We also highlight novel gene expression based sub divisions of the hippocampus identified by using the mNMF algorithm.

  4. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts

    PubMed Central

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Lu, Xi; Lind, Thomas; Melhus, Håkan; Engstrand, Thomas; Karlsson-Ott, Marjam; Engqvist, Hakan

    2016-01-01

    Pyrophosphate is a potent mitogen, capable of stimulating proliferation in multiple cell types, and a critical participant in bone mineralization. Pyrophosphate can also affect the resorption rate and bioactivity of orthopedic ceramics. The present study investigated whether calcium pyrophosphate affected proliferation, differentiation and gene expression in early (MC3T3 pre-osteoblast) and late stage (SAOS-2 osteosarcoma) osteoblasts. Pyrophosphate stimulated peak alkaline phosphatase activity by 50% and 150% at 100μM and 0.1μM in MC3T3, and by 40% in SAOS-2. The expression of differentiation markers collagen 1 (COL1), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) were increased by an average of 1.5, 2, 2 and 3 fold, by high concentrations of sodium pyrophosphate (100μM) after 7 days of exposure in MC3T3. COX-2 and ANK expression did not differ significantly from controls in either treatment group. Though both high and low concentrations of pyrophosphate stimulate ALP activity, only high concentrations (100μM) stimulated osteogenic gene expression. Pyrophosphate did not affect proliferation in either cell type. The results of this study confirm that chronic exposure to pyrophosphate exerts a physiological effect upon osteoblast differentiation and ALP activity, specifically by stimulating osteoblast differentiation markers and extracellular matrix gene expression. PMID:27701417

  5. The extracellular matrix regulates MaeuCath1a gene expression.

    PubMed

    Wanyonyi, Stephen S; Lefevre, Christophe; Sharp, Julie A; Nicholas, Kevin R

    2013-01-01

    We have previously shown that the gene for MaeuCath1, a cathelicidin secreted in wallaby milk is alternately spliced into two variants, MaeuCath1a and MaeuCath1b which are temporally regulated in order to provide antimicrobial protection to the newborn and stimulate mammary growth, respectively. The current study investigated the extracellular matrix (ECM) for its regulatory role in MaeuCath1 gene expression. Reverse transcription qPCR using RNA isolated from mammary epithelial cells (WallMEC) cultured on ECM showed that ECM regulates MaeuCath1a gene expression in a lactation phase-dependent manner. Luciferase reporter-based assays and in silico analysis of deletion fragments of the 2245bp sequence upstream of the translation start site identified ECM-dependent positive regulatory activity in the -709 to -15 region and repressor activity in the -919 to -710 region. Electrophoretic Gel Mobility Shift Assays (EMSA) using nuclear extract from ECM-treated WallMEC showed differential band shift in the -839 to -710 region. PMID:23500515

  6. Substratum Stiffness and Latrunculin B Regulate Matrix Gene and Protein Expression in Human Trabecular Meshwork Cells

    PubMed Central

    Thomasy, Sara M.; Wood, Joshua A.; Kass, Philip H.; Murphy, Christopher J.

    2012-01-01

    Purpose. To determine the impact of substratum stiffness and latrunculin-B (Lat-B), on the expression of several matrix proteins that are associated with glaucoma. Methods. Human trabecular meshwork (HTM) cells were cultured on hydrogels possessing stiffness values mimicking those found in normal (5 kPa) and glaucomatous meshworks (75 kPa), or tissue culture polystyrene (TCP; >1 GPa). Cells were treated with 2.0 μM Lat-B in dimethyl sulfoxide (DMSO) or DMSO alone. RT-PCR was used to determine the impact of substratum stiffness and/or Lat-B treatment on the expression of secreted protein, acidic, cysteine rich (SPARC), myocilin, angiopoietin-like factor (ANGPTL)-7, and transglutaminase (TGM)-2. Immunofluorescence was used to assess changes in protein expression. Results. SPARC and myocilin mRNA expression were dramatically increased on the 75 kPa hydrogels and decreased on the 5 kPa hydrogels in comparison to TCP. In contrast, ANGPTL-7 mRNA and TGM-2 mRNA was decreased on the 75 kPa and 5 kPa hydrogels, respectively, in comparison with TCP. Treatment with Lat-B dramatically downregulated both SPARC and myocilin on 75 kPa hydrogels. In contrast, cells grown on TCP produced greater or similar amounts of SPARC and myocilin mRNA after Lat-B treatment. SPARC and myocilin protein expression paralleled changes in mRNA expression. Conclusions. Substratum stiffness impacts HTM matrix gene and protein expression and modulates the impact of Lat-B treatment on the expression of these matrix proteins. Integrating the use of biologically relevant substratum stiffness in the conduction of in vitro experiments gives important insights into HTM cell response to drugs that may more accurately predict responses observed in vivo. PMID:22247475

  7. Symposium: Role of the extracellular matrix in mammary development. Regulation of milk protein and basement membrane gene expression: The influence of the extracellular matrix

    SciTech Connect

    Aggeler, J.; Park, C.S.; Bissell, M.J.

    1988-10-01

    Synthesis and secretion of milk proteins ({alpha}-casein, {beta}-casein, {gamma}-casein, and transferrin) by cultured primary mouse mammary epithelial cells is modulated by the extracellular matrix. In cells grown on released or floating type I collagen gels, mRNA for {beta}-casein and transferrin is increased as much as 30-fold over cells grown on plastic. Induction of {beta}-casein expression depends strongly on the presence of lactogenic hormones, especially prolactin, in the culture. When cells are plated onto partially purified reconstituted basement membrane, dramatic changes in morphology and milk protein gene expression are observed. Cells cultured on the matrix for 6 to 8 d in the presence of prolactin, insulin, and hydrocortisone form hollow spheres and duct-like structures that are completely surrounded by matrix. The cells lining these spheres appear actively secretory and are oriented with their apices facing the lumen. Hybridization experiments indicate that mRNA for {beta}-casein can be increased as much as 70-fold in these cultures. Because > 90% of the cultured cells synthesize immunoreactive {beta}-casein, as compared with only 40% of cells in the late pregnant gland, the matrix appears to be able to induce protein expression in previously silent cells. Synthesis of laminin and assembly of a mammary-specific basal lamina by cells cultured on different extracellular matrices also appears to depend on the presence of lactogenic hormones. These studies provide support for the concept of dynamic reciprocity in which complex interactions between extracellular matrix and the cellular cytoskeleton contribute to the induction and maintenance of tissue-specific gene expression in the mammary gland.

  8. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur

    NASA Technical Reports Server (NTRS)

    Evans, G. L.; Morey-Holton, E.; Turner, R. T.

    1998-01-01

    In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.

  9. Extracellular matrix macromolecules: potential tools and targets in cancer gene therapy.

    PubMed

    Sainio, Annele; Järveläinen, Hannu

    2014-01-01

    Tumour cells create their own microenvironment where they closely interact with a variety of soluble and non-soluble molecules, different cells and numerous other components within the extracellular matrix (ECM). Interaction between tumour cells and the ECM is bidirectional leading to either progression or inhibition of tumourigenesis. Therefore, development of novel therapies targeted primarily to tumour microenvironment (TME) is highly rational. Here, we give a short overview of different macromolecules of the ECM and introduce mechanisms whereby they contribute to tumourigenesis within the TME. Furthermore, we present examples of individual ECM macromolecules as regulators of cell behaviour during tumourigenesis. Finally, we focus on novel strategies of using ECM macromolecules as tools or targets in cancer gene therapy in the future.

  10. Quantification of DNA in urinary porcine bladder matrix using the ACTB gene.

    PubMed

    Silva-Benítez, Erika; Soto-Sáinz, Eduardo; Pozos-Guillen, Amaury; Romero-Quintana, José Geovanni; Aguilar-Medina, Maribel; Ayala-Ham, Alfredo; Peña-Martínez, Eri; Ramos-Payán, Rosalío; Flores, Héctor

    2015-11-01

    Extracellular matrix (ECM) is a rich network of proteins and proteoglycans that has proved to be very useful in tissue regeneration. Porcine ECM has been proposed as a biological scaffold, and urinary bladder matrix (UBM) has demonstrated superior biological properties; however, its use in human treatment requires ensuring that it is DNA free. Several protocols have been used for decellularization and to demonstrate the absence of DNA, but until now, a porcine housekeeping gene for quantifying DNA by real-time quantitative PCR (qPCR) has been limiting. The aim of this study was to propose a protocol to quantify the DNA content of decellularized UBM by qPCR for the beta-actin gene (ACTB). A total of 20 porcine bladders were used, and each bladder was divided into three pieces: one as a control and the others decellularized with either SDS or Triton X-100 detergent. The presence of DNA was assessed by histology, spectrophotometry, conventional PCR, and qPCR for the ACTB. Histological analysis demonstrated the absence of nuclei using both protocols. Spectrophotometrical evaluation resulted in DNA concentrations of 1561.4 ± 357.1 and 1211.9 ± 635.2 ng of DNA/mg dry weight after the SDS and Triton X-100 protocols, respectively. DNA was not detected in any protocol by conventional PCR. In contrast, using qPCR, we found 3.9 ± 2.8 ng of DNA/mg dry weight in the Triton X-100 protocol. Therefore, the use of qPCR is a reliable method to quantify residual DNA content after decellularization procedures.

  11. A novel peptide-modified and gene-activated biomimetic bone matrix accelerating bone regeneration.

    PubMed

    Pan, Haitao; Zheng, Qixin; Yang, Shuhua; Guo, Xiaodong; Wu, Bin; Zou, Zhenwei; Duan, Zhixia

    2014-08-01

    The osteogenic differentiation of bone marrow stromal cells (BMSCs) can be regulated by systemic or local growth factor, especially by transforming growth factor beta 1 (TGF-β1). However, how to maintain the bioactivity of exogenous TGF-β1 is a great challenge due to its short half-life time. The most promising solution is to transfer TGF-β1 gene into seed cells through transgenic technology and then transgenic cells to continuously secret endogenous TGF-β1 protein via gene expression. In this study, a novel non-viral vector (K)16GRGDSPC was chemically linked to bioactive bone matrices PLGA-[ASP-PEG]n using cross-linker to construct a novel non-viral gene transfer system. TGF-β1 gene was incubated with this system and subsequently rabbit-derived BMSCs were co-cultured with this gene-activated PLGA-[ASP-PEG]n, while co-cultured with PLGA-[ASP-PEG]n modified with (K)16GRGDSPC only and original PLGA-[ASP-PEG]n as control. Thus we fabricated three kinds of composites: Group A (BMSCs-TGF-β1DNA-(K)16GRGDSPC-PLGA-[ASP-PEG]n composite); Group B (BMSCs-(K)16GRGDSPC-PLGA-[ASP-PEG]n composite); and Group C (BMSCs-PLGA-[ASP-PEG]n composite). TGF-β1 and other osteogenic phenotype markers of alkaline phosphatase, osteocalcin, osteopontin and type I collagen in Group A were all significantly higher than the other two groups ex vivo. In vivo, 15-mm long segmental rabbit bone defects were created and randomly implanted the aforementioned composites separately, and then fixed with plate-screws. The results demonstrated that the implants in Group A significantly accelerated bone regeneration compared with the other implants based on X-rays, histological and biomechanical examinations. Therefore, we conclude this novel peptide-modified and gene-activated biomimetic bone matrix of TGF-β1DNA-(K)16GRGDSPC-PLGA-[ASP-PEG]n is a very promising scaffold biomaterial for accelerating bone regeneration. PMID:24115366

  12. NOTCH1 Regulates Matrix Gla Protein and Calcification Gene Networks in Human Valve Endothelium

    PubMed Central

    White, Mark P.; Theodoris, Christina V.; Liu, Lei; Collins, William J.; Blue, Kathleen W.; Lee, Joon Ho; Meng, Xianzhong; Robbins, Robert C.; Ivey, Kathryn N.; Srivastava, Deepak

    2015-01-01

    Valvular and vascular calcification are common causes of cardiovascular morbidity and mortality. Developing effective treatments requires understanding the molecular underpinnings of these processes. Shear stress is thought to play a role in inhibiting calcification. Furthermore, NOTCH1 regulates vascular and valvular endothelium, and human mutations in NOTCH1 can cause calcific aortic valve disease. Here, we determined the genome-wide impact of altering shear stress and NOTCH signaling on aortic valve endothelium. mRNA-sequencing of human aortic valve endothelial cells (HAVECs) with or without knockdown of NOTCH1, in the presence or absence of shear stress, revealed NOTCH1-dependency of the atherosclerosis-related gene connexin 40 (GJA5), and numerous repressors of endochondral ossification. Among these, Matrix GLA Protein (MGP) is highly expressed in aortic valve and vasculature, and inhibits soft tissue calcification by sequestering bone morphogenetic proteins (BMPs). Altering NOTCH1 levels affected MGP mRNA and protein in HAVECs. Furthermore, shear stress activated NOTCH signaling and MGP in a NOTCH1-dependent manner. NOTCH1 positively regulated endothelial MGP in vivo through specific binding motifs upstream of MGP. Our studies suggest that shear stress activates NOTCH1 in primary human aortic valve endothelial cells leading to downregulation of osteoblast-like gene networks that play a role in tissue calcification. PMID:25871831

  13. Fibroblasts behavior after N-acetylcysteine and amino acids exposure: extracellular matrix gene expression.

    PubMed

    Avantaggiato, Anna; Palmieri, Annalisa; Bertuzzi, Gianluigi; Carinci, Francesco

    2014-06-01

    Reactive oxygen species (ROS) are chemically reactive molecules with impaired electrons that make them unstable and able to react easily with a great variety of molecules. The main targets of ROS are DNA, proteins, and membrane phospholipids. In the skin, ROS are able to affect the production of collagen and elastin, the main components of the extracellular matrix (ECM). This action contributes to the skin's aging. N-Acetylcysteine (NAC) is an acetylated cysteine residue with excellent anti-oxidant activity that boosts glutathione (GSH) levels. This study evaluates the effect of a solution of NAC and amino acids, which is used in aesthetic medicine as an intra-dermal injective treatment, on fibroblast behavior. To this aim, the expression levels of some ECM-related genes (HAS1, HYAL1 ELN, ELANE, MMP2, MMP3, MMP13, COL1A1, COL3A1) were analyzed on cultured dermal fibroblasts using real-time reverse transcription polymerase chain reaction (RT-PCR). All but two collagen genes were up-regulated after 24 hr of treatment. PMID:24438160

  14. Expression and activation of matrix metalloproteinases in wounds: modulation by the tripeptide-copper complex glycyl-L-histidyl-L-lysine-Cu2+.

    PubMed

    Siméon, A; Monier, F; Emonard, H; Gillery, P; Birembaut, P; Hornebeck, W; Maquart, F X

    1999-06-01

    We investigated the expression and activation of matrix metalloproteinases in a model of experimental wounds in rats, and their modulation by glycyl-L-histidyl-L-lysine-Cu(II), a potent activator of wound repair. Wound chambers were inserted under the skin of Sprague-Dawley rats and received serial injections of either 2 mg glycyl-L-histidyl-L-lysine-Cu(II) or the same volume of saline. The wound fluid and the neosynthetized connective tissue deposited in the chambers were collected and analyzed for matrix metalloproteinase expression and/or activity. Interstitial collagenase increased progressively in the wound fluid throughout the experiment. Glycyl-L-histidyl-L-lysine-Cu(II) treatment did not alter its activity. Matrix metalloproteinase-9 (gelatinase B) and matrix metalloproteinase-2 (gelatinase A) were the two main gelatinolytic activities expressed during the healing process. Pro-matrix metalloproteinase (pro-form of matrix metalloproteinase)-9 was strongly expressed during the early stages of wound healing (day 3). In the wound fluid, it decreased rapidly and disappeared after day 18, whereas in the wound tissue, matrix metalloproteinase-9 expression persisted in the glycyl-L-histidyl-L-lysine-Cu(II) injected chamber until day 22. Pro-matrix metalloproteinase-2 was expressed at low levels at the beginning of the healing process, increased progressively until day 7, then decreased until day 18. Activated matrix metalloproteinase-2 was present in wound fluid and wound tissue. It increased until day 12, then decreased progressively. Glycyl-L-histidyl-L-lysine-Cu(II) injections increased pro-matrix metalloproteinase-2 and activated matrix metalloproteinase-2 during the later stages of healing (days 18 and/or 22). These results demonstrate that various types of matrix metalloproteinases are selectively expressed or activated at the various periods of wound healing. Glycyl-L-histidyl-L-lysine-Cu(II) is able to modulate their expression and might significantly alter

  15. Role of Substratum Stiffness in Modulating Genes Associated with Extracellular Matrix and Mechanotransducers YAP and TAZ

    PubMed Central

    Raghunathan, Vijay Krishna; Morgan, Joshua T.; Dreier, Britta; Reilly, Christopher M.; Thomasy, Sara M.; Wood, Joshua A.; Ly, Irene; Tuyen, Binh C.; Hughbanks, Marissa; Murphy, Christopher J.; Russell, Paul

    2013-01-01

    Purpose. Primary open-angle glaucoma is characterized by increased resistance to aqueous humor outflow and a stiffer human trabecular meshwork (HTM). Two Yorkie homologues, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif, encoded by WWTR1 (TAZ), are mechanotransducers of the extracellular-microenvironment and coactivators of transcription. Here, we explore how substratum stiffness modulates the YAP/TAZ pathway and extracellular matrix genes in HTM cells and how this may be play a role in the onset and progression of glaucoma. Methods. HTM cells from normal donors were cultured on hydrogels mimicking the stiffness of normal (5 kPa) and glaucomatous (75 kPa) HTM. Changes in expression of YAP/TAZ related genes and steroid responsiveness were determined. Additionally, transglutaminase-2 expression was determined after YAP silencing. Results. YAP and TAZ are both expressed in human trabecular meshwork cells. In vitro, YAP and TAZ were inversely regulated by substratum stiffness. YAP and 14-3-3σ were downregulated to different extents on stiffer substrates; TAZ, tissue transglutaminase (TGM2), and soluble frizzled-related protein-1 (sFRP-1) were significantly upregulated. CTGF expression appeared to be altered differentially by both YAP and TAZ. Myocilin and angiopoietin-like 7 expression in response to dexamethasone was more pronounced on stiffer substrates. We demonstrated a direct effect by YAP on TGM2 when YAP was silenced by small interfering RNA. Conclusions. The expression of YAP/TAZ and ECM-related-genes is impacted on physiologically relevant substrates. YAP was upregulated in cells on softer substrates. Stiffer substrates resulted in upregulation of canonical Wnt modulators, TAZ and sFRP-1, and thus may influence the progression of glaucoma. These results demonstrate the importance of YAP/TAZ in the HTM and suggest their role in glaucoma. PMID:23258147

  16. Transcriptional profiling identifies extensive downregulation of extracellular matrix gene expression in sarcopenic rat soleus muscle.

    PubMed

    Pattison, J Scott; Folk, Lillian C; Madsen, Richard W; Childs, Thomas E; Booth, Frank W

    2003-09-29

    The direction of change in skeletal muscle mass differs between young and old individuals, growing in young animals and atrophying in old animals. The purpose of the experiment was to develop a statistically conservative list of genes whose expression differed significantly between young growing and old atrophying (sarcopenic) skeletal muscles, which may be contributing to physical frailty. Gene expression levels of >24,000 transcripts were determined in soleus muscle samples from young (3-4 mo) and old (30-31 mo) rats. Age-related differences were determined using a Student's t-test (alpha of 0.05) with a Bonferroni adjustment, which yielded 682 probe sets that differed significantly between young (n = 25) and old (n = 20) animals. Of 347 total decreases in aged/sarcopenic muscle relative to young muscles, 199 were functionally identified; the major theme being that 24% had a biological role in the extracellular matrix and cell adhesion. Three themes were observed from 213 of the 335 total increases in sarcopenic muscles whose functions were documented in databases: 1) 14% are involved in immune response; 2) 9% play a role in proteolysis, ubiquitin-dependent degradation, and proteasome components; and 3) 7% act in stress/antioxidant responses. A total of 270 differentially expressed genes and ESTs had unknown/unclear functions. By decreasing the sample sizes of young and old animals from 25 x 20 to 15 x 15, 10 x 10, and 5 x 5 observations, we observed 682, 331, 73, and 3 statistically different mRNAs, respectively. Use of large sample size and a Bonferroni multiple testing adjustment in combination yielded increased statistical power, while protecting against false positives. Finally, multiple mRNAs that differ between young growing and old, sarcopenic muscles were identified and may highlight new candidate mechanisms that regulate skeletal muscle mass during sarcopenia. PMID:12888627

  17. Differential expression of extracellular matrix genes in glenohumeral capsule of shoulder instability patients.

    PubMed

    Belangero, Paulo Santoro; Leal, Mariana Ferreira; Figueiredo, Eduardo Antônio; Cohen, Carina; Andreoli, Carlos Vicente; Smith, Marília Cardoso; Pochini, Alberto de Castro; Ejnisman, Benno; Cohen, Moises

    2016-07-01

    Anterior shoulder instability is a common orthopedic problem. After a traumatic shoulder dislocation, patients present a plastic deformation of the capsule. The shoulder instability biology remains poorly understood. We evaluated the expression of genes that encode the cartilage oligomeric matrix protein (COMP), fibronectin 1 (FN1), tenascin C (TNC) and tenascin XB (TNXB) in the glenohumeral capsule of anterior shoulder instability patients and controls. Moreover, we investigated the associations between gene expression and clinical parameters. The gene expression was evaluated by quantitative reverse transcription-polymerase chain reaction in the antero-inferior (macroscopically injured region), antero-superior and posterior regions of the capsule of 29 patients with shoulder instability and 8 controls. COMP expression was reduced and FN1 and TNC expression was increased in the antero-inferior capsule region of cases compared to controls (p < 0.05). TNC expression was increased in the posterior capsule portion of shoulder instability patients (p = 0.022). COMP expression was reduced in the antero-inferior region compared to the posterior region of shoulder instability patients (p = 0.007). In the antero-inferior region, FN1 expression was increased in the capsule of patients with more than one year of symptoms (p = 0.003) and with recurrent dislocations (p = 0.004) compared with controls. FN1 and TNXB expression was correlated with the duration of symptoms in the posterior region (p < 0.05). Thus, COMP, FN1, TNC and TNXB expression was altered across the capsule of shoulder instability patients. Dislocation episodes modify FN1, TNC and TNXB expression in the injured tissue. COMP altered expression may be associated with capsule integrity after shoulder dislocation, particularly in the macroscopically injured portion.

  18. Functional polymorphisms in the matrix metalloproteinase genes and their association with bladder cancer risk and recurrence: a mini-review.

    PubMed

    Wieczorek, Edyta; Wasowicz, Wojciech; Gromadzinska, Jolanta; Reszka, Edyta

    2014-08-01

    Molecular pathogenesis of muscle invasive bladder cancer and non-muscle invasive bladder cancer is incompletely elucidated. It is believed that matrix metalloproteinases, which are involved in the processes of uncontrolled extracellular matrix substrates degradation and participate in modulating the activity of a variety of non-matrix proteins, can contribute to carcinogenesis. Polymorphisms in the MMP genes associated with unique genomic changes in bladder cancer patients are still being investigated to discover direct links with pathophysiological mechanisms. Because of the functional polymorphisms in the MMP genes, which have a proven or likely effect on their protein expression, they could possibly affect the tumor process. The current mini-review synthesizes findings regarding the association of genetic polymorphisms in the MMP genes with bladder cancer risk and recurrence in patients. We discuss the current views on the feasibility of genetic polymorphisms in the MMP1, 2, 3, 7, 8, 9 and 12 genes as a risk, and prognostic markers for patients with bladder cancer. The majority of the research described in the present mini-review proves that the genetic polymorphism in the MMP1 (rs1799750) is the most widely studied, and suggests that the rare genotype, 2G2G, of that gene might show increased susceptibility for bladder cancer, especially among smokers. However, existing statistically significant associations between the genetic polymorphisms in the MMP genes and bladder cancer risk have not been clearly shown, and further studies are necessary in order to positively confirm them or dispel potential false hopes. PMID:24635493

  19. A Gene Expression-Based Comparison of Cell Adhesion to Extracellular Matrix and RGD-Terminated Monolayers

    PubMed Central

    Sobers, Courtney J.; Wood, Sarah E.; Mrksich, Milan

    2015-01-01

    This work uses global gene expression analysis to compare the extent to which model substrates presenting peptide adhesion motifs mimic the use of conventional extracellular matrix protein coated substrates for cell culture. We compared the transcriptional activities of genes in cells that were cultured on matrix-coated substrates with those cultured on self-assembled monolayers presenting either a linear or cyclic RGD peptide. Cells adherent to cyclic RGD were most similar to those cultured on native ECM, while cells cultured on monolayers presenting the linear RGD peptide had transcriptional activities that were more similar to cells cultured on the uncoated substrates. This study suggests that biomaterials presenting the cyclic RGD peptide are substantially better mimics of extracellular matrix than are uncoated materials or materials presenting the common linear RGD peptide. PMID:25818445

  20. Complete structure, genomic organization, and expression of channel catfish (Ictalurus punctatus, Rafinesque 1818) matrix metalloproteinase-9 gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that the channel catfish (CC) matrix metalloproteinase-9 (MMP-9) expressed sequence tag (EST) was up-regulated after early Edwardsiella ictaluri infection. In this study, the CC MMP-9 gene was cloned, sequenced and ch...

  1. Sequence Analysis of the Matrix (M2) Protein Gene of Avian Pneumovirus Recovered from Turkey Flocks in the United States

    PubMed Central

    Dar, Arshud M.; Munir, Shirin; Goyal, Sagar M.; Kapur, Vivek

    2003-01-01

    We here report the comparative sequence and phylogenetic analysis of the avian pneumovirus subgroup C (APV C) matrix (M2) gene of cell culture-adapted isolates and clinical samples. Limited heterogeneity was observed among the M2 sequences, suggesting that diagnostic tests and vaccines against APV C are likely to exhibit broad cross-reactivity. PMID:12791921

  2. Achondrogenesis type IB: agenesis of cartilage interterritorial matrix as the link between gene defect and pathological skeletal phenotype.

    PubMed

    Corsi, A; Riminucci, M; Fisher, L W; Bianco, P

    2001-10-01

    Achondrogenesis type IB is a lethal osteochondrodysplasia caused by mutations in the diastrophic dysplasia sulfate transporter gene. How these mutations lead to the skeletal phenotype is not known. Histology of plastic-embedded skeletal fetal achondrogenesis type IB samples suggested that interterritorial epiphyseal cartilage matrix was selectively missing. Cartilage was organized in "chondrons" separated by cleft spaces; chondrocyte seriation, longitudinal septa, and, in turn, mineralized cartilaginous septa were absent. Agenesis of interterritorial matrix as the key histologic change was confirmed by immunohistology using specific markers of territorial and interterritorial matrix. Biglycan-enriched territorial matrix was preserved; decorin-enriched interterritorial areas were absent, although immunostaining was observed within chondrocytes. Thus, in achondrogenesis type IB: (1) a complex derangement in cartilage matrix assembly lies downstream of the deficient sulfate transporter activity; (2) the severely impaired decorin deposition participates in the changes in matrix organization with lack of development of normal interterritorial matrix; and (3) this change determines the lack of the necessary structural substrate for proper endochondral bone formation and explains the severe skeletal phenotype. PMID:11570921

  3. S100B-p53 disengagement by pentamidine promotes apoptosis and inhibits cellular migration via aquaporin-4 and metalloproteinase-2 inhibition in C6 glioma cells

    PubMed Central

    CAPOCCIA, ELENA; CIRILLO, CARLA; MARCHETTO, ANNALISA; TIBERI, SAMANTA; SAWIKR, YOUSSEF; PESCE, MARCELLA; D'ALESSANDRO, ALESSANDRA; SCUDERI, CATERINA; SARNELLI, GIOVANNI; CUOMO, ROSARIO; STEARDO, LUCA; ESPOSITO, GIUSEPPE

    2015-01-01

    S100 calcium-binding protein B (S100B) is highly expressed in glioma cells and promotes cancer cell survival via inhibition of the p53 protein. In melanoma cells, this S100B-p53 interaction is known to be inhibited by pentamidine isethionate, an antiprotozoal agent. Thus, the aim of the present study was to evaluate the effect of pentamidine on rat C6 glioma cell proliferation, migration and apoptosis in vitro. The change in C6 cell proliferation following treatment with pentamidine was determined by performing a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide-formazan assay. Significant dose-dependent decreases in proliferation were observed at pentamidine concentrations of 0.05 µM (58.5±5%; P<0.05), 0.5 µM (40.6±7%; P<0.01) and 5 µM (13±4%; P<0.001) compared with the control (100% viability). Furthermore, treatment with 0.05, 0.5 and 5 µM pentamidine was associated with a significant increase in apoptosis versus the untreated cells, as determined by DNA fragmentation assays, immunofluorescence analysis of C6 chromatin using Hoechst staining, and immunoblot analysis of B-cell lymphoma-2 (Bcl-2)-associated X protein (100%, P<0.05; 453%, P<0.01; and 1000%, P<0.001, respectively) and Bcl-2 (-60%, P<0.001; −80.13%, P<0.001; −95%, P<0.001, respectively). In addition, the administration of 0.05, 0.5 and 5 µM pentamidine significantly upregulated the protein expression levels of p53 (681±87.5%, P<0.05; 1244±94.3%, P<0.01; and 2244±111%, P<0.001, respectively), and significantly downregulated the expression levels of matrix metalloproteinase-2 (42±2.3%, P<0.05; 71±2.5%, P<0.01; and 95.8±3.3%, P<0.001, respectively) and aquaporin 4 (38±2.5%, P<0.05; 69±2.6%, P<0.01; and 88±3.0%, P<0.001, respectively), compared with the untreated cells. The wound healing assay demonstrated that cell migration was significantly impaired by treatment with 0.05, 0.5 and 5 µM pentamidine compared with untreated cells (88±4.2%, P<0.05; 64±2%, P<0.01; and 42

  4. Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study

    PubMed Central

    Le Maitre, Christine L; Hoyland, Judith A; Freemont, Anthony J

    2007-01-01

    Data implicate IL-1 in the altered matrix biology that characterizes human intervertebral disc (IVD) degeneration. In the current study we investigated the enzymic mechanism by which IL-1 induces matrix degradation in degeneration of the human IVD, and whether the IL-1 inhibitor IL-1 receptor antagonist (IL-1Ra) will inhibit degradation. A combination of in situ zymography (ISZ) and immunohistochemistry was used to examine the effects of IL-1 and IL-1Ra on matrix degradation and metal-dependent protease (MDP) expression in explants of non-degenerate and degenerate human IVDs. ISZ employed three substrates (gelatin, collagen, casein) and different challenges (IL-1β, IL-1Ra and enzyme inhibitors). Immunohistochemistry was undertaken for MDPs. In addition, IL-1Ra was introduced into degenerate IVD explants using genetically engineered constructs. The novel findings from this study are: IL-1Ra delivered directly onto explants of degenerate IVDs eliminates matrix degradation as assessed by multi-substrate ISZ; there is a direct relationship between matrix degradation assessed by ISZ and MDP expression defined by immunohistochemistry; single injections of IVD cells engineered to over-express IL-1Ra significantly inhibit MDP expression for two weeks. Our findings show that IL-1 is a key cytokine driving matrix degradation in the degenerate IVD. Furthermore, IL-1Ra delivered directly or by gene therapy inhibits IVD matrix degradation. IL-1Ra could be used therapeutically to inhibit degeneration of the IVD. PMID:17760968

  5. Endometrial gene expression of acute phase extracellular matrix components following estrogen disruption of pregnancy in pigs.

    PubMed

    Ashworth, Morgan D; Ross, Jason W; Stein, Daniel; White, Frank; Geisert, Rodney D

    2010-12-01

    In pigs, administration of estrogen to gilts on Days 9 and 10 of pregnancy causes conceptus fragmentation and death between Days 15 and 18 of gestation. Conceptus degeneration is associated with breakdown of the microvilli surface glycocalyx on the lumenal epithelium (LE). We previously identified endometrial expression of inter-α-trypsin inhibitor (ITI) and hyaluronic acid (HA), which are key components of extracellular matrix (ECM), during the period of conceptus attachment to the uterine surface in the pig. Tumor necrosis factor-α-inducible protein-6 (TNFAIP6) serves as a linker for ECM expansion and is stimulated by prostaglandin E (PGE). We hypothesized that early estrogen administration alters the normal ECM components forming glycocalyx on the LE. Bred gilts (4 gilts/trt/day) were treated with either 5mg estradiol cypionate (E) or corn oil (CO) on Days 9 and 10 of gestation. The uterus was surgically removed on either Days 10, 12, 13, 15 and 17 of gestation and endometrial tissue snap frozen in liquid nitrogen. Endometrial tumor necrosis factor-α (TNF), TNFAIP6, interleukin 6 (IL6), and inter-α-trypsin inhibitor heavy chains (ITIH) were detected during early pregnancy thereby indicating all components for maintenance of the extracellular glycocalyx are present in the endometrium of pigs. However, only gene expression of ITIH2 was suppressed by E-treatment. TNFAIP6 protein was detected across all days of gestation but was not affected by E-treatment. The present study demonstrates that while the pig endometrium expresses key components of ECM only ITIH2 gene expression was altered by E-treatment. A decrease in ITIH2 could lead to the possible loss of the uterine glycocalyx leading to conceptus degeneration; however, other factors may be involved with the loss of glycocalyx during implantation in the pig following E-treatment.

  6. A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation.

    PubMed

    Al Adhami, Hala; Evano, Brendan; Le Digarcher, Anne; Gueydan, Charlotte; Dubois, Emeric; Parrinello, Hugues; Dantec, Christelle; Bouschet, Tristan; Varrault, Annie; Journot, Laurent

    2015-03-01

    Genomic imprinting is an epigenetic mechanism that restrains the expression of ∼ 100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor-activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm.

  7. Tumor immunotherapy using gene-modified human mesenchymal stem cells loaded into synthetic extracellular matrix scaffolds.

    PubMed

    Compte, Marta; Cuesta, Angel M; Sánchez-Martín, David; Alonso-Camino, Vanesa; Vicario, José Luís; Sanz, Laura; Alvarez-Vallina, Luís

    2009-03-01

    Mesenchymal stem cells (MSCs) are appealing as gene therapy cell vehicles given their ease of expansion and transduction. However, MSCs exhibit immunomodulatory and proangiogenic properties that may pose a risk in their use in anticancer therapy. For this reason, we looked for a strategy to confine MSCs to a determined location, compatible with a clinical application. Human MSCs genetically modified to express luciferase (MSC(luc)), seeded in a synthetic extracellular matrix (sECM) scaffold (sentinel scaffold) and injected subcutaneously in immunodeficient mice, persisted for more than 40 days, as assessed by bioluminescence imaging in vivo. MSCs modified to express a bispecific alpha-carcinoembryonic antigen (alphaCEA)/alphaCD3 diabody (MSC(dAb)) and seeded in an sECM scaffold (therapeutic scaffolds) supported the release of functional diabody into the bloodstream at detectable levels for at least 6 weeks after implantation. Furthermore, when therapeutic scaffolds were implanted into CEA-positive human colon cancer xenograft-bearing mice and human T lymphocytes were subsequently transferred, circulating alphaCEA/alphaCD3 diabody activated T cells and promoted tumor cell lysis. Reduction of tumor growth in MSC(dAb)-treated mice was statistically significant compared with animals that only received MSC(luc). In summary, we report here for the first time that human MSCs genetically engineered to secrete a bispecific diabody, seeded in an sECM scaffold and implanted in a location distant from the primary tumor, induce an effective antitumor response and tumor regression. PMID:19096041

  8. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    PubMed Central

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O’Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-01-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes. PMID:26860065

  9. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    NASA Astrophysics Data System (ADS)

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O’Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-02-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.

  10. [Role of Allelic Genes of Matrix Metalloproteinases and Their Tissue Inhibitors in the Peptic Ulcer Disease Development].

    PubMed

    Shaymardanova, E Kh; Nurgalieva, A Kh; Khidiyatova, I M; Gabbasova, L V; Kuramshina, O A; Kryukova, A Ya; Sagitov, R B; Munasipov, F R; Khusnutdinova, E Kh

    2016-03-01

    Peptic ulcer disease is a chronic disease of the gastrointestinal tract, mainly manifesting itself in the formation of the fairly persistent ulcer defect of the mucous membrane of the stomach and/or duodenum. Association analysis of common polymorphisms of matrix metalloproteinases genes MMP-1 (rs1799750, rs494379), MMP-2 (rs2285052), MMP-3 (rs3025058), MMP-9 (rs3918242, rs17576), and MMP-12 (rs2276109) and their tissue inhibitors TIMP-2 (rs8179090) and TIMP-3 (rs9619311) was carried out in 353 patients with a gastric ulcer or duodenal ulcer and in 325 unrelated healthy individuals from the Republic of Bashkortostan. Associations of polymorphic variants rs1799750 and rs494379 of gene MMP-1, rs3025058 of gene MMP-3, rs3918242 and rs17576 of gene MMP-9, and rs9619311 of gene TIMP-3 with the risk of peptic ulcer disease in Russians and Tatars were revealed.

  11. MATRIX FACTORIZATION-BASED DATA FUSION FOR GENE FUNCTION PREDICTION IN BAKER’S YEAST AND SLIME MOLD

    PubMed Central

    ŽITNIK, MARINKA; ZUPAN, BLAŽ

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker’s yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps. PMID:24297565

  12. Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus

    NASA Technical Reports Server (NTRS)

    Kitajima, T.; Tomita, M.; Killian, C. E.; Akasaka, K.; Wilt, F. H.

    1996-01-01

    We have isolated a cDNA clone for spicule matrix protein, SM30, from sea urchin Hemicentrotus pulcherrimus and have studied the expression of this gene in comparison with that of another spicule matrix protein gene, SM50. In cultured micromeres as well as in intact embryos transcripts of SM30 were first detectable around the onset of spicule formation and rapidly increased with the growth of spicules, which accompanied accumulation of glycosylated SM30 protein(s). When micromeres were cultured in the presence of Zn2+, spicule formation and SM30 expression were suppressed, while both events resumed concurrently after the removal of Zn2+ from the culture medium. Expression of SM50, in contrast, started before the appearance of spicules and was not sensitive to Zn2+. Differences were also observed in adult tissues; SM30 mRNA was detected in spines and tube feet but not in the test, while SM50 mRNA was apparent in all of these mineralized tissues at similar levels. These results strongly suggest that the SM30 gene is regulated by a different mechanism to that of the SM50 gene and that the products of these two genes are differently involved in sea urchin biomineralization. A possible role of SM30 protein in skeleton formation is discussed.

  13. FTY-720P Suppresses Osteoclast Formation by Regulating Expression of Interleukin-6 (IL-6), Interleukin-4 (IL-4), and Matrix Metalloproteinase 2 (MMP-2)

    PubMed Central

    Zhang, Dawei; Huang, Yongjun; Huang, Zongwen; Zhang, Rongkai; Wang, Honggang; Huang, Dong

    2016-01-01

    Background Osteoclast formation is closely related to the immune system. FTY720, a new immunosuppressive agent, has some functions in immune regulation. Its main active ingredients become FTY-720P in vivo by phosphorylation modification. The objective of this study was to determine the effects of FTY-720 with various concentrations on osteoclasts in vitro. Material/Methods RAW264.7 cells and bone marrow-derived mononuclear phagocytes (BMMs) were treated with RANKL to obtain osteoclasts in vitro. To investigate the role of FTY-720 in osteoclast formation, trap enzyme staining was performed and the number of osteoclasts was counted. Bone slices were stained with methylene blue, we counted the number of lacunae after bone slices were placed into dishes together with osteoclasts, and we observed the effect and function of FTY-720 in osteoclasts induced by RAW264.7 cells and BMMs. Then, we used a protein array kit to explore the effects of FTY-720P on osteoclasts. Results The results of enzyme trap staining and F-actin staining experiments show that, with the increasing concentration of FTY-720P, the number of osteoclast induced by RAW264.7 cells and BMMs gradually decreased (P<0.05), especially when the FTY-720P concentration reached 1000 ng/ml, and the number of osteoclasts formed was the lowest (P<0.05). With bone lacuna toluidine blue staining, the results also show that, with the increasing concentration of FTY-720P, the number of bone lacuna gradually decreased (P<0.05), and the number of lacunae is lowest when the concentration reached 800 ng/ml. Finally, protein array results showed that IL-4, IL-6, IL-12, MMP-2, VEGF-C, GFR, basic FGF, MIP-2, and insulin proteins were regulated after FTY-720P treatment. Conclusions FTY-720P can suppress osteoclast formation and function, and FTY-720P induces a series of cytokine changes. PMID:27344392

  14. Effects of tumor necrosis factor-alpha and interferon-gamma on expressions of matrix metalloproteinase-2 and -9 in human bladder cancer cells.

    PubMed

    Shin, K Y; Moon, H S; Park, H Y; Lee, T Y; Woo, Y N; Kim, H J; Lee, S J; Kong, G

    2000-10-31

    We have investigated the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon (INF-gamma), the potent Bacillus Calmette-Guerin (BCG)-induced cytokines on the production of MMP-2, MMP-9, TIMP-1, TIMP-2 and MT1-MMP in high grade human bladder cancer cell lines, T-24, J-82 and HT-1376 cell lines. MMP-2 expression and activity were decreased in T-24 cells treated with both cytokines in a dose dependent manner. However, J-82 cells treated with TNF-alpha and INF-gamma revealed dose dependent increases of MMP-9 expression and activity with similar baseline expression and activity of MMP-2. HT-1376 cells after exposure to TNF-alpha only enhanced the expression and activity of MMP-9. These results indicate that TNF-alpha and INF-gamma could regulate the production of MMP-2 or MMP-9 on bladder cancer cells and their patterns of regulation are cell specific. Furthermore, this diverse response of bladder cancer cells to TNF-alpha and INF-gamma suggests that BCG immunotherapy may enhance the invasiveness of bladder cancer in certain conditions with induction of MMPs.

  15. Sequence motifs of tissue inhibitor of metalloproteinases 2 (TIMP-2) determining progelatinase A (proMMP-2) binding and activation by membrane-type metalloproteinase 1 (MT1-MMP).

    PubMed Central

    Worley, Joanna R; Thompkins, Philip B; Lee, Meng H; Hutton, Mike; Soloway, Paul; Edwards, Dylan R; Murphy, Gillian; Knäuper, Vera

    2003-01-01

    Fundamental cellular processes including angiogenesis and cell migration require a proteolytic cascade driven by interactions of membrane-type matrix metalloproteinase 1 (MT1-MMP) and progelatinase A (proMMP-2) that are dependent on the presence of tissue inhibitor of metalloproteinases 2 (TIMP-2). There are unique interactions between TIMP-2 and MT1-MMP, which we have previously defined, and here we identify TIMP-2 sequence motifs specific for proMMP-2 binding in the context of its activation by MT1-MMP. A TIMP-2 mutant encoding the C-terminal domain of TIMP-4 showed loss of proMMP-2 activation, indicating that the C-terminal domain of TIMP-2 is important in establishing the trimolecular complex between MT1-MMP, TIMP-2 and proMMP-2. This was confirmed by analysis of a TIMP-4 mutant encoding the C-terminal domain of TIMP-2, which formed a trimolecular complex and promoted proMMP-2 processing to the intermediate form. Mutants encoding TIMP-4 from Cys(1) to Leu(185) and partial tail sequence of TIMP-2 showed some gain of activating capability relative to TIMP-4. The identified residues were subsequently mutated in TIMP-2 (E(192)-D(193) to I(192)-Q(193)) and this inhibitor showed a significantly reduced ability to facilitate proMMP-2 processing by MT1-MMP. Furthermore, the tail-deletion mutant Delta(186-194)TIMP-2 was completely incapable of promoting proMMP-2 activation by MT1-MMP. Thus the C-terminal tail residues of TIMP-2 are important determinants for stable trimolecular complex formation between TIMP-2, proMMP-2 and MT1-MMP and play an important role in MT1-MMP-mediated processing to the intermediate and final active forms of MMP-2 at the cell surface. PMID:12630911

  16. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    SciTech Connect

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Rouis, Mustapha

    2008-11-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1{beta}, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPAR{alpha} and PPAR{gamma}, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPAR{alpha} and {gamma} isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1{beta}-treated macrophages only in the presence of a specific PPAR{alpha} agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1{beta}-stimulated peritoneal macrophages isolated from PPAR{alpha}{sup -/-} mice and treated with the PPAR{alpha} agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by {approx} 50% in IL-1{beta}-stimulated PPAR{alpha}-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1{beta} effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPAR{alpha} and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies

  17. Inhibition of Newcastle disease virus replication by RNA interference targeting the matrix protein gene in chicken embryo fibroblasts.

    PubMed

    Yin, Renfu; Ding, Zhuang; Liu, Xinxin; Mu, Lianzhi; Cong, Yanlong; Stoeger, Tobias

    2010-07-01

    Newcastle disease (ND) is an infectious viral disease of birds caused by the Newcastle disease virus (NDV), also known as avian paramyxovirus type 1 (AMPV-1), which leads to severe economic losses in the poultry industry worldwide. In this study, the application of RNA interference (RNAi) for inhibiting the replication of NDV in cell culture by targeting the viral matrix protein gene (M) is described. Two M-specific shRNA-expressing plasmid constructs, named pS(M641) and pS(M827), were evaluated for antiviral activity against the NDV strain NA-1 by cytopathic effects (CPE), virus titration and real-time RT-PCR. After 36h of infection, both pS(M641) and pS(M827) reduced virus titers by 79.4- and 31.6-fold, respectively, and they down-regulated mRNA expression levels of the matrix protein gene M by 94.6% and 84.8%, respectively, in chicken embryo fibroblast (CEF) cells, while only pS(M641) significantly decreased CPE, compared to the control group. These results indicated that the M gene 641 and 827 sites represent potential antiviral therapy targets, and RNAi targeting of the M gene could not only represent an effective treatment in Newcastle disease but also aid as a method for studying the replication of NDV.

  18. Aryl Hydrocarbon Receptor Activation by TCDD Modulates Expression of Extracellular Matrix Remodeling Genes during Experimental Liver Fibrosis

    PubMed Central

    Lamb, Cheri L.; Cholico, Giovan N.; Perkins, Daniel E.; Fewkes, Michael T.; Oxford, Julia Thom; Lujan, Trevor J.; Morrill, Erica E.

    2016-01-01

    The aryl hydrocarbon receptor (AhR) is a soluble, ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence implicates the AhR in regulating extracellular matrix (ECM) homeostasis. We recently reported that TCDD increased necroinflammation and myofibroblast activation during liver injury elicited by carbon tetrachloride (CCl4). However, TCDD did not increase collagen deposition or exacerbate fibrosis in CCl4-treated mice, which raises the possibility that TCDD may enhance ECM turnover. The goal of this study was to determine how TCDD impacts ECM remodeling gene expression in the liver. Male C57BL/6 mice were treated for 8 weeks with 0.5 mL/kg CCl4, and TCDD (20 μg/kg) was administered during the last two weeks. Results indicate that TCDD increased mRNA levels of procollagen types I, III, IV, and VI and the collagen processing molecules HSP47 and lysyl oxidase. TCDD also increased gelatinase activity and mRNA levels of matrix metalloproteinase- (MMP-) 3, MMP-8, MMP-9, and MMP-13. Furthermore, TCDD modulated expression of genes in the plasminogen activator/plasmin system, which regulates MMP activation, and it also increased TIMP1 gene expression. These findings support the notion that AhR activation by TCDD dysregulates ECM remodeling gene expression and may facilitate ECM metabolism despite increased liver injury.

  19. Aryl Hydrocarbon Receptor Activation by TCDD Modulates Expression of Extracellular Matrix Remodeling Genes during Experimental Liver Fibrosis

    PubMed Central

    Lamb, Cheri L.; Cholico, Giovan N.; Perkins, Daniel E.; Fewkes, Michael T.; Oxford, Julia Thom; Lujan, Trevor J.; Morrill, Erica E.

    2016-01-01

    The aryl hydrocarbon receptor (AhR) is a soluble, ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence implicates the AhR in regulating extracellular matrix (ECM) homeostasis. We recently reported that TCDD increased necroinflammation and myofibroblast activation during liver injury elicited by carbon tetrachloride (CCl4). However, TCDD did not increase collagen deposition or exacerbate fibrosis in CCl4-treated mice, which raises the possibility that TCDD may enhance ECM turnover. The goal of this study was to determine how TCDD impacts ECM remodeling gene expression in the liver. Male C57BL/6 mice were treated for 8 weeks with 0.5 mL/kg CCl4, and TCDD (20 μg/kg) was administered during the last two weeks. Results indicate that TCDD increased mRNA levels of procollagen types I, III, IV, and VI and the collagen processing molecules HSP47 and lysyl oxidase. TCDD also increased gelatinase activity and mRNA levels of matrix metalloproteinase- (MMP-) 3, MMP-8, MMP-9, and MMP-13. Furthermore, TCDD modulated expression of genes in the plasminogen activator/plasmin system, which regulates MMP activation, and it also increased TIMP1 gene expression. These findings support the notion that AhR activation by TCDD dysregulates ECM remodeling gene expression and may facilitate ECM metabolism despite increased liver injury. PMID:27672655

  20. Temperature and Food Influence Shell Growth and Mantle Gene Expression of Shell Matrix Proteins in the Pearl Oyster Pinctada margaritifera

    PubMed Central

    Joubert, Caroline; Linard, Clémentine; Le Moullac, Gilles; Soyez, Claude; Saulnier, Denis; Teaniniuraitemoana, Vaihiti; Ky, Chin Long; Gueguen, Yannick

    2014-01-01

    In this study, we analyzed the combined effect of microalgal concentration and temperature on the shell growth of the bivalve Pinctada margaritifera and the molecular mechanisms underlying this biomineralization process. Shell growth was measured after two months of rearing in experimental conditions, using calcein staining of the calcified structures. Molecular mechanisms were studied though the expression of 11 genes encoding proteins implicated in the biomineralization process, which was assessed in the mantle. We showed that shell growth is influenced by both microalgal concentration and temperature, and that these environmental factors also regulate the expression of most of the genes studied. Gene expression measurement of shell matrix protein thereby appears to be an appropriate indicator for the evaluation of the biomineralization activity in the pearl oyster P. margaritifera under varying environmental conditions. This study provides valuable information on the molecular mechanisms of mollusk shell growth and its environmental control. PMID:25121605

  1. Gene targeting reveals the role of Oc90 as the essential organizer of the otoconial organic matrix

    PubMed Central

    Zhao, Xing; Yang, Hua; Yamoah, Ebenezer N; Lundberg, Yunxia Wang

    2007-01-01

    A critical part of the functional development of our peripheral balance system is the embryonic formation of otoconia, composite crystals that overlie and provide optimal stimulus input to the sensory epithelium of the gravity receptor in the inner ear. To date neither the functions of otoconial proteins nor the processes of crystal formation are clearly defined. Using gene targeting and protein analysis strategies, we demonstrate that the predominant mammalian otoconin, otoconin-90/95 (Oc90), is essential for formation of the organic matrix of otoconia by specifically recruiting other matrix components, which includes otolin, a novel mammalian otoconin that we identified to be in wildtype murine otoconia. We show that this matrix controls otoconia growth and morphology by embedding the crystallites during seeding and growth. During otoconia development, the organic matrix forms prior to CaCO3 deposition and provides optimal calcification efficiency. Histological and ultrastructural examinations show normal inner ear epithelial morphology but reduced acellular matrices, including otoconial, cupular and tectorial membranes, in Oc90 null mice, likely due to an absence of Oc90 and a profound reduction of otolin. Our data demonstrate the critical roles of otoconins in otoconia seeding, growth and anchoring and suggest mechanistic similarities and differences between otoconia and bone calcification. PMID:17300776

  2. Spatial, Temporal, and Matrix Variability of Clostridium botulinum Type E Toxin Gene Distribution at Great Lakes Beaches

    PubMed Central

    Oster, Ryan J.; Haack, Sheridan K.; Fogarty, Lisa R.; Tucker, Taaja R.; Riley, Stephen C.

    2015-01-01

    Clostridium botulinum type E toxin is responsible for extensive mortality of birds and fish in the Great Lakes. The C. botulinum bontE gene that produces the type E toxin was amplified with quantitative PCR from 150 sloughed algal samples (primarily Cladophora species) collected during summer 2012 from 10 Great Lakes beaches in five states; concurrently, 74 sediment and 37 water samples from four sites were also analyzed. The bontE gene concentration in algae was significantly higher than in water and sediment (P < 0.05), suggesting that algal mats provide a better microenvironment for C. botulinum. The bontE gene was detected most frequently in algae at Jeorse Park and Portage Lake Front beaches (Lake Michigan) and Bay City State Recreation Area beach on Saginaw Bay (Lake Huron), where 77, 100, and 83% of these algal samples contained the bontE gene, respectively. The highest concentration of bontE was detected at Bay City (1.98 × 105 gene copies/ml of algae or 5.21 × 106 g [dry weight]). This study revealed that the bontE gene is abundant in the Great Lakes but that it has spatial, temporal, and matrix variability. Further, embayed beaches, low wave height, low wind velocity, and greater average water temperature enhance the bontE occurrence. PMID:25888178

  3. Cartilage Oligomeric Matrix Protein Gene Multilayers Inhibit Osteogenic Differentiation and Promote Chondrogenic Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Guo, Peng; Shi, Zhong-Li; Liu, An; Lin, Tiao; Bi, Fang-Gang; Shi, Ming-Min; Yan, Shi-Gui

    2014-01-01

    There are still many challenges to acquire the optimal integration of biomedical materials with the surrounding tissues. Gene coatings on the surface of biomaterials may offer an effective approach to solve the problem. In order to investigate the gene multilayers mediated differentiation of mesenchymal stem cells (MSCs), gene functionalized films of hyaluronic acid (HA) and lipid-DNA complex (LDc) encoding cartilage oligomeric matrix protein (COMP) were constructed in this study via the layer-by-layer self-assembly technique. Characterizations of the HA/DNA multilayered films indicated the successful build-up process. Cells could be directly transfected by gene films and a higher expression could be obtained with the increasing bilayer number. The multilayered films were stable for a long period and DNA could be easily released in an enzymatic condition. Real-time polymerase chain reaction (RT-PCR) assay presented significantly higher (p < 0.01) COMP expression of MSCs cultured with HA/COMP multilayered films. Compared with control groups, the osteogenic gene expression levels of MSCs with HA/COMP multilayered films were down-regulated while the chondrogenic gene expression levels were up-regulated. Similarly, the alkaline phosphatase (ALP) staining and Alizarin red S staining of MSCs with HA/COMP films were weakened while the alcian blue staining was enhanced. These results demonstrated that HA/COMP multilayered films could inhibit osteogenic differentiation and promote chondrogenic differentiation of MSCs, which might provide new insight for physiological ligament-bone healing. PMID:25380520

  4. Spatial, Temporal, and Matrix Variability of Clostridium botulinum Type E Toxin Gene Distribution at Great Lakes Beaches.

    PubMed

    Wijesinghe, Rasanthi U; Oster, Ryan J; Haack, Sheridan K; Fogarty, Lisa R; Tucker, Taaja R; Riley, Stephen C

    2015-07-01

    Clostridium botulinum type E toxin is responsible for extensive mortality of birds and fish in the Great Lakes. The C. botulinum bontE gene that produces the type E toxin was amplified with quantitative PCR from 150 sloughed algal samples (primarily Cladophora species) collected during summer 2012 from 10 Great Lakes beaches in five states; concurrently, 74 sediment and 37 water samples from four sites were also analyzed. The bontE gene concentration in algae was significantly higher than in water and sediment (P < 0.05), suggesting that algal mats provide a better microenvironment for C. botulinum. The bontE gene was detected most frequently in algae at Jeorse Park and Portage Lake Front beaches (Lake Michigan) and Bay City State Recreation Area beach on Saginaw Bay (Lake Huron), where 77, 100, and 83% of these algal samples contained the bontE gene, respectively. The highest concentration of bontE was detected at Bay City (1.98 × 10(5) gene copies/ml of algae or 5.21 × 10(6) g [dry weight]). This study revealed that the bontE gene is abundant in the Great Lakes but that it has spatial, temporal, and matrix variability. Further, embayed beaches, low wave height, low wind velocity, and greater average water temperature enhance the bontE occurrence.

  5. Structural defect linked to nonrandom mutations in the matrix gene of Biden strain subacute sclerosing panencephalitis virus defined by cDNA cloning and expression of chimeric genes

    SciTech Connect

    Ayata, M.; Hirano, A.; Wong, T.C.

    1989-03-01

    Biken strain, a nonproductive measles viruslike agent isolated from a subacute sclerosing panencephalitis (SSPE) patient, contains a posttranscriptional defect affecting matrix (M) protein. A putative M protein was translated in vitro with RNA from Biken strain-infected cells. A similar protein was detected in vivo by an antiserum against a peptide synthesized from the cloned M gene of Edmonston strain measles virus. By using a novel method, full-length cDNAs of the Biken M gene were selectively cloned. The cloned Biken M gene contained an open reading frame which encoded 8 extra carboxy-terminal amino acid residues and 20 amino acid substitutions predicted to affect both the hydrophobicity and secondary structure of the gene product. The cloned gene was expressed in vitro and in vivo into a 37,500 M/sub r/ protein electrophoretically and antigenically distinct from the M protein of Edmonston strain but identical to the M protein in Biken strain-infected cells. Chimeric M proteins synthesized in vitro and in vivo showed that the mutations in the carboxy-proximal region altered the local antigenicity and those in the amino region affected the overall protein conformation. The protein expressed from the Biken M gene was unstable in vivo. Instability was attributed to multiple mutations. These results offer insights into the basis of the defect in Biken strain and pose intriguing questions about the evolutionary origins of SSPE viruses in general.

  6. Sequence analysis and expression of the M1 and M2 matrix protein genes of hirame rhabdovirus (HIRRV)

    USGS Publications Warehouse

    Nishizawa, T.; Kurath, G.; Winton, J.R.

    1997-01-01

    We have cloned and sequenced a 2318 nucleotide region of the genomic RNA of hirame rhabdovirus (HIRRV), an important viral pathogen of Japanese flounder Paralichthys olivaceus. This region comprises approximately two-thirds of the 3' end of the nucleocapsid protein (N) gene and the complete matrix protein (M1 and M2) genes with the associated intergenic regions. The partial N gene sequence was 812 nucleotides in length with an open reading frame (ORF) that encoded the carboxyl-terminal 250 amino acids of the N protein. The M1 and M2 genes were 771 and 700 nucleotides in length, respectively, with ORFs encoding proteins of 227 and 193 amino acids. The M1 gene sequence contained an additional small ORF that could encode a highly basic, arginine-rich protein of 25 amino acids. Comparisons of the N, M1, and M2 gene sequences of HIRRV with the corresponding sequences of the fish rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) or viral hemorrhagic septicemia virus (VHSV) indicated that HIRRV was more closely related to IHNV than to VHSV, but was clearly distinct from either. The putative consensus gene termination sequence for IHNV and VHSV, AGAYAG(A)(7), was present in the N-M1, M1-M2, and M2-G intergenic regions of HIRRV as were the putative transcription initiation sequences YGGCAC and AACA. An Escherichia coli expression system was used to produce recombinant proteins from the M1 and M2 genes of HIRRV. These were the same size as the authentic M1 and M2 proteins and reacted with anti-HIRRV rabbit serum in western blots. These reagents can be used for further study of the fish immune response and to test novel control methods.

  7. Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates neuromuscular junction development via a β1 integrin-mediated mechanism

    PubMed Central

    Lluri, Gentian; Langlois, Garret D.; McClellan, Brian; Soloway, Paul D.; Jaworski, Diane M.

    2010-01-01

    Extracellular matrix (ECM) molecules play critical roles in muscle function by participating in neuromuscular junction (NMJ) development and the establishment of stable, cytoskeleton-associated adhesions required for muscle contraction. Matrix metalloproteinases (MMPs) are neutral endopeptidases that degrade all ECM components. While the role of MMPs and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs), has been investigated in many tissues, little is known about their role in muscle development and mature function. TIMP-2−/− mice display signs of muscle weakness. Here, we report that TIMP-2 is expressed at the NMJ and its expression is greater in fast-twitch (extensor digitorum longus, EDL) than slow-twitch (soleus) muscle. EDL muscle mass is reduced in TIMP-2−/− mice without a concomitant change in fiber diameter or number. The TIMP-2−/− phenotype is not likely due to increased ECM proteolysis because net MMP activity is actually reduced in TIMP-2−/− muscle. Most strikingly, TIMP-2 co-localizes with β1 integrin at costameres in the wild-type EDL and β1 integrin expression is significantly reduced in TIMP-2−/− EDL. We propose that reduced β1 integrin in fast-twitch muscle may be associated with destabilized ECM-cytoskeletal interactions required for muscle contraction in TIMP-2−/− muscle; thus, explaining the muscle weakness. Given that fast-twitch fibers are lost in muscular dystrophies and age-related sarcopenia, if TIMP-2 regulates mechanotransduction in an MMP-independent manner it opens new potential therapeutic avenues. PMID:16967503

  8. Planarians as a model to assess in vivo the role of matrix metalloproteinase genes during homeostasis and regeneration.

    PubMed

    Isolani, Maria Emilia; Abril, Josep F; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata

    2013-01-01

    Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results

  9. Planarians as a Model to Assess In Vivo the Role of Matrix Metalloproteinase Genes during Homeostasis and Regeneration

    PubMed Central

    Isolani, Maria Emilia; Abril, Josep F.; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata

    2013-01-01

    Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results

  10. The Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) Genes among Clinical Isolates of Staphylococcus aureus from Hospitalized Children

    PubMed Central

    Ghasemian, Abdolmajid; Najar Peerayeh, Shahin; Bakhshi, Bita; Mirzaee, Mohsen

    2015-01-01

    Background: Isolates of Staphylococcus aureus express a myriad of adhesive surface proteins that play important role in colonization of the bacteria on nasal and skin surfaces, beginning the process of pathogenesis. The aim of this study was to screen several of the Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs) genes among the isolate of S. aureus from hospitalized children. Methods: A total of 22 S. aureus isolates were collected from hospitalized children in Tehran from 2012 to 2013. Detection of the mecA and several adhesive surface proteins genes including clfA, B (encoding clumping factors A, B); fnbA, B (encoding finronectin binding proteins A, B); fib (encoding fibrinogen binding protein); eno (encoding laminin binding protein); cna (encoding collagen binding protein); ebps (encoding elastin binding protein) and bbp (encoding bone sialo-protein binding protein), was performed by PCR. Results: The clfAB genes were detected among all the isolates. The prevalence of fnbA, fnbB, fib, eno, cna, ebps and bbp was 63%, 6%, 50%, 59%, 82%, 63%, 9% and 0%, respectively. Conclusion: The high prevalence of these genes is important for future plans in vaccine designation. MRSA and MSSA isolates similarly can produce adhesive surface proteins for colonization. PMID:26351495

  11. Extracellular matrix composition significantly influences pancreatic stellate cell gene expression pattern: role of transgelin in PSC function.

    PubMed

    Apte, Minoti V; Yang, Lu; Phillips, Phoebe A; Xu, Zhihong; Kaplan, Warren; Cowley, Mark; Pirola, Romano C; Wilson, Jeremy S

    2013-09-15

    Activated pancreatic stellate cells (PSCs) are responsible for the fibrotic matrix of chronic pancreatitis and pancreatic cancer. In vitro protocols examining PSC biology have usually involved PSCs cultured on plastic, a nonphysiological surface. However, PSCs cultured on physiological matrices, e.g., Matrigel (normal basement membrane) and collagen (fibrotic pancreas), may have distinctly different behaviors compared with cells cultured on plastic. Therefore, we aimed to 1) compare PSC gene expression after culture on plastic, Matrigel, and collagen I; 2) validate the gene array data for transgelin, the most highly dysregulated gene in PSCs grown on activating vs. nonactivating matrices, at mRNA and protein levels; 3) examine the role of transgelin in PSC function; and 4) assess transgelin expression in human chronic pancreatitis sections. Culture of PSCs on different matrices significantly affected their gene expression pattern. 146, 619, and 432 genes, respectively, were differentially expressed (P < 0.001) in PSCs cultured on collagen I vs. Matrigel, Matrigel vs. plastic, and collagen I vs. plastic. The highest fold change (12.5-fold upregulation) in gene expression in cells on collagen I vs. Matrigel was observed for transgelin (an actin stress fiber-associated protein). Transgelin was significantly increased in activated PSCs vs. quiescent PSCs. Silencing transgelin expression decreased PSC proliferation and also reduced platelet-derived growth factor-induced PSC migration. Notably, transgelin was highly expressed in chronic pancreatitis in stromal areas and periacinar spaces but was absent in acinar cells. These findings suggest that transgelin is a potentially useful target protein to modulate PSC function so as to ameliorate pancreatic fibrosis. PMID:23868411

  12. Genome wide analysis indicates genes for basement membrane and cartilage matrix proteins as candidates for hip dysplasia in Labrador Retrievers.

    PubMed

    Lavrijsen, Ineke C M; Leegwater, Peter A J; Martin, Alan J; Harris, Stephen J; Tryfonidou, Marianna A; Heuven, Henri C M; Hazewinkel, Herman A W

    2014-01-01

    Hip dysplasia, an abnormal laxity of the hip joint, is seen in humans as well as dogs and is one of the most common skeletal disorders in dogs. Canine hip dysplasia is considered multifactorial and polygenic, and a variety of chromosomal regions have been associated with the disorder. We performed a genome-wide association study in Dutch Labrador Retrievers, comparing data of nearly 18,000 single nucleotide polymorphisms (SNPs) in 48 cases and 30 controls using two different statistical methods. An individual SNP analysis based on comparison of allele frequencies with a χ(2) statistic was used, as well as a simultaneous SNP analysis based on Bayesian variable selection. Significant association with canine hip dysplasia was observed on chromosome 8, as well as suggestive association on chromosomes 1, 5, 15, 20, 25 and 32. Next-generation DNA sequencing of the exons of genes of seven regions identified multiple associated alleles on chromosome 1, 5, 8, 20, 25 and 32 (p<0.001). Candidate genes located in the associated regions on chromosomes 1, 8 and 25 included LAMA2, LRR1 and COL6A3, respectively. The associated region on CFA20 contained candidate genes GDF15, COMP and CILP2. In conclusion, our study identified candidate genes that might affect susceptibility to canine hip dysplasia. These genes are involved in hypertrophic differentiation of chondrocytes and extracellular matrix integrity of basement membrane and cartilage. The functions of the genes are in agreement with the notion that disruptions in endochondral bone formation in combination with soft tissue defects are involved in the etiology of hip dysplasia. PMID:24498183

  13. Candidate genes for the development of hair follicles in Hu sheep.

    PubMed

    Lv, X Y; Ni, R; Sun, W; Su, R; Musa, H H; Yin, J F; Wang, Q Z; Gao, W; Chen, L

    2016-01-01

    The aim of this study was to detect candidate genes for the development of hair follicles in the Hu sheep breed. Seven genes have been detected in large, medium, and small wave follicles of Hu sheep using gene chip technology. The histological features of the follicles of newborn Hu-lambs were combined with fluorescence quantitative PCR technology to detect the correlation between the expression of the seven genes and hair follicle development. Among the genes studied, matrix metalloproteinase 2 (MMP2), bone morphogenetic protein-7 (BMP7), and sideroflexin 1 (SFXN1) showed a significantly different pattern of expression in large, medium, and small wave follicles (P < 0.05). The expression of MMP2 had a significant positive correlation with secondary follicles in large waves (P < 0.05), while the expression of BMP7 had a significant correlation with primary follicle diameter in small wave follicles, and a highly significant positive correlation with the number of secondary follicles in the small waves (P < 0.01). The expression of SFXN1 was significantly and positively correlated with the diameters of small wave primary follicles; it also showed a highly significant positive correlation with secondary follicle diameters. Although other genes are associated with hair follicles, their expression in large, medium, and small wave follicles was not significant. We propose that BMP7, MMP2, and SFXN1 genes could be important candidate genes for use in breeding Hu lambs with early coat development. PMID:27525902

  14. Mapping Molecular Differences and Extracellular Matrix Gene Expression in Segmental Outflow Pathways of the Human Ocular Trabecular Meshwork

    PubMed Central

    Vranka, Janice A.; Bradley, John M.; Yang, Yong-Feng; Keller, Kate E.; Acott, Ted S.

    2015-01-01

    Elevated intraocular pressure (IOP) is the primary risk factor for glaucoma, and lowering IOP remains the only effective treatment for glaucoma. The trabecular meshwork (TM) in the anterior chamber of the eye regulates IOP by generating resistance to aqueous humor outflow. Aqueous humor outflow is segmental, but molecular differences between high and low outflow regions of the TM are poorly understood. In this study, flow regions of the TM were characterized using fluorescent tracers and PCR arrays. Anterior segments from human donor eyes were perfused at physiological pressure in an ex vivo organ culture system. Fluorescently-labeled microspheres of various sizes were perfused into anterior segments to label flow regions. Actively perfused microspheres were segmentally distributed, whereas microspheres soaked passively into anterior segments uniformly labeled the TM and surrounding tissues with no apparent segmentation. Cell-tracker quantum dots (20 nm) were localized to the outer uveal and corneoscleral TM, whereas larger, modified microspheres (200 nm) localized throughout the TM layers and Schlemm’s canal. Distribution of fluorescent tracers demonstrated a variable labeling pattern on both a macro- and micro-scale. Quantitative PCR arrays allowed identification of a variety of extracellular matrix genes differentially expressed in high and low flow regions of the TM. Several collagen genes (COL16A1, COL4A2, COL6A1 and 2) and MMPs (1, 2, 3) were enriched in high, whereas COL15A1, and MMP16 were enriched in low flow regions. Matrix metalloproteinase activity was similar in high and low regions using a quantitative FRET peptide assay, whereas protein levels in tissues showed modest regional differences. These gene and protein differences across regions of the TM provide further evidence for a molecular basis of segmental flow routes within the aqueous outflow pathway. New insight into the molecular mechanisms of segmental aqueous outflow may aid in the design

  15. Characterization of a gene encoding a novel peroxisomal matrix protein, PXEL

    SciTech Connect

    FitzPatrick, D.; Valle, D.

    1994-09-01

    Disorders of peroxisomal biogenesis and function are associated with a variety of severe autosomal and X-linked recessive clinical phenotypes. To identify the genes involved in these functions we have used the Wang & Brown subtractive hybridization method to isolated rat liver cDNAs upregulated by treatment with clofibrate and di(ethylhexyl)pthalate. These substances are known to induce peroxisome proliferation in rodent hepatocytes. In a pilot study of the 53 upregulated gene fragments isolated and sequenced using this method, 20 (37.7%) were known peroxisomal genes. Two of the remaining clones were fragments of a previously unknown cDNA that showed >20-fold induction. The full-length cDNA was isolated and has a single open reading frame that predicts a protein product of 36 kDa with a C-terminal peroxisomal targeting signal (-SKL). This protein was epitope-tagged with a C-myc dodecapeptide and found to be efficiently imported into peroxisomes in HEK293 cells by double-label immuno-fluorescence. A search of the protein sequence against the public databases revealed homology to enoyl-CoA hydratases from a wide variety of species. We have named this gene peroxisomal enoyl-CoA hydratase-like (PXEL). We have also isolated orthologous cDNAs from a human retinal cDNA library that show >85% identity in both nucleotide and amino acid sequence when compared to rat PXEL. Using hybridization to somatic cell hybrid DNA and chromosome 19-specific cosmid arrays, we were able to physically map the human PXEL gene to 19q13.1 in a contig 3{prime} to the ryanodine receptor. Northern blot analysis of tissue distribution showed high levels of expression of a 1.4 kb message in skeletal and heart muscle with a detectable transcript in every tissue examined. To investigate the function of this gene we are in the process of examining patients with disorders of peroxisomal {beta}-oxidation for mutations in the PXEL gene.

  16. Stimulation of Periodontal Ligament Stem Cells by Dentin Matrix Protein 1 Activates Mitogen-Activated Protein Kinase and Osteoblast Differentiation

    PubMed Central

    Chandrasekaran, Sangeetha; Ramachandran, Amsaveni; Eapen, Asha; George, Anne

    2013-01-01

    Background Periodontitis can ultimately result in tooth loss. Many natural and synthetic materials have been tried to achieve periodontal regeneration, but the results remain variable and unpredictable. We hypothesized that exogenous treatment with dentin matrix protein 1 (DMP1) activates specific genes and results in phenotypic and functional changes in human periodontal ligament stem cells (hPDLSCs). Methods hPDLSCs were isolated from extracted teeth and cultured in the presence or absence of DMP1. Quantitative polymerase chain reactions were performed to analyze the expression of several genes involved in periodontal regeneration. hPDLSCs were also processed for immunocytochemical and Western blot analysis using phosphorylated extracellular signal-regulated kinase (pERK) and ERK antibodies. Alkaline phosphatase and von Kossa staining were performed to characterize the differentiation of hPDLSCs into osteoblasts. Field emission scanning electron microscopic analysis of the treated and control cell cultures were also performed. Results Treatment with DMP1 resulted in the upregulation of genes, such as matrix metalloproteinase-2, alkaline phosphatase, and transforming growth factor β1. Activation of ERK mitogen-activated protein kinase signaling pathway and translocation of pERK from the cytoplasm to the nucleus was observed. Overall, DMP1-treated cells showed increased expression of alkaline phosphatase, increased matrix, and mineralized nodule formation when compared with untreated controls. Conclusion DMP1 can orchestrate a coordinated expression of genes and phenotypic changes in hPDLSCs by activation of the ERK signaling pathway, which may provide a valuable strategy for tissue engineering approaches in periodontal regeneration. PMID:22612367

  17. TM6, a novel nuclear matrix attachment region, enhances its flanking gene expression through influencing their chromatin structure.

    PubMed

    Ji, Lusha; Xu, Rui; Lu, Longtao; Zhang, Jiedao; Yang, Guodong; Huang, Jinguang; Wu, Changai; Zheng, Chengchao

    2013-08-01

    Nuclear matrix attachment regions (MARs) regulate the higher-order organization of chromatin and affect the expression of their flanking genes. In this study, a tobacco MAR, TM6, was isolated and demonstrated to remarkably increase the expression of four different promoters that drive gusA gene and adjacent nptII gene. In turn, this expression enhanced the transformation frequency of transgenic tobacco. Deletion analysis of topoisomerase II-binding site, AT-rich element, and MAR recognition signature (MRS) showed that MRS has the highest contribution (61.7%) to the TM6 sequence-mediated transcription activation. Micrococcal nuclease (MNase) accessibility assay showed that 35S and NOS promoter regions with TM6 are more sensitive than those without TM6. The analysis also revealed that TM6 reduces promoter DNA methylation which can affect the gusA expression. In addition, two tobacco chromatin-associated proteins, NtMBP1 and NtHMGB, isolated using a yeast one-hybrid system, specifically bound to the TM6II-1 region (761 bp to 870 bp) and to the MRS element in the TM6II-2 (934 bp to 1,021 bp) region, respectively. We thus suggested that TM6 mediated its chromatin opening and chromatin accessibility of its flanking promoters with consequent enhancement of transcription.

  18. TM6, a novel nuclear matrix attachment region, enhances its flanking gene expression through influencing their chromatin structure.

    PubMed

    Ji, Lusha; Xu, Rui; Lu, Longtao; Zhang, Jiedao; Yang, Guodong; Huang, Jinguang; Wu, Changai; Zheng, Chengchao

    2013-08-01

    Nuclear matrix attachment regions (MARs) regulate the higher-order organization of chromatin and affect the expression of their flanking genes. In this study, a tobacco MAR, TM6, was isolated and demonstrated to remarkably increase the expression of four different promoters that drive gusA gene and adjacent nptII gene. In turn, this expression enhanced the transformation frequency of transgenic tobacco. Deletion analysis of topoisomerase II-binding site, AT-rich element, and MAR recognition signature (MRS) showed that MRS has the highest contribution (61.7%) to the TM6 sequence-mediated transcription activation. Micrococcal nuclease (MNase) accessibility assay showed that 35S and NOS promoter regions with TM6 are more sensitive than those without TM6. The analysis also revealed that TM6 reduces promoter DNA methylation which can affect the gusA expression. In addition, two tobacco chromatin-associated proteins, NtMBP1 and NtHMGB, isolated using a yeast one-hybrid system, specifically bound to the TM6II-1 region (761 bp to 870 bp) and to the MRS element in the TM6II-2 (934 bp to 1,021 bp) region, respectively. We thus suggested that TM6 mediated its chromatin opening and chromatin accessibility of its flanking promoters with consequent enhancement of transcription. PMID:23852133

  19. Signatures of positive selection at hemopexin (PEX) domain of matrix metalloproteinase-9 (MMP-9) gene.

    PubMed

    Liu, Yang; Zhao, Yang; Lu, Chunlei; Fu, Maobin; Dou, Tonghai; Tan, Xiaoming

    2015-12-01

    Matrix metalloproteinases-9 (MMP-9) is an important cancer-associated, zinc-dependent endopeptidase. To investigate the natural selection hypothesis of MMP-9, the orthologous sequences from 12 vertebrates were compared and a molecular evolution analysis was performed. Results suggest that amino acid residues present in the middle region of the protein are more selectively constrained, whereas amino acid residues in the C-terminal region of the MMP-9 protein including exon 13 showed lowest conservation level in non-primate species, suggesting that it is an exon with fast evolving rate compared to the others analyzed. InterProScan analysis shows that exon 13 was located in hemopexin (PEX) domain of MMP-9. Positive selection was detected in PEX domain of MMP-9 protein between human and other species, which indicates that selective pressure may play a role in shaping the function of MMP-9 in the course of evolution. PMID:26648034

  20. Temporal extracellular matrix adaptations in ligament during wound healing and hindlimb unloading.

    PubMed

    Martinez, D A; Vailas, A C; Vanderby, R; Grindeland, R E

    2007-10-01

    Previous data from spaceflight studies indicate that injured muscle and bone heal slowly and abnormally compared with ground controls, strongly suggesting that ligaments or tendons may not repair optimally as well. Thus the objective of this study was to investigate the biochemical and molecular gene expression of the collagen extracellular matrix in response to medial collateral ligament (MCL) injury repair in hindlimb unloaded (HLU) rodents. Male rats were assigned to 3- and 7-wk treatment groups with three subgroups each: sham control, ambulatory healing (Amb-healing), and HLU-healing groups. Amb- and HLU-healing animals underwent bilateral surgical transection of their MCLs, whereas control animals were subjected to sham surgeries. All surgeries were performed under isoflurane anesthesia. After 3 wk or 7 wk of HLU, rats were euthanized and MCLs were surgically isolated and prepared for molecular or biochemical analyses. Hydroxyproline concentration and hydroxylysylpyridinoline collagen cross-link contents were measured by HPLC and showed a substantial decrement in surgical groups. MCL tissue cellularity, quantified by DNA content, remained significantly elevated in all HLU-healing groups vs. Amb-healing groups. MCL gene expression of collagen type I, collagen type III, collagen type V, fibronectin, decorin, biglycan, lysyl oxidase, matrix metalloproteinase-2, and tissue inhibitor of matrix metalloproteinase-1, measured by real-time quantitative PCR, demonstrated differential expression in the HLU-healing groups compared with Amb-healing groups at both the 3- and 7-wk time points. Together, these data suggest that HLU affects dense fibrous connective tissue wound healing and confirms previous morphological and biomechanical data that HLU inhibits the ligament repair processes.

  1. Mapping ancestral genomes with massive gene loss: A matrix sandwich problem

    PubMed Central

    Gavranović, Haris; Chauve, Cedric; Salse, Jérôme; Tannier, Eric

    2011-01-01

    Motivation: Ancestral genomes provide a better way to understand the structural evolution of genomes than the simple comparison of extant genomes. Most ancestral genome reconstruction methods rely on universal markers, that is, homologous families of DNA segments present in exactly one exemplar in every considered species. Complex histories of genes or other markers, undergoing duplications and losses, are rarely taken into account. It follows that some ancestors are inaccessible by these methods, such as the proto–monocotyledon whose evolution involved massive gene loss following a whole genome duplication. Results: We propose a mapping approach based on the combinatorial notion of ‘sandwich consecutive ones matrix’, which explicitly takes gene losses into account. We introduce combinatorial optimization problems related to this concept, and propose a heuristic solver and a lower bound on the optimal solution. We use these results to propose a configuration for the proto-chromosomes of the monocot ancestor, and study the accuracy of this configuration. We also use our method to reconstruct the ancestral boreoeutherian genomes, which illustrates that the framework we propose is not specific to plant paleogenomics but is adapted to reconstruct any ancestral genome from extant genomes with heterogeneous marker content. Availability: Upon request to the authors. Contact: haris.gavranovic@gmail.com; eric.tannier@inria.fr PMID:21685079

  2. Functional Polymorphisms of Matrix Metalloproteinases 1 and 9 Genes in Women with Spontaneous Preterm Birth

    PubMed Central

    Pleša, Ivana; Peterlin, Ana; Jan, Žiga; Tul, Nataša; Kapović, Miljenko; Ostojić, Saša; Peterlin, Borut

    2014-01-01

    Objective. The aim of this study was to investigate the association of functional MMP-1-1607 1G/2G and MMP-9-1562 C/T gene polymorphisms with spontaneous preterm birth (SPTB; preterm birth with intact membranes) in European Caucasian women, as well as the contribution of these polymorphisms to different clinical features of women with SPTB. Methods and Patients. A case-control study was conducted in 113 women with SPTB and 119 women with term delivery (control group). Genotyping of MMP-1-1607 1G/2G and MMP-9-1562 C/T gene polymorphisms was performed using the combination of polymerase chain reaction and restriction fragment length polymorphism methods. Results. There were no statistically significant differences in the distribution of neither individual nor combinations of genotype and allele frequencies of MMP-1-1607 1G/2G and MMP-9-1562 C/T polymorphisms between women with SPTB and control women. Additionally, these polymorphisms do not contribute to any of the clinical characteristics of women with SPTB, including positive and negative family history of SPTB, gestational age at delivery, and maternal age at delivery, nor fetal birth weight. Conclusion. We did not find the evidence to support the association of MMP-1-1607 1G/2G and MMP-9-1562 C/T gene polymorphisms with SPTB in European Caucasian women. PMID:25530657

  3. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chin-Mei Chang-Liu

    1995-06-01

    Experiments examined the effects of radiation dose-rate and protein synthesis inhibition expression of cytoskeletal and matrix elements in Syrian hamster embryo cells. Results demonstrated little effect of dose-rate for neutrons when comparing expression of {alpha}-tubulin and fibronectin genes. Cycloheximide repressed accumulation of {alpha}-tubulin-mRNA following exposure to high dose-rate neutrons or {gamma} rays. Cycloheximide did not affect accumulation of actin mRNA. Cycloheximide abrogated induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin mRNA accumulation following exposure to radiation. 24 refs., 3 tabs.

  4. Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice.

    PubMed

    McKnight, R A; Shamay, A; Sankaran, L; Wall, R J; Hennighausen, L

    1992-08-01

    Matrix-attachment regions (MARs) may function as domain boundaries and partition chromosomes into independently regulated units. We have tested whether MAR sequences from the chicken lysozyme locus, the so-called A-elements, can confer position-independent regulation to a whey acidic protein (WAP) transgene in mammary tissue of mice. In the absence of MARs, expression of WAP transgenes was observed in 50% of the lines, and regulation during pregnancy, during lactation, and upon hormonal induction did not mimic that of the endogenous WAP gene and varied with the integration site. In contrast, all 11 lines in which WAP transgenes were juxtaposed to MAR elements showed expression. Accurate position-independent hormonal and developmental regulation was seen in four out of the five lines analyzed. These results indicate that MARs can establish independent genetic domains in transgenic mice. PMID:1495984

  5. Basic fibroblast growth factor as a selective inducer of matrix Gla protein gene expression in proliferative chondrocytes.

    PubMed Central

    Stheneur, Chantal; Dumontier, Marie-France; Guedes, Claudie; Fulchignoni-Lataud, Marie-Claude; Tahiri, Khadija; Karsenty, Gerard; Corvol, Marie Thérèse

    2003-01-01

    Matrix Gla protein (MGP) is a member of the vitamin K-dependent gamma carboxylase protein family expressed in cartilage. Insulin-like growth factor I (IGF1) stimulates chondrocyte differentiation, whereas basic fibroblast growth factor (FGF2) acts in an opposite manner. We explored the differential expression and regulation by IGF1 and FGF2 of the MGP gene during chondrocyte differentiation. We used a primary culture system of rabbit epiphyseal chondrocytes to show that MGP mRNA is mainly expressed during serum-induced proliferation. Much lower MGP mRNA content is observed in post-mitotic chondrocytes, which newly express alpha 1X procollagen mRNA, a marker of late-differentiated cells. From studies of a series of growth factors, it was shown that IGF1 decreased chondrocyte MGP transcripts, whereas FGF2 had the opposite effect. FGF2 stimulated chondrocyte MGP production in a dose- and time-dependent manner at the mRNA and protein levels. FGF2 acted in a dose- and time-dependent manner, reaching a maximum at 10 ng/ml at 20 h. The protein synthesis inhibitor cycloheximide did not modify FGF2 action, in agreement with a direct effect. Actinomycin D abolished FGF2-induced stimulation, strongly suggesting that FGF2 modulated MGP gene transcription. We transiently transfected chondrocytes with a construct containing the mouse MGP promoter from -5000 to -168 base pairs, relative to the transcription start site of the gene linked to the luciferase gene (MGP-Luc). In transfected cells, FGF2 stimulated luciferase activity up to sevenfold while IGF1 had no effect. Hence, FGF2 induces transcription of the MGP gene via the 5'-flanking region of the gene. Using a series of deleted MGP-Luc constructs, we identified a sequence of 748 base pairs which was sufficient for transcriptional activation by FGF2. These results led us to postulate that the inhibitory chondrogenic action of FGF2 involves a mechanism whereby MGP gene transcription and protein are induced. PMID:12230429

  6. Differential global and extra-cellular matrix focused gene expression patterns between normal and glaucomatous human lamina cribrosa cells

    PubMed Central

    Wordinger, Robert J.; Clark, Abbot F.; O'Brien, Colm J.

    2009-01-01

    Purpose Marked extracellular matrix (ECM) remodeling occurs in the human optic nerve head in primary open angle glaucoma (POAG). The glial fibrillary acid protein (GFAP) negative lamina cribrosa cell may play an important role in this remodeling process. We report the first study of global and ECM-focused gene transcription differentials between GFAP-negative lamina cribrosa (LC) cells from normal and POAG human donors. Methods GFAP-negative LC cell lines were generated from the optic nerve tissue of four normal (n=4) and four POAG (n=4) human donors. Using Affymetrix U133A arrays the transcriptional profile between the normal and diseased groups were compared. Bioinformatic analysis was performed using robust multichip average (RMA Express) and EASE/David. Real time TaqMan PCR and immunohistochemistry analyses were performed to validate the microarray data. Results 183 genes were upregulated by greater than 1.5 fold and 220 were down regulated by greater than 1.5 fold in the POAG LC cells versus normal controls. Upregulated genes in POAG LC cells included, transforming growth factor beta 1 (TGFβ1), secreted acid protein cysteine rich (SPARC), periostin (POSTN), thrombospondin-1 (THBS1), cartilage linking protein-1 (CRTL-1), and collagen type I (COL1A1), collagen type V (COL5A1), and collagen type XI (COL11A1). Downregulated ECM genes in POAG included fibulin 1 (FBLN1), decorin (DCN), and collagen type XVIII (COL18A1). All TaqMan PCR validation assays were significant (*p<0.05) and consistent with the array data. Immunohistochemistry of one target (periostin) confirmed its differential expression at the protein level in POAG optic nerve head tissue compared with non-glaucomatous controls. Functional annotation and over-representation analysis identified ECM genes as a statistically over-represented class of genes in POAG LC cells compared with normal LC cells. Conclusions This study reports for the first time that POAG LC cells in-vitro demonstrate upregulated ECM

  7. The Matrix Metalloproteinase Gene GmMMP2 Is Activated in Response to Pathogenic Infections in Soybean1

    PubMed Central

    Liu, Yongqing; Dammann, Christian; Bhattacharyya, Madan K.

    2001-01-01

    Matrix metalloproteinases (MMPs) play an important role in host defense responses against pathogens in mammals where their activities lead to the production of antimicrobial peptides. We have identified a novel soybean (Glycine max) metalloproteinase gene, GmMMP2, that is transcriptionally up-regulated in infected tissues. The deduced amino acid sequence indicates that this gene belongs to the MMP family. It is a preproprotein containing an N-terminal signal peptide, a cysteine switch, a zinc-binding catalytic motif, and a C-terminal transmembrane domain. The GmMMP2 expressed in and purified from Escherichia coli exhibited an in vitro enzymatic activity in digesting myelin basic protein. All plant metalloproteinases reported so far have no known functions. However, they have been suggested to be involved in extracellular cell matrix degradation during development or senescence. Our investigations demonstrate that the GmMMP2 transcript levels were rapidly increased in compatible and incompatible interactions of soybean tissues with the oomycete pathogen Phytophthora sojae or the bacterial pathogen Pseudomonas syringae pv. glycinea. In agreement with the GmMMP2 activation, a metalloproteinase activity was gradually increased in suspension-cultured cells following the bacterial infection. GmMMP2 was also activated in response to wounding and dehydration. However, GmMMP2 activation did not correlate with the oxidative burst leading to the hypersensitive response cell death or the tissue senescence progress that involves programmed cell death. Our investigations suggest that GmMMP2 may be involved in a novel defense response of soybean against pathogenic infections. PMID:11743122

  8. Tributyltin alters osteocalcin, matrix metalloproteinase 20 and dentin sialophosphoprotein gene expression in mineralizing mouse embryonic tooth in vitro.

    PubMed

    Salmela, Eija; Alaluusua, Satu; Sahlberg, Carin; Lukinmaa, Pirjo-Liisa

    2012-01-01

    We showed in a previous in vitro study that tributyltin (TBT) arrests dentin mineralization and enamel formation in developing mouse tooth. The present aim was to investigate the effect of TBT on the expression of genes associated with mineralization of dental hard tissues. Embryonic day 18 mouse mandibular first molars were cultured for 3, 5 or 7 days and exposed to 1.0 μM TBT and studied by real-time quantitative polymerase chain reaction (RT-QPCR) for the expressions of osteocalcin (Ocn), alkaline phosphatase (Alpl), dentin matrix protein 1 (Dmp1), dentin sialophosphoprotein (Dspp) and matrix metalloproteinase 20 (Mmp-20).Ocn, Mmp-20 and Dspp, whose expressions showed changes in RT- QPCR, were further analyzed by in situ hybridization of tissue sections. In situ hybridization showed that TBT decreased Ocn expression in odontoblasts but increased the expression in the epithelial tooth compartment. In QPCR assays, the net effect in the whole tooth was increased expression. TBT also reduced Mmp-20 expression in ameloblasts and odontoblasts. Dspp expression varied but both QPCR assays and in situ hybridization showed a decreasing trend. TBT exposure had no clear effect on Alpl and Dmp1 expressions. Increased Ocn expression by epithelial enamel organ may inhibit dentin mineralization and enamel formation. Decreased Ocn, Mmp-20 and Dspp expressions in odontoblasts may indicate delayed cell differentiation, or TBT may specifically decrease the expression of genes involved in dentin mineralization. While decreased Mmp-20 expression by TBT in ameloblasts may impair enamel mineralization, the coincident reduction in Mmp-20 and Dspp expressions in odontoblasts may potentiate the delay of dentin mineralization.

  9. A matrix metalloproteinase gene is expressed at the boundary of senescence and programmed cell death in cucumber.

    PubMed

    Delorme, V G; McCabe, P F; Kim, D J; Leaver, C J

    2000-07-01

    Cell-cell and extracellular cell matrix (ECM) interactions provide cells with information essential for controlling morphogenesis, cell-fate specification, and cell death. In animals, one of the major groups of enzymes that degrade the ECM is the matrix metalloproteinases (MMPs). Here, we report the characterization of the cucumber (Cucumis sativus L. cv Marketmore) Cs1-MMP gene encoding such an enzyme likely to play a role in plant ECM degradation. Cs1-MMP has all the hallmark motif characteristics of animal MMPs and is a pre-pro-enzyme having a signal peptide, propeptide, and zinc-binding catalytic domains. Cs1-MMP also displays functional similarities with animal MMPs. For example, it has a collagenase-like activity that can cleave synthetic peptides and type-I collagen, a major component of animal ECM. Cs1-MMP activity is completely inhibited by a hydroxamate-based inhibitor that binds at the active site of MMPs in a stereospecific manner. The Cs1-MMP gene is expressed de novo at the end stage of developmental senescence, prior to the appearance of DNA laddering in cucumber cotyledons leaf discs and male flowers. As the steady-state level of Cs1-MMP mRNA peaks late in senescence and the pro-enzyme must undergo maturation and activation, the protease is probably not involved in nutrient remobilization during senescence but may have another function. The physiological substrates for Cs1-MMP remain to be determined, but the enzyme represents a good candidate for plant ECM degradation and may be involved in programmed cell death (PCD). Our results suggest that PCD occurs only at the culmination of the senescence program or that the processes are distinct with PCD being triggered at the end of senescence.

  10. Inhibiting matrix metalloproteinase by cell-based timp-3 gene transfer effectively treats acute and chronic ischemic cardiomyopathy.

    PubMed

    Tian, Hai; Huang, Ming-Li; Liu, Kai-Yu; Jia, Zhi-Bo; Sun, Lu; Jiang, Shu-Lin; Liu, Wei; McDonald Kinkaid, Heather Y; Wu, Jun; Li, Ren-Ke

    2012-01-01

    After a myocardial infarction (MI), an increase in the cardiac ratio of matrix metalloproteinases (MMPs) relative to their inhibitors (TIMPs) causes extracellular matrix modulation that leads to ventricular dilatation and congestive heart failure. Cell therapy can mitigate these effects. In this study, we tested whether increasing MMP inhibition via cell-based gene transfer of Timp-3 further preserved ventricular morphometry and cardiac function in a rat model of MI. We also measured the effect of treatment timing. We generated MI (coronary artery ligation) in adult rats. Three or 14 days later, we implanted medium (control) or vascular smooth muscle cells transfected with empty vector (VSMCs) or Timp-3 (C-TIMP-3) into the peri-infarct region (n = 15-24/group). We assessed MMP-2 and -9 expression and activity, TIMP-3, and TNF-α expression, cell apoptosis, infarct size and thickness, ventricular morphometry, and cardiac function (by echocardiography). Relative to medium, VSMCs delivered at either time point significantly reduced cardiac expression and activity of MMP-2 and -9, reduced expression of TNF-α, and increased expression of TIMP-3. Cell therapy also reduced apoptosis and scar area, increased infarct thickness, preserved ventricular structure, and reduced functional loss. All these effects were augmented by C-TIMP-3 treatment. Survival and cardiac function were significantly greater when VSMCs or C-TIMP-3 were delivered at 3 (vs. 14) days after MI. Upregulating post-MI cardiac TIMP-3 expression via cell-based gene therapy contributed additional regulation of MMP, TIMP, and TNF-α levels, thereby boosting the structural and functional effects of VSMCs transplanted at 3 or 14 days after an MI in rats. Early treatment may be superior to late, though both are effective.

  11. A Matrix Metalloproteinase Gene Is Expressed at the Boundary of Senescence and Programmed Cell Death in Cucumber1

    PubMed Central

    Delorme, Valérie G.R.; McCabe, Paul F.; Kim, Dae-Jae; Leaver, Christopher J.

    2000-01-01

    Cell-cell and extracellular cell matrix (ECM) interactions provide cells with information essential for controlling morphogenesis, cell-fate specification, and cell death. In animals, one of the major groups of enzymes that degrade the ECM is the matrix metalloproteinases (MMPs). Here, we report the characterization of the cucumber (Cucumis sativus L. cv Marketmore) Cs1-MMP gene encoding such an enzyme likely to play a role in plant ECM degradation. Cs1-MMP has all the hallmark motif characteristics of animal MMPs and is a pre-pro-enzyme having a signal peptide, propeptide, and zinc-binding catalytic domains. Cs1-MMP also displays functional similarities with animal MMPs. For example, it has a collagenase-like activity that can cleave synthetic peptides and type-I collagen, a major component of animal ECM. Cs1-MMP activity is completely inhibited by a hydroxamate-based inhibitor that binds at the active site of MMPs in a stereospecific manner. The Cs1-MMP gene is expressed de novo at the end stage of developmental senescence, prior to the appearance of DNA laddering in cucumber cotyledons leaf discs and male flowers. As the steady-state level of Cs1-MMP mRNA peaks late in senescence and the pro-enzyme must undergo maturation and activation, the protease is probably not involved in nutrient remobilization during senescence but may have another function. The physiological substrates for Cs1-MMP remain to be determined, but the enzyme represents a good candidate for plant ECM degradation and may be involved in programmed cell death (PCD). Our results suggest that PCD occurs only at the culmination of the senescence program or that the processes are distinct with PCD being triggered at the end of senescence. PMID:10889240

  12. Changes in cortical cytoskeletal and extracellular matrix gene expression in prostate cancer are related to oncogenic ERG deregulation

    PubMed Central

    2010-01-01

    Background The cortical cytoskeleton network connects the actin cytoskeleton to various membrane proteins, influencing cell adhesion, polarity, migration and response to extracellular signals. Previous studies have suggested changes in the expression of specific components in prostate cancer, especially of 4.1 proteins (encoded by EPB41 genes) which form nodes in this network. Methods Expression of EPB41L1, EPB41L2, EPB41L3 (protein: 4.1B), EPB41L4B (EHM2), EPB41L5, EPB49 (dematin), VIL2 (ezrin), and DLG1 (summarized as „cortical cytoskeleton" genes) as well as ERG was measured by quantitative RT-PCR in a well-characterized set of 45 M0 prostate adenocarcinoma and 13 benign tissues. Hypermethylation of EPB41L3 and GSTP1 was compared in 93 cancer tissues by methylation-specific PCR. Expression of 4.1B was further studied by immunohistochemistry. Results EPB41L1 and EPB41L3 were significantly downregulated and EPB41L4B was upregulated in cancer tissues. Low EPB41L1 or high EPB41L4B expression were associated with earlier biochemical recurrence. None of the other cortical cytoskeleton genes displayed expression changes, in particular EPB49 and VIL2, despite hints from previous studies. EPB41L3 downregulation was significantly associated with hypermethylation of its promoter and strongly correlated with GSTP1 hypermethylation. Protein 4.1B was detected most strongly in the basal cells of normal prostate epithelia. Its expression in carcinoma cells was similar to the weaker one in normal luminal cells. EPB41L3 downregulation and EPB41L4B upregulation were essentially restricted to the 22 cases with ERG overexpression. Expression changes in EPB41L3 and EPB41L4B closely paralleled those previously observed for the extracellular matrix genes FBLN1 and SPOCK1, respectively. Conclusions Specific changes in the cortical cytoskeleton were observed during prostate cancer progression. They parallel changes in the expression of extracellular matrix components and all together

  13. Gene expression for extracellular matrix proteins in shockwave-induced osteogenesis in rats.

    PubMed

    Takahashi, Kenji; Yamazaki, Masashi; Saisu, Takashi; Nakajima, Arata; Shimizu, Sumito; Mitsuhashi, Shigeru; Moriya, Hideshige

    2004-02-01

    To clarify the mechanisms underlying shockwave-induced osteogenesis, we applied shockwave to rat femoral shafts from the ventral side. We assessed bone mineral content (BMC) and bone mineral density (BMD), and analyzed the spatial and temporal gene expression for pro-alpha1 (I) collagen (COL1A1), pro-alpha1 (II) collagen (COL2A1), pro-alpha1 (X) collagen (COL10A1), osteocalcin (OC) and osteopontin (OPN) using in situ hybridization. On the 21st day post-exposure, BMC and BMD in the exposed femur were elevated by 8.46% and 5.80%, respectively, relative to the unexposed femur. Immediately following exposure, there was evidence of scraping of the cortex and periosteal separation with hemorrhage. On day 4, new periosteal bone formation could be seen on the ventral and dorsal side of the femur. In the newly formed bone, COL1A1, OC and OPN were expressed in osteoblastic cells underlying the periosteum. On day 7, there was progression of periosteal bone and trabeculae formation. COL1A1 and OC were expressed in mature osteoblasts lining the trabeculae, whereas OPN was expressed in immature osteoblastic cells, osteocytes and osteoclasts. On day 14, bone remodeling commenced in the periosteal bone. COL1A1, OC and OPN were still expressed at this stage, however, signals were much weaker. Between 4-7 days, chondrocyte clusters were distributed multi-focally near the exposed site, and there was expression of COL2A1 but not of COL10A1. The results demonstrate that gene expression patterns of shockwave-induced osteogenesis are similar to those of periosteal hard callus formation during fracture healing. Shockwaves can yield dramatic activation of cells in normal long bones, and drive the cells to express genes for osteogenesis.

  14. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    SciTech Connect

    Medina, D.; Oborn, C.J. ); Li, M.L.; Bissell, M.J. )

    1987-09-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of {beta}-casein mRNA in the presence or absence of prolactin. The inducibility of {beta}-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types.

  15. Silibinin regulates matrix metalloproteinase 3 (stromelysine1) gene expression, hexoseamines and collagen production during rat skin wound healing.

    PubMed

    Tabandeh, Mohammad Reza; Oryan, Ahamd; Mohhammad-Alipour, Adel; Tabatabaei-Naieni, Abotorab

    2013-08-01

    Silibinin (SB), a flavonoid isolated from the milk thistle, Silybum marianum, has been shown to exhibit protective effects against skin damage. The objective of the present study was to investigate the effect of topical application of SB on levels of stromelysine 1 (STM1) gene expression, acetyl hexoseamines and collagen production during skin wound healing. Full-thickness skin wounds were topically treated with 10% and 20% SB extract in acetonitril:olive oil (AOO) (4:1) for 30 days, and expression level of STM1 transcript, n-acetyl glucoseamine (NAGLA), n-acetyl galactoseamine (NAGAA) and collagen contents were analyzed on the 10th, 20th and 30th days post wounding. SB in dose- and time-dependent manner accelerated wound closure time and increased levels of STM1 mRNA, hydroxyproline, NAGLA and NAGAA compared to the untreated and vehicle (AOO)-treated rats. The current study provides evidence that SB, by increasing STM1 gene expression and extracellular matrix constituents including glycosaminoglycans and collagen contents, promotes a faster wound healing process and can be used as a healing agent in future.

  16. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chang-Liu, Chin-Mei

    1993-12-31

    Experiments were designed to examine the effects of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements ({gamma}- and {beta}-actin and {alpha}-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Results demonstrated little effect of dose-rate for JANUS fission-spectrum neutrons when comparing expression of either a-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Cycloheximide, however, repressed accumulation of {alpha}-tubulin following exposure to high dose-rate neutrons or {gamma} rays; this did not occur following similar low dose-rate exposures. Cycloheximide did not affect accumulation of mRNA for actin genes. Cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin mRNA accumulation following exposure to ionizing radiation and that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons.

  17. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chang-Liu, Chin-Mei

    1992-12-31

    Experiments were designed to examine the effects of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements ({gamma}- and {beta}-actin and {alpha}-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either {alpha}-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide, however, revealed several interesting and novel findings: (1) Cycloheximide repressed accumulation of {alpha}-tubulin following exposure to high dose-rate neutrons or {gamma} rays; this did not occur following similar low dose-rate exposure (2) Cycloheximide did not affect accumulation of mRNA for actin genes. Cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin mRNA accumulation following exposure to ionizing radiation. In addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons.

  18. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chang-Liu, Chin-Mei

    1994-05-01

    Experiments were designed to examine the effects Of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements ({gamma}- and {beta}-actin and {alpha}-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either {alpha}-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide revealed that cycloheximide repressed accumulation of {alpha}-tubulin following exposure to high dose-rate neutrons or {gamma} rays; this did not occur following similar low dose-rate exposure. (2) Cycloheximide did not affect accumulation of MRNA for actin genes; and that cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin MRNA accumulation following exposure to ionizing radiation. in addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons.

  19. From Marrow to Matrix: Novel Gene and Cell Therapies for Epidermolysis Bullosa

    PubMed Central

    Webber, Beau R; Tolar, Jakub

    2015-01-01

    Epidermolysis bullosa encompasses a group of inherited connective tissue disorders that range from mild to lethal. There is no cure, and current treatment is limited to palliative care that is largely ineffective in treating the systemic, life-threatening pathology associated with the most severe forms of the disease. Although allogeneic cell- and protein-based therapies have shown promise, both novel and combinatorial approaches will undoubtedly be required to totally alleviate the disorder. Progress in the development of next-generation therapies that synergize targeted gene-correction and induced pluripotent stem cell technologies offers exciting prospects for personalized, off-the-shelf treatment options that could avoid many of the limitations associated with current allogeneic cell-based therapies. Although no single therapeutic avenue has achieved complete success, each has substantially increased our collective understanding of the complex biology underlying the disease, both providing mechanistic insights and uncovering new hurdles that must be overcome. PMID:25803200

  20. CCN2 plays a key role in extracellular matrix gene expression in severe hypertrophic cardiomyopathy and heart failure.

    PubMed

    Tsoutsman, Tatiana; Wang, Xiaoyu; Garchow, Kendra; Riser, Bruce; Twigg, Stephen; Semsarian, Christopher

    2013-09-01

    Hypertrophic cardiomyopathy (HCM) is the most common inherited primary myocardial disorder. HCM is characterized by interstitial fibrosis and excessive accumulation of extracellular matrix (ECM) proteins. Fibrosis in HCM has been associated with impaired cardiac function and heart failure, and has been considered a key substrate for ventricular arrhythmias and sudden death. The molecular triggers underpinning ECM production are not well established. We have previously developed a double-mutant mouse model of HCM that recapitulates the phenotype seen in humans with multiple mutations, including earlier onset of the disease, progression to a dilated phenotype, severe heart failure and premature mortality. The present study investigated the expression of ECM-encoding genes in severe HCM and heart failure. Significant upregulation of structural Fn1, regulatory Mmp14, Timp1, Serpin3A, SerpinE1, SerpineE2, Tgfβ1, and Tgfβ2; and matricellular Ccn2, Postn, Spp1, Thbs1, Thbs4, and Tnc was evident from the early, pre-phenotype stage. Non-myocytes expressed ECM genes at higher levels than cardiomyocytes in normal and diseased hearts. Synchronous increase of secreted CCN2 and TIMP1 plasma levels and decrease of MMP3 levels were observed in end-stage disease. CCN2 protein expression was increased from early disease in double-mutant hearts and played an important role in ECM responses. It was a powerful modulator of ECM regulatory (Timp1 and SerpinE1) and matricellular protein-encoding (Spp1, Thbs1, Thbs4 and Tnc) gene expression in cardiomyocytes when added exogenously in vitro. Modulation of CCN2 (CTGF, connective tissue growth factor) and associated early ECM changes may represent a new therapeutic target in the treatment and prevention of heart failure in HCM. PMID:23756156

  1. Induction of the Matrix Metalloproteinase 13 Gene in Bronchial Epithelial Cells by Interferon and Identification of its Novel Functional Polymorphism.

    PubMed

    Mashimo, Yoichi; Sakurai-Yageta, Mika; Watanabe, Misa; Arima, Takayasu; Morita, Yoshinori; Inoue, Yuzaburo; Sato, Kazuki; Nishimuta, Toshiyuki; Suzuki, Shuichi; Watanabe, Hiroko; Hoshioka, Akira; Tomiita, Minako; Yamaide, Akiko; Kohno, Yoichi; Okamoto, Yoshitaka; Shimojo, Naoki; Hata, Akira; Suzuki, Yoichi

    2016-06-01

    Matrix metalloproteinases (MMPs) are a class of extra-cellular and membrane-bound proteases involved in a wide array of physiological and pathological processes including tissue remodeling, inflammation, and cytokine secretion and activation. MMP-13 has been shown to be involved in lung diseases such as acute lung injury, viral infections, and chronic obstructive pulmonary disease; however, the molecular pathogenesis of MMP-13 in these conditions is not well understood. In this study, we investigated the mechanisms and roles of MMP-13 secretion in human small airway epithelial cells (SAECs) and functional polymorphisms of the MMP13 gene. Polyinosinic-polycytidylic acid (poly(I:C)) and interferon β (IFN-β) stimulated the secretion of MMP-13 from SAECs by more than several hundred-fold. Stimulation of the secretion by poly(I:C) was abolished by SB304680 (p38 inhibitor), LY294002 (PI3K inhibitor), Janus kinase (JAK) inhibitor I, RNA-activated protein kinase (PKR) inhibitor, and Bay 11-7082 (NF-κB inhibitor), while stimulation by IFN-β was inhibited by all except Bay 11-7082. These data suggested that the secretion of MMP-13 was mediated through IFN receptor pathways independently of nuclear factor kappa B (NF-κB) and that poly(I:C) stimulated IFN secretion in an NF-κB-dependent manner from SAECs, leading to IFN-stimulated MMP-13 secretion. Chemical MMP-13 inhibitors and MMP-13 small interfering RNA (siRNA) inhibited IFN-stimulated secretion of interferon gamma-inducible protein 10 (IP-10) and regulated on activation, normal T-cell expressed and secreted (RANTES), suggesting that MMP-13 is involved in the secretion of these virus-induced proinflammatory chemokines. We identified a novel functional polymorphism in the promoter region of the MMP13 gene. The MMP13 gene may play important roles in defense mechanisms of airway epithelial cells.

  2. Human umbilical cord matrix-derived stem cells expressing interferon-β gene inhibit breast cancer cells via apoptosis

    PubMed Central

    Shen, Ching-Ju; Chan, Te-Fu; Chen, Chien-Chung; Hsu, Yi-Chiang; Long, Cheng-Yu; Lai, Chung-Sheng

    2016-01-01

    Human umbilical cord mesenchymal stem cells (hUCMSCs) derived from the umbilical cord matrix have been reported to be used as anti-tumor gene carrier for attenuation of tumor growth, which extends the half-life and lowers the unexpected cytotoxicity of the gene in vivo. Interferon-β (IFNβ) is known to possess robust antitumor effects on different types of cancer cell lines in vitro. The present study was aimed to investigate the anti-tumor effect of IFNβ gene-transfected hUCMSCs (IFNβ-hUCMSCs) on breast cancer cells with emphasis on triple negative breast carcinoma. Our findings revealed that the co-culture of IFNβ-hUCMSCs with the human triple negative breast carcinoma cell lines MDA-MB-231 or Hs578T significantly inhibited growth of both carcinoma cells. In addition, the culture medium conditioned by these cells also significantly suppressed the growth and induced apoptosis of both carcinoma cells. Further investigation showed that the suppressed growth and the apoptosis induced by co-culture of IFNβ-hUCMSCs or conditioned medium were abolished by pretreating anti-IFNβ neutralizing antibody. These findings indicate that IFNβ-hUCMSCs triggered cell death of breast carcinoma cells through IFN-β production, thereby induced apoptosis and suppressed tumor cell growth. In conclusion, we demonstrated that IFNβ-hUCMSCs inhibited the growth of breast cancer cells through apoptosis. with potent anti-cancer activity, it represents as an anti-cancer cytotherapeutic modality against breast cancer. PMID:27129156

  3. Evaluation of the function of the human apolipoprotein B gene nuclear matrix association regions in transgenic mice.

    PubMed

    Wang, D M; Taylor, S; Levy-Wilson, B

    1996-10-01

    The human apolipoprotein B (apoB) gene resides in a 47.5 kb DNasel-sensitive chromosomal domain in hepatic and intestinal cells, flanked by the 5' distal matrix association region (MAR) and the 3' proximal MAR. A third MAR, the 5' proximal MAR, is found only in transcriptionally active hepatic (HepG2) cells. Hepatic expression of the apoB gene requires a tissue-specific promoter (-898 to +121) and an enhancer from the second intron of the gene (+360 to +1064). A vector containing this portion of the gene linked to the beta-galactosidase reporter is sufficient for low level expression in the livers of transgenic mice. Expression in transgenic mice was increased when the promoter-enhancer beta-gal vector was flanked by MARs. The results were similar whether the 5' distal, the 5' proximal or the 3' proximal MARs were placed at both ends of the construct, or whether the construct was flanked by the 5' distal and the 3' MAR, suggesting that the apoB MARs play a role in gene expression in vivo. When the MAR-containing constructs were transiently transfected into HepG2 cells, the resulting beta-gal activities were similar to that of the construct lacking MARs, thus demonstrating that the MARs do not exhibit any enhancer activity. Recent experiments (Kalos, M., and R. E. K. Fournier. 1995. Mol. Cell. Biol. 15: 198-207) examining stable integration of some of our constructs into human and rat hepatoma transfectants suggest that in single and double copy transfectants, the apoB MARs behave as boundary "insulators", protecting the integrated transgenes against position effects regardless of their site of integration. However, multicopy transfectants are transcriptionally inactive and when the MARs are absent, expression of the transgenes drops to background levels. Our results to date with single and low-copy number transgenes do not support an insulator function for the apoB MARs, although they appear to be required to increase the levels of expression.

  4. Heterogeneity of serum activities of matrix metalloproteinases in chronic endometritis.

    PubMed

    Sukhikh, G T; Soboleva, G M; Silantyeva, E S; Shagerbieva, E A; Serov, V N

    2007-04-01

    Matrix metalloproteinases belong to the key molecules of tissue remodeling involved in physiological and pathological processes of the female reproductive system. Adequate levels of their expression in the endometrium are essential for effective implantation and uneventful pregnancy. Chronic inflammatory process in the endometrium is associated with low tissue expression of metalloproteinase-9. Histologically verified chronic endometritis is associated with low serum activities of metalloproteinases 2 and 9, which are restored after combined etiotropic therapy. We measured serum levels of metalloproteinases in patients with chronic endometritis concomitant with sterility and its changes during the first days after magnetotherapy. PMID:18214304

  5. Associations between matrix metalloproteinase gene polymorphisms and the development of cerebral infarction.

    PubMed

    Zhao, J H; Xu, Y M; Xing, H X; Su, L L; Tao, S B; Tian, X J; Yan, H Q; Ji, S B

    2016-01-04

    The aim of this study was to investigate the association between MMP3 rs3025058 and MMP9 rs3918242 polymorphisms and the development of ischemic stroke in a Chinese population. Between May 2013 and January 2015, 335 patients with ischemic stroke and 335 health control subjects were enrolled in this study. The MMP3 rs3025058 and MMP9 rs3918242 polymorphisms were analyzed using polymerase chain reaction coupled with restriction fragment length polymorphism. By multivariate logistic regression analysis, the CC genotype of MMP9 rs3918242 was shown to be associated with a significantly increased risk of ischemic stroke when compared with the TT genotype [OR (95%CI) = 5.47 (2.64-12.38)]. The TC+CC genotype of MMP9 rs3918242 was furthermore found to be associated with an elevated risk of ischemic stroke in higher BMI individuals [OR (95%CI) = 1.81 (1.03-3.22)]. The findings of this study suggest that the MMP9 rs3918242 polymorphism is associated with an elevated risk of ischemic stroke and that this gene polymorphism interacts with BMI in the risk of ischemic stroke.

  6. Renal expression of fibrotic matrix proteins and of transforming growth factor-beta (TGF-beta) isoforms in TGF-beta transgenic mice.

    PubMed

    Mozes, M M; Böttinger, E P; Jacot, T A; Kopp, J B

    1999-02-01

    Renal pathology in mice that are transgenic for the murine albumin enhancer/promoter linked to a full-length porcine transforming growth factor-beta1 (TGF-beta1) gene has been described previously. In these mice, transgene expression is limited to the liver and the plasma level of TGF-beta is increased. The earliest renal pathologic change is glomerulosclerosis, at 3 wk of age, and this is followed by tubulointerstitial fibrosis. In this study, it was hypothesized that circulating TGF-beta1 increases renal extracellular matrix accumulation and activates local TGF-beta gene expression. Immunostaining at 5 wk revealed increased amounts of collagen I and III within the mesangium, glomerular capillary loops, and interstitium, while the amount of collagen IV was normal. Similarly, Northern analysis showed increased expression of mRNA encoding collagen I and III, as well as biglycan and decorin, while the expression of collagen IV was unchanged. These changes began as early as 1 wk of age, a time before the appearance of glomerulosclerosis. To evaluate matrix degradation, collagenase IV activity was evaluated by gelatin zymography and an increase in matrix metalloproteinase-2 was found. Finally, the production of tissue inhibitors of metalloproteinase was evaluated. Tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA was increased 18-fold, while TIMP-2 and TIMP-3 were unchanged. In 2-wk-old transgenic kidney, local expression of TGF-beta1, beta2, and beta3 protein was similar to wild-type mice. In 5-wk-old transgenic mice, TGF-beta1 and beta2 protein was present in increased amounts within glomeruli, and renal TGF-beta1 mRNA was increased threefold. It is concluded that elevated levels of circulating TGF-beta1 may act on the kidney to increase matrix protein production and decrease matrix remodeling. Only after glomerulosclerosis is established does local glomerular overproduction of TGF-beta become manifest.

  7. Transforming growth factor. beta. sub 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis

    SciTech Connect

    Broekelmann, T.J.; Limper, A.H.; McDonald, J.A. ); Colby, T.V. )

    1991-08-01

    Idiopathic pulmonary fibrosis is an inexorably fatal disorder characterized by connective tissue deposition within the terminal air spaces resulting in loss of lung function and eventual respiratory failure. Previously, the authors demonstrated that foci of activated fibroblasts expressing high levels of fibronectin, procollagen, and smooth muscle actin and thus resembling those found in healing wounds are responsible for the connective tissue deposition and scarring in idiopathic pulmonary fibrosis. Using in situ hybridization and immunohistochemistry, they now demonstrate the presence of transforming growth factor {beta}{sub 1} (TGF-{beta}{sub 1}), a potent profibrotic cytokine, in the foci containing these activated fibroblasts. These results suggest that matrix-associated TGF-{beta}{sub 1} may serve as a stimulus for the persistent expression of connective tissue genes. One potential source of the TGF-{beta}{sub 1} is the alveolar macrophage, and they demonstrate the expression of abundant TGF-{beta}{sub 1} mRNA in alveolar macrophages in lung tissue from patients with idiopathic pulmonary fibrosis.

  8. Matrix metalloproteinase (MMP)-2 gene polymorphisms affect circulating MMP-2 levels in patients with migraine with aura.

    PubMed

    Gonçalves, Flavia M; Martins-Oliveira, Alisson; Lacchini, Riccardo; Belo, Vanessa A; Speciali, Jose G; Dach, Fabíola; Tanus-Santos, Jose E

    2013-01-01

    Matrix metalloproteinases (MMP) are involved in the disruption of blood-brain barrier (BBB) during migraine attacks. In the present study, we hypothesized that two functional polymorphisms (C(-1306)T and C(-735)T) in MMP-2 gene and MMP-2 haplotypes are associated with migraine and modify MMP-2 and tissue inhibitor of MMP (TIMP)-2 levels in migraine. Genotypes for MMP-2 polymorphisms were determined by real time-PCR using Taqman allele discrimination assays. Haplotypes were inferred using the PHASE program. Plasma MMP-2 and TIMP-2 concentrations were measured by gelatin zymography and ELISA, respectively, in 148 healthy women without history of migraine and in 204 women with migraine (153 without aura; MWA, and 51 with aura; MA). Patients with MA had higher plasma MMP-2 concentrations and MMP-2/TIMP-2 ratios than patients with MWA and controls (P<0.05). While MMP-2 genotype and haplotype distributions for the polymorphisms were similar among the groups (P>0.05), we found that the CC genotype for C(-735)T polymorphism and the CC haplotype were associated with higher plasma MMP-2 concentrations in MA group (P<0.05). Our findings may help to understand the role of MMP-2 and its genetic variants in the pathophysiology of migraine and to identify a particular group of migraine patients with increased MMP-2 levels that would benefit from the use of MMP inhibitors.

  9. Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction

    SciTech Connect

    Roskelley, C.D.; Desprez, P.Y.; Bissell, M.J. )

    1994-12-20

    Extracellular matrix (ECM) profoundly influences the growth and differentiation of the mammary gland epithelium, both in culture and in vivo. Utilizing a clonal population of mouse mammary epithelial cells that absolutely requires an exogenous ECM for function, we developed a rapid assay to study signal transduction by ECM. Two components of the cellular response to a basement membrane overlay that result in the expression of the milk protein [beta]-casein were defined. The first component of this response involves a rounding and clustering of the cells that can be physically mimicked by plating the cells on a nonadhesive substratum. The second component is biochemical in nature, and it is associated with [beta][sub 1] integrin clustering and increased tyrosine phosphorylation. The second component is initiated in a morphology-independent manner, but the proper translation of this biochemical signal into a functional response requires cell rounding and cell clustering. Thus, physical and biochemical signal transduction events contribute to the ECM-dependent regulation of tissue-specific gene expression in mouse mammary epithelial cells. 44 refs., 6 figs.

  10. Comparison of orthologous and paralogous DNA flanking the wheat high molecular weight glutenin genes: sequence conservation and divergence, transposon distribution, and matrix-attachment regions.

    PubMed

    Anderson, O D; Larka, L; Christoffers, M J; McCue, K F; Gustafson, J P

    2002-04-01

    Extended flanking DNA sequences were characterized for five members of the wheat high molecular weight (HMW) glutenin gene family to understand more of the structure, control, and evolution of these genes. Analysis revealed more sequence conservation among orthologous regions than between paralogous regions, with differences mainly owing to transposition events involving putative retrotransposons and several miniature inverted transposable elements (MITEs). Both gyspy-like long terminal repeat (LTR) and non-LTR retrotransposon sequences are represented in the flanking DNAs. One of the MITEs is a novel class, but another MITE is related to the maize Stowaway family and is widely represented in Triticeae express sequence tags (ESTs). Flanking DNA of the longest sequence, a 20 425-bp fragment including and surrounding the HMW-glutenin Bx7 gene, showed additional cereal gene-like sequences both immediately 5' and 3' to the HMW-glutenin coding region. The transcriptional activities of sequences related to these flanking putative genes and the retrotransposon-related regions were indicated by matches to wheat and other Triticeae ESTs. Predictive analysis of matrix-attachment regions (MARs) of the HMW glutenin and several alpha-, gamma-, and omega-gliadin flanking DNAs indicate potential MARs immediately flanking each of the genes. Matrix binding activity in the predicted regions was confirmed for two of the HMW-glutenin genes.

  11. Urinary Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) • Insulin-Like Growth Factor-Binding Protein 7 (IGFBP7) Predicts Adverse Outcome in Pediatric Acute Kidney Injury

    PubMed Central

    Westhoff, Jens H.; Tönshoff, Burkhard; Waldherr, Sina; Pöschl, Johannes; Teufel, Ulrike; Westhoff, Timm H.; Fichtner, Alexander

    2015-01-01

    Background The G1 cell cycle inhibitors tissue inhibitor of metalloproteinase-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7) have been identified as promising biomarkers for the prediction of adverse outcomes including renal replacement therapy (RRT) and mortality in critically ill adult patients who develop acute kidney injury (AKI). However, the prognostic value of urinary TIMP-2 and IGFBP7 in neonatal and pediatric AKI for adverse outcome has not been investigated yet. Methods The product of the urinary concentration of TIMP-2 and IGFBP7 ([TIMP-2]•[IGFBP7]) was assessed by a commercially available immunoassay (NephroCheck™) in a prospective cohort study in 133 subjects aged 0–18 years including 46 patients with established AKI according to pRIFLE criteria, 27 patients without AKI (non-AKI group I) and 60 apparently healthy neonates and children (non-AKI group II). AKI etiologies were: dehydration/hypovolemia (n = 7), hemodynamic instability (n = 7), perinatal asphyxia (n = 9), septic shock (n = 7), typical hemolytic-uremic syndrome (HUS; n = 5), interstitial nephritis (n = 5), vasculitis (n = 4), nephrotoxic injury (n = 1) and renal vein thrombosis (n = 1). Results When AKI patients were classified into pRIFLE criteria, 6/46 (13%) patients fulfilled the criteria for the category “Risk”, 13/46 (28%) for “Injury”, 26/46 (57%) for “Failure” and 1/46 (2%) for “Loss”. Patients in the “Failure” stage had a median 3.7-fold higher urinary [TIMP-2]•[IGFBP7] compared to non-AKI subjects (P<0.001). When analyzed for AKI etiology, highest [TIMP-2]•[IGFBP7] values were found in patients with septic shock (P<0.001 vs. non-AKI I+II). Receiver operating characteristic (ROC) curve analyses in the AKI group revealed good performance of [TIMP-2]•[IGFBP7] in predicting 30-day (area under the curve (AUC) 0.79; 95% CI, 0.61–0.97) and 3-month mortality (AUC 0.84; 95% CI, 0.67–0.99) and moderate performance in predicting RRT

  12. Ablation of matrix metalloproteinase-9 gene decreases cerebrovascular permeability and fibrinogen deposition post traumatic brain injury in mice

    PubMed Central

    Muradashvili, Nino; Benton, Richard L.; Saatman, Kathryn E.; Tyagi, Suresh C.; Lominadze, David

    2014-01-01

    Traumatic brain injury (TBI) is accompanied with enhanced matrix metalloproteinase-9 (MMP-9) activity and elevated levels of plasma fibrinogen (Fg), which is a known inflammatory agent. Activation of MMP-9 and increase in blood content of Fg (i.e. hyperfibrinogenemia, HFg) both contribute to cerebrovascular disorders leading to blood brain barrier disruption. It is well-known that activation of MMP-9 contributes to vascular permeability. It has been shown that at an elevated level (i.e. HFg) Fg disrupts blood brain barrier. However, mechanisms of their actions during TBI are not known. Mild TBI was induced in wild type (WT, C57BL/6J) and MMP-9 gene knockout (Mmp9−/−) homozygous, mice. Pial venular permeability to fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA) in pericontusional area was observed 14 days after injury. Mice memory was tested with a novel object recognition test. Increased expression of Fg endothelial receptor intercellular adhesion protein-1 and formation of caveolae were associated with enhanced activity of MMP-9 causing an increase in pial venular permeability. As a result, an enhanced deposition of Fg and cellular prion protein (PrPC) were found in pericontusional area. These changes were attenuated in Mmp9−/− mice and were associated with lesser loss of short-term memory in these mice than in WT mice. Our data suggest that mild TBI-induced increased cerebrovascular permeability enhances deposition of Fg-PrPC and loss of memory, which is ameliorated in the absence of MMP-9 activity. Thus, targeting MMP-9 activity and blood level of Fg can be a possible therapeutic remedy to diminish vasculo-neuronal damage after TBI. PMID:24771110

  13. Vitamin D Receptor Gene, Matrix Metalloproteinase 3 Polymorphisms and the Risk of Intervertebral Disc Degeneration Susceptibility: Meta-Analysis

    PubMed Central

    Huang, Yongjing; Zhao, Shujie; Xu, Nanwei

    2016-01-01

    Several studies have evaluated the association between vitamin D receptor, matrix metalloproteinase 3 (MMP-3) polymorphisms and the risk of intervertebral disc degeneration susceptibility. The findings were inconsistent. This meta-analysis aimed to systematically assess the association between vitamin D receptor, MMP-3 polymorphisms and the risk of intervertebral disc degeneration susceptibility. A search of various databases was done covering all papers published until December 31th, 2014. Eight, 4, 3 studies were finally included that addressed the risk of intervertebral disc degeneration susceptibility and vitamin D receptor FokI (rs2228570), ApaI (rs7975232), and MMP-3 (rs731236) polymorphisms, respectively. FokI (f vs. F: summary odds ratio [OR], 1.13; 95% confidence interval [CI], 0.76–1.69; ff vs. FF: OR, 1.02; 95% CI, 0.59–1.77; ff vs. Ff/FF: OR, 1.05; 95% CI, 0.70–1.58), ApaI (a vs. A: OR, 0.73; 95% CI, 0.45–1.19; aa vs. AA: OR, 0.53; 95% CI, 0.22–1.25 p=0.14; aa vs. AA/Aa: OR, 0.69; 95% CI, 0.53–0.89) in the vitamin D receptor gene and MMP3 polymorphisms (5A vs. 6A: OR, 1.92; 95% CI, 0.77–4.80; 5A5A vs. 6A6A: OR, 2.17; 95% CI, 0.75–6.24; 5A5A vs. 5A6A/6A6A: OR, 1.58; 95% CI, 0.72–3.44) were not obviously associated with risk of intervertebral disc degeneration susceptibility. FokI, ApaI polymorphisms in the vitamin D receptor gene and MMP-3 polymorphism are not obvious risk factors for intervertebral disc degeneration susceptibility. PMID:27790329

  14. Tumor targeting and microenvironment-responsive nanoparticles for gene delivery.

    PubMed

    Huang, Shixian; Shao, Kun; Kuang, Yuyang; Liu, Yang; Li, Jianfeng; An, Sai; Guo, Yubo; Ma, Haojun; He, Xi; Jiang, Chen

    2013-07-01

    A tumor targeting nanoparticle system has been successfully developed to response to the lowered tumor extracellular pH (pHe) and upregulated matrix metalloproteinase 2 (MMP2) in the tumor microenvironment. The nanoparticles are modified with activatable cell-penetrating peptide (designated as dtACPP) that's dual-triggered by the lowered pHe and MMP2. In dtACPP, the internalization function of cell-penetrating peptide (CPP) is quenched by a pH-sensitive masking peptide, linking by a MMP2 substrate. The masking peptide is negatively charged to quench the cationic CPP well after systemic administration. Hence, dtACPP-modified nanoparticles possesses passive tumor targetability via the enhanced permeability and retention (EPR) effect. Once reaching the tumor microenvironment, the pre-existing attraction would be eliminated due to the lowered pHe, accompanying the linker cleaved by MMP2, dtACPP would be activated to expose CPP to drive the nanoparticles' internalization into the intratumoral cells. The studies of plasmid DNA loading, toxicity assessment, cellular uptake, tumor targeting delivery, and gene transfection demonstrate that dtACPP-modified nanoparticle system is a potential candidate for tumor targeting gene delivery.

  15. A nuclear localization signal in the matrix of spleen necrosis virus (SNV) does not allow efficient gene transfer into quiescent cells with SNV-derived vectors

    SciTech Connect

    Caron, Marie-Christine; Caruso, Manuel . E-mail: manuel.caruso@crhdq.ulaval.ca

    2005-08-01

    A major limitation in gene therapy for vectors derived from Moloney murine leukemia virus (MLV) is that they only deliver genes into dividing cells. In this study, a careful comparison of spleen necrosis virus (SNV)-derived vectors with MLV and human immunodeficiency virus (HIV)-1 retroviral vectors indicated that SNV vectors can deliver genes 4-fold more efficiently than MLV vectors into aphidicolin-arrested cells, although at a 25-fold lower efficiency than HIV-1-derived vectors. Furthermore, the addition of a NLS in the SNV matrix (MA) that mimics the one located in HIV-1 MA did not increase the ability of SNV vectors to transfer genes into arrested cells. Also, we found that the RD114 envelope was able to pseudotype SNV viral particles in a very efficient manner.

  16. Transcriptome meta-analysis reveals a dysregulation in extra cellular matrix and cell junction associated gene signatures during Dengue virus infection.

    PubMed

    Afroz, Sumbul; Giddaluru, Jeevan; Abbas, Mohd Manzar; Khan, Nooruddin

    2016-01-01

    Dengue Viruses (DENVs) cause one of the most prevalent arthropod-borne viral diseases affecting millions of people worldwide. Identification of genes involved in DENV pathogenesis would help in deciphering molecular mechanisms responsible for the disease progression. Here, we carried out a meta-analysis of publicly available gene expression data of dengue patients and further validated the meta-profile using in-vitro infection in THP-1 cells. Our findings reveal that DENV infection modulates expression of several genes and signalling pathways including interferons, detoxification of ROS and viral assembly. Interestingly, we have identified novel gene signatures comprising of INADL/PATJ and CRTAP (Cartilage Associated Protein), which were significantly down-regulated across all patient data sets as well as in DENV infected THP-1 cells. PATJ and CRTAP genes are involved in maintaining cell junction integrity and collagen assembly (extracellular matrix component) respectively, which together play a crucial role in cell-cell adhesion. Our results categorically reveal that overexpression of CRTAP and PATJ genes restrict DENV infection, thereby suggesting a critical role of these genes in DENV pathogenesis. Conclusively, these findings emphasize the utility of meta-analysis approach in identifying novel gene signatures that might provide mechanistic insights into disease pathogenesis and possibly lead towards the development of better therapeutic interventions. PMID:27651116

  17. Transcriptome meta-analysis reveals a dysregulation in extra cellular matrix and cell junction associated gene signatures during Dengue virus infection

    PubMed Central

    Afroz, Sumbul; Giddaluru, Jeevan; Abbas, Mohd. Manzar; Khan, Nooruddin

    2016-01-01

    Dengue Viruses (DENVs) cause one of the most prevalent arthropod-borne viral diseases affecting millions of people worldwide. Identification of genes involved in DENV pathogenesis would help in deciphering molecular mechanisms responsible for the disease progression. Here, we carried out a meta-analysis of publicly available gene expression data of dengue patients and further validated the meta-profile using in-vitro infection in THP-1 cells. Our findings reveal that DENV infection modulates expression of several genes and signalling pathways including interferons, detoxification of ROS and viral assembly. Interestingly, we have identified novel gene signatures comprising of INADL/PATJ and CRTAP (Cartilage Associated Protein), which were significantly down-regulated across all patient data sets as well as in DENV infected THP-1 cells. PATJ and CRTAP genes are involved in maintaining cell junction integrity and collagen assembly (extracellular matrix component) respectively, which together play a crucial role in cell-cell adhesion. Our results categorically reveal that overexpression of CRTAP and PATJ genes restrict DENV infection, thereby suggesting a critical role of these genes in DENV pathogenesis. Conclusively, these findings emphasize the utility of meta-analysis approach in identifying novel gene signatures that might provide mechanistic insights into disease pathogenesis and possibly lead towards the development of better therapeutic interventions. PMID:27651116

  18. Differential Expression of Matrix Metalloproteinase-9 Gene in Wounds of Type 2 Diabetes Mellitus Cases With Susceptible -1562C>T Genotypes and Wound Severity.

    PubMed

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2014-05-25

    Coordinated extracellular matrix deposition is a prerequisite for proper wound healing which is mainly orchestrated by matrix metalloproteinases (MMPs). Diabetic wounds generally show compromised wound healing cascade and abnormal MMP9 concentration is one of the cause. Our group have recently shown that the polymorphism -1562 C>T in the promoter region of MMP9 gene is associated with pathogenesis of wound healing impairment in T2DM patients. In present study we have done expression profiling of MMP9 gene in the wound biopsy of DFU cases. Expression level of MMP9 mRNA was then compared with susceptible -1562 C>T genotypes (TT and CT) as well as with different grades of wounds. We also screened the promoter region of MMP9 gene to see the methylation state of CpGs present there. Our study suggests that levels of MMP9 mRNA increase significantly with the wound grades. Moreover, the MMP9 levels in diabetic wounds were also dependent on -1562 C>T polymorphism in the promoter region of MMP9. Diabetic wounds also showed a significant unmethylated status of MMP9 promoter compared to control wounds. In conclusion, The risk genotypes of -1562 C>T polymorphism along with lack of methylation of CpG sites in MMP9 gene promoter may result in altered expression of MMP9 in wounds of T2DM cases resulting into nonhealing chronic ulcers in them. PMID:24861096

  19. Nicotine induced changes in gene expression by human coronary artery endothelial cells.

    PubMed

    Zhang, S; Day, I; Ye, S

    2001-02-01

    The primary role of cigarette smoking in the development of coronary heart disease is to cause damage to the vascular endothelium, leading to endothelial cell dysfunction and initiating the pathogenesis of coronary atherosclerosis. We studied the response of human coronary artery endothelial cells to nicotine exposure by examining the expression of a panel of genes encoding molecules that have been shown to be involved in atherogenesis. Treatment of primary human coronary artery endothelial cells with nicotine for 24 h at concentrations (10(-5) and 10(-7) M) similar to those in the blood of smokers resulted in increased mRNA levels of endothelial nitric oxide synthase, angiotensin-I converting enzyme, tissue-type plasminogen activator, plasminogen activator inhibitor-1, von Willebrand factor, and vascular cell adhesion molecule-1. No change was detected in the expression levels of the genes encoding basic fibroblast growth factor, endothelin-1, endothelial leukocyte adhesion molecule-1 and matrix metalloproteinase-2 under these conditions. These data indicate that nicotine alters the expression of a number of endothelial genes whose products play major roles in regulating the vascular tone and thrombogenicity, making a contribution to the understanding of the effects of cigarette smoking on the development of coronary atherosclerosis. PMID:11166759

  20. The effect of matrix attached regions (MAR) and specialized chromatin structure (SCS) on the expression of gene constructs in cultured cells and in transgenic mice.

    PubMed

    Attal, J; Cajero-Juarez, M; Petitclerc, D; Théron, M C; Stinnakre, M G; Bearzotti, M; Kann, G; Houdebine, L M

    The flanking sequences of several genes have been shown to direct a position independent expression of transgenes. Attempts to completely identify the insulating sequences have failed so far. Some of these sequences contain a matrix attached region (MAR) located in the flanking part of the genes. This article will show that the MARs in cultured cells located in the 3' OH region of the human apolipoprotein B100 (Apo B100) and within the SV40 genome were unable to stimulate and insultate transgene expression directed by the promoters from a rabbit whey acidic protein (WAP) gene or from human cytomegalovirus (hCMV) early genes. In transgenic mice, the MAR from the Apo B100 and SV40 genes did not enhance the expression of a transgene containing the rabbit whey acid protein (WAP) promotor, the late gene SV40 intron (VP1 intron), the bovine growth hormone (bGH) cDNA and the SV40 late gene terminator. This construct was even toxic for embryos. Similarly, the specialized chromatin structure (SCS) from the Drosophila 87A7 HSP70 gene reduced chloramphenicol acetyl transferase (CAT) activity when added between a cytomegalovirus (CMV) enhancer and a Herpes simplex thymidine kinase (TK) gene promoter. This inhibitory action was almost complete when a second SCS sequence was added before the CMV enhancer. Sequences from the firefly luciferase and from the human gene cathepsin D cDNA used as control unexpectedly showed a similar inhibitory effect when added to the CMVTKCAT construct instead of SCS. When added before the CMV enhancer and after the transcription terminator in the CMVTKCAT construct, the SCS sequence was unable to insulate the integrated gene as seen by the fact that the level of CAT in cell extracts were by no means correlated with the number of copies in individual clones. From these data, it is concluded that i) a MAR containing the canonical AT rich sequences does not amplify the expression of all gene constructs ii) At rich MAR sequences do not have per se an

  1. Reassortment between Avian H5N1 and Human Influenza Viruses Is Mainly Restricted to the Matrix and Neuraminidase Gene Segments

    PubMed Central

    Schrauwen, Eefje J. A.; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Osterhaus, Albert D. M. E.; Fouchier, Ron A. M.; Herfst, Sander

    2013-01-01

    Highly pathogenic avian influenza H5N1 viruses have devastated the poultry industry in many countries of the eastern hemisphere. Occasionally H5N1 viruses cross the species barrier and infect humans, sometimes with a severe clinical outcome. When this happens, there is a chance of reassortment between H5N1 and human influenza viruses. To assess the potential of H5N1 viruses to reassort with contemporary human influenza viruses (H1N1, H3N2 and pandemic H1N1), we used an in vitro selection method to generate reassortant viruses, that contained the H5 hemagglutinin gene, and that have a replication advantage in vitro. We found that the neuraminidase and matrix gene segments of human influenza viruses were preferentially selected by H5 viruses. However, these H5 reassortant viruses did not show a marked increase in replication in MDCK cells and human bronchial epithelial cells. In ferrets, inoculation with a mixture of H5N1-pandemic H1N1 reassortant viruses resulted in outgrowth of reassortant H5 viruses that had incorporated the neuraminidase and matrix gene segment of pandemic 2009 H1N1. This virus was not transmitted via aerosols or respiratory droplets to naïve recipient ferrets. Altogether, these data emphasize the potential of avian H5N1 viruses to reassort with contemporary human influenza viruses. The neuraminidase and matrix gene segments of human influenza viruses showed the highest genetic compatibility with HPAI H5N1 virus. PMID:23527283

  2. Reassortment between Avian H5N1 and human influenza viruses is mainly restricted to the matrix and neuraminidase gene segments.

    PubMed

    Schrauwen, Eefje J A; Bestebroer, Theo M; Rimmelzwaan, Guus F; Osterhaus, Albert D M E; Fouchier, Ron A M; Herfst, Sander

    2013-01-01

    Highly pathogenic avian influenza H5N1 viruses have devastated the poultry industry in many countries of the eastern hemisphere. Occasionally H5N1 viruses cross the species barrier and infect humans, sometimes with a severe clinical outcome. When this happens, there is a chance of reassortment between H5N1 and human influenza viruses. To assess the potential of H5N1 viruses to reassort with contemporary human influenza viruses (H1N1, H3N2 and pandemic H1N1), we used an in vitro selection method to generate reassortant viruses, that contained the H5 hemagglutinin gene, and that have a replication advantage in vitro. We found that the neuraminidase and matrix gene segments of human influenza viruses were preferentially selected by H5 viruses. However, these H5 reassortant viruses did not show a marked increase in replication in MDCK cells and human bronchial epithelial cells. In ferrets, inoculation with a mixture of H5N1-pandemic H1N1 reassortant viruses resulted in outgrowth of reassortant H5 viruses that had incorporated the neuraminidase and matrix gene segment of pandemic 2009 H1N1. This virus was not transmitted via aerosols or respiratory droplets to naïve recipient ferrets. Altogether, these data emphasize the potential of avian H5N1 viruses to reassort with contemporary human influenza viruses. The neuraminidase and matrix gene segments of human influenza viruses showed the highest genetic compatibility with HPAI H5N1 virus.

  3. Combining Position Weight Matrices and Document-Term Matrix for Efficient Extraction of Associations of Methylated Genes and Diseases from Free Text

    PubMed Central

    Bin Raies, Arwa; Mansour, Hicham; Incitti, Roberto; Bajic, Vladimir B.

    2013-01-01

    Background In a number of diseases, certain genes are reported to be strongly methylated and thus can serve as diagnostic markers in many cases. Scientific literature in digital form is an important source of information about methylated genes implicated in particular diseases. The large volume of the electronic text makes it difficult and impractical to search for this information manually. Methodology We developed a novel text mining methodology based on a new concept of position weight matrices (PWMs) for text representation and feature generation. We applied PWMs in conjunction with the document-term matrix to extract with high accuracy associations between methylated genes and diseases from free text. The performance results are based on large manually-classified data. Additionally, we developed a web-tool, DEMGD, which automates extraction of these associations from free text. DEMGD presents the extracted associations in summary tables and full reports in addition to evidence tagging of text with respect to genes, diseases and methylation words. The methodology we developed in this study can be applied to similar association extraction problems from free text. Conclusion The new methodology developed in this study allows for efficient identification of associations between concepts. Our method applied to methylated genes in different diseases is implemented as a Web-tool, DEMGD, which is freely available at http://www.cbrc.kaust.edu.sa/demgd/. The data is available for online browsing and download. PMID:24147091

  4. Consequences of prolonged inhalation of ozone on F344/N rats: collaborative studies. Part IV: Effects on expression of extracellular matrix genes.

    PubMed

    Parks, W C; Roby, J D

    1994-10-01

    Increased deposition of lung extracellular matrix in terminal airways is associated with chronic ozone exposure. In situ hybridization was used to assess whether long-term ozone exposure causes elevated and continued expression of genes coding for connective tissue proteins. Accessory lobes were removed from the animals exposed to 0, 0.12, 0.5, or 1.0 parts per million (ppm)* ozone for 20 months as part of the National Toxicology Program (NTP)/HEI Collaborative Ozone Project. The lungs were perfused fixed under physiologic pressure and processed for in situ hybridization. Sections were hybridized with 35S-labeled probes for messenger RNA (mRNA) coding for various matrix proteins, including collagen types I and III, elastin, and fibronectin, and for interstitial collagenase, a matrix metalloproteinase. Fetal rat lung was used as a positive control for hybridization. No signal for any mRNA was detected in terminal airway stromal cells of lungs from animals exposed to ozone for 20 months or control animals breathing clean air. In all samples from animals exposed to ozone for 20 months and control animals, only a very weak signal was seen in occasional cells within the interstitial spaces around large airways and blood vessels. In contrast, a strong signal for matrix-related mRNA was detected in fetal lung tissue. These findings indicate that active or enhanced matrix production is turned off in the adult animals used in the ozone studies, suggesting that the increase in matrix deposition results from a transient and early fibrotic response. Indeed, signal for type I procollagen and tropoelastin mRNAs was seen in alveolar septal cells in lungs of rats exposed to ozone for two months. No signal was seen in alveolar cells of age-matched control animals. (These animals, exposed for two months, and age-matched controls were from earlier studies supported by the HEI.) These findings indicate that ozone mediates a transient fibrotic response that results in a sustained

  5. Treatment outcome of chronic low back pain and radiographic lumbar disc degeneration are associated with inflammatory and matrix degrading gene variants: a prospective genetic association study

    PubMed Central

    2013-01-01

    Background Inflammatory and matrix degrading gene variants have been reported to be associated with disc degeneration. Some of these variants also modulate peripheral pain. This study examines the association of these genetic variants with radiographic lumbar disc degeneration and changes in pain and disability at long-term after surgical and cognitive behavioural management. Methods 93 unrelated patients with chronic low back pain (CLBP) for duration of >1 year and lumbar disc degeneration were treated with lumbar fusion or cognitive intervention and exercises. Standardised questionnaires included the Oswestry Disability Index (ODI) and Visual Analog Score (VAS) for CLBP, were filled in by patients both at baseline and at 9 years follow-up. Degenerative changes at baseline Magnetic Resonance Imaging and Computed Tomography scans, were graded as moderate and severe (N=79). Yield and quality of blood and saliva DNA was assessed by nano drop spectrophotometry. Eight SNPs in 5 inflammatory and matrix degrading genes were successfully genotyped. Single marker and haplotype association with severity of degeneration, number of discs involved, changes in ODI and VAS CLBP, was done using Haploview, linear regression and R-package Haplostats. Results Association analysis of individual SNPs revealed association of IL18RAP polymorphism rs1420100 with severe degeneration (p = 0.05) and more than one degenerated disc (p = 0.02). From the same gene two SNPs, rs917997 and rs1420106, were found to be in strong linkage disequilibrium (LD) and were associated with post treatment improvement in disability (p = 0.02). Haplotype association analysis of 5 SNPs spanning across IL18RAP, IL18R1 and IL1A genes revealed significant associations with improvement in disability (p=0.02) and reduction in pain (p=0.04). An association was found between MMP3 polymorphism rs72520913 and improvement in pain (p = 0.03) and with severe degeneration (p = 0.006). Conclusions The findings of the

  6. Normal number of CGG repeats in the FMR-1 gene and abnormal incorporation of fibrillin into the extracellular matrix in Lujan Syndrome

    SciTech Connect

    Greenhaw, G.A.; Stone, C.; Milewicz, D.

    1994-09-01

    Lujan syndrome is an X-linked condition that includes mild-to-moderate mental retardation, poor social integration, normal secondary sexual development with normal testicular size, generalized hypotonia, hypernasal voice and dolichostenomelia. Major cardiac complications and lens dislocation have not been reported although severe myopia may occur. All reported cases have had negative cytogenetic screening for fra(X) syndrome but establishing this constellation of findings as a distinctive entity has been difficult. We report 4 males in two sibships with clinical findings consistent with Lujan syndrome, normal karyotypes, negative cytogenetic screening for fra(X) syndrome and a normal number of CGG repeats in the FMR-1 gene. Dermal fibroblasts explanted from one of the affected males were used to study fibrillin synthesis secretion and extracellular matrix incorporation into microfibrils. Cells from the affected individual showed normal synthesis and secretion of fibrillin when compared to control cells, but the fibrillin was not incorporated into the extracellular matrix. These results suggest the presence of a gene on the X chromosome which may play a role in microfibril assembly and when deficient may disrupt the incorporation of fibrillin into microfibrils. This may be important not only in normal body morphogenesis but also in the development/function of the brain. More affected individuals are needed to investigate these findings further.

  7. A matrix attachment region is located upstream from the high-molecular-weight glutenin gene Bx7 in wheat (Triticum aestivum L.).

    PubMed

    Rampitsch, C; Jordan, M C; Cloutier, S

    2000-06-01

    A 2.2-kb nucleotide sequence rich in AT, located upstream from the Bx7 allele of the high-molecular-weight glutenin Glu-B1 locus in wheat (Triticum aestivum cv. Glenlea) was cloned following amplification by PCR. The 5' region of this sequence contains motifs typically found in matrix attachment regions (MARs) in other plants. We have shown that part of the 2.2-kb DNA binds to wheat nuclear matrix (NM) in vitro, at least as strongly as a known MAR (Adh1) from maize suggesting that there is a MAR upstream of Bx7. This MAR is approximately 800 bases in length running from -750 to -1560 bases, relative to the start codon. Although the MAR is associated with a tissue-specific gene and is beside a strong tissue-specific promoter, the MAR sequence did not lead to tissue-specific expression of the beta-glucuronidase marker gene under the control of the rice actin promoter in various tissues. Presence of the MAR was only slightly beneficial with respect to expression levels, which were not greatly altered in transient expression assays in various wheat tissues although a slight increase in the number of foci was observed in leaves, which have low transformation efficiencies.

  8. Identification and expression patterns of extracellular matrix-associated genes fibropellin-ia and tenascin involved in regeneration of sea cucumber Apostichopus japonicus.

    PubMed

    Ba, Huazhong; Yao, Feng; Yang, Lei; Qin, Tong; Luan, Hong; Li, Zhengmin; Zou, Xiangyang; Hou, Lin

    2015-07-01

    Sea cucumbers have a strong regenerative capacity. Many important genes involved in the molecular mechanism of regeneration and associated with intercellular signaling pathways of regeneration have been identified. The product of the fibropellin-ia gene forms a layer known as the apical lamina that surrounds the sea cucumber embryo throughout development. Meanwhile, the tenascin gene displays highly restricted and dynamic patterns of expression in the embryo and is expressed in the adult during normal processes such as wound healing, nerve regeneration and tissue involution. In this study, we cloned for the first time full-length cDNAs of fibropellin-ia (1390 bp, encoding a 199 amino acid protein) and tenascin (1366 bp, encoding a 179 amino acid protein) from Apostichopus japonicus (designated Aj-fnia and Aj-tenascin, respectively) using rapid amplification of cDNA ends. The structures and characteristics of these two genes were analyzed bioinformatically, and their expression patterns associated with extracellular matrix remodeling in regeneration of A. japonicus were investigated by real-time PCR and in situ hybridization (ISH). Expression levels of Aj-fnia and Aj-tenascin in the regeneration tissues were higher than those in normal tissues. The highest expression levels of Aj-fnia and Aj-tenascin were shown in the intestine and respiratory tree on the 15th and 20th days after sea cucumbers were eviscerated. In the body wall, the highest expression levels of Aj-fnia and Aj-tenascin occurred at 35 and 45 min during early regeneration and then emerged between 5 and 7 days again during late regeneration after the body wall was injured. ISH analysis revealed expression of these genes in the body wall, longitudinal muscle, intestine and respiratory tree. These findings suggest that Aj-fnia and Aj-tenascin are crucial genes that play important roles in the regeneration of the sea cucumber.

  9. Microarray Identifies Extensive Downregulation of Noncollagen Extracellular Matrix and Profibrotic Growth Factor Genes in Chronic Isolated Mitral Regurgitation in the Dog

    PubMed Central

    Zheng, Junying; Chen, Yuanwen; Pat, Betty; Dell’Italia, Louis A; Tillson, Michael; Dillon, A Ray; Powell, Pamela; Shi, Ke; Shah, Neil; Denney, Thomas; Husain, Ahsan; Dell’Italia, Louis J

    2011-01-01

    Background The volume overload of isolated mitral regurgitation (MR) in the dog results in left ventricular (LV) dilatation and interstitial collagen loss. To better understand the mechanism of collagen loss we performed a gene array and overlaid regulated genes into Ingenuity Pathway Analysis (IPA). Methods and Results Gene arrays from LV tissue were compared in 4 dogs prior to and 4 months after MR. Cine-magnetic resonance-derived LV end-diastolic volume increased 2-fold (p=0.005) and LV ejection fraction increased from 41 to 53% (p < 0.001). LV interstitial collagen decreased 40% (p<0.05) compared to controls and replacement collagen was in short strands and in disarray. IPA identified Marfan’s syndrome, aneurysm formation, LV dilatation, and myocardial infarction, all of which have extracellular matrix (ECM) protein defects and/or degradation. MMP-1 and -9 mRNA increased 5- (p=0.01) and 10-fold (0.003), while collagen I did not change and collagen III mRNA increased 1.5-fold (p=0.02). However, noncollagen genes important in ECM structure were significantly downregulated, including decorin, fibulin 1, and fibrillin 1. Decorin mRNA downregulation correlated with LV dilatation (r= 0.83 p<0.05). In addition, connective tissue growth factor and plasminogen activator inhibitor were downregulated, along with multiple genes in TGF-β signaling pathway, resulting decreased LV TGF-β1 activity (p=0.03). Conclusions LV collagen loss in isolated, compensated MR is chiefly due to post-translational processing and degradation. The downregulation of multiple noncollagen genes important in global ECM structure, coupled with decreased expression of multiple profibrotic factors, explain the failure to replace interstitial collagen in the MR heart. PMID:19349319

  10. Influence of Adhesion Force on icaA and cidA Gene Expression and Production of Matrix Components in Staphylococcus aureus Biofilms

    PubMed Central

    Harapanahalli, Akshay K.; Chen, Yun; Li, Jiuyi; Busscher, Henk J.

    2015-01-01

    The majority of human infections are caused by biofilms. The biofilm mode of growth enhances the pathogenicity of Staphylococcus spp. considerably, because once they adhere, staphylococci embed themselves in a protective, self-produced matrix of extracellular polymeric substances (EPSs). The aim of this study was to investigate the influence of forces of staphylococcal adhesion to different biomaterials on icaA (which regulates the production of EPS matrix components) and cidA (which is associated with cell lysis and extracellular DNA [eDNA] release) gene expression in Staphylococcus aureus biofilms. Experiments were performed with S. aureus ATCC 12600 and its isogenic mutant, S. aureus ATCC 12600 Δpbp4, deficient in peptidoglycan cross-linking. Deletion of pbp4 was associated with greater cell wall deformability, while it did not affect the planktonic growth rate, biofilm formation, cell surface hydrophobicity, or zeta potential of the strains. The adhesion forces of S. aureus ATCC 12600 were the strongest on polyethylene (4.9 ± 0.5 nN), intermediate on polymethylmethacrylate (3.1 ± 0.7 nN), and the weakest on stainless steel (1.3 ± 0.2 nN). The production of poly-N-acetylglucosamine, eDNA presence, and expression of icaA genes decreased with increasing adhesion forces. However, no relation between adhesion forces and cidA expression was observed. The adhesion forces of the isogenic mutant S. aureus ATCC 12600 Δpbp4 (deficient in peptidoglycan cross-linking) were much weaker than those of the parent strain and did not show any correlation with the production of poly-N-acetylglucosamine, eDNA presence, or expression of the icaA and cidA genes. This suggests that adhesion forces modulate the production of the matrix molecule poly-N-acetylglucosamine, eDNA presence, and icaA gene expression by inducing nanoscale cell wall deformation, with cross-linked peptidoglycan layers playing a pivotal role in this adhesion force sensing. PMID:25746995

  11. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    PubMed Central

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-01-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases. PMID:27703186

  12. Contributions of extracellular matrix signaling and tissue architecture to nuclear mechanisms and spatial organization of gene expression control

    PubMed Central

    Lelièvre, Sophie A.

    2009-01-01

    Post-translational modification of histones, ATP-dependent chromatin remodeling, and DNA methylation are interconnected nuclear mechanisms that ultimately lead to the changes in chromatin structure necessary to carry out epigenetic gene expression control. Tissue differentiation is characterized by a specific gene expression profile in association with the acquisition of a defined tissue architecture and function. Elements critical for tissue differentiation, like extracellular stimuli, adhesion and cell shape properties, and transcription factors all contribute to the modulation of gene expression and thus, are likely to impinge on the nuclear mechanisms of epigenetic gene expression control. In this review, we analyze how these elements modify chromatin structure in a hierarchical manner by acting on the nuclear machinery. We discuss how mechanotransduction via the structural continuum of the cell and biochemical signaling to the cell nucleus integrate to provide a comprehensive control of gene expression. The role of nuclear organization in this control is highlighted, with a presentation of differentiation-induced nuclear structure and the concept of nuclear organization as a modulator of the response to incoming signals. PMID:19328836

  13. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-10-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases.

  14. Repression by H-NS of genes required for the biosynthesis of the Vibrio cholerae biofilm matrix is modulated by the second messenger cyclic diguanylic acid

    PubMed Central

    Ayala, Julio C.; Wang, Hongxia; Silva, Anisia J.; Benitez, Jorge A.

    2015-01-01

    Summary Expression of Vibrio cholerae genes required for the biosynthesis of exopolysacchide (vps) and protein (rbm) components of the biofilm matrix is enhanced by cyclic diguanylate (c-di-GMP). In a previous study, we reported that the H-NS protein represses the transcription of vpsA, vpsL and vpsT. Here we demonstrate that the regulator VpsT can disrupt repressive H-NS nucleoprotein complexes at the vpsA and vpsL promoters in the presence of c-di-GMP while H-NS could disrupt the VpsT-promoter complexes in the absence of c-di-GMP. ChiP-Seq showed a remarkable trend for H-NS to cluster at loci involved in biofilm development such as the rbmABCDEF genes. We show that the antagonistic relationship between VpsT and H-NS regulates the expression of the rbmABCDEF cluster. Epistasis analysis demonstrated that VpsT functions as an antirepressor at the rbmA/F, vpsU and vpsA/L promoters. Deletion of vpsT increased H-NS occupancy at these promoters while increasing the c-di-GMP pool had the opposite effect and included the vpsT promoter. The negative effect of c-di-GMP on H-NS occupancy at the vpsT promoter required the regulator VpsR. These results demonstrate that c-di-GMP activates the transcription of genes required for the biosynthesis of the biofilm matrix by triggering a coordinated VpsR- and VpsT-dependent H-NS antirepression cascade. PMID:25982817

  15. Repression by H-NS of genes required for the biosynthesis of the Vibrio cholerae biofilm matrix is modulated by the second messenger cyclic diguanylic acid.

    PubMed

    Ayala, Julio C; Wang, Hongxia; Silva, Anisia J; Benitez, Jorge A

    2015-08-01

    Expression of Vibrio cholerae genes required for the biosynthesis of exopolysacchide (vps) and protein (rbm) components of the biofilm matrix is enhanced by cyclic diguanylate (c-di-GMP). In a previous study, we reported that the histone-like nucleoid structuring (H-NS) protein represses the transcription of vpsA, vpsL and vpsT. Here we demonstrate that the regulator VpsT can disrupt repressive H-NS nucleoprotein complexes at the vpsA and vpsL promoters in the presence of c-di-GMP, while H-NS could disrupt the VpsT-promoter complexes in the absence of c-di-GMP. Chromatin immunoprecipitation-Seq showed a remarkable trend for H-NS to cluster at loci involved in biofilm development such as the rbmABCDEF genes. We show that the antagonistic relationship between VpsT and H-NS regulates the expression of the rbmABCDEF cluster. Epistasis analysis demonstrated that VpsT functions as an antirepressor at the rbmA/F, vpsU and vpsA/L promoters. Deletion of vpsT increased H-NS occupancy at these promoters while increasing the c-di-GMP pool had the opposite effect and included the vpsT promoter. The negative effect of c-di-GMP on H-NS occupancy at the vpsT promoter required the regulator VpsR. These results demonstrate that c-di-GMP activates the transcription of genes required for the biosynthesis of the biofilm matrix by triggering a coordinated VpsR- and VpsT-dependent H-NS antirepression cascade.

  16. The UNC-112 Gene in Caenorhabditis elegansEncodes a Novel Component of Cell–Matrix Adhesion Structures Required for Integrin Localization in the Muscle Cell Membrane

    PubMed Central

    Rogalski, Teresa M.; Mullen, Gregory P.; Gilbert, Mary M.; Williams, Benjamin D.; Moerman, Donald G.

    2000-01-01

    Embryos homozygous for mutations in the unc-52, pat-2, pat-3, and unc-112 genes of C. elegans exhibit a similar Pat phenotype. Myosin and actin are not organized into sarcomeres in the body wall muscle cells of these mutants, and dense body and M-line components fail to assemble. The unc-52 (perlecan), pat-2 (α-integrin), and pat-3 (β-integrin) genes encode ECM or transmembrane proteins found at the cell–matrix adhesion sites of both dense bodies and M-lines. This study describes the identification of the unc-112 gene product, a novel, membrane-associated, intracellular protein that colocalizes with integrin at cell–matrix adhesion complexes. The 720–amino acid UNC-112 protein is homologous to Mig-2, a human protein of unknown function. These two proteins share a region of homology with talin and members of the FERM superfamily of proteins. We have determined that a functional UNC-112::GFP fusion protein colocalizes with PAT-3/β-integrin in both adult and embryonic body wall muscle. We also have determined that UNC-112 is required to organize PAT-3/β-integrin after it is integrated into the basal cell membrane, but is not required to organize UNC-52/perlecan in the basement membrane, nor for DEB-1/vinculin to localize with PAT-3/β-integrin. Furthermore, UNC-112 requires the presence of UNC-52/perlecan and PAT-3/β-integrin, but not DEB-1/vinculin to become localized to the muscle cell membrane. PMID:10893272

  17. The neuraminidase and matrix genes of the 2009 pandemic influenza H1N1 virus cooperate functionally to facilitate efficient replication and transmissibility in pigs

    PubMed Central

    Liu, Qinfang; Bawa, Bhupinder; Qiao, Chuanling; Qi, Wenbao; Shen, Huigang; Chen, Ying; Ma, Jingqun; Li, Xi; Webby, Richard J.; García-Sastre, Adolfo

    2012-01-01

    The 2009 pandemic H1N1 virus (pH1N1) contains neuraminidase (NA) and matrix (M) genes from Eurasian avian-like swine influenza viruses (SIVs), with the remaining six genes from North American triple-reassortant SIVs. To characterize the role of the pH1N1 NA and M genes in pathogenesis and transmission, their impact was evaluated in the background of an H1N1 triple-reassortant (tr1930) SIV in which the HA (H3) and NA (N2) of influenza A/swine/Texas/4199-2/98 virus were replaced with those from the classical H1N1 A/swine/Iowa/15/30 (1930) virus. The laboratory-adapted 1930 virus did not shed nor transmit in pigs, but tr1930 was able to shed in infected pigs. The NA, M or both genes of the tr1930 virus were then substituted by those of pH1N1. The resulting virus with both NA and M from pH1N1 grew to significantly higher titre in cell cultures than the viruses with single NA or M from pH1N1. In a pig model, only the virus containing both NA and M from pH1N1 was transmitted to and infected sentinels, whereas the viruses with single NA or M from pH1N1 did not. These results demonstrate that the right combination of NA and M genes is critical for the replication and transmissibility of influenza viruses in pigs. PMID:22337640

  18. Solar-simulated ultraviolet radiation induces histone 3 methylation changes in the gene promoters of matrix metalloproteinases 1 and 3 in primary human dermal fibroblasts.

    PubMed

    Gesumaria, Lisa; Matsui, Mary S; Kluz, Thomas; Costa, Max

    2015-05-01

    Molecular signalling pathways delineating the induction of matrix metalloproteinases (MMPs) by ultraviolet radiation (UVR) are currently well-defined; however, the effects of UVR on epigenetic mechanisms of MMP induction are not as well understood. In this study, we examined solar-simulated UVR (ssUVR)-induced gene expression changes and alterations to histone methylation in the promoters of MMP1 and MMP3 in primary human dermal fibroblasts (HDF). Gene expression changes, including the increased expression of MMP1 and MMP3, were observed using Affymetrix GeneChip arrays and confirmed by qRT-PCR. Using ChIP-PCR, we showed for the first time that in HDF irradiated with 12 J/cm(2) ssUVR, the H3K4me3 transcriptional activating mark increased and the H3K9me2 transcriptional silencing mark decreased in abundance in promoters, correlating with the observed elevation of MMP1 and MMP3 mRNA levels following ssUVR exposure. Changes in mRNA levels due to a single exposure were transient and decreased 5 days after exposure. PMID:25707437

  19. Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR.

    PubMed

    DeLoughery, Aaron; Dengler, Vanina; Chai, Yunrong; Losick, Richard

    2016-01-01

    Biofilm formation by Bacillus subtilis is largely governed by a circuit in which the response regulator Spo0A turns on the gene for the anti-repressor SinI. SinI, in turn, binds to and inactivates SinR, a dedicated repressor of genes for matrix production. Mutants of the genes ylbF, ymcA and yaaT are blocked in biofilm formation, but the mechanism by which they act has been mysterious. A recent report attributed their role in biofilm formation to stimulating Spo0A activity. However, we detect no measurable effect on the transcription of sinI. Instead, we find that the block in biofilm formation is caused by an increase in the levels of SinR and of its mRNA. Evidence is presented that YlbF, YmcA and YaaT interact with, and control the activity of, RNase Y, which is known to destabilize sinR mRNA. We also show that the processing of another target of RNase Y, cggR-gapA mRNA, similarly depends on YlbF and YmcA. Our work suggests that sinR mRNA stability is an additional posttranscriptional control mechanism governing the switch to multicellularity and raises the possibility that YlbF, YmcA and YaaT broadly regulate mRNA stability as part of an RNase Y-containing, multi-subunit complex.

  20. Extracellular Matrix, Nuclear and Chromatin Structure and GeneExpression in Normal Tissues and Malignant Tumors: A Work inProgress

    SciTech Connect

    Spencer, Virginia A.; Xu, Ren; Bissell, Mina J.

    2006-08-01

    Almost three decades ago, we presented a model where theextracellular matrix (ECM) was postulated to influence gene expressionand tissue-specificity through the action of ECM receptors and thecytoskeleton. This hypothesis implied that ECM molecules could signal tothe nucleus and that the unit of function in higher organisms was not thecell alone, but the cell plus its microenvironment. We now know that ECMinvokes changes in tissue and organ architecture and that tissue, cell,nuclear, and chromatin structure are changed profoundly as a result ofand during malignant progression. Whereas some evidence has beengenerated for a link between ECM-induced alterations in tissuearchitecture and changes in both nuclear and chromatin organization, themanner by which these changes actively induce or repress gene expressionin normal and malignant cells is a topic in need of further attention.Here, we will discuss some key findings that may provide insights intomechanisms through which ECM could influence gene transcription and howtumor cells acquire the ability to overcome these levels ofcontrol.

  1. Solar-simulated ultraviolet radiation induces histone 3 methylation changes in the gene promoters of matrix metalloproteinases 1 and 3 in primary human dermal fibroblasts.

    PubMed

    Gesumaria, Lisa; Matsui, Mary S; Kluz, Thomas; Costa, Max

    2015-05-01

    Molecular signalling pathways delineating the induction of matrix metalloproteinases (MMPs) by ultraviolet radiation (UVR) are currently well-defined; however, the effects of UVR on epigenetic mechanisms of MMP induction are not as well understood. In this study, we examined solar-simulated UVR (ssUVR)-induced gene expression changes and alterations to histone methylation in the promoters of MMP1 and MMP3 in primary human dermal fibroblasts (HDF). Gene expression changes, including the increased expression of MMP1 and MMP3, were observed using Affymetrix GeneChip arrays and confirmed by qRT-PCR. Using ChIP-PCR, we showed for the first time that in HDF irradiated with 12 J/cm(2) ssUVR, the H3K4me3 transcriptional activating mark increased and the H3K9me2 transcriptional silencing mark decreased in abundance in promoters, correlating with the observed elevation of MMP1 and MMP3 mRNA levels following ssUVR exposure. Changes in mRNA levels due to a single exposure were transient and decreased 5 days after exposure.

  2. Effective Prevention of Liver Fibrosis by Liver-targeted Hydrodynamic Gene Delivery of Matrix Metalloproteinase-13 in a Rat Liver Fibrosis Model

    PubMed Central

    Abe, Hiroyuki; Kamimura, Kenya; Kobayashi, Yuji; Ohtsuka, Masato; Miura, Hiromi; Ohashi, Riuko; Yokoo, Takeshi; Kanefuji, Tsutomu; Suda, Takeshi; Tsuchida, Masanori; Aoyagi, Yutaka; Zhang, Guisheng; Liu, Dexi; Terai, Shuji

    2016-01-01

    Liver fibrosis is the final stage of liver diseases that lead to liver failure and cancer. While various diagnostic methods, including the use of serum marker, have been established, no standard therapy has been developed. The objective of this study was to assess the approach of overexpressing matrix metalloproteinase-13 gene (MMP13) in rat liver to prevent liver fibrosis progression. A rat liver fibrosis model was established by ligating the bile duct, followed by liver-targeted hydrodynamic gene delivery of a MMP13 expression vector, containing a CAG promoter-MMP13-IRES-tdTomato-polyA cassette. After 14 days, the serum level of MMP13 peaked at 71.7 pg/ml in MMP13-treated group, whereas the nontreated group only showed a level of ~5 pg/ml (P < 0.001). These levels were sustained for the next 60 days. The statistically lower level of the hyaluronic acids in treated group versus the nontreated group (P < 0.05) reveals the therapeutic effect of MMP13 overexpression. Quantitative analysis of tissue stained with sirius red showed a statistically larger volume of fibrotic tissue in the nontreated group compared to that of MMP13-treated rats (P < 0.05). These results suggest that the liver-targeted hydrodynamic delivery of MMP13 gene could be effective in the prevention of liver fibrosis. PMID:26730813

  3. The use of MMP2 antibody-conjugated cationic microbubble to target the ischemic myocardium, enhance Timp3 gene transfection and improve cardiac function.

    PubMed

    Yan, Ping; Chen, Ko-Jie; Wu, Jun; Sun, Lu; Sung, Hsing-Wen; Weisel, Richard D; Xie, Jun; Li, Ren-Ke

    2014-01-01

    The objective of this study was to synthesize a cationic microbubble (CMB) conjugated with an antibody against matrix metalloproteinase 2 (CMBMMP2) to increase microbubble accumulation and gene transfection in the infarcted myocardium and to restore ventricular function following an ischemic insult. We previously reported that our CMBs enhanced the efficiency of gene transfection following ultrasound-targeted microbubble destruction (UTMD) in rodent hearts. Therefore, we conjugated a thiolated MMP2 antibody to the PEG chains on the CMB surface, which was verified by fluorescent microscopy. Rats underwent ischemia/reperfusion injury 3 days prior to UTMD delivery of the control or Timp3 plasmid. The CMBMMP2 improved microbubble accumulation in the infarct region, with 57% more contrast intensity compared to the non-conjugated CMB. UTMD-mediated CMBMMP2 delivery of the Timp3 gene significantly increased TIMP3 protein levels in the infarct scar and border zone at 3 days post-UTMD compared to delivery by the non-conjugated CMB. Both MMP2 and MMP9 activity were reduced in the CMBMMP2Timp3 group, which resulted in smaller and thicker infarcts and improved cardiac function. UTMD therapy with this CMBMMP2 provides an efficient platform for the targeted delivery of factors intended to preserve ventricular structure and improve cardiac function after ischemic injury.

  4. Promoter characterization of the novel human matrix metalloproteinase-26 gene: regulation by the T-cell factor-4 implies specific expression of the gene in cancer cells of epithelial origin.

    PubMed Central

    Marchenko, George N; Marchenko, Natalia D; Leng, Jay; Strongin, Alex Y

    2002-01-01

    A novel matrix metalloproteinase-26 (MMP-26) is known to be specifically expressed in epithelial carcinomas. To facilitate studies of MMP-26 transcriptional regulation, we have cloned and characterized a 1 kb 5'-flanking region of the human MMP-26 gene. Altogether, our findings indicate that the MMP-26 promoter has distinctive structural and functional features among MMP genes. An unusual polyadenylation site proximal to the transcription-factor-binding sites protects transcription of the MMP-26 gene from the upstream promoters and represents a part of the stringent transcriptional regulation of the gene. The MMP-26 gene has a consensus TATA-box and one transcriptional start site located 60 and 35 nucleotides upstream of the translational start site, respectively. The MMP-26 promoter was able to drive luciferase expression in human A549 lung carcinoma, HT1080 fibrosarcoma and HEK293 embryonic kidney cells. The basal transcription efficiency of the MMP-26 promoter is relatively low, thereby explaining the minute expression of the gene in most cells and tissues. When compared with other MMP genes, the MMP-26 promoter contains binding sites for a few transcription factors. Sequential deletion and mutation analysis, and electrophoretic mobility-shift assay have identified the T-cell factor-4 (Tcf-4) motif and the activator protein-1 site as the major regulatory elements of the MMP-26 promoter. Since previous studies have established that the Tcf-4 transcription factor is subjected exclusively to regulation through the beta-catenin/E(epithelial)-cadherin pathway, this implies the specific expression of MMP-26 in cancer cells of epithelial origin. PMID:11931652

  5. The Matrix Gene Segment Destabilizes the Acid and Thermal Stability of the Hemagglutinin of Pandemic Live Attenuated Influenza Virus Vaccines

    PubMed Central

    O'Donnell, Christopher D.; Vogel, Leatrice; Matsuoka, Yumiko; Jin, Hong

    2014-01-01

    ABSTRACT The threat of future influenza pandemics and their potential for rapid spread, morbidity, and mortality has led to the development of pandemic vaccines. We generated seven reassortant pandemic live attenuated influenza vaccines (pLAIVs) with the hemagglutinin (HA) and neuraminidase (NA) genes derived from animal influenza viruses on the backbone of the six internal protein gene segments of the temperature sensitive, cold-adapted (ca) A/Ann Arbor/60 (H2N2) virus (AA/60 ca) of the licensed seasonal LAIV. The pLAIV viruses were moderately to highly restricted in replication in seronegative adults; we sought to determine the biological basis for this restriction. Avian influenza viruses generally replicate at higher temperatures than human influenza viruses and, although they shared the same backbone, the pLAIV viruses had a lower shutoff temperature than seasonal LAIV viruses, suggesting that the HA and NA influence the degree of temperature sensitivity. The pH of HA activation of highly pathogenic avian influenza viruses was greater than human and low-pathogenicity avian influenza viruses, as reported by others. However, pLAIV viruses had a consistently higher pH of HA activation and reduced HA thermostability compared to the corresponding wild-type parental viruses. From studies with single-gene reassortant viruses bearing one gene segment from the AA/60 ca virus in recombinant H5N1 or pH1N1 viruses, we found that the lower HA thermal stability and increased pH of HA activation were associated with the AA/60 M gene. Together, the impaired HA acid and thermal stability and temperature sensitivity likely contributed to the restricted replication of the pLAIV viruses we observed in seronegative adults. IMPORTANCE There is increasing evidence that the HA stability of influenza viruses depends on the virus strain and host species and that HA stability can influence replication, virulence, and transmission of influenza A viruses in different species. We

  6. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity.

    PubMed

    Hu, Yuxiang; Blair, John D; Yuen, Ryan K C; Robinson, Wendy P; von Dadelszen, Peter

    2015-05-01

    Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450 K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared with medium control (P < 0.05). The genes associated with these loci had critical biological roles in cellular development, cellular growth and proliferation, cell signaling, cellular assembly and organization by Ingenuity Pathway Analysis (IPA). Furthermore, 23 mobility-related genes were identified by IPA from dNK-treated EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltransferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared with control (P < 0.01 for both CLDN4 and FUT4 mRNA expression; P < 0.001 for CLDN4 and P < 0.01 for FUT4 protein expression), and were inversely correlated with DNA methylation. Knocking down CLDN4 and FUT4 by small interfering RNA reduced trophoblast invasion, possibly through the altered matrix metalloproteinase (MMP)-2 and/or MMP-9 expression and activity. Taken together, dNK alter EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility. PMID:25697377

  7. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity

    PubMed Central

    Hu, Yuxiang; Blair, John D.; Yuen, Ryan K.C.; Robinson, Wendy P.; von Dadelszen, Peter

    2015-01-01

    Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450 K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared with medium control (P < 0.05). The genes associated with these loci had critical biological roles in cellular development, cellular growth and proliferation, cell signaling, cellular assembly and organization by Ingenuity Pathway Analysis (IPA). Furthermore, 23 mobility-related genes were identified by IPA from dNK-treated EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltransferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared with control (P < 0.01 for both CLDN4 and FUT4 mRNA expression; P < 0.001 for CLDN4 and P < 0.01 for FUT4 protein expression), and were inversely correlated with DNA methylation. Knocking down CLDN4 and FUT4 by small interfering RNA reduced trophoblast invasion, possibly through the altered matrix metalloproteinase (MMP)-2 and/or MMP-9 expression and activity. Taken together, dNK alter EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility. PMID:25697377

  8. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity.

    PubMed

    Hu, Yuxiang; Blair, John D; Yuen, Ryan K C; Robinson, Wendy P; von Dadelszen, Peter

    2015-05-01

    Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450 K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared with medium control (P < 0.05). The genes associated with these loci had critical biological roles in cellular development, cellular growth and proliferation, cell signaling, cellular assembly and organization by Ingenuity Pathway Analysis (IPA). Furthermore, 23 mobility-related genes were identified by IPA from dNK-treated EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltransferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared with control (P < 0.01 for both CLDN4 and FUT4 mRNA expression; P < 0.001 for CLDN4 and P < 0.01 for FUT4 protein expression), and were inversely correlated with DNA methylation. Knocking down CLDN4 and FUT4 by small interfering RNA reduced trophoblast invasion, possibly through the altered matrix metalloproteinase (MMP)-2 and/or MMP-9 expression and activity. Taken together, dNK alter EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility.

  9. Buckling Reduces eNOS Production and Stimulates Extracellular Matrix Remodeling in Arteries in Organ Culture.

    PubMed

    Xiao, Yangming; Liu, Qin; Han, Hai-Chao

    2016-09-01

    Artery buckling alters the fluid shear stress and wall stress in the artery but its temporal effect on vascular wall remodeling is poorly understood. The purpose of this study was to investigate the early effect of artery buckling on endothelial nitric oxide synthase (eNOS) expression and extracellular matrix remodeling. Bilateral porcine carotid arteries were maintained in an ex vivo organ culture system with and without buckling while under the same physiological pressure and flow rate for 3-7 days. Matrix metalloproteinase-2 (MMP-2), MMP-9, fibronectin, elastin, collagen I, III and IV, tissue inhibitor of metalloproteinase-2 (TIMP-2), and eNOS were determined using Western blotting and immunohistochemistry. Our results showed that MMP-2 expression level was significantly higher in buckled arteries than in the controls and higher at the inner curve than at the outer curve of buckled arteries, while collagen IV content showed an opposite trend, suggesting that artery buckling increased MMP-2 expression and collagen IV degradation in a site-specific fashion. However, no differences for MMP-9, fibronectin, elastin, collagen I, III, and TIMP-2 were observed among the outer and inner curve sides of buckled arteries and straight controls. Additionally, eNOS expression was significantly decreased in buckled arteries. These results suggest that artery buckling triggers uneven wall remodeling that could lead to development of tortuous arteries. PMID:26913855

  10. Relationship between the Expression of Matrix Metalloproteinase and Clinicopathologic Features in Oral Squamous Cell Carcinoma

    PubMed Central

    Jafarian, Amir Hossein; Vazife Mostaan, Leila; Mohammadian Roshan, Nema; Khazaeni, Kamran; Parsazad, Shafagh; Gilan, Hamed

    2015-01-01

    Introduction: Squamous cell carcinoma of the oral cavity is one of the most important and common types of head and neck malignancy, with an estimated rate of 4% among all human malignancies. The aim of this study was to determine the association between expression of matrix metalloproteinase 2 and 9 and the clinicopathological features of oral squamous cell carcinoma (OSCC). Materials and Methods: One hundred existing samples of formalin-fixed paraffin embedded specimens of OSCC were evaluated by immunohistochemistry staining for matrix metalloproteinase 2 and 9 antibodies. Samples were divided into four groups: negative, <10%, 10–50%, and >50%. Patient records were assessed for demographic characteristics such as age and gender, smoking and family history of OSCC as well as tumor features including location, differentiation, stage and lymph node involvement. Results: In this study, 58 patients (58%) were male and 42 (42%) female. The mean age of patients was 60.38±14.07 years. The average number of lymph nodes involved was 8.9±3.8. Tumoral grade, tumoral stage, lymphatic metastasis and history of smoking were significantly related to MMP2 and MMP9 expression. Conclusion: Our study demonstrated that MMP2 and MMP9 expression are important in the development of OSCC. PMID:26082904

  11. Wound fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids.

    PubMed

    Yager, D R; Zhang, L Y; Liang, H X; Diegelmann, R F; Cohen, I K

    1996-11-01

    Fluid from acute surgical wounds and from nonhealing pressure ulcers was examined for the presence of several matrix metalloproteinases. Gelatin zymography demonstrated the presence of two major gelatinases with apparent molecular masses of 72 kDa and 92 kDa and two minor gelatinases with apparent mobilities of 68 kDa and 125 kDa. Antigen-specific sera identified the 72-kDa protein as matrix melloproteinase-2. The same sera also reacted with the 68-kDa protein, which is consistent with it being an activated form of matrix metalloproteinase-2. Antigen-specific sera identified the 92-kDa and 125-kDa proteins as matrix metalloproteinase-9. Levels of matrix metalloproteinase-2 and matrix metalloproteinase-9 were elevated more than 10-fold and 25-fold, respectively, in fluids from pressure ulcers compared with fluids from healing wounds. Examination of total potential and actual collagenolytic activity revealed that fluid from pressure ulcers contained significantly greater levels of both total and active collagenase compared with that of acute surgical wounds. In addition, an enzyme-linked immunosorbent assay demonstrated that fluids from pressure ulcers contained significantly more collagenase complexed with the inhibitor, tissue inhibitor of metalloproteinases. Together, these observations suggest that an imbalance exists between levels of matrix metalloproteinases and their inhibitors in the fluids of pressure ulcers and that this is primarily the result of elevated levels of the matrix metalloproteinases. The presence of excessive levels of activated forms of matrix-degrading enzymes at the wound surface of pressure ulcers may impede the healing of these wounds and may be relevant to the development of new rationales for treatment.

  12. Distal Interleukin-1β (IL-1β) Response Element of Human Matrix Metalloproteinase-13 (MMP-13) Binds Activator Protein 1 (AP-1) Transcription Factors and Regulates Gene Expression*

    PubMed Central

    Schmucker, Adam C.; Wright, Jason B.; Cole, Michael D.; Brinckerhoff, Constance E.

    2012-01-01

    The collagenase matrix metalloproteinase-13 (MMP-13) plays an important role in the destruction of cartilage in arthritic joints. MMP-13 expression is strongly up-regulated in arthritis, largely because of stimulation by inflammatory cytokines such as IL-1β. Treatment of chondrocytes with IL-1β induces transcription of MMP-13 in vitro. IL-1β signaling converges upon the activator protein-1 transcription factors, which have been shown to be required for IL-1β-induced MMP-13 gene expression. Using chromatin immunoprecipitation (ChIP), we detected activator protein-1 binding within an evolutionarily conserved DNA sequence ∼20 kb 5′ relative to the MMP-13 transcription start site (TSS). Also using ChIP, we detected histone modifications and binding of RNA polymerase II within this conserved region, all of which are consistent with transcriptional activation. Chromosome conformation capture indicates that chromosome looping brings this region in close proximity with the MMP-13 TSS. Finally, a luciferase reporter construct driven by a component of the conserved region demonstrated an expression pattern similar to that of endogenous MMP-13. These data suggest that a conserved region at 20 kb upstream from the MMP-13 TSS includes a distal transcriptional response element of MMP-13, which contributes to MMP-13 gene expression. PMID:22102411

  13. Natural ageing in the rat liver correlates with progressive stabilisation of DNA-nuclear matrix interactions and withdrawal of genes from the nuclear substructure.

    PubMed

    Maya-Mendoza, Apolinar; Hernández-Muñoz, Rolando; Gariglio, Patricio; Aranda-Anzaldo, Armando

    2005-01-01

    In the interphase nucleus, the DNA of higher eukaryotes is organised in supercoiled loops anchored to a nuclear matrix (NM). Replication, transcription and splicing seem to occur at macromolecular complexes organised upon the NM. Thus, the topological relationship between genes located in the loops and the NM appears to be very important for nuclear physiology. Here, we report that natural ageing in the rat liver correlates with a progressive strengthening of the NM framework and the stabilisation of the DNA loop-NM interactions, as well as with a progressive increase in the relative distance of genes to the NM. Both phenomena correlate with the gradual loss of proliferating potential and progression towards terminal differentiation in the hepatocytes, suggesting that wholesale modifications in the topological relationships within the cell nucleus are markers of tissue ageing and senescence, at least in the mammalian liver. We discuss the possible functional implications of such structural modifications that may underlie both terminal hepatocyte differentiation and their eventual replicative senescence. PMID:15888332

  14. Comparative Efficacy of Hemagglutinin, Nucleoprotein, and Matrix 2 Protein Gene-Based Vaccination against H5N1 Influenza in Mouse and Ferret

    PubMed Central

    Rao, Srinivas S.; Kong, Wing-Pui; Wei, Chih-Jen; Van Hoeven, Neal; Gorres, J. Patrick; Nason, Martha; Andersen, Hanne; Tumpey, Terrence M.; Nabel, Gary J.

    2010-01-01

    Efforts to develop a broadly protective vaccine against the highly pathogenic avian influenza A (HPAI) H5N1 virus have focused on highly conserved influenza gene products. The viral nucleoprotein (NP) and ion channel matrix protein (M2) are highly conserved among different strains and various influenza A subtypes. Here, we investigate the relative efficacy of NP and M2 compared to HA in protecting against HPAI H5N1 virus. In mice, previous studies have shown that vaccination with NP and M2 in recombinant DNA and/or adenovirus vectors or with adjuvants confers protection against lethal challenge in the absence of HA. However, we find that the protective efficacy of NP and M2 diminishes as the virulence and dose of the challenge virus are increased. To explore this question in a model relevant to human disease, ferrets were immunized with DNA/rAd5 vaccines encoding NP, M2, HA, NP+M2 or HA+NP+M2. Only HA or HA+NP+M2 vaccination conferred protection against a stringent virus challenge. Therefore, while gene-based vaccination with NP and M2 may provide moderate levels of protection against low challenge doses, it is insufficient to confer protective immunity against high challenge doses of H5N1 in ferrets. These immunogens may require combinatorial vaccination with HA, which confers protection even against very high doses of lethal viral challenge. PMID:20352112

  15. The role of vesicular stomatitis virus matrix protein in inhibition of host-directed gene expression is genetically separable from its function in virus assembly.

    PubMed Central

    Black, B L; Rhodes, R B; McKenzie, M; Lyles, D S

    1993-01-01

    Recently, the vesicular stomatitis virus matrix (M) protein has been shown to be capable of inhibition of host cell-directed transcription in the absence of other viral components (B. L. Black and D. S. Lyles, J. Virol. 66:4058-4064, 1992). M protein is a major structural protein that is known to play a critical role in virus assembly by binding the helical ribonucleoprotein core of the virus to the cytoplasmic surface of the cell plasma membrane during budding. In this study, two M protein mutants were tested to determine whether the inhibition of host transcription by M protein is an indirect effect of its function in virus assembly or whether it represents an independent function of M protein. The mutant M protein of the conditionally temperature-sensitive (ts) vesicular stomatitis virus mutant, tsO82, was found to be defective in its ability to inhibit host-directed gene expression, as shown by its inability to inhibit expression of a cotransfected target gene encoding chloramphenicol acetyltransferase. The ability of the tsO82 M protein to function in virus assembly was similar to that of wild-type M protein, as shown by its ability to complement the group III ts M protein mutant, tsO23. Another mutant, MN1, which lacks amino acids 4 to 21 of M protein demonstrated that the abilities of M protein to inhibit chloramphenicol acetyltransferase gene expression and to localize to the nucleus were unaffected by deletion of this lysine-rich amino-terminal region but that the ability to function in virus assembly was ablated. Thus, the two M protein mutants examined in this study exhibited complementary phenotypes: tsO82 M protein functioned in virus assembly but was defective in inhibition of host-directed gene expression, while MN1 M protein functioned in inhibiting gene expression but was unable to function in virus assembly. These data demonstrate that the role of M protein in inhibition of host transcription can be separated genetically from its role in virus

  16. Klf10 regulates odontoblast differentiation and mineralization via promoting expression of dentin matrix protein 1 and dentin sialophosphoprotein genes

    PubMed Central

    Chen, Zhuo; Li, Wentong; Wang, Han; Wan, Chunyan; Luo, Daoshu; Deng, Shuli

    2016-01-01

    Klf10, a member of the Krüppel-like family of transcription factors, is critical for osteoblast differentiation, bone formation and mineralization. However, whether Klf10 is involved in odontoblastic differentiation and tooth development has not been determined. In this study, we investigate the expression patterns of Klf10 during murine tooth development in vivo and its role in odontoblastic differentiation in vitro. Klf10 protein was expressed in the enamel organ and the underlying mesenchyme, ameloblasts and odontoblasts at early and later stages of murine molar formation. Furthermore, the expression of Klf10, Dmp1, Dspp and Runx2 was significantly elevated during the process of mouse dental papilla mesenchymal differentiation and mineralization. The overexpression of Klf10 induced dental papilla mesenchymal cell differentiation and mineralization as detected by alkaline phosphatase staining and alizarin red S assay. Klf10 additionally up-regulated the expression of odontoblastic differentiation marker genes Dmp1, Dspp and Runx2 in mouse dental papilla mesenchymal cells. The molecular mechanism of Klf10 in controlling Dmp1 and Dspp expression is thus to activate their regulatory regions in a dosage-dependent manner. Our results suggest that Klf10 is involved in tooth development and promotes odontoblastic differentiation via the up-regulation of Dmp1 and Dspp transcription. PMID:26310138

  17. Perinatal exposure to vitamin A differentially regulates chondrocyte growth and the expression of aggrecan and matrix metalloprotein genes in the femur of neonatal rats.

    PubMed

    Zhang, Yao; Wray, Amanda E; Ross, A Catharine

    2012-04-01

    Vitamin A (VA) and its active form, retinoic acid (RA), are regulators of skeletal development. In the present study, we investigated if maternal VA intake during pregnancy and lactation, as well as direct oral supplementation of neonates with VA + RA (VARA) in early life, alters neonatal bone formation and chondrocyte gene expression. Offspring of dams fed 3 levels of VA (marginal, adequate, and supplemented) for 10 wk were studied at birth (P0) and postnatal day 7 (P7). One-half of the newborns received an oral supplement of VARA on P1, P4, and P7. Tissues were collected on P0 and 6 h after the last dose on P7. Pup plasma and liver retinol concentrations were increased by both maternal VA intake and VARA (P < 0.01). Although maternal VA did not affect bone mineralization as assessed by von Kossa staining, newborn femur length was increased with maternal VA (P < 0.05). VARA supplementation of neonates increased the length of the hypertrophic zone only in VA-marginal pups, close to that in neonates from VA-adequate dams, suggesting VARA caused a catching up of growth that was limited by low maternal VA intake. Maternal diet did not alter type X nor type II collagen mRNA. However, VARA-treated pups from VA-supplemented dams had reduced mRNA for aggrecan, a major component of cartilage matrix, and increased mRNA for matrix metalloproteinase (MMP)13, which catalyzes the degradation of aggrecan and collagens. These results suggest that moderately high maternal VA intake combined with neonatal VARA supplementation can reduce the ratio of aggrecan:MMP, which may unfavorably alter early bone development.

  18. Excreted/secreted Schistosoma mansoni venom allergen-like 9 (SmVAL9) modulates host extracellular matrix remodelling gene expression

    PubMed Central

    Yoshino, Timothy P.; Brown, Martha; Wu, Xiao-Jun; Jackson, Colin J.; Ocadiz-Ruiz, Ramon; Chalmers, Iain W.; Kolb, Marlen; Hokke, Cornelis H.; Hoffmann, Karl F.

    2014-01-01

    The Schistosoma mansoni venom allergen-like (SmVAL) protein family consists of 29 members, each possessing a conserved α-β-α sandwich tertiary feature called the Sperm-coating protein/Tpx-1/Ag5/PR-1/Sc7 (SCP/TAPS) domain. While the SmVALs have been found in both excretory/secretory (E/S) products and in intra/sub-tegumental (non-E/S) fractions, the role(s) of this family in host/parasite relationships or schistosome developmental processes remains poorly resolved. In order to begin quantifying SmVAL functional diversity or redundancy, dissecting the specific activity (ies) of individual family members is necessary. Towards this end, we present the characterisation of SmVAL9; a protein previously found enriched in both miracidia/sporocyst larval transformation proteins and in egg secretions. While our study confirms that SmVAL9 is indeed found in soluble egg products and miracidia/sporocyst larval transformation proteins, we find it to be maximally transcribed/translated in miracidia and subsequently down-regulated during in vitro sporocyst development. SmVAL9 localisation within sporocysts appears concentrated in parenchymal cells/vesicles as well as associated with larval germinal cells. Furthermore, we demonstrate that egg-derived SmVAL9 carries an N-linked glycan containing a schistosome-specific difucosyl element and is an immunogenic target during chronic murine schistosomiasis. Finally, we demonstrate that recombinant SmVAL9 affects the expression of extracellular matrix, remodelling matrix metalloproteinase (MMP) and tissue inhibitors of metalloproteinase (TIMP) gene products in both Biomphalaria glabrata embryonic cell (BgMMP1) and Mus musculus bone marrow-derived macrophage (MmMMP2, MmMMP9, MmMMP12, MmMMP13, MmMMP14, MmMMP28, TIMP1 and TIMP2) in vitro cultures. These findings importantly suggest that excreted/secreted SmVAL9 participates in tissue reorganisation/extracellular matrix remodelling during intra-mammalian egg translocation, miracidia

  19. The gene expression of human endothelial cells is modulated by subendothelial extracellular matrix proteins: short-term response to laminar shear stress.

    PubMed

    Chlupac, Jaroslav; Filova, Elena; Havlikova, Jana; Matejka, Roman; Riedel, Tomas; Houska, Milan; Brynda, Eduard; Pamula, Elzbieta; Rémy, Murielle; Bareille, Reine; Fernandez, Philippe; Daculsi, Richard; Bourget, Chantal; Bacakova, Lucie; Bordenave, Laurence

    2014-08-01

    Vascular surgery for atherosclerosis is confronted by the lack of a suitable bypass material. Tissue engineering strives to produce bio-artificial conduits to provide resistance to thrombosis. The objectives of our study were to culture endothelial cells (EC) on composite assemblies of extracellular matrix proteins, and to evaluate the cellular phenotype under flow. Cell-adhesive assemblies were fabricated on glass slides as combinations of collagen (Co), laminin (LM), and fibronectin (FN), resulting in three samples: Co, Co/LM, and Co/FN. Surface topography, roughness, and wettability were determined. Human saphenous vein EC were harvested from cardiac patients, cultured on the assemblies and submitted to laminar shear stress (SS) of 12 dyn/cm(2) for 40, 80, and 120 min. Cell retention was assessed and qRT-PCR of adhesion genes (VE-cadherin, vinculin, KDR, CD-31 or PECAM-1, β1-integrins) and metabolic genes (t-PA, NF-κB, eNOS and MMP-1) was performed. Quantitative immunofluorescence of VE cadherin, vinculin, KDR, and vonWillebrand factor was performed after 2 and 6 h of flow. Static samples were excluded from shearing. The cells reached confluence with similar growth curves. The cells on Co/LM and Co/FN were resistant to flow up to 120 min but minor desquamation occurred on Co corresponding with temporary downregulation of VE cadherin and vinculin-mRNA and decreased fluorescence of vinculin. The cells seeded on Co/LM initially more upregulated vinculin-mRNA and also the inflammatory factor NF-κB, and the cells plated on Co/FN changed the expression profile minimally in comparison with the static control. Fluorescence of VE cadherin and vonWillebrand factor was enhanced on Co/FN. The cells cultured on Co/LM and Co/FN increased the vinculin fluorescence and expressed more VE cadherin and KDR-mRNA than the cells on Co. The cells plated on Co/FN upregulated the mRNA of VE cadherin, CD-31, and MMP 1 to a greater extent than the cells on Co/LM and they

  20. The Gene Expression of Human Endothelial Cells Is Modulated by Subendothelial Extracellular Matrix Proteins: Short-Term Response to Laminar Shear Stress

    PubMed Central

    Filova, Elena; Havlikova, Jana; Matejka, Roman; Riedel, Tomas; Houska, Milan; Brynda, Eduard; Pamula, Elzbieta; Rémy, Murielle; Bareille, Reine; Fernandez, Philippe; Daculsi, Richard; Bourget, Chantal; Bacakova, Lucie; Bordenave, Laurence

    2014-01-01

    Vascular surgery for atherosclerosis is confronted by the lack of a suitable bypass material. Tissue engineering strives to produce bio-artificial conduits to provide resistance to thrombosis. The objectives of our study were to culture endothelial cells (EC) on composite assemblies of extracellular matrix proteins, and to evaluate the cellular phenotype under flow. Cell-adhesive assemblies were fabricated on glass slides as combinations of collagen (Co), laminin (LM), and fibronectin (FN), resulting in three samples: Co, Co/LM, and Co/FN. Surface topography, roughness, and wettability were determined. Human saphenous vein EC were harvested from cardiac patients, cultured on the assemblies and submitted to laminar shear stress (SS) of 12 dyn/cm2 for 40, 80, and 120 min. Cell retention was assessed and qRT-PCR of adhesion genes (VE-cadherin, vinculin, KDR, CD-31 or PECAM-1, β1-integrins) and metabolic genes (t-PA, NF-κB, eNOS and MMP-1) was performed. Quantitative immunofluorescence of VE cadherin, vinculin, KDR, and vonWillebrand factor was performed after 2 and 6 h of flow. Static samples were excluded from shearing. The cells reached confluence with similar growth curves. The cells on Co/LM and Co/FN were resistant to flow up to 120 min but minor desquamation occurred on Co corresponding with temporary downregulation of VE cadherin and vinculin-mRNA and decreased fluorescence of vinculin. The cells seeded on Co/LM initially more upregulated vinculin-mRNA and also the inflammatory factor NF-κB, and the cells plated on Co/FN changed the expression profile minimally in comparison with the static control. Fluorescence of VE cadherin and vonWillebrand factor was enhanced on Co/FN. The cells cultured on Co/LM and Co/FN increased the vinculin fluorescence and expressed more VE cadherin and KDR-mRNA than the cells on Co. The cells plated on Co/FN upregulated the mRNA of VE cadherin, CD-31, and MMP 1 to a greater extent than the cells on Co/LM and they enhanced

  1. Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice

    NASA Technical Reports Server (NTRS)

    Roten, L.; Nemoto, S.; Simsic, J.; Coker, M. L.; Rao, V.; Baicu, S.; Defreyte, G.; Soloway, P. J.; Zile, M. R.; Spinale, F. G.

    2000-01-01

    Alterations in the expression and activity of the matrix metalloproteinases (MMPs) and the tissue inhibitors of the MMPs (TIMPs) have been implicated in tissue remodeling in a number of disease states. One of the better characterized TIMPs, TIMP-1, has been shown to bind to active MMPs and to regulate the MMP activational process. The goal of this study was to determine whether deletion of the TIMP-1 gene in mice, which in turn would remove TIMP-1 expression in LV myocardium, would produce time-dependent effects on LV geometry and function. Age-matched sibling mice (129Sv) deficient in the TIMP-1 gene (TIMP-1 knock-out (TIMP-1 KO), n=10) and wild-type mice (n=10) underwent comparative echocardiographic studies at 1 and 4 months of age. LV catheterization studies were performed at 4 months and the LV harvested for histomorphometric studies. LV end-diastolic volume and mass increased (18+/-4 and 38+/-3%, respectively, P<0.05) at 4 months in the TIMP-1 KO group; a significant increase compared to wild-type controls (P<0.05). At 4 months, LV and end-diastolic wall stress was increased by over two-fold in the TIMP-1 KO compared to wild type (P<0.05). However, LV systolic pressure and ejection performance were unchanged in the two groups of mice. LV myocyte cross-sectional area was unchanged in the TIMP-1 KO mice compared to controls, but myocardial fibrillar collagen content was reduced. Changes in LV geometry occurred in TIMP-1 deficient mice and these results suggest that constitutive TIMP-1 expression participates in the maintenance of normal LV myocardial structure. Copyright 2000 Academic Press.

  2. Interaction with extracellular matrix proteins influences Lsh/Ity/Bcg (candidate Nramp) gene regulation of macrophage priming/activation for tumour necrosis factor-alpha and nitrite release.

    PubMed

    Formica, S; Roach, T I; Blackwell, J M

    1994-05-01

    The murine resistance gene Lsh/Ity/Bcg regulates activation of macrophages for tumour necrosis factor-alpha (TNF-alpha)-dependent production of nitric oxide mediating antimicrobial activity against Leishmania, Salmonella and Mycobacterium. As Lsh is differentially expressed in macrophages from different tissue sites, experiments were performed to determine whether interaction with extracellular matrix (ECM) proteins would influence the macrophage TNF-alpha response. Plating of bone marrow-derived macrophages onto purified fibrinogen or fibronectin-rich L929 cell-derived matrices, but not onto mannan, was itself sufficient to stimulate TNF-alpha release, with significantly higher levels released from congenic B10.L-Lshr compared to C57BL/10ScSn (Lshs) macrophages. Only macrophages plated onto fibrinogen also released measurable levels of nitrites, again higher in Lshr compared to Lshs macrophages. Addition of interferon-gamma (IFN-gamma), but not bacterial lipopolysaccharide or mycobacterial lipoarabinomannan, as a second signal enhanced the TNF-alpha and nitrite responses of macrophages plated onto fibrinogen, particularly in the Lshr macrophages. Interaction with fibrinogen and fibronectin also primed macrophages for an enhanced TNF-alpha response to leishmanial parasites, but this was only translated into enhanced nitrite responses in the presence of IFN-gamma. In these experiments, Lshr macrophages remained superior in their TNF-alpha responses throughout, but to a degree which reflected the magnitude of the difference observed on ECM alone. Hence, the specificity for the enhanced TNF-alpha responses of Lshr macrophages lay in their interaction with fibrinogen and fibronectin ECM, while a differential nitrite response was only observed with fibrinogen and/or IFN-gamma. The results are discussed in relation to the possible function of the recently cloned candidate gene Nramp, which has structural identity to eukaryote transporters and an N-terminal cytoplasmic

  3. Matrix superpotentials

    NASA Astrophysics Data System (ADS)

    Nikitin, Anatoly G.; Karadzhov, Yuri

    2011-07-01

    We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.

  4. miR-29c induction contributes to downregulation of vascular extracellular matrix proteins by glucocorticoids

    PubMed Central

    Chuang, Tsai-Der; Pearce, William J.

    2015-01-01

    Maternal undernutrition increases maternal glucocorticoids (GCs) and alters microRNA expression in offspring. Given that the mechanisms of GC action on vascular development are not clear, this study examined the influence of GCs on microRNA 29c (miR-29c) and its predicted targets in primary rat aorta smooth muscle cells (RAOSMCs). Dexamethasone (Dex) and corticosterone (Cor) time-dependently increased miR-29c expression and reduced collagen type III (Col3A1), collagen type IV (Col4A5), elastin (ELN), and matrix metalloproteinase-2 (MMP2) protein in RAOSMCs. These effects were blocked by mifepristone. These genes were also targeted by miR-29c, as confirmed by a significant decrease in luciferase reporter activity of Col3A1 (34%), Col4A5 (45%), ELN (17%), and MMP2 (28%). In cells transfected with reporter plasmids, including the 3′-untranslated region of genes targeted by miR-29c, treatment with Dex or Cor also resulted in decreases in luciferase activity. Gain or loss of function of miR-29c significantly altered mRNA expression of Col3A1 (26% and 26%, respectively), Col4A5 (28% and 32%, respectively), and MMP2 (24% and 14%, respectively) but did not affect ELN. Gain or loss of function of miR-29c also significantly altered protein levels of Col3A1 (51% and 16%, respectively), Col4A5 (56% and 22%, respectively), ELN (53% and 71%, respectively), and MMP2 (28% and 53%, respectively). Coincubation of anti-miR-29c with Dex or Cor partially attenuated the effects of these steroids on protein expression of Col3A1 (25% and 24%, respectively), Col4A5 (26% and 44%, respectively), ELN (31% and 55%, respectively), and MMP2 (46% and 26%, respectively) in RAOSMCs compared with anti-miR negative controls. Our results demonstrate that GCs regulate the expression of Col3A1, Col4A5, ELN, and MMP2, at least in part, through induction of miR-29c. PMID:26017148

  5. miR-29c induction contributes to downregulation of vascular extracellular matrix proteins by glucocorticoids.

    PubMed

    Chuang, Tsai-Der; Pearce, William J; Khorram, Omid

    2015-07-15

    Maternal undernutrition increases maternal glucocorticoids (GCs) and alters microRNA expression in offspring. Given that the mechanisms of GC action on vascular development are not clear, this study examined the influence of GCs on microRNA 29c (miR-29c) and its predicted targets in primary rat aorta smooth muscle cells (RAOSMCs). Dexamethasone (Dex) and corticosterone (Cor) time-dependently increased miR-29c expression and reduced collagen type III (Col3A1), collagen type IV (Col4A5), elastin (ELN), and matrix metalloproteinase-2 (MMP2) protein in RAOSMCs. These effects were blocked by mifepristone. These genes were also targeted by miR-29c, as confirmed by a significant decrease in luciferase reporter activity of Col3A1 (34%), Col4A5 (45%), ELN (17%), and MMP2 (28%). In cells transfected with reporter plasmids, including the 3'-untranslated region of genes targeted by miR-29c, treatment with Dex or Cor also resulted in decreases in luciferase activity. Gain or loss of function of miR-29c significantly altered mRNA expression of Col3A1 (26% and 26%, respectively), Col4A5 (28% and 32%, respectively), and MMP2 (24% and 14%, respectively) but did not affect ELN. Gain or loss of function of miR-29c also significantly altered protein levels of Col3A1 (51% and 16%, respectively), Col4A5 (56% and 22%, respectively), ELN (53% and 71%, respectively), and MMP2 (28% and 53%, respectively). Coincubation of anti-miR-29c with Dex or Cor partially attenuated the effects of these steroids on protein expression of Col3A1 (25% and 24%, respectively), Col4A5 (26% and 44%, respectively), ELN (31% and 55%, respectively), and MMP2 (46% and 26%, respectively) in RAOSMCs compared with anti-miR negative controls. Our results demonstrate that GCs regulate the expression of Col3A1, Col4A5, ELN, and MMP2, at least in part, through induction of miR-29c.

  6. miR-29c induction contributes to downregulation of vascular extracellular matrix proteins by glucocorticoids.

    PubMed

    Chuang, Tsai-Der; Pearce, William J; Khorram, Omid

    2015-07-15

    Maternal undernutrition increases maternal glucocorticoids (GCs) and alters microRNA expression in offspring. Given that the mechanisms of GC action on vascular development are not clear, this study examined the influence of GCs on microRNA 29c (miR-29c) and its predicted targets in primary rat aorta smooth muscle cells (RAOSMCs). Dexamethasone (Dex) and corticosterone (Cor) time-dependently increased miR-29c expression and reduced collagen type III (Col3A1), collagen type IV (Col4A5), elastin (ELN), and matrix metalloproteinase-2 (MMP2) protein in RAOSMCs. These effects were blocked by mifepristone. These genes were also targeted by miR-29c, as confirmed by a significant decrease in luciferase reporter activity of Col3A1 (34%), Col4A5 (45%), ELN (17%), and MMP2 (28%). In cells transfected with reporter plasmids, including the 3'-untranslated region of genes targeted by miR-29c, treatment with Dex or Cor also resulted in decreases in luciferase activity. Gain or loss of function of miR-29c significantly altered mRNA expression of Col3A1 (26% and 26%, respectively), Col4A5 (28% and 32%, respectively), and MMP2 (24% and 14%, respectively) but did not affect ELN. Gain or loss of function of miR-29c also significantly altered protein levels of Col3A1 (51% and 16%, respectively), Col4A5 (56% and 22%, respectively), ELN (53% and 71%, respectively), and MMP2 (28% and 53%, respectively). Coincubation of anti-miR-29c with Dex or Cor partially attenuated the effects of these steroids on protein expression of Col3A1 (25% and 24%, respectively), Col4A5 (26% and 44%, respectively), ELN (31% and 55%, respectively), and MMP2 (46% and 26%, respectively) in RAOSMCs compared with anti-miR negative controls. Our results demonstrate that GCs regulate the expression of Col3A1, Col4A5, ELN, and MMP2, at least in part, through induction of miR-29c. PMID:26017148

  7. MMP-2 gene polymorphisms are associated with type A aortic dissection and aortic diameters in patients

    PubMed Central

    Liu, Ou; Xie, Wuxiang; Qin, Yanwen; Jia, Lixin; Zhang, Jing; Xin, Yi; Guan, Xinliang; Li, Haiyang; Gong, Ming; Liu, Yuyong; Wang, Xiaolong; Li, Jianrong; Lan, Feng; Zhang, Hongjia

    2016-01-01

    Abstract Matrix metalloproteinases-2 (MMP-2) plays an important role in the pathogenesis of type A aortic dissection (AD). The aim of this study was to evaluate the association of 3 single nucleotide polymorphisms (SNPs) in the MMP-2 gene with type A AD risk and aortic diameters in patients. We performed a case–control study with 172 unrelated type A AD patients and 439 controls. Three SNPs rs11644561, rs11643630, and rs243865 were genotyped through the MassARRAY platform. Allelic associations of SNPs and SNP haplotypes with type A AD and aortic diameters in patients were evaluated. The frequency of the G allele of the rs11643630 polymorphism was significantly lower in type A AD patients than in control subjects (odds ratio 0.705, 95% confidence interval 0.545–0.912, P = 0.008). The association remained significant after adjusting for clinical covariates (P = 0.008). Carriers of the GG genotype of the rs11643630 polymorphism had significantly smaller aortic diameters than those with GT genotype or TT genotype (P = 0.02). Further haplotype analysis identified 1 protective haplotype (GC; P = 0.008) for development of type A AD. Again, a significant correlation was observed between haplotype GC and AD size (P = 0.020). Our results suggest that MMP-2 gene polymorphisms contribute to type A AD susceptibility. In addition, MMP-2 gene SNPs are associated with AD size, which could be used as a target for the development of new drug therapy. PMID:27759651

  8. Genetic variants associated with circulating MMP1 levels near matrix metalloproteinase genes on chromosome 11q21-22 in Taiwanese: interaction with obesity

    PubMed Central

    2013-01-01

    Background MMP1 is implicated in the pathogenesis of atherothrombotic cardiovascular disease. We aimed to elucidate genetic determinants of inflammatory marker levels, including circulating MMP1, in Taiwanese, and their association with obesity. Methods Five genetic polymorphisms around matrix metalloproteinase genes on chromosome 11q21-22 region were genotyped in 519 subjects. Results After adjusting for clinical covariates, two polymorphisms were significantly associated with MMP1 levels, rs1799750 and rs495366, using an additive inheritance model (P = 1.5x10-4 and P = 2.57x10-5, respectively). Using dominant model, minor alleles of rs1799750 and rs495366 were associated with higher MMP1 levels (P = 1.3x10-4 and P = 1.95x10-5, respectively). In haplotype analysis, two haplotypes inferred from five SNPs (A2GATA and A1GATG) were associated with MMP1 levels (P = 5x10-4 and P = 8.47x10-5, respectively). Subgroup and interaction analysis revealed an association of rs1799750 and rs495366 with MMP1 levels only in non-obese subjects (P = 6.66x10-6 and P = 4.38x10-5, respectively, and interaction P = 0.008 for rs1799750). Haplotype interaction analysis also showed significant interaction for haplotype A1GATG (interaction P = 0.003). Conclusions Genotypes/haplotypes around MMP1 locus are associated with MMP1 levels in Taiwanese. Further, since genotypes/haplotypes near MMP1 locus interact with obesity to set MMP1 levels, genetic determinants for MMP1 level may be different between obese and non-obese individuals. PMID:23497408

  9. The Acrosomal Matrix.

    PubMed

    Foster, James A; Gerton, George L

    2016-01-01

    The acrosome, a single exocytotic vesicle on the head of sperm, has an essential role in fertilization, but the exact mechanisms by which it facilitates sperm-egg interactions remain unresolved. The acrosome contains dozens of secretory proteins that are packaged into the forming structure during spermatogenesis; many of these proteins are localized into specific topographical areas of the acrosome, while others are more diffusely distributed. Acrosomal proteins can also be biochemically classified as components of the acrosomal matrix, a large, relatively insoluble complex, or as soluble proteins. This review focuses on recent findings using genetically modified mice (gene knockouts and transgenic "green acrosome" mice) to study the effects of eliminating acrosomal matrix-associated proteins on sperm structure and function. Some gene knockouts produce infertile phenotypes with obviously missing, specific activities that affect acrosome biogenesis during spermatogenesis or interfere with acrosome function in mature sperm. Mutations that delete some components produce fertile phenotypes with subtler effects that provide useful insights into acrosomal matrix function in fertilization. In general, these studies enable the reassessment of paradigms to explain acrosome formation and function and provide novel, objective insights into the roles of acrosomal matrix proteins in fertilization. The use of genetically engineered mouse models has yielded new mechanistic information that complements recent, important in vivo imaging studies. PMID:27194348

  10. Expression of matrix metalloproteinase and its tissue inhibitor in haemangioma.

    PubMed

    Zhong, Shan; Yang, Guohua; Xia, Cong; Duanlian, Zhang; Shan, Shengguo

    2009-10-01

    The action mechanism of matrix metalloproteinases-2 (MMP-2) and tissue inhibitor of metalloproteinases-2 (TIMP-2) in the genesis, development and degeneration of haemangioma was investigated by detecting their expression in the tissue of haemangioma in different phases by using the immunohistochemistry. Fifty paraffin-embedded specimens of skin capillary haemangioma were collected, which were documented in the Department of Pathology, Renmin Hospital of Wuhan University from 2000 to 2006. All samples were stained by regular HE method, and proliferative cell nuclear antigen (PCNA) was tested by immunohistochemical S-P method. The samples were classified according to the Mulliken criteria and the expression pattern of PCNA. Immunohistochemical S-P method was applied to detect the expression of MMP-2 and TIMP-2 in proliferative and degenerative phases of cutaneous capillary haemangioma, and in normal skin tissues. In combination with the detection of the expression of factor VIII-related antigen, it was verified that in haemangioma tissues, the cells expressing MMP-2 and TIMP-2 were vascular endothelial cells. The MMP-2 and TIMP-2 expression was quantitatively analyzed by image analysis system (HPIAS-1000), and one-way ANOVA(107) and SNK(q) test were done to analyze average absorbance (A) and positive area rate of immunohistochemically positive particles by using SPSS11.5. The results showed: (1) Among 50 samples of haemangioma, there were 26 proliferative haemangiomas, and 24 degenerative haemangiomas, respectively; (2) The expression of MMP-2 was weak in normal vascular endothelial cells, cytoplasm of connective tissues and extracellular matrix around blood vessels. The expression of MMP-2 in proliferative group was significantly higher than in degenerative group and control group (normal skin) (P<0.05), but there was no statistically significant difference between the latter two groups; (3) TIMP-2 was highly expressed in normal tissues, degenerative vascular

  11. Sync Matrix

    2004-12-31

    Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.

  12. Characterization of a midgut-specific chitin synthase gene (LmCHS2) responsible for biosynthesis of chitin of peritrophic matrix in Locusta migratoria.

    PubMed

    Liu, Xiaojian; Zhang, Huanhuan; Li, Sheng; Zhu, Kun Yan; Ma, Enbo; Zhang, Jianzhen

    2012-12-01

    Chitin, an essential component of peritrophic matrix (PM), is produced by a series of biochemical reactions. Chitin synthase plays a crucial role in chitin polymerization in chitin biosynthetic pathway. In this study, we identified and characterized a full-length cDNA of chitin synthase 2 gene (LmCHS2) from Locusta migratoria. The cDNA contains an open reading frame of 4569 nucleotides that encode 1523 amino acid residues, and 76- and 373-nucleotides for 5'- and 3'-noncoding regions, respectively. Analysis of LmCHS2 transcript in different tissues of the locust by using real-time quantitative PCR indicated that LmCHS2 was exclusively expressed in midgut and gastric caeca (a part of the midgut). The highest expression was found in the anterior midgut with a decline of the transcript level from the anterior to posterior regions. During growth and development of locusts, there was only a slight expression in eggs, but the expression gradually increased from nymphs to adults. In situ hybridization further revealed that LmCHS2 transcript mainly presented in the apical regions of brush border forming columnar cells of gastric caeca. LmCHS2 dsRNA was injected to fifth-instar nymphs to further explore biological functions of LmCHS2. Significantly down-regulated transcript of LmCHS2 resulted in a cessation of feeding and a high mortality of the insect. However, no visible abnormal morphological change of locusts was observed until insects molted to adults. After dissection, we found that the average length of midguts from the LmCHS2 dsRNA-injected locusts was shorter than that of the control insects that were injected with dsGFP. Furthermore, microsection of midguts showed that the PM of the LmCHS2 dsRNA-injected nymphs was amorphous and thin as compared with the controls. Our results demonstrate that LmCHS2 is responsible for the biosynthesis of chitin associated with PM and plays an essential role in locust growth and development. PMID:23006725

  13. Early expression of the gene for interphotoreceptor retinol-binding protein during photoreceptor differentiation suggests a critical role for the interphotoreceptor matrix in retinal development.

    PubMed

    Gonzalez-Fernandez, F; Healy, J I

    1990-12-01

    Interphotoreceptor retinol-binding protein (IRBP), the major protein component of the subretinal space, is in a strategic position to mediate cellular interactions between the retinal pigmented epithelium (RPE) and the neural retina. While IRBP appears to be involved in vitamin A transport during the visual cycle in the adult, the role of this protein during eye development has not been determined. As a first step to understanding the role of IRBP during retinal development, we have studied the expression of the mRNA for this glycolipoprotein during photoreceptor differentiation in the rat. A rat neural retina cDNA library was prepared from which an IRBP clone was isolated. The clone contains an open reading frame followed by a 3' noncoding sequence ending in 10 adenosine residues. The coding region has an identity of 83.9 and 82.5% with the nucleotide sequence of human and bovine IRBP, respectively. Rats (Sprague-Dawley, Wistar, and Royal College of Surgeon pink-eyed controls) have a 6.4 and a 5.2-kb mRNA for IRBP which are present in a 1:4 ratio and thus are the only vertebrate known to definitely have more than one major form of the IRBP message. Genomic Southern blots are consistent with the hypothesis that there is only one allele of the IRBP gene, suggesting that the two forms are produced by alternative processing of the mRNA. To generate an antisense RNA probe for use in molecular titration assays and Northern blots, an Eco RI-Bam HI fragment from the coding region was subcloned in between flanking Sp6 and T7 promoters. Total RNA was prepared from undissected rat globes from postnatal days p0-p22. The expression of the mRNA for IRBP was studied by Northern blots and the level of the transcripts determined by solution hybridization assays. Approximately 10(5) IRBP mRNA transcripts/micrograms total eye RNA are present at birth. This increases to a final level of 3.1 X 10(6) transcripts/micrograms total RNA by p9. The one-half maximal level of the mRNA occurs

  14. Effects of ethanol on gene expression in rat bone: transient dose-dependent changes in mRNA levels for matrix proteins, skeletal growth factors, and cytokines are followed by reductions in bone formation.

    PubMed

    Turner, R T; Wronski, T J; Zhang, M; Kidder, L S; Bloomfield, S A; Sibonga, J D

    1998-10-01

    treatment with ethanol on rat bone. After 7 days, there were highly significant decreases in the mRNA level for type 1 collagen, as well as decreased bone formation. These results suggest that ethanol may alter bone metabolism by disturbing signal transduction pathways that regulate the expression of genes for bone matrix proteins, skeletal growth factors, and cytokines.

  15. HGF, MET, and matrix-related proteases in hepatocellular carcinoma, fibrolamellar variant, cirrhotic and normal liver.

    PubMed

    Schoedel, Karen E; Tyner, Valerie Zajac; Kim, Tae-Hyoung; Michalopoulos, George K; Mars, Wendy M

    2003-01-01

    Fibrolamellar variant is an uncommon subcategory of hepatocellular carcinoma with a better prognostic outcome. Proteinases and growth factors that are involved in the remodeling of extracellular matrix may influence the behavior of cancers. To determine whether these factors contribute to the distinct etiologies of fibrolamellar hepatocellular carcinoma and traditional hepatocellular carcinoma, we assayed hepatocyte growth factor, the hepatocyte growth factor receptor, and two hepatocyte growth factor activators, hepatocyte growth factor activator and urokinase-type plasminogen activator, in hepatocellular carcinoma, fibrolamellar hepatocellular carcinoma, cirrhotic liver and normal liver. In addition, we examined the urokinase-type plasminogen activator receptor, the type 1 plasminogen activator inhibitor, plasmin, fibrinogen, and the type IV matrix metalloproteinases. Eighteen hepatocellular carcinomas and 11 fibrolamellar hepatocellular carcinomas were obtained as paraffin embedded sections from the University of Pittsburgh Department of Pathology. Frozen tissues from a subset of cases (9 hepatocellular carcinomas, 4 fibrolamellar hepatocellular carcinomas, 12 cirrhotic livers and 2 normal livers) were also available for analysis. Antibodies against urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor, hepatocyte growth factor and hepatocyte growth factor receptor were used to analyze immunoperoxidase stained slides from the paraffin blocks. Western blot analyses using antibodies against hepatocyte growth factor, hepatocyte growth factor receptor, phosphotyrosine, hepatocyte growth factor activator, urokinase-type plasminogen activator receptor, urokinase-type plasminogen activator, plasminogen activator inhibitor-1, fibrinogen and plasmin were performed on membrane-enriched fractions from the frozen tissue, as was collagen zymography for matrix metalloproteinase-2 and matrix metalloproteinase-9. The most notable findings are as

  16. [Expression of SM30 (A-F) Genes Encoding Spicule Matrix Proteins in Intact and Damaged Sea Urchin Strongylocentrotus intermedius (A. Agassiz, 1863) at the Six-Arm Pluteus].

    PubMed

    Sharmankina, V V; Kiselev, K V

    2016-03-01

    In this study we investigated expression of the SM30(A-F) gene family encoding Strongylocentrotus intermedius spicule matrix proteins during the normal and regenerative pluteus II stage (three pairs of arms). We found that SiSM30A and SiSM30B genes are expressed at high levels in the normal pluteus II sea urchin. SiSM30A is expression was also significantly upregulated in the reparative pluteus II stage 3 hours after damage. Conversely, SiSM30B was downregulated during the reparative pluteus II stage. Our findings reveal a substantial similarity between the activity of SiSM30A and SiSM30B activity in the processes of regenerative growth during the pluteus II stage and during normal development at the prism stage in Strongylocentrotus purpuratus. On the basis of our findings, we propose that normal developmental mechanisms corresponding to the preceding developmental stage are reactivated during pluteus regeneration.

  17. Assignment of the human membrane-type matrix metalloproteinase (MMP14) gene to 14q11-q12 by in situ hybridization

    SciTech Connect

    Mignon, C.; Mattei, M.G.; Okada, A.; Basset, P.

    1995-07-20

    Matrix metalloproteinases (MMP) are enzymes implicated in normal and pathological tissue remodeling processes. The MMP family currently comprises 11 members, among which membrane-type matrix metalloproteinase (MMP14) has most recently been described. MMP14 is believed to correspond to the membrane-associated activator of pro-gelatinase A (MMP2), and it has been proposed that such activation occurs on the cancer cell surface in invasive carcinomas. However, our observation that MMP14 transcripts are specifically expressed in fibroblastic cells during both wound healing and human cancer progression further supports the possibility that pro-gelatinase A activation is also elicited from the fibroblast cell surface. 12 refs., 1 fig., 1 tab.

  18. Matrix gamma-carboxyglutamic acid protein (MGP) G-7A and T-138C gene polymorphisms in Indian (Mayo and Teenek) and Mestizo populations from Mexico.

    PubMed

    Hernández-Pacheco, Guadalupe; Murguía, Luis Enrique; Rodríguez-Pérez, José Manuel; Fragoso, José Manuel; Pérez-Vielma, Nadia; Martínez-Rodríguez, Nancy; Granados, Julio; Vargas-Alarcón, Gilberto

    2005-06-01

    Matrix gamma-carboxyglutamic acid protein (MGP) genotypes (G-7A and T-138C) were determined in 266 individuals from three Mexican populations. Mexicans showed increased frequencies of the G-7A G allele and the G7-A GG genotype compared to Europeans. For the T-138C genotype, we found differences among the Mexicans. This study could help to define the significance of MGP polymorphisms as genetic markers in Amerindian populations.

  19. Gene knockout using transcription activator-like effector nucleases (TALENs) reveals that human NDUFA9 protein is essential for stabilizing the junction between membrane and matrix arms of complex I.

    PubMed

    Stroud, David A; Formosa, Luke E; Wijeyeratne, Xiaonan W; Nguyen, Thanh N; Ryan, Michael T

    2013-01-18

    Transcription activator-like effector nucleases (TALENs) represent a promising approach for targeted knock-out of genes in cultured human cells. We used TALEN-technology to knock out the nuclear gene encoding NDUFA9, a subunit of mitochondrial respiratory chain complex I in HEK293T cells. Screening for the knock-out revealed a mixture of NDUFA9 cell clones that harbored partial deletions of the mitochondrial N-terminal targeting signal but were still capable of import. A cell line lacking functional copies of both NDUFA9 alleles resulted in a loss of NDUFA9 protein expression, impaired assembly of complex I, and cells incapable of growth in galactose medium. Cells lacking NDUFA9 contained a complex I subcomplex consisting of membrane arm subunits but not marker subunits of the matrix arm. Re-expression of NDUFA9 restored the defects in complex I assembly. We conclude that NDUFA9 is involved in stabilizing the junction between membrane and matrix arms of complex I, a late assembly step critical for complex I biogenesis and activity.

  20. Regulation by the extracellular matrix (ECM) of prolactin-induced alpha s1-casein gene expression in rabbit primary mammary cells: role of STAT5, C/EBP, and chromatin structure.

    PubMed

    Jolivet, Geneviève; Pantano, Thaïs; Houdebine, Louis Marie

    2005-05-15

    The aim of the present study was to understand how the extracellular matrix (ECM) regulates at the gene level the prolactin (Prl)-induced signal transducer and activator of transcription 5 (STAT5)-dependent expression of the alpha s1-casein gene in mammary epithelial cells. CCAAT enhancer binding proteins (C/EBPs) are assumed regulators of beta-casein gene expression. Rabbit primary mammary cells express alpha s1-casein gene when cultured on collagen and not on plastic. Similar C/EBPbeta, C/EBPdelta, STAT5, and Prl-activated STAT5 were found under all culture conditions. Thus the ECM does not act through C/EBPs or STAT5. This was confirmed by transfections of rabbit primary mammary cells by a construct sensitive to ovine prolactin (oPrl) and ECM (6i TK luc) encompassing STAT5 and C/EBP binding sites. The mutation of C/EBPs binding sites showed that these sites were not mandatory for Prl-induced expression of the construct. Interestingly, chromatin immunoprecipitation by the anti-acetylhistone H4 antibody (ChIP) showed that the ECM (and not Prl) maintained a high amount of histone H4 acetylation upstream of the alpha s1-casein gene especially at the level of a distal Prl- and ECM-sensitive enhancer. Alpha6 integrin (a membrane receptor of laminin, the principal active component of the mammary ECM) was found at the surface of cells cultured on collagen but not on plastic. In cells cultured on collagen in the presence of anti-alpha6 integrin antibody, Prl-induced transcription of the endogenous alpha s1-casein gene was significantly reduced, without modifying C/EBPs and STAT5. Besides, histone H4 acetylation was reduced. Thus, we propose that the ECM regulates rabbit alpha s1-casein protein expression by local modification of chromatin structure, independently of STAT5 and C/EBPs.

  1. Species-Level Identification of Actinomyces Isolates Causing Invasive Infections: Multiyear Comparison of Vitek MS (Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry) to Partial Sequencing of the 16S rRNA Gene.

    PubMed

    Lynch, T; Gregson, D; Church, D L

    2016-03-01

    Actinomyces species are uncommon but important causes of invasive infections. The ability of our regional clinical microbiology laboratory to report species-level identification of Actinomyces relied on molecular identification by partial sequencing of the 16S ribosomal gene prior to the implementation of the Vitek MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry [MALDI-TOF MS]) system. We compared the use of the Vitek MS to that of 16S rRNA gene sequencing for reliable species-level identification of invasive infections caused by Actinomyces spp. because limited data had been published for this important genera. A total of 115 cases of Actinomyces spp., either alone or as part of a polymicrobial infection, were diagnosed between 2011 and 2014. Actinomyces spp. were considered the principal pathogen in bloodstream infections (n = 17, 15%), in skin and soft tissue abscesses (n = 25, 22%), and in pulmonary (n = 26, 23%), bone (n = 27, 23%), intraabdominal (n = 16, 14%), and central nervous system (n = 4, 3%) infections. Compared to sequencing and identification from the SmartGene Integrated Database Network System (IDNS), Vitek MS identified 47/115 (41%) isolates to the correct species and 10 (9%) isolates to the correct genus. However, the Vitek MS was unable to provide identification for 43 (37%) isolates while 15 (13%) had discordant results. Phylogenetic analyses of the 16S rRNA sequences demonstrate high diversity in recovered Actinomyces spp. and provide additional information to compare/confirm discordant identifications between MALDI-TOF and 16S rRNA gene sequences. This study highlights the diversity of clinically relevant Actinomyces spp. and provides an important typing comparison. Based on our analysis, 16S rRNA gene sequencing should be used to rapidly identify Actinomyces spp. until MALDI-TOF databases are optimized.

  2. Phospholipase C{gamma}1 stimulates transcriptional activation of the matrix metalloproteinase-3 gene via the protein kinase C/Raf/ERK cascade

    SciTech Connect

    Shin, Soon Young; Choi, Ha Young; Ahn, Bong-Hyun; Son, Sang Wook; Lee, Young Han . E-mail: younghan@hanyang.ac.kr

    2007-02-16

    The phospholipid hydrolase phospholipase C{gamma}1 (PLC{gamma}1) plays a major role in regulation of cell proliferation, development, and cell motility. Overexpression of PLC{gamma}1 is associated with tumor development, and it is overexpressed in some tumors. Matrix metalloproteinase-3 (MMP-3) is a protein involved in tumor invasion and metastasis. Here, we demonstrate that overexpression of PLC{gamma}1 stimulates MMP-3 expression at the transcriptional level via the PKC-mediated Raf/MEK1/ERK signaling cascade. We propose that modulation of PLC{gamma}1 activity might be of value in controlling the activity of MMPs, which are important regulators of invasion and metastasis in malignant tumors.

  3. Antibiotic Susceptibility Profiles of Dairy Leuconostoc, Analysis of the Genetic Basis of Atypical Resistances and Transfer of Genes In Vitro and in a Food Matrix.

    PubMed

    Flórez, Ana Belén; Campedelli, Ilenia; Delgado, Susana; Alegría, Ángel; Salvetti, Elisa; Felis, Giovanna E; Mayo, Baltasar; Torriani, Sandra

    2016-01-01

    In spite of a global concern on the transfer of antibiotic resistances (AR) via the food chain, limited information exists on this issue in species of Leuconostoc and Weissella, adjunct cultures used as aroma producers in fermented foods. In this work, the minimum inhibitory concentration was determined for 16 antibiotics in 34 strains of dairy origin, belonging to Leuconostoc mesenteroides (18), Leuconostoc citreum (11), Leuconostoc lactis (2), Weissella hellenica (2), and Leuconostoc carnosum (1). Atypical resistances were found for kanamycin (17 strains), tetracycline and chloramphenicol (two strains each), and erythromycin, clindamycin, virginiamycin, ciprofloxacin, and rifampicin (one strain each). Surprisingly, L. mesenteroides subsp. mesenteroides LbE16, showed resistance to four antibiotics, kanamycin, streptomycin, tetracycline and virginiamycin. PCR analysis identified tet(S) as responsible for tetracycline resistance in LbE16, but no gene was detected in a second tetracycline-resistant strain, L. mesenteroides subsp. cremoris LbT16. In Leuconostoc mesenteroides subsp. dextranicum LbE15, erythromycin and clindamycin resistant, an erm(B) gene was amplified. Hybridization experiments proved erm(B) and tet(S) to be associated to a plasmid of ≈35 kbp and to the chromosome of LbE15 and LbE16, respectively. The complete genome sequence of LbE15 and LbE16 was used to get further insights on the makeup and genetic organization of AR genes. Genome analysis confirmed the presence and location of erm(B) and tet(S), but genes providing tetracycline resistance in LbT16 were again not identified. In the genome of the multi-resistant strain LbE16, genes that might be involved in aminoglycoside (aadE, aphA-3, sat4) and virginiamycin [vat(E)] resistance were further found. The erm(B) gene but not tet(S) was transferred from Leuconostoc to Enterococcus faecalis both under laboratory conditions and in cheese. This study contributes to the characterization of AR in the

  4. Antibiotic Susceptibility Profiles of Dairy Leuconostoc, Analysis of the Genetic Basis of Atypical Resistances and Transfer of Genes In Vitro and in a Food Matrix

    PubMed Central

    Delgado, Susana; Alegría, Ángel; Salvetti, Elisa; Felis, Giovanna E.; Mayo, Baltasar; Torriani, Sandra

    2016-01-01

    In spite of a global concern on the transfer of antibiotic resistances (AR) via the food chain, limited information exists on this issue in species of Leuconostoc and Weissella, adjunct cultures used as aroma producers in fermented foods. In this work, the minimum inhibitory concentration was determined for 16 antibiotics in 34 strains of dairy origin, belonging to Leuconostoc mesenteroides (18), Leuconostoc citreum (11), Leuconostoc lactis (2), Weissella hellenica (2), and Leuconostoc carnosum (1). Atypical resistances were found for kanamycin (17 strains), tetracycline and chloramphenicol (two strains each), and erythromycin, clindamycin, virginiamycin, ciprofloxacin, and rifampicin (one strain each). Surprisingly, L. mesenteroides subsp. mesenteroides LbE16, showed resistance to four antibiotics, kanamycin, streptomycin, tetracycline and virginiamycin. PCR analysis identified tet(S) as responsible for tetracycline resistance in LbE16, but no gene was detected in a second tetracycline-resistant strain, L. mesenteroides subsp. cremoris LbT16. In Leuconostoc mesenteroides subsp. dextranicum LbE15, erythromycin and clindamycin resistant, an erm(B) gene was amplified. Hybridization experiments proved erm(B) and tet(S) to be associated to a plasmid of ≈35 kbp and to the chromosome of LbE15 and LbE16, respectively. The complete genome sequence of LbE15 and LbE16 was used to get further insights on the makeup and genetic organization of AR genes. Genome analysis confirmed the presence and location of erm(B) and tet(S), but genes providing tetracycline resistance in LbT16 were again not identified. In the genome of the multi-resistant strain LbE16, genes that might be involved in aminoglycoside (aadE, aphA-3, sat4) and virginiamycin [vat(E)] resistance were further found. The erm(B) gene but not tet(S) was transferred from Leuconostoc to Enterococcus faecalis both under laboratory conditions and in cheese. This study contributes to the characterization of AR in the

  5. Antibiotic Susceptibility Profiles of Dairy Leuconostoc, Analysis of the Genetic Basis of Atypical Resistances and Transfer of Genes In Vitro and in a Food Matrix.

    PubMed

    Flórez, Ana Belén; Campedelli, Ilenia; Delgado, Susana; Alegría, Ángel; Salvetti, Elisa; Felis, Giovanna E; Mayo, Baltasar; Torriani, Sandra

    2016-01-01

    In spite of a global concern on the transfer of antibiotic resistances (AR) via the food chain, limited information exists on this issue in species of Leuconostoc and Weissella, adjunct cultures used as aroma producers in fermented foods. In this work, the minimum inhibitory concentration was determined for 16 antibiotics in 34 strains of dairy origin, belonging to Leuconostoc mesenteroides (18), Leuconostoc citreum (11), Leuconostoc lactis (2), Weissella hellenica (2), and Leuconostoc carnosum (1). Atypical resistances were found for kanamycin (17 strains), tetracycline and chloramphenicol (two strains each), and erythromycin, clindamycin, virginiamycin, ciprofloxacin, and rifampicin (one strain each). Surprisingly, L. mesenteroides subsp. mesenteroides LbE16, showed resistance to four antibiotics, kanamycin, streptomycin, tetracycline and virginiamycin. PCR analysis identified tet(S) as responsible for tetracycline resistance in LbE16, but no gene was detected in a second tetracycline-resistant strain, L. mesenteroides subsp. cremoris LbT16. In Leuconostoc mesenteroides subsp. dextranicum LbE15, erythromycin and clindamycin resistant, an erm(B) gene was amplified. Hybridization experiments proved erm(B) and tet(S) to be associated to a plasmid of ≈35 kbp and to the chromosome of LbE15 and LbE16, respectively. The complete genome sequence of LbE15 and LbE16 was used to get further insights on the makeup and genetic organization of AR genes. Genome analysis confirmed the presence and location of erm(B) and tet(S), but genes providing tetracycline resistance in LbT16 were again not identified. In the genome of the multi-resistant strain LbE16, genes that might be involved in aminoglycoside (aadE, aphA-3, sat4) and virginiamycin [vat(E)] resistance were further found. The erm(B) gene but not tet(S) was transferred from Leuconostoc to Enterococcus faecalis both under laboratory conditions and in cheese. This study contributes to the characterization of AR in the

  6. Artesunate ameliorates hepatic fibrosis induced by bovine serum albumin in rats through regulating matrix metalloproteinases.

    PubMed

    Xu, Yajie; Liu, Wendong; Fang, Buwu; Gao, Sinan; Yan, Jing

    2014-12-01

    The effect of Artesunate on anti-hepatic fibrosis was discovered by our team for the first time. In order to investigate the effect of Artesunate on hepatic fibrosis induced by Bovine serum albumin (BSA) in rats and understand the initiatory mechanism of its effect, several experiments were conducted in this assay. HE staining and Masson׳s Trichrome staining were employed in observation of morphological changes. The content of hydroxyproline in the hepatic tissue was determined by using an acid hydrolyzation method. In addition, the expression of Matrix metalloproteinase-13 (MMP-13) and type I collagen were tested by western blotting respectively. The expression of Matrix metalloproteinase-2(MMP-2), Matrix metalloproteinase-9 (MMP-9) were determined by Gelatin Zymography Assay. Also, we use immunohistochemical studies to measure the expression of α-SMA. The final results indicated that Artesunate could dramatically attenuate the extent of hepatic fibrosis showed by histopathological sections of hepatic tissues, significantly decrease the content of hydroxyproline and efficiently inhibit the protein expression of MMP-2, MMP-9, α-SMA and type I collagen. Artesunate could as well promote the expression of MMP-13 at the same time. In conclusion, the results not only suggested that Artesunate could ameliorate hepatic fibrosis, but also suggested the anti-fibrogenic mechanisms of Artesunate might be associated with inhibiting the activation of HSCs, decreasing the expression of MMP-2, MMP-9 and increasing the expression of MMP-13.These results would bring new insights for the treatment for hepatic fibrosis.

  7. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  8. Tendon and skeletal muscle matrix gene expression and functional responses to immobilisation and rehabilitation in young males: effect of growth hormone administration

    PubMed Central

    Boesen, A P; Dideriksen, K; Couppé, C; Magnusson, S P; Schjerling, P; Boesen, M; Kjaer, M; Langberg, H

    2013-01-01

    We examined the effect of growth hormone (GH) on connective tissue of tendon and skeletal muscle during immobilisation and re-training in humans. Young men (20–30 years; n= 20) were randomly assigned to daily recombinant human GH (rhGH) (33–50 μg kg−1 day−1) or placebo (Plc), and had one leg immobilised for 2 weeks, followed by 6 weeks of strength training. The cross-sectional area (CSA), maximal muscle strength (maximal voluntary contraction, MVC) and biomechanical properties of the quadriceps muscle and patellar tendon were determined. Muscle and tendon biopsies were analysed for mRNA of collagen (COL1A1/3A1), insulin-like growth factors (IGF-1Ea/Ec), lysyl oxidase (LOX), matrix metalloproteases (MMP-2 and MMP-9), decorin and tenascin-C. Fibril morphology was analysed by transmission electron microscopy (TEM) to detect changes in the fibril diameter distribution. In muscle, CSA and MVC declined with immobilisation and recovered with rehabilitation similarly in both groups. Likewise, both groups showed increased IGF-1Ea/Ec and COL1A1/3A1 expression in muscle during re-training after immobilisation compared with baseline, and the increase was more pronounced when subjects received GH. The tendon CSA did not change during immobilisation, but increased in both groups during 6 weeks of rehabilitation (∼14%). A decline in tendon stiffness after immobilisation was observed only in the Plc group, and an increase during 6 weeks of rehabilitation was observed only in the GH group. IGF-1Ea and COL1A1/3A1 mRNA increased with immobilisation in the GH group only, and LOX mRNA was higher in the GH group than in the Plc group after immobilisation. Both groups showed an increase in MMP-2 with immobilisation, whereas no changes in MMP-9, decorin and tenascin-C were observed. The tendon fibril diameter distribution remained unchanged in both groups. In conclusion, GH stimulates collagen expression in both skeletal muscle and tendon, abolishes the normal inactivity

  9. Tendon and skeletal muscle matrix gene expression and functional responses to immobilisation and rehabilitation in young males: effect of growth hormone administration.

    PubMed

    Boesen, A P; Dideriksen, K; Couppé, C; Magnusson, S P; Schjerling, P; Boesen, M; Kjaer, M; Langberg, H

    2013-12-01

    We examined the effect of growth hormone (GH) on connective tissue of tendon and skeletal muscle during immobilisation and re-training in humans. Young men (20-30 years; n = 20) were randomly assigned to daily recombinant human GH (rhGH) (33-50 μg kg(-1) day(-1)) or placebo (Plc), and had one leg immobilised for 2 weeks, followed by 6 weeks of strength training. The cross-sectional area (CSA), maximal muscle strength (maximal voluntary contraction, MVC) and biomechanical properties of the quadriceps muscle and patellar tendon were determined. Muscle and tendon biopsies were analysed for mRNA of collagen (COL1A1/3A1), insulin-like growth factors (IGF-1Ea/Ec), lysyl oxidase (LOX), matrix metalloproteases (MMP-2 and MMP-9), decorin and tenascin-C. Fibril morphology was analysed by transmission electron microscopy (TEM) to detect changes in the fibril diameter distribution. In muscle, CSA and MVC declined with immobilisation and recovered with rehabilitation similarly in both groups. Likewise, both groups showed increased IGF-1Ea/Ec and COL1A1/3A1 expression in muscle during re-training after immobilisation compared with baseline, and the increase was more pronounced when subjects received GH. The tendon CSA did not change during immobilisation, but increased in both groups during 6 weeks of rehabilitation (∼14%). A decline in tendon stiffness after immobilisation was observed only in the Plc group, and an increase during 6 weeks of rehabilitation was observed only in the GH group. IGF-1Ea and COL1A1/3A1 mRNA increased with immobilisation in the GH group only, and LOX mRNA was higher in the GH group than in the Plc group after immobilisation. Both groups showed an increase in MMP-2 with immobilisation, whereas no changes in MMP-9, decorin and tenascin-C were observed. The tendon fibril diameter distribution remained unchanged in both groups. In conclusion, GH stimulates collagen expression in both skeletal muscle and tendon, abolishes the normal inactivity

  10. Tendon and skeletal muscle matrix gene expression and functional responses to immobilisation and rehabilitation in young males: effect of growth hormone administration.

    PubMed

    Boesen, A P; Dideriksen, K; Couppé, C; Magnusson, S P; Schjerling, P; Boesen, M; Kjaer, M; Langberg, H

    2013-12-01

    We examined the effect of growth hormone (GH) on connective tissue of tendon and skeletal muscle during immobilisation and re-training in humans. Young men (20-30 years; n = 20) were randomly assigned to daily recombinant human GH (rhGH) (33-50 μg kg(-1) day(-1)) or placebo (Plc), and had one leg immobilised for 2 weeks, followed by 6 weeks of strength training. The cross-sectional area (CSA), maximal muscle strength (maximal voluntary contraction, MVC) and biomechanical properties of the quadriceps muscle and patellar tendon were determined. Muscle and tendon biopsies were analysed for mRNA of collagen (COL1A1/3A1), insulin-like growth factors (IGF-1Ea/Ec), lysyl oxidase (LOX), matrix metalloproteases (MMP-2 and MMP-9), decorin and tenascin-C. Fibril morphology was analysed by transmission electron microscopy (TEM) to detect changes in the fibril diameter distribution. In muscle, CSA and MVC declined with immobilisation and recovered with rehabilitation similarly in both groups. Likewise, both groups showed increased IGF-1Ea/Ec and COL1A1/3A1 expression in muscle during re-training after immobilisation compared with baseline, and the increase was more pronounced when subjects received GH. The tendon CSA did not change during immobilisation, but increased in both groups during 6 weeks of rehabilitation (∼14%). A decline in tendon stiffness after immobilisation was observed only in the Plc group, and an increase during 6 weeks of rehabilitation was observed only in the GH group. IGF-1Ea and COL1A1/3A1 mRNA increased with immobilisation in the GH group only, and LOX mRNA was higher in the GH group than in the Plc group after immobilisation. Both groups showed an increase in MMP-2 with immobilisation, whereas no changes in MMP-9, decorin and tenascin-C were observed. The tendon fibril diameter distribution remained unchanged in both groups. In conclusion, GH stimulates collagen expression in both skeletal muscle and tendon, abolishes the normal inactivity

  11. Regulation of matrix metalloproteinase-9 transcription in squamous cell carcinoma of uterine cervix: the role of human papillomavirus gene E2 expression and activation of transcription factor NF-kappaB.

    PubMed

    Gasparian, A V; Fedorova, M D; Kisselev, F L

    2007-08-01

    Matrix metalloproteinase-9 (MMP-9) plays an important role in initiation and progression of squamous cell carcinoma (SCC) of human uterine cervix. Regulation of MMP-9 expression in such tumors is insufficiently studied. Involvement of the human papillomavirus (HPV) gene E2 and transcription factor NF-kappaB in the regulation of MMP-9 transcription has been shown in some model systems and types of malignant tumors. The present work was mainly designed to reveal a possible role of the HPV gene E2 and transcription factor NF-kappaB in the induction of MMP-9 expression in SCC. Specimens of tumor and corresponding adjacent normal tissue from 26 patients with SCC of the uterine cervix were studied. The intact E2 frame was observed in 19 of 26 (73.1%), the E2 gene mRNA was expressed in 10 of 15 (66.7%), NF-kappaB was activated in 17 of 23 (73.9%), and the expression of MMP-9 mRNA was recorded in 10 of 20 (50%) of the informative cases. The MMP-9 transcription did not correlate with gene E2 status, but in all cases correlated with the activation of NF-kappaB transcription factor (10 of 10 vs. 5 of 10 MMP-9-negative cases, p = 0.016). Thus, the NF-kappaB role has been proved in the regulation of MMP-9 transcription in SCC. There was no correlation of the E2 status and MMP-9 expression with clinical/morphological characteristics of the tumors: size, local invasiveness, metastasizing into regional lymph nodes, and level of differentiation. The high intensity of NF-kappaB activation correlated with low degree of differentiation of the tumors studied (p = 0.044). These findings suggested that NF-kappaB should be a molecular factor of the poor prognosis of human SCC.

  12. Macrophages promote matrix protrusive and invasive function of breast cancer cells via MIP-1β dependent upregulation of MYO3A gene in breast cancer cells.

    PubMed

    Baghel, Khemraj Singh; Tewari, Brij Nath; Shrivastava, Richa; Malik, Showkat Ahmad; Lone, Mehraj U-Din; Jain, Nem Kumar; Tripathi, Chakrapani; Kanchan, Ranjana Kumari; Dixit, Sameer; Singh, Kavita; Mitra, Kalyan; Negi, Mahendra Pal Singh; Srivastava, Mukesh; Misra, Sanjeev; Bhatt, Madan Lal Brahma; Bhadauria, Smrati

    2016-07-01

    The potential of a tumor cell to metastasize profoundly depends on its microenvironment, or "niche" interactions with local components. Tumor-associated-macrophages (TAMs) are the most abundant subpopulation of tumor stroma and represent a key component of tumor microenvironment. The dynamic interaction of cancer cells with neighboring TAMs actively drive cancer progression and metastatic transformation through intercellular signaling networks that need better elucidation. Thus, current study was planned for discerning paracrine communication networks operational between TAMs, and breast cancer cells with special reference to cancer cell invasion and dissemination to distant sites. Here, we report role of MIP-1β in enhancing invasive potential of metastatic breast cancer MDA-MB-231 and MDA-MB-468 cells. In addition, the poorly metastatic MCF-7 cells were also rendered invasive by MIP-1β. The MIP-1β-driven cancer cell invasion was dependent on upregulated expression levels of MYO3A gene, which encodes an unconventional myosin super-family protein harboring a kinase domain. Ex ovo study employing Chick-embryo-model and in vivo Syngenic 4T1/BALB/c mice-model further corroborated aforementioned in vitro findings, thereby substantiating their physiological relevance. Concordantly, human breast cancer specimen exhibited significant association between mRNA expression levels of MIP-1β and MYO3A. Both, MIP-1β and MYO3A exhibited positive correlation with MMP9, an established molecular determinant of cancer cell invasion. Higher expression of these genes correlated with poor survival of breast cancer patients. Collectively, these results point toward so far undisclosed MIP-1β/MYO3A axis being operational during metastasis, wherein macrophage-derived MIP-1β potentiated cancer cell invasion and metastasis via up regulation of MYO3A gene within cancer cells. Our study exposes opportunities for devising potential anti-metastatic strategies for efficient clinical

  13. Macrophages promote matrix protrusive and invasive function of breast cancer cells via MIP-1β dependent upregulation of MYO3A gene in breast cancer cells.

    PubMed

    Baghel, Khemraj Singh; Tewari, Brij Nath; Shrivastava, Richa; Malik, Showkat Ahmad; Lone, Mehraj U-Din; Jain, Nem Kumar; Tripathi, Chakrapani; Kanchan, Ranjana Kumari; Dixit, Sameer; Singh, Kavita; Mitra, Kalyan; Negi, Mahendra Pal Singh; Srivastava, Mukesh; Misra, Sanjeev; Bhatt, Madan Lal Brahma; Bhadauria, Smrati

    2016-07-01

    The potential of a tumor cell to metastasize profoundly depends on its microenvironment, or "niche" interactions with local components. Tumor-associated-macrophages (TAMs) are the most abundant subpopulation of tumor stroma and represent a key component of tumor microenvironment. The dynamic interaction of cancer cells with neighboring TAMs actively drive cancer progression and metastatic transformation through intercellular signaling networks that need better elucidation. Thus, current study was planned for discerning paracrine communication networks operational between TAMs, and breast cancer cells with special reference to cancer cell invasion and dissemination to distant sites. Here, we report role of MIP-1β in enhancing invasive potential of metastatic breast cancer MDA-MB-231 and MDA-MB-468 cells. In addition, the poorly metastatic MCF-7 cells were also rendered invasive by MIP-1β. The MIP-1β-driven cancer cell invasion was dependent on upregulated expression levels of MYO3A gene, which encodes an unconventional myosin super-family protein harboring a kinase domain. Ex ovo study employing Chick-embryo-model and in vivo Syngenic 4T1/BALB/c mice-model further corroborated aforementioned in vitro findings, thereby substantiating their physiological relevance. Concordantly, human breast cancer specimen exhibited significant association between mRNA expression levels of MIP-1β and MYO3A. Both, MIP-1β and MYO3A exhibited positive correlation with MMP9, an established molecular determinant of cancer cell invasion. Higher expression of these genes correlated with poor survival of breast cancer patients. Collectively, these results point toward so far undisclosed MIP-1β/MYO3A axis being operational during metastasis, wherein macrophage-derived MIP-1β potentiated cancer cell invasion and metastasis via up regulation of MYO3A gene within cancer cells. Our study exposes opportunities for devising potential anti-metastatic strategies for efficient clinical

  14. Expression pattern of matrix metalloproteinase and TIMP genes in fibroblasts derived from Ets-1 knock-out mice compared to wild-type mouse fibroblasts.

    PubMed

    Hahne, Jens Claus; Fuchs, Tanja; El Mustapha, Haddouti; Okuducu, Ali Fuat; Bories, Jean Christophe; Wernert, Nicolas

    2006-07-01

    Matrix-degrading proteases play a key role in normal development, wound healing, many diseases such as rheumatoid arthritis and, in particular, tumour invasion. In invasive tumours, these enzymes are expressed by fibroblasts of the tumour stroma. Their expression and activity are tightly regulated at several levels, an important one being transcription. Previous in vitro and in vivo findings pointed to a major role of the Ets-1 transcription factor for this level of regulation. In the present study, we tried to prove this role in fibroblasts. We stimulated wild-type mouse fibroblasts with physiological doses of basic fibroblast growth factor (bFGF, known to induce different proteases and expressed by tumour cells) and compared the results to those obtained in Ets-1 -/- fibroblasts derived from Ets-1 knock-out mice. We found that basal Ets-1 levels are necessary not only for a fast induction of MMPs 2, 3 and 13 by bFGF but also for maintenance of the bFGF-induced expression of tissue inhibitors of metalloproteinases (TIMPs) 1, 2 and 3, which are known not only to inhibit but also participate as activators of certain pro-MMPs.

  15. GALNT3, a gene associated with hyperphosphatemic familial tumoral calcinosis, is transcriptionally regulated by extracellular phosphate and modulates matrix metalloproteinase activity

    PubMed Central

    Chefetz, Ilana; Kohno, Kimitoshi; Izumi, Hiroto; Uitto, Jouni; Richard, Gabriele; Sprecher, Eli

    2011-01-01

    GALNT3 encodes UDP-N-acetyl-alpha-D-galactosamine: polypeptide N-acetylgalactosaminyl-transferarase 3 (ppGalNacT3), a glycosyltransferase which has been suggested to prevent proteolysis of FGF23, a potent phosphaturic protein. Accordingly, loss-of-function mutations in GALNT3 cause hyperphosphatemic familial tumoral calcinosis (HFTC), a rare autosomal recessive disorder manifesting with increased kidney reabsorption of phosphate, resulting in severe hyperphosphatemia and widespread ectopic calcifications. Although these findings definitely attribute a role to ppGalNacT3 in the regulation of phosphate homeostasis, little is currently known about the factors regulating GALNT3 expression. In addition, the effect of decreased GALNT3 expression in peripheral tissues has not been explored so far. In the present study, we demonstrate that GALNT3 expression is under the regulation of a number of factors known to be associated with phosphate homeostasis, including inorganic phosphate itself, calcium and 1,25-dihydroxyvitamin D3. In addition, we show that decreased GALNT3 expression in human skin fibroblasts leads to increased expression of FGF7 and of matrix metalloproteinases, which have been previously implicated in the pathogenesis of ectopic calcification. Thus, the present data suggest that ppGalNacT3 may play a role in peripheral tissues of potential relevance to the pathogenesis of disorders of phosphate metabolism. PMID:18976705

  16. Abnormal type III collagen produced by an exon-17-skipping mutation of the COL3A1 gene in Ehlers-Danlos syndrome type IV is not incorporated into the extracellular matrix.

    PubMed Central

    Chiodo, A A; Sillence, D O; Cole, W G; Bateman, J F

    1995-01-01

    A novel heterozygous mutation of the COL3A1 gene that encodes the alpha 1(III) chains of type III collagen was identified in a family with the acrogeric form of Ehlers-Danlos syndrome type IV (EDS-IV). Cultured dermal fibroblasts produced normal and shortened alpha 1(III) chains. The triple helix of the latter chain was shortened owing to a 33 amino acid deletion of Gly-184 to Pro-216. The corresponding region of cDNA lacked 99 base pairs from nucleotides 1051 to 1149. The deletions corresponded exactly to the normal sequence encoded by exon 17 of the COL3A1 gene. The proband was heterozygous for a T to G transversion at position +2 of intron 17, which resulted in skipping of exon 17. The splicing defect was not corrected by growing the fibroblasts at 33 degrees C and no other splicing variants were identified at 33 or 37 degrees C. The affected brother had the same mutation but his unaffected mother did not. Heterotrimeric type III collagen molecules containing normal and mutant chains were retained within the cell. The mutant homotrimeric molecules were modified and secreted normally and were thermally stable. These normal characteristics of the mutant homotrimers suggested that the loss of ten Gly-Xaa-Yaa triplets (where Gly-Xaa-Yaa is a repetitive amino acid triplet structure in which Xaa and Yaa are other amino acids, proline and hydroxyproline being more common in the Yaa position) did not adversely affect the formation and stability of the triple helix or the structural requirements for secretion. However, the mutant homotrimers were not incorporated into the extracellular matrix of an in vitro model of EDS-IV dermis. The EDS-IV phenotype in this family was probably due to a deficiency in the amount of normal type III collagen available for formation of the heterotypic collagen fibrils of the extracellular matrix. Intracellular and extracellular quality-control mechanisms prevented the incorporation of heterotrimeric and homotrimeric mutant type III collagen

  17. Sex determination of forensic samples by polymerase chain reaction of the amelogenin gene and analysis by capillary electrophoresis with polymer matrix.

    PubMed

    Pouchkarev, V P; Shved, E F; Novikov, P I

    1998-01-01

    The aim of this study was to validate an application of GenePrint Sex Determination System based on amplification of a section of the X-Y homologous gene amelogenin followed by capillary electrophoresis (CE) separation of polymerase chain reaction (PCR) products for gender testing of forensic DNA. It was found that subnanogram quantities of male and female DNA were correctly detected by this system. Experiments were performed to investigate the possibility of quantitating the X-Y chromosome-specific PCR products to disclose sex-mixed DNA samples. It was found that observed electrophoretic profiles correctly reflected an X-Y chromosome proportion of the DNA sample which was introduced into the PCR mix. The tested amelogenin PCR-CE system was successfully used for gender testing of a wide range of biological evidence including sex-mixed DNA samples from rape cases. These results demonstrate that the tested amelogenin PCR-CE system is a useful tool for gender determination of forensic DNA.

  18. Involvement of matrix metalloproteinases in the inhibition of cell invasion and migration through the inhibition of NF-[kappa]B by the new synthesized ethyl 2-[N-p-chlorobenzyl-(2'-methyl)]anilino-4-oxo-4,5-dihydrofuran-3-carboxylate (JOTO1007) in human cervical cancer Ca ski cells.

    PubMed

    Huang, An-Cheng; Hsu, Shu-Chun; Kuo, Chao-Lin; Liao, Ching-Lung; Lai, Kuang-Chi; Lin, Tsung-Ping; Wu, Shin-Hwar; Lu, Hsu-Feng; Tang, Nou-Ying; Yang, Jai-Sing; Chung, Jing-Gung

    2009-01-01

    JOTO1007 (ethyl 2-[N-p-chlorobenzyl-(2'-methyl)] anilino-4-oxo-4,5-dihydrofuran -3-carboxylate) has anticancer effects in human cervical cancer Ca Ski cells. However, its mechanism of action on the cell migration and invasion of human cervical cancer Ca Ski cells is not fully understood. In this study, firstly, the effects of JOTO1007 on the migration and invasion of Ca Ski cells were examined by using matrigel counting. The results showed that JOTO1007 suppressed the migration and invasion of the Ca Ski cells. Secondly, the effect of JOTO1007 on the levels of proteins associated with cell metastasis was examined using Western blotting. The results indicated that JOTO1007 inhibited the levels of son of sevenless homolog 1 (SOS-1), growth factor receptor-bound protein 2 (GRB2), Ras homolog gene family, member A (RhoA), Rho-associated, coiled-coil containing protein kinase 1 (ROCK-1), focal adhesion kinase (FAK), phosphorylated-c-jun (p-c-jun), nuclear factor kappa B (NF-kappaB) p65, cyclooxygenase-2 (COX-2), extracellular signal-regulated kinases 1/2 (ERK1/2), matrix metalloproteinase-2 (MMP-2), MMP-7 and MMP-9 but promoted the levels of protein kinase C (PKC), phosphoinositide 3-kinases (PI3K), MAP kinase kinase kinase 3 (MEKK3), mitogen-activated protein kinase kinase 7 (MKK7), c-jun and inducible nitric oxide synthases (iNOS), while not affecting Ras, phosphorylated-ERK (p-ERK), p38 and c-jun N-terminal kinase 1/2 (JNK1/2), which finally led to the inhibition of migration and invasion of the Ca Ski cells in vitro. Overall, JOTO1007 inhibited NF-kappaB which then led to the inhibition of the MMP-2, -7 and -9 expression followed by the inhibition of migration and invasion in the Ca Ski cells.

  19. BASIC Matrix Operations.

    ERIC Educational Resources Information Center

    Digital Equipment Corp., Maynard, MA.

    The curriculum materials and computer programs in this booklet introduce the idea of a matrix. They go on to discuss matrix operations of addition, subtraction, multiplication by a scalar, and matrix multiplication. The last section covers several contemporary applications of matrix multiplication, including problems of communication…

  20. [Expression of SM30 (A-F) Genes Encoding Spicule Matrix Proteins in Intact and Damaged Sea Urchin Strongylocentrotus intermedius (A. Agassiz, 1863) at the Six-Arm Pluteus].

    PubMed

    Sharmankina, V V; Kiselev, K V

    2016-03-01

    In this study we investigated expression of the SM30(A-F) gene family encoding Strongylocentrotus intermedius spicule matrix proteins during the normal and regenerative pluteus II stage (three pairs of arms). We found that SiSM30A and SiSM30B genes are expressed at high levels in the normal pluteus II sea urchin. SiSM30A is expression was also significantly upregulated in the reparative pluteus II stage 3 hours after damage. Conversely, SiSM30B was downregulated during the reparative pluteus II stage. Our findings reveal a substantial similarity between the activity of SiSM30A and SiSM30B activity in the processes of regenerative growth during the pluteus II stage and during normal development at the prism stage in Strongylocentrotus purpuratus. On the basis of our findings, we propose that normal developmental mechanisms corresponding to the preceding developmental stage are reactivated during pluteus regeneration. PMID:27281854

  1. [Role of single-nucleotide polymorphism C-1562т of the matrix metaloproteіnaza-9 gene in the development of leiomyoma in women with cervical pathology].

    PubMed

    Savchenko, I N; Garbuzova, V Y

    2015-02-01

    108 women diagnosed with leiomyoma and 84 women without this disease (control group) were examined during the research. Was conducted a comparative analysis of the genotypes distribution between women with cervical pathology of different complexity. The results of the research showed, that there is no connection between the С-1562Т polymorphism of the MMP-9 gene and the progression of leiomyoma the course of which is accompanied by false erosion of the cervix (ectopias epithelium) (p>0,521). There is also was not found any connection between the SNP in women with leiomyoma, who undergo conical electrocauterizing excision treatment because of the dysplastic epithelial changes that are considered to be precancerous (p>0,280).

  2. SnapShot: Mechanosensing Matrix.

    PubMed

    Irianto, Jerome; Pfeifer, Charlotte R; Xia, Yuntao; Discher, Dennis E

    2016-06-16

    Cells sense and respond to properties of their microenvironment that can affect cell morphology, protein levels and localization, gene expression, and even nuclear integrity. Tissue micro-stiffness, largely influenced by extracellular matrix, varies dramatically within an organism and can be a useful parameter to both clarify and organize a wide range of cell and molecular processes, such as genomic changes in cancer. PMID:27315485

  3. Comparison of the neuropoietic activity of gene-modified versus parental mesenchymal stromal cells and the identification of soluble and extracellular matrix-related neuropoietic mediators

    PubMed Central

    2014-01-01

    Introduction Transplanting mesenchymal stromal cells (MSCs) or their derivatives into a neurodegenerative environment is believed to be beneficial because of the trophic support, migratory guidance, immunosuppression, and neurogenic stimuli they provide. SB623, a cell therapy for the treatment of chronic stroke, currently in a clinical trial, is derived from bone marrow MSCs by using transient transfection with a vector encoding the human Notch1 intracellular domain. This creates a new phenotype, which is effective in experimental stroke, exhibits immunosuppressive and angiogenic activity equal or superior to parental MSCs in vitro, and produces extracellular matrix (ECM) that is exceptionally supportive for neural cell growth. The neuropoietic activity of SB623 and parental MSCs has not been compared, and the SB623-derived neuropoietic mediators have not been identified. Methods SB623 or parental MSCs were cocultured with rat embryonic brain cortex cells on cell-derived ECM in a previously characterized quantitative neuropoiesis assay. Changes in expression of rat neural differentiation markers were quantified by using rat-specific qRT-PCR. Human mediators were identified by using expression profiling, an enzymatic crosslinking activity, and functional interference studies by means of blocking antibodies, biologic inhibitors, and siRNA. Cocultures were immunolabeled for presynaptic vesicular transporters to assess neuronal specialization. Results Among six MSC/SB623 pairs, SB623 induced expression of rat neural precursor, oligodendrocyte, and astrocyte markers on average 2.6 to 3 times stronger than did their parental MSCs. SB623 expressed significantly higher FGF2, FGF1, and BMP4, and lower FGFR1 and FGFR2 levels; and human FGF1, FGF2, BMPs, and HGF were implicated as neuropoietic mediators. Neural precursors grew faster on SB623- than on MSC-derived ECM. SB623 exhibited higher expression levels and crosslinking activity of tissue transglutaminase (TGM2). TGM2

  4. Overexpression of the Candida albicans ALA1 Gene in Saccharomyces cerevisiae Results in Aggregation following Attachment of Yeast Cells to Extracellular Matrix Proteins, Adherence Properties Similar to Those of Candida albicans

    PubMed Central

    Gaur, Nand K.; Klotz, Stephen A.; Henderson, Ramona L.

    1999-01-01

    Candida albicans maintains a commensal relationship with human hosts, probably by adhering to mucosal tissue in a variety of physiological conditions. We show that adherence due to the C. albicans gene ALA1 when transformed into Saccharomyces cerevisiae, is comprised of two sequential steps. Initially, C. albicans rapidly attaches to extracellular matrix (ECM) protein-coated magnetic beads in small numbers (the attachment phase). This is followed by a relatively slower step in which cell-to-cell interactions predominate (the aggregation phase). Neither of these phases is observed in S. cerevisiae. However, expression of the C. albicans ALA1 gene from a low-copy vector causes S. cerevisiae transformants to attach to ECM-coated magnetic beads without appreciable aggregation. Expression of ALA1 from a high-copy vector results in both attachment and aggregation. Moreover, transcriptional fusion of ALA1 with the galactose-inducible promoters GALS, GALL, and GAL1, allowing for low, moderate, and high levels of inducible transcription, respectively, causes attachment and aggregation that correlates with the strength of the GAL promoter. The adherence of C. albicans and S. cerevisiae overexpressing ALA1 to a number of protein ligands occurs over a broad pH range, is resistant to shear forces generated by vortexing, and is unaffected by the presence of sugars, high salt levels, free ligands, or detergents. Adherence is, however, inhibited by agents that disrupt hydrogen bonds. The similarities in the adherence and aggregation properties of C. albicans and S. cerevisiae overexpressing ALA1 suggest a role in adherence and aggregation for ALA1 and ALA1-like genes in C. albicans. PMID:10531265

  5. Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: characterization by internal transcribed spacer, β-Tubulin, and calmodulin gene sequencing, metabolic fingerprinting, and matrix-assisted laser desorption ionization-time of flight mass spectrometry.

    PubMed

    Tam, Emily W T; Chen, Jonathan H K; Lau, Eunice C L; Ngan, Antonio H Y; Fung, Kitty S C; Lee, Kim-Chung; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2014-04-01

    Aspergillus nomius and Aspergillus tamarii are Aspergillus species that phenotypically resemble Aspergillus flavus. In the last decade, a number of case reports have identified A. nomius and A. tamarii as causes of human infections. In this study, using an internal transcribed spacer, β-tubulin, and calmodulin gene sequencing, only 8 of 11 clinical isolates reported as A. flavus in our clinical microbiology laboratory by phenotypic methods were identified as A. flavus. The other three isolates were A. nomius (n = 2) or A. tamarii (n = 1). The results corresponded with those of metabolic fingerprinting, in which the A. flavus, A. nomius, and A. tamarii strains were separated into three clusters based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC MS) analysis. The first two patients with A. nomius infections had invasive aspergillosis and chronic cavitary and fibrosing pulmonary and pleural aspergillosis, respectively, whereas the third patient had A. tamarii colonization of the airway. Identification of the 11 clinical isolates and three reference strains by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) showed that only six of the nine strains of A. flavus were identified correctly. None of the strains of A. nomius and A. tamarii was correctly identified. β-Tubulin or the calmodulin gene should be the gene target of choice for identifying A. flavus, A. nomius, and A. tamarii. To improve the usefulness of MALDI-TOF MS, the number of strains for each species in MALDI-TOF MS databases should be expanded to cover intraspecies variability.

  6. Newly emerging mutations in the matrix genes of the human influenza A(H1N1)pdm09 and A(H3N2) viruses reduce the detection sensitivity of real-time reverse transcription-PCR.

    PubMed

    Yang, Ji-Rong; Kuo, Chuan-Yi; Huang, Hsiang-Yi; Wu, Fu-Ting; Huang, Yi-Lung; Cheng, Chieh-Yu; Su, Yu-Ting; Chang, Feng-Yee; Wu, Ho-Sheng; Liu, Ming-Tsan

    2014-01-01

    New variants of the influenza A(H1N1)pdm09 and A(H3N2) viruses were detected in Taiwan between 2012 and 2013. Some of these variants were not detected in clinical specimens using a common real-time reverse transcription-PCR (RT-PCR) assay that targeted the conserved regions of the viral matrix (M) genes. An analysis of the M gene sequences of the new variants revealed that several newly emerging mutations were located in the regions where the primers or probes of the real-time RT-PCR assay bind; these included three mutations (G225A, T228C, and G238A) in the A(H1N1)pdm09 virus, as well as one mutation (C163T) in the A(H3N2) virus. These accumulated mismatch mutations, together with the previously identified C154T mutation of the A(H1N1)pdm09 virus and the C153T and G189T mutations of the A(H3N2) virus, result in a reduced detection sensitivity for the real-time RT-PCR assay. To overcome the loss of assay sensitivity due to mismatch mutations, we established a real-time RT-PCR assay using degenerate nucleotide bases in both the primers and probe and successfully increased the sensitivity of the assay to detect circulating variants of the human influenza A viruses. Our observations highlight the importance of the simultaneous use of different gene-targeting real-time RT-PCR assays for the clinical diagnosis of influenza.

  7. Misidentification of Aspergillus nomius and Aspergillus tamarii as Aspergillus flavus: Characterization by Internal Transcribed Spacer, β-Tubulin, and Calmodulin Gene Sequencing, Metabolic Fingerprinting, and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry

    PubMed Central

    Tam, Emily W. T.; Chen, Jonathan H. K.; Lau, Eunice C. L.; Ngan, Antonio H. Y.; Fung, Kitty S. C.; Lee, Kim-Chung; Lam, Ching-Wan; Yuen, Kwok-Yung

    2014-01-01

    Aspergillus nomius and Aspergillus tamarii are Aspergillus species that phenotypically resemble Aspergillus flavus. In the last decade, a number of case reports have identified A. nomius and A. tamarii as causes of human infections. In this study, using an internal transcribed spacer, β-tubulin, and calmodulin gene sequencing, only 8 of 11 clinical isolates reported as A. flavus in our clinical microbiology laboratory by phenotypic methods were identified as A. flavus. The other three isolates were A. nomius (n = 2) or A. tamarii (n = 1). The results corresponded with those of metabolic fingerprinting, in which the A. flavus, A. nomius, and A. tamarii strains were separated into three clusters based on ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC MS) analysis. The first two patients with A. nomius infections had invasive aspergillosis and chronic cavitary and fibrosing pulmonary and pleural aspergillosis, respectively, whereas the third patient had A. tamarii colonization of the airway. Identification of the 11 clinical isolates and three reference strains by matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) showed that only six of the nine strains of A. flavus were identified correctly. None of the strains of A. nomius and A. tamarii was correctly identified. β-Tubulin or the calmodulin gene should be the gene target of choice for identifying A. flavus, A. nomius, and A. tamarii. To improve the usefulness of MALDI-TOF MS, the number of strains for each species in MALDI-TOF MS databases should be expanded to cover intraspecies variability. PMID:24452174

  8. Mapping of the human dentin matrix acidic phosphoprotein gene (DMP1) to the dentinogenesis imperfecta type II critical region at chromosome 4q21

    SciTech Connect

    Aplin, H.M.; Hirst, K.L.; Crosby, A.H.; Dixon, M.J.

    1995-11-20

    Dentinogenesis imperfecta type II (DGI1) is an autosomal dominant disorder of dentin formation, which has been mapped to human chromosome 4q12-q21. The region most likely to contain the DGI1 locus is a 3.2-cM region surrounding the osteopontin (SPP1) locus. Recently, a novel dentin-specific acidic phosphoprotein (dmp1) has been cloned in the rat and mapped to mouse chromosome 5q21. In the current investigation, we have isolated a cosmid containing the human DMP1 gene. The isolation of a short tandem repeat polymorphism at this locus has allowed us to map the DMP1 locus to human chromosome 4q21 and demonstrate that it is tightly linked to DGI1 in two families (Z{sub max} = 11.01, {theta} = 0.001). The creation of a yeast artificial chromosome contig around SPP1 has further allowed us to demonstrate that DMP1 is located within 150 kb of the bone sialoprotein and 490 kb of the SPP1 loci, respectively. DMP1 is therefore a strong candidate for the DGI1 locus. 12 refs., 2 figs., 1 tab.

  9. A matrix lower bound

    SciTech Connect

    Grcar, Joseph F.

    2002-02-04

    A matrix lower bound is defined that generalizes ideas apparently due to S. Banach and J. von Neumann. The matrix lower bound has a natural interpretation in functional analysis, and it satisfies many of the properties that von Neumann stated for it in a restricted case. Applications for the matrix lower bound are demonstrated in several areas. In linear algebra, the matrix lower bound of a full rank matrix equals the distance to the set of rank-deficient matrices. In numerical analysis, the ratio of the matrix norm to the matrix lower bound is a condition number for all consistent systems of linear equations. In optimization theory, the matrix lower bound suggests an identity for a class of min-max problems. In real analysis, a recursive construction that depends on the matrix lower bound shows that the level sets of continuously differential functions lie asymptotically near those of their tangents.

  10. Insights into the effects of polygalacturonase FaPG1 gene silencing on pectin matrix disassembly, enhanced tissue integrity, and firmness in ripe strawberry fruits

    PubMed Central

    Posé, Sara; Paniagua, Candelas; Cifuentes, Manuel; Blanco-Portales, Rosario; Quesada, Miguel A.; Mercado, José A.

    2013-01-01

    Antisense-mediated down-regulation of the fruit-specific polygalacturonase (PG) gene FaPG1 in strawberries (Fragaria×ananassa Duch.) has been previously demonstrated to reduce fruit softening and to extend post-harvest shelf life, despite the low PG activity detected in this fruit. The improved fruit traits were suggested to be attributable to a reduced cell wall disassembly due to FaPG1 silencing. This research provides empirical evidence that supports this assumption at the biochemical, cellular, and tissue levels. Cell wall modifications of two independent transgenic antisense lines that demonstrated a >90% reduction in FaPG1 transcript levels were analysed. Sequential extraction of cell wall fractions from control and ripe fruits exhibited a 42% decrease in pectin solubilization in transgenic fruits. A detailed chromatographic analysis of the gel filtration pectin profiles of the different cell wall fractions revealed a diminished depolymerization of the more tightly bound pectins in transgenic fruits, which were solubilized with both a chelating agent and sodium carbonate. The cell wall extracts from antisense FaPG1 fruits also displayed less severe in vitro swelling. A histological analysis revealed more extended cell–cell adhesion areas and an enhanced tissue integrity in transgenic ripe fruits. An immunohistological analysis of fruit sections using the JIM5 antibody against low methyl-esterified pectins demonstrated a higher labelling in transgenic fruit sections, whereas minor differences were observed with JIM7, an antibody that recognizes highly methyl-esterified pectins. These results support that the increased firmness of transgenic antisense FaPG1 strawberry fruits is predominantly due to a decrease in pectin solubilization and depolymerization that correlates with more tightly attached cell wall-bound pectins. This limited disassembly in the transgenic lines indicates that these pectin fractions could play a key role in tissue integrity

  11. Activation of AMPK Prevents Monocrotaline-Induced Extracellular Matrix Remodeling of Pulmonary Artery

    PubMed Central

    Li, Shaojun; Han, Dong; Zhang, Yonghong; Xie, Xinming; Ke, Rui; Zhu, Yanting; Liu, Lu; Song, Yang; Yang, Lan; Li, Manxiang

    2016-01-01

    Background The current study was performed to investigate the effect of adenosine monophosphate (AMP) – activated protein kinase (AMPK) activation on the extracellular matrix (ECM) remodeling of pulmonary arteries in pulmonary arterial hypertension (PAH) and to address its potential mechanisms. Material/Methods PAH was induced by a single intraperitoneal injection of monocrotaline (MCT) into Sprague-Dawley rats. Metformin (MET) was administered to activate AMPK. Immunoblotting was used to determine the phosphorylation and expression of AMPK and expression of tissue inhibitor of metalloproteinase-1 (TIMP-1). Gelatin zymography was performed to determine the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9. Results Activation of AMPK by MET significantly reduced the right ventricle systolic pressure and the right ventricular hypertrophy in MCT-induced rat PAH model, and partially inhibited the ECM remodeling of pulmonary arteries. These effects were coupled with the decrease of MMP-2/9 activity and TIMP-1 expression. Conclusions This study suggests that activation of AMPK benefits PAH by inhibiting ECM remodeling of pulmonary arteries. Enhancing AMPK activity might have potential value in clinical treatment of PAH. PMID:26978596

  12. Osteoblasts extracellular matrix induces vessel like structures through glycosylated collagen I

    SciTech Connect

    Palmieri, D.; Valli, M.; Viglio, S.; Ferrari, N.; Ledda, B.; Volta, C.; Manduca, P.

    2010-03-10

    Extracellular matrix (ECM) plays a fundamental role in angiogenesis affecting endothelial cells proliferation, migration and differentiation. Vessels-like network formation in vitro is a reliable test to study the inductive effects of ECM on angiogenesis. Here we utilized matrix deposed by osteoblasts as substrate where the molecular and structural complexity of the endogenous ECM is preserved, to test if it induces vessel-like network formation by endothelial cells in vitro. ECM is more similar to the physiological substrate in vivo than other substrates previously utilized for these studies in vitro. Osteogenic ECM, prepared in vitro from mature osteoblasts at the phase of maximal deposition and glycosylation of collagen I, induces EAhy926, HUVEC, and HDMEC endothelial cells to form vessels-like structures and promotes the activation of metalloproteinase-2 (MMP-2); the functionality of the p-38/MAPK signaling pathway is required. Osteogenic ECM also induces a transient increase of CXCL12 and a decrease of the receptor CXCR4. The induction of vessel-like networks is dependent from proper glycosylation of collagens and does not occur on osteogenic ECMs if deglycosylated by -galactosidase or on less glycosylated ECMs derived from preosteoblasts and normal fibroblasts, while is sustained on ECM from osteogenesis imperfecta fibroblasts only when their mutation is associated with over-glycosylation of collagen type I. These data support that post-translational glycosylation has a role in the induction in endothelial cells in vitro of molecules conductive to self-organization in vessels-like structures.

  13. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  14. Carbonate fuel cell matrix

    DOEpatents

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  15. Matrix differentiation formulas

    NASA Technical Reports Server (NTRS)

    Usikov, D. A.; Tkhabisimov, D. K.

    1983-01-01

    A compact differentiation technique (without using indexes) is developed for scalar functions that depend on complex matrix arguments which are combined by operations of complex conjugation, transposition, addition, multiplication, matrix inversion and taking the direct product. The differentiation apparatus is developed in order to simplify the solution of extremum problems of scalar functions of matrix arguments.

  16. Matrix with Prescribed Eigenvectors

    ERIC Educational Resources Information Center

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  17. Nanocrystal doped matrixes

    SciTech Connect

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  18. Secretory leukocyte protease inhibitor gene deletion alters bleomycin-induced lung injury, but not development of pulmonary fibrosis

    PubMed Central

    Habgood, Anthony N; Tatler, Amanda L; Porte, Joanne; Wahl, Sharon M; Laurent, Geoffrey J; John, Alison E; Johnson, Simon R; Jenkins, Gisli

    2016-01-01

    Idiopathic Pulmonary Fibrosis (IPF) is a progressive, fatal disease with limited treatment options. Protease mediated transforming growth factor-β (TGF-β) activation has been proposed as a pathogenic mechanism of lung fibrosis. Protease activity in the lung is tightly regulated by protease inhibitors, particularly secretory leukocyte protease inhibitor (SLPI). The bleomycin model of lung fibrosis was used to determine the effect of increased protease activity in the lungs of Slpi−/− mice following injury. Slpi−/−, and wild-type, mice received oropharyngeal administration of bleomycin (30 IU) and the development of pulmonary fibrosis was assessed. Pro and active forms of matrix metalloproteinase-2 (MMP-2) and MMP-9 were measured. Lung fibrosis was determined by collagen subtype specific gene expression, hydroxyproline concentration, and histological assessment. Alveolar TGF-β activation was measured using bronchoalveolar lavage cell pSmad2 levels and global TGF-β activity was assessed by pSmad2 immunohistochemistry. The active-MMP-9 to pro-MMP-9 ratio was significantly increased in Slpi−/− animals compared with wild-type animals, demonstrating enhanced metalloproteinase activity. Wild-type animals showed an increase in TGF-β activation following bleomycin, with a progressive and sustained increase in collagen type I, alpha 1 (Col1α1), III, alpha 1(Col3α1), IV, alpha 1(Col4α1) mRNA expression, and a significant increase in total lung collagen 28 days post-bleomycin. In contrast Slpi−/− mice showed no significant increase of alveolar TGF-β activity following bleomycin, above their already elevated levels, although global TGF-β activity did increase. Slpi−/− mice had impaired collagen gene expression but animals demonstrated minimal reduction in lung fibrosis compared with wild-type animals. These data suggest that enhanced proteolysis does not further enhance TGF-β activation, and inhibits sustained Col1α1, Col3α1 and Col4α1 gene

  19. Biofilm Matrix Proteins

    PubMed Central

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709

  20. Automatic switching matrix

    DOEpatents

    Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil

    1982-01-01

    An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.

  1. The occurrence of Legionella species other than Legionella pneumophila in clinical and environmental samples in Denmark identified by mip gene sequencing and matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Svarrer, C W; Uldum, S A

    2012-10-01

    In Denmark, several laboratories use PCR as a routine diagnostic method for Legionnaires' disease, and almost all PCR-positive samples are investigated by culture. From 1993 to 2010, isolates of Legionella species other than Legionella pneumophila were obtained from respiratory samples from 33 patients, and from 1997 to 2010, 42 isolates of Legionella non-pneumophila species were obtained and saved from water samples from 39 different sites in Denmark. Macrophage infectivity potentiator gene (mip) sequencing was used as a reference method to identify the Legionella non-pneumophila species. Only one of the 75 isolates did not meet the acceptance criterion of a similarity of ≥98% to sequences in the database. The species distribution between clinical and environmental isolates varied. For the former, four species were detected, with Legionella bozemanae and Legionella micdadei predominating (both 44%). For the latter, eight species were detected, with Legionella anisa predominating (52%). The distribution among the Danish clinical isolates was different from the general distribution both in Europe and outside Europe, where L. bozemanae and Legionella longbeachae are the most commonly found clinical Legionella non-pneumophila species. The 75 isolates were also investigated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS): 64 were correctly identified, with a score of ≥2.0; eight had a score of <2.0, but only two of these were wrongly identified; and three gave no results with MALDI-TOF MS. Both mip sequencing and MALDI-TOF MS are robust methods for Legionella species identification.

  2. Genotyping for Glycophorin GYP(B-A-B) Hybrid Genes Using a Single Nucleotide Polymorphism-Based Algorithm by Matrix-Assisted Laser Desorption/Ionisation, Time-of-Flight Mass Spectrometry.

    PubMed

    Wei, Ling; Lopez, Genghis H; Ji, Yanli; Condon, Jennifer A; Irwin, Darryl L; Luo, Guangping; Hyland, Catherine A; Flower, Robert L

    2016-10-01

    The genetic basis for five GP(B-A-B) MNS system hybrid glycophorin blood group antigens results from rearrangement between the homologous GYPA and GYPB genes. Each hybrid glycophorin displays a characteristic profile of antigens. Currently, no commercial serological reagents are currently available to serologically type for these antigens. The aim of this study was to develop a single nucleotide polymorphism (SNP) mapping genotyping technique to allow characterisation of various GYP(B-A-B) hybrid alleles. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry (MS) assays were designed to genotype five GYP(B-A-B) hybrid alleles. Eight nucleotide positions were targeted and incorporated into the SNP mapping protocol. The allelic frequencies were calculated using peak areas. Sanger sequencing was performed to resolve a GYP*Hop 3' breakpoint. Observed allelic peak area ratios either coincided with the expected ratio or were skewed (above or below) from the expected ratio with switching occurring at and after the expected break point to generate characteristic mass spectral plots for each hybrid. Sequencing showed that the GYP*Hop crossover in the intron 3 region, for this example, was identical to that for GYP*Bun reference sequence. An analytical algorithm using MALDI-TOF MS genotyping platform defined GYPA inserts for five GYP(B-A-B) hybrids. The SNP mapping technique described here demonstrates proof of concept that this technology is viable for genotyping hybrid glycophorins, GYP(A-B-A), GYP(A-B) and GYP(B-A), and addresses the gap in current typing technologies.

  3. Mixed matrix membrane development.

    PubMed

    Kulprathipanja, Santi

    2003-03-01

    Two types of mixed matrix membranes were developed by UOP in the late 1980s. The first type includes adsorbent polymers, such as silicalite-cellulose acetate (CA), NaX-CA, and AgX-CA mixed matrix membranes. The silicalite-CA has a CO(2)/H(2) selectivity of 5.15 +/- 2.2. In contrast, the CA membrane has a CO(2)/H(2) selectivity of 0.77 +/- 0.06. The second type of mixed matrix membrane is PEG-silicone rubber. The PEG-silicone rubber mixed matrix membrane has high selectivity for polar gases, such as SO(2), NH(3), and H(2)S.

  4. Sustained activation of neutrophils in the course of Kawasaki disease: an association with matrix metalloproteinases.

    PubMed

    Biezeveld, M H; van Mierlo, G; Lutter, R; Kuipers, I M; Dekker, T; Hack, C E; Newburger, J W; Kuijpers, T W

    2005-07-01

    Kawasaki disease (KD) is an acute febrile syndrome of childhood, characterized by vasculitis of the medium-sized arteries. White blood cell counts and the inflammatory parameter C-reactive protein (CRP) are known to be elevated in the acute phase of the disease. In this study we investigated the course of inflammatory cell type-specific parameters in KD over a longer period of time. Plasma levels of human neutrophil elastase (HNE), matrix metalloproteinases-2 and -9 (MMP2, MMP9), and neutrophil gelatinase-associated lipocalin (NGAL), macrophage neopterin and CRP were measured. Plasma samples were collected in the acute, subacute and early convalescent stage, and three months after the onset of disease. Median CRP and neopterin normalized within two weeks. In contrast, six weeks and three months after onset of disease, levels of HNE were still elevated, with median values of 163 ng/ml and 156 ng/ml, respectively (control children median < 50 ng/ml; for all time-points P < 0.0001). Values of NGAL correlated with the levels of HNE (r = 0.39, P = 0.013). These results demonstrate a longer state of neutrophil activation in KD than was previously assumed. The potential relationship between this prolonged neutrophil activation, coronary artery lesion formation and their persistence, as well as the risk of premature atherosclerosis warrants further evaluation.

  5. Grassmann matrix quantum mechanics

    DOE PAGES

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-21

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit.more » In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.« less

  6. Matrix Metalloproteinase-14 Both Sheds Cell Surface Neuronal Glial Antigen 2 (NG2) Proteoglycan on Macrophages and Governs the Response to Peripheral Nerve Injury*

    PubMed Central

    Nishihara, Tasuku; Remacle, Albert G.; Angert, Mila; Shubayev, Igor; Shiryaev, Sergey A.; Liu, Huaqing; Dolkas, Jennifer; Chernov, Andrei V.; Strongin, Alex Y.; Shubayev, Veronica I.

    2015-01-01

    Neuronal glial antigen 2 (NG2) is an integral membrane chondroitin sulfate proteoglycan expressed by vascular pericytes, macrophages (NG2-Mφ), and progenitor glia of the nervous system. Herein, we revealed that NG2 shedding and axonal growth, either independently or jointly, depended on the pericellular remodeling events executed by membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14). Using purified NG2 ectodomain constructs, individual MMPs, and primary NG2-Mφ cultures, we demonstrated for the first time that MMP-14 performed as an efficient and unconventional NG2 sheddase and that NG2-Mφ infiltrated into the damaged peripheral nervous system. We then characterized the spatiotemporal relationships among MMP-14, MMP-2, and tissue inhibitor of metalloproteinases-2 in sciatic nerve. Tissue inhibitor of metalloproteinases-2-free MMP-14 was observed in the primary Schwann cell cultures using the inhibitory hydroxamate warhead-based MP-3653 fluorescent reporter. In teased nerve fibers, MMP-14 translocated postinjury toward the nodes of Ranvier and its substrates, laminin and NG2. Inhibition of MMP-14 activity using the selective, function-blocking DX2400 human monoclonal antibody increased the levels of regeneration-associated factors, including laminin, growth-associated protein 43, and cAMP-dependent transcription factor 3, thereby promoting sensory axon regeneration after nerve crush. Concomitantly, DX2400 therapy attenuated mechanical hypersensitivity associated with nerve crush in rats. Together, our findings describe a new model in which MMP-14 proteolysis regulates the extracellular milieu and presents a novel therapeutic target in the damaged peripheral nervous system and neuropathic pain. PMID:25488667

  7. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  8. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  9. Mueller matrix differential decomposition.

    PubMed

    Ortega-Quijano, Noé; Arce-Diego, José Luis

    2011-05-15

    We present a Mueller matrix decomposition based on the differential formulation of the Mueller calculus. The differential Mueller matrix is obtained from the macroscopic matrix through an eigenanalysis. It is subsequently resolved into the complete set of 16 differential matrices that correspond to the basic types of optical behavior for depolarizing anisotropic media. The method is successfully applied to the polarimetric analysis of several samples. The differential parameters enable one to perform an exhaustive characterization of anisotropy and depolarization. This decomposition is particularly appropriate for studying media in which several polarization effects take place simultaneously. PMID:21593943

  10. FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk.

    PubMed

    Nikolova, Yuliya S; Iruku, Swetha P; Lin, Chien-Wei; Conley, Emily Drabant; Puralewski, Rachel; French, Beverly; Hariri, Ahmad R; Sibille, Etienne

    2015-01-01

    The A allele of the FRAS1-related extracellular matrix protein 3 (FREM3) rs7676614 single nucleotide polymorphism (SNP) was linked to major depressive disorder (MDD) in an early genome-wide association study (GWAS), and to symptoms of psychomotor retardation in a follow-up investigation. In line with significant overlap between age- and depression-related molecular pathways, parallel work has shown that FREM3 expression in postmortem human brain decreases with age. Here, we probe the effect of rs7676614 on amygdala reactivity and perceptual processing speed, both of which are altered in depression and aging. Amygdala reactivity was assessed using a face-matching BOLD fMRI paradigm in 365 Caucasian participants in the Duke Neurogenetics Study (DNS) (192 women, mean age 19.7 ± 1.2). Perceptual processing speed was indexed by reaction times in the same task and the Trail Making Test (TMT). The effect of rs7676614 on FREM3 mRNA brain expression levels was probed in a postmortem cohort of 169 Caucasian individuals (44 women, mean age 50.8 ± 14.9). The A allele of rs7676614 was associated with blunted amygdala reactivity to faces, slower reaction times in the face-matching condition (p < 0.04), as well as marginally slower performance on TMT Part B (p = 0.056). In the postmortem cohort, the T allele of rs6537170 (proxy for the rs7676614 A allele), was associated with trend-level reductions in gene expression in Brodmann areas 11 and 47 (p = 0.066), reminiscent of patterns characteristic of older age. The low-expressing allele of another FREM3 SNP (rs1391187) was similarly associated with reduced amygdala reactivity and slower TMT Part B speed, in addition to reduced BA47 activity and extraversion (p < 0.05). Together, these results suggest common genetic variation associated with reduced FREM3 expression may confer risk for a subtype of depression characterized by reduced reactivity to environmental stimuli and slower perceptual processing speed, possibly suggestive of

  11. FRAS1-related extracellular matrix 3 (FREM3) single-nucleotide polymorphism effects on gene expression, amygdala reactivity and perceptual processing speed: An accelerated aging pathway of depression risk

    PubMed Central

    Nikolova, Yuliya S.; Iruku, Swetha P.; Lin, Chien-Wei; Conley, Emily Drabant; Puralewski, Rachel; French, Beverly; Hariri, Ahmad R.; Sibille, Etienne

    2015-01-01

    The A allele of the FRAS1-related extracellular matrix protein 3 (FREM3) rs7676614 single nucleotide polymorphism (SNP) was linked to major depressive disorder (MDD) in an early genome-wide association study (GWAS), and to symptoms of psychomotor retardation in a follow-up investigation. In line with significant overlap between age- and depression-related molecular pathways, parallel work has shown that FREM3 expression in postmortem human brain decreases with age. Here, we probe the effect of rs7676614 on amygdala reactivity and perceptual processing speed, both of which are altered in depression and aging. Amygdala reactivity was assessed using a face-matching BOLD fMRI paradigm in 365 Caucasian participants in the Duke Neurogenetics Study (DNS) (192 women, mean age 19.7 ± 1.2). Perceptual processing speed was indexed by reaction times in the same task and the Trail Making Test (TMT). The effect of rs7676614 on FREM3 mRNA brain expression levels was probed in a postmortem cohort of 169 Caucasian individuals (44 women, mean age 50.8 ± 14.9). The A allele of rs7676614 was associated with blunted amygdala reactivity to faces, slower reaction times in the face-matching condition (p < 0.04), as well as marginally slower performance on TMT Part B (p = 0.056). In the postmortem cohort, the T allele of rs6537170 (proxy for the rs7676614 A allele), was associated with trend-level reductions in gene expression in Brodmann areas 11 and 47 (p = 0.066), reminiscent of patterns characteristic of older age. The low-expressing allele of another FREM3 SNP (rs1391187) was similarly associated with reduced amygdala reactivity and slower TMT Part B speed, in addition to reduced BA47 activity and extraversion (p < 0.05). Together, these results suggest common genetic variation associated with reduced FREM3 expression may confer risk for a subtype of depression characterized by reduced reactivity to environmental stimuli and slower perceptual processing speed, possibly suggestive of

  12. Measurement matrix optimization method based on matrix orthogonal similarity transformation

    NASA Astrophysics Data System (ADS)

    Pan, Jinfeng

    2016-05-01

    Optimization of the measurement matrix is one of the important research aspects of compressive sensing theory. A measurement matrix optimization method is presented based on the orthogonal similarity transformation of the information operator's Gram matrix. In terms of the fact that the information operator's Gram matrix is a singular symmetric matrix, a simplified orthogonal similarity transformation is deduced, and thus the simplified diagonal matrix that is orthogonally similar to it is obtained. Then an approximation of the Gram matrix is obtained by letting all the nonzero diagonal entries of the simplified diagonal matrix equal their average value. Thus an optimized measurement matrix can be acquired according to its relationship with the information operator. Results of experiments show that the optimized measurement matrix compared to the random measurement matrix is less coherent with dictionaries. The relative signal recovery error also declines when the proposed measurement matrix is utilized.

  13. Pesticide-Exposure Matrix

    Cancer.gov

    The "Pesticide-exposure Matrix" was developed to help epidemiologists and other researchers identify the active ingredients to which people were likely exposed when their homes and gardens were treated for pests in past years.

  14. Matrix fractional systems

    NASA Astrophysics Data System (ADS)

    Tenreiro Machado, J. A.

    2015-08-01

    This paper addresses the matrix representation of dynamical systems in the perspective of fractional calculus. Fractional elements and fractional systems are interpreted under the light of the classical Cole-Cole, Davidson-Cole, and Havriliak-Negami heuristic models. Numerical simulations for an electrical circuit enlighten the results for matrix based models and high fractional orders. The conclusions clarify the distinction between fractional elements and fractional systems.

  15. Optical coherency matrix tomography

    NASA Astrophysics Data System (ADS)

    Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.

    2015-10-01

    The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes.

  16. Optical coherency matrix tomography

    PubMed Central

    Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.

    2015-01-01

    The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes. PMID:26478452

  17. Stabilisation of matrix polynomials

    NASA Astrophysics Data System (ADS)

    Galindo, R.

    2015-10-01

    A state feedback is proposed to analyse the stability of a matrix polynomial in closed loop. First, it is shown that a matrix polynomial is stable if and only if a state space realisation of a ladder form of certain transfer matrix is stable. Following the ideas of the Routh-Hurwitz stability procedure for scalar polynomials, certain continued-fraction expansions of polynomial matrices are carrying out by unimodular matrices to achieve the Euclid's division algorithm which leads to an extension of the well-known Routh-Hurwitz stability criteria but this time in terms of matrix coefficients. After that, stability of the closed-loop matrix polynomial is guaranteed based on a Corollary of a Lyapunov Theorem. The sufficient stability conditions are: (i) The matrices of one column of the presented array must be symmetric and positive definite and (ii) the matrices of the cascade realisation must satisfy a commutative condition. These stability conditions are also necessary for matrix polynomial of second order. The results are illustrated through examples.

  18. Angiotensin type 2 receptor stimulation ameliorates left ventricular fibrosis and dysfunction via regulation of tissue inhibitor of matrix metalloproteinase 1/matrix metalloproteinase 9 axis and transforming growth factor β1 in the rat heart.

    PubMed

    Lauer, Dilyara; Slavic, Svetlana; Sommerfeld, Manuela; Thöne-Reineke, Christa; Sharkovska, Yuliya; Hallberg, Anders; Dahlöf, Bjorn; Kintscher, Ulrich; Unger, Thomas; Steckelings, Ulrike Muscha; Kaschina, Elena

    2014-03-01

    Left ventricular (LV) remodeling is the main reason for the development of progressive cardiac dysfunction after myocardial infarction (MI). This study investigated whether stimulation of the angiotensin type 2 receptor is able to ameliorate post-MI cardiac remodeling and what the underlying mechanisms may be. MI was induced in Wistar rats by permanent ligation of the left coronary artery. Treatment with the angiotensin type 2 receptor agonist compound 21 (0.03 mg/kg) was started 6 hours post-MI and continued for 6 weeks. Hemodynamic parameters were measured by echocardiography and intracardiac catheter. Effects on proteolysis were studied in heart tissue and primary cardiac fibroblasts. Compound 21 significantly improved systolic and diastolic functions, resulting in improved ejection fraction (71.2±4.7% versus 53.4±7.0%; P<0.001), fractional shortening (P<0.05), LV internal dimension in systole (P<0.05), LV end-diastolic pressure (16.9±1.2 versus 22.1±1.4 mm Hg; P<0.05), ratio of early (E) to late (A) ventricular filling velocities, and maximum and minimum rate of LV pressure rise (P<0.05). Compound 21 improved arterial stiffness parameters and reduced collagen content in peri-infarct myocardium. Tissue inhibitor of matrix metalloproteinase 1 was strongly upregulated, whereas matrix metalloproteinases 2 and 9 and transforming growth factor β1 were diminished in LV of treated animals. In cardiac fibroblasts, compound 21 initially induced tissue inhibitor of matrix metalloproteinase 1 expression followed by attenuated matrix metalloproteinase 9 and transforming growth factor β1 secretion. In conclusion, angiotensin type 2 receptor stimulation improves cardiac function and prevents cardiac remodeling in the late stage after MI, suggesting that angiotensin type 2 receptor agonists may be considered a future pharmacological approach for the improvement of post-MI cardiac dysfunction.

  19. Protective effect of naringin on 3-nitropropionic acid-induced neurodegeneration through the modulation of matrix metalloproteinases and glial fibrillary acidic protein.

    PubMed

    Gopinath, Kulasekaran; Sudhandiran, Ganapasam

    2016-01-01

    Naringin (4',5,7-trihydroxy-flavonone-7-rhamnoglucoside), a flavonone present in grapefruit, has recently been reported to protect against neurodegeration, induced with 3-nitropropionic acid (3-NP), through its antioxidant, anti-inflammatory, and antiapoptotic properties. This study used a rat model of 3-NP-induced neurodegeneration to investigate the neuroprotective effects of naringin exerted by modulating the expression of matrix metalloproteinases and glial fibrillary acidic protein. Neurodegeneration was induced with 3-NP (10 mg/kg body mass, by intraperitoneal injection) once a day for 2 weeks, and induced rats were treated with naringin (80 mg/kg body mass, by oral gavage, once a day for 2 weeks). Naringin ameliorated the motor abnormalities caused by 3-NP, and reduced blood-brain barrier dysfunction by decreasing the expression of matrix metalloproteinases 2 and 9, along with increasing the expression of the tissue inhibitors of metalloproteinases 1 and 2 in 3-NP-induced rats. Further, naringin reduced 3-NP-induced neuroinflammation by decreasing the expression of nuclear factor-kappa B and glial fibrillary acidic protein. Thus, naringin exerts protective effects against 3-NP-induced neurodegeneration by ameliorating the expressions of matrix metalloproteinases and glial fibrillary acidic protein.

  20. Matrix interdiction problem

    SciTech Connect

    Pan, Feng; Kasiviswanathan, Shiva

    2010-01-01

    In the matrix interdiction problem, a real-valued matrix and an integer k is given. The objective is to remove k columns such that the sum over all rows of the maximum entry in each row is minimized. This combinatorial problem is closely related to bipartite network interdiction problem which can be applied to prioritize the border checkpoints in order to minimize the probability that an adversary can successfully cross the border. After introducing the matrix interdiction problem, we will prove the problem is NP-hard, and even NP-hard to approximate with an additive n{gamma} factor for a fixed constant {gamma}. We also present an algorithm for this problem that achieves a factor of (n-k) mUltiplicative approximation ratio.

  1. Matrixed business support comparison study.

    SciTech Connect

    Parsons, Josh D.

    2004-11-01

    The Matrixed Business Support Comparison Study reviewed the current matrixed Chief Financial Officer (CFO) division staff models at Sandia National Laboratories. There were two primary drivers of this analysis: (1) the increasing number of financial staff matrixed to mission customers and (2) the desire to further understand the matrix process and the opportunities and challenges it creates.

  2. Half a century of "the nuclear matrix".

    PubMed

    Pederson, T

    2000-03-01

    A cell fraction that would today be termed "the nuclear matrix" was first described and patented in 1948 by Russian investigators. In 1974 this fraction was rediscovered and promoted as a fundamental organizing principle of eukaryotic gene expression. Yet, convincing evidence for this functional role of the nuclear matrix has been elusive and has recently been further challenged. What do we really know about the nonchromatin elements (if any) of internal nuclear structure? Are there objective reasons (as opposed to thinly veiled disdain) to question experiments that use harsh nuclear extraction steps and precipitation-prone conditions? Are the known biophysical properties of the nucleoplasm in vivo consistent with the existence of an extensive network of anastomosing filaments coursing dendritically throughout the interchromatin space? To what extent may the genome itself contribute information for its own quarternary structure in the interphase nucleus? These questions and recent work that bears on the mystique of the nuclear matrix are addressed in this essay. The degree to which gene expression literally depends on nonchromatin nuclear structure as a facilitating organizational format remains an intriguing but unsolved issue in eukaryotic cell biology, and considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the in vivo situation. PMID:10712500

  3. Half a century of "the nuclear matrix".

    PubMed

    Pederson, T

    2000-03-01

    A cell fraction that would today be termed "the nuclear matrix" was first described and patented in 1948 by Russian investigators. In 1974 this fraction was rediscovered and promoted as a fundamental organizing principle of eukaryotic gene expression. Yet, convincing evidence for this functional role of the nuclear matrix has been elusive and has recently been further challenged. What do we really know about the nonchromatin elements (if any) of internal nuclear structure? Are there objective reasons (as opposed to thinly veiled disdain) to question experiments that use harsh nuclear extraction steps and precipitation-prone conditions? Are the known biophysical properties of the nucleoplasm in vivo consistent with the existence of an extensive network of anastomosing filaments coursing dendritically throughout the interchromatin space? To what extent may the genome itself contribute information for its own quarternary structure in the interphase nucleus? These questions and recent work that bears on the mystique of the nuclear matrix are addressed in this essay. The degree to which gene expression literally depends on nonchromatin nuclear structure as a facilitating organizational format remains an intriguing but unsolved issue in eukaryotic cell biology, and considerable skepticism continues to surround the nuclear matrix fraction as an accurate representation of the in vivo situation.

  4. Matrix Metalloproteinase Control of Capillary Morphogenesis

    PubMed Central

    Ghajar, Cyrus M; George, Steven C; Putnam, Andrew J

    2010-01-01

    Matrix metalloproteinases (MMPs) play crucial roles in a variety of normal (e.g. blood vessel formation, bone development) and pathophysiological (e.g. wound healing, cancer) processes. This is not only due to their ability to degrade the surrounding extracellular matrix (ECM), but also because MMPs function to reveal cryptic matrix binding sites, release matrix-bound growth factors inherent to these processes, and activate a variety of cell surface molecules. The process of blood vessel formation, in particular, is regulated by what is widely classified as the angiogenic switch: a mixture of both pro- and anti-angiogenic factors that function to counteract each other unless the stimuli from one side exceeds the other to disrupt the quiescent state. While it was initially thought that MMPs were strictly pro-angiogenic, new functions for this proteolytic family such as mediating vascular regression and generating matrix fragments with antiangiogenic capacities have been discovered in the last decade. These findings cast MMPs as multi-faceted pro- and anti-angiogenic effectors. The purpose of this review is to introduce the reader to the general structure and characterization of the MMP family and to discuss the temporal and spatial regulation of their gene expression and enzymatic activity in the following crucial steps associated with angiogenesis: degradation of the vascular basement membrane; proliferation and invasion of endothelial cells within the subjacent ECM, organization into immature tubules; maturation of these nascent vessels; and the pruning and regression of the vascular network. PMID:18540825

  5. Constructing the matrix

    NASA Astrophysics Data System (ADS)

    Elliott, John

    2012-09-01

    As part of our 'toolkit' for analysing an extraterrestrial signal, the facility for calculating structural affinity to known phenomena must be part of our core capabilities. Without such a resource, we risk compromising our potential for detection and decipherment or at least causing significant delay in the process. To create such a repository for assessing structural affinity, all known systems (language parameters) need to be structurally analysed to 'place' their 'system' within a relational communication matrix. This will need to include all known variants of language structure, whether 'living' (in current use) or ancient; this must also include endeavours to incorporate yet undeciphered scripts and non-human communication, to provide as complete a picture as possible. In creating such a relational matrix, post-detection decipherment will be assisted by a structural 'map' that will have the potential for 'placing' an alien communication with its nearest known 'neighbour', to assist subsequent categorisation of basic parameters as a precursor to decipherment. 'Universal' attributes and behavioural characteristics of known communication structure will form a range of templates (Elliott, 2001 [1] and Elliott et al., 2002 [2]), to support and optimise our attempt at categorising and deciphering the content of an extraterrestrial signal. Detection of the hierarchical layers, which comprise intelligent, complex communication, will then form a matrix of calculations that will ultimately score affinity through a relational matrix of structural comparison. In this paper we develop the rationales and demonstrate functionality with initial test results.

  6. Matrix Embedded Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Kamakolanu, U. G.; Freund, F. T.

    2016-05-01

    In the matrix of minerals such as olivine, a redox reaction of the low-z elements occurs. Oxygen is oxidized to the peroxy state while the low-Z-elements become chemically reduced. We assign them a formula [CxHyOzNiSj]n- and call them proto-organics.

  7. TIMP-2 promotes activation of progelatinase A by membrane-type 1 matrix metalloproteinase immobilized on agarose beads.

    PubMed

    Kinoshita, T; Sato, H; Okada, A; Ohuchi, E; Imai, K; Okada, Y; Seiki, M

    1998-06-26

    Membrane-type 1 matrix metalloproteinase (MT1-MMP)/MMP-14 is the activator of progelatinase A (proGelA)/proMMP-2 on the cell surface. However, it was a paradox that a tissue inhibitor of metalloproteinase-2 (TIMP-2), which is an inhibitor of MT1-MMP, is required for proGelA activation by the cells expressing MT1-MMP. In this study, a truncated MT1-MMP having a FLAG-tag sequence at the C terminus (MT1-F) was immobilized onto agarose beads (MT1-F/B) and used to analyze the role of TIMP-2. The proteolytic activity of MT1-F/B against a synthetic peptide substrate was inhibited by TIMP-2 in a dose-dependent manner. In contrast, TIMP-2 promoted the processing of proGelA by MT1-F/B at low concentrations and inhibited it at higher concentrations. TIMP-2 promoted the binding of proGelA to the MT1-F on the beads by forming a trimolecular complex, which was followed by processing of proGelA. A stimulatory effect of TIMP-2 was observed under conditions in which unoccupied MT1-F was still available. Thus, the ternary complex is thought to act as a means to concentrate the substrate to the bead surface and to present it to the neighboring free MT1-F.

  8. Optical shutter switching matrix

    NASA Technical Reports Server (NTRS)

    Grove, Charles H.

    1991-01-01

    The interface switching systems are discussed which are related to those used in the Space Shuttle ground control system, transmission systems, communications systems, and airborne radar electronic countermeasure systems. The main goal is to identify a need that exists throughout the comprehensive information processing and communications disciplines supporting the Space Shuttle and Space Station programs, and introduce one viable approach to satisfy that need. The proposed device, described in NASA patent entitled 'Optical Shutter Switch Matrix', is discussed.

  9. Hypercube matrix computation task

    NASA Technical Reports Server (NTRS)

    Calalo, Ruel H.; Imbriale, William A.; Jacobi, Nathan; Liewer, Paulett C.; Lockhart, Thomas G.; Lyzenga, Gregory A.; Lyons, James R.; Manshadi, Farzin; Patterson, Jean E.

    1988-01-01

    A major objective of the Hypercube Matrix Computation effort at the Jet Propulsion Laboratory (JPL) is to investigate the applicability of a parallel computing architecture to the solution of large-scale electromagnetic scattering problems. Three scattering analysis codes are being implemented and assessed on a JPL/California Institute of Technology (Caltech) Mark 3 Hypercube. The codes, which utilize different underlying algorithms, give a means of evaluating the general applicability of this parallel architecture. The three analysis codes being implemented are a frequency domain method of moments code, a time domain finite difference code, and a frequency domain finite elements code. These analysis capabilities are being integrated into an electromagnetics interactive analysis workstation which can serve as a design tool for the construction of antennas and other radiating or scattering structures. The first two years of work on the Hypercube Matrix Computation effort is summarized. It includes both new developments and results as well as work previously reported in the Hypercube Matrix Computation Task: Final Report for 1986 to 1987 (JPL Publication 87-18).

  10. Shrinkage covariance matrix approach for microarray data

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-04-01

    Microarray technology was developed for the purpose of monitoring the expression levels of thousands of genes. A microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints including the high cost of producing microarray chips. As a result, the widely used standard covariance estimator is not appropriate for this purpose. One such technique is the Hotelling's T2 statistic which is a multivariate test statistic for comparing means between two groups. It requires that the number of observations (n) exceeds the number of genes (p) in the set but in microarray studies it is common that n < p. This leads to a biased estimate of the covariance matrix. In this study, the Hotelling's T2 statistic with the shrinkage approach is proposed to estimate the covariance matrix for testing differential gene expression. The performance of this approach is then compared with other commonly used multivariate tests using a widely analysed diabetes data set as illustrations. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  11. MOP /Matrix Operation Programs system/

    NASA Technical Reports Server (NTRS)

    Muller, P. M.

    1968-01-01

    MOP /Matrix Operation Programs/ system consists of a set of FORTRAN 4 subroutines which are related through a small common allocation. The system accomplishes all matrix algebra operations plus related input-output and housekeeping details.

  12. Matrix Theory of Small Oscillations

    ERIC Educational Resources Information Center

    Chavda, L. K.

    1978-01-01

    A complete matrix formulation of the theory of small oscillations is presented. Simple analytic solutions involving matrix functions are found which clearly exhibit the transients, the damping factors, the Breit-Wigner form for resonances, etc. (BB)

  13. On the Matrix Exponential Function

    ERIC Educational Resources Information Center

    Hou, Shui-Hung; Hou, Edwin; Pang, Wan-Kai

    2006-01-01

    A novel and simple formula for computing the matrix exponential function is presented. Specifically, it can be used to derive explicit formulas for the matrix exponential of a general matrix A satisfying p(A) = 0 for a polynomial p(s). It is ready for use in a classroom and suitable for both hand as well as symbolic computation.

  14. Diverse functions of matrix metalloproteinases during fibrosis.

    PubMed

    Giannandrea, Matthew; Parks, William C

    2014-02-01

    Fibrosis--a debilitating condition that can occur in most organs - is characterized by excess deposition of a collagen-rich extracellular matrix (ECM). At first sight, the activities of proteinases that can degrade matrix, such as matrix metalloproteinases (MMPs), might be expected to be under-expressed in fibrosis or, if present, could function to resolve the excess matrix. However, as we review here, some MMPs are indeed anti-fibrotic, whereas others can have pro-fibrotic functions. MMPs modulate a range of biological processes, especially processes related to immunity and tissue repair and/or remodeling. Although we do not yet know precisely how MMPs function during fibrosis--that is, the protein substrate or substrates that an individual MMP acts on to effect a specific process--experiments in mouse models demonstrate that MMP-dependent functions during fibrosis are not limited to effects on ECM turnover. Rather, data from diverse models indicate that these proteinases influence cellular activities as varied as proliferation and survival, gene expression, and multiple aspects of inflammation that, in turn, impact outcomes related to fibrosis.

  15. The cellulose resource matrix.

    PubMed

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  16. The cellulose resource matrix.

    PubMed

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  17. On Hermite Matrix Polynomials of Two Variables

    NASA Astrophysics Data System (ADS)

    Kahmmash, Ghazi S.

    This study deals with the two-variable Hermite matrix polynomials, some relevant matrix functions appear interims of the two-variable Hermite matrix polynomials the relationships with Hermite matrix polynomials of one variable, Chepyshev matrix polynomials of the second kind have been obtained and expansion of the. Gegenbauer matrix polynomials as series of Hermite matrix polynomials.

  18. Supported Molecular Matrix Electrophoresis.

    PubMed

    Matsuno, Yu-Ki; Kameyama, Akihiko

    2015-01-01

    Mucins are difficult to separate using conventional gel electrophoresis methods such as SDS-PAGE and agarose gel electrophoresis, owing to their large size and heterogeneity. On the other hand, cellulose acetate membrane electrophoresis can separate these molecules, but is not compatible with glycan analysis. Here, we describe a novel membrane electrophoresis technique, termed "supported molecular matrix electrophoresis" (SMME), in which a porous polyvinylidene difluoride (PVDF) membrane filter is used to achieve separation. This description includes the separation, visualization, and glycan analysis of mucins with the SMME technique. PMID:26139278

  19. The evolution of extracellular matrix.

    PubMed

    Ozbek, Suat; Balasubramanian, Prakash G; Chiquet-Ehrismann, Ruth; Tucker, Richard P; Adams, Josephine C

    2010-12-01

    We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or "adhesome" also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology.

  20. Historical perspective of matrix metalloproteases.

    PubMed

    Pulkoski-Gross, Ashleigh E

    2015-06-01

    Matrix metalloproteinases (MMPs) were identified as early as 1962. Since this seminal finding, this family of zinc-dependent endopeptidases has been studied extensively. This collective work has resulted in delineation of MMP gene and protein structures, the mechanisms of control of MMPs, the action of MMPs on both extracellular matrices and other proteins such as growth factors and cytokines, naturally-occurring mechanisms of control, and of course their role in normal physiology and their crucial roles in pathophysiology. Stemming from the discovery that MMPs contribute to arthritis, heart disease, and cancer, amongst other diseases, attempts to develop treatment strategies incorporating MMP inhibition have been undertaken. The results of these endeavours have been mediocre, resulting in few FDA-approved MMP inhibitors mostly due to the broad-spectrum nature of these early inhibitors and unwanted side effects of MMP inhibition. The future of exploitation of MMPs in disease lies in the design of more targeted inhibitors; in order to accomplish this, we must all understand the subtle differences between each MMP and their contextual roles. In this chapter, we aim to overview major topics regarding MMPs and what direction we may go in the future.

  1. The Evolution of Extracellular Matrix

    PubMed Central

    Özbek, Suat; Balasubramanian, Prakash G.; Chiquet-Ehrismann, Ruth; Tucker, Richard P.

    2010-01-01

    We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or “adhesome” also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology. PMID:21160071

  2. Using Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Complemented with Selected 16S rRNA and gyrB Genes Sequencing to Practically Identify Clinical Important Viridans Group Streptococci (VGS)

    PubMed Central

    Zhou, Menglan; Yang, Qiwen; Kudinha, Timothy; Zhang, Li; Xiao, Meng; Kong, Fanrong; Zhao, Yupei; Xu, Ying-Chun

    2016-01-01

    There are challenges in viridans group streptococci (VGS) identification especially for the mitis group. Few studies have investigated the performance of MALDI-TOF MS system in VGS identification. Using 16S rRNA gene and gyrB gene sequencing as a gold standard, the performance of two MALDI-TOF MS instruments in the identification of 181 VGS clinical isolates was studied. The Bruker Biotyper and Vitek MS IVD systems correctly identified 88.4% and 98.9% of the 181 isolates, respectively. The Vitek MS RUO system was the least reliable, only correctly identifying 38.7% of the isolates to species level with several misidentifications and invalid results. The Bruker Biotyper system was very unreliable in the identification of species within the mitis group. Among 22 non-pneumococci isolates (S. mitis/S. oralis/S. pseudopneumoniae), Biotyper misidentified 21 of them as S. pneumoniae leading to a low sensitivity and low positive predictive value in these species. In contrast, the Vitek MS IVD demonstrated a better resolution for pneumococci and non-pneumococci despite the inability to distinguish between S. mitis/S. oralis. For more accurate species-level identification, further improvements in the VGS spectra databases are needed. Based on MALDI-TOF analysis and selected 16S rRNA gene plus gyrB genes sequencing, we designed a practical VGS identification algorithm.

  3. Using Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Complemented with Selected 16S rRNA and gyrB Genes Sequencing to Practically Identify Clinical Important Viridans Group Streptococci (VGS)

    PubMed Central

    Zhou, Menglan; Yang, Qiwen; Kudinha, Timothy; Zhang, Li; Xiao, Meng; Kong, Fanrong; Zhao, Yupei; Xu, Ying-Chun

    2016-01-01

    There are challenges in viridans group streptococci (VGS) identification especially for the mitis group. Few studies have investigated the performance of MALDI-TOF MS system in VGS identification. Using 16S rRNA gene and gyrB gene sequencing as a gold standard, the performance of two MALDI-TOF MS instruments in the identification of 181 VGS clinical isolates was studied. The Bruker Biotyper and Vitek MS IVD systems correctly identified 88.4% and 98.9% of the 181 isolates, respectively. The Vitek MS RUO system was the least reliable, only correctly identifying 38.7% of the isolates to species level with several misidentifications and invalid results. The Bruker Biotyper system was very unreliable in the identification of species within the mitis group. Among 22 non-pneumococci isolates (S. mitis/S. oralis/S. pseudopneumoniae), Biotyper misidentified 21 of them as S. pneumoniae leading to a low sensitivity and low positive predictive value in these species. In contrast, the Vitek MS IVD demonstrated a better resolution for pneumococci and non-pneumococci despite the inability to distinguish between S. mitis/S. oralis. For more accurate species-level identification, further improvements in the VGS spectra databases are needed. Based on MALDI-TOF analysis and selected 16S rRNA gene plus gyrB genes sequencing, we designed a practical VGS identification algorithm. PMID:27617008

  4. Using Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Complemented with Selected 16S rRNA and gyrB Genes Sequencing to Practically Identify Clinical Important Viridans Group Streptococci (VGS).

    PubMed

    Zhou, Menglan; Yang, Qiwen; Kudinha, Timothy; Zhang, Li; Xiao, Meng; Kong, Fanrong; Zhao, Yupei; Xu, Ying-Chun

    2016-01-01

    There are challenges in viridans group streptococci (VGS) identification especially for the mitis group. Few studies have investigated the performance of MALDI-TOF MS system in VGS identification. Using 16S rRNA gene and gyrB gene sequencing as a gold standard, the performance of two MALDI-TOF MS instruments in the identification of 181 VGS clinical isolates was studied. The Bruker Biotyper and Vitek MS IVD systems correctly identified 88.4% and 98.9% of the 181 isolates, respectively. The Vitek MS RUO system was the least reliable, only correctly identifying 38.7% of the isolates to species level with several misidentifications and invalid results. The Bruker Biotyper system was very unreliable in the identification of species within the mitis group. Among 22 non-pneumococci isolates (S. mitis/S. oralis/S. pseudopneumoniae), Biotyper misidentified 21 of them as S. pneumoniae leading to a low sensitivity and low positive predictive value in these species. In contrast, the Vitek MS IVD demonstrated a better resolution for pneumococci and non-pneumococci despite the inability to distinguish between S. mitis/S. oralis. For more accurate species-level identification, further improvements in the VGS spectra databases are needed. Based on MALDI-TOF analysis and selected 16S rRNA gene plus gyrB genes sequencing, we designed a practical VGS identification algorithm.

  5. Using Matrix-Assisted Laser Desorption Ionization-Time of Flight (MALDI-TOF) Complemented with Selected 16S rRNA and gyrB Genes Sequencing to Practically Identify Clinical Important Viridans Group Streptococci (VGS).

    PubMed

    Zhou, Menglan; Yang, Qiwen; Kudinha, Timothy; Zhang, Li; Xiao, Meng; Kong, Fanrong; Zhao, Yupei; Xu, Ying-Chun

    2016-01-01

    There are challenges in viridans group streptococci (VGS) identification especially for the mitis group. Few studies have investigated the performance of MALDI-TOF MS system in VGS identification. Using 16S rRNA gene and gyrB gene sequencing as a gold standard, the performance of two MALDI-TOF MS instruments in the identification of 181 VGS clinical isolates was studied. The Bruker Biotyper and Vitek MS IVD systems correctly identified 88.4% and 98.9% of the 181 isolates, respectively. The Vitek MS RUO system was the least reliable, only correctly identifying 38.7% of the isolates to species level with several misidentifications and invalid results. The Bruker Biotyper system was very unreliable in the identification of species within the mitis group. Among 22 non-pneumococci isolates (S. mitis/S. oralis/S. pseudopneumoniae), Biotyper misidentified 21 of them as S. pneumoniae leading to a low sensitivity and low positive predictive value in these species. In contrast, the Vitek MS IVD demonstrated a better resolution for pneumococci and non-pneumococci despite the inability to distinguish between S. mitis/S. oralis. For more accurate species-level identification, further improvements in the VGS spectra databases are needed. Based on MALDI-TOF analysis and selected 16S rRNA gene plus gyrB genes sequencing, we designed a practical VGS identification algorithm. PMID:27617008

  6. Comparison of Biolog GEN III MicroStation semi-automated bacterial identification system with matrix-assisted laser desorption ionization-time of flight mass spectrometry and 16S ribosomal RNA gene sequencing for the identification of bacteria of veterinary interest.

    PubMed

    Wragg, P; Randall, L; Whatmore, A M

    2014-10-01

    Recent advances in phenotypic and chemotaxonomic methods have improved the ability of systems to resolve bacterial identities at the species level. Key to the effective use of these systems is the ability to draw upon databases which can be augmented with new data gleaned from atypical or novel isolates. In this study we compared the performance of the Biolog GEN III identification system (hereafter, GEN III) with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and 16S rRNA gene sequencing in the identification of isolates of veterinary interest. The use of strains that had proven more difficult to identify by routine methods was designed to test the systems' abilities at the extremes of their performance range. Over an 18month period, 100 strains were analysed by all three methods. To highlight the importance of identification to species level, a weighted scoring system was devised to differentiate the capacity to identify at genus and species levels. The overall relative weighted scores were 0.869:0.781:0.769, achieved by 16S rRNA gene sequencing, GEN III and MALDI-TOF MS respectively, when compared to the 'gold standard'. Performance to the genus level was significantly better using 16S rRNA gene sequencing; however, performance to the species level was similar for all three systems. PMID:25014253

  7. Effects of increased matrix metalloproteinase-9 expression on skeletal muscle fibrosis in prolonged alcoholic myopathies of rats.

    PubMed

    Wang, Jianfeng; Liu, Yanli; Zhang, Li; Ji, Jun; Wang, Bing; Jin, Wei; Zhang, Chenghong; Chu, Haiying

    2012-01-01

    This study evaluated the effects of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) on injured gastrocnemius, soleus and plantaris muscles, induced by alcohol in rats. A total of 60 male Sprague-Dawley rats (2.5 months old, 200 ± 20 g) were divided into 6 groups: i) untreated skeletal muscle and analyzed 2 weeks later (A1 group, 5 rats); ii) untreated skeletal muscle and analyzed 6 weeks later (A2 group, 5 rats); iii) untreated skeletal muscle and analyzed 12 weeks later (A3 group, 5 rats); iv) injured skeletal muscle and analyzed 2 weeks later (B1 group, 15 rats); v) injured skeletal muscle and analyzed 6 weeks later (B2 group, 15 rats); and vi) injured skeletal muscle and analyzed 12 weeks later (B3 group, 15 rats). The injured and uninjured muscles were observed by light microscopy and polarization microscopy. The MMP activity was evaluated through zymography, and messenger RNA (mRNA) of MMP-9 and of MMP-2 were assessed by RT-PCR. The expression of MMP-9 was assessed by Western blot analysis. The plantaris and gastrocnemius muscles in the rats subjected to alcohol ingestion were found to have a high expression of MMP-9, but not of MMP-2. Picrosirius red staining was used to assess whether increased fibrosis in the skeletal muscle was associated with alcohol exposure in rats. The study indicated that alcohol may be involved in the skeletal muscle interstitial fibrosis in our model of alcohol-exposed rats through increased MMP-9 expression, and that this increased expression may aggravate the development of prolonged alcohol muscle injury.

  8. Ceramic matrix and resin matrix composites: A comparison

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1987-01-01

    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided.

  9. Silencing by nuclear matrix attachment distinguishes cell-type specificity: association with increased proliferation capacity

    PubMed Central

    Linnemann, Amelia K.; Krawetz, Stephen A.

    2009-01-01

    DNA loop organization by nuclear scaffold/matrix attachment is a key regulator of gene expression that may provide a means to modulate phenotype. We have previously shown that attachment of genes to the NaCl-isolated nuclear matrix correlates with their silencing in HeLa cells. In contrast, expressed genes were associated with the lithium 3,5-diiodosalicylate (LIS)-isolated nuclear scaffold. To define their role in determining phenotype matrix attached regions (MARs) on human chromosomes 14–18 were identified as a function of expression in a primary cell line. The locations of MARs in aortic adventitial fibroblast (AoAF) cells were very stable (r = 0.909) and 96% of genes attached at MARs are silent (P < 0.001). Approximately one-third of the genes uniquely expressed in AoAF cells were associated with the HeLa cell nuclear matrix and silence