Science.gov

Sample records for matrix metalloproteinase-2 gene

  1. Matrix metalloproteinase-2 gene variants and abdominal aortic aneurysm.

    PubMed

    Smallwood, L; Warrington, N; Allcock, R; van Bockxmeer, F; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2009-08-01

    To investigate associations between two polymorphisms of the matrix metalloproteinase-2 gene (MMP2) and the incidence and progression of abdominal aortic aneurysm (AAA). Cases and controls were recruited from a trial of screening for AAAs. The association between two variants of MMP2 (-1360C>T, and +649C>T) in men with AAA (n=678) and in controls (n=659) was examined using multivariate analyses. The association with AAA expansion (n=638) was also assessed. In multivariate analyses with adjustments for multiple testing, no association between either SNP and AAA presence or expansion was detected. MMP2 -1360C>T and +649C>T variants are not risk factors for AAA.

  2. Selective gene transfer to endometrial cancer cells by a polymer against matrix metalloproteinase 2 (MMP-2).

    PubMed

    Han, Joo Youn; Choi, Dong Soon; Kim, Changhoon; Joo, Hyun; Min, Churl K

    2008-04-01

    A novel cancer-cell-specific gene delivery vector with high transfection efficiency was designed and tested with an in vitro coculture consisting of the human endometrial adenocarcinoma cell line, HEC-1A cells, and normal endometrial stromal cells. For the cancer-cell targeting, polyethylenimine (PEI), a cationic polymer that can be easily combined with anionic DNA to form a particulate complex, polyplex, being capable of transferring a gene into a variety of cells, was covalently conjugated with antibodies against matrix metalloproteinase 2 (MMP-2), a typical surface-marker protein on cancer cells known for its close correlation with angiogenesis and invasion in many types of cancer, using the heterofunctional cross-linker, n-succinimidyl 3-(2-pyridyldithio)-propionamide. Biophysical properties and transfection efficiencies of anti-MMP-2-conjugated PEI were analyzed by means of dynamic light scattering, laser Doppler anemometry, and flow cytometry. Our results reveal that (1) the PEI-anti-MMP-2 antibody conjugate maintains physical parameters, including sizes and surface charges, which appear to be favorable for gene transfer and (2) when the pEGFP-N3 plasmid complexes of the PEI-anti-MMP-2 antibody conjugate are applied to the coculture consisting of HEC-1A cells and human stromal cells, a high level of green fluorescent protein expression occurs in HEC-1A cells over stromal cells, suggesting a specific gene transfer targeting cancer cells. Therefore, targeting invading cancer cells with the PEI-anti-MMP-2 antibody conjugate could be promising in endometrial cancer treatment, and this gene delivery system deserves further optimization in the context of targeted therapeutic gene delivery.

  3. Matrix metalloproteinase-2 promoter variability in psoriasis.

    PubMed

    Vasku, Vladimir; Bienertova Vasku, Julie; Slonková, Veronika; Kanková, Katerina; Vasku, Anna

    2009-07-01

    The expression of matrix metalloproteinase-2 was observed to be significantly upregulated in psoriasis. The aim of this study was to associate the DNA polymorphic variants in MMP-2 promoter gene with psoriasis and/or with psoriasis phenotypes related to psoriasis and comorbid heredity. In the total of 582 Czech Caucasian individuals (386 patients with psoriasis and 196 controls of similar age and sex distribution without personal or family history of chronic disease of the skin), four MMP-2 promoter polymorphisms (-1575G/A, -1306C/T, -790T/G and -735C/T) were detected by PCR methods. A significant association of GG genotype of -790 MMP-2 polymorphism with psoriasis was observed (Pcorr = 0.04). Although no significant case-control differences in frequency of associated GG(-1575)CC(-1306)TT(-790) MMP-2 promoter genotype were observed, the genotype was found to be significantly less frequent in patients with family history of psoriasis (close as well as distant), family history of diabetes and personal history of allergy (2/11 vs. 55/32, odds ratio (OR) for GGCCTT 0.11, 95% confidential interval 0.02-0.50, Pcorr = 0.01). The significant difference between psoriatic patients with positive anamnestic data on diabetes, psoriasis and allergy compared with psoriatic patients that have only positive family history of diabetes was also observed (2/11 vs. 38/31, P = 0.009, Pcorr = 0.04; OR 0.15, 95% CI = 0.03-0.72 for psoriatic patients with GGCCTT genotype and family history of psoriasis, diabetes and personal history of allergy). To conclude, the associated GGCCTT genotype in the promoter of MMP-2 gene was less frequent in patients with positive family history of psoriasis, diabetes and personal history of allergy compared with psoriatic patients without them (2/11 vs. 68/57, P = 0.007, Pcorr = 0.04; OR = 0.15, 95% CI = 0.03-0.72 for psoriatic patients with family history of psoriasis and diabetes and with allergy). Based on our results, we suggest that the MMP-2 located in

  4. Neutrophil activator of matrix metalloproteinase-2 (NAM).

    PubMed

    Rollo, Ellen E; Hymowitz, Michelle; Schmidt, Cathleen E; Montana, Steve; Foda, Hussein; Zucker, Stanley

    2006-01-01

    We have isolated a novel soluble factor(s), neutrophil activator of matrix metalloproteinases (NAM), secreted by unstimulated normal human peripheral blood neutrophils that causes the activation of cell secreted promatrix metalloproteinase-2 (proMMP-2). Partially purified preparations of NAM have been isolated from the conditioned media of neutrophils employing gelatin-Sepharose chromatography and differential membrane filter centrifugation. NAM activity, as assessed by exposing primary human umbilical vein endothelial cells (HUVEC) or HT1080 cells to NAM followed by gelatin zymography, was seen within one hour. Tissue inhibitor of metalloproteinase-2 (TIMP-2) and hydroxamic acid derived inhibitors of MMPs (CT1746 and BB94) abrogated the activation of proMMP-2 by NAM, while inhibitors of serine and cysteine proteases showed no effect. NAM also produced an increase in TIMP-2 binding to HUVEC and HT1080 cell surfaces that was inhibited by TIMP-2, CT1746, and BB94. Time-dependent increases in MT1-MMP protein and mRNA were seen following the addition of NAM to cells. These data support a role for NAM in cancer dissemination.

  5. The role of genetic polymorphisms in the promoters of the matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 genes in head and neck cancer.

    PubMed

    O-Charoenrat, Pornchai; Khantapura, Patchariya

    2006-03-01

    Matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) play an important role in several stages of cancer initiation and development. Single nucleotide polymorphisms identified in the promoters of MMP2 (-1306C-->T) and TIMP2 (-418G-->C) abolish the Sp1-binding site and thus may down-regulate expression of the genes. We examined the contribution of these polymorphisms to susceptibility and aggressiveness of head and neck squamous cell carcinoma (HNSCC). MMP2 genotypes were determined by PCR-based allele-specific refractory mutation analysis and TIMP2 genotypes identified by PCR-RFLP in a panel of HNSCC cell lines and in 239 head and neck cancer patients and 250 frequency matched controls in an ethnic Thai population. We found that subjects with the MMP2 CC genotype was associated with significantly increased risk [adjusted odds ratio (OR), 1.97; 95% confidence interval (95% CI), 1.23-3.15] for developing HNSCC compared with those with the variant genotype (-1306CT or TT). For TIMP2, a moderately increased risk of the cancer (OR, 1.43; 95% CI, 0.98-2.08) was also associated with the variant allele (-418GC or CC), compared with the GG common allele. Furthermore, the polymorphisms in both genes showed some additive effect and the highest risk for head and neck cancer was observed in those with MMP2 CC genotype and TIMP2 variant GC or CC genotype (OR, 2.34; 95% CI, 1.31-4.18). A correlation between promoter polymorphisms and the levels of mRNA expression in cell lines and cancer tissues was found. Finally, the MMP2 CC genotype was correlated with adverse clinicopathological variables. These findings suggest that the genetic polymorphisms in the promoters of MMP2 and TIMP2 may be associated with the development and aggressiveness of HNSCC.

  6. The expression and clinical significance of metastasis suppressor gene and matrix metalloproteinase-2 in esophageal squamous cell of carcinoma.

    PubMed

    Guo, Xiao-Qi; Li, Xing-Ya

    2016-07-01

    To investigate the expression and clinical significance of metastasis suppressor gene and matrix metalloproteinase-2 in esophageal squamous cell of carcinoma. choose 30 cases of specimens of esophageal squamous cell carcinoma which are removed in surgery and confirmed by pathology and 30 cases of specimens of normal esophageal mucosa. Use immunohistochemistry SP method to detect the expression of nm23-H1, MMP-2 protein in esophageal squamous cell carcinoma and normal esophageal mucosal. The positive rate of nm23-H1 protein in esophageal squamous cell carcinoma was 43.3% (13/30), while that in normal esophageal mucosa was 100% (30/30), which has a significant difference between them (χ2=22. 083, P<0.05). The positive rate of MMP-2 protein in esophageal squamous cell carcinoma was 90.0% (27/30), while that in normal esophageal mucosa was 33.3% (10/30), and there is a significant difference between them (χ2=28. 370, P<0.05); For the expression of nm23-H1 and MMP-2 in esophageal squamous cell carcinoma, there was nothing to do with sex, age and tumor size (P>0.05), but it was related to the degree of tumor differentiation, depth of invasion and lymph node metastasis (P<0.05); The expression of nm23-H1 is related to the cut end of residual cancer (P<0.05), while the expression of MMP-2 has nothing to do with the cut end of residual cancer (P>0.05); The expression of nm23-H1 and MMP-2 in esophageal squamous cell carcinoma was negatively correlated. nm23-H1 and MMP-2 have played a role in the development of esophageal cancer, which can promote the occurence of distant metastasis; The loss of expression of nm23-H1 may be related to cut end residual cancer; nm23-H1 and MMP-2 may be as an indicator for esophageal cancer metastasis and prognosis.

  7. Matrix metalloproteinase-2 -1306 C>T gene polymorphism is associated with reduced risk of cancer: a meta-analysis.

    PubMed

    Haque, Shafiul; Akhter, Naseem; Lohani, Mohtashim; Ali, Arif; Mandal, Raju K

    2015-01-01

    Matrix metalloproteinase-2 (MMP2) is an endopeptidase, mainly responsible for degradation of extracellular matrix components, which plays an important role in cancer disease. A single nucleotide polymorphism (SNP) at -1306 disrupts a Sp1-type promoter site. The results from the published studies on the association between MMP2 -1306 C>T polymorphism and cancer risk are contradictory and inconclusive. In the present study, a meta-analysis was therefore performed to evaluate the strength of any association between the MMP2 -1306 C>T polymorphism and risk of cancer. We searched all eligible studies published on association between MMP2 -1306 C>T polymorphism and cancer risk in PubMed (Medline), EMBASE and Google Scholar online web databases until December 2013. Genotype distribution data were collected to calculate the pooled odds ratios (ORs) and 95% confidence intervals (95%CIs) to examine the strength of the association. A total of 8,590 cancer cases and 9,601 controls were included from twenty nine eligible case control studies. Overall pooled analysis suggested significantly reduced risk associated with heterozygous genotype (CT vs CC: OR=0.758, 95%CI=0.637 to 0.902, p=0.002) and dominant model (TT+CT vs CC: OR=0.816, 95%CI=0.678 to 0.982, p=0.032) genetic models. However, allelic (T vs C: OR=0.882, 95%CI=0.738 to 1.055, p=0.169), homozygous (TT vs CC: OR=1.185, 95%CI=0.825 to 1.700, p=0.358) and recessive (TT vs CC+CT: OR=1.268, 95%CI=0.897 to 1.793, p=0.179) models did not show any risk. No evidence of publication bias was detected during the analysis. The results of present meta-analysis suggest that the MMP2 -1306 C>T polymorphism is significantly associated with reduced risk of cancer. However, further studies with consideration of different populations will be required to evaluate this relationship in more detail.

  8. Association study for the role of Matrix metalloproteinases 2 and 3 gene polymorphisms in dental caries susceptibility.

    PubMed

    Karayasheva, Dobrina; Glushkova, Maria; Boteva, Ekaterina; Mitev, Vanyo; Kadiyska, Tanya

    2016-08-01

    Various exogenous and endogenous risk factors have been described as contributing to dental caries susceptibility. In the last decade it has been established that both pro and active forms of host derived Matrix metalloproteinases (MMPs) are present in the oral cavity. MMPs role in caries development has been hypothesized. The aim of this study was to analyse MMP2 (rs2287074) and MMP3 (rs679620) single nucleotide polymorphisms (SNPs) and their role in caries susceptibility. The two SNPs were analysed by PCR- restriction fragment length polymorphism (RFLP) in a sample of 102 ethnic Bulgarian volunteers (42 males and 60 females), all students in Sofia Medical University. Statistical analysis of the MMP2 SNP showed significant differences for the genotype frequencies between the caries free (CF, DMFT=0) and low caries experience (LCE, DMFT≤5) groups. Analysis for the non-synonymous MMP3 SNP found significant differences between both CF vs caries experience groups (LCE+ high caries experience (HCE, DMFT≥5)) and LCE vs HCE groups. The presence of allele G decreased the risk of HCE about 4 times. MMP2 and MMP3 genes are likely to be involved in caries susceptibility in our population. However, as dental caries is a multifactorial disorder and several genes are likely to have influence on it, it is reasonable to expect that SNPs, even those proven to be functional like rs679620, potentially play a significant, but not major role in the disease outcome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Association of single nucleotide polymorphisms in promoter of matrix metalloproteinase-2, 8 genes with bladder cancer risk in Northern India.

    PubMed

    Srivastava, Priyanka; Kapoor, Rakesh; Mittal, Rama D

    2013-02-01

    Matrix metalloproteinases (MMPs) are expressed in melanocytes and their overexpression has been linked to tumor development, progression, and metastasis. At the genetic level, following functional promoter polymorphisms are known to modify the gene transcription: -1306 C > T, -735 C > T in MMP2, and 799 C > T in MMP8 gene. Hence we hypothesize that functional polymorphisms in the 2 MMP SNPs in promoter region may modulate the risk for bladder cancer (BC) progression in North Indian population. Genotyping for these polymorphisms were done in a group of 200 BC and 200 age matched, similar ethnicity unrelated healthy controls using PCR-based methods. Two-sided χ(2), Cox-regression was utilized to evaluate the associations between genotype and various clinical and epidemiologic factors. Multivariate analyses were conducted using logistic regression, adjusting for known BC confounders such as age and gender. Survival analysis was done using the Kaplan-Meier method and differences in survival were assessed using the log rank test. Individuals with MMP2 (-1306) TT genotype as well as T allele were at higher risk of BC (P, 0.042; OR, 2.85; P, 0.001; OR, 1.76). This effect was even more apparent in case of CT+TT (P < 0.001; OR, 2.61). In MMP2 (735), CT+TT demonstrated significant risk (P, 0.034; OR, 1.66). In MMP8 (799), reduced risk was observed with TT genotype (P, 0.006; OR, 0.27). Haplotype analysis showed that individuals with haplotype 735C-1306T and 735T-1306C were at 1.9- and 1.5-fold higher risk. MMP2 -1306CC in combination with MMP8 799CT genotype showed protective effect. The genotype CT and CT+TT of MMP2 1306C > T were associated with high risk of recurrence in BCG treated patients (HR, 4.32; P, 0.006 and HR, 2.06; P, 0.047) thus showing reduced recurrence free survival (CT+TT/CC = 34/45 months; log rank P, 0.039). Our data suggested that variant allele of MMP2 1306C > T was associated with high risk of tumor recurrence and reduced recurrence free survival in

  10. N-myc downstream regulated gene 2 overexpression reduces matrix metalloproteinase-2 and -9 activities and cell invasion of A549 lung cancer cell line in vitro

    PubMed Central

    Faraji, Seyed Nooredin; Mojtahedi, Zahra; Ghalamfarsa, Ghasem; Takhshid, Mohammad Ali

    2015-01-01

    Objective(s): N-myc downstream regulated gene 2 (NDRG2) is a candidate gene for tumor suppression. The expression of NDRG2 is down-regulated in several tumors including lung cancer. The aim of this study was to explore the effect of NDRG2 overexpression on invasion, migration, and enzymatic activity of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in human lung adenocarcinoma A549 cells. Materials and Methods: A recombinant plasmid encoding green fluorescent protein (GFP)-tagged NDRG2 (pCMV6-AC-NDRG2-GFP) was used to overexpress GFP-tagged NDRG2 in A549 cells. The cells in the experimental group and those in the control group were transfected with pCMV6-AC-NDRG2-GFP and a control plasmid without NDRG2 (pCMV6-AC-GFP), respectively. Fluorescent microscopy and flowcytometry analysis of GFP expression were used to evaluate the cellular expression of GFP-tagged NDRG2 and the efficiency of transfection. The effects of NDRG2 expression on cell invasion and migration were evaluated using transwell filter migration assay. The gelatinase activity of secreted MMP-2 and MMP-9 was measured by gelatin zymography. Results: Our results demonstrated the expression of GFP-tagged NDRG2 in the cytoplasm and nucleus of A549 cells. The findings of transwell assay showed that NDRG2 overexpression reduced migration and invasion of A549 cells compared to control cells. Gelatin zymography analyses revealed that NDRG2 overexpression decreased the gelatinase activity of secreted MMP-2 and MMP-9. Conclusion: These findings suggest that NDRG2 may be a new anti-invasion factor in lung cancer that inhibits MMPs activities. PMID:26557966

  11. The cloning and expression of matrix metalloproteinase-2 and tissue inhibitor of matrix metalloproteinase 2 in normal canine lymph nodes and in canine lymphoma.

    PubMed

    Newman, R G; Kitchell, B E; Wallig, M A; Paria, B

    2008-04-01

    Matrix metalloproteinase-2 (MMP-2) and its inhibitor, tissue inhibitor of matrix metalloproteinase 2 (TIMP2), are known to be important in cancer. The purposes of this study were to determine the cDNA sequence of canine MMP-2 and to investigate the expression patterns of MMP-2 and TIMP2 in normal canine lymph nodes and spontaneously arising canine lymphomas. We cloned and sequenced a PCR product containing most (1901 base pairs) of the coding sequence of canine MMP-2 that translates into a 623 amino acid protein. The cDNA and deduced amino acid sequences are highly homologous to those of other mammalian species. Canine MMP-2 and TIMP2 mRNAs were detectable in the majority of normal lymph node and lymphomatous samples evaluated. No statistical difference was identified when comparing the expression of either gene with regard to normal versus neoplastic nodes, nodal versus extranodal lymphoma, lymphoma grade, or B versus T cell immunophenotype.

  12. Expression of RECK and matrix metalloproteinase-2 in ameloblastoma

    PubMed Central

    2009-01-01

    Background Ameloblastoma is a frequent odontogenic benign tumor characterized by local invasiveness, high risk of recurrence and occasional metastasis and malignant transformation. Matrix metalloproteinase-2 (MMP-2) promotes tumor invasion and progression by destroying the extracellular matrix (ECM) and basement membrane. For this proteolytic activity, the endogenous inhibitor is reversion-inducing cysteine rich protein with Kazal motifs (RECK). The aim of this study was to characterize the relationship between RECK and MMP-2 expression and the clinical manifestation of ameloblastoma. Methods Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) were employed to detect the protein and mRNA expression of RECK and MMP-2 in keratocystic odontogenic tumor (KCOT), ameloblastoma and ameloblastic carcinoma. Results RECK protein expression was significantly reduced in KCOT (87.5%), ameloblastoma (56.5%) and ameloblastic carcinoma (0%) (P < 0.01), and was significantly lower in recurrent ameloblastoma compared with primary ameloblastoma (P < 0.01), but did not differ by histological type of ameloblastoma. MMP-2 protein expression was significantly higher in ameloblastoma and ameloblastic carcinoma compared with KCOT (P < 0.01). RECK mRNA expression was significantly lower in ameloblastoma than in KCOT (P < 0.01), lower in recurrent ameloblastoma than in primary ameloblastoma, and was negative in ameloblastic carcinoma. MMP-2 mRNA expression was significantly higher in ameloblastoma compared with KCOT (P < 0.01), but was no different in recurrent ameloblastoma versus primary ameloblastoma. RECK protein expression was negatively associated with MMP-2 protein expression in ameloblastoma (r = -0.431, P < 0.01). Conclusion Low or no RECK expression and increased MMP-2 expression may be associated with negative clinical findings in ameloblastoma. RECK may participate in the invasion, recurrence and malignant transformation of ameloblastoma by

  13. Plasma matrix metalloproteinase 2 levels and breast cancer risk.

    PubMed

    Aroner, Sarah A; Rosner, Bernard A; Tamimi, Rulla M; Tworoger, Shelley S; Baur, Nadja; Joos, Thomas O; Hankinson, Susan E

    2015-06-01

    Matrix metalloproteinase 2 (MMP2) is an enzyme with important functions in breast cancer invasion and metastasis. However, it is unclear whether circulating MMP2 levels may predict breast cancer risk. We conducted a prospective nested case-control analysis in the Nurses' Health Study among 1136 cases who were diagnosed with invasive breast cancer between 1992 and 2004 and 1136 matched controls. All participants provided blood samples in 1989-1990, and a subset (170 cases, 170 controls) contributed an additional sample in 2000-2002. Pre-diagnostic plasma MMP2 levels were measured via immunoassay, and conditional logistic regression was performed to calculate odds ratios (ORs) and 95% confidence intervals (95% CIs), adjusted for breast cancer risk factors. No association was observed between plasma MMP2 levels and risk of total invasive breast cancer (top vs. bottom quartile, OR=1.0; 95% CI: 0.7, 1.2; p-trend=0.89). Findings did not vary significantly by time since blood draw, body mass index, postmenopausal hormone use, or menopausal status at either blood draw or breast cancer diagnosis. MMP2 was associated with a greater risk of nodal metastases at diagnosis (top vs. bottom quartile, OR=1.5; 95% CI: 1.0, 2.2; p-heterogeneity, any vs. no lymph nodes=0.002), but no significant associations were observed with other tumor characteristics or with recurrent or fatal cancers. Plasma MMP2 levels do not appear to be predictive of total invasive breast cancer risk, although associations with aggressive disease warrant further study.

  14. Transgenic expression of matrix metalloproteinase-2 induces coronary artery ectasia

    PubMed Central

    Dahi, Sia; Karliner, Joel S; Sarkar, Rajabrata; Lovett, David H

    2011-01-01

    Coronary artery ectasia (CAE) is generally diagnosed in patients undergoing arteriography for presumptive atherosclerotic coronary artery disease. CAE is commonly considered as a variant of atherosclerotic disease; however, recent studies suggest that CAE is the result of a systemic vascular disorder. There is increasing evidence that aneurysmal vascular disease is a systemic disorder characterized by enhanced expression of pro-inflammatory cytokines and increased synthesis of enzymes capable of degrading elastin and other components of the vascular wall. Matrix metalloproteinase-2 degrades a number of extracellular substrates, including elastin and has been shown to play a critical role in the development of abdominal aortic aneurysms. This study characterizes the development of CAE in a unique murine transgenic model with cardiac-specific expression of active MMP-2. Transgenic mice were engineered to express an active form of MMP-2 under control of the α-myosin heavy chain promoter. Coronary artery diameters were quantified, along with studies of arterial structure, elastin integrity and vascular expression of the MMP-2 transgene. Latex casts quantified total coronary artery volumes and arterial branching. Mid-ventricular coronary luminal areas were increased in the MMP-2 transgenics, coupled with foci of aneurysmal dilation, ectasia and perivascular fibrosis. There was no evidence for atherogenesis. Coronary vascular elastin integrity was compromised and coupled with inflammatory cell infiltration. Latex casts of the coronary arteries displayed ectasia with fusiform dilatation. The MMP-2 transgenic closely replicates human CAE and supports a critical and initiating role for this enzyme in the pathogenesis of this disorder. PMID:21039989

  15. The protective role of the -1306C>T functional polymorphism in matrix metalloproteinase-2 gene is associated with cervical cancer: implication of human papillomavirus infection.

    PubMed

    Singh, Neha; Hussain, Showket; Sharma, Upma; Suri, Vanita; Nijhawan, Raje; Bharadwaj, Mausumi; Sobti, R C

    2016-04-01

    Cervical cancer is the major reproductive health problem among women caused by persistent infection of high-risk human papillomavirus (HR-HPV). Metalloproteinase-2 (MMP-2) is an endopeptidase highly expressed in cervical cancer; however, the genetic link between aberrant expression of MMP-2 and cervical carcinogenesis is not known. The genotypic distribution, expression pattern of MMP-2 and HPV infection, was analyzed in a total of 300 fresh surgically resected cervical tissue biopsies. The MMP-2 C1306T (rs243865) promoter polymorphism dominant model (CC v/s CT + CT + TT) revealed that the CC genotype had a 4.33-fold significant increased risk for development of cervical cancer (OR = 4.33; 95 % CI = 2.36-4.02, p = 0.0001) compared to those with variant genotypes (-1306 CT + TT). The C allele was associated with 3-fold significant increased risk (OR = 2.95; 95 % CI = 1.90-4.60, p = 0.0002) compared to T allele. Interestingly, a significant correlation was found between high expression of MMP-2 protein and CC genotype in cancer patients (p = 0.001) compared to normal controls (p = 0.012). Further analysis showed that the risk of cancer was extremely pronounced in HPV positive patients (OR = 9.33; 95 % CI = 2.88-30.20, p = 0.0001) compared to HPV negative ones, implicating the possible interaction between -1306CC genotype and HPV infection in increasing the cancer risk (p = 0.0001). The leads from the present study suggest the protective role of gene variant -1306C>T at the promoter region of the MMP-2 against HPV-mediated cervical cancer. These findings substantiate the functional role of MMP-2 C1306T polymorphism in a significant downregulation of MMP-2 protein in women with variant genotype (CT/TT) compared to the normal wild CC genotype.

  16. Inhibitory effect of acetylsalicylic acid on matrix metalloproteinase - 2 activity in human endothelial cells exposed to high glucose.

    PubMed

    Nicolae, Manuela; Tircol, Magdalena; Alexandru, Dorin

    2005-01-01

    Matrix metalloproteinases play a major role in the process of angiogenesis, an important feature of diabetes complications, cancer or rheumatoid arthritis. High glucose concentrations were reported to augment metalloproteinase-2 secretion in some cell types. In the present study we investigated the influence of acetylsalicylic acid on metalloproteinase- 2 secretion and expression in endothelial cells cultured for one week in high glucose conditions (25 mM and 33 mM). Metalloproteinase-2 activity was evidenced by gel zymography, the protein was identified by Western blotting, and the gene expression was quantitated by RT-PCR. The results indicated a marked inhibitory effect of acetylsalicylic acid at gene expression level (approximately 43%) and also at secretion level in samples of conditioned media (approximately 30%) and cellular homogenates (approximately 70%). This may suggest that acetylsalicylic acid could have a beneficial effect in preventing the angiogenic process that appears in diabetes complications.

  17. Gene Expressions of Nitric Oxide Synthase and Matrix Metalloproteinase-2 in Monocrotaline-Induced Pulmonary Hypertension in Rats After Bosentan Treatment

    PubMed Central

    Koo, Hee Sun; Kim, Kwan Chang

    2011-01-01

    Background and Objectives Nitric oxide (NO) is a major endothelium dependent vasomediator and growth inhibitor. NO synthesis is catalyzed by endothelial nitric oxide synthase (eNOS), and NO can also produce peroxynitrite, which activates matrix metalloproteinases (MMPs). The purpose of this study was to determine the gene expression of eNOS and MMP-2 in the lungs of a rat model of pulmonary hypertension after bosentan treatment. Materials and Methods Six-week-old male Sprague-Dawley rats were treated as follows: control group, subcutaneous (sc) injection of saline; monocrotaline (MCT) group, sc injection of MCT (60 mg/kg); and bosentan group, sc injection of MCT (60 mg/kg) plus 20 mg/day bosentan orally. The rats were sacrificed after 1, 5, 7, 14 and 28 days. Results The right ventricle/(left ventricle+septum) ratio significantly increased in the MCT group compared to the control group on day 14 and 28. The expression of eNOS messenger ribonucleic acid was significantly increased in the MCT group compared to the control group on day 28. MMP-2 gene expression was significantly increased in the MCT-treated rats compared to the control group on day 5 and 28. Following bosentan treatment to reduce pulmonary hypertension, the expression levels of MMP-2 gene were significantly decreased on day 7 and 28. eNOS and tissue inhibitor of MMPs genes were also significantly decreased on day 28 after bosentan treatment. Conclusion These results suggest that elevated eNOS expression may be responsible for MMP-2 activation. The causal relationship between eNOS and MMP-2 and their role in pulmonary hypertension require further investigations. PMID:21430993

  18. The transcription factors Sp1, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells.

    PubMed

    Qin, H; Sun, Y; Benveniste, E N

    1999-10-08

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that contribute to pathological conditions associated with angiogenesis and tumor invasion. MMP-2 is highly expressed in human astroglioma cells, and contributes to the invasiveness of these cells. The human MMP-2 promoter contains potential cis-acting regulatory elements including cAMP response element-binding protein, AP-1, AP-2, PEA3, C/EBP, and Sp1. Deletion and site-directed mutagenesis analysis of the MMP-2 promoter demonstrates that the Sp1 site at -91 to -84 base pairs and the AP-2 site at -61 to -53 base pairs are critical for constitutive activity of this gene in invasive astroglioma cell lines. Electrophoretic gel shift analysis demonstrates binding of specific DNA-protein complexes to the Sp1 and AP-2 sites: Sp1 and Sp3 bind to the Sp1 site, while the AP-2 transcription factor binds the AP-2 element. Co-transfection expression experiments in Drosophilia SL2 cells lacking endogenous Sp factors demonstrate that Sp1 and Sp3 function as activators of the MMP-2 promoter and synergize for enhanced MMP-2 activation. Overexpression of AP-2 in AP-2-deficient HepG2 cells enhances MMP-2 promoter activation. These findings document the functional importance of Sp1, Sp3, and AP-2 in regulating constitutive expression of MMP-2. Delineation of MMP-2 regulation may have implications for development of new therapeutic strategies to arrest glioma invasion.

  19. Immunohistochemical correlation of matrix metalloproteinase-2 and tissue inhibitors of metalloproteinase-2 in tobacco associated epithelial dysplasia.

    PubMed

    Bajracharya, Dipshikha; Shrestha, Bijayatha; Kamath, Asha; Menon, Aparna; Radhakrishnan, Raghu

    2014-01-01

    To study the immunohistochemical expression of matrix metalloproteinase and tissue inhibitors of matrix metalloproteinase-2 in different histological grades of tobacco associated epithelial dysplasia and correlate the association between these proteases. Potentially malignant oral disorders (PMODs) progressing to oral cancer are related to the severity of epithelial dysplasia. A retrospective immunohistochemical study was carried out on 30 clinically and histologically proven cases of leukoplakia with dysplasia and 10 cases of normal buccal mucosa using anti-MMP-2 and anti-TIMP-2 monoclonal antibodies. Mann Whitney U test, for comparing the expression of both MMP-2 and TIMP-2 in normal mucosa with dysplasia, was highly significant (P < 0.001). Kruskal-Wallis test to compare the median score of MMP-2 and TIMP-2 in different grades of dysplasia showed statistical significance (P < 0.001), and a Spearman's correlation between MMP-2 and TIMP-2 through different grades of dysplasia and cells observed showed positive correlation. Concomitant increase in the expression of both MMP-2 and TIMP-2 suggested that the activation of MMP-2 is dependent on TIMP-2 acting as a cofactor. Changes in TIMP-2 levels are considered important because they directly affect the level of MMP-2 activity.

  20. The matrix metalloproteinases 2 and 9 initiate uraemic vascular calcifications.

    PubMed

    Hecht, Eva; Freise, Christian; Websky, Karoline V; Nasser, Hamoud; Kretzschmar, Nadja; Stawowy, Philipp; Hocher, Berthold; Querfeld, Uwe

    2016-05-01

    The matrix metalloproteinases (MMP) MMP-2 and MMP-9 are physiological regulators of vascular remodelling. Their dysregulation could contribute to vascular calcification. We examined the role of the MMP-2 and MMP-9 in uraemic vascular calcification in vivo and in vitro. The impact of pharmacological MMP inhibition on the development of media calcifications was explored in an aggressive animal model of uraemic calcification. In addition, the selective effects of addition and inhibition, respectively, of MMP-2 and MMP-9 on calcium-/phosphate-induced calcifications were studied in a murine cell line of vascular smooth muscle cells (VSMCs). High-dose calcitriol treatment of uraemic rats given a high phosphate diet induced massive calcifications, apoptosis and increased gene expressions of MMP-2, MMP-9 and of osteogenic transcription factors and proteins in aortic VSMC. The MMP inhibitor doxycycline prevented the VSMC transdifferentiation to osteoblastic cells, suppressed transcription of mediators of matrix remodelling and almost completely blocked aortic calcifications while further increasing apoptosis. Similarly, specific inhibitors of either MMP-2 or -9, or of both gelatinases (Ro28-2653) and a selective knockdown of MMP-2/-9 mRNA expression blocked calcification of murine VSMC induced by calcification medium (CM). In contrast to MMP inhibition, recombinant MMP-2 or MMP-9 enhanced CM-induced calcifications and the secretion of gelatinases. These data indicate that both gelatinases provide essential signals for phenotypic VSMC conversion, matrix remodelling and the initiation of vascular calcification. Their inhibition seems a promising strategy in the prevention of vascular calcifications. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  1. Tissue levels of active matrix metalloproteinase-2 and -9 in colorectal cancer

    PubMed Central

    Waas, E T; Lomme, R M L M; DeGroot, J; Wobbes, Th; Hendriks, T

    2002-01-01

    The bioactivity of matrix metalloproteinases was studied in tissues from colorectal cancer patients by means of both quantitative gelatin zymography and a fluorometric activity assay. Next to paired samples of tumour tissue and distant normal mucosa (n=73), transitional tissue was analysed from a limited (n=33) number of patients. Broad-spectrum matrix metalloproteinase activity and both the active and latent forms of the gelatinases matrix metalloproteinase-2 and -9 were higher in tumour than in normal mucosa. The ratio's between active and latent forms of matrix metalloproteinase-2 and -9 were highest in tumour tissue and normal mucosa, respectively. Matrix metalloproteinase-2 levels, both active and latent forms, correlated inversely with stage of disease, the tumours without synchronous distant metastases containing significantly (P=0.005) more active matrix metalloproteinase-2 than the others. At much lower levels of activity, the same trend was observed in distant normal mucosa. The level of latent form of matrix metalloproteinase-9 in tumour depended on tumour location. Neither the active form of matrix metalloproteinase-9 nor broad-spectrum matrix metalloproteinase activity in tumour tissue did correlate with any of the clinicopathological parameters investigated. The results demonstrate explicit differences between the activity of matrix metalloproteinase-2 and -9, indicating different roles for both gelatinases in tumour progression. Such data are necessary in order to develop rational anti-cancer therapies based on inhibition of specific matrix metalloproteinases. British Journal of Cancer (2002) 86, 1876–1883. doi:10.1038/sj.bjc.6600366 www.bjcancer.com © 2002 Cancer Research UK PMID:12085179

  2. Ulex europaeus I lectin induces activation of matrix-metalloproteinase-2 in endothelial cells.

    PubMed

    Gomez, D E; Yoshiji, H; Kim, J C; Thorgeirsson, U P

    1995-11-02

    In this report, we show that the lectin Ulex europaeus agglutinin I (UEA I), which binds to alpha-linked fucose residues on the surface of endothelial cells, mediates activation of the 72-kDa matrix metalloproteinase-2 (MMP-2). A dose-dependent increase in the active 62-kDa form of MMP-2 was observed in conditioned medium from monkey aortic endothelial cells (MAEC) following incubation with concentrations of UEA I ranging from 2 to 100 micrograms/ml. The increase in the 62-kDa MMP-2 gelatinolytic activity was not reflected by a rise in MMP-2 gene expression. The UEA I-mediated activation of MMP-2 was blocked by L-fucose, which competes with UEA I for binding to alpha-fucose. These findings may suggest that a similar in vivo mechanism exists, whereby adhesive interactions between tumor cell lectins and endothelial cells can mediate MMP-2 activation.

  3. Connective tissue growth factor increases matrix metalloproteinase-2 and suppresses tissue inhibitor of matrix metalloproteinase-2 production by cultured renal interstitial fibroblasts.

    PubMed

    Yang, Min; Huang, Haichang; Li, Jingzi; Huang, Wen; Wang, Haiyan

    2007-01-01

    The involvement of gelatinase (matrix metalloproteinase-2 [MMP-2] and MMP-9) in the matrix remodeling and development of tubulointerstitial fibrosis has been studied recently, but relatively little is known about the regulators and the mechanisms controlling the activation and expression of gelatinase in renal fibroblasts. In these studies, the production and underlying signaling pathway for gelatinase by exogenous connective tissue growth factor (CTGF) treatment were investigated. Here, we show that CTGF acts as a potent promoter of the activation and expression of MMP-2, but not MMP-9 in normal rat kidney fibroblasts cell line (NRK-49F). We found that CTGF significantly increased the activity of MMP-2, as well as MMP-2 protein in conditioned medium and MMP-2 mRNA levels in cells. In studies to address the mechanisms involved in the regulation of MMP-2 activity, we found that the tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), the inhibitor of MMP-2, decreased significantly when cells were treated with CTGF. Further studies showed that extracellular signal-regulated kinase (ERK) signaling is responsible for most of the CTGF-induced MMP-2 expression and TIMP-2 suppression. When NRK-49F fibroblasts were incubated with CTGF, activation of ERK1/2 signaling was observed. Suppression of ERK1/2 activation with nontoxic concentrations of PD98059, a specific inhibitor of ERK activation, was associated with a reduction of CTGF-stimulated MMP-2 activity and protein expression. In addition, the CTGF-mediated reduction of TIMP-2 activity and protein expression was prevented when ERK1/2 activation was inhibited by PD98059. These results provide evidence that CTGF augments activation of MMP-2 through an effect on MMP-2 protein expression and TIMP-2 suppression, and that these effects are dependent on the activation of the ERK1/2 pathway.

  4. Matrix Metalloproteinase-2 Polymorphisms in Chronic Heart Failure: Relationship with Susceptibility and Long-Term Survival.

    PubMed

    Beber, Ana Rubia C; Polina, Evelise R; Biolo, Andréia; Santos, Bruna L; Gomes, Daiane C; La Porta, Vanessa L; Olsen, Virgílio; Clausell, Nadine; Rohde, Luis E; Santos, Kátia G

    2016-01-01

    Circulating levels of matrix metalloproteinase-2 (MMP-2) predict mortality and hospital admission in heart failure (HF) patients. However, the role of MMP-2 gene polymorphisms in the susceptibility and prognosis of HF remains elusive. In this study, 308 HF outpatients (216 Caucasian- and 92 African-Brazilians) and 333 healthy subjects (256 Caucasian- and 77 African-Brazilians) were genotyped for the -1575G>A (rs243866), -1059G>A (rs17859821), and -790G>T (rs243864) polymorphisms in the MMP-2 gene. Polymorphisms were analyzed individually and in combination (haplotype), and positive associations were adjusted for clinical covariates. Although allele frequencies were similar in HF patients and controls in both ethnic groups, homozygotes for the minor alleles were not found among African-Brazilian patients. After a median follow-up of 5.3 years, 124 patients (40.3%) died (54.8% of them for HF). In Caucasian-Brazilians, the TT genotype of the -790G>T polymorphism was associated with a decreased risk of HF-related death as compared with GT genotype (hazard ratio [HR] = 0.512, 95% confidence interval [CI] 0.285-0.920). However, this association was lost after adjusting for clinical covariates (HR = 0.703, 95% CI 0.365-1.353). Haplotype analysis revealed similar findings, as patients homozygous for the -1575G/-1059G/-790T haplotype had a lower rate of HF-related death than those with any other haplotype combination (12.9% versus 28.5%, respectively; P = 0.010). Again, this association did not remain after adjusting for clinical covariates (HR = 0.521, 95% CI 0.248-1.093). Our study does not exclude the possibility that polymorphisms in MMP-2 gene, particularly the -790G>T polymorphism, might be related to HF prognosis. However, due to the limitations of the study, our findings need to be confirmed in further larger studies.

  5. The influence of oral copper-methionine on matrix metalloproteinase-2 gene expression and activation in right-sided heart failure induced by cold temperature: A broiler chicken perspective.

    PubMed

    Bagheri Varzaneh, Mina; Rahmani, Hamidreza; Jahanian, Rahman; Mahdavi, Amir Hossein; Perreau, Corinne; Perrot, Gwenn; Brézillon, Stéphane; Maquart, François-Xavier

    2017-01-01

    This study was designed to investigate the expression, activation and activity of matrix metalloproteinase-2 (MMP-2) in the heart of broiler chickens reared in cold conditions and fed with copper-methionine supplement at different levels. The chickens (n=480) were randomly allotted to six treatments and four replicates. Treatments included two rearing temperatures (i.e. normal and cold temperatures) each combined with three levels of supplemental copper-methionine (i.e. 0, 100 and 200mg/kg). On d 38 and 45 of age, four broilers from each treatment were sacrificed and their hearts were stored at -80°C. Right-sided heart failure, as evident from abdominal and pericardial fluid accumulation, was observed in broilers under cold stress and not receiving supplemental copper. This clinical observation was confirmed at molecular level through increased MMP-2 expression, activation and activity in this group. Birds reared under normal temperature, however, were not involved in right-sided heart failure nor benefitted from copper-methionine supplementation. In contrast, gelatin zymography and real-time PCR demonstrated that dietary supplementation with copper-methionine decreased pro-MMP-2 and MMP-2 in the heart of chickens reared in cold conditions. However, gelatin reverse zymography did not show any difference between treatments in tissue inhibitor of metalloproteinase-2. Level of supplementation showed similar effects on parameters determined. It is concluded that dietary supplementation with copper-methionine reduced right-sided heart failure at clinical and molecular levels in cold-stressed chickens. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. An intracellular matrix metalloproteinase-2 isoform induces tubular regulated necrosis: implications for acute kidney injury.

    PubMed

    Ceron, Carla S; Baligand, Celine; Joshi, Sunil; Wanga, Shaynah; Cowley, Patrick M; Walker, Joy P; Song, Sang Heon; Mahimkar, Rajeev; Baker, Anthony J; Raffai, Robert L; Wang, Zhen J; Lovett, David H

    2017-06-01

    Acute kidney injury (AKI) causes severe morbidity, mortality, and chronic kidney disease (CKD). Mortality is particularly marked in the elderly and with preexisting CKD. Oxidative stress is a common theme in models of AKI induced by ischemia-reperfusion (I-R) injury. We recently characterized an intracellular isoform of matrix metalloproteinase-2 (MMP-2) induced by oxidative stress-mediated activation of an alternate promoter in the first intron of the MMP-2 gene. This generates an NH2-terminal truncated MMP-2 (NTT-MMP-2) isoform that is intracellular and associated with mitochondria. The NTT-MMP-2 isoform is expressed in kidneys of 14-mo-old mice and in a mouse model of coronary atherosclerosis and heart failure with CKD. We recently determined that NTT-MMP-2 is induced in human renal transplants with delayed graft function and correlated with tubular cell necrosis. To determine mechanism(s) of action, we generated proximal tubule cell-specific NTT-MMP-2 transgenic mice. Although morphologically normal at the light microscopic level at 4 mo, ultrastructural studies revealed foci of tubular epithelial cell necrosis, the mitochondrial permeability transition, and mitophagy. To determine whether NTT-MMP-2 expression enhances sensitivity to I-R injury, we performed unilateral I-R to induce mild tubular injury in wild-type mice. In contrast, expression of the NTT-MMP-2 isoform resulted in a dramatic increase in tubular cell necrosis, inflammation, and fibrosis. NTT-MMP-2 mice had enhanced expression of innate immunity genes and release of danger-associated molecular pattern molecules. We conclude that NTT-MMP-2 "primes" the kidney to enhanced susceptibility to I-R injury via induction of mitochondrial dysfunction. NTT-MMP-2 may be a novel AKI treatment target.

  7. Matrix Metalloproteinase-2 Polymorphisms in Chronic Heart Failure: Relationship with Susceptibility and Long-Term Survival

    PubMed Central

    Beber, Ana Rubia C.; Polina, Evelise R.; Biolo, Andréia; Santos, Bruna L.; Gomes, Daiane C.; La Porta, Vanessa L.; Olsen, Virgílio; Clausell, Nadine; Rohde, Luis E.

    2016-01-01

    Circulating levels of matrix metalloproteinase-2 (MMP-2) predict mortality and hospital admission in heart failure (HF) patients. However, the role of MMP-2 gene polymorphisms in the susceptibility and prognosis of HF remains elusive. In this study, 308 HF outpatients (216 Caucasian- and 92 African-Brazilians) and 333 healthy subjects (256 Caucasian- and 77 African-Brazilians) were genotyped for the -1575G>A (rs243866), -1059G>A (rs17859821), and -790G>T (rs243864) polymorphisms in the MMP-2 gene. Polymorphisms were analyzed individually and in combination (haplotype), and positive associations were adjusted for clinical covariates. Although allele frequencies were similar in HF patients and controls in both ethnic groups, homozygotes for the minor alleles were not found among African-Brazilian patients. After a median follow-up of 5.3 years, 124 patients (40.3%) died (54.8% of them for HF). In Caucasian-Brazilians, the TT genotype of the -790G>T polymorphism was associated with a decreased risk of HF-related death as compared with GT genotype (hazard ratio [HR] = 0.512, 95% confidence interval [CI] 0.285–0.920). However, this association was lost after adjusting for clinical covariates (HR = 0.703, 95% CI 0.365–1.353). Haplotype analysis revealed similar findings, as patients homozygous for the -1575G/-1059G/-790T haplotype had a lower rate of HF-related death than those with any other haplotype combination (12.9% versus 28.5%, respectively; P = 0.010). Again, this association did not remain after adjusting for clinical covariates (HR = 0.521, 95% CI 0.248–1.093). Our study does not exclude the possibility that polymorphisms in MMP-2 gene, particularly the -790G>T polymorphism, might be related to HF prognosis. However, due to the limitations of the study, our findings need to be confirmed in further larger studies. PMID:27551966

  8. Suppression of local invasion of ameloblastoma by inhibition of matrix metalloproteinase-2 in vitro

    PubMed Central

    Wang, Anxun; Zhang, Bin; Huang, Hongzhang; Zhang, Leitao; Zeng, Donglin; Tao, Qian; Wang, Jianguang; Pan, Chaobin

    2008-01-01

    Background Ameloblastomas are odontogenic neoplasms characterized by local invasiveness. This study was conducted to address the role of matrix metalloproteinase-2 (MMP-2) in the invasiveness of ameloblastomas. Methods Plasmids containing either MMP-2 siRNA or tissue inhibitor of metalloproteinase-2 (TIMP-2) cDNA were created and subsequently transfected into primary ameloblastoma cells. Zymography, RT-PCR, and Western blots were used to assess MMP-2 activity and expression of MMP-2 and TIMP-2, as well as protein levels. Results Primary cultures of ameloblastoma cells expressed cytokeratin (CK) 14 and 16, and MMP-2, but only weakly expressed CK18 and vimentin. MMP-2 mRNA and protein levels were significantly inhibited by RNA interference (P < 0.05). Both MMP-2 siRNA and TIMP-2 overexpression inhibited MMP-2 activity and the in vitro invasiveness of ameloblastoma. Conclusion These results indicate that inhibition of MMP-2 activity suppresses the local invasiveness of ameloblastoma cells. This mechanism may serve as a novel therapeutic target in ameloblastomas pursuant to additional research. PMID:18588710

  9. Collagen and matrix metalloproteinase-2 and -9 in the ewe cervix during the estrous cycle.

    PubMed

    Rodríguez-Piñón, M; Tasende, C; Casuriaga, D; Bielli, A; Genovese, P; Garófalo, E G

    2015-09-15

    The cervical collagen remodeling during the estrous cycle of the ewe was examined. The collagen concentration determined by a hydroxyproline assay and the area occupied by collagen fibers (%C), determined by van Gieson staining, were assessed in the cranial and caudal cervix of Corriedale ewes on Days 1 (n = 6), 6 (n = 5), or 13 (n = 6) after estrous detection (defined as Day 0). In addition, the gelatinase activity by in situ and SDS-PAGE gelatin zymographies and matrix metalloproteinase-2 and -9 (MMP-2 and MMP-9, respectively) expression by immunohistochemistry were determined. The collagen concentration and %C were lowest on Day 1 of the estrous cycle (P < 0.04), when MMP-2 activity was highest (P < 0.006) and the ratio of activated to latent MMP-2 trend to be highest (P = 0.0819). The MMP-2 activity was detected in 73% of the homogenized cervical samples, and its expression was mainly detected in active fibroblasts. By contrast, the MMP-9 activity was detected in 9% of the samples, and its scarce expression was associated with plasmocytes, macrophages, and lymphocytes. Matrix metalloproteinase-2 expression was maximal on Day 1 in the cranial cervix and on Day 13 in the caudal cervix and was lower in the cranial than in the caudal cervix (P < 0.0001). This time-dependent increase in MMP-2 expression that differed between the cranial and caudal cervix may reflect their different physiological roles. The decrease in the collagen content and increase in fibroblast MMP-2 activity in sheep cervix on Day 1 of the estrous cycle suggests that cervical dilation at estrus is due to the occurrence of collagen fiber degradation modulated by changes in periovulatory hormone levels.

  10. Matrix metalloproteinase-2 C(-1306)T promoter polymorphism and breast cancer risk in the Saudi population.

    PubMed

    Saeed, Hesham Mahmoud; Alanazi, Mohammad Saud; Alshahrani, Omair; Parine, Narasimha Reddy; Alabdulkarim, Huda Abdullah; Shalaby, Manal Aly

    2013-01-01

    Matrix metalloproteinase-2 (MMP-2) is an enzyme with proteolytic activity against matrix proteins, particularly basement membrane constituents. A single nucleotide polymorphism (SNP) at -1306, which disrupts a Sp1-type promoter site (CCACC box), displayed a strikingly lower promoter activity with the T allele. In the present study, we investigate whether this MMP-2 SNP is associated with susceptibility to breast cancer in the Saudi population. Ninety breast cancer patients and 92 age matched controls were included in this study. TaqMan Allele Discrimination assay and DNA sequencing techniques were used for genotyping. The results showed that, the frequency of MMP-2 CC wild genotype was lower in breast cancer patients when compared with healthy controls (0.65 versus 0.79). The homozygous CC (OR=2, χ(2)=5.36, p=0.02) and heterozygous CT (OR=1.98, χ(2)=4.1, p=0.04) showing significantly high risk of breast cancer in the investigated group. In conclusion our data suggest that the MMP-2 C(-1306)T polymorphism may be associated with increased breast cancer risk in the Saudi population.

  11. Matrix metalloproteinase-2 involvement in breast cancer progression: a mini-review.

    PubMed

    Jezierska, Agnieszka; Motyl, Tomasz

    2009-02-01

    Matrix Metalloproteinase-2 (MMP-2) is an enzyme that degrades components of the extracellular matrix and thus plays a pivotal role in cell migration during physiological and pathological processes (e.g. gastric, pancrcreatic, prostate, and breast cancer). MMP-2 expression is dependent on extracellular matrix metalloproteinase inducer (EMMPRIN), Her2/neu, growth factors, cytokines, and hormones. Pro-MMP-2 activation needs MT1-MMP and TIMP-2 contribution. The active forms of MMPs subsequently release a cascade of activation of the remaining pro-MMPs. Inactivation of the physiological function of MMPs, or even pro-MMPs, is accomplished by non-covalent TIMP binding. The detection of active MMP-2 alone or the rate of pro-MMP-2 and active MMP-2 is considered a very sensitive indicator of cancer metastasis. Modulation of MMP-2 expression and activation through specific inhibitors and activators may thus provide a new mechanism for breast cancer treatment. Degradation of the cellular network established by adhesion molecules such as E-cadherin or ALCAM/CD166 causes tumor tissue relaxation, increases metastasis, and correlates with shortened survival in patients with primary breast carcinoma. A low level of MMP-2 is linked to favorable prognosis in patients with a hormone receptor-negative tumor, usually associated with high risk. Blocking MMP-2 secretion and activation during breast carcinoma development may decrease metastasis. Besides zoledronic acid and bisphosphonates, the new synthetic metalloproteinase blockers (MMPIs) batimastat, marimastat, and tetracycline derivates have been investigated in anticancer therapy. Recent research shows that modified synthetic siRNA targeting TIMP-2 may also regulate the balance between MMPs and TIMP-2 and thus decrease the degradation of extracellular matrix and prevent distant metastasis.

  12. Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis

    PubMed Central

    Sampieri, Clara Luz; de la Peña, Sol; Ochoa-Lara, Mariana; Zenteno-Cuevas, Roberto; León-Córdoba, Kenneth

    2010-01-01

    AIM: To assess expression of matrix metalloproteinases 2 (MMP2) and MMP9 in gastric cancer, superficial gastritis and normal mucosa, and to measure metalloproteinase activity. METHODS: MMP2 and MMP9 mRNA expression was determined by quantitative real-time polymerase chain reaction. Normalization was carried out using three different factors. Proteins were analyzed by quantitative gelatin zymography (qGZ). RESULTS: 18S ribosomal RNA (18SRNA) was very highly expressed, while hypoxanthine ribosyltransferase-1 (HPRT-1) was moderately expressed. MMP2 was highly expressed, while MMP9 was not detected or lowly expressed in normal tissues, moderately or highly expressed in gastritis and highly expressed in cancer. Relative expression of 18SRNA and HPRT-1 showed no significant differences. Significant differences in MMP2 and MMP9 were found between cancer and normal tissue, but not between gastritis and normal tissue. Absolute quantification of MMP9 echoed this pattern, but differential expression of MMP2 proved conflictive. Analysis by qGZ indicated significant differences between cancer and normal tissue in MMP-2, total MMP-9, 250 and 110 kDa bands. CONCLUSION: MMP9 expression is enhanced in gastric cancer compared to normal mucosa; interpretation of differential expression of MMP2 is difficult to establish. PMID:20333791

  13. Expression of matrix metalloproteinases 2 and 9 in human gastric cancer and superficial gastritis.

    PubMed

    Sampieri, Clara Luz; de la Peña, Sol; Ochoa-Lara, Mariana; Zenteno-Cuevas, Roberto; León-Córdoba, Kenneth

    2010-03-28

    To assess expression of matrix metalloproteinases 2 (MMP2) and MMP9 in gastric cancer, superficial gastritis and normal mucosa, and to measure metalloproteinase activity. MMP2 and MMP9 mRNA expression was determined by quantitative real-time polymerase chain reaction. Normalization was carried out using three different factors. Proteins were analyzed by quantitative gelatin zymography (qGZ). 18S ribosomal RNA (18SRNA) was very highly expressed, while hypoxanthine ribosyltransferase-1 (HPRT-1) was moderately expressed. MMP2 was highly expressed, while MMP9 was not detected or lowly expressed in normal tissues, moderately or highly expressed in gastritis and highly expressed in cancer. Relative expression of 18SRNA and HPRT-1 showed no significant differences. Significant differences in MMP2 and MMP9 were found between cancer and normal tissue, but not between gastritis and normal tissue. Absolute quantification of MMP9 echoed this pattern, but differential expression of MMP2 proved conflictive. Analysis by qGZ indicated significant differences between cancer and normal tissue in MMP-2, total MMP-9, 250 and 110 kDa bands. MMP9 expression is enhanced in gastric cancer compared to normal mucosa; interpretation of differential expression of MMP2 is difficult to establish.

  14. Matrix metalloproteinase-2 as a superior biomarker for peritoneal deterioration in peritoneal dialysis

    PubMed Central

    Hirahara, Ichiro; Kusano, Eiji; Morishita, Yoshiyuki; Inoue, Makoto; Akimoto, Tetsu; Saito, Osamu; Muto, Shigeaki; Nagata, Daisuke

    2016-01-01

    AIM: To investigate the efficacy of effluent biomarkers for peritoneal deterioration with functional decline in peritoneal dialysis (PD). METHODS: From January 2005 to March 2013, the subjects included 218 PD patients with end-stage renal disease at 18 centers. Matrix metalloproteinase-2 (MMP-2), interleukin-6 (IL-6), hyaluronan, and cancer antigen 125 (CA125) in peritoneal effluent were quantified with enzyme-linked immunosorbent assay. Peritoneal solute transport rate was assessed by peritoneal equilibration test (PET) to estimate peritoneal deterioration. RESULTS: The ratio of the effluent level of creatinine (Cr) obtained 4 h after injection (D) to that of plasma was correlated with the effluent levels of MMP-2 (ρ = 0.74, P < 0.001), IL-6 (ρ = 0.46, P < 0.001), and hyaluronan (ρ = 0.27, P < 0.001), but not CA125 (ρ = 0.13, P = 0.051). The area under receiver operating characteristic curve for the effluent levels of MMP-2, IL-6, and hyaluronan against high PET category were 0.90, 0.78, 0.62, and 0.51, respectively. No patient developed new-onset encapsulating peritoneal sclerosis for at least 1.5 years after peritoneal effluent sampling. CONCLUSION: The effluent MMP-2 level most closely reflected peritoneal solute transport rate. MMP-2 can be a reliable indicator of peritoneal deterioration with functional decline. PMID:26981446

  15. Selective inhibition of matrix metalloproteinase-2 in the multiple myeloma-bone microenvironment

    PubMed Central

    Shay, Gemma; Tauro, Marilena; Loiodice, Fulvio; Tortorella, Paolo; Sullivan, Daniel M.; Hazlehurst, Lori A.; Lynch, Conor C.

    2017-01-01

    Multiple myeloma is a plasma cell malignancy that homes aberrantly to bone causing extensive skeletal destruction. Despite the development of novel therapeutic agents that have significantly improved overall survival, multiple myeloma remains an incurable disease. Matrix metalloproteinase-2 (MMP-2) is associated with cancer and is significantly overexpressed in the bone marrow of myeloma patients. These data provide rationale for selectively inhibiting MMP-2 activity as a multiple myeloma treatment strategy. Given that MMP-2 is systemically expressed, we used novel “bone-seeking” bisphosphonate based MMP-2 specific inhibitors (BMMPIs) to target the skeletal tissue thereby circumventing potential off-target effects of MMP-2 inhibition outside the bone marrow-tumor microenvironment. Using in vivo models of multiple myeloma (5TGM1, U266), we examined the impact of MMP-2 inhibition on disease progression using BMMPIs. Our data demonstrate that BMMPIs can decrease multiple myeloma burden and protect against cancer-induced osteolysis. Additionally, we have shown that MMP-2 can be specifically inhibited in the multiple myeloma-bone microenvironment, underscoring the feasibility of developing targeted and tissue selective MMP inhibitors. Given the well-tolerated nature of bisphosphonates in humans, we anticipate that BMMPIs could be rapidly translated to the clinical setting for the treatment of multiple myeloma. PMID:28611279

  16. Castor oil polymer induces bone formation with high matrix metalloproteinase-2 expression.

    PubMed

    Saran, Wallace Rocha; Chierice, Gilberto Orivaldo; da Silva, Raquel Assed Bezerra; de Queiroz, Alexandra Mussolino; Paula-Silva, Francisco Wanderley Garcia; da Silva, Léa Assed Bezerra

    2014-02-01

    The aim of this study was to evaluate the modulation of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) expression in newly formed bone tissue at the interface between implants derived from castor oil (Ricinus communis) polymer and the tibia medullary canal. Forty-four rabbits were assigned to either Group 1 (n = 12; control) or Group 2 (n = 30), which had the tibial medullary canals reamed bilaterally and filled with polymer. CT scans showed no space between the material surface and the bone at the implant/bone marrow interface, and the density of the tissues at this interface was similar to the density measured of other regions of the bone. At 90 days postimplantation, the interface with the polymer presented a thick layer of newly formed bone tissue rich in osteocytes. This tissue exhibited ongoing maturation at 120 and 150 days postimplantation. Overall, bone remodeling process was accompanied by positive modulation of MMP-2 and low MMP-9 expression. Differently, in control group, the internal surface close to the medullary canal was lined by osteoblasts, followed by a bone tissue zone with few lacunae filled with osteocytes. Maturation of the tissue of the medullary internal surface occurred in the inner region, with the bone being nonlamellar.

  17. Knockdown of LI-cadherin alters expression of matrix metalloproteinase-2 and -9 and galectin-3.

    PubMed

    Yu, Qiongfang; Shen, Wei; Zhou, Huangyan; Dong, Weiguo; Gao, Dian

    2016-05-01

    Liver-intestine cadherin (LI-cadherin), a novel member of the cadherin family, has been associated with the ability of a tumor to acquire an aggressive phenotype in several types of cancer. However, the exact function of LI-cadherin in the process of tumor invasion and metastasis remains predominantly unknown. To explore the effect of LI-cadherin on the regulation of matrix metalloproteinase-2 (MMP-2), MMP-9 and galectin-3 in LoVo human colorectal cancer cells, a RNA interference technique was applied to suppress the expression of LI‑cadherin. Subsequently, the mRNA levels and activities of MMP-2 and -9 were analyzed by semi-quantitative reverse transcription-polymerase chain reaction and gelatin zymography, respectively. Additionally, the protein expression level of galectin-3 was determined by western blot analysis. The results of the present study demonstrated that short hairpin RNA (shRNA)-silencing of LI-cadherin significantly increased the mRNA levels and activities of MMP‑2 and ‑9, and significantly reduced the protein levels of galectin‑3 in LoVo cells compared with control shRNA (P<0.05). These data indicate that knockdown of LI‑cadherin facilitates the invasion of cancer cells by degrading extracellular matrix components via activation of MMP‑2 and ‑9, and increases cancer cell adhesion and migration via altered expression of galectin‑3. This suggests that LI‑cadherin serves an important role in the invasion and metastasis of colorectal cancer, and may be used as a potential therapeutic target.

  18. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves matrix metalloproteinase-2 modulation by homocysteine.

    PubMed

    Liu, Tingjiao; Lin, Jinghan; Ju, Ting; Chu, Lei; Zhang, Liming

    2015-08-01

    Arterial calcification is common in vascular diseases and involves conversion of vascular smooth muscle cells (VSMCs) to an osteoblast phenotype. Clinical studies suggest that the development of atherosclerosis can be promoted by homocysteine (HCY), but the mechanisms remain unclear. Here, we determined whether increases in HCY levels lead to an increase in VSMC calcification and differentiation, and examined the role of an extracellular matrix remodeler, matrix metalloproteinase-2 (MMP-2). Rat VSMCs were exposed to calcification medium in the absence or presence of HCY (10, 100 or 200 μmol/L) or an MMP-2 inhibitor (10(-6) or 10(-5) mol/L). MTT assays were performed to determine the cytotoxicity of the MMP-2 inhibitor in calcification medium containing 200 μmol/L HCY. Calcification was assessed by measurements of calcium deposition and alkaline phosphatase (ALP) activity as well as von Kossa staining. Expression of osteocalcin, bone morphogenetic protein (BMP)-2, and osteopontin, and MMP-2 was determined by immunoblotting. Calcification medium induced osteogenic differentiation of VSMCs. HCY promoted calcification, increased osteocalcin and BMP-2 expression, and decreased expression of osteopontin. MMP-2 expression was increased by HCY in a dose-dependent manner in VSMCs exposed to both control and calcification medium. The MMP-2 inhibitor decreased the calcium content and ALP activity, and attenuated the osteoblastic phenotype of VSMCs. Vascular calcification and osteogenic differentiation of VSMCs were positively regulated by HCY through increased/restored MMP-2 expression, increased expression of calcification proteins, and decreased anti-calcification protein levels. In summary, MMP-2 inhibition may be a protective strategy against VSMC calcification.

  19. Sesame oil attenuates nutritional fibrosing steatohepatitis by modulating matrix metalloproteinases-2, 9 and PPAR-γ.

    PubMed

    Periasamy, Srinivasan; Hsu, Dur-Zong; Chang, Po-Cheng; Liu, Ming-Yie

    2014-03-01

    Sesame oil is a nutrient-rich antioxidant popular in alternative medicine. It contains sesamin, sesamol, and sesamolin, all of which contribute to its improved liver function in various animal model studies. However, its effect on nutritional fibrosing steatohepatitis is unclear. We investigated therapeutic sesame oil on matrix metalloproteinases-2, 9 (MMP-2, 9) in nutritional fibrosing steatohepatitic mice. C57BL/6 J mice were fed with methionine-choline deficient (MCD) diet for 35 days to induce fibrosing steatohepatitis. Sesame oil was treated from 29-35th day. Body weight, steatosis, aspartate transaminase, alanine transaminase, peroxisome proliferator-activated receptor (PPAR)-γ, α-smooth muscle actin (α-SMA), MMP-2, 9, and tissue inhibitor of matrix metalloproteinases (TIMP)-1 were assessed after 35 days. All tested parameters except TIMP-1 and PPAR-γ were higher in MCD fed mice than in normal control mice. Mice fed with MCD diet for 4 weeks showed severe liver injury with steatosis, necrotic-inflammation, and fibrosis. In sesame-oil (4 ml)-treated mice, all tested parameters except TIMP-1, α-SMA, and PPAR-γ were significantly attenuated compared with MCD fed mice. Sesame oil inhibited MMP-2, 9 activities, but up-regulated TIMP-1 expression in MCD fed mice. In addition, a histological analysis of liver tissue samples showed that sesame oil provided significant protection against fibrosis. We conclude that therapeutic sesame oil protects against fibrosing steatohepatitis by inhibiting MMP-2, 9 activities, up-regulating TIMP-1 expression, and PPAR-γ. © 2014.

  20. alpha-Chaconine inhibits angiogenesis in vitro by reducing matrix metalloproteinase-2.

    PubMed

    Lu, Ming-Kun; Chen, Pei-Hsieng; Shih, Yuan-Wei; Chang, Ya-Ting; Huang, En-Tze; Liu, Cheng-Ruei; Chen, Pin-Shern

    2010-01-01

    alpha-Chaconine, a naturally occurring steroidal glycoalkaloid in potato sprouts, was found to possess anti-carcinogenic properties, such as inhibiting proliferation, migration, invasion, and inducing apoptosis of tumor cells. However, the effect of alpha-chaconine on tumor angiogenesis remains unclear. In the present study, we examined the effect of alpha-chaconine on angiogenesis in vitro. Data demonstrated that alpha-chaconine inhibited proliferation of bovine aortic endothelial cells (BAECs) in a dose-dependent manner. When treated with non-toxic doses of alpha-chaconine, cell migration, invasion and tube formation were markedly suppressed. Furthermore, alpha-chaconine reduced the expression and activity of matrix metalloproteinase-2 (MMP-2), which is involved in angiogenesis. Our biochemical assays indicated that alpha-chaconine potently suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), phosphatidylinositide-3 kinase (PI3K) and Akt, while it did not affect phosphorylation of extracellular signal regulating kinase (ERK) and p38. In addition, alpha-chaconine significantly increased the cytoplasmic level of inhibitors of kappaBalpha (IkappaBalpha) and decreased the nuclear level of nuclear factor kappa B (NF-kappaB), suggesting that alpha-chaconine could inhibit NF-kappaB activity. Furthermore, the treatment of inhibitors specific for JNK (SP600125), PI3K (LY294002) or NF-kappaB (pyrrolidine dithiocarbamate) to BAECs reduced tube formation. Taken together, the results suggested that alpha-chaconine inhibited migration, invasion and tube formation of BAECs by reducing MMP-2 activities, as well as JNK and PI3K/Akt signaling pathways and inhibition of NF-kappaB activity. These findings reveal a new therapeutic potential for alpha-chaconine on anti-angiogenic therapy.

  1. Distribution and relative activity of matrix metalloproteinase-2 in human coronal dentin

    PubMed Central

    Boushell, Lee W; Kaku, Masaru; Mochida, Yoshiyuki; Yamauchi, Mitsuo

    2011-01-01

    The presence of matrix metalloproteinase-2 (MMP-2) in dentin has been reported, but its distribution and activity level in mature human coronal dentin are not well understood. The purpose of this study was to determine the MMP-2 distribution and relative activity in demineralized dentin. Crowns of twenty eight human molars were sectioned into inner (ID), middle (MD), and outer dentin (OD) regions and demineralized. MMP-2 was extracted with 0.33 mol·L−1 EDTA/2 mol·L−1 guanidine-HCl, pH 7.4, and MMP-2 concentration was estimated with enzyme-linked immunoabsorbant assay (ELISA). Further characterization was accomplished by Western blotting analysis and gelatin zymography. The mean concentrations of MMP-2 per mg dentin protein in the dentin regions were significantly different (P=0.043): 0.9 ng (ID), 0.4 ng (MD), and 2.2 ng (OD), respectively. The pattern of MMP-2 concentration was OD>ID>MD. Western blotting analysis detected ∼66 and ∼72 kDa immunopositive proteins corresponding to pro- and mature MMP-2, respectively, in the ID and MD, and a ∼66 kDa protein in the OD. Gelatinolytic activity consistent with MMP-2 was detected in all regions. Interestingly, the pattern of levels of Western blot immunodetection and gelatinolytic activity was MD>ID>OD. The concentration of MMP-2 in human coronal dentin was highest in the region of dentin that contains the dentinoenamel junction and least in the middle region of dentin. However, levels of Western blot immunodetection and gelatinolytic activity did not correlate with the estimated regional concentrations of MMP-2, potentially indicating region specific protein interactions. PMID:22010577

  2. Correlation of matrix metalloproteinase-2 and -9 expression with recurrences in primary spontaneous pneumothorax patients

    PubMed Central

    Chiu, Wen-Chin; Lee, Yi-Chen; Su, Yu-Han; Chai, Chee-Yin; Hu, Stephen Chu-Sung

    2016-01-01

    Background Primary spontaneous pneumothorax (PSP) is a common benign disorder. However, unpredictable recurrence is a major concern for most patients. The aim of the present study was to assess the role of matrix metalloproteinase-2 (MMP-2) and MMP-9 in alveolar macrophages of patients with PSP and its relationship with recurrence. Methods Ninety-two patients who received needlescopic video-assisted thoracoscopic surgery (NVATS) wedge resection of lung with identifiable blebs for PSP were enrolled for the study. Immunohistochemistry was performed to evaluate the expression of MMP-2 and MMP-9 in lung tissues of patients with PSP. The result was correlated with clinicopathological variables and recurrence rates by the chi-square test. The value of MMP-2 and MMP-9 for overall recurrence was evaluated by univariate and multivariable Cox regression analyses. Results The MMP-2 and MMP-9 staining was predominantly observed in alveolar macrophages of patients with PSP. We found that MMP-2 (recurrence: P<0.001; smoking status: P=0.029) and MMP-9 (recurrence: P=0.001; smoking status: P=0.045) expression in PSP, especially male patients, was significantly correlated with recurrence and smoking status. In the multivariate analyses, MMP-2 [hazard ratio (HR) =2.83; 95% confidence interval (CI): 1.37–5.85, P=0.005) and MMP-9 (HR =2.25; 95% CI: 1.19–4.24, P=0.013) were statistically significant risk factors for overall recurrence in PSP patients. Conclusions High expression levels of MMP-2 and MMP-9 showed a positive correlation with recurrence in PSP patients. Further studies are required to test whether inhibition of MMP-2 and MMP-9 expression renders a promising approach for reducing the risk of PSP recurrence in the future. PMID:28149562

  3. Video-Rate Bioluminescence Imaging of Matrix Metalloproteinase-2 Secreted from a Migrating Cell

    PubMed Central

    Suzuki, Takahiro; Kondo, Chihiro; Kanamori, Takao; Inouye, Satoshi

    2011-01-01

    Background Matrix metalloproteinase-2 (MMP-2) plays an important role in cancer progression and metastasis. MMP-2 is secreted as a pro-enzyme, which is activated by the membrane-bound proteins, and the polarized distribution of secretory and the membrane-associated MMP-2 has been investigated. However, the real-time visualizations of both MMP-2 secretion from the front edge of a migration cell and its distribution on the cell surface have not been reported. Methodology/Principal Findings The method of video-rate bioluminescence imaging was applied to visualize exocytosis of MMP-2 from a living cell using Gaussia luciferase (GLase) as a reporter. The luminescence signals of GLase were detected by a high speed electron-multiplying charge-coupled device camera (EM-CCD camera) with a time resolution within 500 ms per image. The fusion protein of MMP-2 to GLase was expressed in a HeLa cell and exocytosis of MMP-2 was detected in a few seconds along the leading edge of a migrating HeLa cell. The membrane-associated MMP-2 was observed at the specific sites on the bottom side of the cells, suggesting that the sites of MMP-2 secretion are different from that of MMP-2 binding. Conclusions We were the first to successfully demonstrate secretory dynamics of MMP-2 and the specific sites for polarized distribution of MMP-2 on the cell surface. The video-rate bioluminescence imaging using GLase is a useful method to investigate distribution and dynamics of secreted proteins on the whole surface of polarized cells in real time. PMID:21969874

  4. Expression of soluble and functional full-length human matrix metalloproteinase-2 in Escherichia coli

    PubMed Central

    Gonçalves, Andrezza N.; Meschiari, Cesar A.; Stetler-Stevenson, William G.; Nonato, M. Cristina; Alves, Cleidson P.; Espreafico, Enilza M.; Gerlach, Raquel F.

    2012-01-01

    Characterization of the matrix metalloproteinase-2 (MMP-2) substrates and understanding of its function remain difficult because up to date preparations containing minor amounts of other eukaryotic proteins that are co-purified with MMP-2 are still used. In this work, the expression of a soluble and functional full-length recombinant human MMP-2 (rhMMP-2) in the cytoplasm of Escherichia coli is reported, and the purification of this metalloproteinase is described. Culture of this bacterium at 18 °C culminated in maintenance of the soluble and functional rhMMP-2 in the soluble fraction of the E. coli lysate and its purification by affinity with gelatin-sepharose yielded approximately 0.12 mg/L of medium. Western Blotting and zymographic analysis revealed that the most abundant form was the 72-kDa MMP-2, but some gelatinolytic bands corresponding to proteins with lower molecular weight were also detected. The obtained rhMMP-2 was demonstrated to be functional in a gelatinolytic fluorimetric assay, suggesting that the purified rhMMP-2 was correctly folded. The method described here involves fewer steps, is less expensive, and is less prone to contamination with other proteinases and MMP inhibitors as compared to expression of rhMMP-2 in eukaryotic tissue culture. This protocol will facilitate the use of the full-length rhMMP-2 expressed in bacteria and will certainly help researchers to acquire new knowledge about the substrates and biological activities of this important proteinase. PMID:22001844

  5. Meta-analysis of association of the matrix metalloproteinase 2 (-735 C/T) polymorphism with cancer risk.

    PubMed

    Kim, Su Kang; Kang, Sang Wook; Park, Hae Jeong; Ban, Ju Yeon; Oh, Chung-Hun; Chung, Joo-Ho; Oh, In-Hwan; Cho, Kyu Bong; Park, Min-Su

    2015-01-01

    The association between matrix metalloproteinase 2 (MMP2) gene polymorphisms and cancer risk has been investigated in many published studies; however, the currently available results are inconclusive. Therefore, we performed a meta-analysis to provide conclusive evidence for an association between the MMP2 polymorphism (-735 C/T) and cancer risk. Sixteen case-control studies with 11792 individuals were included in this meta-analysis. The odds ratio (OR) and 95% confidence interval (95% CI) were used to investigate the strength of the association. Overall, the MMP2 polymorphism (-735 C/T) was not associated with cancer risk in any of the models. However, the subgroup analysis revealed that dominant model (C/T+T/T vs. C/C: OR=1.24, 95% CI=1.01-1.53) and codominant 1 model (C/T vs. C/C: OR=1.30, 95% CI=1.05-1.62) were significantly associated with cancer risk in the Caucasian population. In conclusion, our meta-analysis indicated that the MMP2 polymorphism (-735 C/T) might be genetic risk factor for the carcinogenesis in Caucasians. However, more studies with a larger sample size are needed to provide more precise evidence.

  6. Expression and prognostic impact of matrix metalloproteinase-2 (MMP-2) in astrocytomas

    PubMed Central

    Aaberg-Jessen, Charlotte; Hermansen, Simon K.; Kristensen, Bjarne W.

    2017-01-01

    Astrocytomas are the most frequent primary brain tumors in adults, and despite aggressive treatment patients often experience recurrence. Survival decreases with increasing tumor grade, and especially patients with grade IV glioblastoma have poor prognosis due to the aggressive character of this tumor. Matrix metalloproteinase-2 (MMP-2) is an extracellular matrix degrading enzyme which has been shown to play important roles in different cancers. The aim of this study was to investigate the expression and prognostic potential of MMP-2 in astrocytomas. Tissue samples from 89 patients diagnosed with diffuse astrocytoma, anaplastic astrocytoma and glioblastoma were stained immunohistochemically using a monoclonal MMP-2 antibody. The MMP-2 intensity in cytoplasm/membrane was quantified by a trained software-based classifier using systematic random sampling in 10% of the tumor area. We found MMP-2 expression in tumor cells and blood vessels. Measurements of MMP-2 intensity increased with tumor grade, and MMP-2 expression was found to be significantly higher in glioblastomas compared to normal brain tissue (p<0.001), diffuse astrocytomas (p<0.001) and anaplastic astrocytomas (p<0.05). MMP-2 expression was associated with shorter overall survival in patients with grade II-IV astrocytic tumors (HR 1.60; 95% CI 1.03–2.48; p = 0.036). In glioblastoma, high MMP-2 was associated with poorer prognosis in patients who survived longer than 8.5 months independent of age and gender (HR 2.27; 95% CI 1.07–4.81; p = 0.033). We found a positive correlation between MMP-2 and tissue inhibitor of metalloproteinases-1 (TIMP-1), and combined MMP-2 and TIMP-1 had stronger prognostic value than MMP-2 alone also when adjusting for age and gender (HR 2.78; 95% CI 1.30–5.92; p = 0.008). These findings were validated in bioinformatics databases. In conclusion, this study indicates that MMP-2 is associated with aggressiveness in astrocytomas and may hold an unfavorable prognostic value in

  7. Role of Matrix Metalloproteinases 2 and 9 in Lacrimal Gland Disease in Animal Models of Sjögren's Syndrome

    PubMed Central

    Aluri, Hema S.; Kublin, Claire L.; Thotakura, Suharika; Armaos, Helene; Samizadeh, Mahta; Hawley, Dillon; Thomas, William M.; Leavis, Paul; Makarenkova, Helen P.; Zoukhri, Driss

    2015-01-01

    Purpose Chronic inflammation of the lacrimal gland results in changes in the composition of the extracellular matrix (ECM), which is believed to compromise tissue repair. We hypothesized that increased production/activity of matrix metalloproteinases (MMPs), especially MMP-2 and -9, in inflamed lacrimal glands modifies the ECM environment, therefore disrupting tissue repair. Methods The lacrimal glands from female MRL/lpr and male NOD mice along with their respective control strains were harvested and divided into three pieces and processed for histology, immunohistochemistry, zymography, Western blotting, and RNA analyses. In another study, MRL/lpr mice were treated for 5 weeks with a selective MMP2/9 inhibitor peptide or a control peptide. At the end of treatment, the lacrimal glands were excised and the tissue was processed as described above. Results There was a 2.5- and 2.7-fold increase in MMP2 gene expression levels in MRL/lpr and NOD mice, respectively. Matrix metalloproteinase 2 and 9 enzymatic activities and protein expression levels were significantly upregulated in the lacrimal glands of MRL/lpr and NOD mice compared to controls. Treatment with the MMP2/9 inhibitor resulted in decreased activity of MMP-2 and -9 both in vitro and in vivo. Importantly, MMP2/9 inhibitor treatment of MRL/lpr mice improved aqueous tear production and resulted in reduced number and size of lymphocytic foci in diseased lacrimal glands. Conclusions We conclude that MMP2/9 expression and activity are elevated in lacrimal glands of two murine models of Sjögren's syndrome, suggesting that manipulation of MMP2/9 activity might be a potential therapeutic target in chronically inflamed lacrimal glands. PMID:26244298

  8. Immunocharacterization of matrix metalloproteinase-2 and matrix metalloproteinase-9 in canine transmissible venereal tumors.

    PubMed

    Akkoc, A; Nak, D; Demirer, A; Şimşek, G

    2017-01-01

    Matrix metalloproteases (MMPs) are endogenous proteases that are responsible for degradation of extracellular matrix (ECM) proteins and cell surface antigens. The breakdown of ECM participates in the local invasion and distant metastases of malignant tumors. Canine transmissible venereal tumor (CTVT) is a naturally occurring contagious round cell neoplasm of dogs that affects mainly the external genitalia of both sexes. CTVT generally is a locally invasive tumor, but distant metastases also are common in puppies and immunocompromised dogs. We investigated the immune expressions and activities of MMP-2 and MMP-9 in CTVT. The presence of these enzymes in tumor cells and tissue homogenates was demonstrated by immunohistochemistry and western blotting. We used gelatin substrate zymography to evaluate the activities of MMP-2 and MMP-9 enzymes in tumor homogenates. We found that tumor cells expressed both MMP-2 and MMP-9. Electrophoretic bands corresponding to MMP-9 and MMP-2 were identified in immunoblots and clear bands that corresponded to the active forms of MMP-2 and MMP-9 also were detected in gelatin zymograms. Our study is the first detailed documentation of MMPs in CTVT.

  9. Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas

    PubMed Central

    Liu, Hong-Yan; Gu, Wei-Jun; Wang, Cheng-Zhi; Ji, Xiao-Jian; Mu, Yi-Ming

    2016-01-01

    Abstract The extracellular matrix is important for tumor invasion and metastasis. Normal function of the extracellular matrix depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The objective of this meta-analysis was to assess the relationship between expression of MMP-9, MMP-2, and TIMP-2 and invasion of pituitary adenomas. We searched Pubmed, Embase, and the Chinese Biomedical Database up to October 2015. RevMan 5.1 software (Cochrane Collaboration, Copenhagen, Denmark) was used for statistical analysis. We calculated the standardized mean difference (SMD) for data expressed as mean ± standard deviation because of the difference in the detection method. Twenty-four studies (1320 patients) were included. MMP-9 expression was higher in the patients with invasive pituitary adenomas (IPAs) than patients with noninvasive pituitary adenomas (NIPAs) with detection methods of IHC [odds ratio (OR) = 5.48, 95% confidence interval (CI) = 2.61–11.50, P < 0.00001), and reverse transcriptase-polymerase chain reaction (SMD = 2.28, 95% CI = 0.91–3.64, P = 0.001). MMP-2 expression was also increased in patients with IPAs at the protein level (OR = 3.58, 95% CI = 1.63–7.87, P = 0.001), and RNA level (SMD = 3.91, 95% CI = 1.52–6.29, P = 0.001). Meta-analysis showed that there was no difference in TIMP-2 expression between invasive and NIPAs at the protein level (OR = 0.38, 95% CI = 0.06–2.26, P = 0.29). MMP-9 expression in prolactinomas and nonfunctioning pituitary adenomas was also no difference (OR = 1.03, 95% CI = 0.48–2.20, P = 0.95). The results indicated that MMP-9 and -2 may be correlated with invasiveness of pituitary adenomas, although their relationship with functional status of pituitary adenomas is still not clear. TIMP-2 expression in IPAs needs to be investigated further. PMID:27310993

  10. Pathological and prognostic significance of matrix metalloproteinase-2 expression in ovarian cancer: a meta-analysis.

    PubMed

    Liu, Chao

    2016-08-01

    Matrix metalloproteinase-2 (MMP-2) has been linked with tumor invasion and metastasis. However, the role of MMP-2 expression in ovarian cancer remains controversial. By searching the PubMed, Embase, Wanfang, and China National Knowledge Infrastructure databases, we conducted a meta-analysis to evaluate the pathological and prognostic significance of MMP-2 in ovarian cancer. Studies were pooled, and the odds ratio (OR) and its corresponding 95 % confidence interval (CI) were calculated. Version 11.0 STATA software was used for statistical analysis. Twenty-seven relevant articles were included for this meta-analysis study. The expression of MMP-2 in cancer tissue was significantly higher than that in benign or normal ovarian tissue [cancer vs. benign, OR 10.09 (95 % CI 6.95-14.64); P < 0.001; cancer vs. normal, OR 30.48 (95 % CI 17.19-54.05); P < 0.001; benign vs. normal, OR 1.88 (95 % CI 1.08-3.29); P = 0.025]. The expression of MMP-2 in stage III-IV or lymph node metastasis was significantly higher than that in stage I-II or that without metastasis, respectively [OR 5.83 (95 % CI 4.32-7.85); P < 0.001; OR 7.20 (95 % CI 4.75-10.91); P < 0.001]. MMP-2 was associated with histological types and grade of ovarian cancer [serous vs. mucinous, OR 1.67 (95 % CI 1.17-2.39); P = 0.004; grade 3 vs. 1, 2, OR 3.23 (95 % CI 2.29-4.55); P < 0.001]. However, the age of patients was not associated with MMP-2 expression [OR 1.25 (95 % CI 0.61-2.58); P = 0.546]. In conclusion, MMP-2 is related to the malignant degree, FIGO stage, histological types and grade, and lymph node metastasis of ovarian cancer. It may play a significant role in clinical guidelines for the treatment and prognostic evaluation.

  11. Enhanced expression of two discrete isoforms of matrix metalloproteinase-2 in experimental and human diabetic nephropathy

    PubMed Central

    Bae, Sun Sik; Lee, Min Young; Rhee, Harin; Kim, Il Young; Seong, Eun Young; Lee, Dong Won; Lee, Soo Bong; Kwak, Ihm Soo; Lovett, David H.

    2017-01-01

    Background We recently reported on the enhanced expression of two isoforms of matrix metalloproteinase-2 (MMP-2) in human renal transplantation delayed graft function. These consist of the conventional secreted, full length MMP-2 isoform (FL-MMP-2) and a novel intracellular N-Terminal Truncated isoform (NTT-MMP-2) generated by oxidative stress-mediated activation of an alternate promoter in the MMP-2 first intron. Here we evaluated the effect of hyperglycemia and diabetes mellitus on the in vitro and in vivo expression of the two MMP-2 isoforms. Methods We quantified the abundance of the FL-MMP-2 and NTT-MMP-2 transcripts by qPCR in HK2 cells cultured in high glucose or 4-hydroxy-2-hexenal (HHE) and tested the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). The streptozotocin (STZ) murine model of Type I diabetes mellitus and renal biopsies of human diabetic nephropathy were used in this study. Results Both isoforms of MMP-2 in HK2 cells were upregulated by culture in high glucose or with HHE. PDTC treatment did not suppress high glucose-mediated FL-MMP-2 expression but potently inhibited NTT-MMP-2 expression. With STZ-treated mice, renal cortical expression of both isoforms was increased (FL-MMP-2, 1.8-fold; NTT-MMP-2, greater than 7-fold). Isoform-specific immunohistochemical staining revealed low, but detectable levels of the FL-MMP-2 isoform in controls, while NTT-MMP-2 was not detected. While there was a modest increase in tubular epithelial cell staining for FL-MMP-2 in STZ-treated mice, NTT-MMP-2 was intensely expressed in a basolateral pattern. FL-MMP-2 and NTT-MMP-2 isoform expression as quantified by qPCR were both significantly elevated in renal biopsies of human diabetic nephropathy (12-fold and 3-fold, respectively). Conclusions The expression of both isoforms of MMP-2 was enhanced in an experimental model of diabetic nephropathy and in human diabetic nephropathy. Selective MMP-2 isoform inhibition could offer a novel approach for

  12. Captopril and lisinopril only inhibit matrix metalloproteinase-2 (MMP-2) activity at millimolar concentrations.

    PubMed

    Kuntze, Luciana B; Antonio, Raquel C; Izidoro-Toledo, Tatiane C; Meschiari, Cesar A; Tanus-Santos, Jose E; Gerlach, Raquel F

    2014-03-01

    Matrix metalloproteinase-2 (MMP-2) shares structural similarities with the angiotensin-converting enzyme (ACE). ACE inhibitors have been described to inhibit MMP-2, but this inhibitory potential was not shown using a highly purified MMP-2. This study aimed to investigate the inhibitory potential of captopril and lisinopril regarding MMP-2 activity. The first objective was to test the potential of captopril to change the pH of the buffer solution. The second objective was to test the direct inhibitory effect of captopril and lisinopril on plasma MMP-2 and on recombinant human MMP-2 (rhMMP-2). The in vitro activity assays included gelatin zymography and a fluorimetric assay. Captopril solubilization significantly decreased the pH of the 50 mM Tris buffer solution at the following concentrations: 2 mM (p < 0.05), 4 mM and 8 mM (p < 0.01), while only the 8 mM lisinopril induced a drop in pH (p < 0.05). Thus, only 200 mM buffer solutions were used. Zymography results of plasma MMP-2 and rhMMP-2 showed that inhibition only happened at captopril concentrations ≥ 4 and 1 mM, respectively (p < 0.05), while only the higher concentration of lisinopril (8 mM) inhibited plasma MMP-2 (p < 0.05). In the fluorimetric assay, captopril led to significant inhibition of the rhMMP-2 activity at concentrations ≥2 mM (p < 0.01), whereas aminophenylmercuric acetate-activated rhMMP-2 was inhibited by 0.5 mM captopril (p < 0.01). The captopril and lisinopril concentrations found to inhibit MMP-2 are 3 orders of magnitude higher than those present in vivo after drug administration. We also discuss possible pitfalls for gelatinase inhibitory assays (besides the obvious pH problem already cited). In conclusion, this study's data show that captopril and lisinopril did not inhibit MMP-2 directly at the concentrations reached in vivo.

  13. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients.

    PubMed

    Trentini, Alessandro; Castellazzi, Massimiliano; Cervellati, Carlo; Manfrinato, Maria Cristina; Tamborino, Carmine; Hanau, Stefania; Volta, Carlo Alberto; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Dujmovic, Irena; Fainardi, Enrico

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process.

  14. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients

    PubMed Central

    Tamborino, Carmine; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Dujmovic, Irena

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process. PMID:27555667

  15. Anacardic Acid Inhibits the Catalytic Activity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9

    PubMed Central

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M.; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K.; Kumar, Geetha B.; Tainer, John A.; Banerji, Asoke; Perry, J. Jefferson P.

    2012-01-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1′ pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC50 of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  16. Effects of a KiSS-1 peptide, a metastasis suppressor gene, on the invasive ability of renal cell carcinoma cells through a modulation of a matrix metalloproteinase 2 expression.

    PubMed

    Yoshioka, Kunihiko; Ohno, Yoshio; Horiguchi, Yutaka; Ozu, Choichiro; Namiki, Kazunori; Tachibana, Masaaki

    2008-08-29

    Although effects of a metastasis suppressor gene, KiSS-1, have been postulated to be mediated by its receptor, hOT7T175, the mechanism of such effects remains unknown. This study was designed to evaluate the mechanism of how KiSS-1 works and to assess effects of a synthesized truncated KiSS-1 protein on the invasive ability of renal cell carcinoma (RCC) cells. Four RCC cell lines, Caki-1, KU19-20, RSP and RSM, were investigated to determine mRNA expressions of KiSS-1, its receptor, hOT7T175, matrix metalloproteinases (MMPs) and MMP inhibitors. While all cell lines demonstrated hOT7T175 mRNA expressions, only Caki-1 had KiSS-1 transcripts. A synthesized truncated KiSS-1 peptide, metastin (45-54), produced a marked suppression of the invasive ability in KU19-20 cells, which were deficient for KiSS-1 transcripts, but not in Caki-1 cells. Metastin (45-54) also increased the ability of KU19-20 cells to attach to collagen 4. Both MMP-2 mRNA levels and protein production were significantly decreased only in KU19-20 cells by metastin (45-54). In conclusion, metastin (45-54) may have potential therapeutic use by suppressing the motility and invasive ability of RCC cells which possess hOT7T175 with either a negative expression or very low expression level of KiSS-1 through, at least in part, the down-regulation of MMP-2.

  17. Promotion of astrocytoma cell invasion by micro RNA-22 targeting of tissue inhibitor of matrix metalloproteinase-2.

    PubMed

    Ohnishi, Yu-Ichiro; Iwatsuki, Koichi; Ishihara, Masahiro; Ohkawa, Toshika; Kinoshita, Manabu; Shinzawa, Koei; Fujimoto, Yasunori; Yoshimine, Toshiki

    2017-03-01

    OBJECTIVE Diffuse astrocytomas (DAs) have a high recurrence rate due to diffuse infiltration into the brain and spinal cord. Micro RNAs (miRNAs) are small noncoding RNAs that regulate gene expression by binding to complementary sequences of target messenger RNA (mRNA). It has been reported that miRNA-22 (miR-22) is involved in the invasion of some cancer cell lines. The aim of this study was to identify the biological effects of miR-22 in regard to the invasion of human DAs. METHODS The authors evaluated whether the level of miR-22 is elevated in human spinal DAs by using miRNA chips. Next, the role of miR-22 in 1321N1 human astrocytoma cells was investigated. Finally, to elucidate whether miR-22 promotes invasion by astrocytoma cells in vivo, the authors transplanted miR-22 overexpressed astrocytoma cells into mouse thoracic spinal cord. RESULTS The miR-22 significantly upregulated the invasion capacity of 1321N1 cells. Computational in silico analysis predicted that tissue inhibitor of matrix metalloproteinase-2 (TIMP2) is a target gene of miR-22. This was confirmed by quantitative reverse transcription polymerase chain reaction and Western blotting, which showed that miR-22 inhibited TIMP2 mRNA and protein expression, respectively. Luciferase reporter assays demonstrated that miR-22 directly bound the 3'-untranslated regions of TIMP2. The authors further showed that miR-22 promoted invasiveness in 1321N1 astrocytoma cells when transplanted into mouse spinal cord. CONCLUSIONS These data suggest that miR-22 acts to regulate invasion of 1321N1 astrocytoma cells by targeting TIMP2 expression. Additional studies with more cases and cell lines are required to elucidate the findings of this study for a novel treatment target for spinal DAs.

  18. Novel intracellular N-terminal truncated matrix metalloproteinase-2 isoform in skeletal muscle ischemia-reperfusion injury.

    PubMed

    Joshi, Sunil K; Lee, Lawrence; Lovett, David H; Kang, Heejae; Kim, Hubert T; Delgado, Cynthia; Liu, Xuhui

    2016-03-01

    Ischemia-reperfusion injury (IRI) occurs when blood returns to tissues following a period of ischemia. Reintroduction of blood flow results in the production of free radicals and reactive oxygen species that damage cells. Skeletal muscle IRI is commonly seen in orthopedic trauma patients. Experimental studies in other organ systems have elucidated the importance of extracellular and intracellular matrix metalloproteinase-2 (MMP-2) isoforms in regulating tissue damage in the setting of oxidant stress resulting from IRI. Although the extracellular full-length isoform of MMP-2 (FL-MMP-2) has been previously studied in the setting of skeletal muscle IRI, studies investigating the role of the N-terminal truncated isoform (NTT-MMP-2) in this setting are lacking. In this study, we first demonstrated significant increases in FL- and NTT-MMP-2 gene expression in C2C12 myoblast cells responding to re-oxygenation following hypoxia in vitro. We then evaluated the expression of FL- and NTT-MMP-2 in modulating skeletal muscle IRI using a previously validated murine model. NTT-MMP-2, but not FL-MMP-2 expression was significantly increased in skeletal muscle following IRI. Moreover, the expression of toll-like receptors (TLRs) -2 and -4, IL-6, OAS-1A, and CXCL1 was also significantly up-regulated following IRI. Treatment with the potent anti-oxidant pyrrolidine dithiocarbamate (PDTC) significantly suppressed NTT-MMP-2, but not FL-MMP-2 expression and improved muscle viability following IRI. This data suggests that NTT-MMP-2, but not FL-MMP-2, is the major isoform of MMP-2 involved in skeletal muscle IRI.

  19. Prognostic impact of polymorphism of matrix metalloproteinase-2 and metalloproteinase tissue inhibitor-2 promoters in breast cancer in Tunisia: case-control study.

    PubMed

    Ben Néjima, Dalel; Ben Zarkouna, Yosr; Gammoudi, Amor; Manai, Mohamed; Boussen, Hamouda

    2015-05-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes that play important roles in tumor invasion and metastasis by degrading extracellular matrix components. Genetic variations in promoter regions of MMP genes, affecting their expression, have been associated with susceptibility to cancers. The aim of this study was to investigate the susceptibility and prognostic implications of the matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) polymorphism in Tunisian breast cancer patients. MMP-2 genotypes were determined by real-time polymerase chain reaction (RT-PCR), and TIMP-2 genotypes were identified using a PCR-restriction fragment length polymorphism (RFLP) method in 210 breast cancer patients and 250 frequency-matched control women. Association of the clinicopathological parameters and the genetic markers with risk of breast cancer was assessed using univariate analyses. We found that the variant MMP-2 genotype (-1306CT or TT) was associated with substantially reduced risk of breast cancer [odds ratio (OR), 0.49; 95 % confidence interval (95 % CI), 0.033-0.73], compared with the CC genotype. For TIMP-2, a moderately reduced risk of the cancer (OR, 0.57; 95 % CI, 0.37-0.87) was also associated with the variant allele (-418GC or CC), compared with the GG common allele. Furthermore, polymorphisms in both genes seem to have additive effects and the highest risk for breast cancer has been observed in those with MMP-2 CC genotype and TIMP-2 GC or CC genotype (p = 0.006). A significant association was also found between the CC genotype and the aggressive forms of breast cancer as defined by advanced stages at the time of diagnosis and metastasis. This is the first report on the association of MMP-2 and TIMP-2 gene polymorphisms in breast cancer in Tunisian population. Our results suggest that the presence of the variant allele in the promoter of MMP-2 or TIMP-2 may be a protective factor for the development of breast cancer.

  20. Activity of matrix metalloproteinase-2 (MMP-2) in canine oronasal tumors.

    PubMed

    Nakaichi, Munekazu; Yunuki, Toshi; Okuda, Masaru; Une, Satoshi; Taura, Yasuho

    2007-04-01

    Activity of matrix metalloprotease-2 (MMP-2) and the expression of its related molecules were examined in spontaneous canine oronasal tumors. Tissue samples from melanoma and squamous cell carcinoma possessed higher MMP-2 activity, as shown in gelatin zymography, in comparison with acanthomatous epulis and nasal adenocarcinoma. Regional lymph node invasion and distant metastases were more frequently observed in the MMP-2 positive cases. There were no significant differences by RT-PCR examination in the expression of the genes encoding MMP-2, MT1-MMP and TIMP-2 among the tumor histological types. However, the MMP-2/TIMP-2 ratio showed a significantly higher level of the genes in the malignant oral melanoma and squamous cell carcinoma. The MMP-2/TIMP-2 ratio was also positively correlated with MMP-2 activity in gelatin zymography. These results indicate that the MMP-2/TIMP-2 ratio may be of value in evaluating the prognosis in canine oronasal cavity tumors.

  1. Acetylcholine induces neurite outgrowth and modulates matrix metalloproteinase 2 and 9.

    PubMed

    Anelli, Tonino; Mannello, Ferdinando; Salani, Monica; Tonti, Gaetana A; Poiana, Giancarlo; Biagioni, Stefano

    2007-10-19

    The matrix metalloproteinases (MMPs), responsible for the degradation of extracellular matrix (ECM) proteins, may regulate brain cellular functions. Choline acetyltransferase (ChAT) transfected murine neuroblastoma cell line N18TG2, that synthesize acetylcholine and show enhancement of several neurospecific markers (i.e., sinapsin I, voltage gated Na(+) channels, high affinity choline uptake) and fiber outgrowth, were studied for the MMP regulation during neuronal differentiation. Zymography of N18TG2 culture medium revealed no gelatinolytic activity, whereas after carbachol treatment of cells both MMP-9 and activated MMP-2 forms were detected. ChAT-transfected clone culture medium contains three MMP forms at 230, 92, and 66kDa. Carbachol treatment increased MMP-2 and MMP-9 gene expression in N18TG2 cells and higher levels for both genes were also observed in ChAT transfected cells. The data are consistent with the hypothesis that acetylcholine brings about the activation of an autocrine loop modulating MMP expression.

  2. The role of matrix metalloproteinase-2 promoter polymorphisms in coronary artery disease and myocardial infarction.

    PubMed

    Alp, Ebru; Menevse, Sevda; Tulmac, Murat; Yilmaz, Akin; Yalcin, Ridvan; Cengel, Atiye

    2011-04-01

    The matrix metalloproteinase (MMP) family are key enzymes involved in the breakdown of the extracellular matrix in normal physiological processes, including tissue remodeling, and disease processes, such as arthritis and metastasis. The promoter polymorphism in the MMP2 gene may be responsible for multiple diseases related to extracellular matrix degradation. Therefore, we aimed to investigate the relationship between genotypes or haplotypes of -1575 G/A, -1306 C/T, -790 T/G, and -735 C/T promoter polymorphisms and coronary artery disease (CAD) with or without myocardial infarction (MI) history. This study included 298 patients with angiographically confirmed CAD and 299 age matched controls. Genomic DNA was isolated from whole blood and genotyping was performed by the polymerase chain reaction-restriction fragment length polymorphism method. No significant associations were found between -1575 G/A, -1306 C/T, and -790 T/G polymorphisms and CAD with or without MI history. However, the frequency of the -735 TT genotype was significantly lower in the controls than in the patients with MI alone when compared with the CC genotype (p=0.021). Only the distribution of the ACGC haplotype in CAD patients exhibited a significant difference than that in controls (p<0.05). The distribution of other haplotypes did not differ between CAD patients and controls. The present investigation is the first report to detect an association between MMP2 promoter polymorphisms and CAD with or without MI history in the Turkish population. Further case-control studies in CAD development might be contributed to clarify the role of these polymorphisms.

  3. Matrix Metalloproteinases 2 and 9 Are Differentially Expressed in Patients with Indeterminate and Cardiac Clinical Forms of Chagas Disease

    PubMed Central

    Fares, Rafaelle Christine Gomes; Gomes, Juliana de Assis Silva; Garzoni, Luciana Ribeiro; Waghabi, Mariana Caldas; Saraiva, Roberto Magalhães; Medeiros, Nayara Ingrid; Oliveira-Prado, Roberta; Sangenis, Luiz Henrique Conde; Chambela, Mayara da Costa; de Araújo, Fernanda Fortes; Teixeira-Carvalho, Andréa; Damásio, Marcos Paulo; Valente, Vanessa Azevedo; Ferreira, Karine Silvestre; Sousa, Giovane Rodrigo; Rocha, Manoel Otávio da Costa

    2013-01-01

    Dilated chronic cardiomyopathy (DCC) from Chagas disease is associated with myocardial remodeling and interstitial fibrosis, resulting in extracellular matrix (ECM) changes. In this study, we characterized for the first time the serum matrix metalloproteinase 2 (MMP-2) and MMP-9 levels, as well as their main cell sources in peripheral blood mononuclear cells from patients presenting with the indeterminate (IND) or cardiac (CARD) clinical form of Chagas disease. Our results showed that serum levels of MMP-9 are associated with the severity of Chagas disease. The analysis of MMP production by T lymphocytes showed that CD8+ T cells are the main mononuclear leukocyte source of both MMP-2 and MMP-9 molecules. Using a new 3-dimensional model of fibrosis, we observed that sera from patients with Chagas disease induced an increase in the extracellular matrix components in cardiac spheroids. Furthermore, MMP-2 and MMP-9 showed different correlations with matrix proteins and inflammatory cytokines in patients with Chagas disease. Our results suggest that MMP-2 and MMP-9 show distinct activities in Chagas disease pathogenesis. While MMP-9 seems to be involved in the inflammation and cardiac remodeling of Chagas disease, MMP-2 does not correlate with inflammatory molecules. PMID:23856618

  4. Plasma levels of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 correlate with disease stage and survival in colorectal cancer patients.

    PubMed

    Waas, Erwin T; Hendriks, Thijs; Lomme, Roger M L M; Wobbes, Theo

    2005-04-01

    The matrix metalloproteinases and their inhibitors are known to be involved in the process of tumor invasion and progression. Our objective was to investigate the potential diagnostic and prognostic value of plasma matrix metalloproteinase-2 and -9 and tissue inhibitor of metalloproteinase-1 in colorectal cancer. Gelatinase bioactivity and immunoreactivity of pro-matrix metalloproteinase-2 and -9, tissue inhibitor of metalloproteinase-1, and carcinoembryonic antigen were determined simultaneously in preoperative plasma and serum of colorectal cancer patients (n = 94) and in healthy controls (n = 51). Plasma pro-matrix metalloproteinase-2 levels were lower in colorectal cancer patients (P < 0.0001) than in controls, and its gelatinolytic activity revealed an inverse correlation with adverse clinicopathologic parameters, such as lymph node involvement (P = 0.017), stage (0, I, II vs. III, IV; P = 0.012), and the carcinoembryonic antigen level (P = 0.016). Pro-matrix metalloproteinase-9 levels did not differ between patients and controls. Pro-matrix metalloproteinase-2 gelatinolytic activity showed potential value in colorectal cancer diagnosis, identifying patients with 70 percent sensitivity at 95 percent specificity. Pro-matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and carcinoembryonic antigen all showed lower sensitivities. Combining pro-matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 measurements increased the sensitivity significantly to 84 percent. With respect to prognosis, tissue inhibitor of metalloproteinase-1 showed value in predicting disease outcome in our patient group, whereas pro-matrix metalloproteinase-2 and -9 did not. The combination of tissue inhibitor of metalloproteinase-1 and carcinoembryonic antigen was better in predicting three-year survival than tissue inhibitor of metalloproteinase-1 alone, but it remains to be determined if the combination would be a better marker for survival than

  5. Role of Matrix Metalloproteinases 2 in Spinal Cord Injury-Induced Neuropathic Pain

    PubMed Central

    Miranpuri, Gurwattan S.; Schomberg, Dominic T.; Alrfaei, Bahauddeen; King, Kevin C.; Rynearson, Bryan; Wesley, Vishwas S.; Khan, Nayab; Obiakor, Kristen; Wesley, Umadevi V.; Resnick, Daniel K.

    2016-01-01

    Neuropathic pain (NP) affects approximately 4 million people in the United States with spinal cord injury (SCI) being a common cause. Matrix metalloproteinases (MMPs) play an integral role in mediating inflammatory responses, cellular signaling, cell migration, extracellular matrix degradation and tissue remodeling and repair. As such, they are major components in the pathogenesis of secondary injury within the central nervous system. Other gene regulatory pathways, specifically MAPK/extracellular signaling-regulated kinase (ERK) and Wnt/β-catenin, are also believed to participate in secondary injury likely intersect. The study aims to examine the MMP-2 signaling pathway associated with ERK and Wnt/β-catenin activity during contusion SCI (cSCI)-induced NP in a rat model. This is an experimental study investigating the implication of MMP-2 in SCI-induced NP and its association with the cellular and molecular changes in the interactions between extracellular signaling kinase and β-catenin. Adult Sprague-Dawley rats received cSCI injury by NYU impactor by dropping 10 g weight from a height of 12.5 mm. Locomotor functional recovery of injured rats was measured on post cSCI day 1, and weekly thereafter for 6 weeks using Basso, Beattie and Bresnahan scores. Thermal hyperalgesia (TH) testing was performed on days 21, 28, 35 and 42 post cSCI. The expression and/or activity of MMP-2, β-catenin and ERK were studied following harvest of spinal cord tissues between 3 and 6 weeks post cSCI. All experiments were funded by the department of Neurological Surgery at the University of Wisconsin, School of Medicine and Public Health having no conflict of interest. MMP-2 and β-catenin expression were elevated and gradually increased from days 21 to 42 compared to sham-operated rats and injured rats that did not exhibit TH. The expression of phosphorylated ERK (phospho-ERK) increased on day 21 but returned to baseline levels on day 42 whereas total ERK levels remained relatively

  6. αvβ6 Integrin Is Required for TGFβ1-Mediated Matrix Metalloproteinase2 Expression

    PubMed Central

    Dutta, Anindita; Li, Jing; Fedele, Carmine; Sayeed, Aejaz; Singh, Amrita; Violette, Shelia M.; Manes, Thomas D.; Languino, Lucia R.

    2015-01-01

    TGFβ1 activity depends on a complex signaling cascade that controls expression of several genes. Among others, TGFβ1 regulates expression of matrix metalloproteinases (MMPs) through activation of Smads. Here, we demonstrate for the first time that the αvβ6 integrin interacts with TGFβ receptor II (TβRII) through the β6 cytoplasmic domain and promotes Smad3 activation in prostate cancer cells. Another related αv integrin, αvβ5, as well as the αvβ6/3 integrin, which contains a chimeric form of β6 with a β3 cytoplasmic domain, do not associate with TβRII and fail to show similar responses. We provide evidence that αvβ6 is required for upregulation of MMP2 by TGFβ1 through a Smad3-mediated transcriptional program in prostate cancer cells. The functional relevance of these results is underscored by the finding that αvβ6 modulates cell migration in a MMP2-dependent manner on an αvβ6 specific ligand, latency associated peptide (LAP)-TGFβ. Overall, these mechanistic studies establish that expression of a single integrin, αvβ6, is sufficient to promote activation of Smad3, regulation of MMP2 levels, and consequent catalytic activity, as well as cell migration. Our study describes a new TGFβ1/αvβ6/MMP2 signaling pathway that, given TGFβ1 pro-metastatic activity, may have profound implications for prostate cancer therapy. PMID:25558779

  7. Kinetics and thermodynamics of irreversible inhibition of matrix metalloproteinase 2 by a Co(III) Schiff base complex

    PubMed Central

    Harney, Allison S.; Sole, Laura B.

    2012-01-01

    Cobalt(III) Schiff base complexes have been used as potent inhibitors of protein function through the coordination to histidine residues essential for activity. The kinetics and thermodynamics of the binding mechanism of Co(acacen)(NH3)2Cl [Co(acacen); where H2acacen is bis(acetylacetone)ethylenediimine] enzyme inhibition has been examined through the inactivation of matrix metalloproteinase 2 (MMP-2) protease activity. Co(acacen) is an irreversible inhibitor that exhibits time- and concentration-dependent inactivation of MMP-2. Co(acacen) inhibition of MMP-2 is temperature-dependent, with the inactivation increasing with temperature. Examination of the formation of the transition state for the MMP-2/Co(acacen) complex was determined to have a positive entropy component indicative of greater disorder in the MMP-2/Co(acacen) complex than in the reactants. With further insight into the mechanism of Co(acacen) complexes, Co(III) Schiff base complex protein inactivators can be designed to include features regulating activity and protein specificity. This approach is widely applicable to protein targets that have been identified to have clinical significance, including matrix metalloproteinases. The mechanistic information elucidated here further emphasizes the versatility and utility of Co(III) Schiff base complexes as customizable protein inhibitors. PMID:22729838

  8. Simple and sensitive electrogenerated chemiluminescence peptide-based biosensor for detection of matrix metalloproteinase 2 released from living cells.

    PubMed

    Dang, Qian; Gao, Hongfang; Li, Zhejian; Qi, Honglan; Gao, Qiang; Zhang, Chengxiao

    2016-10-01

    A simple and sensitive electrogenerated chemiluminescence biosensor was developed to monitor matrix metalloproteinase 2 (MMP-2) by employing a specific peptide (CGPLGVRGK) as a molecular recognition substrate. Bis(2,2'-bipyridine)-4'-methyl-4-carboxybipyridine-ruthenium N-succinimidyl ester-bis(hexafluorophosphate) (Ru(bpy)2(mcbpy-O-Su-ester)(PF6)2 (Ru1) was used as ECL-emitting species and covalently labeled onto the peptide through NH2-containing lysine on the peptide via acylation reaction to form Ru1-peptide as an ECL probe. An ECL peptide-based biosensor was fabricated by self-assembling the ECL probe onto the surface of gold electrode. MMP-2 can specifically cleave the Ru1-peptide on the electrode surface, which led the partly Ru1-peptide to leave the electrode surface and resulted in the decrease of the ECL intensity obtained from the resulted electrode in 0.1 M phosphate-buffered saline (pH 7.4) containing tri-n-propylamine. The decreased ECL intensity was piecewise linear to the concentration of MMP-2 in the range from 1 to 500 ng/mL. Moreover, the ECL biosensor is successfully applied to detection of MMP-2 secreted by living cell, such as HeLa cells. Additionally, the biosensor was also applied to the evaluation of matrix metalloproteinase inhibitors. The strategy presented here is promising for other disease-related matrix metalloproteinase assay and matrix metalloproteinase inhibitor profiling with sensitivity and simplicity. Graphical Abstract Detection of MMP-2 released from living cells by ECL peptide-based biosensor.

  9. Activation of matrix metalloproteinase-2 from hepatic stellate cells requires interactions with hepatocytes.

    PubMed Central

    Théret, N.; Musso, O.; L'Helgoualc'h, A.; Clément, B.

    1997-01-01

    Activation of matrix metalloproteinase (MMP)-2, the 72-kd collagenase IV/gelatinase A, is involved in extracellular matrix remodeling. It has been suggested that a membrane-type MMP (MT-MMP-1) and the tissue inhibitor of metalloproteinase (TIMP)-2 are involved in MMP-2 processing, but the exact mechanism(s) of its activation remains unclear. We have investigated the role of cell-cell cooperation in the activation of pro-MMP-2 in the liver, using pure cultures and co-cultures of hepatocytes and hepatic stellate cells (HSCs). Northern blot analysis and in situ hybridization showed that, in both pure and co-cultures, HSCs, but not hepatocytes, expressed MMP-2, TIMP-2, and MT-MMP-1 mRNA. Zymography analyses revealed the latent form of MMP-2 in medium from 2-day-old pure HSC cultures with higher amounts in medium from hepatocyte/HSC co-cultures. When hepatocytes were added to 10-day-old HSC cultures, the activated form of MMP-2 was detected, concomitantly with the deposition of an abundant extracellular matrix. Incubation of plasma membrane-enriched fractions from hepatocytes with conditioned medium from pure HSC cultures generated the activated species of MMP-2 (62 and 59 kd). Activation of pro-MMP-2 by hepatocyte membranes was inhibited by EDTA, heat, and trypsin but not by serine proteinase inhibitors. These data show that the co-expression of TIMP-2, MMP-2, and MT-MMP-1 by HSCs does not lead to secretion of the activated form of MMP-2. Hepatocytes, which do not express MMP-2, TIMP-2, or MT-MMP-1, induce MMP-2 activation through a plasma membrane-dependent mechanism(s), thus suggesting that cell-cell interactions are involved in this process in vivo. Images Figure 1 Figure 2 Figure 3 PMID:9006321

  10. A fluorescence lifetime spectroscopy study of matrix metalloproteinases -2 and -9 in human atherosclerotic plaque

    PubMed Central

    Phipps, Jennifer E.; Hatami, Nisa; Galis, Zorina S.; Baker, J. Dennis; Fishbein, Michael C.; Marcu, Laura

    2011-01-01

    Matrix metalloproteinase (MMP) -2 and -9 play important roles in the progression of atherosclerosis. This study aims to determine whether MMP-2 and -9 content in the fibrotic caps of atherosclerotic plaque is correlated with plaque autofluorescence. A time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) system was used to measure the autofluorescence and assess the biochemical composition of human plaques obtained from carotid endarterectomy. Results presented here demonstrate for the first time the ability to characterize the biochemical composition as it relates to MMP-2 and -9 content in the atherosclerotic plaque cap using a label-free imaging technique implemented with a fiberoptic TR-LIFS system. PMID:21770037

  11. Synovial fluid matrix metalloproteinase-2 and -9 activities in dogs suffering from joint disorders.

    PubMed

    Murakami, Kohei; Maeda, Shingo; Yonezawa, Tomohiro; Matsuki, Naoaki

    2016-07-01

    The activity of matrix metalloproteinase (MMP)-2 and MMP-9 in synovial fluids (SF) sampled from dogs with joint disorders was investigated by gelatin zymography and densitometry. Pro-MMP-2 showed similar activity levels in dogs with idiopathic polyarthritis (IPA; n=17) or canine rheumatoid arthritis (cRA; n=4), and healthy controls (n=10). However, dogs with cranial cruciate ligament rupture (CCLR; n=5) presented significantly higher pro-MMP-2 activity than IPA and healthy dogs. Meanwhile, dogs with IPA exhibited significantly higher activity of pro- and active MMP-9 than other groups. Activity levels in pro- and active MMP-9 in cRA and CCLR dogs were not significantly different from those in healthy controls. Different patterns of MMP-2 and MMP-9 activity may reflect the differences in the underlying pathological processes.

  12. CD147 and matrix-metalloproteinase-2 expression in metastatic and non-metastatic uveal melanomas.

    PubMed

    Lüke, Julia; Vukoja, Vlatka; Brandenbusch, Tim; Nassar, Khaled; Rohrbach, Jens Martin; Grisanti, Salvatore; Lüke, Matthias; Tura, Aysegül

    2016-06-03

    Extracellular matrix remodelling regulated by matrix-metalloproteinase (MMP) inducer (CD147) is a crucial process during tumor cell invasion and regulation of blood supply. In this study, we evaluated the correlation of CD147 and MMP-2 expression with major prognostic factors for uveal melanoma and the development of metastasis. The expression of CD147 and MMP-2 was analyzed in 49 samples of uveal melanomas. Triple immunofluorescence stainings using markers against glial cells (GFAP), endothelial cells (CD34) and macrophages (CD68) were performed to further analyse the exact localisation of CD147 and MMP-2 positivity. In 28 cases clinical metastatic disease were found. The remaining 21 cases showed no signs of metastatic disease for an average follow-up of 10 years. Correlation analysis (Pearson correlation) was performed to analyse the association of CD147 and MMP-2 expression with known prognostic factors, vasculogenic mimicry (VM), the mature vasculature (von Willebrand Factor) and tumor induced angiogenesis (by means of Endoglin expression). CD147 and MMP-2 were expressed in 47 (96.0 %) of the uveal melanomas. CD147 up-regulation was significantly correlated with a higher MMP-2 expression. The overall expression analysis revealed no significant difference in the metastatic (p = 0.777) and non-metastatic subgroup (p = 0.585). No correlation of CD147 expression and any system of blood supply was evident. In the non-metastatic sub-group a significant correlation of clustered CD147 positive cells with largest basal diameter (p = 0.039), height (p = 0.047) and TNM-stage (p = 0.013) was evident. These data may indicate that CD147 regulates MMP-2 expression in uveal melanoma cells.

  13. Functional Activity of Matrix Metalloproteinases 2 and 9 in Tears of Patients With Glaucoma.

    PubMed

    Sahay, Prity; Rao, Aparna; Padhy, Debananda; Sarangi, Sarada; Das, Gopinath; Reddy, Mamatha M; Modak, Rahul

    2017-05-01

    To evaluate the differential expression of tear matrix metalloproteinases (MMP) 2 and 9 in of patients with various forms of glaucoma. Tear samples were collected with a Schirmer's strip from 148 eyes of 113 patients (medically naïve patients with primary open-angle [POAG] or angle closure glaucoma [PACG] and those with pseudoexfoliation syndrome [PXF] or glaucoma [PXG]). These were compared to patients undergoing cataract surgery (controls) for this cross-sectional study. Functional activities of tear MMP-9 and MMP-2 were analyzed by gelatin zymography. Tenon's capsules (n = 15) were harvested from the inferior quadrant in those undergoing cataract surgery and protein expression of MMP-9 was analyzed by immunohistochemistry (IHC). Hydrogen peroxide (H2O2) stress-induced effects on in vitro activities of MMP-9 in human trabecular meshwork (HTM) cells were analyzed. The MMP-9 activity in tears was increased significantly in POAG, (n = 27), PACG (n = 24), and PXF (n = 40) eyes compared to controls (n = 35), and was increased significantly in eyes with glaucoma compared to moderate/severe glaucoma (P < 0.001). The MMP-9 expression was significantly lower in PXG (n = 22) eyes. Immunohistochemistry of Tenon's capsule revealed increased expression of MMP-9 in primary glaucoma eyes. Increased MMP-9 activity was seen in in vitro by gelatin zymography and was confirmed by Western and immunofluorescent assay on HTM upon 800 and 1000 μM H2O2-induced stress for 2 to 3 hours with approximately 80% cell death. Increased tear MMP-9 activity in early glaucoma and pseudoexfoliation syndrome suggesting activation of extracellular matrix (ECM) degradation can be used as a tear-based predictive biomarker. Decreased expression in advanced stages suggests exhaustion of the degradation response.

  14. α-Solanine inhibits human melanoma cell migration and invasion by reducing matrix metalloproteinase-2/9 activities.

    PubMed

    Lu, Ming-Kun; Shih, Yuan-Wei; Chang Chien, Tzu-Tsung; Fang, Li-Heng; Huang, Hsiang-Ching; Chen, Pin-Shern

    2010-01-01

    α-Solanine, a naturally occurring steroidal glycoalkaloid in potato sprouts, was found to possess anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis of tumor cells. However, the effect of α-solanine on cancer metastasis remains unclear. In the present study, we examined the effect of α-solanine on metastasis in vitro. Data demonstrated that α-solanine inhibited proliferation of human melanoma cell line A2058 in a dose-dependent manner. When treated with non-toxic doses of α-solanine, cell migration and invasion were markedly suppressed. Furthermore, α-solanine reduced the activity of matrix metalloproteinase-2 (MMP-2) and MMP-9, which are involved in the migration and invasion of cancer cells. Our biochemical assays indicated that α-solanine potently suppressed the phosphorylation of c-Jun N-terminal kinase (JNK), phosphatidylinositide-3 kinase (PI3K) and Akt, while it did not affect phosphorylation of extracellular signal regulating kinase (ERK). In addition, α-solanine significantly decreased the nuclear level of nuclear factor kappa B (NF-κB), suggesting that α-solanine inhibited NF-κB activity. Taken together, the results suggested that α-solanine inhibited migration and invasion of A2058 cells by reducing MMP-2/9 activities. It also inhibited JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for α-solanine in anti-metastatic therapy.

  15. [Matrix metalloproteinases 2 and 9, their endogenous regulators, and angiotensin-converting enzyme in cervical squamous cell carcinoma].

    PubMed

    Timoshenko, O S; Kugaevskaya, E V; Gureeva, T A; Zavalishina, L E; Andreeva, Yu Yu; Solovуeva, N I

    2015-01-01

    to investigate the specific features of the expression of matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), tissue inhibitor of metalloptoteinase 2 (TIMP-2), urokinase-type plasminogen activator (uPA), and angiotensin-converting enzyme (ACE) in cervical squamous cell carcinoma (CSCC). The samples of tumor tissue and morphologically normal tissue adjacent to the tumor were investigated. Enzymatic assays applying specific substrates, as well as zymographic and immunohistochemical studies were used. The invasive potential of CSCC has been established to be substantially influenced by the increased expression of MMP-9 and uPA and by the decreased expression of TIMP-2, as well as to a lesser extent by a change in MMP-2 expression. MMP-9 may serve as a marker for invasive growth. Enhanced ACE activity in cancer confirms the involvement of this enzyme in tumor progression. The morphologically normal tissue adjacent to the tumor shows the substantial expression of MMP-2 and MMP-9 and in some cases the enhanced activity of uPA and ACE, which makes an additional contribution to the increased invasive potential of tumor. The findings are important in understanding the mechanisms of cancer progression and may affect therapeutic strategies for the patient.

  16. Activities of matrix metalloproteinases and tissue inhibitor of metalloproteinase-2 in idiopathic hemotympanum and otitis media with effusion

    PubMed Central

    Moon, Sung K.; Linthicum, Fred H.; Yang, Hae Dong; Lee, Seung Joo; Park, Keehyun

    2008-01-01

    Conclusion The expression profile of matrix metalloproteinases (MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) was specific to the type of middle ear effusion. Further studies are necessary for elucidating its correlation with the sequelae of otitis media with effusion (OME) and idiopathic hemotympanum. Objectives We aimed to investigate the relative activities of gelatinases (MMP-2 and 9), stromelysin-1 (MMP-3), matrilysin-1 (MMP-7) as well as measuring TIMP-2 levels in the serous and mucous effusions of OME and hemorrhagic effusion of the idiopathic hemotympanum. Method Middle ear effusions were collected from patients with OME and idiopathic hemotympanum, and were classified as mucoid, serous or hemorrhagic. MMP activity in the effusion samples was examined by gelatin and casein zymography. Levels of TIMP-2 were measured by ELISA. Human temporal bones sections, with and without otitis media (OM), were examined histologically. Results One case showed tympanic membrane thinning in the OM group, but none in the control group. While MMP-2 was present in all effusions, the active form of MMP-2 was found only in mucous effusions. MMP-3 and MMP-7 activity was detected only in the mucous effusions. MMP-9 exhibited activity in all effusions, with the highest levels in mucous effusions. TIMP-2 levels were markedly elevated in serous effusions. PMID:17851959

  17. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2.

    PubMed

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02-0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe.

  18. A reduced graphene oxide-based fluorescence resonance energy transfer sensor for highly sensitive detection of matrix metalloproteinase 2

    PubMed Central

    Xi, Gaina; Wang, Xiaoping; Chen, Tongsheng

    2016-01-01

    A novel fluorescence nanoprobe (reduced nano-graphene oxide [nrGO]/fluorescein isothiocyanate-labeled peptide [Pep-FITC]) for ultrasensitive detection of matrix metalloproteinase 2 (MMP2) has been developed by engineering the Pep-FITC comprising the specific MMP2 substrate domain (PLGVR) onto the surface of nrGO particles through non-covalent linkage. The nrGO was obtained by water bathing nano-graphene oxide under 90°C for 4 hours. After mixing the nrGO and Pep-FITC for 30 seconds, the fluorescence from Pep-FITC was almost completely quenched due to the fluorescence resonance energy transfer between fluorescein isothiocyanate (FITC) and nrGO. Upon cleavage of the amide bond between Leu and Gly in the Pep-FITC by protease-MMP2, the FITC bound to nrGO was separated from nrGO surface, disrupting the fluorescence resonance energy transfer process and resulting in fluorescence recovery of FITC. Under optimal conditions, the fluorescence recovery of nrGO/Pep-FITC was found to be directly proportional to the concentration of MMP2 within 0.02–0.1 nM. The detection limit of the nrGO/Pep-FITC was determined to be 3 pM, which is approximately tenfold lower than that of the unreduced carboxylated nano-graphene oxide/Pep-FITC probe. PMID:27143876

  19. Differential expression and activity of matrix metalloproteinases 2 and 9 in canine early placenta.

    PubMed

    Diessler, M; Ventureira, M; Hernandez, R; Sobarzo, C; Casas, L; Barbeito, C; Cebral, E

    2017-02-01

    The zonary and endotheliochorial dog placenta is the most invasive placenta of carnivores. The importance of matrix metalloproteinases (MMP) in placenta invasiveness has been determined in several mammals including species with haemochorial, epitheliochorial and endotheliochorial placentation. Regarding the latter, the expression of MMP enzymes has been studied in the cat and the mature canine placenta. The aim of this study was to analyse the expression and activity of MMP-2 and MMP-9 in the early dog placenta. Placentae from 18 to 30 days of pregnancy were collected from four bitches. Two placentae from each bitch were analysed. Placental tissue from one uterine horn was fixed in formaldehyde for immunohistochemistry, while marginal haematoma, labyrinth, non-implantative and implantative endometrium from the contralateral horn were immediately frozen in dry ice for the analysis of MMP expression (Western blot [WB]) and activity (zymography). MMP-2 and MMP-9 were evidenced in the labyrinth, maternal glands and marginal haematoma; this finding was directly correlated with levels of MMP expression by WB, and with the activity of MMP-2, mainly in the haematoma (the area of major remodelling of tissues). Thus, although MMP-9 is well expressed in the early canine placenta, it is not active. Given the important role of MMPs for invasiveness, maternal-foetal angiogenesis and the establishment of a correct foetal nutrition, the results are consistent with the findings in other species in which the MMP-2 activation precedes the MMP-9 one in early placentation.

  20. On the origin of matrix metalloproteinase-2 and -9 in blood platelets.

    PubMed

    Wrzyszcz, Aneta; Wozniak, Mieczyslaw

    2012-01-01

    To date, several matrix metalloproteinases (MMPs) have been identified in human platelets. In most research studies, the platelets are obtained using the isolation method from plasma by centrifugation and washing. The metalloproteinase content in the platelets can be affected by the isolation technique and the leukocyte contamination. In this work, we studied the influence of the isolation method on the detection of platelet MMPs and explore the expression of these enzymes in megakaryoblastic MEG-01 cells. We investigated the expression of mRNAs encoding for MMP-2 and -9 in platelets and MEG-01 cells. Using gelatin zymography and western blotting, we examined the expression and release of MMP-2 and 9 by platelets and MEG-01 cells and checked whether the amount of the released MMPs depends on the volume of tested platelet and leukocyte contamination. To investigate the MMP-2 expression profile, we used zymography and flow cytometry. Platelets, in contrast to the MEG-01 cells, neither contain mRNA for MMP-2 nor -9. The platelets contain pro-MMP-2 and release it during the activation. The population of uncontaminated (leukocytes<0.02%) platelets contained no MMP-9 or the active form of MMP-2. We have observed that the activity of MMP-2 in platelet lysate is proportional to their mean volume and that the MMP-2 activity may not be detected if very small platelets are examined. We conclude that the detection of gelatinases in platelets depends on platelet isolation techniques and the degree of leukocyte contamination.

  1. Matrix metalloproteinases 2 and 9 increase permeability of sheep pleura in vitro

    PubMed Central

    2012-01-01

    Background Matrix metalloproteinases (MMPs) 2 and 9 are two gelatinase members which have been found elevated in exudative pleural effusions. In endothelial cells these MMPs increase paracellular permeability via the disruption of tight junction (TJ) proteins occludin and claudin. In the present study it was investigated if MMP2 and MMP9 alter permeability properties of the pleura tissue by degradation of TJ proteins in pleural mesothelium. Results In the present study the transmesothelial resistance (RTM) of sheep pleura tissue was recorded in Ussing chambers after the addition of MMP2 or MMP9. Both enzymes reduced RTM of the pleura, implying an increase in pleural permeability. The localization and expression of TJ proteins, occludin and claudin-1, were assessed after incubation with MMPs by indirect immunofluorescence and western blot analysis. Our results revealed that incubation with MMPs did not alter neither proteins localization at cell periphery nor their expression. Conclusions MMP2 and MMP9 increase the permeability of sheep pleura and this finding suggests a role for MMPs in pleural fluid formation. Tight junction proteins remain intact after incubation with MMPs, contrary to previous studies which have shown TJ degradation by MMPs. Probably MMP2 and MMP9 augment pleural permeability via other mechanisms. PMID:22424238

  2. Identification of Matrix Metalloproteinase-2 and 9 as Biomarker of Intrahepatic Cholestasis of Pregnancy.

    PubMed

    Chen, Zhong; Shen, Zongji; Hu, Lingqing; Lu, Mudan; Feng, Yizhong

    2017-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is a severe liver disease uniquely occurring during pregnancy. In this study we aimed to identify novel biomarker for the diagnosis of ICP in Chinese population. 50 healthy pregnant women, 50 mild ICP patients and 48 severe ICP patients were enrolled for this study. Liver function tests, including serum total bilirubin, direct bilirubin, alanine transaminase, aspartate aminotransferase and cholyglycine, were performed in all participants. After an overnight fast serum levels of total bile acids (TBA), matrix metalloproteinase (MMP)-2 and MMP-9 were measured, and their correlation with liver function tests were analyzed. The observed increase in serum TBA in ICP patients was not statistically significant which made it unreliable for diagnosis of ICP in Chinese population. On the other hand, both MMP-2 and MMP-9 serum levels exhibited a progressive and significant elevation in mild and severe ICP patients compared with healthy pregnant women, which also positively correlated with liver function tests. Serum levels of both MMP-2 and MMP-9 could be reliably used as laboratory abnormalities for accurate diagnosis and sensitive grading of ICP in Chinese population.

  3. Low level laser therapy modulates viability, alkaline phosphatase and matrix metalloproteinase-2 activities of osteoblasts.

    PubMed

    Oliveira, Flávia Amadeu de; Matos, Adriana Arruda; Matsuda, Sandra Satiko; Buzalaf, Marília Afonso Rabelo; Bagnato, Vanderley Salvador; Machado, Maria Aparecida de Andrade Moreira; Damante, Carla Andreotti; Oliveira, Rodrigo Cardoso de; Peres-Buzalaf, Camila

    2017-04-01

    Low level laser therapy (LLLT) has been shown to stimulate bone cell metabolism but their impact on the matrix metalloproteinase (MMP) expression and activity is little explored. This study evaluated the influence of LLLT at two different wavelengths, red and infrared, on MC3T3-E1 preosteoblast viability, alkaline phosphatase (ALP) and MMP-2 and -9 activities. To accomplish this, MC3T3-E1 cells were irradiated with a punctual application of either red (660nm; InGaAIP active medium) or infrared (780nm; GaAlAs active medium) lasers both at a potency of 20mW, energy dose of 0.08 or 0.16J, and energy density of 1.9J/cm(2) or 3.8J/cm(2), respectively. The control group received no irradiation. Cellular viability, ALP and MMP-2 and -9 activities were assessed by MTT assay, enzymatic activity and zymography, respectively, at 24, 48 and 72h. The treatment of cells with both red and infrared lasers significantly increased the cellular viability compared to the non-irradiated control group at 24 and 48h. The ALP activity was also up modulated in infrared groups at 24 and 72h, depending on the energy densities. In addition, the irradiation with red laser at the energy density of 1.9J/cm(2) promoted an enhancement of MMP-2 activity at 48 and 72h. However, no differences were observed for the MMP-9 activity. In conclusion, when used at these specific parameters, LLL modulates both preosteoblast viability and differentiation highlighted by the increased ALP and MMP-2 activities induced by irradiation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Inhibition of matrix metalloproteinase-2 improves endothelial function and prevents hypertension in insulin-resistant rats

    PubMed Central

    Nagareddy, PR; Rajput, PS; Vasudevan, H; McClure, B; Kumar, U; MacLeod, KM; McNeill, JH

    2012-01-01

    BACKGROUND AND PURPOSE Insulin resistance is often found to be associated with high blood pressure. We propose that in insulin-resistant hypertension, endothelial dysfunction is the consequence of increased activity of vascular MMP-2. As MMP-2 proteolytically cleaves a number of extracellular matrix proteins, we hypothesized that MMP-2 impairs endothelial function by proteolytic degradation of endothelial NOS (eNOS) or its cofactor, heat shock protein 90 (HSP90). EXPERIMENTAL APPROACH We tested our hypothesis in bovine coronary artery endothelial cells and fructose-fed hypertensive rats (FHR), a model of acquired systolic hypertension and insulin resistance. KEY RESULTS Treatment of FHRs with the MMP inhibitor doxycycline, preserved endothelial function as well as prevented the development of hypertension, suggesting that MMPs impair endothelial function. Furthermore, incubating endothelial cells in vitro with a recombinant MMP-2 decreased NO production in a dose-dependent manner. Using substrate cleavage assays and immunofluorescence microscopy studies, we found that MMP-2 not only cleaves and degrades HSP90, an eNOS cofactor but also co-localizes with both eNOS and HSP90 in endothelial cells, suggesting that MMPs functionally interact with the eNOS system. Treatment of FHRs with doxycycline attenuated the decrease in eNOS and HSP90 expression but did not improve insulin sensitivity. CONCLUSIONS AND IMPLICATIONS Our data suggest that increased activity of MMP-2 in FHRs impairs endothelial function and promotes hypertension. Inhibition of MMP-2 could be a potential therapeutic strategy for the management of hypertension. PMID:21740410

  5. Correlation between plasma angiopoietin-1, angiopoietin-2 and matrix metalloproteinase-2 in coronary heart disease

    PubMed Central

    Wu, Haoyu; Shou, Xiling; Liang, Lei; Yao, Xiaowei; Cheng, Gong

    2016-01-01

    Introduction Angiopoietin-2 (Ang-2) plays a critical role in inducing tumor cell infiltration, and this invasive phenotype is caused by up-regulation of matrix metalloproteinase (MMP)-2. The relationship between Ang-2 and MMP-2 in atherosclerosis has not been reported yet. The aim is to measure the plasma concentrations of Ang-1, Ang-2 and MMP-2 and assess the correlation between the concentrations of these factors in coronary heart disease (CHD) patients. Material and methods The testing was done in a cross-sectional study. We prospectively enrolled 42 individuals with acute myocardial infarction, 42 individuals with unstable angina pectoris, 42 individuals with stable angina pectoris and 45 healthy control subjects. Concentrations of Ang-1, Ang-2 and MMP-2 were measured using the enzyme-linked immunosorbent assay (ELISA) method. Spearman’s rank correlation was calculated to evaluate the relationships between MMP-2 and Ang-1, and MMP-2 and Ang-2 in patients with CHD. Results Patients with acute myocardial infarction and unstable angina pectoris had higher Ang-2 and MMP-2 levels compared with stable angina patients and healthy control subjects (p < 0.05), while concentrations of Ang-1 were not statistically different between the groups. Spearman’s rank correlation showed that Ang-2 levels positively correlated with MMP-2 in patients with CHD (r = 0.679, p < 0.001). Conclusions Plasma Ang-2 and MMP-2 levels but not Ang-1 levels were increased in patients with CHD. Ang-1 correlated weakly with MMP-2, whereas the Ang-2 and MMP-2 correlation was strong in patients with CHD. Ang-2 may play a role in atherosclerosis, and have an interaction with MMP-2. PMID:27904510

  6. Altered Serum Levels of Matrix Metalloproteinase-2, -9 in Response to Electroconvulsive Therapy for Mood Disorders.

    PubMed

    Shibasaki, Chiyo; Takebayashi, Minoru; Itagaki, Kei; Abe, Hiromi; Kajitani, Naoto; Okada-Tsuchioka, Mami; Yamawaki, Shigeto

    2016-09-01

    Inflammatory processes could underlie mood disorders. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMP) are inflammation-related molecules. The current study sought an association between mood disorders and systemic levels of MMPs and TIMPs. Serum was obtained from patients with mood disorders (n=21) and patients with schizophrenia (n=13) scheduled to undergo electroconvulsive therapy. Serum was also obtained from healthy controls (n=40). Clinical symptoms were assessed by the Hamilton Rating Score for Depression and the Brief Psychiatric Rating Scale. Serum levels of MMPs and TIMPs were quantified by ELISA. The serum levels of MMP-2 in mood disorder patients, but not in schizophrenia patients, prior to the first electroconvulsive therapy session (baseline) was significantly lower than that of healthy controls. At baseline, levels of MMP-9 and TIMP-2, -1 were not different between patients with mood disorder and schizophrenia and healthy controls. After a course of electroconvulsive therapy, MMP-2 levels were significantly increased in mood disorder patients, but MMP-9 levels were significantly decreased in both mood disorder and schizophrenia patients. In mood disorder patients, there was a significant negative correlation between depressive symptoms and serum levels of MMP-2 and a positive correlation between depressive symptoms and MMP-9. In addition, alterations of serum levels of MMP-2 and MMP-9 were significantly correlated each other and were associated with certain depressive symptoms. A change in inflammatory homeostasis, as indicated by MMP-2 and MMP-9, could be related to mood disorders, and these markers appear to be sensitive to electroconvulsive therapy. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  7. Comparative study on antioxidant effects and vascular matrix metalloproteinase-2 downregulation by dihydropyridines in renovascular hypertension.

    PubMed

    Marçal, Diogo M O; Rizzi, Elen; Martins-Oliveira, Alisson; Ceron, Carla S; Guimaraes, Danielle A; Gerlach, Raquel F; Tanus-Santos, Jose E

    2011-01-01

    The vascular remodeling associated with hypertension involves oxidative stress and enhanced matrix metalloproteinases (MMPs) expression/activity, especially MMP-2. While previous work showed that lercanidipine, a third-generation dihydropyridine calcium channel blocker (CCB), attenuated the oxidative stress and increased MMP-2 expression/activity in two-kidney, one-clip (2K1C) hypertension, no previous study has examined whether first- or second-generation dihydropyridines produce similar effects. We compared the effects of nifedipine, nimodipine, and amlodipine on 2K1C hypertension-induced changes in systolic blood pressure (SBP), vascular remodeling, oxidative stress, and MMPs levels/activity. Sham-operated and 2K1C rats were treated with water, nifedipine 10 mg/kg/day, nimodipine 15 mg/kg/day, or amlodipine 10 mg/kg/day by gavage, starting 3 weeks after hypertension was induced. SBP was monitored weekly. After 6 weeks of treatment, quantitative morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin-stained sections. Aortic and systemic reactive oxygen species levels were measured by using dihydroethidine and thiobarbituric acid-reactive substances (TBARs), respectively. Aortic MMP-2 levels and activity were determined by gelatin zymography, in situ zymography, and immunofluorescence. Nifedipine, nimodipine, or amlodipine attenuated the increases in SBP in hypertensive rats by approximately 17% (P < 0.05) and prevented vascular hypertrophy (P < 0.05). These CCBs blunted 2K1C-induced increases in vascular oxidative stress and plasma TBARs concentrations (P < 0.05). All dihydropyridines attenuated the increases in aortic MMP-2 levels and activity associated with 2K1C hypertension. These findings suggest lack of superiority of one particular dihydropyridine, at least with respect to antioxidant effects, MMPs downregulation, and inhibition of vascular remodeling in hypertension.

  8. Phenotypic differences in matrix metalloproteinase 2 activity between fibroblasts from 3 bovine muscles.

    PubMed

    Archile-Contreras, A C; Mandell, I B; Purslow, P P

    2010-12-01

    Different muscles in a beef carcass are known to respond differently to the same stimulus or animal growth pattern or both. This may complicate the search by the meat industry for production methods to render meat tender. One of the major differences between muscles in the same carcass is in the expression of intramuscular connective tissue. Current study investigates the existence of a phenotypic difference among fibroblasts from 3 bovine skeletal muscles as exemplified by the expression of matrix metalloproteinases (MMP) the main enzymes responsible for connective tissue turnover. The sensitivity of phenotypic differences to cell culture conditions (passage number, presence of growth factors from fetal serum) was also examined. Fibroblasts, the main cells responsible for the production and turnover of collagen were isolated from LM, semitendinosus (STN), and sternomandibularis (SMD) muscles from a bull calf and grown in DMEM, 10% fetal bovine serum, and 5% CO(2). Cell doubling times, survival time, resting expression, and activity of MMP and the effect of serum withdrawal in the culture media on MMP expression and activity were determined for each cell line during 15 passages. Fibroblasts isolated from the 3 muscles had different growth potentials. The shortest (P < 0.0001) cell doubling times for almost every passage were found in cells from STN muscle. Cells from the LM had a shorter (P < 0.0001) survival time in comparison with STN and SMD. Cells derived from the STN had greater values (P > 0.05) of MMP-2 activity in comparison with LM and SMD cells until passage 4. At passage 15, no activity was detected for any cell line. Serum withdrawal generally reduced MMP-2 activation but did not eliminate differences in activity between fibroblasts from the 3 muscles. These results suggest that fibroblasts from different locations are phenotypically different and may respond differently to the same growth or nutritional stimulus in vitro. This may be related to in vivo

  9. Inhibition of liver fibrosis using vitamin A-coupled liposomes to deliver matrix metalloproteinase-2 siRNA in vitro

    PubMed Central

    LI, YIPING; LIU, FENG; DING, FENGAN; CHEN, PINGSHENG; TANG, MENG

    2015-01-01

    Hepatic fibrosis is a common form of wound healing in response to chronic liver injuries and can lead to more serious complications, including mortality. It is well-established that hepatic stellate cells (HSCs) are central mediators of hepatic fibrosis, and matrix metalloproteinase-2 (MMP-2) is important in the formation of liver fibrosis. In addition, HSCs are the primary cells secreting MMP-2 and extracellular matrix, therefore, there has been increasing interest in developing agents with high selectivity towards HSCs. However, no clinical drugs based on MMP-2, directed against HSCs, have been used to prevent fibrosis. Following consideration of the abundant vitamin A (VitA) receptors expressed on the cellular membrane of HSCs, the present study constructed VitA-coupled liposomes (VitA-lips) using dicyclohexylcarbodiimide-1, 3-diaminopentane condensation, rotatory film processing and ultrasonic oscillation. The results revealed that the liposomes exhibited low cytotoxicity and a suitable binding ability to MMP-2 small interference (si)RNA. Furthermore, the liposomes effectively delivered MMP-2 siRNA to the HSC-T6 cells. When HSCs were treated with the liposomes carrying MMP-2 siRNA (VitA-lip-MMP-2 siRNA), the mRNA expression and activity of MMP-2, and the protein expression levels of α-smooth muscle actin and type I collagen were significantly reduced. These results suggested that inhibition of the expression of MMP-2 in HSC-T6 cells may contribute to preventing hepatic fibrosis, and provided experimental support to the development of specific drugs against MMP-2 to prevent fibrogenesis in chronic liver disease. PMID:26017616

  10. Implication of matrix metalloproteinases 2 and 9 in ceramide 1-phosphate-stimulated macrophage migration.

    PubMed

    Ordoñez, Marta; Rivera, Io-Guané; Presa, Natalia; Gomez-Muñoz, Antonio

    2016-08-01

    Cell migration is a complex biological function involved in both physiologic and pathologic processes. Although this is a subject of intense investigation, the mechanisms by which cell migration is regulated are not completely understood. In this study we show that the bioactive sphingolipid ceramide 1-phosphate (C1P), which is involved in inflammatory responses, causes upregulation of metalloproteinases (MMP) -2 and -9 in J774A.1 macrophages. This effect was shown to be dependent on stimulation of phosphatidylinositol 3-kinase (PI3K) and extracellularly regulated kinases 1-2 (ERK1-2) as demonstrated by treating the cells with specific siRNA to knockdown the p85 regulatory subunit of PI3K, or ERK1-2. Inhibition of MMP-2 or MMP-9 pharmacologically or with specific siRNA to silence the genes encoding these MMPs abrogated C1P-stimulated macrophage migration. Also, C1P induced actin polymerization and potently increased phosphorylation of the focal adhesion protein paxillin, which are essential factors in the regulation of cell migration. As expected, blockade of paxillin activation with specific siRNA significantly reduced actin polymerization. In addition, inhibition of actin polymerization with cytochalasin D completely blocked C1P-induced MMP-2 and -9 expression as well as C1P-stimulated macrophage migration. It was also observed that pertussis toxin (Ptx) inhibited Akt, ERK1-2, and paxillin phosphorylation, and completely blocked cell migration. The latter findings support the notion that C1P-stimulated macrophage migration is a receptor mediated effect, and point to MMP-2 and -9 as possible therapeutic targets to control inflammation.

  11. Influence of Spironolactone on Matrix Metalloproteinase-2 in Acute Decompensated Heart Failure.

    PubMed

    Ferreira, João Pedro; Santos, Mário; Oliveira, José Carlos; Marques, Irene; Bettencourt, Paulo; Carvalho, Henrique

    2015-01-23

    Background: Matrix metalloproteinases (MMPs) are a family of enzymes important for the resorption of extracellular matrices, control of vascular remodeling and repair. Increased activity of MMP2 has been demonstrated in heart failure, and in acutely decompensated heart failure (ADHF) a decrease in circulating MMPs has been demonstrated along with successful treatment. Objective: Our aim was to test the influence of spironolactone in MMP2 levels. Methods: Secondary analysis of a prospective, interventional study including 100 patients with ADHF. Fifty patients were non-randomly assigned to spironolactone (100 mg/day) plus standard ADHF therapy (spironolactone group) or standard ADHF therapy alone (control group). Results: Spironolactone group patients were younger and had lower creatinine and urea levels (all p < 0.05). Baseline MMP2, NT-pro BNP and weight did not differ between spironolactone and control groups. A trend towards a more pronounced decrease in MMP2 from baseline to day 3 was observed in the spironolactone group (-21 [-50 to 19] vs 1.5 [-26 to 38] ng/mL, p = 0.06). NT-pro BNP and weight also had a greater decrease in the spironolactone group. The proportion of patients with a decrease in MMP2 levels from baseline to day 3 was also likely to be greater in the spironolactone group (50% vs 66.7%), but without statistical significance. Correlations between MMP2, NT-pro BNP and weight variation were not statistically significant. Conclusion: MMP2 levels are increased in ADHF. Patients treated with spironolactone may have a greater reduction in MMP2 levels.Fundamento: As metaloproteinases de matriz (MMPs) constituem uma família de enzimas importantes para a reabsorção da matriz extracelular e controle do remodelamento e da reparação vasculares. Demonstrou-se aumento da atividade de MMP2 na insuficiência cardíaca, e, na insuficiência cardíaca agudamente descompensada (ICAD), demonstrou-se uma diminuição nas MMPs circulantes juntamente com o

  12. Elevation of systemic matrix metalloproteinases 2 and 7 and tissue inhibitor of metalloproteinase 2 in patients with a history of Achilles tendon rupture: pilot study.

    PubMed

    Pasternak, B; Schepull, T; Eliasson, P; Aspenberg, P

    2010-07-01

    In this study, serum levels of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) between patients with a history of Achilles tendon rupture and blood donor controls were compared, and their relation to mechanical properties of the tendons during healing were studied. More than 3 years after injury, serum levels of MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9 and MMP-13, TIMP-1 and TIMP-2 in eight patients who had Achilles tendon rupture were measured. Twelve blood donors served as controls. During the early phase of healing, the tendon modulus of elasticity was calculated from radiostereometric data and tendon cross-sectional area. Patients with a history of Achilles tendon rupture had increased levels of MMP-2 (median difference 10%, p=0.01), MMP-7 (median difference 15%, p=0.02) and TIMP-2 (median difference 36%, p=0.02), compared with controls. Levels of MMP-7, measured 3 years after injury, correlated inversely to tendon modulus of elasticity (r(s)=20.83, p=0.02) and positively to tendon elongation (r(s)=0.74, p=0.05) during the early phase of healing. There was a trend towards positive correlation between MMP-7 and cross-sectional area during the early phase of healing (r(s)=0.67, p=0.08). Patients with a history of Achilles tendon rupture appear to have elevated levels of MMP-2, MMP-7 and TIMP-2 in serum. In these pilot data, the view that the MMP-TIMP system is involved in tendinopathy is supported and that disturbances in proteolytic control might be generalised are suggested.

  13. The Involvement of miR-29b-3p in Arterial Calcification by Targeting Matrix Metalloproteinase-2

    PubMed Central

    Jiang, Wenhong; Zhang, Zhanman; Yang, Han; Lin, Qiuning; Han, Chuangye

    2017-01-01

    Vascular calcification is a risk predictor and common pathological change in cardiovascular diseases that are associated with elastin degradation and phenotypic transformation of vascular smooth muscle cells via gelatinase matrix metalloproteinase-2 (MMP2). However, the mechanisms involved in this process remain unclear. In this study, we investigated the relationships between miR-29b-3p and MMP2, to confirm miR-29b-3p-mediated MMP2 expression at the posttranscriptional level in arterial calcification. In male Sprague Dawley rats, arterial calcification was induced by subcutaneous injection of a toxic dose of cholecalciferol. In vivo, the quantitative real-time polymerase chain reaction (qRT-PCR) showed that MMP2 expression was upregulated in calcified arterial tissues, and miR-29b-3p expression was downregulated. There was a negative correlation between MMP2 mRNA expression and miR-29b-3p levels (P = 0.0014, R2 = 0.481). Western blotting showed that MMP2 expression was significantly increased in rats treated with cholecalciferol. In vitro, overexpression of miR-29b-3p led to decreased MMP2 expression in rat vascular smooth muscle cells, while downregulation of miR-29b-3p expression led to increased MMP2 expression. Moreover, the luciferase reporter assay confirmed that MMP2 is the direct target of miR-29b-3p. Together, our results demonstrated that a role of miR-29b-3p in vascular calcification involves targeting MMP2. PMID:28164126

  14. Signal enhancement of silicon nanowire-based biosensor for detection of matrix metalloproteinase-2 using DNA-Au nanoparticle complexes.

    PubMed

    Choi, Jin-Ha; Kim, Han; Choi, Jae-Hak; Choi, Jeong-Woo; Oh, Byung-Keun

    2013-11-27

    Silicon nanowires have been used in the development of ultrasensitive biosensors or chemical sensors, which is originated in its high surface-to-volume ratio and function as field-effect transistor (FET). In this study, we developed an ultrasensitive DNA-gold (Au) nanoparticle complex-modified silicon nanowire field effect transistor (SiNW-FET) biosensor to detect matrix metalloproteinase-2 (MMP-2), which has been of particular interest as protein biomarker because of its relation to several important human diseases, through an enzymatic cleavage reaction of a specific peptide sequence (IPVSLRSG). SiNW patterns with a width of 100 nm and height of 100 nm were fabricated on a p-type silicon-on-insulator (SOI) wafer by electron-beam lithography. Next, negatively charged DNA-Au nanoparticle complexes coupled with the specific peptide (KKGGGGGG-IPVSLRSG-EEEEEE) were applied on the SiNWs to create a more sensitive system, which was then bound to aldehyde-functionalized SiNW. The enhanced negatively charged nanoparticle complexes by attached DNA were used to enhance the conductance change of the p-SiNW by MMP-2 cleavage reaction of the specific peptide. MMP-2 was successfully measured within a range of 100 fM to 10 nM, and the conductance signal of the p-type SiNW by the MMP-2 cleavage reaction was enhanced over 10-fold by using the DNA-Au nanoparticle complexes compared with using SiNW-attached negative single peptide sequences.

  15. [Expression and clinical significance of kisspeptin-1, matrix metalloproteinase-2 and vascular endothelial growth factor in tissue of colon cancer].

    PubMed

    Wang, Wenhui; Qi, Yuanling; Xu, Qian; Ren, Haipeng

    2016-03-01

    To detect the expression of kisspeptin-1 (KISS-1), matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in the tissue of colon cancer, and analyze the relativity between KISS-1, MMP-2, VEGF and pathological characteristics of colon cancer. A total of 60 colon cancer patients and 60 patients with benign colorectal disease who received surgical treatment in our hospital from January 2009 to June 2010 were selected as observation group and control group respectively. The cancer tissue samples and excision samples collected from them were used to detect KISS-1, MMP-2 and VEGF with immunohistochemistry. The positive rates of KISS-1, MMP-2 and VEGF were 31.7%, 58.3% and 78.3% in observation group, and 73.3%, 16.7% and 33.3% in control group. The positive rate of KISS-1 in observation group was lower than that in control group (χ(2)=23.489, P<0.001), and the positive rates of MMP-2 and VEGF in observation group were higher than those in control group (χ(2)=27.469, P<0.001; χ(2)=25.817, P<0.001). The expressions of KISS-1, MMP-2 and VEGF were significantly related with the histological grade and TNM stage of colon cancer (χ(2)=8.997, P=0.011; χ(2)=6.163, P=0.013; χ(2)=8.519, P=0.014; χ(2)=9.160, P=0.002; χ(2)=16.577, P<0.001; χ(2)=10.523, P=0.001). It is helpful to understand the differentiation and clinical stage of colon cancer and provide evidence for clinical diagnosis and prognosis prediction by detecting KISS-1, MMP-2 and VEGF.

  16. 2-Chloroethanol Induced Upregulation of Matrix Metalloproteinase-2 in Primary Cultured Rat Astrocytes Via MAPK Signal Pathways

    PubMed Central

    Sun, Qi; Liao, Yingjun; Wang, Tong; Tang, Hongge; Wang, Gaoyang; Zhao, Fenghong; Jin, Yaping

    2017-01-01

    This study was to explore the mechanisms underlying 1,2-dichloroethane (1,2-DCE) induced brain edema by focusing on alteration of matrix metalloproteinase-2 (MMP-2) in rat astrocytes induced by 2-chloroethanol (2-CE), an intermediate metabolite of 1,2-DCE in vivo. Protein and mRNA levels of MMP-2, and the phosphorylated protein levels of p38 MAPK (p-p38), extracellular signal regulated protein kinase (p-ERK1/2) and c-Jun N-terminal kinase (p-JNK1/2) in astrocytes were examined by immunostaining, western blot or real-time RT-PCR analysis. Findings from this study disclosed that protein levels of MMP-2 were upregulated by 2-CE in astrocytes. Meanwhile, protein levels of p-p38, p-ERK1/2 and p-JNK1/2 were also increased apparently in the cells treated with 2-CE. Moreover, pretreatment of astrocytes with SB202190 (inhibitor of p38 MAPK), U0126 (inhibitor of ERK1/2) or SP600125 (inhibitor of JNK1/2) could suppress the upregulated expression of p-p38, p-ERK1/2, and p-JNK1/2. In response to suppressed protein levels of p-p38 and p-JNK1/2, the protein levels of MMP-2 also decreased significantly, indicating that activation of MAPK signal pathways were involved in the mechanisms underlying 2-CE-induced upregulation of MMP-2 expression. PMID:28101000

  17. Increased electrocatalyzed performance through high content potassium doped graphene matrix and aptamer tri infinite amplification labels strategy: Highly sensitive for matrix metalloproteinases-2 detection.

    PubMed

    Ren, Xiang; Zhang, Tong; Wu, Dan; Yan, Tao; Pang, Xuehui; Du, Bin; Lou, Wanruo; Wei, Qin

    2017-08-15

    Herein, a super-labeled immunoassay was fabricated for matrix metalloproteinases-2 detection. A self-corrosion ITO micro circuit board was designed in this sensing platform to reduce the random error in the same testing condition, and the self-constructed sensing platform is portable with a cheap price. The K-modified graphene (K-GS) was utilized as the matrix material, which was synthesized well by phenylate and phenanthrene through the polar bond of nonpolar molecule phenylate and the π-π interaction for the first time. An aptamer-based labels based on Au nanoparticles (AuNPs), thionine (Th) and horseradish peroxidase (HRP) were applied as the signal source for tri infinite amplification. This fabricated super-labeled immunoassay exhibit excellent performance for MMPs-2 detection. It displayed a broad linear range of 10(-4)-10ng/mL with a low detection limit of 35 fg/mL, which may have a potential application in the clinical diagnose. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Omega-3 and Omega-6 Fatty Acids Act as Inhibitors of the Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity.

    PubMed

    Nicolai, Eleonora; Sinibaldi, Federica; Sannino, Gianpaolo; Laganà, Giuseppina; Basoli, Francesco; Licoccia, Silvia; Cozza, Paola; Santucci, Roberto; Piro, Maria Cristina

    2017-08-01

    Polyunsaturated fatty acids have been reported to play a protective role in a wide range of diseases characterized by an increased metalloproteinases (MMPs) activity. The recent finding that omega-3 and omega-6 fatty acids exert an anti-inflammatory effect in periodontal diseases has stimulated the present study, designed to determine whether such properties derive from a direct inhibitory action of these compounds on the activity of MMPs. To this issue, we investigated the effect exerted by omega-3 and omega-6 fatty acids on the activity of MMP-2 and MMP-9, two enzymes that actively participate to the destruction of the organic matrix of dentin following demineralization operated by bacteria acids. Data obtained (both in vitro and on ex-vivo teeth) reveal that omega-3 and omega-6 fatty acids inhibit the proteolytic activity of MMP-2 and MMP-9, two enzymes present in dentin. This observation is of interest since it assigns to these compounds a key role as MMPs inhibitors, and stimulates further study to better define their therapeutic potentialities in carious decay.

  19. Elevated Expression of Matrix Metalloproteinase-9 not Matrix Metalloproteinase-2 Contributes to Progression of Extracranial Arteriovenous Malformation

    PubMed Central

    Wei, Ting; Zhang, Haihong; Cetin, Neslihan; Miller, Emily; Moak, Teri; Suen, James Y.; Richter, Gresham T.

    2016-01-01

    Extracranial arteriovenous malformations (AVMs) are rare but dangerous congenital lesions arising from direct arterial-venous shunts without intervening capillaries. Progressive infiltration, expansion, and soft tissue destruction lead to bleeding, pain, debilitation and disfigurement. The pathophysiology of AVMs is not well understood. Matrix Metalloproteinases (MMPs) are thought to play an important role in pathologic processes underlying many diseases. This study investigates the expression of MMP-9 and MMP-2 in aggressive extracranial AVMs. The differential expression of MMP-9 and its regulatory factors is also examined. Herein we demonstrate that mRNA and protein expressions of MMP-9, but not MMP-2, are significantly higher in AVM tissues compared to normal tissues. The serum level of MMP-9, but not MMP-2, is also elevated in AVM patients compared to healthy controls. MMP-9/neutrophil gelatinase-associated lipocalin (NGAL) complex is also significantly increased in AVM tissues. The MMP-9/ tissue inhibitor of metalloproteases-1 (TIMP-1) complex presents as a major form detected in normal tissues. The increased and aberrant expression of MMP-9 and specific MMP-9 forms may help explain the constitutive vascular remodeling and infiltrative nature of these lesions. Specific MMP-9 inhibitors would be a promising treatment for AVMs. PMID:27075045

  20. Discoidin domain receptor 2 regulates fibroblast proliferation and migration through the extracellular matrix in association with transcriptional activation of matrix metalloproteinase-2.

    PubMed

    Olaso, Elvira; Labrador, Juan-Pablo; Wang, LiHsien; Ikeda, Kazuo; Eng, Francis J; Klein, Rudiger; Lovett, David H; Lin, Hsin Chieh; Friedman, Scott L

    2002-02-01

    Discoidin domain receptor 2 (DDR2) is a tyrosine kinase receptor expressed in mesenchymal tissues, the ligand of which is fibrillar collagen. We have compared DDR2 signaling in skin fibroblasts derived from DDR2(-/-) and DDR2(+/-) mice. Proliferation of DDR2(-/-) fibroblasts was significantly decreased compared with DDR2(+/-) cells. DDR2(-/-) fibroblasts exhibited markedly impaired capacity to migrate through a reconstituted basement membrane (Matrigel) in response to a chemotactic stimulus, which correlated with diminished matrix metalloproteinase-2 (MMP-2) activity by gelatin zymography and diminished MMP-2 transcription of a minimal MMP-2 promoter. In contrast, a lack of DDR2 had no effect on cell motility or alpha-smooth muscle actin or vinculin expression. Additionally, expression of type I collagen was greatly reduced in DDR2(-/-) cells. Stable reconstitution of either wild-type DDR2 or constitutively active chimeric DDR2 in DDR2(-/-) cells by retroviral infection restored cell proliferation, migration through a reconstituted basement membrane (Matrigel), and MMP-2 levels to those of DDR2(+/-) fibroblasts. These data establish a role for DDR2 in critical events during wound repair.

  1. Induction of tissue inhibitor of matrix metalloproteinase-2 by cholesterol depletion leads to the conversion of proMMP-2 into active MMP-2 in human dermal fibroblasts

    PubMed Central

    Kim, Sangmin; Oh, Jang-Hee; Lee, Youngae; Lee, Jeongyoon; Cho, Kwang Hyun

    2010-01-01

    Cholesterol is one of major components of cell membrane and plays a role in vesicular trafficking and cellular signaling. We investigated the effects of cholesterol on matrix metalloproteinase-2 (MMP-2) activation in human dermal fibroblasts. We found that tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) expression and active form MMP-2 (64 kD) were dose-dependently increased by methyl-β-cyclodextrin (MβCD), a cholesterol depletion agent. In contrast, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation were suppressed by cholesterol repletion. Then we investigated the regulatory mechanism of TIMP-2 expression by cholesterol depletion. We found that the phosphorylation of JNK as well as ERK was significantly increased by cholesterol depletion. Moreover, cholesterol depletion-induced TIMP-2 expression and MMP-2 activation was significantly decreased by MEK inhibitor U0126, and JNK inhibitor SP600125, respectively. While a low dose of recombinant TIMP-2 (100 ng/ml) increased the level of active MMP-2 (64 kD), the high dose of TIMP-2 (≥ 200 ng/ml) decreased the level of active MMP-2 (64 kD). Taken together, we suggest that the induction of TIMP-2 by cholesterol depletion leads to the conversion of proMMP-2 (72 kD) into active MMP-2 (64 kD) in human dermal fibroblasts. PMID:19887895

  2. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    SciTech Connect

    Peng, P.-L.; Hsieh, Y.-S.; Wang, C.-J.; Hsu, J.-L.; Chou, F.-P. . E-mail: fpchou@csmu.edu.tw

    2006-07-01

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reduction in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-{kappa}B, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment.

  3. Distinct roles for matrix metalloproteinase-2 and alpha4 integrin in autoimmune T cell extravasation and residency in brain parenchyma during experimental autoimmune encephalomyelitis.

    PubMed

    Graesser, D; Mahooti, S; Madri, J A

    2000-09-22

    Expression of alpha4 integrin by auto-reactive T cells is critical for their ability to induce EAE, an autoimmune disease of the central nervous system in mice, used as a model to study human multiple sclerosis. Having previously identified one role for alpha4 integrin in adhesion-mediated induction of matrix metalloproteinase-2 (MMP-2), an enzyme that degrades the subendothelial basement membrane matrix, we investigated independent roles for MMP-2 and alpha4 integrin during EAE. The data suggest that expression of alpha4 integrin by auto-reactive T cells is important not only in mediating MMP-2 induction to facilitate entry into the CNS, but also plays a role in maintaining residency within the CNS.

  4. Effects of Dietary Copper-Methionine on Matrix Metalloproteinase-2 in the Lungs of Cold-Stressed Broilers as an Animal Model for Pulmonary Hypertension.

    PubMed

    Bagheri Varzaneh, Mina; Rahmani, Hamidreza; Jahanian, Rahman; Mahdavi, Amir Hossein; Perreau, Corinne; Perrot, Gwenn; Brézillon, Stéphane; Maquart, François-Xavier

    2016-08-01

    The objective of the present study was to investigate the effects of different levels of copper (as supplemental copper-methionine) on ascites incidence and matrix metalloproteinase-2 (MMP-2) changes in the lungs of cold-stressed broilers. For this purpose, 480 1-day-old Ross 308 broiler chickens were randomly assigned to six treatments. Treatments consisted of two ambient temperatures (thermoneutral and cold stress) each combined with 0, 100, and 200 mg supplemental copper/kg as copper-methionine in a 2 × 3 factorial arrangement in a completely randomized design with four replicates. Ascites was diagnosed based on abdominal and pericardial fluid accumulation at 45 days of age. Fourty-eight broilers were killed at 38 and 45 days of age, and their lungs were collected for biological analysis. Results showed that MMP-2 increased in the lungs of ascitic broilers and that copper-methionine supplementation significantly reduced MMP-2 in cold-stressed broiler chickens. Treatments did not affect tissue inhibitor of metalloproteinase-2 (TIMP-2) at 38 and 45 days of age, and no difference was observed between 100 and 200 mg/kg copper-methionine treatments. In conclusion, copper-methionine at higher than conventional levels of supplementation decreased ascites incidence in low temperature through reduced MMP-2 concentration. Further research is warranted to investigate the effect of copper on MMP-2 concentrations in other tissues with high oxygen demand.

  5. Novel ternary vanadium-betaine-peroxido species suppresses H-ras and matrix metalloproteinase-2 expression by increasing reactive oxygen species-mediated apoptosis in cancer cells.

    PubMed

    Petanidis, Savvas; Kioseoglou, Efrosini; Hadzopoulou-Cladaras, Margarita; Salifoglou, Athanasios

    2013-07-28

    Vanadium is known for its antitumorigenicity. Poised to investigate the impact of well-defined forms of vanadium on processes and specific biomolecules (oncogenes-proteins) involved in cancer cell physiology, a novel ternary V(V)-peroxido-betaine compound was employed in experiments targeting cell viability, apoptosis, reactive oxygen species (ROS) production, H-ras signaling, and matrix metalloproteinase-2 (MMP-2) expression in human breast cancer epithelial and lung adenocarcinoma cells. The results reveal that vanadium imparts a significant decrease in cancer cell viability, reducing H-ras and MMP-2 expression by increasing ROS-mediated apoptosis, distinctly emphasizing the nature, structure and properties of ternary ligands on vanadium anti-tumor activity and its future potential as a metallodrug.

  6. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.

    PubMed

    Miyazaki, Daigo; Nakamura, Akinori; Fukushima, Kazuhiro; Yoshida, Kunihiro; Takeda, Shin'ichi; Ikeda, Shu-ichi

    2011-05-01

    Matrix metalloproteases (MMPs) are a family of endopeptidases classified into subgroups based on substrate preference in normal physiological processes such as embryonic development and tissue remodeling, as well as in various disease processes via degradation of extracellular matrix components. Among the MMPs, MMP-9 and MMP-2 have been reported to be up-regulated in skeletal muscles in the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. A recent study showed that deletion of the MMP9 gene in mdx, a mouse model for DMD, improved skeletal muscle pathology and function; however, the role of MMP-2 in the dystrophin-deficient muscle is not well known. In this study, we aimed at verifying the role of MMP-2 in the dystrophin-deficient muscle by using mdx mice with genetic ablation of MMP-2 (mdx/MMP-2(-/-)). We found impairment of regenerated muscle fiber growth with reduction of angiogenesis in mdx/MMP-2(-/-) mice at 3 months of age. Expression of vascular endothelial growth factor-A (VEGF-A), an important angiogenesis-related factor, decreased in mdx/MMP-2(-/-) mice at 3 months of age. MMP-2 had not a critical role in the degradation of dystrophin-glycoprotein complex (DGC) components such as β-dystroglycan and β-sarcoglycan in the regeneration process of the dystrophic muscle. Accordingly, MMP-2 may be essential for growth of regenerated muscle fibers through VEGF-associated angiogenesis in the dystrophin-deficient skeletal muscle.

  7. Tissue Inhibitor of Metalloproteinase-2 Gene Delivery Ameliorates Post-Infarction Cardiac Remodeling

    PubMed Central

    Ramani, Ravi; Nilles, Kathleen; Gibson, Gregory; Burkhead, Benjamin; Mathier, Michael; McNamara, Dennis; McTiernan, Charles F.

    2011-01-01

    Hypothesis Adenoviral-mediated (AdV-T2) overexpression of TIMP-2 would blunt ventricular remodeling and improve survival in a murine model of chronic ischemic injury. Methods Male mice (n=124) aged 10–14 weeks underwent either 1) left coronary artery ligation to induce myocardial infarction (MI group, n=36), 2) myocardial injection of 6×1010 viral particles of AdV-T2 immediately post-MI (MI+T2 group, n=30), 3) myocardial injection of 6×1010 viral particles of a control adenovirus (MI+Ct, n=38), or 4) received no intervention (controls, n=20). On post-MI day 7, surviving mice (n=79) underwent echocardiographic, immunohistochemical and biochemical analysis. Results In infarcted animals, the MI+T2 group demonstrated improved survival (p< 0.02), better preservation of developed pressure and ventricular diameter (p<0.04), and the lowest expression and activity of MMP-2 and MMP-9 (P<0.04) compared with MI and MI+Ct groups.. All infarcted hearts displayed significantly increased inflammatory cell infiltration (p<0.04 versus control, MI, or MI+T2), with infiltration highest in the MI+Ct group and lowest in the MI+T2 group (p<0.04). Conclusions Adenoviral mediated myocardial delivery of the TIMP-2 gene improves post-MI survival and limits adverse remodeling in a murine model of myocardial infarction. PMID:21348952

  8. Ciprofloxacin up-regulates tendon cells to express matrix metalloproteinase-2 with degradation of type I collagen.

    PubMed

    Tsai, Wen-Chung; Hsu, Chih-Chin; Chen, Carl P C; Chang, Hsiang-Ning; Wong, Alice M K; Lin, Miao-Sui; Pang, Jong-Hwei S

    2011-01-01

    Ciprofloxacin-induced tendinopathy and tendon rupture have been previously described, principally affecting the Achilles tendon. This study was designed to investigate the effect of ciprofloxacin on expressions of matrix metalloproteinases (MMP)-2 and -9, tissue inhibitors of metalloproteinase (TIMP)-1 and -2 as well as type I collagen in tendon cells. Tendon cells intrinsic to rat Achilles tendon were treated with ciprofloxacin and then underwent MTT (tetrazolium) assay. Real-time reverse-transcription polymerase chain reaction (RT-PCR) and Western blot analysis were used, respectively, to evaluate the gene and protein expressions of type I collagen, and MMP-2. Gelatin zymography was used to evaluate the enzymatic activities of MMP-2 and -9. Reverse zymography was used to evaluate TIMP-1 and -2. Immunohistochemical staining for MMP-2 in ciprofloxacin-treated tendon explants was performed. Collagen degradation was evaluated by incubation of conditioned medium with collagen. The results revealed that ciprofloxacin up-regulated the expression of MMP-2 in tendon cells at the mRNA and protein levels. Immunohistochemistry also confirmed the increased expressions of MMP-2 in ciprofloxacin-treated tendon explants. The enzymatic activity of MMP-2 was up-regulated whereas that of MMP-9, TIMP-1 or TIMP-2 was unchanged. The amount of secreted type I collagen in the conditioned medium decreased and type I collagen was degraded after ciprofloxacin treatment. In conclusion, ciprofloxacin up-regulates the expressions of MMP-2 in tendon cells and thus degraded type I collagen. These findings suggest a possible mechanism of ciprofloxacin-associated tendinopathy. Copyright © 2010 Orthopaedic Research Society.

  9. Increase of glycosaminoglycans and metalloproteinases 2 and 9 in liver extracellular matrix on early stages of extrahepatic cholestasis.

    PubMed

    Guedes, Pedro Luiz Rodrigues; Castañon, Maria Christina Marques Nogueira; Nagaoka, Márcia Regina; Aguiar, Jair Adriano Kopke de

    2014-01-01

    Cholestasis produces hepatocellular injury, leukocyte infiltration, ductular cells proliferation and fibrosis of liver parenchyma by extracellular matrix replacement. Analyze bile duct ligation effect upon glycosaminoglycans content and matrix metalloproteinase (MMPs) activities. Animals (6-8 weeks; n = 40) were euthanized 2, 7 or 14 days after bile duct ligation or Sham-surgery. Disease evolution was analyzed by body and liver weight, seric direct bilirubin, globulins, gamma glutamyl transpeptidase (GGT), alkaline phosphatase (Alk-P), alanine and aspartate aminotransferases (ALT and AST), tissue myeloperoxidase and MMP-9, pro MMP-2 and MMP-2 activities, histopathology and glycosaminoglycans content. Cholestasis caused cellular damage with elevation of globulins, GGT, Alk-P, ALT, AST. There was neutrophil infiltration observed by the increasing of myeloperoxidase activity on 7 (P = 0.0064) and 14 (P = 0.0002) groups which leads to the magnification of tissue injuries. Bile duct ligation increased pro-MMP-2 (P = 0.0667), MMP-2 (P = 0.0003) and MMP-9 (P<0.0001) activities on 14 days indicating matrix remodeling and establishment of inflammatory process. Bile duct ligation animals showed an increasing on dermatan sulfate and/or heparan sulfate content reflecting extracellular matrix production and growing mitosis due to parenchyma depletion. Cholestasis led to many changes on rats' liver parenchyma, as so as on its extracellular matrix, with major alterations on MMPs activities and glycosaminoglycans content.

  10. Perfluorooctanoic acid stimulates breast cancer cells invasion and up-regulates matrix metalloproteinase-2/-9 expression mediated by activating NF-κB.

    PubMed

    Zhang, Weidong; Wang, Fengliang; Xu, Pengfei; Miao, Chen; Zeng, Xin; Cui, Xianwei; Lu, Cheng; Xie, Hui; Yin, Hong; Chen, Fei; Ma, Jingjing; Gao, Sheng; Fu, Ziyi

    2014-08-17

    Perfluorooctanoic acid (PFOA) is widely used because of its stain-resistant and water-repellant properties. This study aimed to explore the molecular mechanisms undergoing the stimulation effects of PFOA on cancer cell invasion and matrix metalloproteinases (MMPs) expression. Trans-well filter assay showed that PFOA exposure (≥5 nM) evidently enhanced the invasion ability of the breast cancer cells MDA-MB-231. Luciferase reporter assay, quantitative real-time PCR, western blotting and gelatin zymography consistently demonstrated that mRNA and protein levels of MMP-2/-9 were increased in the cells after PFOA treatment (P<0.05 each). Western blotting revealed that PFOA could activate nuclear factor kappaB (NF-κB) by accelerating NF-κB translocation into the nucleus. Furthermore, addition of NF-κB inhibitor in culture medium could suppress the breast cancer cells invasiveness enhancement and MMP-2/-9 overexpression. This study indicates that PFOA can stimulate breast cancer cells invasion and up-regulate matrix metalloproteinase-2/-9 expression mediated by activating NF-κB, which deserves more environmental health concerns. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Biocompatible nanoparticles sensing the matrix metallo-proteinase 2 for the on-demand release of anticancer drugs in 3D tumor spheroids.

    PubMed

    Cantisani, Marco; Guarnieri, Daniela; Biondi, Marco; Belli, Valentina; Profeta, Martina; Raiola, Luca; Netti, Paolo A

    2015-11-01

    The balance between dose-dependent tolerability, effectiveness and toxicity of systemically administered antitumor drugs is extremely delicate. This issue highlights the striking need for targeted release of chemotherapeutic drugs within tumors. In this work, a smart strategy of drug targeting to tumors relying upon biodegradable/biocompatible nanoparticles releasing cytotoxic drugs after sensing physiological variations intrinsic to the very nature of tumor tissues is exploited. Here, the well-known over-expression of matrix metallo-proteinase 2 (MMP2) enzyme in tumors has been chosen as a trigger for the release of a cytotoxic drug. Nanoparticles made up of a biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA)--block--polyethylene glycol (PEG) copolymer (namely PELGA), blended with a tumor-activated prodrug (TAP) composed of a MMP2-sensitive peptide bound to doxorubicin (Dox) and to PLGA chain have been produced. The obtained devices are able to release Dox specifically upon MMP2 cleavage of the TAP. More interestingly, they can sense the differences in the expression levels of endogenous MMP2 protein, thus modulating drug penetration within a three-dimensional (3D) tumor spheroid matrix, accordingly. Therefore, the proposed nanoparticles hold promise as a useful tool for in vivo investigations aimed at an improved therapeutic efficacy of the conjugated drug payload. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Serum Concentrations of Endothelin-1 and Matrix Metalloproteinases-2, -9 in Pre-Hypertensive and Hypertensive Patients with Type 2 Diabetes

    PubMed Central

    Kostov, Krasimir; Blazhev, Alexander; Atanasova, Milena; Dimitrova, Anelia

    2016-01-01

    Endothelin-1 (ET-1) is one of the most potent vasoconstrictors known to date. While its plasma or serum concentrations are elevated in some forms of experimental and human hypertension, this is not a consistent finding in all forms of hypertension. Matrix metalloproteinases -2 and -9 (MMP-2 and MMP-9), which degrade collagen type IV of the vascular basement membrane, are responsible for vascular remodeling, inflammation, and atherosclerotic complications, including in type 2 diabetes (T2D). In our study, we compared concentrations of ET-1, MMP-2, and MMP-9 in pre-hypertensive (PHTN) and hypertensive (HTN) T2D patients with those of healthy normotensive controls (N). ET-1, MMP-2, and MMP-9 were measured by ELISA. Concentrations of ET-1 in PHTN and N were very similar, while those in HTN were significantly higher. Concentrations of MMP-2 and MMP-9 in PHTN and HTN were also significantly higher compared to N. An interesting result in our study is that concentrations of MMP-2 and MMP-9 in HTN were lower compared to PHTN. In conclusion, we showed that increased production of ET-1 in patients with T2D can lead to long-lasting increases in blood pressure (BP) and clinical manifestation of hypertension. We also demonstrated that increased levels of MMP-2 and MMP-9 in pre-hypertensive and hypertensive patients with T2D mainly reflect the early vascular changes in extracellular matrix (ECM) turnover. PMID:27490532

  13. Effects of rosuvastatin on the production and activation of matrix metalloproteinase-2 and migration of cultured rat vascular smooth muscle cells induced by homocysteine*

    PubMed Central

    Shi, Ya-fei; Chi, Ju-fang; Tang, Wei-liang; Xu, Fu-kang; Liu, Long-bin; Ji, Zheng; Lv, Hai-tao; Guo, Hang-yuan

    2013-01-01

    Objective: To test the influence of homocysteine on the production and activation of matrix metalloproteinase-2 (MMP-2) and tissue inhibitors of matrix metalloproteinase-2 (TIMP-2) and on cell migration of cultured rat vascular smooth muscle cells (VSMCs). Also, to explore whether rosuvastatin can alter the abnormal secretion and activation of MMP-2 and TIMP-2 and migration of VSMCs induced by homocysteine. Methods: Rat VSMCs were incubated with different concentrations of homocysteine (50–5 000 μmol/L). Western blotting and gelatin zymography were used to investigate the expressions and activities of MMP-2 and TIMP-2 in VSMCs in culture medium when induced with homocysteine for 24, 48, and 72 h. Transwell chambers were employed to test the migratory ability of VSMCs when incubated with homocysteine for 48 h. Different concentrations of rosuvastatin (10−9–10−5 mol/L) were added when VSMCs were induced with 1 000 μmol/L homocysteine. The expressions and activities of MMP-2 and TIMP-2 were examined after incubating for 24, 48, and 72 h, and the migration of VSMCs was also examined after incubating for 48 h. Results: Homocysteine (50–1 000 μmol/L) increased the production and activation of MMP-2 and expression of TIMP-2 in a dose-dependent manner. However, when incubated with 5 000 μmol/L homocysteine, the expression of MMP-2 was up-regulated, but its activity was down-regulated. Increased homocysteine-induced production and activation of MMP-2 were reduced by rosuvastatin in a dose-dependent manner whereas secretion of TIMP-2 was not significantly altered by rosuvastatin. Homocysteine (50–5 000 μmol/L) stimulated the migration of VSMCs in a dose-dependent manner, but this effect was eliminated by rosuvastatin. Conclusions: Homocysteine (50–1 000 μmol/L) significantly increased the production and activation of MMP-2, the expression of TIMP-2, and the migration of VSMCs in a dose-dependent manner. Additional extracellular rosuvastatin can decrease

  14. Expression of matrix metalloproteinases-2, -8, -13, -26, and tissue inhibitors of metalloproteinase-1 in human osteosarcoma.

    PubMed

    Korpi, Jarkko T; Hagström, Jaana; Lehtonen, Niko; Parkkinen, Jyrki; Sorsa, Timo; Salo, Tuula; Laitinen, Minna

    2011-03-01

    Osteosarcoma (OS) is among most common malignant tumour of bone. Matrix metalloproteinases (MMPs) are predominantly associated with poor prognosis of several cancers, although some of them, like MMP-8, seem to have a protective role in some cancers. We analyzed the distribution patterns of MMP-2, -8, -13, -26, and tissue inhibitor of matrix metalloproteinase (TIMP)-1 in 25 OS patients. MMP-2, -8, -13, -26 and TIMP-1 were mostly detected in sarcoma cells. Response to chemotherapy affected the amount of MMP-2, -8, and -13 in resection sections when compared to biopsies: patients with excellent or good response had less positivity to MMP-2 in chemotherapy samples than those with moderate or poor response. We conclude that MMP-2, -8, -13, -26, and TIMP-1 are expressed in OS tissue, and all, except protective MMP-8, were also found in metastases indicating that MMPs and TIMP-1 can participate in the OS progression.

  15. The interrelationship of alpha4 integrin and matrix metalloproteinase-2 in the pathogenesis of experimental autoimmune encephalomyelitis.

    PubMed

    Graesser, D; Mahooti, S; Haas, T; Davis, S; Clark, R B; Madri, J A

    1998-11-01

    Previous studies have suggested that surface expression of alpha4 integrin by autoreactive T-cell clones is necessary for the clones to induce experimental autoimmune encephalomyelitis (EAE), a mouse model for human multiple sclerosis. To provide direct evidence for this phenomenon, we have transfected alpha4 integrin into C19alpha4-LO, a myelin basic protein-reactive T-cell clone that does not express alpha4 integrin and does not induce EAE when adoptively transferred into a susceptible mouse strain. Transfection of alpha4 integrin converted this clone to an alpha4 integrin-expressing clone that induced EAE. We then examined potential mechanisms by which alpha4 integrin may facilitate the disease process. C19 T-cell clones adhered equally to a monolayer of microvascular endothelial cells, regardless of level of alpha4 integrin expression. However, in contrast to T-cell clones that do not express alpha4 integrin, T-cell clones that express alpha4 integrin (endogenously or by transfection) transmigrated through an endothelial cell layer and subendothelial matrix at an enhanced rate and adhered to recombinant vascular cell adhesion molecule-1 (rVCAM-1) and the CS1 fragment of fibronectin, and after adhesion to these ligands, a matrix-degrading metalloproteinase (MMP-2) was induced and activated. The clones were also shown to constitutively express the membrane-type matrix metalloproteinase (MT1-MMP), an enzyme that activates MMP-2. GM6001 and UK-221,316, inhibitors of metalloproteinases, reduced alpha4 integrin-mediated transmigration and EAE induction by C19 T-cell clones. In addition, we studied a second EAE-inducing T-cell clone, MM4, which constitutively expresses alpha4 integrin and MMP-2. Engagement of alpha4 integrin on the MM4 clone up-regulated the expression and activation of MMP-2, without changing the expression of MT1-MMP. MMP inhibitors also reduced transmigration of and EAE induction by the MM4 T-cell clone. These studies demonstrate directly that

  16. Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system.

    PubMed

    Verslegers, Mieke; Lemmens, Kim; Van Hove, Inge; Moons, Lieve

    2013-06-01

    It has been 50 years since Gross and Lapiere discovered collagenolytic activity during tadpole tail metamorphosis, which was later on revealed as MMP-1, the founding member of the matrix metalloproteinases (MMPs). Currently, MMPs constitute a large group of endoproteases that are not only able to cleave all protein components of the extracellular matrix, but also to activate or inactivate many other signaling molecules, such as receptors, adhesion molecules and growth factors. Elevated MMP levels are associated with an increasing number of injuries and disorders, such as cancer, inflammation and auto-immune diseases. Yet, MMP upregulation has also been implicated in many physiological functions such as embryonic development, wound healing and angiogenesis and therefore, these proteinases are considered to be crucial mediators in many biological processes. Over the past decennia, MMP research has gained considerable attention in several pathologies, most prominently in the field of cancer metastasis, and more recent investigations also focus on the nervous system, with a striking emphasis on the gelatinases, MMP-2 and MMP-9. Unfortunately, the contribution of these gelatinases to neuropathological disorders, like multiple sclerosis and Alzheimer's disease, has overshadowed their potential as modulators of fundamental nervous system functions. Within this review, we wish to highlight the currently known or suggested actions of MMP-2 and MMP-9 in the developing and adult nervous system and their potential to improve repair or regeneration after nervous system injury.

  17. Association between matrix metalloproteinase 2 (MMP2) promoter polymorphisms and the susceptibility to non-Hodgkin's lymphoma in Egyptians.

    PubMed

    Gouda, Heba Mahmoud; Khorshied, Mervat Mamdooh; El Sissy, Maha Hamdi; Shaheen, Iman Abdel Mohsen; Mohsen, Mohsen Mokhtar Abdel

    2014-08-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases capable of extracellular matrix degradation. MMP2 is the key molecule that control invasion, tumor growth, and metastasis, and has been associated with poor prognosis in several tumors. Several epidemiological studies have focused on the associations between MMP2 promoter polymorphisms and cancer susceptibility; however, little is known about their role in hematological malignancies. The present study aimed to investigate the association of MMP2 -735C/T and -1306C/T promoter polymorphisms with B-NHL susceptibility and their clinicopathological characteristics. The study included 100 B-NHL patients and 100 healthy controls. Genotyping of MMP2 -735C/T and MMP2 -1306C/T was done by polymerase chain reaction restricted fragment length polymorphism (PCR-RFLP) technique. MMP2 -735C/T heteromutant genotype (CT) was detected in 23 % of patients, and the homomutant genotype (TT) was detected in 7 % of patients. The polymorphic allele, T allele, was associated with susceptibility to B-NHL (OR = 2.8:95 %CI = 1.48-5.28). For MMP2 -1306C/T, the frequencies of the polymorphic variants were 5 % for the heteromutant genotype (CT) and 3 % for the homomutant genotype (TT). The polymorphic allele, T allele, conferred almost fourfold increased risk of B-NHL (OR = 3.8, 95 %CI = 1.05-13.9), and the risk elevated to be almost eight folds when confined to diffuse large B-cell lymphoma (DLBCL) (OR = 7.9, 95 %CI = 1.67-32.27). MMP2 -735C/T polymorphic genotypes were correlated with advanced clinical stages of the disease (stages III and IV). In conclusion, the study revealed that the variant alleles of MMP2 -735C/T and MMP2 -1306C/T can be considered as molecular risk factors for B-NHL among Egyptians.

  18. Differential Expression of Matrix Metalloproteinases 2, 9 and Cytokines by Neutrophils and Monocytes in the Clinical Forms of Chagas Disease.

    PubMed

    Medeiros, Nayara I; Fares, Rafaelle C G; Franco, Eliza P; Sousa, Giovane R; Mattos, Rafael T; Chaves, Ana T; Nunes, Maria do Carmo P; Dutra, Walderez O; Correa-Oliveira, Rodrigo; Rocha, Manoel O C; Gomes, Juliana A S

    2017-01-01

    Dilated cardiomyopathy, the most severe manifestation in chronic phase of Chagas disease, affects about 30% of patients and is characterized by myocardial dysfunction and interstitial fibrosis due to extracellular matrix (ECM) remodeling. ECM remodeling is regulated by proteolytic enzymes such as matrix metalloproteinases (MMPs) and cytokines produced by immune cells, including phagocytes. We evaluated by flow cytometry the expression of MMP-2, MMP-9, IL-1β, TNF-α, TGF-β and IL-10 by neutrophils and monocytes from patients with indeterminate (IND) and cardiac (CARD) clinical forms of Chagas disease and non-infected individuals (NI), before and after in vitro stimulation with Trypanosoma cruzi antigens. Our results showed an important contribution of neutrophils for MMPs production, while monocytes seemed to be involved in cytokine production. The results showed that neutrophils and monocytes from IND and CARD patients had higher intracellular levels of MMP-2 and MMP-9 than NI individuals. On the other hand, T. cruzi derived-antigens promote a differential expression of MMP-2 and MMP-9 in patients with Chagas disease and may regulate MMPs expression in neutrophils and monocytes, mainly when a cardiac alteration is not present. Our data also showed that in the presence of T. cruzi derived-antigens the production of cytokines by neutrophils and monocytes, but mainly by monocytes, may be intensified. Correlation analysis demonstrated that MMP-2 had a positive correlation with IL-10 and a negative correlation with IL-1β, whereas MMP-9 showed a negative correlation with IL-10. We also observed that IND patients presented a greater percentage of high producer cells of regulatory molecules when compared to CARD patients, indicating a different pattern in the immune response. Our data suggest that MMPs and cytokines produced by neutrophils and monocytes are important contributors for cardiac remodeling and may be an interesting target for new biomarker research.

  19. Differential Expression of Matrix Metalloproteinases 2, 9 and Cytokines by Neutrophils and Monocytes in the Clinical Forms of Chagas Disease

    PubMed Central

    Medeiros, Nayara I.; Fares, Rafaelle C. G.; Franco, Eliza P.; Sousa, Giovane R.; Mattos, Rafael T.; Chaves, Ana T.; Nunes, Maria do Carmo P.; Dutra, Walderez O.; Correa-Oliveira, Rodrigo; Rocha, Manoel O. C.; Gomes, Juliana A. S.

    2017-01-01

    Dilated cardiomyopathy, the most severe manifestation in chronic phase of Chagas disease, affects about 30% of patients and is characterized by myocardial dysfunction and interstitial fibrosis due to extracellular matrix (ECM) remodeling. ECM remodeling is regulated by proteolytic enzymes such as matrix metalloproteinases (MMPs) and cytokines produced by immune cells, including phagocytes. We evaluated by flow cytometry the expression of MMP-2, MMP-9, IL-1β, TNF-α, TGF-β and IL-10 by neutrophils and monocytes from patients with indeterminate (IND) and cardiac (CARD) clinical forms of Chagas disease and non-infected individuals (NI), before and after in vitro stimulation with Trypanosoma cruzi antigens. Our results showed an important contribution of neutrophils for MMPs production, while monocytes seemed to be involved in cytokine production. The results showed that neutrophils and monocytes from IND and CARD patients had higher intracellular levels of MMP-2 and MMP-9 than NI individuals. On the other hand, T. cruzi derived-antigens promote a differential expression of MMP-2 and MMP-9 in patients with Chagas disease and may regulate MMPs expression in neutrophils and monocytes, mainly when a cardiac alteration is not present. Our data also showed that in the presence of T. cruzi derived-antigens the production of cytokines by neutrophils and monocytes, but mainly by monocytes, may be intensified. Correlation analysis demonstrated that MMP-2 had a positive correlation with IL-10 and a negative correlation with IL-1β, whereas MMP-9 showed a negative correlation with IL-10. We also observed that IND patients presented a greater percentage of high producer cells of regulatory molecules when compared to CARD patients, indicating a different pattern in the immune response. Our data suggest that MMPs and cytokines produced by neutrophils and monocytes are important contributors for cardiac remodeling and may be an interesting target for new biomarker research. PMID

  20. The expressions of inflammatory factors and tissue inhibitor of matrix metalloproteinase-2 in human chronic periodontitis with type 2 diabetes mellitus

    PubMed Central

    Shin, Dong-Seok; Park, Jin-Woo; Suh, Jo-Young

    2010-01-01

    Purpose The purpose of this study was to observe and quantify the expression of interleukin-4 (IL-4), interferon-γ (IFN-γ), and tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) in the gingival tissue of patients with type 2 diabetes mellitus (DM) and healthy adults with chronic periodontitis. Methods Twelve patients with type 2 DM and chronic periodontitis (Group 3), twelve patients with chronic periodontitis (Group 2), and twelve healthy individuals (Group 1) were included in the study. Clinical criteria of gingival (sulcus bleeding index value, probing depths) and radiographic evidences of bone resorption were divided into three groups. The concentrations of cytokines were determined by a western blot analysis and compared using one-way ANOVA followed by Tukey's test. Results The expression levels of IFN-γ and TIMP-2 showed an increasing tendency in Groups 2 and 3 when compared to Group 1. On the other hand, the expression of IL-4 was highest in Group 1. Conclusions The findings suggest that IFN-γ and TIMP-2 may be involved in the periodontal inflammation associated with type 2 DM. IL-4 may be involved in the retrogression of the periodontal inflammation associated with type 2 DM. PMID:20498757

  1. O-Phenyl Carbamate and Phenyl Urea Thiiranes as Selective Matrix Metalloproteinase-2 Inhibitors that Cross the Blood-Brain Barrier

    PubMed Central

    Gooyit, Major; Song, Wei; Mahasenan, Kiran V.; Lichtenwalter, Katerina; Suckow, Mark A.; Schroeder, Valerie A.; Wolter, William R.; Mobashery, Shahriar; Chang, Mayland

    2013-01-01

    Brain metastasis occurs in 20% to 40% of cancer patients. Treatment is mostly palliative and the inability of most drugs to penetrate the brain presents one of the greatest challenges in the development of therapeutics for brain metastasis. Matrix metalloproteinase-2 (MMP-2) plays important roles in invasion and vascularization of the central nervous system and represents a potential target for treatment of brain metastasis. Carbonate, O-phenyl carbamate, urea, and N-phenyl carbamate derivatives of SB-3CT, a selective and potent gelatinase inhibitor were synthesized and evaluated. The O-phenyl carbamate and urea variants were selective and potent inhibitors of MMP-2. Carbamate 5b was metabolized to the potent gelatinase inhibitor 2, which was present at therapeutic concentrations in the brain. In contrast, phenyl urea 6b crossed the blood-brain barrier, however higher doses would result in therapeutic brain concentrations. Carbamate 5b and urea 6b show potential for intervention of MMP-2-dependent diseases, such as brain metastasis. PMID:24028490

  2. O-phenyl carbamate and phenyl urea thiiranes as selective matrix metalloproteinase-2 inhibitors that cross the blood-brain barrier.

    PubMed

    Gooyit, Major; Song, Wei; Mahasenan, Kiran V; Lichtenwalter, Katerina; Suckow, Mark A; Schroeder, Valerie A; Wolter, William R; Mobashery, Shahriar; Chang, Mayland

    2013-10-24

    Brain metastasis occurs in 20-40% of cancer patients. Treatment is mostly palliative, and the inability of most drugs to penetrate the brain presents one of the greatest challenges in the development of therapeutics for brain metastasis. Matrix metalloproteinase-2 (MMP-2) plays important roles in invasion and vascularization of the central nervous system and represents a potential target for treatment of brain metastasis. Carbonate, O-phenyl carbamate, urea, and N-phenyl carbamate derivatives of SB-3CT, a selective and potent gelatinase inhibitor, were synthesized and evaluated. The O-phenyl carbamate and urea variants were selective and potent inhibitors of MMP-2. Carbamate 5b was metabolized to the potent gelatinase inhibitor 2, which was present at therapeutic concentrations in the brain. In contrast, phenyl urea 6b crossed the blood-brain barrier, however, higher doses would result in therapeutic brain concentrations. Carbamate 5b and urea 6b show potential for intervention of MMP-2-dependent diseases such as brain metastasis.

  3. Immunohistochemical study on the expression of matrix metalloproteinase 2 and high-risk human papilloma virus in the malignant progression of papillomas.

    PubMed

    Lee, Ho-Jin; Kim, Jin-Wook

    2013-10-01

    Papilloma frequently develops as a benign tumor of the head and neck area, but its potential for malignant transformation has yet to be studied. This study aims to provide basic information for papillomas using the immunohistochemical staining of matrix metalloproteinase 2 (MMP-2) and human papilloma virus (HPV) 16 and 18. To evaluate the malignant transformation of papillomas, the selected tissue samples were serially diagnosed with pre-cancerous papilloma (with epithelial dysplasia, pseudo-epitheliomatous hyperplasia) or malignant lesion (squamous cell carcinoma, SCC) after the first diagnosis (squamous papilloma, inverted papilloma). The selected tissues were stained with an antibody to MMP-2 and HPV 16-E7, HPV 18-L1. A statistical analysis was performed according to each transformation step. The epithelial layer of papilloma and pre-cancerous papilloma lesions had a similar MMP-2 expression, but that of the malignant lesion had a significantly increased MMP-2 expression. HPV 16 and 18 infection rates were 28.6%, 33.3% and 63.6% in papillomas, pre-cancerous papilloma lesions, and SCC. A relatively high MMP-2 expression and HPV 16 or 18 infection of papillomas may be associated with early events in the multistep processes of malignant transformation of papillomas.

  4. Immunohistochemical study on the expression of matrix metalloproteinase 2 and high-risk human papilloma virus in the malignant progression of papillomas

    PubMed Central

    Lee, Ho-Jin

    2013-01-01

    Objectives Papilloma frequently develops as a benign tumor of the head and neck area, but its potential for malignant transformation has yet to be studied. This study aims to provide basic information for papillomas using the immunohistochemical staining of matrix metalloproteinase 2 (MMP-2) and human papilloma virus (HPV) 16 and 18. Materials and Methods To evaluate the malignant transformation of papillomas, the selected tissue samples were serially diagnosed with pre-cancerous papilloma (with epithelial dysplasia, pseudo-epitheliomatous hyperplasia) or malignant lesion (squamous cell carcinoma, SCC) after the first diagnosis (squamous papilloma, inverted papilloma). The selected tissues were stained with an antibody to MMP-2 and HPV 16-E7, HPV 18-L1. A statistical analysis was performed according to each transformation step. Results The epithelial layer of papilloma and pre-cancerous papilloma lesions had a similar MMP-2 expression, but that of the malignant lesion had a significantly increased MMP-2 expression. HPV 16 and 18 infection rates were 28.6%, 33.3% and 63.6% in papillomas, pre-cancerous papilloma lesions, and SCC. Conclusions A relatively high MMP-2 expression and HPV 16 or 18 infection of papillomas may be associated with early events in the multistep processes of malignant transformation of papillomas. PMID:24471049

  5. Matrix Metalloproteinase 2-sensitive Multifunctional Polymeric Micelles for Tumor-specific Co-delivery of siRNA and Hydrophobic Drugs

    PubMed Central

    Zhu, Lin; Perche, Federico; Wang, Tao; Torchilin, Vladimir P

    2014-01-01

    Co-delivery of hydrophilic siRNA and hydrophobic drugs is one of the major challenges for nanomaterial-based medicine. Here, we present a simple but multifunctional micellar platform constructed by a matrix metalloproteinase 2 (MMP2)-sensitive copolymer (PEG-pp-PEI-PE) via self-assembly for tumor-targeted siRNA and drug co-delivery. The micellar nanocarrier possesses several key features for siRNA and drug delivery, including (i) excellent stability; (ii) efficient siRNA condensation by PEI; (iii) hydrophobic drug solubilization in the lipid “core”; (iv) passive tumor targeting via the enhanced permeability and retention (EPR) effect; (v) tumor targeting triggered by the up-regulated tumoral MMP2; and (vi) enhanced cell internalization after MMP2-activated exposure of the previously hidden PEI. These cooperative functions ensure the improved tumor targetability, enhanced tumor cell internalization, and synergistic antitumor activity of co-loaded siRNA and drug. PMID:24529391

  6. Alteration of substrate specificity of rat neurolysin from matrix metalloproteinase-2/9-type to -3-type specificity by comprehensive mutation.

    PubMed

    Kadonosono, Tetsuya; Kato-Murai, Michiko; Ueda, Mitsuyoshi

    2008-08-01

    The substrate specificity of rat brain neurolysin was rapidly modified by semirational mutagenesis coupled with a yeast molecular display system. Neurolysin mainly recognizes substrates with sequential six residues close to the scissile bond in polypeptides, cleaving a peptide bond in the center position of the six residues. To alter the recognition of the P2' amino acid of substrates by neurolysin, six residues of neurolysin, Asp467, Arg470, Glu510, Tyr606, Tyr610 and Tyr611, which might be involved in the formation of the neurolysin S2' subsite, were individually and comprehensively substituted. The protein libraries of mutant neurolysins comprising 120 species were displayed on the yeast cell surface and screening was carried out using two fluorescence-quenching peptides, the matrix metalloproteinase-2/9- (MMPs-2/9-) and MMP-3-specific substrates, which consisted of similar amino acids, except for alanine (for MMPs-2/9) or glutamic acid (for MMP-3) at the P2' amino acid position. Among mutant neurolysins, the Y610L mutant neurolysin exhibited a marked change in substrate specificity. Steady-state kinetic analysis of the purified Y610L mutant neurolysin revealed that the binding efficiency toward the MMP-3-specific substrate was about 3-fold higher than that toward the MMP-2/9-specific substrate. These results indicate that Tyr610 of neurolysin is the important residue to recognize the P2' amino acid of substrates.

  7. CIL-102 induces matrix metalloproteinase-2 (MMP-2)/MMP-9 down-regulation via simultaneous suppression of genetic transcription and mRNA stability.

    PubMed

    Liu, Wen-Hsin; Chen, Yeh-Long; Chang, Long-Sen

    2012-12-01

    This study explores the CIL-102 suppression mechanism on matrix metalloproteinase-2 (MMP-2) and MMP-9 expression in human leukemia K562 cells. CIL-102 attenuated K562 cell invasion with decreased MMP-2/MMP-9 protein expression and mRNA levels. Moreover, CIL-102 reduced luciferase activity of MMP-2/MMP-9 promoter constructs and MMP-2/MMP-9 mRNA stability. CIL-102 treatment induced JNK and p38 MAPK activation but reduced the phospho-ERK level. Transfection of constitutively active MEK1 restored MMP-2 and MMP-9 promoter activity in CIL-102-treated cells, while suppression of p38 MAPK/JNK activation abolished CIL-102-induced MMP-2/MMP-9 mRNA decay. CIL-102-induced p38 MAPK/JNK activation led to protein phosphatase 2A-mediated tristetraprolin (TTP) down-regulation. The reduction in TTP-KH-type splicing regulatory protein (KSRP) complexes formation promoted KSRP-mediated MMP-2/MMP-9 mRNA decay in CIL-102-treated K562 cells. Moreover, CIL-102 reduced invasion and MMP-2/MMP-9 expression in breast and liver cancer cells. Taken together, our data indicate that CIL-102 induces MMP-2/MMP-2 down-regulation via simultaneous suppression of genetic transcription and mRNA stability, and suggest a potential utility for CIL-102 in reducing MMP-2/MMP-9-mediated cancer progression.

  8. Anticancer effects of novel thalidomide analogs in A549 cells through inhibition of vascular endothelial growth factor and matrix metalloproteinase-2.

    PubMed

    El-Aarag, Bishoy; Kasai, Tomonari; Masuda, Junko; Agwa, Hussein; Zahran, Magdy; Seno, Masaharu

    2017-01-01

    Lung cancer is one of the major causes of cancer-related mortality worldwide, and non-small-cell lung cancer is the most common form of lung cancer. Several studies had shown that thalidomide has potential for prevention and therapy of cancer. Therefore, the current study aimed to investigate the antitumor effects of two novel thalidomide analogs in human lung cancer A549 cells. The antiproliferative, antimigratory, and apoptotic effects in A549 cells induced by thalidomide analogs were examined. In addition, their effects on the expression of mRNAs encoding vascular endothelial growth factor165 (VEGF165) and matrix metalloproteinase-2 (MMP-2) were evaluated. Their influence on the tumor volume in nude mice was also determined. Results revealed that thalidomide analogs exhibited antiproliferative, antimigratory, and apoptotic activities with more pronounced effect than thalidomide drug. Furthermore, analogs 1 and 2 suppressed the expression levels of VEGF165 by 42% and 53.2% and those of MMP-2 by 45% and 52%, respectively. Thalidomide analogs 1 and 2 also reduced the tumor volume by 30.11% and 53.52%, respectively. Therefore, this study provides evidence that thalidomide analogs may serve as a new therapeutic option for treating lung cancer.

  9. Dexamethasone Ameliorates H2S-Induced Acute Lung Injury by Alleviating Matrix Metalloproteinase-2 and -9 Expression

    PubMed Central

    Su, Chenglei; Chen, Junjie; Zhu, Baoli; Zhang, Hengdong; Xiao, Hang; Zhang, Jinsong

    2014-01-01

    Acute lung injury (ALI) is one of the fatal outcomes after exposure to high levels of hydrogen sulfide (H2S), and the matrix metalloproteinases (MMPs) especially MMP-2 and MMP-9 are believed to be involved in the development of ALI by degrading the extracellular matrix (ECM) of blood-air barrier. However, the roles of MMP-2 and MMP-9 in H2S-induced ALI and the mechanisms of dexamethasone (DXM) in treating ALI in clinical practice are still largely unknown. The present work was aimed to investigate the roles of MMP-2 and MMP-9 in H2S-induced ALI and the protective effects of DXM. In our study, SD rats were exposed to H2S to establish the ALI model and in parallel, A549 cells were incubated with NaHS (a H2S donor) to establish cell model. The lung HE staining, immunohistochemisty, electron microscope assay and wet/dry ratio were used to identify the ALI induced by H2S, then the MMP-2 and MMP-9 expression in both rats and A549 cells were detected. Our results revealed that MMP-2 and MMP-9 were obviously increased in both mRNA and protein level after H2S exposure, and they could be inhibited by MMP inhibitor doxycycline (DOX) in rat model. Moreover, DXM significantly ameliorated the symptoms of H2S-induced ALI including alveolar edema, infiltration of inflammatory cells and the protein leakage in BAFL via up-regulating glucocorticoid receptor(GR) to mediate the suppression of MMP-2 and MMP-9. Furthermore, the protective effects of DXM in vivo and vitro study could be partially blocked by co-treated with GR antagonist mifepristone (MIF). Our results, taken together, demonstrated that MMP-2 and MMP-9 were involved in the development of H2S-induced ALI and DXM exerted protective effects by alleviating the expression of MMP-2 and MMP-9. Therefore, MMP-2 and MMP-9 might represent novel pharmacological targets for the treatment of H2S and other hazard gases induced ALI. PMID:24722316

  10. Matrix metalloproteinases-2 and -9 in Campylobacter jejuni-induced paralytic neuropathy resembling Guillain-Barré syndrome in chickens.

    PubMed

    Nyati, Kishan Kumar; Prasad, Kashi Nath; Agrawal, Vinita; Husain, Nuzhat

    2017-10-01

    Inflammation in Guillain-Barré syndrome (GBS) is manifested by changes in matrix metalloproteinase (MMP) and pro-inflammatory cytokine expression. We investigated the expression of MMP-2, -9 and TNF-α and correlated it with pathological changes in sciatic nerve tissue from Campylobacter jejuni-induced chicken model for GBS. Campylobacter jejuni and placebo were fed to chickens and assessed for disease symptoms. Sciatic nerves were examined by histopathology and immunohistochemistry. Expressions of MMPs and TNF-α, were determined by real-time PCR, and activities of MMPs by zymography. Diarrhea developed in 73.3% chickens after infection and 60.0% of them developed GBS like neuropathy. Pathology in sciatic nerves showed perinodal and/or patchy demyelination, perivascular focal lymphocytic infiltration and myelin swelling on 10th- 20th post infection day (PID). MMP-2, -9 and TNF-α were up-regulated in progressive phase of the disease. Enhanced MMP-2, -9 and TNF-α production in progressive phase correlated with sciatic nerve pathology in C. jejuni-induced GBS chicken model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Naringenin inhibits migration of lung cancer cells via the inhibition of matrix metalloproteinases-2 and −9

    PubMed Central

    Chang, Huai-Lu; Chang, Yuh-Ming; Lai, Shih-Chan; Chen, Ke-Min; Wang, Kuan-Chu; Chiu, Tsu-Ting; Chang, Fu-Hsin; Hsu, Li-Sung

    2017-01-01

    Lung cancer is among the most common causes of cancer-related mortality. It has a high mortality rate and resistance to chemotherapy due to its high metastatic potential. Naringenin, a bioactive compound identified in several fruits, displays anti-inflammatory and antitumor effects. Furthermore, naringenin mitigates the migration of several human cancer cell types. However, the effects of naringenin on lung cancer remain unclear. The current study investigated the mechanisms of naringenin on the migration of lung cancer A549 cells. The results indicate that significant alteration in A549 cell proliferation was observed in response to naringenin (0–300 µM) treatment for 24 and 48 h. Furthermore, a dose-dependent migration inhibition of A549 in the presence of naringenin was observed by healing and transwell migration assays. In addition, a zymography assay revealed that naringenin exhibited a concentration-dependent inhibition of matrix metalloproteinase (MMP)-2 and −9 activities. Furthermore, naringenin also inhibited the activities of AKT in a dose-dependent manner. These observations indicated that naringenin inhibited the migration of lung cancer A549 cells through several mechanisms, including the inhibition of AKT activities and reduction of MMP-2 and −9 activities. PMID:28352360

  12. Thrombin stimulates mitogenesis in pig cerebrovascular smooth muscle cells involving activation of pro-matrix metalloproteinase-2.

    PubMed

    Wang, Zhongbiao; Kong, Lingwei; Kang, Jing; Morgan, Joe H; Shillcutt, Samuel D; Robinson, Joe S; Nakayama, Don K

    2009-02-27

    Generation of thrombin is associated with vascular remodeling that involves proliferation of vascular smooth muscle cells (SMCs) and activation of pro-matrix metalloproteinases (pro-MMPs). The present study was to investigate whether thrombin would induce mitogenesis and activation of pro-MMPs in cerebrovascular SMCs (CSMCs), and if so, whether MMP activity would contribute to the CSMC mitogenesis. CSMCs were cultured from pig middle cerebral arteries and stimulated with thrombin. Thrombin (0.1-5U/ml), in a dose-dependent fashion, stimulated mitogenesis in CSMCs as detected by bromo-2'-deoxy-uridine (BrdU) incorporation. Additionally, zymographic analyses showed that thrombin stimulated the appearance of the active form of MMP-2 (MMP-2) in a concentration-dependent manner, but not the release of pro-MMP-2. Thrombin did not affect expression of cell-associated pro-MMP-2 protein as evaluated by Western blot analysis. Treatment with the synthetic MMP inhibitor GM6001 or antibodies to MMP-2 significantly reduced thrombin-induced BrdU incorporation in CSMCs. In conclusion, thrombin activates pro-MMP-2 in the absence of elevated pro-MMP-2 expression and secretion in CSMCs, and thrombin induces CSMC mitogenesis involving its action on MMP-2. These findings suggest that thrombin may have relevance in cerebrovascular remodeling associated with brain atherosclerosis and atherothrombotic ischemic stroke through a mechanism involving MMP-dependent CSMC mitogenesis.

  13. Matrix metalloproteinase 2 fused to GFP, expressed in E. coli, successfully tracked MMP-2 distribution in vivo.

    PubMed

    Azevedo, A; Prado, A F; Issa, J P M; Gerlach, R F

    2016-08-01

    Matrix Metalloproteinases (MMPs) participate in many physiological and pathological processes. One major limitation to a better understanding of the role MMPs play in these processes is the lack of well-characterized chimeric proteins and characterization of their fluorescence. The specialized literature has reported on few constructs bearing MMPs fused to the sequence of the green fluorescent protein (GFP), but none of the described constructs have been intended for expression in bacteria or for purification and use in vivo. This work has tested a recombinant reporter protein containing the MMP-2 catalytic domain fused to GFP in terms of purification efficiency, degradation of substrates in solution and in zymograms, kinetic activity, GFP fluorescence, and GFP fluorescence in whole animals after injection of the purified and lyophilized fluorescent protein. This work has also characterized rhMMP-2 (recombinant human MMP-2) and inactive clones and used them as negative controls in experiments employing catMMP-2/GFP and rhMMP-2. To our knowledge, this is the first study that has fully characterized a chimeric protein with the MMP-2 catalytic domain fused to GFP, that has efficiently purified such protein from bacteria in a single-step, and that has obtained an adequate chimeric protein for injection in animals and tracking of MMP-2 fate and activity in vivo.

  14. Involvement of matrix metalloproteinase-2 in medial hypertrophy of pulmonary arterioles in broiler chickens with pulmonary arterial hypertension.

    PubMed

    Tan, Xun; Chai, Juan; Bi, Shi-Cheng; Li, Jun-Jun; Li, Wen-Wen; Zhou, Ji-Yong

    2012-08-01

    Medial hypertrophy of pulmonary arterioles during pulmonary arterial hypertension (PAH) in humans is associated with enhanced proliferation of smooth muscle cells (SMCs). Elevated matrix metalloproteinase (MMP)-2 has been found in pulmonary artery SMCs (PA-SMCs) in humans with idiopathic PAH, leading to the hypothesis that MMP-2 contributes to the proliferation and migration of vascular SMCs in the pathogenesis of PAH. Rapidly growing meat-type (broiler) chickens provide a model of spontaneous PAH. The present study was conducted to determine whether MMP-2 is involved in the medial hypertrophy of pulmonary arterioles in this model. Cultured PA-SMCs from normal birds were used to evaluate the effect of MMPs on cell proliferation. Gelatin zymography showed that endothelin (ET)-1-induced proliferation of PA-SMCs was concomitant with increased pro- and active MMP-2 production. Reverse transcription PCR demonstrated upregulation of MMP-2 mRNA. However, PA-SMC proliferation was inhibited by the MMP inhibitors doxycycline and cis-9-octadecenoyl-N-hydroxylamide. In vivo experiments revealed a significant increase of MMP-2 expression in hypertrophied pulmonary arterioles of PAH broiler chickens, which was positively correlated with wall thickness and medial hypertrophy. MMP-2 may contribute to medial hypertrophy in pulmonary arterioles during PAH in broiler chickens by enhancing the proliferation of vascular SMCs.

  15. Metallopeptidase, neurolysin, as a novel molecular tool for analysis of properties of cancer-producing matrix metalloproteinases-2 and -9.

    PubMed

    Kadonosono, Tetsuya; Kato, Michiko; Ueda, Mitsuyoshi

    2007-07-01

    To compare the substrate preferences of rat brain neurolysin and cancer-producing matrix metalloproteinases (MMPs), which have the same architecture in their catalytic domains, the cleavage activity of neurolysin toward MMP-specific fluorescence-quenching peptides was quantitatively measured. The results show that neurolysin effectively cleaved MOCAc [(7-methoxy coumarin-4-yl) acetyl]-RPKPYANvaWMK(Dnp[2,4-dinitrophenyl])-NH(2), a specific substrate of MMP-2 and MMP-9, but hardly cleaved MOCAc-RPKPVENvaWRK(Dnp)-NH(2), a specific substrate of MMP-3, suggesting that neurolysin has a similar substrate preference to MMP-2 and MMP-9. A structural comparison between neurolysin and MMP-9 showed the similar key amino acid residues for substrate recognition. The possible application of neurolysin displayed on the yeast cell surface, as a safe protein alternative to MMP-2 and MMP-9 which induce cancer cell growth, invasion, and metastasis, to analysis of properties of the MMPs, including the screening of inhibitors and analysis of inhibition mechanism etc., are also discussed.

  16. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2

    PubMed Central

    Carmona-Rivera, Carmelo; Zhao, Wenpu; Yalavarthi, Srilakshmi; Kaplan, Mariana J.

    2014-01-01

    Rationale The structural and functional integrity of the endothelium is crucial in maintaining vascular homeostasis and preventing atherosclerosis. Patients with systemic lupus erythematosus (SLE) have an increased risk of developing endothelial dysfunction and premature cardiovascular disease. Neutrophil extracellular trap (NET) formation is increased in SLE and has been proposed to contribute to endothelial damage but the mechanism remains unclear. Objective To determine the mechanism by which enhanced NET formation by low-density granulocytes (LDGs) in SLE contributes to endothelial damage and disrupts the endothelium. Results The putative role of NET-externalized matrix metalloproteinases (MMPs) in altering the functional integrity of the endothelium was examined. MMP-9 externalized by lupus LDGs during NET formation specifically impaired murine aortic endothelium-dependent vasorelaxation and induced endothelial cell apoptosis. Endothelial dysfunction correlated with the activation of endothelial MMP-2 by MMP-9 present in NETs, while inhibition of MMP-2 activation restored endothelium-dependent function and decreased NET-induced vascular cytotoxicity. Moreover, immunogenic complexes composed of MMP-9 and anti-MMP-9 were identified in SLE sera. These complexes, as well as anti-MMP-9 autoantibodies induced NETosis and enhanced MMP-9 activity. Conclusion These observations implicate activation of endothelial MMP-2 by MMP-9 contained in NETs as an important player in endothelial dysfunction, and MMP-9 as a novel self-antigen in SLE. These results further support that aberrant NET formation plays pathogenic roles in SLE. PMID:24570026

  17. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis

    PubMed Central

    Ray, Amlan K.; DasMahapatra, Pramathes; Swarnakar, Snehasikta

    2016-01-01

    Endometriosis is characterized by the ectopic development of the endometrium which relies on angiogenesis. Although studies have identified the involvement of different matrix metalloproteinases (MMPs) in endometriosis, no study has yet investigated the role of MMP-2 in endometriosis-associated angiogenesis. The present study aims to understand the regulation of MMP-2 activity in endothelial cells and on angiogenesis during progression of ovarian endometriosis. Histological and biochemical data showed increased expressions of vascular endothelial growth factor (VEGF), VEGF receptor-2, cycloxygenase (COX)-2, von Willebrand factor along with angiogenesis during endometriosis progression. Women with endometriosis showed decreased MMP-2 activity in eutopic endometrium as compared to women without endometriosis. However, ectopic ovarian endometrioma showed significantly elevated MMP-2 activity with disease severity. In addition, increased MT1MMP and decreased tissue inhibitors of metalloproteinases (TIMP)-2 expressions were found in the late stages of endometriosis indicating more MMP-2 activation with disease progression. In vitro study using human endothelial cells showed that prostaglandin E2 (PGE2) significantly increased MMP-2 activity as well as tube formation. Inhibition of COX-2 and/or phosphorylated AKT suppressed MMP-2 activity and endothelial tube formation suggesting involvement of PGE2 in regulation of MMP-2 activity during angiogenesis. Moreover, specific inhibition of MMP-2 by chemical inhibitor significantly reduced cellular migration, invasion and tube formation. In ovo assay showed decreased angiogenic branching upon MMP-2 inhibition. Furthermore, a significant reduction of lesion numbers was observed upon inhibition of MMP-2 and COX-2 in mouse model of endometriosis. In conclusion, our study establishes the involvement of MMP-2 activity via COX-2-PGE2-pAKT axis in promoting angiogenesis during endometriosis progression. PMID:27695098

  18. Effect of uric acid on gentamicin-induced nephrotoxicity in rats - role of matrix metalloproteinases 2 and 9.

    PubMed

    Romero, Freddy; Pérez, Mariela; Chávez, Maribel; Parra, Gustavo; Durante, Paula

    2009-12-01

    In this work, we aimed to study the effect of uric acid on gentamicin-induced nephrotoxicity. Male Sprague-Dawley rats were assigned to one of six groups (six rats each) which received intraperitoneal injections for 9 days: (S) saline; (UA) Uric acid alone; (G) Gentamicin alone; (G + UA) Gentamicin + uric acid; (G rec) Gentamicin recovery and (G + UA rec) Gentamicin + uric acid recovery. In (G rec) and (G + UA rec), rats recovered for 7 days after the last injection. Urine and blood samples were taken on day 0 and at the end of every stage. Kidneys were harvested for histological scoring, determination of renal malondialdehyde (MDA), zymography and western blots for matrix metalloprotease (MMP)-2 and MMP-9. Uric acid alone did not provoke changes in biochemical and histological parameters when compared to controls. Gentamicin alone increased significantly plasma creatinine and blood urea nitrogen and caused a moderate histological damage. When combined with uric acid, these conditions worsened. MMP-9 activity and expression was decreased in rats from group G + UA as compared with rats from group G, while activity of MMP-2 was similarly increased in both groups when compared to controls. The increase in renal MDA induced by gentamicin was not altered when it was combined with uric acid. During the recovery stage, all biochemical parameters returned to normal levels, though a trend for delay of tubular damage recovery was observed in group G + UA rec when compared with group G rec. The results indicate that uric acid worsens gentamicin-induced nephrotoxicity. The mechanism is likely to implicate down-regulation of MMP-9.

  19. Urinary matrix metalloproteinases-2/9 in healthy infants and haemangioma patients prior to and during propranolol therapy.

    PubMed

    Kleber, C J; Spiess, A; Kleber, J B; Hinz, U; Holland-Cunz, S; Weiss, J

    2012-06-01

    The mechanism of therapeutic success of propranolol for severe infantile haemangioma remains unclear. Propranolol was shown to modify matrix metalloproteinase (MMP) levels, which are associated with tumour pathogenesis. We hypothesized that urinary MMP2/9 is higher in patients with infantile haemangioma compared to healthy infants and that propranolol reduces MMP2/9 levels and thus leads to an involution of the haemangioma. In this case, MMP2/9 could be used as a marker of indicated therapy or therapeutic success. Urinary samples were taken before, 2 weeks after, and 2 months after the beginning of propranolol treatment in haemangioma patients and once in healthy controls. Activity of MMP2/9 was determined by commercially available activity kits. Urine of 22 haemangioma patients and 21 control subjects was obtained. Propranolol therapy had significant success in all patients. MMP2/9 was present in most samples, the younger the children the higher the MMP2 levels. Haemangioma patients showed lower levels of MMP2. The MMP2 levels were significantly higher after 2 weeks of propranolol than prior to therapy. There were no differences in MMP9 levels. Presence of MMP2/9 in the urine of infants <1 year can be explained by high rate of physiological tissue remodelling. Unexpectedly, MMP2 was lower in the urine of haemangioma patients and higher 2 weeks after propranolol treatment. Taking this and the diverse results in literature into account, the correlation between MMPs, proliferation, and regression of haemangiomas and propranolol remains unclear.

  20. Deficiency in matrix metalloproteinase-2 results in long-term vascular instability and regression in the injured mouse spinal cord

    PubMed Central

    Trivedi, Alpa; Zhang, Haoqian; Ekeledo, Adanma; Lee, Sangmi; Werb, Zena; Plant, Giles W.; Noble-Haeusslein, Linda J.

    2016-01-01

    Angiogenesis plays a critical role in wound healing after spinal cord injury. Therefore, understanding the events that regulate angiogenesis has considerable relevance from a therapeutic standpoint. We evaluated the contribution of matrix metalloproteinase (MMP)-2 to angiogenesis and vascular stability in spinal cord injured MMP-2 knockout and wildtype (WT) littermates. While MMP-2 deficiency resulted in reduced endothelial cell division within the lesioned epicenter, there were no genotypic differences in vascularity (vascular density, vascular area, and endothelial cell number) over the first two weeks post-injury. However, by 21 days post-injury MMP-2 deficiency resulted in a sharp decline in vascularity, indicative of vascular regression. Complementary in vitro studies of brain capillary endothelial cells confirmed MMP-2 dependent proliferation and tube formation. As deficiency in MMP-2 led to prolonged MMP-9 expression in the injured spinal cord, we examined both short-term and long-term exposure to MMP-9 in vitro. While MMP-9 supported endothelial tube formation and proliferation, prolonged exposure resulted in loss of tubes, findings consistent with vascular regression. Vascular instability is frequently associated with pericyte dissociation and precedes vascular regression. Quantification of PDGFrβ+pericyte coverage of mature vessels within the glial scar (the reactive gliosis zone), a known source of MMP-9, revealed reduced coverage in MMP-2 deficient animals. These findings suggest that acting in the absence of MMP-2, MMP-9 transiently supports angiogenesis during the early phase of wound healing while its prolonged expression leads to vascular instability and regression. These findings should be considered while developing therapeutic interventions that block MMPs. PMID:27468657

  1. Low molecular weight fucoidan prevents intimal hyperplasia in rat injured thoracic aorta through the modulation of matrix metalloproteinase-2 expression.

    PubMed

    Hlawaty, Hanna; Suffee, Nadine; Sutton, Angela; Oudar, Olivier; Haddad, Oualid; Ollivier, Veronique; Laguillier-Morizot, Christelle; Gattegno, Liliane; Letourneur, Didier; Charnaux, Nathalie

    2011-01-15

    The therapeutic potential of low molecular-weight fucoidan (LMWF), a sulfated polysaccharide extracted from brown seaweed was investigated on vascular smooth muscle cell (VSMC) and human vascular endothelial cell (HUV-EC-C) proliferation and migration in vitro and in a rat model of intimal hyperplasia. Sprague-Dawley rats were subjected to balloon injury in the thoracic aorta followed by two weeks' treatment with either LMWF (5mg/kg/day) or vehicle. Morphological analysis and proliferating cell nuclear antigen immunostaining at day 14 indicated that LMWF prevented intimal hyperplasia in rat thoracic aorta as compared with vehicle (neo-intima area, 3±0.50mm(2) versus 5±0.30mm(2), P<0.01). In situ zymography showed that LMWF significantly decreased the activity of matrix metalloproteinase (MMP)-2 in the neo-intima compared to vehicle. The in vitro study demonstrated that 10μg/ml LMWF increased HUV-EC-C migration by 45±5% but reduced VSMC migration by 40±3%. LMWF also increased MMP-2 mRNA expression in HUV-EC-Cs and reduced it in VSMCs. MMP-2 level in the conditioned medium from cells incubated with 10μg/ml LMWF was 5.4-fold higher in HUV-EC-Cs, but 6-fold lower in VSMCs than in untreated control cells. Furthermore, decreasing MMP-2 expression in HUV-EC-Cs or VSMCs by RNA interference resulted in reduced LMWF-induced effects on cell migration. In conclusion, LMWF increased HUV-EC-C migration and decreased VSMC migration in vitro. In vivo, this natural compound reduced the intimal hyperplasia in the rat aortic wall after balloon injury. Therefore, LMWF could be of interest for the prevention of intimal hyperplasia.

  2. Matrix metalloproteinase-2 and -9 are associated with high stresses predicted using a nonlinear heterogeneous model of arteries.

    PubMed

    Kim, Yu Shin; Galis, Zorina S; Rachev, Alexander; Han, Hai-Chao; Vito, Raymond P

    2009-01-01

    Arteries adapt to their mechanical environment by undergoing remodeling of the structural scaffold via the action of matrix metalloproteinases (MMPs). Cell culture studies have shown that stretching vascular smooth muscle cells (VSMCs) positively correlates to the production of MMP-2 and -9. In tissue level studies, the expressions and activations of MMP-2 and -9 are generally higher in the outer media. However, homogeneous mechanical models of arteries predict lower stress and strain in the outer media, which appear inconsistent with experimental findings. The effects of heterogeneity may be important to our understanding of VSMC function since arteries exhibit structural heterogeneity across the wall. We hypothesized that local stresses, computed using a heterogeneous mechanical model of arteries, positively correlate to the levels of MMP-2 and -9 in situ. We developed a model of the arterial wall accounting for nonlinearity, residual strain, anisotropy, and structural heterogeneity. The distributions of elastin and collagen fibers in situ, measured in the media of porcine carotid arteries, showed significant nonuniformities. Anisotropy was represented by the direction of collagen fibers measured by the helical angle of VSMC nuclei. The points at which the collagen fibers became load bearing were computed, assuming a uniform fiber strain and orientation under physiological loading conditions, an assumption motivated by morphological measurements. The distributions of circumferential stresses, computed using both heterogeneous and homogeneous models, were correlated to the distributions of expressions and activations of MMP-2 and -9 in porcine common carotid arteries incubated in an ex vivo perfusion organ culture system under physiological conditions for 48 h. While strains computed using incompressibility were identical in both models, the heterogeneous model, unlike the homogeneous model, predicted higher circumferential stresses in the outer layer correlated

  3. Matrix-metalloproteinase-2, -8 and -9 in serum and skin blister fluid in patients with severe sepsis

    PubMed Central

    2010-01-01

    Introduction Matrix metalloproteinases (MMPs) have various roles in inflammatory states. They seem to be able to modulate endothelial barriers and regulate the activity of chemokines and cytokines. The timely development of the levels during severe sepsis and thereafter have not been investigated. In addition it was of interest to study alterations of MMP-levels in intact skin, as the skin is the largest barrier against external pathogens and MMPs have not been studied at organ level in human sepsis. The aim of this study was to investigate the timely development of serum and skin MMP-2, -8 and -9 levels in human severe sepsis and their association with disease severity and mortality. Methods Forty-four patients with severe sepsis and fifteen healthy controls were included in this prospective longitudinal study. The amounts of MMP-2, -8 and -9 were analyzed from serum at days 1, 4, 6, 8, and 10, and from skin suction blister fluid at days 1 and 5 from the beginning of severe sepsis. Additionally, samples from the survivors were obtained after three and six months. Results The levels of MMP-2 and -8 were up-regulated in severe sepsis in comparison to healthy controls in skin blister fluid and serum. Compared to the controls MMP-9 levels were lower in sepsis from the fourth day on in serum and both the first and fifth day in skin blister fluid. Active forms of MMP-2 and -9 were present only in severe sepsis. The non-survivors had higher pro- and active MMP-2 levels than the survivors in skin blister fluid samples. Furthermore, MMP-2 levels were more pronounced in blister fluid and serum samples in patients with more severe organ failures. In the survivors at 3 and 6 month follow-up the MMP levels had returned to normal. Conclusions MMP-2 and -8 are elevated in serum and blister fluid in severe sepsis, implying that they may play a significant role in the pathogenesis of severe sepsis and organ dysfunctions. Active forms of MMP-2 and 9 were only present in patients

  4. Inhibition of CD34+ cell migration by matrix metalloproteinase-2 during acute myocardial ischemia, counteracted by ischemic preconditioning

    PubMed Central

    Lukovic, Dominika; Zlabinger, Katrin; Gugerell, Alfred; Spannbauer, Andreas; Pavo, Noemi; Mandic, Ljubica; Weidenauer, Denise T.; Kastl, Stefan; Kaun, Christoph; Posa, Aniko; Sabdyusheva Litschauer, Inna; Winkler, Johannes; Gyöngyösi, Mariann

    2017-01-01

    Background. Mobilization of bone marrow-origin CD34+ cells was investigated 3 days (3d) after acute myocardial infarction (AMI) with/without ischemic preconditioning (IP) in relation to stromal-derived factor-1 (SDF-1α)/ chemokine receptor type 4 (CXCR4) axis, to search for possible mechanisms behind insufficient cardiac repair in the first days post-AMI.  Methods. Closed-chest reperfused AMI was performed by percutaneous balloon occlusion of the mid-left anterior descending (LAD) coronary artery for 90min, followed by reperfusion in pigs. Animals were randomized to receive either IP initiated by 3x5min cycles of re-occlusion/re-flow prior to AMI (n=6) or control AMI (n=12). Blood samples were collected at baseline, 3d post-AMI, and at 1-month follow-up to analyse chemokines and mobilized CD34+ cells. To investigate the effect of acute hypoxia, SDF-1α and matrix metalloproteinase (MMP)-2 in vitro were assessed, and a migration assay of CD34+ cells toward cardiomyocytes was performed.  Results. Reperfused AMI induced significant mobilisation of CD34+ cells (baseline: 260±75 vs. 3d: 668±180; P<0.001) and secretion of MMP-2 (baseline: 291.83±53.40 vs. 3d: 369.64±72.89; P=0.011) into plasma, without affecting the SDF-1α concentration. IP led to the inhibition of MMP-2 (IP: 165.67±47.99 vs. AMI: 369.64±72.89; P=0.004) 3d post-AMI, accompanied by increased release of SDF-1α (baseline: 23.80±12.36 vs. 3d: 45.29±11.31; P=0.05) and CXCR4 (baseline: 0.59±0.16 vs. 3d: 2.06±1.42; P=0.034), with a parallel higher level of mobilisation of CD34+ cells (IP: 881±126 vs. AMI: 668±180; P=0.026), compared to non-conditioned AMI. In vitro, CD34+ cell migration toward cardiomyocytes was enhanced by SDF-1α, which was completely abolished by 90min hypoxia and co-incubation with MMP-2.  Conclusions. Non-conditioned AMI induces MMP-2 release, hampering the ischemia-induced increase in SDF-1α and CXCR4 by cleaving the SDF-1α/CXCR4 axis, with diminished mobilization of

  5. Matrix-metalloproteinase-2, -8 and -9 in serum and skin blister fluid in patients with severe sepsis.

    PubMed

    Gäddnäs, Fiia P; Sutinen, Meeri M; Koskela, Marjo; Tervahartiala, Taina; Sorsa, Timo; Salo, Tuula A; Laurila, Jouko J; Koivukangas, Vesa; Ala-Kokko, Tero I; Oikarinen, Aarne

    2010-01-01

    Matrix metalloproteinases (MMPs) have various roles in inflammatory states. They seem to be able to modulate endothelial barriers and regulate the activity of chemokines and cytokines. The timely development of the levels during severe sepsis and thereafter have not been investigated. In addition it was of interest to study alterations of MMP-levels in intact skin, as the skin is the largest barrier against external pathogens and MMPs have not been studied at organ level in human sepsis. The aim of this study was to investigate the timely development of serum and skin MMP-2, -8 and -9 levels in human severe sepsis and their association with disease severity and mortality. Forty-four patients with severe sepsis and fifteen healthy controls were included in this prospective longitudinal study. The amounts of MMP-2, -8 and -9 were analyzed from serum at days 1, 4, 6, 8, and 10, and from skin suction blister fluid at days 1 and 5 from the beginning of severe sepsis. Additionally, samples from the survivors were obtained after three and six months. The levels of MMP-2 and -8 were up-regulated in severe sepsis in comparison to healthy controls in skin blister fluid and serum. Compared to the controls MMP-9 levels were lower in sepsis from the fourth day on in serum and both the first and fifth day in skin blister fluid. Active forms of MMP-2 and -9 were present only in severe sepsis. The non-survivors had higher pro- and active MMP-2 levels than the survivors in skin blister fluid samples. Furthermore, MMP-2 levels were more pronounced in blister fluid and serum samples in patients with more severe organ failures. In the survivors at 3 and 6 month follow-up the MMP levels had returned to normal. MMP-2 and -8 are elevated in serum and blister fluid in severe sepsis, implying that they may play a significant role in the pathogenesis of severe sepsis and organ dysfunctions. Active forms of MMP-2 and 9 were only present in patients with severe sepsis, and higher MMP-2 levels

  6. Deguelin inhibits the migration and invasion of U-2 OS human osteosarcoma cells via the inhibition of matrix metalloproteinase-2/-9 in vitro.

    PubMed

    Shang, Hung-Sheng; Chang, Jin-Biou; Lin, Ju-Hwa; Lin, Jing-Pin; Hsu, Shu-Chun; Liu, Chi-Ming; Liu, Jia-You; Wu, Ping-Ping; Lu, Hsu-Feng; Au, Man-Kuan; Chung, Jing-Gung

    2014-10-15

    Osteosarcoma is the most common malignant primary bone tumor in children and young adults and lung metastasis is the main cause of death in those patients. Deguelin, a naturally occurring rotenoid, is known to be an Akt inhibitor and to exhibit cytotoxic effects, including antiproliferative and anticarcinogenic activities, in several cancers. In the present study, we determined if deguelin would inhibit migration and invasion in U-2 OS human osteosarcoma cells. Deguelin significantly inhibited migration and invasion of U-2 OS human osteosarcoma cells which was associated with a reduction of activities of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9). Furthermore, results from western blotting indicated that deguelin decreased the cell proliferation and cell growth-associated protein levels, such as SOS1, PKC, Ras, PI3K, p-AKT(Ser473), IRE-1α, MEKK3, iNOS, COX2, p-ERK1/2, p-JNK1/2, p-p38; the cell motility and focal adhesion-associated protein levels, such as Rho A, FAK, ROCK-1; the invasion-associated protein levels, such as TIMP1, uPA, MMP-2. MMP-9, MMP-13, MMP-1 and VEGF in U-2 OS cells. Confocal microscopy revealed that deguelin reduced NF-κB p65, Rho A and ROCK-1 protein levels in cytosol. MMP-7, MMP-9 and Rho A mRNA levels were suppressed by deguelin. These in vitro results provide evidence that deguelin may have potential as a novel anti-cancer agent for the treatment of osteosarcoma and provides the rationale for in vivo studies in animal models.

  7. Cypermethrin induces astrocyte damage: role of aberrant Ca(2+), ROS, JNK, P38, matrix metalloproteinase 2 and migration related reelin protein.

    PubMed

    Maurya, Shailendra Kumar; Mishra, Juhi; Tripathi, Vinay Kumar; Sharma, Rolee; Siddiqui, Mohammed Haris

    2014-05-01

    Cypermethrin is a synthetic type II pyrethroid, derived from a natural pyrethrin of the chrysanthemum plant. Cypermethrin-mediated neurotoxicity is well studied; however, relatively less is known of its effect on astrocyte development and migration. Astrocytes are the major components of blood brain barrier (BBB), and astrocyte damage along with BBB dysfunction impair the tight junction (TJ) proteins resulting in altered cell migration and neurodegeneration. Here, we studied the mechanism of cypermethin mediated rat astrocyte damage and BBB disruption, and determined any change in expression of proteins associated with cell migration. Through MTT assay we found that cypermethrin reduced viability of cultured rat astrocytes. Immunolabelling with astrocyte marker, glial fibrillary acidic protein, revealed alteration in astrocyte morphology. The astrocytes demonstrated an enhanced release of intracellular Ca(++) and ROS, and up-regulation in p-JNK and p-P38 levels in a time-dependent manner. Cypermethrin disrupted the BBB (in vivo) in developing rats and attenuated the expression of the extracellular matrix molecule (ECM) and claudin-5 in cultured astrocytes. We further observed an augmentation in the levels of matrix metalloproteinase 2 (MMP2), known to modulate cellular migration and disrupt the developmental ECM and BBB. We observed an increase in the levels of reelin, involved in cell migration, in cultured rat astrocytes. The reelin receptor, α3β1integrin, and a mammalian cytosolic protein Disabled1 (Dab1) were also up-regulated. Overall, our study demonstrates that cypermethrin induces astrocyte injury via modulation in Ca(++), ROS, JNK and P38 pathways, which may alter MMP expression and reelin dependent astrocyte migration during brain development.

  8. Hispolon suppresses SK-Hep1 human hepatoma cell metastasis by inhibiting matrix metalloproteinase-2/9 and urokinase-plasminogen activator through the PI3K/Akt and ERK signaling pathways.

    PubMed

    Huang, Guan-Jhong; Yang, Chih-Min; Chang, Yuan-Shiun; Amagaya, Sakae; Wang, Hsiao-Chieh; Hou, Wen-Chi; Huang, Shyh-Shyun; Hu, Miao-Lin

    2010-09-08

    Cancer metastasis is a primary cause of cancer death. Hispolon is an active phenolic compound of Phellinus linteus, a mushroom that has recently been shown to have antioxidant and anticancer activities. In this study, we first observed that hispolon exerted a dose-dependent inhibitory effect on invasion and motility, but not on adhesion, of the highly metastatic SK-Hep1 cells in the absence of cytotoxicity. Mechanistically, hispolon decreased the expression of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and urokinase-plasminogen activator (uPA) in a concentration-dependent manner. Hispolon also inhibited phosphorylation of extracellular signaling-regulating kinase1/2 (ERK1/2), phosphatidylinositol-3-kinase/serine/threonine protein kinase (or protein kinase B (PI3K/Akt), and focal adhesion kinase (FAK). Furthermore, treatment of SK-Hep1 cells with an inhibitor specific for ERK1/2 (PD98256) decreased the expression of MMP-2, and MMP-9. These results demonstrate that hispolon can inhibit the metastasis of SK-Hep1 cells by reduced expression of MMP-2, MMP-9, and uPA through the suppression of the FAK signaling pathway and of the activity of PI3K/Akt and Ras homologue gene family, member A (RhoA). These findings suggest that hispolon may be used as an antimetastatic agent.

  9. Folic Acid Modulates Matrix Metalloproteinase-2 Expression, Alleviates Neuropathic Pain, and Improves Functional Recovery in Spinal Cord-Injured Rats

    PubMed Central

    Miranpuri, Gurwattan S.; Meethal, Sivan Vadakkadath; Sampene, Emmanuel; Chopra, Abhishek; Buttar, Seah; Nacht, Carrie; Moreno, Neydis; Patel, Kush; Liu, Lisa; Singh, Anupama; Singh, Chandra K.; Hariharan, Nithya; Iskandar, Bermans; Resnick, Daniel K.

    2017-01-01

    Background The molecular underpinnings of spinal cord injury (SCI) associated with neuropathic pain (NP) are unknown. Recent studies have demonstrated that matrix metalloproteinases (MMPs) such as MMP2 play a critical role in inducing NP following SCI. Promoter methylation of MMPs is known to suppress their transcription and reduce NP. In this context, it has been shown in rodents that folic acid (FA), an FDA approved dietary supplement and key methyl donor in the central nervous system (CNS), increases axonal regeneration and repair of injured CNS in part via methylation. Purpose Based on above observations, in this study, we test whether FA could decrease MMP2 expression and thereby decrease SCI-induced NP. Methods Sprague-Dawley male rats weighing 250–270 g received contusion spinal cord injuries (cSCIs) with a custom spinal cord impactor device that drops a 10 g weight from a height of 12.5 mm. The injured rats received either i.p. injections of FA (80 µg/kg) or water (control) 3 days prior and 17 days post-cSCI (mid phase) or for 3 days pre-cSCI and 14 days post-cSCI ending on the 42nd day of cSCI (late phase). The functional neurological deficits due to cSCI were then assessed by Basso, Beattie, and Bresnahan (BBB) scores either on post-impaction days 0 through 18 post-cSCI (mid phase) or on days 0, 2, 7, 14, 21, 28, 35, and 42 (late phase). Baseline measurements were taken the day before starting treatments. Thermal hyperalgesia (TH) testing for pain was performed on 4 days pre-cSCI (baseline data) and on days 18, 21, 28, 35, and 42 post-cSCI. Following TH testing, animals were euthanized and spinal cords harvested for MMP-2 expression analysis. Result The FA-treated groups showed higher BBB scores during mid phase (day 18) and in late phase (day 42) of injury compared to controls, suggesting enhanced functional recovery. There is a transient decline in TH in animals from the FA-treated group compared to controls when tested on days 18, 21, 28, and 35

  10. Robust Therapeutic Efficacy of Matrix Metalloproteinase-2-Cleavable Fas-1-RGD Peptide Complex in Chronic Inflammatory Arthritis

    PubMed Central

    Sa, Keum Hee; Sung, Shijin; Park, Jae Yong; Jo, Dong-Gyu; Park, Jae Hyung; Kim, In San; Kang, Young Mo

    2016-01-01

    Objective Therapeutic agents that are transformable via introducing cleavable linkage by locally enriched MMP-2 within inflamed synovium would enhance therapeutic efficacy on chronic inflammatory arthritis. Transforming growth factor-β-inducible gene-h3 (βig-h3), which consists of four fas-1 domains and an Arg-Gly-Asp (RGD) motif, intensifies inflammatory processes by facilitating adhesion and migration of fibroblast-like synoviocyte in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to investigate whether a MMP-2-cleavable peptide complex consisting of a fas-1 domain and an RGD peptide blocks the interaction between βig-h3 and resident cells and leads to the amelioration of inflammatory arthritis. Methods We designed βig-h3-derivatives, including the fourth fas-1 domain truncated for H1 and H2 sequences of mouse (MFK00) and MMP-2-cleavable peptide complex (MFK902). MMP-2 selectivity was examined by treatment with a series of proteases. MFK902 efficacy was determined by the adhesion and migration assay with NIH3T3 cells in vitro and collagen-induced arthritis (CIA) model using male DBA/1J mice in vivo. The mice were treated intraperitoneally with MFK902 at different dosages. Results MFK902 was specifically cleaved by active MMP-2 in a concentration-dependent manner, and βig-h3-mediated adhesion and migration were more effectively inhibited by MFK902, compared with RGD or MFK00 peptides. The arthritis activity of murine CIA, measured by clinical arthritis index and incidence of arthritic paws, was significantly ameliorated after treatment with all dosages of MFK902 (1, 10, and 30 mg/kg). MFK902 ameliorated histopathologic deterioration and reduced the expression of inflammatory mediators simultaneously with improvement of clinical features. In addition, a favorable safety profile of MFK902 was demonstrated in vivo. Conclusion The present study revealed that MMP-2-cleavable peptide complex based on βig-h3 structure is a potent and safe

  11. Immunohistochemical expression of matrix metalloproteinase-1, matrix metalloproteinase-2 and matrix metalloproteinase-9, myofibroblasts and Ki-67 in actinic cheilitis and lip squamous cell carcinoma.

    PubMed

    Bianco, Bianca C; Scotti, Fernanda M; Vieira, Daniella S C; Biz, Michelle T; Castro, Renata G; Modolo, Filipe

    2015-10-01

    Matrix metalloproteinases (MMPs), myofibroblasts (MFs) and epithelial proliferation have key roles in neoplastic progression. In this study immunoexpression of MMP-1, MMP-2 and MMP-9, presence of MFs and the epithelial proliferation index were investigated in actinic cheilitis (AC), lip squamous cell carcinoma (LSCC) and mucocele (MUC). Thirty cases of AC, thirty cases of LSCC and twenty cases of MUC were selected for immunohistochemical investigation of the proteins MMP-1, MMP-2, MMP-9, α-smooth muscle actin (α-SMA) and Ki-67. The MMP-1 expression in the epithelial component was higher in the AC than the MUC and LSCC. In the connective tissue, the expression was higher in the LSCC. MMP-2 showed lower epithelial and stromal immunostaining in the LSCC when compared to the AC and MUC. The epithelial staining for MMP-9 was higher in the AC when compared to the LSCC. However, in the connective tissue, the expression was lower in the AC compared to other lesions. The cell proliferation rate was increased in proportion to the severity of dysplasia in the AC, while in the LSCC it was higher in well-differentiated lesions compared to moderately differentiated. There were no statistically significant differences in number of MFs present in the lesions studied. The results suggest that MMPs could affect the biological behaviour of ACs and LSCCs inasmuch as they could participate in the development and progression from premalignant lesions to malignant lesions.

  12. Inhibitory effect of Daesungki-Tang on the invasiveness potential of hepatocellular carcinoma through inhibition of matrix metalloproteinase-2 and -9 activities.

    PubMed

    Ha, Ki-Tae; Kim, June-Ki; Lee, Young-Choon; Kim, Cheorl-Ho

    2004-10-01

    Daesungki-Tang (DST), a drug preparation consisting of four herbs, that is, Rhei radix et rhizoma (RR; the roots of Rheum coreanum Nakai, Daehwang in Korean), Aurantiii frutus immaturus (AFI; immature fruits of Poncirus trifolita Rafin., Jisil in Korean), Magnoliae cortex (MC; the stem bark of Magnolia officinalis Rehd. Et Wils., Hubak in Korean), and Mirabilite (MS; Matrii sulfas, Mangcho in Korean), is a traditional Korean herbal medicine that is widely used in the treatment of cancer metastasis, gastrointestinal complaints, vascular disorders, and atherosclerosis-related disorders. In this study, water extracts of DST and each of the four ingredient herbs were prepared. The extracts were tested for cytotoxic activity on human hepatocellular carcinoma cells, Hep3B cells using the XTT assay method. The inhibitory effect of the extracts on the invasion of Hep3B cells was also tested using matrigel precoated transwell chambers. DST effectively inhibited the invasion of Hep3B cells, compared with the control groups in a dose-dependent manner. In addition, a gelatin zymography assay showed that DST decreased the gelatinolytic activity of matrix metalloproteinases-2 (MMP-2; IC50 = 87 microg/ml) and -9 (MMP-9; IC50 = 75 microg/ml) that are secreted from Hep3B cells, respectively. Among the four herbal ingredients of DST, only MC has been shown to significantly inhibit the invasion of Hep3B cells and MMP-2 and -9 activities. From these results, it can be concluded that DST has some potential for use as an antitumor agent.

  13. Slit2-Robo1 signaling promotes the adhesion, invasion and migration of tongue carcinoma cells via upregulating matrix metalloproteinases 2 and 9, and downregulating E-cadherin

    PubMed Central

    Zhao, Yuan; Zhou, Feng-Li; Li, Wei-Ping; Wang, Jing; Wang, Li-Jing

    2016-01-01

    Whether Slit homologue 2 (Slit2) inhibits or promotes tumor cell migration remains controversial, and the role of Slit2-Roundabout 1 (Robo1) signaling in oral cancer remains to be fully elucidated. The aim of the present study was to investigate the role of Slit2-Robo1 signaling in the adhesion, invasion and migration of tongue carcinoma cells, and the mechanism by which Slit2-Robo1 signaling inhibits or promotes tumor cell migration. Tca8113 tongue carcinoma cells were treated with the monoclonal anti-human Robo1 antibody, R5, to inhibit the Slit2-Robo1 signaling pathway, with immunoglobulin (Ig)G2b treatment as a negative control. The expression levels of Slit2 and Robo1 were determined using flow cytometry. The effects of R5 on the adhesion, invasion and migration of Tca8113 tongue carcinoma cells were investigated. Gelatin zymography was used to investigate the activity of matrix metalloproteinase 2 (MMP2) and MMP9. Western blot analysis was used to evaluate the expression levels of E-cadherin in Tca8113 cells treated with 10 µg/ml of either R5 or IgG2b. Slit2 and Robo1 proteins were found to be expressed in the Tca8113 cells. R5 significantly inhibited the adhesion, invasion and migration of Tca8113 cells in vitro. R5 also inhibited the activities of MMP2 and MMP9, and increased the expression of E-cadherin in the Tca8113 cells. These results suggested that Slit2-Robo1 signaling promoted the adhesion, invasion and migration of tongue carcinoma cells by upregulating the expression levels of MMP2 and MMP9 and, downregulating the expression of E-cadherin. PMID:27431199

  14. Relative expression of α-smooth muscle actin and matrix metalloproteinases-2 in ameloblastoma of a black African sub-population.

    PubMed

    Adisa, Akinyele O; Udeabor, Samuel E; Adeyemi, Bukola F; Alica, Kubesch; Booms, Patrick; Ghanaati, Shahram; Sader, Robert A

    2015-01-01

    Ameloblastoma although a benign odontogenic tumor, is locally invasive. The abundant presence of myofibroblasts (marked by α-smooth muscle actin [α-SMA]) in the stroma and expression of matrix metalloproteinase-2 (MMP-2) in the neoplastic or stromal cells have been linked with the tumor's ability for both local and distant spread. We aim to estimate the relative expression of α-SMA and MMP-2 in ameloblastoma from a black African subgroup to gauge their relative potential for enhancing local invasiveness and hence, their prospects as possible chemotherapeutic targets. Twenty-five formalin-fixed paraffin-embedded blocks of ameloblastoma cases from Nigeria were prepared for antibody processing to α-SMA (Dako Monoclonal Mouse Anti-Human α-SMA antibody clone 1A4) and MMP-2 (Abcam Mouse Monoclonal Anti-MMP-2 antibody [CA-4001/CA719E3C] ab3158). The score for percentage positivity of the tumor cells and the score for staining intensities were then multiplied in order to generate an immunoreactive score. α-smooth muscle actin was only expressed in the fibrous connective tissues adjacent to the tumor islands while MMP-2 was expressed in the ameloblasts, stellate reticulum, and the connective tissues in varying proportions. All the variants analyzed expressed α-SMA mildly or moderately, except for the follicular variant that either did not express α-SMA or expressed it mildly. The highest number of strong immunoreactivity to MMP-2 in the ameloblast region was found in the plexiform variant. Chemotherapeutic targeting of both molecules may, therefore, be a vital step in the control of local ameloblastoma invasiveness.

  15. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2.

    PubMed

    Eum, Sung Yong; Jaraki, Dima; András, Ibolya E; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs.

  16. Casticin Inhibits A375.S2 Human Melanoma Cell Migration/Invasion through Downregulating NF-κB and Matrix Metalloproteinase-2 and -1.

    PubMed

    Wu, Zih-Yun; Lien, Jin-Cherng; Huang, Yi-Ping; Liao, Ching-Lung; Lin, Jen-Jyh; Fan, Ming-Jen; Ko, Yang-Ching; Hsiao, Yu-Ping; Lu, Hsu-Feng; Chung, Jing-Gung

    2016-03-19

    Casticin is one of the main components from Fructus Viticis, which is widely used as an anti-inflammatory agent. The mechanism of how casticin affects melanoma cell migration and invasion is still not well known. Here we studied the anti-metastasis effects of casticin on A375.S2 melanoma cells by using a non-lethal concentration. First; we used an adhesion assay to test the A375.S2 cells' adhesion ability after treatment with casticin. We next investigated the cell migration ability after casticin treatment by using a wound healing assay to prove that the migration of A375.S2 cells can be inhibited by casticin and double checked the results using the transwell-migration assay. The suppressive effects on matrix metalloproteinase-2; and -9 (MMP-2; and -9) activities were examined by gelatin zymography. Furthermore, western blotting was used to investigate the protein level changes in A375.S2 cells. We found that p-EGFR; Ras and p-ERK1/2 are decreased by casticin, indicating that casticin can down-regulate the migration and invasion ability of A375.S2 cells via the p-EGFR/Ras/p-ERK pathway. The NF-κB p65 and p-ERK levels in nuclear proteins are also decreased by treatment with casticin. An EMSA assay also discovered that the NF-κB p65 and DNA interaction is decreased. NF-κB p65 protein level was examined by immunofluorescence staining and also decreased. Our findings suggest that casticin has anti-metastatic potential by decreasing the invasiveness of A375.S2 cells. We also found that casticin suppressed A375.S2 cell proliferation and cell adhesion ability, but did not affect cell death, as examined using cytometry and a collagen adhesion assay. Based on these observations, casticin could be used as an inhibitor of migration and invasion of human melanoma cells in the future.

  17. Group IB secretory phospholipase A2 promotes matrix metalloproteinase-2-mediated cell migration via the phosphatidylinositol 3-kinase and Akt pathway.

    PubMed

    Choi, Young-Ae; Lim, Hyung-Kyu; Kim, Jae-Ryong; Lee, Chu-Hee; Kim, Young-Jo; Kang, Shin-Sung; Baek, Suk-Hwan

    2004-08-27

    Secretory phospholipase A(2) (sPLA(2)), abundantly expressed in various cells including fibroblasts, is able to promote proliferation and migration. Degradation of collagenous extracellular matrix by matrix metalloproteinase (MMP) plays a role in the pathogenesis of various destructive disorders, such as rheumatoid arthritis, tumor invasion, and metastasis. Here we show that group IB PLA(2) increased pro-MMP-2 activation in NIH3T3 fibroblasts. MMP-2 activity was stimulated by group IB PLA(2) in a dose- and time-dependent manner. Consistent with MMP-2 activation, sPLA(2) decreased expression of type IV collagen. These effects are due to the reduction of tissue inhibitor of metalloproteinase-2 (TIMP-2) and the activation of the membrane type1-MMP (MT1-MMP). The decrease of TIMP-2 levels in conditioned media and the increase of MT1-MMP levels in plasma membrane were observed. In addition, treatment of cells with decanoyl Arg-Val-Lys-Arg-chloromethyl ketone, an inhibitor of pro-MT1-MMP, suppressed sPLA(2)-mediated MMP-2 activation, whereas treatment with bafilomycin A1, an inhibitor of H(+)-ATPase, sustained MMP-2 activation by sPLA(2). The involvement of phosphatidylinositol 3-kinase (PI3K) and Akt in the regulation of MMP-2 activity was further suggested by the findings that PI3K and Akt were phosphorylated by sPLA(2). Expression of p85alpha and Akt mutants, or pretreatment of cells with LY294002, a PI3K inhibitor, attenuated sPLA(2)-induced MMP-2 activation and migration. Taken together, these results suggest that sPLA(2) increases the pro-MMP-2 activation and migration of fibroblasts via the PI3K and Akt-dependent pathway. Because MMP-2 is an important factor directly involved in the control of cell migration and the turnover of extracellular matrix, our study may provide a mechanism for sPLA(2)-promoted fibroblasts migration.

  18. Chemically modified tetracycline (CMT-8) and estrogen promote wound healing in ovariectomized rats: effects on matrix metalloproteinase-2, membrane type 1 matrix metalloproteinase, and laminin-5 gamma2-chain.

    PubMed

    Pirilä, Emma; Parikka, Mataleens; Ramamurthy, Nungavarm S; Maisi, Päivi; McClain, Steve; Kucine, Allan; Tervahartiala, Taina; Prikk, Kaiu; Golub, Lorne M; Salo, Tuula; Sorsa, Timo

    2002-01-01

    Estrogen deficiency is associated with impaired cutaneous wound healing. Remodeling of the extracellular matrix in wound healing involves the action of matrix metalloproteinases on basement membrane zone components, especially laminin-5. We studied the effects of estrogen and a potent matrix metalloproteinase inhibitor, chemically modified non-antimicrobial tetracycline, CMT-8, on wound healing in ovariectomized rats. At the tissue level, laminin-5 gamma2-chain expression was decreased and the migration-inductive 80 kDa form of laminin-5 gamma2-chain was absent in ovariectomized rats when compared with sham and CMT-8- or estrogen-treated ovariectomized animals as detected by Western blotting. The highest levels of gelatinolytic activity (matrix metalloproteinase-2 and -9) were found in sham animals. Levels were reduced in ovariectomized rats and were lowest after treating ovariectomized rats with CMT-8 or estrogen as analyzed by functional activity assay and zymography. The total amount of membrane type 1-matrix metalloproteinase was unchanged in all groups. We conclude that CMT-8 and estrogen can promote wound healing in ovariectomized rats, not only by normalizing wound bed total collagen content and structure, but also by recovering the expression and processing of key molecules in wound healing, i.e., laminin-5 gamma2-chain. This study shows, for the first time, the role of estrogen and CMT-8 in laminin-5 gamma2-chain modulation in vivo.

  19. Lipid rafts regulate PCB153-induced disruption of occludin and brain endothelial barrier function through protein phosphatase 2A and matrix metalloproteinase-2

    SciTech Connect

    Eum, Sung Yong Jaraki, Dima; András, Ibolya E.; Toborek, Michal

    2015-09-15

    Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function. Exposure of human brain endothelial cells to 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB153) induced dephosphorylation of threonine residues of occludin and displacement of occludin from detergent-resistant membrane (DRM)/lipid raft fractions within 1 h. Moreover, lipid rafts modulated the reduction of occludin level through activation of matrix metalloproteinase 2 (MMP-2) after 24 h PCB153 treatment. Inhibition of protein phosphatase 2A (PP2A) activity by okadaic acid or fostriecin markedly protected against PCB153-induced displacement of occludin and increased permeability of endothelial cells. The implication of lipid rafts and PP2A signaling in these processes was further defined by co-immunoprecipitation of occludin with PP2A and caveolin-1, a marker protein of lipid rafts. Indeed, a significant MMP-2 activity was observed in lipid rafts and was increased by exposure to PCB153. The pretreatment of MMP-2 inhibitors protected against PCB153-induced loss of occludin and disruption of lipid raft structure prevented the increase of endothelial permeability. Overall, these results indicate that lipid raft-associated processes, such as PP2A and MMP-2 activation, participate in PCB153-induced disruption of occludin function in brain endothelial barrier. This study contributes to a better understanding of the mechanisms leading to brain endothelial barrier dysfunction in response to exposure to environmental pollutants, such as ortho-substituted PCBs. - Highlights: • PCB153 disturbed human brain endothelial barrier through disruption of occludin. • Lipid raft-associated PP

  20. Activities of cardiac tissue matrix metalloproteinases 2 and 9 are reduced by remote ischemic preconditioning in cardiosurgical patients with cardiopulmonary bypass

    PubMed Central

    2014-01-01

    Background Transient episodes of ischemia in a remote organ or tissue (remote ischemic preconditioning, RIPC) can attenuate myocardial injury. Myocardial damage is associated with tissue remodeling and the matrix metalloproteinases 2 and 9 (MMP-2/9) are crucially involved in these events. Here we investigated the effects of RIPC on the activities of heart tissue MMP-2/9 and their correlation with serum concentrations of cardiac troponin T (cTnT), a marker for myocardial damage. Methods In cardiosurgical patients with cardiopulmonary bypass (CPB) RIPC was induced by four 5 minute cycles of upper limb ischemia/reperfusion. Cardiac tissue was obtained before as well as after CPB and serum cTnT concentrations were measured. Tissue derived from control patients (N = 17) with high cTnT concentrations (≥0.32 ng/ml) and RIPC patients (N = 18) with low cTnT (≤0.32 ng/ml) was subjected to gelatin zymography to quantify MMP-2/9 activities. Results In cardiac biopsies obtained before CPB, activities of MMP-2/9 were attenuated in the RIPC group (MMP-2: Control, 1.13 ± 0.13 a.u.; RIPC, 0.71 ± 0.12 a.u.; P < 0.05. MMP-9: Control, 1.50 ± 0.16 a.u.; RIPC, 0.87 ± 0.14 a.u.; P < 0.01), while activities of the pro-MMPs were not altered (P > 0.05). In cardiac biopsies taken after CPB activities of pro- and active MMP-2/9 were not different between the groups (P > 0.05). Spearman’s rank tests showed that MMP-2/9 activities in cardiac tissue obtained before CPB were positively correlated with postoperative cTnT serum levels (MMP-2, P = 0.016; MMP-9, P = 0.015). Conclusions Activities of MMP-2/9 in cardiac tissue obtained before CPB are attenuated by RIPC and are positively correlated with serum concentrations of cTnT. MMPs may represent potential targets for RIPC mediated cardioprotection. Trial registration ClinicalTrials.gov identifier NCT00877305. PMID:24712447

  1. Activities of cardiac tissue matrix metalloproteinases 2 and 9 are reduced by remote ischemic preconditioning in cardiosurgical patients with cardiopulmonary bypass.

    PubMed

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Gruenewald, Matthias; Lauer, Fabian; Steinfath, Markus; Cremer, Jochen; Zacharowski, Kai; Albrecht, Martin

    2014-04-08

    Transient episodes of ischemia in a remote organ or tissue (remote ischemic preconditioning, RIPC) can attenuate myocardial injury. Myocardial damage is associated with tissue remodeling and the matrix metalloproteinases 2 and 9 (MMP-2/9) are crucially involved in these events. Here we investigated the effects of RIPC on the activities of heart tissue MMP-2/9 and their correlation with serum concentrations of cardiac troponin T (cTnT), a marker for myocardial damage. In cardiosurgical patients with cardiopulmonary bypass (CPB) RIPC was induced by four 5 minute cycles of upper limb ischemia/reperfusion. Cardiac tissue was obtained before as well as after CPB and serum cTnT concentrations were measured. Tissue derived from control patients (N = 17) with high cTnT concentrations (≥0.32 ng/ml) and RIPC patients (N = 18) with low cTnT (≤0.32 ng/ml) was subjected to gelatin zymography to quantify MMP-2/9 activities. In cardiac biopsies obtained before CPB, activities of MMP-2/9 were attenuated in the RIPC group (MMP-2: Control, 1.13 ± 0.13 a.u.; RIPC, 0.71 ± 0.12 a.u.; P < 0.05. MMP-9: Control, 1.50 ± 0.16 a.u.; RIPC, 0.87 ± 0.14 a.u.; P < 0.01), while activities of the pro-MMPs were not altered (P > 0.05). In cardiac biopsies taken after CPB activities of pro- and active MMP-2/9 were not different between the groups (P > 0.05). Spearman's rank tests showed that MMP-2/9 activities in cardiac tissue obtained before CPB were positively correlated with postoperative cTnT serum levels (MMP-2, P = 0.016; MMP-9, P = 0.015). Activities of MMP-2/9 in cardiac tissue obtained before CPB are attenuated by RIPC and are positively correlated with serum concentrations of cTnT. MMPs may represent potential targets for RIPC mediated cardioprotection. ClinicalTrials.gov identifier NCT00877305.

  2. [The role of disequilibrium of expression of matrix metalloproteinase-2/9 and their tissue inhibitors in pathogenesis of hyperoxia-induced acute lung injury in mice].

    PubMed

    Zhang, Xiang-feng; Zhu, Guang-fa; Liu, Shuang; Foda, Hussein D

    2008-10-01

    To investigate the role of matrix metalloproteinase-2/9 (MMP-2/9) and their tissue inhibitors (TIMP-1/2) in pathogenesis of acute lung injury (ALI) induced by hyperoxia. Seventy-two C57BL/6 mice were randomly divided into normal control group, hyperoxia for 24 hours group, hyperoxia for 48 hours group, and hyperoxia for 72 hours group, with 18 mice in each group. The mice in hyperoxia groups were exposed to >98% oxygen in sealed cages, and the normal control group were placed outside of the cage to breathe room air. At the end of the exposure time the animals were euthanized, the right lung was removed and phosphate buffer solution (PBS) was used to lavage the lung through the endotracheal catheter. The wet/dry weight ratio, broncho-alveolar lavage fluid (BALF) protein content and the volume of pleural fluid were measured, the severity of lung injury was assessed; the expression of MMP-2/9 and TIMP-1/2 mRNA in lung tissue at 24, 48 and 72 hours of hyperoxia were assessed by reverse transcript-polymerase chain reaction (RT-PCR); the amount of MMP-2/9 and TIMP-1/2 protein in lung tissue were measured by enzyme-linked immunosorbent assay (ELISA). Hyperoxia caused ALI as evidenced by the increase in lung wet/dry weight ratio, BALF protein content and the volume of pleural fluid as compared with the normal control group (P<0.05 or P<0.01). RT-PCR study showed increased expression of MMP-2/9 and TIMP-1 mRNA in lung tissues (P<0.05 or P<0.01), and ELISA assay also demonstrated upregulation of MMP-2/9 and an increase in TIMP-1 amount in BALF compared with their normal control group (P<0.05 or P<0.01). The ratios of both MMP-2 mRNA/TIMP-2 mRNA and MMP-2 protein/TIMP-2 protein were all increased in hyperoxia groups as compared with their normal control group (all P<0.01). Hyperoxia causes ALI in mice, and disturbance of MMP-2/TIMP-2 balance plays an important role in the development of hyperoxia-induced ALI in mice.

  3. PDGF‑stimulated dispersal of cell clusters and disruption of fibronectin matrix on three-dimensional collagen matrices requires matrix metalloproteinase-2

    PubMed Central

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2015-01-01

    Formation of cell clusters is a common morphogenic cell behavior observed during tissue and organ development and homeostasis, as well as during pathological disorders. Dynamic regulation of cell clustering depends on the balance between contraction of cells into clusters and migration of cells as dispersed individuals. Previously we reported that under procontractile culture conditions, fibronectin fibrillar matrix assembly by human fibroblasts functioned as a nucleation center for cell clustering on three-dimensional collagen matrices. Here we report that switching preformed cell clusters from procontractile to promigratory culture conditions results in cell dispersal out of clusters and disruption of FN matrix. Experiments using small interfering RNA silencing and pharmacological inhibition demonstrated that matrix metalloproteinase activity involving MMP-2 was necessary for fibronectin matrix disruption and dispersal of cell clusters. PMID:25589674

  4. Inhibitory effect of penta-acetyl geniposide on C6 glioma cells metastasis by inhibiting matrix metalloproteinase-2 expression involved in both the PI3K and ERK signaling pathways.

    PubMed

    Huang, Hui-Pei; Shih, Yuan-Wei; Wu, Cheng-Hsun; Lai, Po-Ju; Hung, Chi-Nan; Wang, Chau-Jong

    2009-09-14

    Penta-acetyl geniposide [(Ac)(5)GP], an acetylated geniposide product from Gardenia fructus, has been known to have hepatoprotective properties and recent studies have revealed its anti-proliferative and apoptotic effect on C6 glioma cells. In this study, we first report the anti-metastastic effect of (Ac)(5)GP in the rat neuroblastoma line: C6 glioma cells. First (Ac)(5)GP exhibited an inhibitory effect on abilities of adhesion and motility by cell-matrix adhesion assay, wound healing assay and Boyden chamber assay. Second, the decreasing activity of matrix metalloproteinase-2 (MMP-2) was noted by gelatin zymography assay. Further analysis with semi-quantitative RT-PCR showed the mRNA levels of MMP-2 and membrane type I matrix metalloproteinase (MT1-MMP) were significantly reduced, while the tissue inhibitor of matrix metalloproteinase-2 (TIMP-2) was elevated by (Ac)(5)GP treatment. Further (Ac)(5)GP also exerted an inhibitory effect on phosphoinositide 3-kinase (PI3K) protein expression, phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and inhibition of activation of transcription factor nuclear factor kappa B (NF-kappaB), c-Fos, c-Jun. These findings proved (Ac)(5)GP is highly likely to be a inhibiting cancer migration agent to be further developed in the future.

  5. [Influence of puerarin on proliferative activity of human fetal scleral fibroblasts and expression of collagen type I and matrix metalloproteinase-2 in power frequency electromagnetic field].

    PubMed

    Su, Q; Yang, L

    2016-06-20

    To investigate the influence of puerarin on the proliferative activity of human fetal scleral fibroblasts (HFSFs) and the expression of collagen type I and matrix metalloproteinase-2 (MMP-2) in HFSFs in the power frequency electromagnetic field. HFSFs were cultured and divided into four radiation groups (0.2 mT, 50 Hz) and control group. Puerarin at concentrations of 0.0, 1.0, 5.0, and 10.0 μmol/L was added to the four radiation groups, respectively. The methyl thiazolyl tetrazolium colorimetry was used to measure the influence on the proliferative activity of HFSFs, Western blot and RT-qPCR were used to measure the protein and mRNA expression of collagen type I and MMP-2 induced by puerarin in the power frequency electromagnetic field. The radiation groups and control group showed significant increases in the proliferative activity of HFSFs over the culture time (F= 959.472 and 279.468, both P<0.01). At 24 and 48 hours, the radiation groups showed significantly lower proliferative activity than the control group (0.432±0.038/0.591±0.017 vs 0.536±0.034/0.801±0.020, both P<0.01). With the increasing concentration of puerarin (0.0, 1.0, 5.0, and 10.0 μmol/L) , the proliferative activity of HFSFs significantly increased, with A values of 0.598±0.031, 0.809±0.041, 0.910±0.037, and 0.983±0.054, respectively (P<0.05). After exposure for 24 hours, the radiation groups showed significantly lower protein expression of collagen type I and significantly higher protein expression of MMP-2 (t=7.917 and 7.831, both P<0.01) ; compared with the 0.0 μmol/L puerarin group, the 1.0, 5.0, and 10.0 μmol/L puerarin groups showed significant increases in the protein expression of collagen type I and significant reductions in the protein expression of MMP-2 (all P<0.01). Compared with the control group, the radiation groups showed significant reductions in the mRNA expression of collagen type I and MMP-2 (t=17.293 and 16.378, both P<0.01) ; compared with the 0.0

  6. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation.

    PubMed

    Wan, Rong; Mo, Yiqun; Zhang, Xing; Chien, Sufan; Tollerud, David J; Zhang, Qunwei

    2008-12-01

    Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO(2) to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of some transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO(2) and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO(2), at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression(..) Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO(2). Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of metalloproteinases 2 (TIMP-2) in U937

  7. Matrix metalloproteinase-2 and -9 are induced differently by metal nanoparticles in human monocytes: The role of oxidative stress and protein tyrosine kinase activation

    SciTech Connect

    Wan Rong; Mo Yiqun; Zhang Xing; Chien Sufan; Tollerud, David J.; Zhang Qunwei

    2008-12-01

    Recently, many studies have shown that nanoparticles can translocate from the lungs to the circulatory system. As a particulate foreign body, nanoparticles could induce host responses such as reactive oxygen species (ROS) generation, inflammatory cytokine and matrix metalloproteinase (MMP) release which play a major role in tissue destruction and remodeling. However, the direct effects of nanoparticles on leukocytes, especially monocytes, are still unclear. The objective of the present study was to compare the ability of Nano-Co and Nano-TiO{sub 2} to cause alteration of transcription and activity of MMPs and to explore possible mechanisms. We hypothesized that non-toxic doses of some transition metal nanoparticles stimulate an imbalance of MMP/TIMP that cause MMP production that may contribute to their health effects. To test this hypothesis, U937 cells were treated with Nano-Co and Nano-TiO{sub 2} and cytotoxic effects and ROS generation were measured. The alteration of MMP-2 and MMP-9 expression and activity of MMP-2 and MMP-9 after exposure to these metal nanoparticles were subsequently determined. To investigate the potential signaling pathways involved in the Nano-Co-induced MMP activation, the ROS scavengers or inhibitors, AP-1 inhibitor, and protein tyrosine kinase (PTK) inhibitors were also used to pre-treat U937 cells. Our results demonstrated that exposure of U937 cells to Nano-Co, but not to Nano-TiO{sub 2}, at a dose that does not cause cytotoxicity, resulted in ROS generation and up-regulation of MMP-2 and MMP-9 mRNA expression{sub ..} Our results also showed dose- and time-related increases in pro-MMP-2 and pro-MMP-9 gelatinolytic activities in conditioned media after exposure of U937 cells to Nano-Co, but not to Nano-TiO{sub 2}. Nano-Co-induced pro-MMP-2 and pro-MMP-9 activity increases were inhibited by pre-treatment with ROS scavengers or inhibitors. We also demonstrated dose- and time-related decreases in tissue inhibitors of metalloproteinases 2

  8. Epithelial expression of extracellular matrix metalloproteinase inducer/CD147 and matrix metalloproteinase-2 in neoplasms and precursor lesions derived from cutaneous squamous cells: An immunohistochemical study.

    PubMed

    Ayva, Sebnem Kupana; Karabulut, Ayse Anil; Akatli, Ayşe Nur; Atasoy, Pinar; Bozdogan, Onder

    2013-10-01

    Extracellular matrix metalloproteinase inducer (CD147) is a transmembrane glycoprotein involved in the regulation of matrix metalloproteinases (MMPs). The study investigated CD147 and MMP-2 expression in epidermis of cutaneous squamous lesions. CD147 and MMP-2 expressions were evaluated immunohistochemically in 44 specimens: 18 actinic keratoses (AK), 6 squamous cell carcinomas in situ (SCCIS), 13 squamous cell carcinomas (SCC; peritumoral and invasive portions assessed), and 7 normal skins. Patterns of expression were assessed, with MMP-2 in nuclei (MMP-2n) and cytoplasm (MMP-2c) evaluated separately. The expression of each marker was quantified using a calculated immunohistochemical/histologic score (H-score). Correlations were analyzed for the marker H-scores in each study group. Associations between H-scores and histopathologic parameters were also evaluated. CD147 H-score was the highest in SCC (invasive islands), followed by AK, SCCIS, and control specimens, respectively. MMP-2n and MMP-2c H-scores were the highest in AK, followed by SCCIS, SCC, and control specimens, respectively. MMP-2c and MMP-2n H-scores were significantly higher in peritumoral epidermis than in invasive islands of SCC. MMP-2c and CD147 H-scores were positively correlated in the peritumoral SCCs. CD147 H-score was positively correlated with tumor differentiation in SCC. The findings suggest that overexpression of CD147 plays a role in the development of SCC.

  9. Microenvironment influence on human colon adenocarcinoma phenotypes and matrix metalloproteinase-2, p53 and β-catenin tumor expressions from identical monoclonal cell tumor in the orthotopic model in athymic nude rats.

    PubMed

    Priolli, Denise Gonçalves; Abrantes, Ana Margarida; Neves, Silvia; Gonçalves, Ana Cristina; Lopes, Camila Oliveira; Martinez, Natalia Peres; Cardinalli, Izilda Aparecida; Ribeiro, Ana Bela Sarmento; Botelho, Maria Filomena

    2014-03-01

    The present study aims to identify differences between left and right colon adenocarcinoma arising from identical clonal cell and to find out if microenvironment has any influence on matrix metalloproteinase-2 (MMP2), p53 and β-catenin tumor expressions. MATERIAL AND METHODS. Rats (RNU) were submitted to cecostomy to obtain the orthotopic model of right colon tumor (n = 10), while for the left colon model (n = 10), a colon diversion and distal mucous fistula in the descending colon was used. Cultivated human colon adenocarcinoma cells (WiDr) were inoculated in stomas submucosa. Histopathological analysis, real-time reverse transcription-PCR for β-catenin, p53 and MMP2, as well as immunohistochemical analysis for p53 and β-catenin expression were conducted. Central tendency, variance analysis and the Livak delta-delta-CT method were used for statistical analysis, adopting a 5% significance level. RESULTS. All tumors from the left colon exhibited infiltrative ulceration, while in the right colon tumor growth was predominantly exophytic (67%). In the left colon, tumor growth was undifferentiated (100%), while it was moderately differentiated in the right colon (83%). In right colon tumors, MMP2, p53, and β-catenin gene expressions were higher than compared to left colon (p = 4.59354E-05, p = 0.0035179, p = 0.00093798, respectively, for MMP2, p53 and β-catenin). β-catenin and p53 results obtained by real-time polymerase chain reaction were confirmed by immunohistochemistry assay (p = 0.01 and p = 0.001, respectively, for β-catenin and p53). CONCLUSION. Left and right human colon adenocarcinomas developed in animal models have distinct phenotypes even when they have the same clonal origin. Microenvironment has influenced p53, β-catenin, and MMP2 expression in animal models of colon cancer.

  10. Molecular Docking Analysis of Selected Clinacanthus nutans Constituents as Xanthine Oxidase, Nitric Oxide Synthase, Human Neutrophil Elastase, Matrix Metalloproteinase 2, Matrix Metalloproteinase 9 and Squalene Synthase Inhibitors

    PubMed Central

    Narayanaswamy, Radhakrishnan; Isha, Azizul; Wai, Lam Kok; Ismail, Intan Safinar

    2016-01-01

    Background: Clinacanthus nutans (Burm. f.) Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (XO), nitric oxide synthase (NOS), human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), and squalene synthase (SQS) using Discovery Studio Version 3.1. Also, molecular physicochemical, bioactivity, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and toxicity prediction by computer assisted technology analyzes were also carried out. Results: The molecular physicochemical analysis revealed that four ligands, namely clinacoside A–C and cycloclinacoside A1 showed nil violations and complied with Lipinski's rule of five. As for the analysis of bioactivity, all the 11 selected constituents of C. nutans exhibited active score (>0) toward enzyme inhibitors descriptor. ADMET analysis showed that the ligands except orientin and isoorientin were predicted to have Cytochrome P4502D6 inhibition effect. Docking studies and binding free energy calculations revealed that clinacoside B exhibited the least binding energy for the target enzymes except for XO and SQS. Isovitexin and isoorientin showed the potentials in the docking and binding with all of the six targeted enzymes, whereas vitexin and orientin docked and bound with only NOS and HNE. Conclusion: This present study has paved a new insight in understanding these 11 C. nutans ligands as potential inhibitors against XO, NOS, HNE, MMP 2, MMP 9, and SQS. SUMMARY Isovitexin and isoorientin (Clinacanthus nutans constituent) showed potentials in the docking and binding with all of the six targeted

  11. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells

    PubMed Central

    Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke. PMID:26881424

  12. Release of Matrix Metalloproteinases-2 and 9 by S-Nitrosylated Caveolin-1 Contributes to Degradation of Extracellular Matrix in tPA-Treated Hypoxic Endothelial Cells.

    PubMed

    Song, Haoming; Cheng, Youjun; Bi, Gang; Zhu, Yihui; Jun, Wei; Ma, Wenlin; Wu, Huimin

    2016-01-01

    Intracranial hemorrhage remains the most feared complication in tissue plasminogen activator (tPA) thrombolysis for ischemic stroke. However, the underlying molecular mechanisms are still poorly elucidated. In this study, we reported an important role of caveolin-1 (Cav-1) s-nitrosylation in matrix metalloproteinase (MMP)-2 and 9 secretion from tPA-treated ischemic endothelial cells. Brain vascular endothelial cells (bEND3) were exposed to oxygen-glucose deprivation (OGD) for 2 h before adding recombinant human tPA for 6 h. This treatment induced a significant increase of MMP2 and 9 in the media of bEND3 cells and a simultaneous degradation of fibronectin and laminin β-1, the two main components of extracellular matrix (ECM). Inhibition of MMP2 and 9 with SB-3CT completely blocked the degradation of fibronectin and laminin β-1. ODG+tPA treatment led to Cav-1 shedding from bEND3 cells into the media. Notably, OGD triggered nitric oxide (NO) production and S-nitrosylationof Cav-1 (SNCav-1). Meanwhile tPA induced activation of ERK signal pathway and stimulates the secretion of SNCav-1. Pretreatment of bEND3 cells with C-PTIO (a NO scavenger) or U0126 (a specific ERK inhibitor) significantly reduced OGD-induced S-nitrosylation of Cav-1 in cells and blocked the secretion of Cav-1 and MMP2 and 9 into the media as well as the degradation of fibronectin and laminin β-1 in OGD and tPA-treated cells. These data indicate that OGD-triggered Cav-1 S-nitrosylation interacts with tPA-induced ERK activation to augment MMP2 and 9 secretion and subsequent ECM degradation, which may account for the exacerbation of ischemic blood brain barrier damage following tPA thrombolysis for ischemic stroke.

  13. Expression and correlation of CD44v6, vascular endothelial growth factor, matrix metalloproteinase-2, and matrix metalloproteinase-9 in Krukenberg tumor

    PubMed Central

    Lou, Ge; Gao, Ying; Ning, Xiao-Ming; Zhang, Qi-Fan

    2005-01-01

    AIM: To explore the expression and correlation of CD44v6, vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2 and matrix metalloproteinase (MMP)-9 in Krukenberg and primary epithelial ovarian carcinoma. METHODS: The expressions of CD44v6, VEGF, MMP-2 and MMP-9 were detected by immunohistochemical method in 20 cases of normal ovarian tissues, 38 cases of Krukenberg tumor and 45 cases of primary epithelial ovarian carcinoma. RESULTS: The expression of CD44v6 (primary epithelial ovarian carcinoma tissue vs normal ovarian tissue: χ2 = 4.516, P = 0.034; Krukenberg tumor tissue vs normal ovarian tissue: χ2 = 19.537, P = 0.001) and VEGF (primary epithelial ovarian carcinoma tissue vs normal ovarian tissue: P = 0.026; Krukenberg tumor tissue vs normal ovarian tissue: χ2 = 22.895, P = 0.001) was significantly higher in primary epithelial ovarian carcinoma tissue and Krukenberg tumor tissue than in normal ovarian tissue. The positive expression rate of MMP-2 and MMP-9 was 0% in the normal ovarian tissue. The positive expression rate of CD44v6 (χ2 = 10.398, P = 0.001), VEGF (χ2 = 13.149, P = 0.001), MMP-2 (χ2 = 33.668, P = 0.001) and MMP-9 (χ2 = 38.839, P = 0.001) was remarkably higher in Krukenberg tumor than in primary epithelial ovarian carcinoma. The correlation of CD44v6, VEGF, MMP-2, and MMP-9 was observed in primary epithelial ovarian carcinoma and Krukenberg tumor. CONCLUSION: CD44v6, VEGF, MMP-2, and MMP-9 are involved in ovarian carcinoma, gastric cancer and Krukenberg tumor. Detection of CD44v6, VEGF, MMP-2 and MMP-9 may contribute to the diagnosis of ovarian carcinoma, gastric cancer, and Krukenberg tumor. PMID:16124061

  14. Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression

    PubMed Central

    Hofmann, U B; Westphal, J R; Waas, E T; Zendman, A J W; Cornelissen, I M H A; Ruiter, D J; Muijen, G N P van

    1999-01-01

    Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in tumour progression and metastasis. In this study, we investigated the in vitro and in vivo expression patterns of MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1 and TIMP-2 mRNA and protein in a previously described human melanoma xenograft model. This model consists of eight human melanoma cell lines with different metastatic behaviour after subcutaneous (s.c.) injection into nude mice. MMP-1 mRNA was detectable in all cell lines by reverse transcription polymerase chain reaction (RT-PCR), but the expression was too low to be detected by Northern blot analysis. No MMP-1 protein could be found using Western blotting. MMP-2 mRNA and protein were present in all cell lines, with the highest expression of both latent and active MMP-2 in the highest metastatic cell lines MV3 and BLM. MMP-3 mRNA was expressed in MV3 and BLM, and in the non-metastatic cell line 530, whereas MMP-3 protein was detectable only in MV3 and BLM. None of the melanoma cell lines expressed MMP-9. TIMP-1 and TIMP-2 mRNA and protein, finally, were present in all cell lines. A correlation between TIMP expression level and metastatic capacity of cell lines, however, was lacking. MMP and TIMP mRNA and protein expression levels were also studied in s.c. xenograft lesions derived from a selection of these cell lines. RT-PCR analysis revealed that MMP-1 mRNA was present in MV3 and BLM xenografts, and to a lesser extent in 530. Positive staining for MMP-1 protein was found in xenograft lesions derived from both low and high metastatic cell lines, indicating an in vivo up-regulation of MMP-1. MMP-2 mRNA was detectable only in xenografts derived from the highly metastatic cell lines 1F6m, MV3 and BLM. In agreement with the in vitro results, the highest levels of both latent and activated MMP-2 protein were observed in MV3 and BLM xenografts. With the exception of MMP-9 mRNA expression in 530 xenografts, MMP-3, MMP-9, and TIMP-1 mRNA and

  15. Gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9 in rat brain after implantation of 9L rat glioma cells.

    PubMed

    Zhao, J X; Yang, L P; Wang, Y F; Qin, L P; Liu, D Q; Bai, C X; Nan, X; Shi, S S; Pei, X J

    2007-05-01

    The matrix metalloproteinases (MMPs) have come to be highlighted by their close relation to the cell invasion of gliomas. The inhibitors of MMPs have undergone extensive development because of its effectiveness against tumor invasion and angiogenesis. Therefore, a suitable animal model is necessary for searching new MMPs inhibitors against gliomas. In this study, we established an experimental model by implanting 9L glioma cells stereotactically into Fisher344 (F344) rat's brain, and the expression and enzymatic activity of MMP-2 and MMP-9 in 9L glioma cells and in tumor tissue was determined by means of reverse transcription polymerase chain reaction (RT-PCR), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) zymography, in situ film zymography and immunostaining. The results of RT-PCR showed that the mRNA level of MMP-2 in 9L glioma cells was higher than that of MMP-9, and the mRNA expression of MMP-9 was increased along with the growth of malignant gliomas. SDS-PAGE zymography revealed that the expression of MMP-2 and MMP-9 were significantly increased in tumor tissues, and the MMP-9 wasn't detected in normal tissue. The positive stain of MMP-2 and MMP-9 was enhanced with the growth of malignant gliomas, especially for MMP-9. The expression of active gelatinase was found in tumor tissue. In conclusion, the expression of active MMP-2 and MMP-9 was increased in 9L/F344 rat brain during the growth of malignant gliomas at different time intervals, which indicate that 9L/F344 animal model may be a prospective animal model to test new MMPs inhibitors.

  16. Proanthocyanidins from the American Cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways.

    PubMed

    Déziel, Bob A; Patel, Kunal; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert A R

    2010-10-15

    Prostate cancer is one of the most common cancers in the Western world, and it is believed that an individual's diet affects his risk of developing cancer. There has been an interest in examining phytochemicals, the secondary metabolites of plants, in order to determine their potential anti-cancer activities in vitro and in vivo. In this study we document the effects of proanthocyanidins (PACs) from the American Cranberry (Vaccinium macrocarpon) on matrix metalloproteinase (MMP) activity in DU145 human prostate cancer cells. Cranberry PACs decreased cellular viability of DU145 cells at a concentration of 25 µg/ml by 30% after 6 h of treatment. Treatment of DU145 cells with PACs resulted in an inhibition of both MMPs 2 and 9 activity. PACs increased the expression of TIMP-2, a known inhibitor of MMP activity, and decreased the expression of EMMPRIN, an inducer of MMP expression. PACs decreased the expression of PI-3 kinase and AKT proteins, and increased the phosphorylation of both p38 and ERK1/2. Cranberry PACs also decreased the translocation of the NF-κB p65 protein to the nucleus. Cranberry PACs increased c-jun and decreased c-fos protein levels. These results suggest that cranberry PACs decreases MMP activity through the induction and/or inhibition of specific temporal MMP regulators, and by affecting either the phosphorylation status and/or expression of MAP kinase, PI-3 kinase, NF-κB and AP-1 pathway proteins. This study further demonstrates that cranberry PACs are a strong candidate for further research as novel anti-cancer agents. © 2010 Wiley-Liss, Inc.

  17. Factor Xa releases matrix metalloproteinase-2 (MMP-2) from human vascular smooth muscle cells and stimulates the conversion of pro-MMP-2 to MMP-2: role of MMP-2 in factor Xa-induced DNA synthesis and matrix invasion.

    PubMed

    Rauch, Bernhard H; Bretschneider, Ellen; Braun, Marina; Schrör, Karsten

    2002-05-31

    Pro-matrix metalloproteinase-2 (pro-MMP-2) is expressed in vascular smooth muscle cells (SMCs). We report that activated coagulation factor X (FXa) induces the release of MMP-2 (65 kDa) from human SMCs. In addition, FXa cleaves pro-MMP-2 (72 kDa) into MMP-2. Pro-MMP-2 and MMP-2 were determined by gelatin zymography. MMP-2 was generated in conditioned medium containing pro-MMP-2 in a concentration-dependent fashion by FXa (3 to 100 nmol/L). FX at concentrations up to 300 nmol/L was ineffective. The conversion of pro-MMP-2 to MMP-2 was inhibited by a selective FXa inhibitor (DX-9065a) at 3 to 10 micromol/L. There was a concentration-dependent induction of an intermediate MMP-2 form (68 kDa) in lysates of FXa-treated cells. This indicates that cellular mechanisms are involved in FXa-induced conversion of pro-MMP-2. As a possible biological consequence of MMP-2 activation by FXa, DNA synthesis and matrix invasion of SMCs were determined. Both were stimulated by FXa and inhibited by the selective FXa inhibitor DX-9065a and the MMP inhibitor GM 6001 but not by hirudin or aprotinin. It is concluded that stimulation of SMCs by FXa increases the levels of MMP-2 in the extracellular space and that two different mechanisms are involved: release of active MMP-2 and cleavage of secreted pro-MMP-2. Both might contribute to the mitogenic potency of FXa and FXa-stimulated matrix invasion of SMCs.

  18. [Expression and significance of tumor necrosis factor alpha, matrix metalloproteinase 2 and collagen in skin tissue of pressure ulcer of rats].

    PubMed

    Wang, X H; Mao, T T; Pan, Y Y; Xie, H H; Zhang, H Y; Xiao, J; Jiang, L P

    2016-03-01

    To observe the expressions of tumor necrosis factor alpha (TNF-α), matrix metalloproteinase 2 (MMP-2) and collagen in local skin tissue of pressure ulcer of rats, and to explore the possible mechanism of the pathogenesis of pressure ulcer. Forty male SD rats were divided into normal control group, 3 d compression group, 5 d compression group, 7 d compression group, and 9 d compression group according to the random number table, with 8 rats in each group. The rats in normal control group did not receive any treatment, whereas the rats in the latter 4 groups were established the deep tissue injury model (3 d compression group) and pressure ulcer model (the other 3 groups) on the gracilis muscle on both hind limbs using a way of cycle compression of ischemia-reperfusion magnet. The rats in 3 d compression group received only three cycles of compression, while the compressed skin of the rats in 5 d compression group, 7 d compression group, and 9 d compression group were cut through and received pressure to 5, 7 and 9 cycles after three cycles of compression, respectively. The rats in 3 d compression group were sacrificed immediately after receiving compression for 3 d (the rats in normal control group were sacrificed at the same time), and the rats in the other 3 groups were respectively sacrificed after receiving compression for 5, 7, and 9 d, and the skin tissue on the central part of gracilis muscle on both hind limbs were harvested. The morphology of the skin tissue was observed with HE staining. The expression of collagen fiber was observed with Masson staining. The expressions of collagen type Ⅳ and MMP-2 were detected by immunohistochemical method. The expressions of TNF-α and phosphorylated NF kappa B (NF-κB) were determined by Western blotting. Data were processed with one-way analysis of variance and LSD test. (1) In normal control group, the skin tissue of rats was stratified squamous epithelium, with the clear skin structure, and there was no obvious

  19. Naringenin reduces cholesterol-induced hepatic inflammation in rats by modulating matrix metalloproteinases-2, 9 via inhibition of nuclear factor κB pathway.

    PubMed

    Chtourou, Yassine; Fetoui, Hamadi; Jemai, Raoua; Ben Slima, Ahlem; Makni, Mohamed; Gdoura, Radhouane

    2015-01-05

    Nonalcoholic fatty liver disease (NAFLD) is a spectrum of hepatic abnormalities that extends from isolated steatosis to non-alcoholic steatohepatitis (NASH) and steatofibrosis. NASH is the progressive form of the disease that can lead to fibrosis, cirrhosis and hepatocellular carcinoma. Naringenin (NGEN), a healthful food, increases resistance to oxidative stress, inflammation and protects against multiple organ injury in various animal models. However, specific mechanisms responsible for such effects are poorly understood. Thus, this study investigates the effect of treatment with NGEN (50mg/kg) on oxidative events and the molecular mechanisms underlying inflammatory changes triggered in the rat liver by a high cholesterol diet for 90 days. NGEN significantly decreased the plasma fatty acid composition, the hepatic pro-inflammatory mediators and the expression of relevant genes including tumor necrosis factor-α, interlukin-6, interleukin-1β, inducible nitric oxide synthase and matrix metalloproteinases (MMP-2, 9), EGF-like module-containing mucin-like hormone receptor-like 1 (macrophage F4/80-specific gene); which suggests a reduced macrophage infiltration, and inhibited oxidative stress related biomarker levels at the end point of the experiment. Mechanistically, studies showed that NGEN markedly reduced lipid and protein oxidations, recruited the anti-oxidative defense system and promoted extracellular matrix degradation by modulating the levels of necrotic inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The influence of type I diabetes mellitus on the expression and activity of gelatinases (matrix metalloproteinases-2 and -9) in induced periodontal disease.

    PubMed

    Silva, J A F; Lorencini, M; Peroni, L A; De La Hoz, C L R; Carvalho, H F; Stach-Machado, D R

    2008-02-01

    Periodontal disease corresponds to a group of lesions that affect the tooth-supporting tissues present in the dental follicle. Although bacterial plaque is important, the immune response also contributes to the destruction of periodontal tissues. Diabetes mellitus is closely associated with the development, progression and severity of periodontal disease because it not only affects extracellular matrix organization but also the tissue response to inflammation. The objective of the present investigation was to study the influence of diabetes on experimental periodontal disease by evaluating the degradation of extracellular matrix through the analysis of matrix metalloproteinase (MMP)-2 and MMP-9 expression and activity, using immunofluorescence, zymography and real-time reverse transcription-polymerase chain reaction. Wistar rats were divided into normal and diabetic groups and evaluated 0, 15 and 30 d after the induction of periodontal disease by ligature. MMP-2 and -9 were detected in epithelial cells, in the blood vessel endothelium and in connective tissue cells. The same profile of enzymatic expression of MMP-2 and -9 was observed in normal and diabetic animals, with a peak in activity at day 15 of inflammation. However, in diabetic animals, MMP-2 gelatinolytic activity was reduced after the inflammatory stimulus, whereas that of MMP-9 was increased. MMP-2 gene expression decreased with inflammation in both normal groups and groups with diabetes. In contrast, MMP-9 expression increased in normal animals and decreased in diabetic animals after inflammation. The results suggest the involvement of MMP-2 and -9 in the dynamics of periodontal disease and that variation in their expression levels results in differences in tissue organization and wound healing in normal and diabetic animals.

  1. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood brain barrier damage in early ischemic stroke stage

    PubMed Central

    Liu, Jie; Jin, Xinchun; Liu, Ke J.; Liu, Wenlan

    2012-01-01

    Blood brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran, and promoted the secretion of metalloproteinase-2 and 9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2-h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis. PMID:22378877

  2. Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage.

    PubMed

    Liu, Jie; Jin, Xinchun; Liu, Ke J; Liu, Wenlan

    2012-02-29

    Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here, we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran and promoted the secretion of metalloproteinase-2 and -9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT (2-[[(4-phenoxyphenyl)sulfonyl]methyl]-thiirane) or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity, and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2 h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis.

  3. Quercetin inhibits migration and invasion of SAS human oral cancer cells through inhibition of NF-κB and matrix metalloproteinase-2/-9 signaling pathways.

    PubMed

    Lai, Wan-Wen; Hsu, Shu-Chun; Chueh, Fu-Shih; Chen, Ya-Yin; Yang, Jai-Sing; Lin, Jing-Pin; Lien, Jin-Cherng; Tsai, Chung-Hung; Chung, Jing-Gung

    2013-05-01

    Quercetin, a principal flavanoid compound in onions, has been shown to possess a wide spectrum of pharmacological properties, including anticancer activities. Our earlier study showed that quercetin induced cytotoxic effects on SAS human oral cancer cells. In this study, we found that quercetin significantly reduced wound closure of SAS cells in culture plates after 12- and 24-h treatments. Results indicated that quercetin inhibited the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9, as measured by western blotting and gelatin zymography. The results from western blotting also showed that quercetin reduced the protein levels of MMP-2, -7, -9 and -10, vascular endothelial growth factor (VEGF), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65, inductible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), urokinase-type plasminogen activator (uPA), phosphatidylinositide-3 kinases (PI3K), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IKBα), IKB-α/β, phosphorylated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor kinase, alpha/beta (p-IKKα/β), focal adhesion kinase (FAK), son of sevenless homolog-1 (SOS1), growth factor receptor-bound protein-2 (GRB2), mitogen-activated protein kinase kinase kinase-3 (MEKK3), MEKK7, extracellular-signal-regulated kinase 1/2 (ERK1/2), p-ERK1/2, c-Jun N-terminal kinase 1/2 (JNK1/2), p38, p-p38, Jun proto-oncogene (c-JUN) and p-c-JUN but it did not affect Ras homolog gene family, member A (RhoA), Protein kinase C (PKC) and rat sarcoma viral oncogene homolog (RAS) in SAS cells. Confocal laser microscopy also showed that quercetin promoted the expressions of RhoA and Rho-associated, coiled-coil containing protein kinase-1 (ROCK1), but inhibited the expression of NF-κB p65 in SAS cells. It is concluded from these data that inhibition of migration and invasion of SAS cells by quercetin is associated with the down

  4. Metallothinein 1E Enhances Glioma Invasion through Modulation Matrix Metalloproteinases-2 and 9 in U87MG Mouse Brain Tumor Model

    PubMed Central

    Hur, Hyuk; Ryu, Hyang-Hwa; Li, Chun-Hao; Kim, In Young; Jang, Woo-Youl

    2016-01-01

    Malignant glioma cells invading surrounding normal brain are inoperable and resistant to radio- and chemotherapy, and eventually lead to tumor regrowth. Identification of genes related to motility is important for understanding the molecular biological behavior of invasive gliomas. According to our previous studies, Metallothionein 1E (MT1E) was identified to enhance migration of human malignant glioma cells. The purpose of this study was to confirm that MT1E could modulate glioma invasion in vivo. Firstly we established 2 cell lines; MTS23, overexpressed by MT1E complementary DNA construct and pV12 as control. The expression of matrix metalloproteinases (MMP)-2, -9 and a disintegrin and metalloproteinase 17 were increased in MTS23 compared with pV12. Furthermore it was confirmed that MT1E could modulate MMPs secretion and translocation of NFkB p50 and B-cell lymphoma-3 through small interfering ribonucleic acid knocked U87MG cells. Then MTS23 and pV12 were injected into intracranial region of 5 week old male nude mouse. After 4 weeks, for brain tissues of these two groups, histological analysis, and immunohistochemical stain of MMP-2, 9 and Nestin were performed. As results, the group injected with MTS23 showed irregular margin and tumor cells infiltrating the surrounding normal brain, while that of pV12 (control) had round and clear margin. And regrowth of tumor cells in MTS23 group was observed in another site apart from tumor cell inoculation. MT1E could enhance tumor proliferation and invasion of malignant glioma through regulation of activation and expression of MMPs. PMID:27847566

  5. Modified profile of matrix metalloproteinase-2 and -9 production by human Fallopian tube epithelial cells following infection in vitro with Neisseria gonorrhoeae.

    PubMed

    Rodas, Paula I; Pérez, Doris; Jaffret, Claudia; González, Yaquelin; Carreño, Carolina; Tapia, Cecilia V; Osorio, Eduardo; Velasquez, Luis A; Christodoulides, Myron

    2016-12-08

    Epithelial shedding and scarring of Fallopian tube mucosa are the main consequences of sexually transmitted Neisseria gonorrhoeae infection and likely involves an imbalance of host extracellular matrix components (ECM) and their regulators such as matrix metalloproteinases (MMPs). In this brief report, primary human Fallopian tube epithelial cells were infected with N. gonorrhoeae and MMP patterns examined. Gonococcal infection induced a significant increase in secreted MMP-9 and an accumulation of cytoplasmic MMP-2 over time, but no significant MMP-3 or MMP-8 production was observed. Thus, MMP-9 in particular could play a role in tubal scarring in response to gonococcal infection.

  6. The effect of drugs commonly used in the treatment of equine articular disorders on the activity of equine matrix metalloproteinase-2 and 9.

    PubMed

    Clegg, P D; Jones, M D; Carter, S D

    1998-10-01

    Loss of articular cartilage, which is the most important pathological lesion occurring in osteoarthritis, has been shown to be enzymatically mediated. The matrix metalloproteinases (MMPs) are a group of enzymes which have been implicated in this degradation of articular cartilage matrix. The use of pharmacological agents to inhibit this catabolic process in the joint is a potential route for therapeutic intervention. The gelatinase MMPs, MMPs-2 and 9, were purified by affinity chromatography from equine cell cultures. The ability of phenylbutazone, flunixin, betamethasone, dexamethasone, methylprednisolone acetate (MPA), hyaluronan, pentosan polysulphate and polysulphated glycosaminoglycan (PSGAG) to inhibit equine MMPs-2 and 9 were assessed by two degradation assays. Whilst some agents did have direct effects on MMP activity, these effects were only obtained at concentrations which were unlikely to be achieved for any length of time in vivo. It is improbable that any pharmacological agent, currently used in the horse, has a significant effect on gelatinase MMP activity.

  7. Inhibitory Effects of Isorhamnetin on the Invasion of Human Breast Carcinoma Cells by Downregulating the Expression and Activity of Matrix Metalloproteinase-2/9.

    PubMed

    Li, Chenglin; Yang, Dan; Zhao, Yuanwei; Qiu, Yu; Cao, Xin; Yu, Yanyan; Guo, Hao; Gu, Xiaoke; Yin, Xiaoxing

    2015-01-01

    Matrix metalloproteinases (MMPs) play an active role in facilitating the invasion of cancer cells with excessive extracellular matrix (ECM) degradation. In the present study, we investigated the antiinvasive effects of isorhamnetin, a naturally occurring flavonoid, on MDA-MB-231 human breast carcinoma cells. The results indicated that isorhamnetin significantly inhibited the adhesion, migration, and invasion of the cells in vitro. Moreover, isorhamnetin suppressed the activity and expression of MMP-2 and MMP-9, which were determined by gelatin zymography, real-time PCR, and Western blot analysis, respectively. Besides, isorhamnetin had little effect on the secretion of urokinase plasminogen activator. Further elucidation of the mechanism revealed that isorhamnetin exerted an inhibitory effect on the phosphorylation of p38 and STAT3, although it had no effect on ERK1/2 and JNK. Taken together, these data demonstrated that isorhamnetin could significantly inhibit the invasion of MDA-MB-231 cells by downregulating the expression and activity of MMP-2 and MMP-9, which was potentially associated with the suppression of p38 MAPK and STAT3. Therefore, the findings provide new evidence for the anti-cancer activity of isorhamnetin.

  8. Dual Inhibitory Pathways of Metallofullerenol Gd@C82(OH)22 on Matrix Metalloproteinase-2: Molecular insight into drug-like nanomedicine

    NASA Astrophysics Data System (ADS)

    Kang, Seung-Gu; Araya-Secchi, Raul; Wang, Deqiang; Wang, Bo; Huynh, Tien; Zhou, Ruhong

    2014-04-01

    Cancer metastasis is an important criterion to evaluate tumor malignancy. Matrix metalloproteinases (MMPs) play a crucial role in cancer proliferation and migration by virtue of their proteolytic functions in angiogenesis and extracelluar matrix (ECM) degradation, making them potential targets of anti-metastaic therapeutics. Recently we showed with both in vivo and in vitro experiments that metallofullerenol Gd@C82(OH)22 can effectively inhibit MMP-2 and MMP-9 with high antitumoral efficacy. Furthermore, our in silico study revealed that Gd@C82(OH)22 could indirectly inhibit the proteolysis of MMP-9 via allosteric modulation exclusively at the ligand specificity S1' loop. Here, we expand our study toward another gelatinase, MMP-2, using molecular dynamics simulations. Despite the high structural similarity with 64.3% sequence identity, their responses to Gd@C82(OH)22 were quite different. Toward MMP-2, Gd@C82(OH)22 could block either the Zn2+-catalylitic site directly or the S1' loop indirectly. Surface electrostatics uniquely determines the initial adsorption of Gd@C82(OH)22 on MMP-2, and then its further location of the most favorable binding site(s). These findings not only illustrated how the inhibitory mechanism of Gd@C82(OH)22 is distinguished between the two gelatinase MMPs with atomic details, but also shed light on the de novo design of anti-metastatic nanotherapeutics with enhanced target specificity.

  9. Dual Inhibitory Pathways of Metallofullerenol Gd@C82(OH)22 on Matrix Metalloproteinase-2: Molecular insight into drug-like nanomedicine

    PubMed Central

    Kang, Seung-gu; Araya-Secchi, Raul; Wang, Deqiang; Wang, Bo; Huynh, Tien; Zhou, Ruhong

    2014-01-01

    Cancer metastasis is an important criterion to evaluate tumor malignancy. Matrix metalloproteinases (MMPs) play a crucial role in cancer proliferation and migration by virtue of their proteolytic functions in angiogenesis and extracelluar matrix (ECM) degradation, making them potential targets of anti-metastaic therapeutics. Recently we showed with both in vivo and in vitro experiments that metallofullerenol Gd@C82(OH)22 can effectively inhibit MMP-2 and MMP-9 with high antitumoral efficacy. Furthermore, our in silico study revealed that Gd@C82(OH)22 could indirectly inhibit the proteolysis of MMP-9 via allosteric modulation exclusively at the ligand specificity S1′ loop. Here, we expand our study toward another gelatinase, MMP-2, using molecular dynamics simulations. Despite the high structural similarity with 64.3% sequence identity, their responses to Gd@C82(OH)22 were quite different. Toward MMP-2, Gd@C82(OH)22 could block either the Zn2+-catalylitic site directly or the S1′ loop indirectly. Surface electrostatics uniquely determines the initial adsorption of Gd@C82(OH)22 on MMP-2, and then its further location of the most favorable binding site(s). These findings not only illustrated how the inhibitory mechanism of Gd@C82(OH)22 is distinguished between the two gelatinase MMPs with atomic details, but also shed light on the de novo design of anti-metastatic nanotherapeutics with enhanced target specificity. PMID:24758941

  10. Matrix Metalloproteinase-2-deficient Fibroblasts Exhibit an Alteration in the Fibrotic Response to Connective Tissue Growth Factor/CCN2 because of an Increase in the Levels of Endogenous Fibronectin*

    PubMed Central

    Droppelmann, Cristian A.; Gutiérrez, Jaime; Vial, Cecilia; Brandan, Enrique

    2009-01-01

    Matrix metalloproteinase-2 (MMP-2) is an important extracellular matrix remodeling enzyme, and it has been involved in different fibrotic disorders. The connective tissue growth factor (CTGF/CCN2), which is increased in these pathologies, induces the production of extracellular matrix proteins. To understand the fibrotic process observed in diverse pathologies, we analyzed the fibroblast response to CTGF when MMP-2 activity is inhibited. CTGF increased fibronectin (FN) amount, MMP-2 mRNA expression, and gelatinase activity in 3T3 cells. When MMP-2 activity was inhibited either by the metalloproteinase inhibitor GM-6001 or in MMP-2-deficient fibroblasts, an increase in the basal amount of FN together with a decrease of its levels in response to CTGF was observed. This paradoxical effect could be explained by the fact that the excess of FN could block the access to other ligands, such as CTGF, to integrins. This effect was emulated in fibroblasts by adding exogenous FN or RGDS peptides or using anti-integrin αV subunit-blocking antibodies. Additionally, in MMP-2-deficient cells CTGF did not induce the formation of stress fibers, focal adhesion sites, and ERK phosphorylation. Anti-integrin αV subunit-blocking antibodies inhibited ERK phosphorylation in control cells. Finally, in MMP-2-deficient cells, FN mRNA expression was not affected by CTGF, but degradation of 125I-FN was increased. These results suggest that expression, regulation, and activity of MMP-2 can play an important role in the initial steps of fibrosis and shows that FN levels can regulate the cellular response to CTGF. PMID:19276073

  11. The Effect of Platelet-rich Plasma on Wounds of OLETF Rats Using Expression of Matrix Metalloproteinase-2 and -9 mRNA

    PubMed Central

    Oh, Hwa Young

    2012-01-01

    Background Complicated diabetic patients show impaired, delayed wound healing caused by multiple factors. A study on wound healing showed that platelet-rich plasma (PRP) was effective in normal tissue regeneration. Nonetheless, there is no evidence that when plateletrich plasma is applied to diabetic wounds, it normalizes the diabetic wound healing process. In this study, we have analyzed matrix metalloproteinase (MMP)-2, MMP-9 expression to investigate the effect of PRP on diabetic wounds. Methods Twenty-four-week-old male Otsuka Long-Evans Tokushima Fatty rats were provided by the Tokushima Research Institute. At 50 weeks, wounds were arranged in two sites on the lateral paraspinal areas. Each wound was treated with PRP gel and physiologic saline gauze. To determine the expression of MMP-2, MMP-9, which was chosen as a marker of wound healing, reverse transcription polymerase chain reaction (RT-PCR) was performed and local distribution and expression of MMP-2, MMP-9 was also observed throughout the immunohistochemical staining. Results RT-PCR and the immunohistochemical study showed that the levels of MMP-2, MMP-9 mRNA expression in PRP applied tissues were higher than MMP-2, MMP-9 mRNA expression in saline-applied tissues. MMP-9 mRNA expression in wounds of diabetic rats decreased after healing began to occur. But no statistical differences were detected on the basis of body weight or fasting blood glucose levels. Conclusions This study could indicate the extracellular matrix-regulating effect observed with PRP. Our results of the acceleration of wound healing events by PRP under hyperglycemic conditions might be a useful clue for future clinical treatment for diabetic wounds. PMID:22783508

  12. Matrix Metalloproteinase-2 and -9 Secreted by Leukemic Cells Increase the Permeability of Blood-Brain Barrier by Disrupting Tight Junction Proteins

    PubMed Central

    Feng, Saran; Cen, Jiannong; Huang, Yihong; Shen, Hongjie; Yao, Li; Wang, Yuanyuan; Chen, Zixing

    2011-01-01

    Central nervous system (CNS) involvement remains an important cause of morbidity and mortality in acute leukemia, the mechanisms of leukemic cell infiltration into the CNS have not yet been elucidated. The blood-brain barrier (BBB) makes CNS become a refugee to leukemic cells and serves as a resource of cells that seed extraneural sites. How can the leukemic cells disrupt this barrier and invasive the CNS, even if many of the currently available chemotherapies can not cross the BBB? Tight junction in endothelial cells occupies a central role in the function of the BBB. Except the well known role of degrading extracellular matrix in metastasis of cancer cells, here we show matrix metalloproteinase (MMP)-2 and -9, secreted by leukemic cells, mediate the BBB opening by disrupting tight junction proteins in the CNS leukemia. We demonstrated that leukemic cells impaired tight junction proteins ZO-1, claudin-5 and occludin resulting in increased permeability of the BBB. However, these alterations reduced when MMP-2 and -9 activities were inhibited by RNA interference strategy or by MMP inhibitor GM6001 in an in vitro BBB model. We also found that the disruption of the BBB in company with the down-regulation of ZO-1, claudin-5 and occludin and the up-regulation of MMP-2 and -9 in mouse brain tissues with leukemic cell infiltration by confocal imaging and the assay of in situ gelatin zymography. Besides, GM6001 protected all mice against CNS leukemia. Our findings suggest that the degradation of tight junction proteins ZO-1, claudin-5 and occludin by MMP-2 and -9 secreted by leukemic cells constitutes an important mechanism in the BBB breakdown which contributes to the invasion of leukemic cells to the CNS in acute leukemia. PMID:21857898

  13. Pipoxolan Ameliorates Cerebral Ischemia via Inhibition of Neuronal Apoptosis and Intimal Hyperplasia through Attenuation of VSMC Migration and Modulation of Matrix Metalloproteinase-2/9 and Ras/MEK/ERK Signaling Pathways

    PubMed Central

    Chen, Yuh-Fung; Tsai, Huei-Yann; Wu, Kuo-Jen; Siao, Lian-Ru; Wood, W. Gibson

    2013-01-01

    Pipoxolan (PIPO) has anti-spasmodic effects, and it is used clinically to relieve smooth muscle spasms. Cerebrovascular disease is one of the leading causes of disability and death worldwide. The main aim of this study was to investigate the effects of PIPO on cerebral ischemia and vascular smooth muscle cell (VSMC) migration in vivo and in vitro. Cerebral infarction area, ratio of intima to media area (I/M ratio) and PCNA antibody staining of the carotid artery in vivo were measured. Cell viability of A7r5 cells, PDGF-BB-stimulated cell migration, and potential mechanisms of PIPO were evaluated by wound healing, transwell and Western blotting. PIPO (10 and 30 mg/kg p.o.) reduced: the cerebral infarction area; neurological deficit; TUNEL-positive cells; cleaved caspase 3-positive cells; intimal hyperplasia; and inhibited proliferating cell nuclear antigen (PCNA)-positive cells in rodents. PIPO (5, 10 and 15 µM) significantly inhibited PDGF-BB-stimulated VSMC migration and reduced Ras, MEK, and p-ERK levels. Moreover, PIPO decreased levels of matrix metalloproteinases -2 and -9 in PDGF-BB-stimulated A7r5 cells. In summary, PIPO is protective in models of ischemia/reperfusion-induced cerebral infarction, carotid artery ligation-induced intimal hyperplasia and VSMC migration both in vivo and in vitro. PIPO could be potentially efficacious in preventing cerebrovascular and vascular diseases. PMID:24086601

  14. Förster Resonance Energy Transfer Mediated Photoluminescence Quenching in Stoichiometrically Assembled CdSe/ZnS Quantum Dot-Peptide Labeled Black Hole Quencher Conjugates for Matrix Metalloproteinase-2 Sensing.

    PubMed

    Pillai, Sreenadh Sasidharan; Yukawa, Hiroshi; Onoshima, Daisuke; Biju, Vasudevanpillai; Baba, Yoshinobu

    2017-01-01

    The steady state and time-resolved photoluminescence quenching of streptavidin modified CdSe/ZnS quantum dots (QDs) instigated by biotin-peptide-BHQ-1 (biotin-pep-BHQ-1) molecule was investigated. Here, we have achieved an efficient photoluminescence (PL) quenching of QDs with the conjugation of dark quencher (black hole quencher-BHQ) molecules intermediated with the GPLGVRGK peptide. The luminescence of streptavidin-QDs585 was decreased upon titration with a nano molar concentration of the biotin-GPLGVRGK-BHQ-1 molecule. It has been suggested that the decrease of QDs PL occurred through a Förster resonance energy transfer (FRET) mechanism from the analysis of steady state photoluminescence intensity measurements as well as time resolved lifetime measurements of streptavidin-QDs and QDs-(pep-BHQ-1)n conjugates. The sequence of intermediate peptide GPLG↓VRGK can act as a target material for matrix metalloproteinases-2 (MMP-2) produced by cancer cells at its Gly and Val region, shown by the down-headed arrow. Interestingly, here the reported self-assembled QDs-(pep-BHQ-1)n conjugates could detect the presence MMP-2 at a detection limit of 1 ng/mL with a clear luminescence recovery.

  15. Severity of Plasma Leakage Is Associated With High Levels of Interferon γ-Inducible Protein 10, Hepatocyte Growth Factor, Matrix Metalloproteinase 2 (MMP-2), and MMP-9 During Dengue Virus Infection.

    PubMed

    Her, Zhisheng; Kam, Yiu-Wing; Gan, Victor C; Lee, Bernett; Thein, Tun-Linn; Tan, Jeslin J L; Lee, Linda K; Fink, Katja; Lye, David C; Rénia, Laurent; Leo, Yee-Sin; Ng, Lisa F P

    2017-01-01

     Dengue virus infection typically causes mild dengue fever, but, in severe cases, life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) occur. The pathophysiological hallmark of DHF and DSS is plasma leakage that leads to enhanced vascular permeability, likely due to a cytokine storm.  Ninety patients with dengue during 2010-2012 in Singapore were prospectively recruited and stratified according to their disease phase, primary and secondary infection status, and disease severity, measured by plasma leakage. Clinical parameters were recorded throughout the disease progression. The levels of various immune mediators were quantified using comprehensive multiplex microbead-based immunoassays for 46 immune mediators.  Associations between clinical parameters and immune mediators were analyzed using various statistical methods. Potential immune markers, including interleukin 1 receptor antagonist, interferon γ-inducible protein 10, hepatocyte growth factor, soluble p75 tumor necrosis factor α receptor, vascular cell adhesion molecule 1, and matrix metalloproteinase 2, were significantly associated with significant plasma leakage. Secondary dengue virus infections were also shown to influence disease outcome in terms of disease severity.  This study identified several key markers for exacerbated dengue pathogenesis, notably plasma leakage. This will allow a better understanding of the molecular mechanisms of DHF and DSS in patients with dengue. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  16. Pipoxolan ameliorates cerebral ischemia via inhibition of neuronal apoptosis and intimal hyperplasia through attenuation of VSMC migration and modulation of matrix metalloproteinase-2/9 and Ras/MEK/ERK signaling pathways.

    PubMed

    Chen, Yuh-Fung; Tsai, Huei-Yann; Wu, Kuo-Jen; Siao, Lian-Ru; Wood, W Gibson

    2013-01-01

    Pipoxolan (PIPO) has anti-spasmodic effects, and it is used clinically to relieve smooth muscle spasms. Cerebrovascular disease is one of the leading causes of disability and death worldwide. The main aim of this study was to investigate the effects of PIPO on cerebral ischemia and vascular smooth muscle cell (VSMC) migration in vivo and in vitro. Cerebral infarction area, ratio of intima to media area (I/M ratio) and PCNA antibody staining of the carotid artery in vivo were measured. Cell viability of A7r5 cells, PDGF-BB-stimulated cell migration, and potential mechanisms of PIPO were evaluated by wound healing, transwell and Western blotting. PIPO (10 and 30 mg/kg p.o.) reduced: the cerebral infarction area; neurological deficit; TUNEL-positive cells; cleaved caspase 3-positive cells; intimal hyperplasia; and inhibited proliferating cell nuclear antigen (PCNA)-positive cells in rodents. PIPO (5, 10 and 15 µM) significantly inhibited PDGF-BB-stimulated VSMC migration and reduced Ras, MEK, and p-ERK levels. Moreover, PIPO decreased levels of matrix metalloproteinases -2 and -9 in PDGF-BB-stimulated A7r5 cells. In summary, PIPO is protective in models of ischemia/reperfusion-induced cerebral infarction, carotid artery ligation-induced intimal hyperplasia and VSMC migration both in vivo and in vitro. PIPO could be potentially efficacious in preventing cerebrovascular and vascular diseases.

  17. A Lindera obtusiloba Extract Blocks Calcium-/Phosphate-Induced Transdifferentiation and Calcification of Vascular Smooth Muscle Cells and Interferes with Matrix Metalloproteinase-2 and Metalloproteinase-9 and NF-κB

    PubMed Central

    Freise, Christian; Kim, Ki Young; Querfeld, Uwe

    2015-01-01

    Vascular calcifications bear the risk for cardiovascular complications and have a high prevalence among patients with chronic kidney disease. Central mediators of vascular calcifications are vascular smooth muscle cells (VSMC). They transdifferentiate into a synthetic/osteoblast-like phenotype, which is induced, for example, by elevated levels of calcium and phosphate (Ca/P) due to a disturbed mineral balance. An aqueous extract from Lindera obtusiloba (LOE) is known to exert antifibrotic and antitumor effects or to interfere with the differentiation of preadipocytes. Using murine and rat VSMC cell lines, we here investigated whether LOE also protects VSMC from Ca/P-induced calcification. Indeed, LOE effectively blocked Ca/P-induced calcification of VSMC as shown by decreased VSMC mineralization and secretion of alkaline phosphatase. In parallel, mRNA expression of the calcification markers osterix and osteocalcin was reduced. Vice versa, the Ca/P-induced loss of the VSMC differentiation markers alpha smooth muscle actin and smooth muscle protein 22-alpha was rescued by LOE. Further, LOE blocked Ca/P-induced mRNA expressions and secretions of matrix metalloproteinases-2/-9 and activation of NF-κB, which are known contributors to vascular calcification. In conclusion, LOE interferes with the Ca/P-induced transdifferentiation/calcification of VSMC. Thus, LOE should be further analysed regarding a potential complementary treatment option for cardiovascular diseases including vascular calcifications. PMID:26294927

  18. Elevated expression levels of matrix metalloproteinase-9 in placental villi and tissue inhibitor of metalloproteinase-2 in decidua are associated with prolonged bleeding after mifepristone-misoprostol medical abortion.

    PubMed

    Zhuang, Yaling; Qian, Zhida; Huang, Lili

    2014-01-01

    To determine whether the expression levels of matrix metalloproteinases 2 and 9 (MMP-2 and -9) and tissue inhibitors of metalloproteinases 1 and 2 (TIMP-1 and -2) in the villi and the decidua are associated with prolonged bleeding after medical abortion. Case-controlled study. University hospital. Mifepristone-misoprostol medical abortion patients were divided into two groups (20 women each) based on the length of time (>14 or ≤14 days) of bleeding after the abortion. Discharged villi and deciduas were collected. The expression levels of MMP-2 and -9 and TIMP-1 and -2 in the villi and deciduas were assessed with semiquantitative immunohistochemistry. The median semiquantitative immunohistochemistry staining index (SI) scores for MMP-9 expression in the villi were elevated in the bleeding group compared with the control group (median SI scores 0.31 and 0.03, respectively). TIMP-2 expression was elevated in the decidua in the bleeding group compared with the control group (median SI scores 1.00 and 0.20, respectively). No significant differences were observed between the two groups in the expression levels of MMP-2 in the villi or of MMP-2, MMP-9, or TIMP-1 or of the ratios of MMP-9/TIMP-1 or MMP-2/TIMP-2 in the decidua. Elevated expression levels of MMP-9 in the villi and of TIMP-2 in the decidua were associated with prolonged bleeding after medical abortion. Copyright © 2014. Published by Elsevier Inc.

  19. Differential Expression of Matrix Metalloproteinase-2 Expression in Disseminated Tumor Cells and Micrometastasis in Bone Marrow of Patients with Nonmetastatic and Metastatic Prostate Cancer: Theoretical Considerations and Clinical Implications—An Immunocytochemical Study

    PubMed Central

    Murray, Nigel P.; Reyes, Eduardo; Tapia, Pablo; Badínez, Leonardo; Orellana, Nelson

    2012-01-01

    Matrix metalloproteinase-2 (MMP-2) is important in the dissemination and invasion of tumor cells and activates angiogenesis. We present an immunocytochemical study of MMP-2 expression in circulating prostate cells (CPCs), disseminated tumor cells (DTCs), and micrometastasis (mM) in bone marrow of men with prostate cancer. Methods and Patients. Tumor cells were identified with anti-PSA immunocytochemistry. Positive samples underwent processing with anti-MMP-2, its expression was compared with Gleason score, concordance of expression, and metastatic and nonmetastatic disease. Results. 215 men participated, CPCs were detected in 62.7%, DTCs in 62.2%, and mM in 71.4% in nonmetastatic cancer; in metastatic cancer all had CPCs, DTCs, and mM detected. All CPCs and DTCs expressed MMP-2; in mM MMP-2 expression was positively associated with increasing Gleason score. MMP-2 expression in CPCs and DTCs showed concordance. In low grade tumors, mM and surrounding stromal cells were MMP-2 negative, with variable expression in high grade tumors; in metastatic disease, both mM and stromal cells were MMP-2 positive. Conclusions. CPCs and DTCs are different from mM, with inhibition of MMP-2 expression in mM of low grade tumors. With disease progression, MMP-2 expression increases in both mM and surrounding stromal cells, with implications for the use of bisphosphonates or MMP-2 inhibitors. PMID:23227342

  20. Matrix Metalloproteinase 2-Integrin αvβ3 Binding Is Required for Mesenchymal Cell Invasive Activity but Not Epithelial Locomotion: A Computational Time-Lapse Study

    PubMed Central

    Rupp, Paul A.; Visconti, Richard P.; Czirók, András; Cheresh, David A.

    2008-01-01

    Cellular invasive behavior through three-dimensional collagen gels was analyzed using computational time-lapse imaging. A subpopulation of endocardial cells, derived from explanted quail cardiac cushions, undergoes an epithelial-to-mesenchymal transition and invades the substance of the collagen gels when placed in culture. In contrast, other endocardial cells remain epithelial and move over the gel surface. Here, we show that integrin αvβ3 and matrix metalloproteinase (MMP)2 are present and active in cushion mesenchymal tissue. More importantly, functional assays show that mesenchymal invasive behavior is dependent on MMP2 activity and integrin αvβ3 binding. Inhibitors of MMP enzymatic activity and molecules that prevent integrin αvβ3 binding to MMP2, via its hemopexin domain, result in significantly reduced cellular protrusive activity and invasive behavior. Computational analyses show diminished intensity and persistence time of motility in treated invasive mesenchymal cells, but no reduction in motility of the epithelial-like cells moving over the gel surface. Thus, quantitative time-lapse data show that mesenchymal cell invasive behavior, but not epithelial cell locomotion over the gel surface, is partially regulated by the MMP2–integrin interactions. PMID:18923152

  1. Magnolol suppresses metastasis via inhibition of invasion, migration, and matrix metalloproteinase-2/-9 activities in PC-3 human prostate carcinoma cells.

    PubMed

    Hwang, Eun-Sun; Park, Kwang-Kyun

    2010-01-01

    Magnolol, a hydroxylated biphenyl compound isolated from the root and stem bark of Magnolia officinalis, has been reported to have anticancer activity, but little is known about its molecular mechanisms of action. Increased expression of cyclooxygenase-2 (COX-2), a key enzyme in arachidonic acid metabolism, has been identified in many cancer types. Matrix metalloproteinases (MMPs) are enzymes involved in various steps of metastasis development. The objective of this study was to study the effects of magnolol on cancer invasion and metastasis using PC-3 human prostate carcinoma cells. Cellular proliferation was determined by MTT colorimetric assay. Magnolol inhibited cell growth in a dose-dependent manner. In an invasion assay conducted in Transwell chambers, magnolol showed 33 and 98% inhibition of cancer cell at 10 microM and 20 microM concentrations, respectively, compared to the control. The expression of MMP-2/-9 and COX-1/-2 was assessed by gelatin zymography and Western blot respectively. The protein and mRNA levels of both MMP-2 and MMP-9 were down-regulated by magnolol treatment in a dose-dependent manner. These results demonstrate the antimetastatic properties of magnolol in inhibiting the adhesion, invasion, and migration of PC-3 human prostate cancer cells.

  2. Matrix Metalloproteinases 2 and 9 and E-Cadherin Expression in the Endometrium During the Implantation Window of Infertile Women Before In Vitro Fertilization Treatment

    PubMed Central

    Rocha, Andre M.; Ferreira, Fernando P.; Bonetti, Tatiana C. S.; Serafini, Paulo; Motta, Eduardo L. A.

    2014-01-01

    Objective: To evaluate the expression of endometrial matrix metalloproteinases (MMPs) 2 and 9 and E-cadherin in peri-implantation phase of infertile women who have undergone in vitro fertilization (IVF) cycles. Methods: This prospective study included 51 patients who underwent endometrial biopsy during the receptive phase in a menstrual cycle prior to IVF treatment. The samples were evaluated by tissue microarray for immunohistochemical study. Results: The expression of MMP-2, MMP-9, and E-cadherin in the endometrium prior to IVF treatment was not associated with pregnancy. There was a decrease in E-cadherin immunodetection, the higher the age of the patients, a negative relationship between E-cadherin and MMP-2, and a positive association between MMP-9 and E-cadherin. Conclusions: The MMP-2, MMP-9, and E-cadherin are expressed in the endometrium of infertile patients during the receptive phase of the natural menstrual cycle. However, there is no correlation between the expression of these molecules and the clinical IVF outcomes. PMID:24700054

  3. Perfluorooctanoic acid enhances colorectal cancer DLD-1 cells invasiveness through activating NF-κB mediated matrix metalloproteinase-2/-9 expression.

    PubMed

    Miao, Chen; Ma, Jun; Zhang, Yajie; Chu, Yimin; Li, Ji; Kuai, Rong; Wang, Saiyu; Peng, Haixia

    2015-01-01

    Perfluorooctanoic acid (PFOA) is widely used in consumer products and detected in human serum. Our study meant to elucidate the uncovered molecular mechanisms underlying the PFOA induced colorectal cancer cell DLD-1 invasion and matrix metalloproteinases (MMP) expression. Trans-well filter assay appeared that PFOA treatment stimulated DLD-1 cells invasion significantly. Meanwhile, the results of luciferase reporter, quantitative real-time PCR, western blotting, and gelatin zymography showed that PFOA induced MMP-2/-9 expression and enzyme activation levels consistently (P < 0.05 each). Subsequently, western blotting and immunofluorescence assay demonstrated that PFOA could enhance nuclear factor kappaB (NF-κB) activity by stimulating NF-κB translocation into nuclear in DLD-1 cells. Furthermore, JSH-23, a well-known NF-κB inhibitor, could reverse the PFOA induced colorectal cancer cell invasion and MMP-2/-9 expression. Our study confirmed that PFOA could induce colorectal cancer cell DLD-1 invasive ability and MMP-2/-9 expression through activating NF-κB, which deserves more concerns on environmental pollutant-resulted public health risk.

  4. Stereoselective suppressive effects of protopanaxadiol epimers on UV-B-induced reactive oxygen species and matrix metalloproteinase-2 in human dermal keratinocytes.

    PubMed

    Oh, Sun-Joo; Lee, Sihyeong; Kho, Ye Eun; Kim, Kyunghoon; Jin, Chang Duck; Lim, Chang-Jin

    2015-01-01

    This study aimed to assess the skin-related anti-photoaging activities of the 2 epimeric forms of protopanaxadiol (PPD), 20(S)-PPD and 20(R)-PPD, in cultured human keratinocytes (HaCaT cells). The anti-photoaging activity was evaluated by analyzing the levels of reactive oxygen species (ROS) and matrix metalloproteinases (MMPs), as well as cell viability for HaCaT cells under UV-B irradiation. The activities for MMP-2 and -1 in conditioned medium were determined using gelatin zymography, and MMP-2 protein in the conditioned medium was detected using Western blot analysis. 20(S)-PPD, but not 20(R)-PPD, suppressed UV-B-induced ROS elevation. Neither of the epimers, at the concentrations used, exhibited cytotoxicity, irrespective of UV-B irradiation. 20(S)-PPD, but not 20(R)-PPD, exhibited an inhibitory effect on UV-B-induced MMP-2 activity and expression in HaCaT cells. In brief, only 20(S)-PPD, a major metabolic product of PPD-type ginsenosides, inhibits UV-B-induced ROS and MMP-2 elevation, implying its stereospecific anti-photoaging activity on the skin.

  5. Granulocyte-Colony-Stimulating Factor Stimulation of Bone Marrow Mesenchymal Stromal Cells Promotes CD34+ Cell Migration Via a Matrix Metalloproteinase-2-Dependent Mechanism

    PubMed Central

    Ponte, Adriana López; Ribeiro-Fleury, Tatiana; Chabot, Valérie; Gouilleux, Fabrice; Langonné, Alain; Hérault, Olivier; Charbord, Pierre

    2012-01-01

    Human hematopoietic stem/progenitor cells (HSPCs) can be mobilized into the circulation using granulocyte-colony stimulating factor (G-CSF), for graft collection in view of hematopoietic transplantation. This process has been related to bone marrow (BM) release of serine proteases and of the matrix metalloproteinase-9 (MMP-9). Yet, the role of these mediators in HSC egress from their niches remains questionable, because they are produced by nonstromal cells (mainly neutrophils and monocytes/macrophages) that are not a part of the niche. We show here that the G-CSF receptor (G-CSFR) is expressed by human BM mesenchymal stromal/stem cells (MSCs), and that G-CSF prestimulation of MSCs enhances the in vitro trans-stromal migration of CD34+ cells. Zymography analysis indicates that pro-MMP-2 (but not pro-MMP-9) is expressed in MSCs, and that G-CSF treatment increases its expression and induces its activation at the cell membrane. We further demonstrate that G-CSF-stimulated migration depends on G-CSFR expression and is mediated by a mechanism that involves MMPs. These results suggest a molecular model whereby G-CSF infusion may drive, by the direct action on MSCs, HSPC egress from BM niches via synthesis and activation of MMPs. In this model, MMP-2 instead of MMP-9 is implicated, which constitutes a major difference with mouse mobilization models. PMID:22651889

  6. Enhancement of Matrix Metalloproteinase-2 (MMP-2) as a Potential Chondrogenic Marker during Chondrogenic Differentiation of Human Adipose-Derived Stem Cells

    PubMed Central

    Arai, Yoshie; Park, Sunghyun; Choi, Bogyu; Ko, Kyoung-Won; Choi, Won Chul; Lee, Joong-Myung; Han, Dong-Wook; Park, Hun-Kuk; Han, Inbo; Lee, Jong Hun; Lee, Soo-Hong

    2016-01-01

    Human adipose-derived stem cells (hASCs) have a capacity to undergo adipogenic, chondrogenic, and osteogenic differentiation. Recently, hASCs were applied to various fields including cell therapy for tissue regeneration. However, it is hard to predict the direction of differentiation of hASCs in real-time. Matrix metalloproteinases (MMPs) are one family of proteolytic enzymes that plays a pivotal role in regulating the biology of stem cells. MMPs secreted by hASCs are expected to show different expression patterns depending on the differentiation state of hASCs because biological functions exhibit different patterns during the differentiation of stem cells. Here, we investigated proteolytic enzyme activity, especially MMP-2 activity, in hASCs during their differentiation. The activities of proteolytic enzymes and MMP-2 were higher during chondrogenic differentiation than during adipogenic and osteogenic differentiation. During chondrogenic differentiation, mRNA expression of MMP-2 and the level of the active form of MMP-2 were increased, which also correlated with Col II. It is concluded that proteolytic enzyme activity and the level of the active form of MMP-2 were increased during chondrogenic differentiation, which was accelerated in the presence of Col II protein. According to our findings, MMP-2 could be a candidate maker for real-time detection of chondrogenic differentiation of hASCs. PMID:27322256

  7. Enhancement of Matrix Metalloproteinase-2 (MMP-2) as a Potential Chondrogenic Marker during Chondrogenic Differentiation of Human Adipose-Derived Stem Cells.

    PubMed

    Arai, Yoshie; Park, Sunghyun; Choi, Bogyu; Ko, Kyoung-Won; Choi, Won Chul; Lee, Joong-Myung; Han, Dong-Wook; Park, Hun-Kuk; Han, Inbo; Lee, Jong Hun; Lee, Soo-Hong

    2016-06-17

    Human adipose-derived stem cells (hASCs) have a capacity to undergo adipogenic, chondrogenic, and osteogenic differentiation. Recently, hASCs were applied to various fields including cell therapy for tissue regeneration. However, it is hard to predict the direction of differentiation of hASCs in real-time. Matrix metalloproteinases (MMPs) are one family of proteolytic enzymes that plays a pivotal role in regulating the biology of stem cells. MMPs secreted by hASCs are expected to show different expression patterns depending on the differentiation state of hASCs because biological functions exhibit different patterns during the differentiation of stem cells. Here, we investigated proteolytic enzyme activity, especially MMP-2 activity, in hASCs during their differentiation. The activities of proteolytic enzymes and MMP-2 were higher during chondrogenic differentiation than during adipogenic and osteogenic differentiation. During chondrogenic differentiation, mRNA expression of MMP-2 and the level of the active form of MMP-2 were increased, which also correlated with Col II. It is concluded that proteolytic enzyme activity and the level of the active form of MMP-2 were increased during chondrogenic differentiation, which was accelerated in the presence of Col II protein. According to our findings, MMP-2 could be a candidate maker for real-time detection of chondrogenic differentiation of hASCs.

  8. Comparative analysis of basal lamina type IV collagen α chains, matrix metalloproteinases-2 and -9 expressions in oral dysplasia and invasive carcinoma.

    PubMed

    Tamamura, Ryo; Nagatsuka, Hitoshi; Siar, Chong Huat; Katase, Naoki; Naito, Ichiro; Sado, Yoshikazu; Nagai, Noriyuki

    2013-03-01

    The aim of this study was to compare the expressions of basal lamina (BL) collagen IV α chains and matrix metalloproteinases (MMP)-2 and MMP-9 in oral dysplasia (OED) and invasive carcinoma. Ten cases each of OEDs, carcinomas-in situ and oral squamous cell carcinomas (OSCCs) were examined by immunohistochemistry. Another 5 cases, each of normal and hyperplastic oral mucosa, served as controls. Results showed that α1(IV)/α2(IV) and α5(IV)/α6(IV) chains were intact in BLs of control and OEDs. In BLs of carcinoma-in situ, α1(IV)/α2(IV) chains preceded α5(IV)/α6(IV) chains in showing incipient signs of disruption. OSCCs exhibited varying degrees of collagen α(IV) chain degradation. MMP-2 and MMP-9 were absent in controls and OED, but weakly detectable in carcinoma-in situ. In OSCC, these proteolytic enzymes were expressed in areas corresponding to collagen α(IV) chain loss. Enzymatic activity was enhanced in higher grade OSCC, and along the tumor advancing front. Overall the present findings suggest that loss of BL collagen α(IV) chains coincided with gain of expression for MMP-2 and MMP-9, and that these protein alterations are crucial events during progression from OED to OSCC.

  9. Matrix metalloproteinase-2 degrades fibrillin-1 and fibrillin-2 of oxytalan fibers in the human eye and periodontal ligaments in vitro.

    PubMed

    Kawagoe, Megumi; Tsuruga, Eichi; Oka, Kyoko; Sawa, Yoshihiko; Ishikawa, Hiroyuki

    2013-10-30

    Oxytalan fibers are distributed in the eye and periodontal ligaments (PDL). The ciliary zonule, known as Zinn's zonule, in the eye is composed of oxytalan fibers, which are bundles of microfibrils consisting mainly of fibrillin-1 and fibrillin-2. As turnover of oxytalan fibers is slow during life, their degradation mechanism remains unclarified. This study was performed to examine degradation pattern of fibrillin-1 and fibrillin-2 by experimental MMP activation. We cultured human non-pigmented ciliary epithelial cells (HNPCEC) and PDL fibroblasts for 7 days, then treated them with concanavalin A to activate matrix metalloproteinase (MMP)-2, and examined the degradation of fibrillin-1 and fibrillin-2 for 72 hr using immunofluorescence. At 7 days of HNPCEC culture, fibrillin-1-positive fibers were observed, some of which merged with fibrillin-2. After MMP-2 activation, fibrillin-1-positive fibers became thin and disappeared by 72 hr, while fibrillin-2-positive fibers disappeared almost completely within 24 hr. At 7 days of PDL fibroblast culture, fibrillin-1-positive fibers were mostly merged with fibrillin-2. After MMP-2 activation, fibrillin-1-positive fibers became thin by 24 hr and had almost disappeared by 48 hr, while fibrillin-2-positive fibers decreased constantly after 24 hr. A MMP-2 inhibitor completely suppressed these degradations. These results suggest that the patterns of fibrillin-1 and fibrillin-2 degradation differ between the eye and the PDL, possibly reflecting the sensitivity of fibrillin-1 and fibrillin-2 of each type of oxytalan fiber against MMP-2.

  10. Preexisting High Expression of Matrix Metalloproteinase-2 in Tunica Media of Saphenous Vein Conduits Is Associated with Unfavorable Long-Term Outcomes after Coronary Artery Bypass Grafting

    PubMed Central

    Malinska, Agnieszka; Misterski, Marcin; Ostalska-Nowicka, Danuta; Zabel, Maciej; Perek, Anna; Nowicki, Michal

    2013-01-01

    Introduction. Migration of the smooth muscle cells (SMCs) to the tunica media in the saphenous vein (SV) transplants is facilitated by matrix metalloproteinases (MMPs). The aim of this study was to identify any associations between expression of MMP-2 or endogenous tissue inhibitors (TIMP-2 and TIMP-3) in the SV segments and late failure of the SV grafts. Methods. Two hundred consecutive patients with a mean age of 63.1 ± 8.9 years who underwent primary isolated venous CABG were examined. Patients were retrospectively split into two subgroups, with the SV graft disease (SVGD (+); n = 47) or without it (SVGD (−); n = 153). In the SV segments, immunohistochemical analysis of the expression of the MMP-2, TIMP-2, and -3 was performed. Results. In the SVGD (+) patients, tissue expression of MMP-2 was stronger, whereas that of both TIMPs was weaker than in the SVGD (−) patients. In majority of the SV segments obtained from the SVGD (−) individuals, a balance in MMP and TIMP expressions was found, whereas an upregulation of MMP-2 expression was usually noted in the SVGD (+) subjects. Conclusion. The strong expression of MMP-2 accompanied by reduced immunostaining of both TIMPs is associated with the development of the SV graft disease and unfavorable CABG outcomes. PMID:24151618

  11. β-Dystroglycan cleavage by matrix metalloproteinase-2/-9 disturbs aquaporin-4 polarization and influences brain edema in acute cerebral ischemia.

    PubMed

    Yan, W; Zhao, X; Chen, H; Zhong, D; Jin, J; Qin, Q; Zhang, H; Ma, S; Li, G

    2016-06-21

    Dystroglycan (DG) is widely expressed in various tissues, and throughout the cerebral microvasculature. It consists of two subunits, α-DG and β-DG, and the cleavage of the latter by matrix metalloproteinase (MMP)-2 and -9 underlies a number of physiological and pathological processes. However, the involvement of MMP-2/-9-mediated β-DG cleavage in cerebral ischemia remains uncertain. In astrocytes, DG is crucial for maintaining the polarization of aquaporin-4 (AQP4), which plays a role in the regulation of cytotoxic and vasogenic edema. The present study aimed to explore the effects of MMP-2/-9-mediated β-DG cleavage on AQP4 polarization and brain edema in acute cerebral ischemia. A model of cerebral ischemia was established via permanent middle cerebral artery occlusion (pMCAO) in male C57BL/6 mice. Western blotting, real-time polymerase chain reaction (PCR), immunohistochemical staining, immunofluorescent staining, electron microscopy, and light microscopy were used. Captopril was applied as a selective MMP-2/-9 inhibitor. Recombinant mouse MMP (rmMMP)-2 and -9 were used in an in vitro cleavage experiment. The present study demonstrated evidence of β-DG cleavage by MMP-2/-9 in pMCAO mouse brains; this cleavage was implicated in AQP4 redistribution and brain edema in cerebral ischemia. In addition, captopril exacerbated cytotoxic edema and ameliorated vasogenic edema at 24h after pMCAO, and alleviated brain edema and neurological deficit at 48h and 72h. In conclusion, this study provides novel insight into the effects of MMP-2/-9-mediated β-DG cleavage in acute cerebral ischemia. Such findings might facilitate the development of a therapeutic strategy for the optimization of MMP-2/-9 targeted treatment in cerebral ischemia. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion.

    PubMed

    Dohadwala, Mariam; Batra, Raj K; Luo, Jie; Lin, Ying; Krysan, Kostyantyn; Pold, Mehis; Sharma, Sherven; Dubinett, Steven M

    2002-12-27

    Tumor cyclooxygenase-2 (COX-2) expression is known to be associated with enhanced tumor invasiveness. In the present study, we evaluated the importance of the COX-2 product prostaglandin E2 (PGE2) and its signaling through the EP4 receptor in mediating non-small cell lung cancer (NSCLC) invasiveness. Genetic inhibition of tumor COX-2 led to diminished matrix metalloproteinase (MMP)-2, CD44, and EP4 receptor expression and invasion. Treatment of NSCLC cells with exogenous 16,16-dimethylprostaglandin E2 significantly increased EP4 receptor, CD44, and MMP-2 expression and matrigel invasion. In contrast, anti-PGE2 decreased EP4 receptor, CD44, and MMP-2 expression in NSCLC cells. EP4 receptor signaling was found to be central to this process, because antisense oligonucleotide-mediated inhibition of tumor cell EP4 receptors significantly decreased CD44 expression. In addition, agents that increased intracellular cAMP, as is typical of EP4 receptor signaling, markedly increased CD44 expression. Moreover, MMP-2-AS treatment decreased PGE2-mediated CD44 expression, and CD44-AS treatment decreased MMP-2 expression. Thus, PGE2-mediated effects through EP4 required the parallel induction of both CD44 and MMP-2 expression because genetic inhibition of either MMP-2 or CD44 expression effectively blocked PGE2-mediated invasion in NSCLC. These findings indicate that PGE2 regulates COX-2-dependent, CD44- and MMP-2-mediated invasion in NSCLC in an autocrine/paracrine manner via EP receptor signaling. Thus, blocking PGE2 production or activity by genetic or pharmacological interventions may prove to be beneficial in chemoprevention or treatment of NSCLC.

  13. Matrix metalloproteinase-2 is downregulated in sciatic nerve by streptozotocin induced diabetes and/or treatment with minocycline: Implications for nerve regeneration.

    PubMed

    Ali, Sumia; Driscoll, Heather E; Newton, Victoria L; Gardiner, Natalie J

    2014-11-01

    Minocycline is an inhibitor of matrix metalloproteinases (MMPs) and has been shown to have analgesic effects. Whilst increased expression of MMPs is associated with neuropathic pain, MMPs also play crucial roles in Wallerian degeneration and nerve regeneration. In this study we examined the expression of MMP-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1/-2 in the sciatic nerve of control and streptozotocin-induced diabetic rats treated with either vehicle or minocycline by quantitative PCR and gelatin zymography. We assessed the effects of minocycline on nerve conduction velocity and intraepidermal nerve fibre (IENF) deficits in diabetic neuropathy and investigated the effects of minocycline or MMP-2 on neurite outgrowth from primary cultures of dissociated adult rat sensory neurons. We show that MMP-2 is expressed constitutively in the sciatic nerve in vivo and treatment with minocycline or diabetes leads to downregulation of MMP-2 expression and activity. The functional consequence of this is IENF deficits in minocycline-treated nondiabetic rats and an unsupportive microenvironment for regeneration in diabetes. Minocycline reduces levels of MMP-2 mRNA and nerve growth factor-induced neurite outgrowth. Furthermore, in vivo minocycline treatment reduces preconditioning-induced in vitro neurite outgrowth following a sciatic nerve crush. In contrast, the addition of active MMP-2 facilitates neurite outgrowth in the absence of neurotrophic support and pre-treatment of diabetic sciatic nerve substrata with active MMP-2 promotes a permissive environment for neurite outgrowth. In conclusion we suggest that MMP-2 downregulation may contribute to the regenerative deficits in diabetes. Minocycline treatment also downregulates MMP-2 activity and is associated with inhibitory effects on sensory neurons. Thus, caution should be exhibited with its use as the balance between beneficial and detrimental outcomes may be critical in assessing the benefits of using

  14. Autocrine/Paracrine Prostaglandin E2 Production by Non-small Cell Lung Cancer Cells Regulates Matrix Metalloproteinase-2 and CD44 in Cyclooxygenase-2-dependent Invasion*

    PubMed Central

    Dohadwala, Mariam; Batra, Raj K.; Luo, Jie; Lin, Ying; Krysan, Kostyantyn; Põld, Mehis; Sharma, Sherven; Dubinett, Steven M.

    2006-01-01

    Tumor cyclooxygenase-2 (COX-2) expression is known to be associated with enhanced tumor invasiveness. In the present study, we evaluated the importance of the COX-2 product prostaglandin E2 (PGE2) and its signaling through the EP4 receptor in mediating non-small cell lung cancer (NSCLC) invasiveness. Genetic inhibition of tumor COX-2 led to diminished matrix metalloproteinase (MMP)-2, CD44, and EP4 receptor expression and invasion. Treatment of NSCLC cells with exogenous 16,16-dimethylprostaglandin E2 significantly increased EP4 receptor, CD44, and MMP-2 expression and matrigel invasion. In contrast, anti-PGE2 decreased EP4 receptor, CD44, and MMP-2 expression in NSCLC cells. EP4 receptor signaling was found to be central to this process, because antisense oligonucleotide-mediated inhibition of tumor cell EP4 receptors significantly decreased CD44 expression. In addition, agents that increased intracellular cAMP, as is typical of EP4 receptor signaling, markedly increased CD44 expression. Moreover, MMP-2-AS treatment decreased PGE2-mediated CD44 expression, and CD44-AS treatment decreased MMP-2 expression. Thus, PGE2-mediated effects through EP4 required the parallel induction of both CD44 and MMP-2 expression because genetic inhibition of either MMP-2 or CD44 expression effectively blocked PGE2-mediated invasion in NSCLC. These findings indicate that PGE2 regulates COX-2-dependent, CD44- and MMP-2-mediated invasion in NSCLC in an autocrine/paracrine manner via EP receptor signaling. Thus, blocking PGE2 production or activity by genetic or pharmacological interventions may prove to be beneficial in chemoprevention or treatment of NSCLC. PMID:12393872

  15. Spironolactone and hydrochlorothiazide exert antioxidant effects and reduce vascular matrix metalloproteinase-2 activity and expression in a model of renovascular hypertension

    PubMed Central

    Ceron, CS; Castro, MM; Rizzi, E; Montenegro, MF; Fontana, V; Salgado, MCO; Gerlach, RF; Tanus-Santos, JE

    2010-01-01

    Background and purpose: Increased oxidative stress and up-regulation of matrix metalloproteinases (MMPs) may cause structural and functional vascular changes in renovascular hypertension. We examined whether treatment with spironolactone (SPRL), hydrochlorothiazide (HCTZ) or both drugs together modified hypertension-induced changes in arterial blood pressure, aortic remodelling, vascular reactivity, oxidative stress and MMP levels and activity, in a model of renovascular hypertension. Experimental approach: We used the two-kidney,one-clip (2K1C) model of hypertension in Wistar rats. Sham-operated or hypertensive rats were treated with vehicle, SPRL (25 mg·kg−1·day−1), HCTZ (20 mg·kg−1·day−1) or a combination for 8 weeks. Systolic blood pressure was monitored weekly. Aortic rings were isolated to assess endothelium-dependent and -independent relaxations. Morphometry of the vascular wall was carried out in sections of aorta. Aortic NADPH oxidase activity and superoxide production were evaluated. Formation of reactive oxygen species was measured in plasma as thiobarbituric acid-reactive substances. Aortic MMP-2 levels and activity were determined by gelatin and in situ zymography, fluorimetry and immunohistochemistry. Key results: Treatment with SPRL, HCTZ or the combination attenuated 2K1C-induced hypertension, and reversed the endothelial dysfunction in 2K1C rats. Both drugs or the combination reversed vascular aortic remodelling induced by hypertension, attenuated hypertension-induced increases in oxidative stress and reduced MMP-2 levels and activity. Conclusions and implications: SPRL or HCTZ, alone or combined, exerted antioxidant effects, and decreased renovascular hypertension-induced MMP-2 up-regulation, thus improving the vascular dysfunction and remodelling found in this model of hypertension. PMID:20331602

  16. The Nuclear Factor kappaB Inhibitor Pyrrolidine Dithiocarbamate Prevents Cardiac Remodelling and Matrix Metalloproteinase-2 Up-Regulation in Renovascular Hypertension.

    PubMed

    Cau, Stefany B A; Guimaraes, Danielle A; Rizzi, Elen; Ceron, Carla S; Gerlach, Raquel F; Tanus-Santos, Jose E

    2015-10-01

    Imbalanced matrix metalloproteinase (MMP) activity is involved in hypertensive cardiac hypertrophy. Pharmacological inhibition of nuclear factor kappaB (NF-кB) with pyrrolidine dithiocarbamate (PDTC) can prevent MMP up-regulation. We suggested that treatment with PDTC could prevent 2-kidney, 1-clip (2K1C) hypertension-induced left ventricular remodelling. Sham-operated controls or 2K1C rats with hypertension received either vehicle or PDTC (100 mg/kg/day) by gavage for 8 weeks. Systolic blood pressure was monitored every week. Histological assessment of left ventricles was carried out with haematoxylin/eosin sections, and fibrosis was quantified in picrosirius red-stained sections. Oxidative stress was evaluated in heart samples with the dihydroethidium probe. Cardiac MMP activity was determined by in situ zymography, and cardiac MMP-2 was assessed by immunofluorescence. 2K1C surgery significantly increased systolic blood pressure in the 2K1C vehicle. PDTC exerted antihypertensive effects after 2 weeks of treatment. Histology revealed increased left ventricular and septum wall thickness associated with augmented myocyte diameter in hypertensive rats, which were reversed by treatment with PDTC. Hypertensive rats developed pronounced cardiac fibrosis with increased interstitial collagen area, increased cardiac reactive oxygen species levels, gelatinase activity and MMP-2 expression. PDTC treatment decreased these alterations. These findings show that PDTC modulates myocardial MMP-2 expression and ameliorates cardiac remodelling in renovascular hypertension. These results suggest that interfering with MMP expression at transcriptional level may be an interesting strategy in the therapy of organ damage associated with hypertension. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  17. Angiogenic imbalance and diminished matrix metalloproteinase-2 and -9 underlie regional decreases in uteroplacental vascularization and feto-placental growth in hypertensive pregnancy.

    PubMed

    Dias-Junior, Carlos A; Chen, Juanjuan; Cui, Ning; Chiang, Charles L; Zhu, Minglin; Ren, Zongli; Possomato-Vieira, Jose S; Khalil, Raouf A

    2017-09-11

    Preeclampsia is a form of hypertension-in-pregnancy (HTN-Preg) with unclear mechanism. Generalized reduction of uterine perfusion pressure (RUPP) could be an initiating event leading to uteroplacental ischemia, angiogenic imbalance, and HTN-Preg. Additional regional differences in uteroplacental blood flow could further affect the pregnancy outcome and increase the risk of preeclampsia in twin or multiple pregnancy, but the mechanisms involved are unclear. To test the hypothesis that regional differences in angiogenic balance and matrix metalloproteinases (MMPs) underlie regional uteroplacental vascularization and feto-placental development, we compared fetal and placental growth, and placental and myoendometrial vascularization in the proximal, middle and distal regions of the uterus (in relation to the iliac bifurcation) in normal pregnant (Preg) and RUPP rats. Maternal blood pressure and plasma anti-angiogenic soluble fms-like tyrosine kinase-1 (sFlt-1)/placenta growth factor (PIGF) ratio were higher, and average placentae number, placenta weight, litter size, and pup weight were less in RUPP than Preg rats. The placenta and pup number and weight were reduced, while the number and diameter of placental and adjacent myoendometrial arteries, and MMP-2 and MMP-9 levels/activity were increased, and sFlt-1/PlGF ratio was decreased in distal vs proximal uterus of Preg rats. In RUPP rats, the placenta and pup number and weight, the number and diameter of placental and myoendometrial arteries, and MMP-2 and -9 levels/activity were decreased, and sFlt-1/PlGF ratio was increased in distal vs proximal uterus. Treatment with sFlt-1 or RUPP placenta extract decreased MMP-2 and MMP-9 in distal segments of Preg uterus, and treatment with PIGF or Preg placenta extract restored MMP levels in distal segments of RUPP uterus. Thus, in addition to the general reduction in placental and fetal growth during uteroplacental ischemia, localized angiogenic imbalance and diminished MMP-2

  18. Ultrasensitive photoelectrochemical immunoassay for matrix metalloproteinase-2 detection based on CdS:Mn/CdTe cosensitized TiO2 nanotubes and signal amplification of SiO2@Ab2 conjugates.

    PubMed

    Fan, Gao-Chao; Han, Li; Zhu, Hua; Zhang, Jian-Rong; Zhu, Jun-Jie

    2014-12-16

    An ultrasensitive photoelectrochemical sandwich immunoassay was developed to detect matrix metalloproteinase-2 (MMP-2, antigen, Ag) based on CdS:Mn/CdTe cosensitized TiO2 nanotubes (TiO2-NTs) and signal amplification of SiO2@Ab2 conjugates. Specifically, the TiO2-NTs electrode was first deposited with CdS:Mn by successive ionic layer adsorption and reaction technique and then further coated with CdTe quantum dots (QDs) via the layer-by-layer method, forming TiO2-NTs/CdS:Mn/CdTe cosensitized structure, which was employed as a matrix to immobilize capture MMP-2 antibodies (Ab1); whereas, SiO2 nanoparticles were coated with signal MMP-2 antibodies (Ab2) to form SiO2@Ab2 conjugates, which were used as signal amplification elements via the specific antibody-antigen immunoreaction between Ag and Ab2. The ultrahigh sensitivity of this immunoassay derived from the two major reasons as below. First, the TiO2-NTs/CdS:Mn/CdTe cosensitized structure could adequately absorb the light energy, dramatically promote electron transfer, and effectively inhibit the electron-hole recombination, resulting in significantly enhanced photocurrent intensity of the sensing electrode. However, in the presence of target Ag, the immobilized SiO2@Ab2 conjugates could evidently increase the steric hindrance of the sensing electrode and effectively depress the electron transfer, leading to obviously decreased photocurrent intensity. Accordingly, the well-designed photoelectrochemical immunoassay exhibited a low detection limit of 3.6 fg/mL and a wide linear range from 10 fg/mL to 500 pg/mL for target Ag detection. Meanwhile, it also presented good reproducibility, specificity, and stability and might open a new promising platform for the detection of other important biomarkers.

  19. Hyperbaric oxygen activates discoidin domain receptor 2 via tumour necrosis factor-alpha and the p38 MAPK pathway to increase vascular smooth muscle cell migration through matrix metalloproteinase 2.

    PubMed

    Shyu, Kou-Gi; Wang, Bao-Wei; Chang, Hang

    2009-04-01

    DDR2 (discoidin domain receptor 2) regulates collagen turnover mediated by SMCs (smooth muscle cells) in atherosclerosis. HBO (hyperbaric oxygen) has been used in medical practice; however, the molecular mechanism of the beneficial effects of HBO is poorly understood. Furthermore, the effect of HBO on DDR2 has not been reported previously. In the present study, we investigated the cellular and molecular mechanisms of DDR2 regulation by HBO in VSMCs (vascular SMCs). Cells were exposed to 2.5 ATA (atmosphere absolute) of oxygen in a hyperbaric chamber. DDR2 protein (3.63-fold) and mRNA (2.34-fold) expression were significantly increased after exposure to 2.5 ATA HBO for 1 h. Addition of SB203580 and p38 MAPK (mitogen-activated protein kinase) siRNA (small interfering RNA) 30 min before HBO inhibited the induction of DDR2 protein. HBO also significantly increased DNA-protein binding activity of Myc/Max. Addition of SB203580 and an anti-TNF-alpha (tumour necrosis factor-alpha) monoclonal antibody 30 min before HBO abolished the DNA-protein binding activity induced by HBO. HBO significantly increased the secretion of TNF-alpha from cultured VSMCs. Exogenous addition of TNF-alpha significantly increased DDR2 protein expression, whereas anti-TNF-alpha and anti-(TNF-alpha receptor) antibodies blocked the induction of DDR2 protein expression. HBO significantly increased VSMC migration and proliferation, whereas DDR2 siRNA inhibited the migration induced by HBO. HBO increased activated MMP2 (matrix metalloproteinase 2) protein expression, and DDR2 siRNA abolished the induction of activated MMP2 expression induced by HBO. In conclusion, HBO activates DDR2 expression in cultured rat VSMCs. HBO-induced DDR2 is mediated by TNF-alpha and at least in part through the p38 MAPK and Myc pathways.

  20. Effects of Acupuncture at GV20 and ST36 on the Expression of Matrix Metalloproteinase 2, Aquaporin 4, and Aquaporin 9 in Rats Subjected to Cerebral Ischemia/Reperfusion Injury

    PubMed Central

    Sun, Hua; Chen, Suhui; Wang, Fuming

    2014-01-01

    Background/Purpose Ischemic stroke is characterized by high morbidity and mortality worldwide. Matrix metalloproteinase 2 (MMP2), aquaporin (AQP) 4, and AQP9 are linked to permeabilization of the blood-brain barrier (BBB) in cerebral ischemia/reperfusion injury (CIRI). BBB disruption, tissue inflammation, and MMP/AQP upregulation jointly provoke brain edema/swelling after CIRI, while acupuncture and electroacupuncture can alleviate CIRI symptoms. This study evaluated the hypothesis that acupuncture and electroacupuncture can similarly exert neuroprotective actions in a rat model of middle cerebral artery occlusion (MCAO) by modulating MMP2/AQP4/APQ9 expression and inflammatory cell infiltration. Methods Eighty 8-week-old Sprague-Dawley rats were randomly divided into sham group S, MCAO model group M, acupuncture group A, electroacupuncture group EA, and edaravone group ED. The MCAO model was established by placement of a suture to block the middle carotid artery, and reperfusion was triggered by suture removal in all groups except group S. Acupuncture and electroacupuncture were administered at acupoints GV20 (governing vessel-20) and ST36 (stomach-36). Rats in groups A, EA, and ED received acupuncture, electroacupuncture, or edaravone, respectively, immediately after MCAO. Neurological function (assessed using the Modified Neurological Severity Score), infarct volume, MMP2/AQP4/AQP9 mRNA and protein expression, and inflammatory cell infiltration were all evaluated at 24 h post-reperfusion. Results Acupuncture and electroacupuncture significantly decreased infarct size and improved neurological function. Furthermore, target mRNA and protein levels and inflammatory cell infiltration were significantly reduced in groups A, EA, and ED vs. group M. However, MMP2/AQP levels and inflammatory cell infiltration were generally higher in groups A and EA than in group ED except MMP2 mRNA levels. Conclusions Acupuncture and electroacupuncture at GV20 and ST36 both exercised

  1. The Clinical Significance of Serum Apoptotic Cytokeratin 18 Neoepitope M30 (CK-18 M30) and Matrix Metalloproteinase 2 (MMP-2) Levels in Chronic Hepatitis B Patients with Cirrhosis.

    PubMed

    Sumer, Sua; Aktug Demir, Nazlim; Kölgelier, Servet; Cagkan Inkaya, Ahmet; Arpaci, Abdullah; Saltuk Demir, Lütfi; Ural, Onur

    2013-01-01

    Serum apoptotic cytokeratine 18 neoepitope M30 (CK-18 M30) and matrix metalloproteinase 2 (MMP-2) have been popular markers for detecting liver fibrosis in recent years. CK-18 is a major intermediate filament protein in liver cells and one of the most prominent substrates of caspases during hepatocyte apoptosis. MMP-2 plays an important role in tissue remodeling and repairing processes during physiological and pathological states. The objective of this study was to investigate the significance of CK-18 M30 and MMP-2 levels for clinical use in patients with chronic hepatitis B (CHB), as well as their sensitivity in determining cirrhotic patients. This study included 189 CHB patients and 51 healthy controls. A modified Knodell scoring system was used to determine the fibrosis level in chronic hepatitis B patients. CK-18 M30 levels were determined with an M30-Apoptosense ELISA assay. MMP-2 levels were determined with the ELISA assay. The study group consisted of 132 (69.8%) males and 57 (30.2%) females, and the control group consisted of 25 males (49.0%) and 26 females (51%). Patients' CK-18 M30 levels were higher than values of the control group (308 [1-762] vs. 168 [67-287], P=0.001). Serum MMP-2 levels were found to be statistically higher in the patient group with respect to the controls (3.0 [1.1-6.8] vs. 2.0 [1.2-3.4], P=0.001). The highest serum CK-18 M30 and MMP-2 levels were measured in patients with cirrhosis. Serum apoptotic CK-18 M30 levels positively correlated with advanced age, fibrosis stage, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (P= 0.001, 0.033, 0.001, and 0.001, respectively). Serum MMP-2 levels positively correlated with fibrosis stage, serum ALT, and AST levels (P= 0.001, 0.001, and 0.001, respectively). Our study indicated that CK-18 M30 and MMP-2 levels were higher in CHB patients compared to healthy controls and they were in association with significant hepatic fibrosis, especially cirrhosis.

  2. The Clinical Significance of Serum Apoptotic Cytokeratin 18 Neoepitope M30 (CK-18 M30) and Matrix Metalloproteinase 2 (MMP-2) Levels in Chronic Hepatitis B Patients with Cirrhosis

    PubMed Central

    Sumer, Sua; Aktug Demir, Nazlim; Kölgelier, Servet; Cagkan Inkaya, Ahmet; Arpaci, Abdullah; Saltuk Demir, Lütfi; Ural, Onur

    2013-01-01

    Background Serum apoptotic cytokeratine 18 neoepitope M30 (CK-18 M30) and matrix metalloproteinase 2 (MMP-2) have been popular markers for detecting liver fibrosis in recent years. CK-18 is a major intermediate filament protein in liver cells and one of the most prominent substrates of caspases during hepatocyte apoptosis. MMP-2 plays an important role in tissue remodeling and repairing processes during physiological and pathological states. Objectives The objective of this study was to investigate the significance of CK-18 M30 and MMP-2 levels for clinical use in patients with chronic hepatitis B (CHB), as well as their sensitivity in determining cirrhotic patients. Patients and Methods This study included 189 CHB patients and 51 healthy controls. A modified Knodell scoring system was used to determine the fibrosis level in chronic hepatitis B patients. CK-18 M30 levels were determined with an M30-Apoptosense ELISA assay. MMP-2 levels were determined with the ELISA assay. Results The study group consisted of 132 (69.8%) males and 57 (30.2%) females, and the control group consisted of 25 males (49.0%) and 26 females (51%). Patients’ CK-18 M30 levels were higher than values of the control group (308 [1–762] vs. 168 [67–287], P=0.001). Serum MMP-2 levels were found to be statistically higher in the patient group with respect to the controls (3.0 [1.1–6.8] vs. 2.0 [1.2–3.4], P=0.001). The highest serum CK-18 M30 and MMP-2 levels were measured in patients with cirrhosis. Serum apoptotic CK-18 M30 levels positively correlated with advanced age, fibrosis stage, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (P= 0.001, 0.033, 0.001, and 0.001, respectively). Serum MMP-2 levels positively correlated with fibrosis stage, serum ALT, and AST levels (P= 0.001, 0.001, and 0.001, respectively). Conclusions Our study indicated that CK-18 M30 and MMP-2 levels were higher in CHB patients compared to healthy controls and they were in

  3. Altered expression of metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in cervical disc herniation patients.

    PubMed

    Zhuang, H M; Xu, G T; Wen, S F; Guo, Y Y; Huang, Q

    2016-04-26

    The aim of the current study was to examine matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) expression in patients with cervical disc herniation (CDH). A total of 127 specimens from CDH patients undergoing posterior spinal surgery were obtained for the case group, which was divided into three subgroups: lateral protrusion (N = 102), median protrusion (N = 18), and paramedian protrusion (N = 7). Another 55 specimens from subjects who had cervical spine trauma and underwent spinal canal decompression were obtained for the control group. Routine hematoxylin and eosin staining was performed for pathological diagnosis. Immunohistochemical (IHC) analysis was used to determine MMP-2 and TIMP-2 expression. Under light microscopy, MMP-2-positive cells presented brown-yellow or dark brown staining in the cell membrane or cytoplasm. MMP-2 expression in the case group was significantly higher than that in controls (P < 0.05). Furthermore, MMP-2 expression in the lateral and median protrusion groups was significantly higher compared to that in the paramedian protrusion group (both P < 0.05), while there was no apparent difference in MMP-2 expression between the lateral and median protrusion groups (P > 0.05). IHC results showed that TIMP-2 expression in cases was significantly lower than that in controls (P < 0.05). Spearman correlation analysis indicated that MMP- 2 was negatively correlated with TIMP-2 expression (r = -0.418, P < 0.001). In conclusion, MMP-2 expression increased, whereas TIMP- 2 expression decreased in CDH patients, suggesting that MMP-2 and TIMP-2 expression may contribute to CDH development.

  4. Dominance of chemokine ligand 2 and matrix metalloproteinase-2 and -9 and suppression of pro-inflammatory cytokines in the epidural compartment after intervertebral disc extrusion in a canine model.

    PubMed

    Karli, Philemon; Martlé, Valentine; Bossens, Kenny; Summerfield, Artur; Doherr, Marcus G; Turner, Paul; Vandevelde, Marc; Forterre, Franck; Henke, Diana

    2014-12-01

    In canine intervertebral disc (IVD) disease, a useful animal model, only little is known about the inflammatory response in the epidural space. To determine messenger RNA (mRNA) expressions of selected cytokines, chemokines, and matrix metalloproteinases (MMPs) qualitatively and semiquantitatively over the course of the disease and to correlate results to neurologic status and outcome. Prospective study using extruded IVD material of dogs with thoracolumbar IVD extrusion. Seventy affected and 13 control (24 samples) dogs. Duration of neurologic signs, pretreatment, neurologic grade, severity of pain, and outcome were recorded. After diagnostic imaging, decompressive surgery was performed. Messenger RNA expressions of interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF), interferon (IFN)γ, MMP-2, MMP-9, chemokine ligand (CCL)2, CCL3, and three housekeeping genes was determined in the collected epidural material by Panomics 2.0 QuantiGene Plex technology. Relative mRNA expression and fold changes were calculated. Relative mRNA expression was correlated statistically to clinical parameters. Fold changes of TNF, IL-1β, IL-2, IL-4, IL-6, IL-10, IFNγ, and CCL3 were clearly downregulated in all stages of the disease. MMP-9 was downregulated in the acute stage and upregulated in the subacute and chronic phase. Interleukin-8 was upregulated in acute cases. MMP-2 showed mild and CCL2 strong upregulation over the whole course of the disease. In dogs with severe pain, CCL3 and IFNγ were significantly higher compared with dogs without pain (p=.017/.020). Dogs pretreated with nonsteroidal anti-inflammatory drugs revealed significantly lower mRNA expression of IL-8 (p=.017). The high CCL2 levels and upregulated MMPs combined with downregulated T-cell cytokines and suppressed pro-inflammatory genes in extruded canine disc material indicate that the epidural reaction is dominated by infiltrating monocytes differentiating into macrophages with tissue

  5. Upregulation of miR-328 and inhibition of CREB-DNA-binding activity are critical for resveratrol-mediated suppression of matrix metalloproteinase-2 and subsequent metastatic ability in human osteosarcomas

    PubMed Central

    Tan, Peng; Tang, Chih-Hsin; Hsiao, Michael; Hsieh, Feng-Koo; Chien, Ming-Hsien

    2015-01-01

    Osteosarcomas, the most common malignant bone tumors, show a potent capacity for local invasion and pulmonary metastasis. Resveratrol (RESV), a phytochemical, exhibits multiple tumor-suppressing activities and has been tested in clinical trials. However, the antitumor activities of RESV in osteosarcomas are not yet completely defined. In osteosarcoma cells, we found that RESV inhibited the migration/invasion in vitro and lung metastasis in vivo by suppressing matrix metalloproteinase (MMP)-2. We identified that RESV exhibited a transcriptional inhibitory effect on MMP-2 through reducing CREB-DNA-binding activity. Moreover, a microRNA (miR) analysis showed that miR-328 was predominantly upregulated after RESV treatment. Inhibition of miR-328 significantly relieved MMP-2 and motility suppression imposed by RESV treatment. Furthermore, ectopic miR-328 expression in highly invasive cells decreased MMP-2 expression and invasive abilities. Mechanistic investigations found that JNK and p38 MAPK signaling pathways were involved in RESV-regulated CREB-DNA-binding activity, miR328 expression, and cell motility. Clinical samples indicated inverse expression between MMP-2 and miR-328 in normal bone and osteosarcoma tissues. The inverse correlation of MMP-2 and miR-328 was also observed in tumor specimens, and MMP-2 expression was linked to tumor metastasis. Taken together, our results provide new insights into the role of RESV-induced molecular and epigenetic regulation in suppressing tumor metastasis. PMID:25605016

  6. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma.

    PubMed

    Chang, Liang; Zhao, Dan; Liu, Hui-Bin; Wang, Qiu-Shi; Zhang, Ping; Li, Chen-Long; Du, Wen-Zhong; Wang, Hong-Jun; Liu, Xing; Zhang, Zhi-Ren; Jiang, Chuan-Lu

    2015-11-01

    Aberrant hedgehog signaling contributes to the development of various malignancies, including glioblastoma (GBM). However, the potential mechanism of hedgehog signaling in GBM migration and invasion has remained to be elucidated. The present study showed that enhanced hedgehog signaling by recombinant human sonic hedgehog N‑terminal peptide (rhSHH) promoted the adhesion, invasion and migration of GBM cells, accompanied by increases in mRNA and protein levels of matrix metalloproteinase‑2 (MMP‑2) and MMP‑9. However, inhibition of hedgehog signaling with cyclopamine suppressed the adhesion, invasion and migration of GBM cells, accompanied by decreases in mRNA and protein levels of MMP‑2 and ‑9. Furthermore, it was found that MMP‑2- and MMP‑9-neutralizing antibodies or GAM6001 reversed the inductive effects of rhSHH on cell migration and invasion. In addition, enhanced hedgehog signaling by rhSHH increased AKT phosphorylation, whereas blockade of hedgehog signaling decreased AKT phosphorylations. Further experiments showed that LY294002, an inhibitor of phosphoinositide-3 kinase (PI3K), decreased rhSHH‑induced upregulation of MMP‑2 and ‑9. Finally, the protein expression of glioblastoma-associated oncogene 1 was positively correlated with levels of phosphorylated AKT as well as protein expressions of MMP‑2 and ‑9 in GBM tissue samples. In conclusion, the present study indicated that the hedgehog pathway regulates GBM-cell migration and invasion by increasing MMP-2 and MMP-9 production via the PI3K/AKT pathway.

  7. Ethanol Extracts of Fruiting Bodies of Antrodia cinnamomea Suppress CL1-5 Human Lung Adenocarcinoma Cells Migration by Inhibiting Matrix Metalloproteinase-2/9 through ERK, JNK, p38, and PI3K/Akt Signaling Pathways

    PubMed Central

    Chen, Ying-Yi; Liu, Fon-Chang; Chou, Pei-Yu; Chien, Yi-Chung; Chang, Wun-Shaing Wayne; Huang, Guang-Jhong; Wu, Chieh-Hsi; Sheu, Ming-Jyh

    2012-01-01

    Cancer metastasis is a primary cause of cancer death. Antrodia cinnamomea (A. cinnamomea), a medicinal mushroom in Taiwan, has shown antioxidant and anticancer activities. In this study, we first observed that ethanol extract of fruiting bodies of A. cinnamomea (EEAC) exerted a concentration-dependent inhibitory effect on migration and motility of the highly metastatic CL1-5 cells in the absence of cytotoxicity. The results of a gelatin zymography assay showed that A. cinnamomea suppressed the activities of matrix metalloproteinase-(MMP-) 2 and MMP-9 in a concentration-dependent manner. Western blot results demonstrated that treatment with A. cinnamomea decreased the expression of MMP-9 and MMP-2; while the expression of the endogenous inhibitors of these proteins, that is, tissue inhibitors of MMP (TIMP-1 and TIMP-2) increased. Further investigation revealed that A. cinnamomea suppressed the phosphorylation of ERK1/2, p38, and JNK1/2. A. cinnamomea also suppressed the expressions of PI3K and phosphorylation of Akt. Furthermore, treatment of CL1-5 cells with inhibitors specific for PI3K (LY 294002), ERK1/2 (PD98059), JNK (SP600125), and p38 MAPK (SB203580) decreased the expression of MMP-2 and MMP-9. This is the first paper confirming the antimigration activity of this potentially beneficial mushroom against human lung adenocarcinoma CL1-5 cancer cells. PMID:22454661

  8. Altered Matrix Metalloproteinase-2 and -9 Expression/Activity Links Placental Ischemia and Anti-angiogenic sFlt-1 to Uteroplacental and Vascular Remodeling and Collagen Deposition in Hypertensive Pregnancy

    PubMed Central

    Li, Wei; Mata, Karina M.; Mazzuca, Marc Q.; Khalil, Raouf A.

    2014-01-01

    Preeclampsia is a complication of pregnancy manifested as maternal hypertension and often fetal growth restriction. Placental ischemia could be an initiating event, but the linking mechanisms leading to hypertension and growth restriction are unclear. We have shown an upregulation of matrix metalloproteinases (MMPs) during normal pregnancy (Norm-Preg). To test the role of MMPs in hypertensive-pregnancy (HTN-Preg), maternal and fetal parameters, MMPs expression, activity and distribution, and collagen and elastin content were measured in uterus, placenta and aorta of Norm-Preg rats and in rat model of reduced uteroplacental perfusion pressure (RUPP). Maternal blood pressure was higher, and uterine, placental and aortic weight, and the litter size and pup weight were less in RUPP than Norm-Preg rats. Western blots and gelatin zymography revealed decreases in amount and gelatinase activity of MMP-2 and MMP-9 in uterus, placenta and aorta of RUPP compared with Norm-Preg rats. Immunohistochemistry confirmed reduced MMPs in uterus, placenta and aortic media of RUPP rats. Collagen, but not elastin, was more abundant in uterus, placenta and aorta of RUPP than Norm-Preg rats. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1) decreased MMPs in uterus, placenta and aorta of Norm-Preg rats, and vascular endothelial growth factor (VEGF) reversed the decreases in MMPs in tissues of RUPP rats. Thus placental ischemia and anti-angiogenic sFlt-1 decrease uterine, placental and vascular MMP-2 and MMP-9, leading to increased uteroplacental and vascular collagen, and growth-restrictive remodeling in HTN-Preg. Angiogenic factors and MMP activators may reverse the decrease in MMPs and enhance growth-permissive remodeling in preeclampsia. PMID:24704473

  9. α-Mangostin suppresses lipopolysaccharide-induced invasion by inhibiting matrix metalloproteinase-2/9 and increasing E-cadherin expression through extracellular signal-regulated kinase signaling in pancreatic cancer cells

    PubMed Central

    YUAN, JIANGTAO; WU, YAOLU; LU, GUIFANG

    2013-01-01

    Invasion and metastasis are major factors in the poor prognosis of pancreatic cancer, which remains one of the most aggressive and lethal diseases worldwide. α-mangostin, a major xanthone compound identified in the pericarp of mangosteen (Garcinia mangostana, Linn; GML), possesses unique biological activities, including antioxidant, antitumor and anti-inflammatory effects. Whether α-mangostin is able to inhibit the invasive ability of pancreatic cancer cells has not been elucidated. In the present study, α-mangostin was shown to inhibit the invasive ability of the pancreatic cancer cell lines MIAPaCa-2 and BxPC-3. The results showed that α-mangostin inhibited the growth of the pancreatic cancer cells in a dose- and time-dependent manner. At concentrations of <5 μM, α-mangostin had no significant effects on cytotoxicity, but significantly inhibited the invasion and migration of pancreatic cancer cells and the expression of matrix metalloproteinase (MMP)-2 and MMP-9, while increasing the expression of E-cadherin. The present data also showed that α-mangostin exerted an inhibitory effect on the phosphorylation of extracellular-signal-regulated kinase (ERK). Furthermore, the reduction of ERK phosphorylation by small interfering RNA (siRNA) potentiated the effect of α-mangostin. Taken together, the data suggest that α-mangostin inhibited the invasion and metastasis of pancreatic cancer cells by reducing MMP-2 and MMP-9 expression, increasing E-cadherin expression and suppressing the ERK signaling pathway. The present study suggests that α-mangostin may be a promising agent against pancreatic cancer. PMID:23833675

  10. Gypenosides inhibits migration and invasion of human oral cancer SAS cells through the inhibition of matrix metalloproteinase-2 -9 and urokinase-plasminogen by ERK1/2 and NF-kappa B signaling pathways.

    PubMed

    Lu, Kung-Wen; Chen, Jung-Chou; Lai, Tung-Yuan; Yang, Jai-Sing; Weng, Shu-Wen; Ma, Yi-Shih; Lu, Pei-Jung; Weng, Jing-Ru; Chueh, Fu-Shin; Wood, W Gibson; Chung, Jing-Gung

    2011-05-01

    Gypenosides (Gyp), found in Gynostemma pentaphyllum Makino, has been used as a folk medicine in the Chinese population for centuries and is known to have diverse pharmacologic effects, including anti-proliferative and anti-cancer actions. However, the effects of Gyp on prevention from invasion and migration of oral cancer cells are still unsatisfactory. The purpose of this study was to investigate effects of Gyp treatment on migration and invasion of SAS human oral cancer cells. SAS cells were cultured in the presence of 90 and 180 μg/mL Gyp for 24 and 48 hours. Gyp induced cytotoxic effects and inhibited SAS cells migration and invasion in dose- and time-dependent response. Wound-healing assay and boyden chamber assay were carried out to investigate Gyp-inhibited migration and invasion of SAS cells. Gyp decreased the abundance of several proteins, including nuclear factor-kappa B (NF-κB), cyclooxygenase-2 (COX-2), extracellular signal-regulated kinase 1/2 (ERK1/ 2), matrix metalloproteinase-9, -2 (MMP-9, -2), sevenless homolog (SOS), Ras, urokinase-type plasminogen activator (uPA), focal adhesion kinase (FAK) and RAC-alpha serine/threonine-protein kinase (Akt), in a time-dependent manner. In addition, Gyp decreased mRNA levels of MMP-2, MMP-7, MMP-9 but did not affect FAK and Rho A mRNA levels in SAS cells. These results provide evidences for the role of Gyp as a potent anti-metastatic agent, which can markedly inhibit the metastatic and invasive capacity of oral cancer cells. The inhibition of NF-κB and MMP-2, -7 and -9 signaling may be one of the mechanisms that is present in Gyp-inhibited cancer cell invasion and migration.

  11. YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole] inhibits neointima formation in balloon-injured rat carotid through suppression of expressions and activities of matrix metalloproteinases 2 and 9.

    PubMed

    Liu, Yi-Nan; Pan, Shiow-Lin; Peng, Chieh-Yu; Guh, Jih-Hwa; Huang, Dong-Ming; Chang, Ya-Ling; Lin, Chun-Hung; Pai, Hui-Chen; Kuo, Sheng-Chu; Lee, Fang-Yu; Teng, Che-Ming

    2006-01-01

    Matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, and postrevascularization production of vascular smooth muscle cells may play key roles in development of arterial restenosis. We investigated the inhibitory effect of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), a benzyl indazole compound, on MMP-2 and MMP-9 activity in a balloon-injury rat carotid artery model. Injury was induced by inserting a balloon catheter through the common carotid artery; after 14 days, histopathological analysis using immunostaining and Western blotting revealed significant restenosis with neointimal formation that was associated with enhanced protein expression of MMP-2 and MMP-9. However, these effects were dose-dependently reduced by orally administered YC-1 (1-10 mg/kg). In addition, gelatin zymography demonstrated that increased MMP-2 and MMP-9 activity was diminished by YC-1 treatment. On the other hand, YC-1 inhibited hydrolysis of the fluorogenic quenching substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH(2) by recombinant MMP-2 and MMP-9 with IC(50) values = 2.07 and 8.20 muM, respectively. Reverse transcription-polymerase chain reaction analysis of MMP-2 and MMP-9 mRNA revealed that YC-1 significantly inhibited mRNA levels of MMPs. Finally, for the YC-1 treatment group, we did not observe elevation of cGMP levels using enzyme-linked immunosorbent assay, suggesting that YC-1 inhibition of neointimal formation is not through a cGMP-elevating pathway. These data show YC-1 suppression of neointimal formation is dependent on its influence on MMP-2 and MMP-9 protein, mRNA expression, and activity, but not through a cGMP-elevating effect. YC-1 shows therapeutic potential for treatment of restenosis after angioplasty.

  12. Role of G protein-coupled receptors (GPCR), matrix metalloproteinases 2 and 9 (MMP2 and MMP9), heparin-binding epidermal growth factor-like growth factor (hbEGF), epidermal growth factor receptor (EGFR), erbB2, and insulin-like growth factor 1 receptor (IGF-1R) in trenbolone acetate-stimulated bovine satellite cell proliferation.

    PubMed

    Thornton, K J; Kamange-Sollo, E; White, M E; Dayton, W R

    2015-09-01

    Implanting cattle with steroids significantly enhances feed efficiency, rate of gain, and muscle growth. However, the mechanisms responsible for these improvements in muscle growth have not been fully elucidated. Trenbolone acetate (TBA), a testosterone analog, has been shown to increase proliferation rate in bovine satellite cell (BSC) cultures. The classical genomic actions of testosterone have been well characterized; however, our results indicate that TBA may also initiate a quicker, nongenomic response that involves activation of G protein-coupled receptors (GPCR) resulting in activation of matrix metalloproteinases 2 and 9 (MMP2 and MMP9) that release membrane-bound heparin-binding epidermal growth factor-like growth factor (hbEGF), which then binds to and activates the epidermal growth factor receptor (EGFR) and/or erbB2. Furthermore, the EGFR has been shown to regulate expression of the IGF-1 receptor (IGF-1R), which is well known for its role in modulating muscle growth. To determine whether this nongenomic pathway is potentially involved in TBA-stimulated BSC proliferation, we analyzed the effects of treating BSC with guanosine 5'-O-2-thiodiphosphate (GDPβS), an inhibitor of all GPCR; a MMP2 and MMP9 inhibitor (MMPI); CRM19, a specific inhibitor of hbEGF; AG1478, a specific EGFR tyrosine kinase inhibitor; AG879, a specific erbB2 kinase inhibitor; and AG1024, an IGF-1R tyrosine kinase inhibitor on TBA-stimulated proliferation rate (H-thymidine incorporation). Assays were replicated at least 9 times for each inhibitor experiment using BSC cultures obtained from at least 3 different animals. Bovine satellite cell cultures were obtained from yearling steers that had no previous exposure to androgenic or estrogenic compounds. As expected, BSC cultures treated with 10 n TBA showed ( < 0.05) increased proliferation rate when compared with control cultures. Additionally, treatment with 5 ng hbEGF/mL stimulated proliferation in BSC cultures ( < 0.05). Treatment

  13. Cloning and regulation of rat tissue inhibitor of metalloproteinases-2 in osteoblastic cells

    NASA Technical Reports Server (NTRS)

    Cook, T. F.; Burke, J. S.; Bergman, K. D.; Quinn, C. O.; Jeffrey, J. J.; Partridge, N. C.

    1994-01-01

    Rat tissue inhibitor of metalloproteinases-2 (TIMP-2) was cloned from a UMR 106-01 rat osteoblastic osteosarcoma cDNA library. The 969-bp full-length clone demonstrates 98 and 86% sequence identity to human TIMP-2 at the amino acid and nucleic acid levels, respectively. Parathyroid hormone (PTH), at 10(-8) M, stimulates an approximately twofold increase in both the 4.2- and 1.0-kb transcripts over basal levels in UMR cells after 24 h of exposure. The PTH stimulation of TIMP-2 transcripts was not affected by the inhibitor of protein synthesis, cycloheximide (10(-5) M), suggesting a primary effect of the hormone. This is in contradistinction to regulation of interstitial collagenase (matrix metalloproteinase-1) by PTH in these same cells. Nuclear run-on assays demonstrate that PTH causes an increase in TIMP-2 transcription that parallels the increase in message levels. Parathyroid hormone, in its stimulation of TIMP-2 mRNA, appears to act through a signal transduction pathway involving protein kinase A (PKA) since the increase in TIMP-2 mRNA is reproduced by treatment with the cAMP analogue, 8-bromo-cAMP (5 x 10(-3) M). The protein kinase C and calcium pathways do not appear to be involved due to the lack of effect of phorbol 12-myristate 13-acetate (2.6 x 10(-6) M) and the calcium ionophore, ionomycin (10(-7) M), on TIMP-2 transcript abundance. In this respect, regulation of TIMP-2 and collagenase in osteoblastic cells by PTH are similar. However, we conclude that since stimulation of TIMP-2 transcription is a primary event, the PKA pathway must be responsible for a direct increase in transcription of this gene.

  14. Gene evolution and functions of extracellular matrix proteins in teeth

    PubMed Central

    Yoshizaki, Keigo; Yamada, Yoshihiko

    2013-01-01

    The extracellular matrix (ECM) not only provides physical support for tissues, but it is also critical for tissue development, homeostasis and disease. Over 300 ECM molecules have been defined as comprising the “core matrisome” in mammals through the analysis of whole genome sequences. During tooth development, the structure and functions of the ECM dynamically change. In the early stages, basement membranes (BMs) separate two cell layers of the dental epithelium and the mesenchyme. Later in the differentiation stages, the BM layer is replaced with the enamel matrix and the dentin matrix, which are secreted by ameloblasts and odontoblasts, respectively. The enamel matrix genes and the dentin matrix genes are each clustered in two closed regions located on human chromosome 4 (mouse chromosome 5), except for the gene coded for amelogenin, the major enamel matrix protein, which is located on the sex chromosomes. These genes for enamel and dentin matrix proteins are derived from a common ancestral gene, but as a result of evolution, they diverged in terms of their specific functions. These matrix proteins play important roles in cell adhesion, polarity, and differentiation and mineralization of enamel and dentin matrices. Mutations of these genes cause diseases such as odontogenesis imperfect (OI) and amelogenesis imperfect (AI). In this review, we discuss the recently defined terms matrisome and matrixome for ECMs, as well as focus on genes and functions of enamel and dentin matrix proteins. PMID:23539364

  15. Occurrence of two distinct types of tissue inhibitors of metallo-proteinases-2 in Fugu rubripes

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshihiro; Tsukamoto, Hiroshi; Suzuki, Tohru; Mizuta, Shohshi; Yoshinaka, Reiji

    2005-07-01

    In this study, genes of two distinct tissue inhibitors of metalloproteinases-2 (TIMP-2) from Japanese puffer fish Fugu rubripes, Fugu TIMP-2a and TIMP-2b, were cloned. The open reading frames of Fugu TIMP-2a and TIMP-2b cDNAs are composed of 660 and 657 nucleotides and 220 and 219 amino acids, respectively. Both Fugu TIMP-2s contain 12 cysteine residues, which might form six disulfide bonds as in other animals’ TIMP-2s. Reverse-transcribed polymerase chain reaction analysis showed the mRNAs of Fugu TIMP-2a and TIMP-2b to be expressed in some tissues examined with different expression patterns. These findings suggest that the two distinct Fugu TIMP-2s might perform different functions in Fugu tissues.

  16. Evaluation of the expression of metalloproteinases 2 and 9 and their tissue inhibitors in colon cancer cells treated with phytic acid.

    PubMed

    Kapral, Małgorzata; Wawszczyk, Joanna; Jurzak, Magdalena; Dymitruk, Dominika; Weglarz, Ludmiła

    2010-01-01

    Matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9) belong to a zinc dependent family of enzymes that degrade components of extracellular matrix. One postulated mechanism by which inositol hexaphosphate (phytic acid, IP6), an ubiquitous plant component, prevents the activation of MMPs may be due to its ability to chelate minerals. The aim of the study was to evaluate the expression profile of MMP-2, MMP-9 and their tissue inhibitors TIMP-1 and TIMP-2 at the mRNA level in human colorectal cancer cell line Caco-2 treated with IP6. A kinetic study of MMP-2, MMP-9 and TIMP-1, TIMP-2 mRNAs was performed after cells treatment with 1; 2.5; 5 mM IP6 for 1, 6, 12 and 24 h. Quantification of genes expression was carried out using real time QRT-PCR technique. The gene encoding MMP-9 was neither constitutively expressed nor induced by IP6 in Caco-2 cells. IP6 at the concentration of 1 mM evoked increase in MMP-2 transcript level, however, its higher doses (2.5; 5 mM) caused a decrease in this gene expression at 1 h incubation. In 24 h lasting culture along with increasing IP6 concentration, the cells expressed lower and lower MMP-2 mRNA level. In response to 1 and 2.5 mM at 6 h, the cells demonstrated an increased transcriptional activity of the TIMP-2 gene which was accompanied by a decrease in TIMP-1 gene transcription. Treatment of cells with 2.5 mM IP6 at 12 h resulted in a strong increase in both TIMP-1 and TIMP-2 expression. The results of this study show that IP6 modulates MMP-2, TIMP-1 and TIMP-2 genes expression in colon cancer cells at the transcriptional level in a way dependent on its concentration and time of interaction.

  17. Analysis of skin patch test results and metalloproteinase-2 levels in a patient with contact dermatitis.

    PubMed

    Wojciechowska, Milena; Czajkowski, Rafał; Kowaliszyn, Bogna; Żbikowska-Gotz, Magdalena; Bartuzi, Zbigniew

    2015-06-01

    The complex course of skin reactions that contact eczema involves is due in part to abnormalities of the extracellular matrix function. Proteins that degrade extracellular matrix components include metalloproteinases (MMP), which are divided into subcategories depending on the chemical structure and substrate specificity. To analyse patch test results in contact dermatitis patients and to assess MMP-2 levels during skin lesion exacerbation and remission. Fifty patients suffering from contact eczema were qualified to the study and 20 healthy volunteers as a control group. The study group patients had epidermal skin tests performed with the "European Standard" set. To assess the MMP-2 level in serum, venous blood was drawn, twice from study group patients - during contact dermatitis exacerbation and remission periods - and once from control group patients. Assessment of MMP-2 in serum was done with ELISA immunoassay. To verify the proposed hypotheses, parametric and nonparametric significance tests were used. Hands were the most frequent location of contact dermatitis. Nickel (II) sulphate was the most frequent sensitizing substance. Mean MMP-2 levels were statistically higher in the study group both in contact dermatitis exacerbation and remission periods than in the control group. There was no statistically significant difference between MMP-2 levels and skin patch test results. Nickel is one of the most allergenic contact allergens in patients with contact dermatitis. Metalloproteinase-2 is a good marker of contact dermatitis in various stages of the disease.

  18. Analysis of skin patch test results and metalloproteinase-2 levels in a patient with contact dermatitis

    PubMed Central

    Czajkowski, Rafał; Kowaliszyn, Bogna; Żbikowska-Gotz, Magdalena; Bartuzi, Zbigniew

    2015-01-01

    Introduction The complex course of skin reactions that contact eczema involves is due in part to abnormalities of the extracellular matrix function. Proteins that degrade extracellular matrix components include metalloproteinases (MMP), which are divided into subcategories depending on the chemical structure and substrate specificity. Aim To analyse patch test results in contact dermatitis patients and to assess MMP-2 levels during skin lesion exacerbation and remission. Material and methods Fifty patients suffering from contact eczema were qualified to the study and 20 healthy volunteers as a control group. The study group patients had epidermal skin tests performed with the “European Standard” set. To assess the MMP-2 level in serum, venous blood was drawn, twice from study group patients – during contact dermatitis exacerbation and remission periods – and once from control group patients. Assessment of MMP-2 in serum was done with ELISA immunoassay. To verify the proposed hypotheses, parametric and nonparametric significance tests were used. Results Hands were the most frequent location of contact dermatitis. Nickel (II) sulphate was the most frequent sensitizing substance. Mean MMP-2 levels were statistically higher in the study group both in contact dermatitis exacerbation and remission periods than in the control group. There was no statistically significant difference between MMP-2 levels and skin patch test results. Conclusions Nickel is one of the most allergenic contact allergens in patients with contact dermatitis. Metalloproteinase-2 is a good marker of contact dermatitis in various stages of the disease. PMID:26161054

  19. Random matrix analysis of localization properties of gene coexpression network.

    PubMed

    Jalan, Sarika; Solymosi, Norbert; Vattay, Gábor; Li, Baowen

    2010-04-01

    We analyze gene coexpression network under the random matrix theory framework. The nearest-neighbor spacing distribution of the adjacency matrix of this network follows Gaussian orthogonal statistics of random matrix theory (RMT). Spectral rigidity test follows random matrix prediction for a certain range and deviates afterwards. Eigenvector analysis of the network using inverse participation ratio suggests that the statistics of bulk of the eigenvalues of network is consistent with those of the real symmetric random matrix, whereas few eigenvalues are localized. Based on these IPR calculations, we can divide eigenvalues in three sets: (a) The nondegenerate part that follows RMT. (b) The nondegenerate part, at both ends and at intermediate eigenvalues, which deviates from RMT and expected to contain information about important nodes in the network. (c) The degenerate part with zero eigenvalue, which fluctuates around RMT-predicted value. We identify nodes corresponding to the dominant modes of the corresponding eigenvectors and analyze their structural properties.

  20. Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial growth factor (VEGF)/heparin affin regulatory peptide (pleiotrophin) and VEGF/Connective tissue growth factor angiogenic inhibitory complexes by MMP-2 proteolysis.

    PubMed

    Dean, Richard A; Butler, Georgina S; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R; Courty, José; Overall, Christopher M

    2007-12-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.

  1. Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis▿ †

    PubMed Central

    Dean, Richard A.; Butler, Georgina S.; Hamma-Kourbali, Yamina; Delbé, Jean; Brigstock, David R.; Courty, José; Overall, Christopher M.

    2007-01-01

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2−/− mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2−/− cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis. PMID:17908800

  2. Tumor clustering using nonnegative matrix factorization with gene selection.

    PubMed

    Zheng, Chun-Hou; Huang, De-Shuang; Zhang, Lei; Kong, Xiang-Zhen

    2009-07-01

    Tumor clustering is becoming a powerful method in cancer class discovery. Nonnegative matrix factorization (NMF) has shown advantages over other conventional clustering techniques. Nonetheless, there is still considerable room for improving the performance of NMF. To this end, in this paper, gene selection and explicitly enforcing sparseness are introduced into the factorization process. Particularly, independent component analysis is employed to select a subset of genes so that the effect of irrelevant or noisy genes can be reduced. The NMF and its extensions, sparse NMF and NMF with sparseness constraint, are then used for tumor clustering on the selected genes. A series of elaborate experiments are performed by varying the number of clusters and the number of selected genes to evaluate the cooperation between different gene selection settings and NMF-based clustering. Finally, the experiments on three representative gene expression datasets demonstrated that the proposed scheme can achieve better clustering results.

  3. Inductive matrix completion for predicting gene-disease associations.

    PubMed

    Natarajan, Nagarajan; Dhillon, Inderjit S

    2014-06-15

    Most existing methods for predicting causal disease genes rely on specific type of evidence, and are therefore limited in terms of applicability. More often than not, the type of evidence available for diseases varies-for example, we may know linked genes, keywords associated with the disease obtained by mining text, or co-occurrence of disease symptoms in patients. Similarly, the type of evidence available for genes varies-for example, specific microarray probes convey information only for certain sets of genes. In this article, we apply a novel matrix-completion method called Inductive Matrix Completion to the problem of predicting gene-disease associations; it combines multiple types of evidence (features) for diseases and genes to learn latent factors that explain the observed gene-disease associations. We construct features from different biological sources such as microarray expression data and disease-related textual data. A crucial advantage of the method is that it is inductive; it can be applied to diseases not seen at training time, unlike traditional matrix-completion approaches and network-based inference methods that are transductive. Comparison with state-of-the-art methods on diseases from the Online Mendelian Inheritance in Man (OMIM) database shows that the proposed approach is substantially better-it has close to one-in-four chance of recovering a true association in the top 100 predictions, compared to the recently proposed Catapult method (second best) that has <15% chance. We demonstrate that the inductive method is particularly effective for a query disease with no previously known gene associations, and for predicting novel genes, i.e. genes that are previously not linked to diseases. Thus the method is capable of predicting novel genes even for well-characterized diseases. We also validate the novelty of predictions by evaluating the method on recently reported OMIM associations and on associations recently reported in the literature

  4. Unsupervised gene set testing based on random matrix theory.

    PubMed

    Frost, H Robert; Amos, Christopher I

    2016-11-04

    Gene set testing, or pathway analysis, is a bioinformatics technique that performs statistical testing on biologically meaningful sets of genomic variables. Although originally developed for supervised analyses, i.e., to test the association between gene sets and an outcome variable, gene set testing also has important unsupervised applications, e.g., p-value weighting. For unsupervised testing, however, few effective gene set testing methods are available with support especially poor for several biologically relevant use cases. In this paper, we describe two new unsupervised gene set testing methods based on random matrix theory, the Marc̆enko-Pastur Distribution Test (MPDT) and the Tracy-Widom Test (TWT), that support both self-contained and competitive null hypotheses. For the self-contained case, we contrast our proposed tests with the classic multivariate test based on a modified likelihood ratio criterion. For the competitive case, we compare the new tests against a competitive version of the classic test and our recently developed Spectral Gene Set Enrichment (SGSE) method. Evaluation of the TWT and MPDT methods is based on both simulation studies and a weighted p-value analysis of two real gene expression data sets using gene sets drawn from MSigDB collections. The MPDT and TWT methods are novel and effective tools for unsupervised gene set analysis with superior statistical performance relative to existing techniques and the ability to generate biologically important results on real genomic data sets.

  5. TIMP-2 gene transfer by positively charged PEG-lated monosized polycationic carrier to smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Laçin, Nelisa; Utkan, Güldem; Kutsal, Tülin; Dedeoğlu, Bala Gür; Yuluğ, Işık G.; Pişkin, Erhan

    2012-02-01

    Remodeling of the extracellular matrix resulting from increased secretion of metalloproteinase enzymes is implicated in restenosis following balloon angioplasty. Matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases play an essential role in both normal and pathological extracellular matrix degradation. Tissue inhibitor of matrix metalloproteinase-2 is the most extensively studied tissue inhibitor of metalloproteinases in myocardial tissue in animal models and clinical examples of cardiac disease; therefore it is selected for this study. Gene transfer of tissue inhibitor of matrix metalloproteinase-2 may have a therapeutic potential by inhibition of matrix metalloproteinase activity. We have used PEG-lated nanoparticles poly(St/PEG-EEM/DMAPM) which were synthesized previously in our laboratory. The nanoparticles, with an average size of 77.6 ± 2.05 nm with a zeta potential of +64. 4 ± 1.14 mV and 201.9 ± 1.83 nm with +54.2 ± 0.77 mV were used in the transfection studies. Zeta Potential values and size of polyplex were appropriate for an effective transfection. TIMP-2 expression was detected by western blotting. Increased protein level in smooth muscle cells according to non-transfected smooth muscle cells confirms the successful delivery and expression of the tissue inhibitor of matrix metalloproteinase-2 gene with the non-viral vector transfection approach.

  6. Characterization of the 1918 "Spanish" influenza virus matrix gene segment.

    PubMed

    Reid, Ann H; Fanning, Thomas G; Janczewski, Thomas A; McCall, Sherman; Taubenberger, Jeffery K

    2002-11-01

    The coding region of influenza A virus RNA segment 7 from the 1918 pandemic virus, consisting of the open reading frames of the two matrix genes M1 and M2, has been sequenced. While this segment is highly conserved among influenza virus strains, the 1918 sequence does not match any previously sequenced influenza virus strains. The 1918 sequence matches the consensus over the M1 RNA-binding domains and nuclear localization signal and the highly conserved transmembrane domain of M2. Amino acid changes that correlate with high yield and pathogenicity in animal models were not found in the 1918 strain. Phylogenetic analyses suggest that both genes were mammalian adapted and that the 1918 sequence is very similar to the common ancestor of all subsequent human and classical swine matrix segments. The 1918 sequence matches other mammalian strains at 4 amino acids in the extracellular domain of M2 that differ consistently between avian and mammalian strains, suggesting that the matrix segment may have been circulating in human strains for at least several years before 1918.

  7. Analysis of gene set using shrinkage covariance matrix approach

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Aripin, Rasimah

    2013-09-01

    Microarray methodology has been exploited for different applications such as gene discovery and disease diagnosis. This technology is also used for quantitative and highly parallel measurements of gene expression. Recently, microarrays have been one of main interests of statisticians because they provide a perfect example of the paradigms of modern statistics. In this study, the alternative approach to estimate the covariance matrix has been proposed to solve the high dimensionality problem in microarrays. The extension of traditional Hotelling's T2 statistic is constructed for determining the significant gene sets across experimental conditions using shrinkage approach. Real data sets were used as illustrations to compare the performance of the proposed methods with other methods. The results across the methods are consistent, implying that this approach provides an alternative to existing techniques.

  8. Ornithine decarboxylase, mitogen-activated protein kinase and matrix metalloproteinase-2 expressions in human colon tumors

    PubMed Central

    Nemoto, Takahiro; Kubota, Shunichiro; Ishida, Hideyuki; Murata, Nobuo; Hashimoto, Daijo

    2005-01-01

    AIM: To investigate the expressions of ornithine decarboxylase (ODC), MMP-2, and Erk, and their relationship in human colon tumors. METHODS: ODC activity, MMP-2 expression, and mitogen-activated protein (MAP) kinase activity (Erk phosphorylation) were determined in 58 surgically removed human colon tumors and their adjacent normal tissues, using [1-14C]-ornithine as a substrate, ELISA assay, and Western blotting, respectively. RESULTS: ODC activity, MMP-2 expression, and Erk phosphorylation were significantly elevated in colon tumors, compared to those in adjacent normal tissues. A significant correlation was observed between ODC activities and MMP-2 levels. CONCLUSION: This is the first report showing a significant correlation between ODC activities and MMP-2 levels in human colon tumors. As MMP-2 is involved in cancer invasion and metastasis, and colon cancer overexpresses ODC, suppression of ODC expression may be a rational approach to treat colon cancer which overexpresses ODC. PMID:15918191

  9. Molecular dynamics simulation of Matrix Metalloproteinase 2: fluctuations and time evolution of recognition pockets

    NASA Astrophysics Data System (ADS)

    Falconi, Mattia; Altobelli, Gioia; Iovino, Maria Cristina; Politi, Vincenzo; Desideri, Alessandro

    2003-12-01

    We report a molecular dynamics simulation study of a zinc-protease - gelatinase A or MMP2 - which is a major target for drug design, being involved in tumor metastasis and other degenerative diseases. Two structures have been employed as starting conditions, one based on the crystal of multi-domain proMMP2, the other consisting of the catalytic domain only. The overall fold of the two models is maintained over the 1260 ps trajectory, enabling us to analyze correlations of fluctuations among domains, and to observe the presence of correlations within the catalytic domain in the multi-domain enzyme only, hence due to the presence of hemopexin and fibronectin domains. In the multi-domain protein, two cavities are conserved over the trajectory, one of them pointing to a key region, a crevice surrounding the catalytic zinc. The other one is localized across the three domains of the MMP2 metalloproteinase. These areas are partially covered by the propeptide in the crystal structure of proMMP2. We propose a model of MMP2-collagen interaction that involves both identified cavities and takes into account the inter/intra domain cross-correlations.

  10. Extracellular Matrix Induced Gene Expression in Human Breast Cancer Cells

    PubMed Central

    Garamszegi, Nandor; Garamszegi, Susanna P.; Shehadeh, Lina A.; Scully, Sean P.

    2009-01-01

    Extracellular matrix (ECM) molecules modify gene expression through attachment-dependent (i.e., focal adhesion related) integrin receptor signalling. It was previously unknown whether the same molecules acting as soluble peptides could generate signal cascades without the associated mechanical anchoring, a condition that may be encountered during matrix remodelling, degradation and relevant to invasion and metastatic processes. In the current study the role of ECM ligand regulated gene expression through this attachment independent process was examined. It was observed that fibronectin, laminin, collagens type I and II induce Smad2 activation in MCF-10A and MCF-7 cells. This activation is not caused by TGFβ ligand contamination or autocrine TGF involvement and is 3–5 fold less robust than the TGFβ1 ligand. The resulting nuclear translocation of Smad4 in response to ECM ligand indicates downstream transcriptional responses occurring. Co-immunoprecipitation experiments determined that type II collagen and laminin act through interaction with integrin α2β1 receptor complex. The ECM ligand induced Smad activation (termed signalling crosstalk) resulted cell type and ligand specific transcriptional changes which are distinct from the TGFβ ligand induced responses. These findings demonstrate that cell-matrix communication is more complex than previously thought. Soluble ECM peptides drive transcriptional regulation through corresponding adhesion and non-attachment related processes. The resultant gene expressional patterns correlate with pathway activity and not by the extent of Smad activation. These results extend the complexity and the existing paradigms of ECM-cell communication to ECM ligand regulation without the necessity of mechanical coupling. PMID:19276183

  11. Matrix Gla protein and osteocalcin: from gene duplication to neofunctionalization.

    PubMed

    Cancela, M Leonor; Laizé, Vincent; Conceição, Natércia

    2014-11-01

    Osteocalcin (OC or bone Gla protein, BGP) and matrix Gla protein (MGP) are two members of the growing family of vitamin K-dependent (VKD) proteins. They were the first VKD proteins found not to be involved in coagulation and synthesized outside the liver. Both proteins were isolated from bone although it is now known that only OC is synthesized by bone cells under normal physiological conditions, but since both proteins can bind calcium and hydroxyapatite, they can also accumulate in bone. Both OC and MGP share similar structural features, both in terms of protein domains and gene organization. OC gene is likely to have appeared from MGP through a tandem gene duplication that occurred concomitantly with the appearance of the bony vertebrates. Despite their relatively close relationship and the fact that both can bind calcium and affect mineralization, their functions are not redundant and they also have other unrelated functions. Interestingly, these two proteins appear to have followed quite different evolutionary strategies in order to acquire novel functionalities, with OC following a gene duplication strategy while MGP variability was obtained mostly by the use of multiple promoters and alternative splicing, leading to proteins with additional functional characteristics and alternative gene regulatory pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. [Single mechanism of remodelling extracellular matrix in thymus and pineal gland at aging].

    PubMed

    Lin'kova, N S; Poliakova, V O; Kvetnoĭ, I M

    2011-01-01

    The expression of matrix metalloproteinase 2 and 9 in thymus and pineal gland has been verified. These data demonstrate single mechanism of remodelling extracellular matrix in thymus and pineal gland at aging.

  13. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory

    PubMed Central

    Luo, Feng; Yang, Yunfeng; Zhong, Jianxin; Gao, Haichun; Khan, Latifur; Thompson, Dorothea K; Zhou, Jizhong

    2007-01-01

    Background Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and consistent with different data sets. This is particularly problematic for little understood organisms since not much existing biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise. Random matrix theory (RMT), which has been widely and successfully used in physics, is a powerful approach to distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory. Results Application of random matrix theory to microarray data of S. oneidensis, E. coli, yeast, A. thaliana, Drosophila, mouse and human indicates that there is a sharp transition of nearest neighbour spacing distribution (NNSD) of correlation matrix after gradually removing certain elements insider the matrix. Testing on an in silico modular model has demonstrated that this transition can be used to determine the correlation threshold for revealing modular co-expression networks. The co-expression network derived from yeast cell cycling microarray data is supported by gene annotation. The topological properties of the resulting co-expression network agree well with the general properties of biological networks. Computational evaluations have showed that RMT approach is sensitive and robust. Furthermore, evaluation on sampled expression data of an in silico modular gene system has showed that under-sampled expressions do not affect the

  14. A global test for gene-gene interactions based on random matrix theory.

    PubMed

    Frost, H Robert; Amos, Christopher I; Moore, Jason H

    2016-12-01

    Statistical interactions between markers of genetic variation, or gene-gene interactions, are believed to play an important role in the etiology of many multifactorial diseases and other complex phenotypes. Unfortunately, detecting gene-gene interactions is extremely challenging due to the large number of potential interactions and ambiguity regarding marker coding and interaction scale. For many data sets, there is insufficient statistical power to evaluate all candidate gene-gene interactions. In these cases, a global test for gene-gene interactions may be the best option. Global tests have much greater power relative to multiple individual interaction tests and can be used on subsets of the markers as an initial filter prior to testing for specific interactions. In this paper, we describe a novel global test for gene-gene interactions, the global epistasis test (GET), that is based on results from random matrix theory. As we show via simulation studies based on previously proposed models for common diseases including rheumatoid arthritis, type 2 diabetes, and breast cancer, our proposed GET method has superior performance characteristics relative to existing global gene-gene interaction tests. A glaucoma GWAS data set is used to demonstrate the practical utility of the GET method.

  15. Missense polymorphisms in matrix metalloproteinase genes and skin cancer risk.

    PubMed

    Nan, Hongmei; Niu, Tianhua; Hunter, David J; Han, Jiali

    2008-12-01

    Matrix metalloproteinases (MMP) degrade various components of the extracellular matrix, and their overexpression has been implicated in tumor progression. Nonsynonymous single nucleotide polymorphisms (SNPs) lead to amino acid substitutions that can alter the function of the encoded protein. We evaluated the associations of six nonsynonymous SNPs in the MMP3, MMP8, and MMP9 genes with skin cancer risk in a nested case-control study of Caucasians within the Nurses' Health Study among 218 melanoma cases, 285 squamous cell carcinoma (SCC) cases, 300 basal cell carcinoma (BCC) cases, and 870 normal controls. We observed that the MMP9 Arg668Gln polymorphism was significantly associated with a decreased risk of SCC. Compared with the Arg/Arg group, the multivariate odds ratio was 0.67 (95% confidence interval, 0.47-0.97) for the Arg/Gln group and 0.21 (95% confidence interval, 0.05-0.97) for the Gln/Gln group (P(trend) = 0.004). We did not observe any association of this SNP with the risks of melanoma and basal cell carcinoma. No associations were found for other SNPs with skin cancer risk. This study provides evidence for the contribution of the MMP9 Arg668Gln to SCC development.

  16. Gene Tree Labeling Using Nonnegative Matrix Factorization on Biomedical Literature

    PubMed Central

    Heinrich, Kevin E.; Berry, Michael W.; Homayouni, Ramin

    2008-01-01

    Identifying functional groups of genes is a challenging problem for biological applications. Text mining approaches can be used to build hierarchical clusters or trees from the information in the biological literature. In particular, the nonnegative matrix factorization (NMF) is examined as one approach to label hierarchical trees. A generic labeling algorithm as well as an evaluation technique is proposed, and the effects of different NMF parameters with regard to convergence and labeling accuracy are discussed. The primary goals of this study are to provide a qualitative assessment of the NMF and its various parameters and initialization, to provide an automated way to classify biomedical data, and to provide a method for evaluating labeled data assuming a static input tree. As a byproduct, a method for generating gold standard trees is proposed. PMID:18431447

  17. Emodin, aloe-emodin and rhein inhibit migration and invasion in human tongue cancer SCC-4 cells through the inhibition of gene expression of matrix metalloproteinase-9.

    PubMed

    Chen, Ya-Yin; Chiang, Su-Yin; Lin, Jaung-Geng; Ma, Yi-Shih; Liao, Ching-Lung; Weng, Shu-Wen; Lai, Tung-Yuan; Chung, Jing-Gung

    2010-05-01

    Emodin, aloe-emodin and rhein are major compounds in rhubarb (Rheum palmatum L.), used in Chinese herbal medicine, and found to have antitumor properties including cell cycle arrest and apoptosis in many human cancer cells. Our previous studies also showed that emodin, aloe-emodin and rhein induced apoptosis in human tongue cancer SCC-4 cells. However, the detail regarding emodin, aloe-emodin and rhein affecting migration and invasion in SCC-4 cells are not clear. In the present study, we investigated whether or not emodin, aloe-emodin and rhein inhibited migration and invasion of SCC-4 cells. Herein, we demonstrate that emodin, aloe-emodin and rhein inhibit the protein levels and activities of matrix metalloproteinase-2 (MMP-2) but did not affect gene expression of MMP-2, however, they inhibited the gene expression of MMP-9 and all also inhibited the migration and invasion of human tongue cancer SCC-4 cells. MMP-9 (gelatinase-B) plays an important role and is the most associated with tumor migration, invasion and metastasis in various human cancers. Results from zymography and Western blotting showed that emodin, aloe-emodin and rhein treatment decrease the levels of MMP-2, urokinase plasminogen activator (u-PA) in a concentration-dependent manner. The order of inhibition of associated protein levels and gene expression of migration and invasion in SCC-4 cells are emodin >aloe-emodin >rhein. Our results provide new insight into the mechanisms by which emodin, aloe-emodin and rhein inhibit tongue cancers. In conclusion, these findings suggest that molecular targeting of MMP-9 mRNA expression by emodin, aloe-emodin and rhein might be a useful strategy for chemo-prevention and/or chemo-therapeutics of tongue cancers.

  18. Matrix metalloproteinase-3 gene polymorphisms are associated with ischemic stroke.

    PubMed

    Kim, Su Kang; Kang, Sung Wook; Kim, Dong Hwan; Yun, Dong Hwan; Chung, Joo-Ho; Ban, Ju Yeon

    2012-02-01

    Stroke is a heterogeneous disease caused by different pathogenic mechanisms. Several candidate genes for stroke have been proposed, but few have been replicated. Matrix metalloproteinases (MMPs) are expressed following stroke. We investigated the association of single nucleotide polymorphisms (SNPs) of the MMP3 gene with stroke in the Korean population. This study included 186 stroke patients [116 ischemic stroke (IS) and 70 intracerebral hemorrhage (ICH)] and 668 age-matched control subjects (267 for IS and 401 for ICH). Three SNPs [rs520540 (Ala362Ala), rs602128 (Asp96Asp), and rs679620 (Lys45Glu)] in the coding region of MMP3 were selected and genotyped by direct sequencing. HelixTree, SNPAnalyzer, SNPStats, and Haploview version 4.2 were used to analyze genetic data. Multiple logistic regression models (codominant, dominant, and recessive models) were conducted to evaluate odds ratio, 95% confidence interval, and P value. Three SNPs in the MMP3 gene were significantly associated with IS (P<0.05). The genotype distribution of 3 SNPs differed between the IS and control subjects. However, there was no association of the SNPs between the ICH and control. In analysis of gender, 3 SNPs were also associated with IS in female group (P<0.05). These SNPs remained significantly associated with IS after the Bonferroni correction for multiple testing (P(c)<0.05). Haplotype analysis revealed that no haplotypes were associated with IS or ICH. Overall, the results of our study demonstrate an association of the MMP3 gene with development of IS, and no association of MMP3 with ICH.

  19. GSMA: Gene Set Matrix Analysis, An Automated Method for Rapid Hypothesis Testing of Gene Expression Data

    PubMed Central

    Cheadle, Chris; Watkins, Tonya; Fan, Jinshui; Williams, Marc A.; Georas, Steven; Hall, John; Rosen, Antony; Barnes, Kathleen C.

    2007-01-01

    Background: Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The assignment of functional information to these complex patterns remains a challenging task in effectively interpreting data and correlating results from across experiments, projects and laboratories. Methods which allow the rapid and robust evaluation of multiple functional hypotheses increase the power of individual researchers to data mine gene expression data more efficiently. Results: We have developed (gene set matrix analysis) GSMA as a useful method for the rapid testing of group-wise up- or down-regulation of gene expression simultaneously for multiple lists of genes (gene sets) against entire distributions of gene expression changes (datasets) for single or multiple experiments. The utility of GSMA lies in its flexibility to rapidly poll gene sets related by known biological function or as designated solely by the end-user against large numbers of datasets simultaneously. Conclusions: GSMA provides a simple and straightforward method for hypothesis testing in which genes are tested by groups across multiple datasets for patterns of expression enrichment. PMID:20066124

  20. Therapy of Head and Neck Squamous Cell Carcinoma with Replicative Adenovirus Expressing Tissue Inhibitor of Metalloproteinase-2 and Chemoradiation

    PubMed Central

    McNally, Lacey R.; Rosenthal, Eben L.; Zhang, Wenyue; Buchsbaum, Donald J.

    2009-01-01

    Objective Recent studies have demonstrated efficacy of targeted therapy combined with radiotherapy in HNSCC. We hypothesized that a combination treatment including a replicating adenovirus armed with tissue inhibitor metalloproteinase-2 (TIMP-2), radiation, and Cisplatin will augment treatment response and reduce tumor growth in vivo of HNSCC xenografts. Design Both single-agent (TIMP-2 virus, radiation, and Cisplatin) and the combination therapies were evaluated in vitro and in vivo. The efficacy of both single agent and combination therapies in vivo was determined by monitoring of tumor growth and immunohistochemistry. Results Treatment with replicative Ad-TIMP-2 virus and radiation decreased cell viability in vitro and resulted in an additional anti-angiogenic response in vivo. Tumor response rates to treatment with replicative Ad-TIMP-2, radiation, Cisplatin, or combination therapies ranged from limited inhibition of tumor growth of the single-agent therapy to a statistically significant additive anti-tumor response with the combination therapies. Replicative Ad-TIMP-2 + radiation + Cisplatin in the SCC1 nude mice demonstrated the greatest response rates in tumor growth and angiogenesis. Conclusions Combination Ad-TIMP-2 gene therapy with radiation and the triple treatment group resulted in an augmented therapeutic response. This is the first report of the potential benefits of combining radiation and MMP inhibitor treatment. PMID:18846112

  1. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks.

    PubMed

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S; Celniker, Susan E; Yu, Bin; Frise, Erwin

    2016-04-19

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set ofDrosophilaearly embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation ofDrosophilaexpression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with theDrosophiladata suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.

  2. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks

    PubMed Central

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S.; Celniker, Susan E.; Yu, Bin; Frise, Erwin

    2016-01-01

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior–posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data. PMID:27071099

  3. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks

    SciTech Connect

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S.; Celniker, Susan E.; Yu, Bin; Frise, Erwin

    2016-04-06

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. In conclusion, the performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.

  4. Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling.

    PubMed

    Mash, Deborah C; ffrench-Mullen, Jarlath; Adi, Nikhil; Qin, Yujing; Buck, Andrew; Pablo, John

    2007-11-14

    The chronic effects of cocaine abuse on brain structure and function are blamed for the inability of most addicts to remain abstinent. Part of the difficulty in preventing relapse is the persisting memory of the intense euphoria or cocaine "rush". Most abused drugs and alcohol induce neuroplastic changes in brain pathways subserving emotion and cognition. Such changes may account for the consolidation and structural reconfiguration of synaptic connections with exposure to cocaine. Adaptive hippocampal plasticity could be related to specific patterns of gene expression with chronic cocaine abuse. Here, we compare gene expression profiles in the human hippocampus from cocaine addicts and age-matched drug-free control subjects. Cocaine abusers had 151 gene transcripts upregulated, while 91 gene transcripts were downregulated. Topping the list of cocaine-regulated transcripts was RECK in the human hippocampus (FC = 2.0; p<0.05). RECK is a membrane-anchored MMP inhibitor that is implicated in the coordinated regulation of extracellular matrix integrity and angiogenesis. In keeping with elevated RECK expression, active MMP9 protein levels were decreased in the hippocampus from cocaine abusers. Pathway analysis identified other genes regulated by cocaine that code for proteins involved in the remodeling of the cytomatrix and synaptic connections and the inhibition of blood vessel proliferation (PCDH8, LAMB1, ITGB6, CTGF and EphB4). The observed microarray phenotype in the human hippocampus identified RECK and other region-specific genes that may promote long-lasting structural changes with repeated cocaine abuse. Extracellular matrix remodeling in the hippocampus may be a persisting effect of chronic abuse that contributes to the compulsive and relapsing nature of cocaine addiction.

  5. Matrix Metalloproteinase Gene Activation Resulting from Disordred Epigenetic Mechanisms in Rheumatoid Arthritis

    PubMed Central

    Araki, Yasuto; Mimura, Toshihide

    2017-01-01

    Matrix metalloproteinases (MMPs) are implicated in the degradation of extracellular matrix (ECM). Rheumatoid arthritis (RA) synovial fibroblasts (SFs) produce matrix-degrading enzymes, including MMPs, which facilitate cartilage destruction in the affected joints in RA. Epigenetic mechanisms contribute to change in the chromatin state, resulting in an alteration of gene transcription. Recently, MMP gene activation has been shown to be caused in RASFs by the dysregulation of epigenetic changes, such as histone modifications, DNA methylation, and microRNA (miRNA) signaling. In this paper, we review the role of MMPs in the pathogenesis of RA as well as the disordered epigenetic mechanisms regulating MMP gene activation in RASFs. PMID:28441353

  6. Prognostic Value of Tissue Inhibitor of Metalloproteinase-2 Expression in Patients with Non–Small Cell Lung Cancer: A Systematic Review and Meta-Analysis

    PubMed Central

    Zhu, Lin; Yu, Hong; Liu, Shi-Yuan; Xiao, Xiang-Sheng; Dong, Wei-Hua; Chen, Yi-Nan; Xu, Wei; Zhu, Tong

    2015-01-01

    Background and Objectives Tissue inhibitor of metalloproteinase-2 (TIMP-2) is a small secretory glycoprotein with anti–matrix metalloproteinase activity. Data on the value of TIMP-2 as a prognostic factor in non–small cell lung cancer (NSCLC) are discordant and remain controversial. A systematic review and meta-analysis was performed to explore this issue. Methods We identified the relevant literature by searching the PubMed, EMBASE, Web of Science, China National Knowledge Infrastructure, SinoMed, and Wanfang Data databases (search terms: “non-small cell lung cancer” or “NSCLC” or “Lung Carcinoma, Non-Small-Cell”, “Tissue Inhibitor of Metalloproteinase-2” or “TIMP-2”, and “prognosis” or “prognostic” or “survive”) for updates prior to March 1, 2014. The pooled hazard ratio (HR) of overall survival with a 95% confidence interval (95% CI) was used to evaluate the strength of the association between positive TIMP-2 expression and survival in patients with NSCLC. Results We included 12 studies in our systematic review; five studies involving 399 patients with NSCLC were meta-analyzed. The pooled HR of all included patients was 0.57 (95% CI: 0.43–0.77), and the HRs of subgroup analysis according to stage (I–IV), testing method (immunohistochemistry) and high TIMP-2 expression percentage (<50%) were 0.63 (95% CI: 0.43–0.92), 0.55 (95% CI: 0.41–0.74), and 0.50 (95% CI: 0.28–0.88), respectively. These data suggested that high TIMP-2 expression is associated with favorable prognosis in NSCLC. The meta-analysis did not reveal heterogeneity or publication bias. Conclusions TIMP-2 expression indicates favorable prognosis in patients with NSCLC; as a protective factor, it could help predict outcome and may guide clinical therapy in the future. PMID:25905787

  7. Stability-driven nonnegative matrix factorization to interpret spatial gene expression and build local gene networks

    DOE PAGES

    Wu, Siqi; Joseph, Antony; Hammonds, Ann S.; ...

    2016-04-06

    Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set of Drosophila early embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identifiedmore » 21 principal patterns (PP). Providing a compact yet biologically interpretable representation of Drosophila expression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. In conclusion, the performance of PP with the Drosophila data suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.« less

  8. Regulation of reactionary dentin formation by odontoblasts in response to polymicrobial invasion of dentin matrix

    PubMed Central

    Charadram, Nattida; Farahani, Ramin M; Harty, Derek; Rathsam, Catherine; Swain, Michael V; Hunter, Neil

    2011-01-01

    Odontoblast synthesis of dentin proceeds through discrete but overlapping phases characterized by formation of a patterned organic matrix followed by remodelling and active mineralization. Microbial invasion of dentin in caries triggers an adaptive response by odontoblasts, culminating in formation of a structurally altered reactionary dentin, marked by biochemical and architectonic modifications including diminished tubularity. Scanning electron microscopy of the collagen framework in reactionary dentin revealed a radically modified yet highly organized meshwork as indicated by fractal and lacunarity analyses. Immuno-gold labelling demonstrated increased density and regular spatial distribution of dentin sialoprotein (DSP) in reactionary dentin. DSP contributes putative hydroxyapatite nucleation sites on the collagen scaffold. To further dissect the formation of this altered dentin matrix, the associated enzymatic machinery was investigated. Analysis of extracted dentin matrix indicated increased activity of matrix metalloproteinase-2 (MMP-2) in the reactionary zone referenced to physiologic dentin. Likewise, gene expression analysis of micro-dissected odontoblast layer revealed up-regulation of MMP-2. Parallel up-regulation of tissue inhibitor of metalloproteinase-2 (TIMP-2) and membrane type 1- matrix metalloproteinase (MT1-MMP) was observed in response to caries. Next, modulation of odontoblastic dentinogenic enzyme repertoire was addressed. In the odontoblast layer expression of Toll-like receptors was markedly altered in response to bacterial invasion. In carious teeth TLR-2 and the gene encoding the corresponding adaptor protein MyD88 were down-regulated whereas genes encoding TLR-4 and adaptor proteins TRAM and Mal/TIRAP were up-regulated. TLR-4 signalling mediated by binding of bacterial products has been linked to up-regulation of MMP-2. Further, increased expression of genes encoding components of the TGF-β signalling pathway, namely SMAD-2 and SMAD-4

  9. Extracting unrecognized gene relationships from the biomedical literature via matrix factorizations

    PubMed Central

    Kim, Hyunsoo; Park, Haesun; Drake, Barry L

    2007-01-01

    Background The construction of literature-based networks of gene-gene interactions is one of the most important applications of text mining in bioinformatics. Extracting potential gene relationships from the biomedical literature may be helpful in building biological hypotheses that can be explored further experimentally. Recently, latent semantic indexing based on the singular value decomposition (LSI/SVD) has been applied to gene retrieval. However, the determination of the number of factors k used in the reduced rank matrix is still an open problem. Results In this paper, we introduce a way to incorporate a priori knowledge of gene relationships into LSI/SVD to determine the number of factors. We also explore the utility of the non-negative matrix factorization (NMF) to extract unrecognized gene relationships from the biomedical literature by taking advantage of known gene relationships. A gene retrieval method based on NMF (GR/NMF) showed comparable performance with LSI/SVD. Conclusion Using known gene relationships of a given gene, we can determine the number of factors used in the reduced rank matrix and retrieve unrecognized genes related with the given gene by LSI/SVD or GR/NMF. PMID:18047707

  10. Shrinkage covariance matrix approach based on robust trimmed mean in gene sets detection

    NASA Astrophysics Data System (ADS)

    Karjanto, Suryaefiza; Ramli, Norazan Mohamed; Ghani, Nor Azura Md; Aripin, Rasimah; Yusop, Noorezatty Mohd

    2015-02-01

    Microarray involves of placing an orderly arrangement of thousands of gene sequences in a grid on a suitable surface. The technology has made a novelty discovery since its development and obtained an increasing attention among researchers. The widespread of microarray technology is largely due to its ability to perform simultaneous analysis of thousands of genes in a massively parallel manner in one experiment. Hence, it provides valuable knowledge on gene interaction and function. The microarray data set typically consists of tens of thousands of genes (variables) from just dozens of samples due to various constraints. Therefore, the sample covariance matrix in Hotelling's T2 statistic is not positive definite and become singular, thus it cannot be inverted. In this research, the Hotelling's T2 statistic is combined with a shrinkage approach as an alternative estimation to estimate the covariance matrix to detect significant gene sets. The use of shrinkage covariance matrix overcomes the singularity problem by converting an unbiased to an improved biased estimator of covariance matrix. Robust trimmed mean is integrated into the shrinkage matrix to reduce the influence of outliers and consequently increases its efficiency. The performance of the proposed method is measured using several simulation designs. The results are expected to outperform existing techniques in many tested conditions.

  11. Cleavage of chemokines CCL2 and CXCL10 by matrix metalloproteinases-2 and -9: implications for chemotaxis.

    PubMed

    Denney, Helen; Clench, Malcolm R; Woodroofe, M Nicola

    2009-05-01

    Proteolytic processing of chemokines is a complex process that can result in dramatic effects on their chemotactic activity. Results from gel electrophoresis and mass spectrometry using recombinant CCL2 and CXCL10, incubated with either MMP-2 or -9, indicate that both chemokines are cleaved by the enzymes. N-terminal truncation of four amino acids from CCL2, and four or five residues from CXCL10 occurred, but removal of four residues from the C-terminus of CXCL10 was also observed with both MMPs. The speed of the reaction was chemokine-dependent, with N-terminal processing of CCL2 being complete within 3h, whereas activity of the MMPs on CXCL10 remained incomplete at 48h. The effect on the chemotactic potential of N-terminal truncation of CCL2 by MMPs-2 and -9 was investigated using in vitro migration assays. Monocytic cells exhibited a 2-fold reduction in migration to MMP-cleaved CCL2 variants, compared to intact CCL2.

  12. Sparse p-norm Nonnegative Matrix Factorization for clustering gene expression data.

    PubMed

    Liu, Weixiang; Yuan, Kehong

    2008-01-01

    Nonnegative Matrix Factorization (NMF) is a powerful tool for gene expression data analysis as it reduces thousands of genes to a few compact metagenes, especially in clustering gene expression samples for cancer class discovery. Enhancing sparseness of the factorisation can find only a few dominantly coexpressed metagenes and improve the clustering effectiveness. Sparse p-norm (p > 1) Nonnegative Matrix Factorization (Sp-NMF) is a more sparse representation method using high order norm to normalise the decomposed components. In this paper, we investigate the benefit of high order normalisation for clustering cancer-related gene expression samples. Experimental results demonstrate that Sp-NMF leads to robust and effective clustering in both automatically determining the cluster number, and achieving high accuracy.

  13. Skeletal muscle extracellular matrix remodelling after aestivation in the green striped burrowing frog, Cyclorana alboguttata.

    PubMed

    Hudson, Nicholas J; Harper, Gregory S; Allingham, Peter G; Franklin, Craig E; Barris, W; Lehnert, Sigrid A

    2007-03-01

    Connective tissue has recently been found to play a role in mediating mammalian skeletal muscle atrophy. We investigated connective tissue remodelling in the skeletal muscle of a species of the Australian burrowing frog, Cyclorana alboguttata. Despite being inactive whilst aestivating, the frog shows an inhibition of muscle atrophy. Connective tissue size and distribution was measured in histological sections of the cruralis muscle of control and aestivating C. alboguttata. Using a custom written software application we could detect no significant difference in any connective tissue morphological parameter between the two treatment groups. Biochemical measurements of gelatinase activity showed 2-fold higher activity in aestivating gastrocnemius muscle than in controls (p<0.001). We measured the messenger RNA transcript levels for C. alboguttata metalloproteinase 2 (MMP2) and tissue inhibitor of metalloproteinase 2 (TIMP2) in cruralis skeletal muscle using quantitative real-time PCR. The trend of reduced expression of the two genes in the aestivators did not meet statistical significance. This work indicates that aestivation in C. alboguttata leads to subtle and specific changes in some extracellular matrix remodelling factors. Their main impact is to maintain proportional representation of extracellular matrix components of skeletal muscle and therefore preserve the active frog phenotype.

  14. Cyclical strain modulates metalloprotease and matrix gene expression in human tenocytes via activation of TGFβ.

    PubMed

    Jones, Eleanor R; Jones, Gavin C; Legerlotz, Kirsten; Riley, Graham P

    2013-12-01

    Tendinopathies are a range of diseases characterised by degeneration and chronic tendon pain and represent a significant cause of morbidity. Relatively little is known about the underlying mechanisms; however onset is often associated with physical activity. A number of molecular changes have been documented in tendinopathy such as a decrease in overall collagen content, increased extracellular matrix turnover and protease activity. Metalloproteinases are involved in the homeostasis of the extracellular matrix and expression is regulated by mechanical strain. The aims of this study were to determine the effects of strain upon matrix turnover by measuring metalloproteinase and matrix gene expression and to elucidate the mechanism of action. Primary Human Achilles tenocytes were seeded in type I rat tail collagen gels in a Flexcell™ tissue train system and subjected to 5% cyclic uniaxial strain at 1Hz for 48h. TGFβ1 and TGFβRI inhibitor were added to selected cultures. RNA was measured using qRT-PCR and TGFβ protein levels were determined using a cell based luciferase assay. We observed that mechanical strain regulated the mRNA levels of multiple protease and matrix genes anabolically, and this regulation mirrored that seen with TGFβ stimulation alone. We have also demonstrated that the inhibition of the TGFβ signalling pathway abrogated the strain induced changes in mRNA and that TGFβ activation, rather than gene expression, was increased with mechanical strain. We concluded that TGFβ activation plays an important role in mechanotransduction. Targeting this pathway may have its place in the treatment of tendinopathy.

  15. Application of random matrix theory to microarray data for discovering functional gene modules.

    PubMed

    Luo, Feng; Zhong, Jianxin; Yang, Yunfeng; Zhou, Jizhong

    2006-03-01

    We show that spectral fluctuation of coexpression correlation matrices of yeast gene microarray profiles follows the description of the Gaussian orthogonal ensemble (GOE) of the random matrix theory (RMT) and removal of small values of the correlation coefficients results in a transition from the GOE statistics to the Poisson statistics of the RMT. This transition is directly related to the structural change of the gene expression network from a global network to a network of isolated modules.

  16. Application of random matrix theory to microarray data for discovering functional gene modules

    SciTech Connect

    Luo, F.; Zhong, Jianxin; Yang, Y. F.; Zhou, Jizhong

    2006-03-01

    We show that spectral fluctuation of coexpression correlation matrices of yeast gene microarray profiles follows the description of the Gaussian orthogonal ensemble (GOE) of the random matrix theory (RMT) and removal of small values of the correlation coefficients results in a transition from the GOE statistics to the Poisson statistics of the RMT. This transition is directly related to the structural change of the gene expression network from a global network to a network of isolated modules.

  17. Induction of Extracellular Matrix-Remodeling Genes by the Senescence-Associated Protein APA-1

    PubMed Central

    Benanti, Jennifer A.; Williams, Dawnnica K.; Robinson, Kristin L.; Ozer, Harvey L.; Galloway, Denise A.

    2002-01-01

    Human fibroblasts undergo cellular senescence after a finite number of divisions, in response to the erosion of telomeres. In addition to being terminally arrested in the cell cycle, senescent fibroblasts express genes that are normally induced upon wounding, including genes that remodel the extracellular matrix. We have identified the novel zinc finger protein APA-1, whose expression increased in senescent human fibroblasts independent of telomere shortening. Extended passage, telomerase-immortalized fibroblasts had increased levels of APA-1 as well as the cyclin-dependent kinase inhibitor p16. In fibroblasts, APA-1 was modified by the ubiquitin-like protein SUMO-1, which increased APA-1 half-life, possibly by blocking ubiquitin-mediated degradation. Overexpression of APA-1 did not cause cell cycle arrest; but, it induced transcription of the extracellular matrix-remodeling genes MMP1 and PAI2, which are associated with fibroblast senescence. MMP1 and PAI2 transcript levels also increased in telomerase-immortalized fibroblasts that had high levels of APA-1, demonstrating that the matrix-remodeling phenotype of senescent fibroblasts was not induced by telomere attrition alone. APA-1 was able to transactivate and bind to the MMP1 promoter, suggesting that APA-1 is a transcription factor that regulates expression of matrix-remodeling genes during fibroblast senescence. PMID:12370286

  18. Phage display of tissue inhibitor of metalloproteinases-2 (TIMP-2): identification of selective inhibitors of collagenase-1 (metalloproteinase 1 (MMP-1)).

    PubMed

    Bahudhanapati, Harinath; Zhang, Yingnan; Sidhu, Sachdev S; Brew, Keith

    2011-09-09

    Tissue inhibitor of metalloproteinases-2 (TIMP-2) is a broad spectrum inhibitor of the matrix metalloproteinases (MMPs), which function in extracellular matrix catabolism. Here, phage display was used to identify variants of human TIMP-2 that are selective inhibitors of human MMP-1, a collagenase whose unregulated action is linked to cancer, arthritis, and fibrosis. Using hard randomization of residues 2, 4, 5, and 6 (L1) and soft randomization of residues 34-40 (L2) and 67-70 (L3), a library was generated containing 2 × 10(10) variants of TIMP-2. Five clones were isolated after five rounds of selection with MMP-1, using MMP-3 as a competitor. The enriched phages selectively bound MMP-1 relative to MMP-3 and contained mutations only in L1. The most selective variant (TM8) was used to generate a second library in which residues Cys(1)-Gln(9) were soft-randomized. Four additional clones, selected from this library, showed a similar affinity for MMP-1 as wild-type TIMP-2 but reduced affinity for MMP-3. Variants of the N-terminal domain of TIMP-2 (N-TIMP-2) with the sequences of the most selective clones were expressed and characterized for inhibitory activity against eight MMPs. All were effective inhibitors of MMP-1 with nanomolar K(i) values, but TM8, containing Ser(2) to Asp and Ser(4) to Ala substitutions, was the most selective having a nanomolar K(i) value for MMP-1 but no detectable inhibitory activity toward MMP-3 and MMP-14 up to 10 μM. This study suggests that phage display and selection with other MMPs may be an effective method for discovering tissue inhibitor of metalloproteinase variants that discriminate between specified MMPs as targets.

  19. Integrative clustering by nonnegative matrix factorization can reveal coherent functional groups from gene profile data.

    PubMed

    Brdar, Sanja; Crnojević, Vladimir; Zupan, Blaz

    2015-03-01

    Recent developments in molecular biology and techniques for genome-wide data acquisition have resulted in abundance of data to profile genes and predict their function. These datasets may come from diverse sources and it is an open question how to commonly address them and fuse them into a joint prediction model. A prevailing technique to identify groups of related genes that exhibit similar profiles is profile-based clustering. Cluster inference may benefit from consensus across different clustering models. In this paper, we propose a technique that develops separate gene clusters from each of available data sources and then fuses them by means of nonnegative matrix factorization. We use gene profile data on the budding yeast S. cerevisiae to demonstrate that this approach can successfully integrate heterogeneous datasets and yield high-quality clusters that could otherwise not be inferred by simply merging the gene profiles prior to clustering.

  20. Matrix factorization-based data fusion for gene function prediction in baker's yeast and slime mold.

    PubMed

    Zitnik, Marinka; Zupan, Blaž

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker's yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps.

  1. Chicken histone genes retain nuclear matrix association throughout the cell cycle.

    PubMed Central

    Dalton, S; Younghusband, H B; Wells, J R

    1986-01-01

    The association between histone genes and the nuclear matrix (NM) during periods of high (S-phase) and low (non-S-phase) transcriptional activity has been investigated with synchronized cells from a chicken erythroid cell line (abbreviated ts34). By DNase I and restriction enzyme analysis, these studies reveal that both core and linker histone genes (represented by H2A and H1 genes respectively) are attached to the NM independent of their transcriptional activity during the cell-cycle. The tissue-specific histone gene H5, expressed constitutively, is nuclear matrix (NM)-associated in ts34 cells but is found in the supernatant (S/N) fractions of a non-erythroid T-cell line. Furthermore, we show that DNA sequences necessary for NM-attachment of the H5 gene lie within a 780 base pair region spanning part of the coding and 5' non-translated region. Of the three non-histone genes investigated, beta-actin sequences are expressed and are NM-attached, feather keratin genes are not expressed and predominate in the S/N, and beta-globin genes although not expressed in the ts34 cell line used were found in the NM fraction. In this case the association may be fortuitous or may reflect an early event prior to transcription of globin genes in differentiating erythroid cells. These results generally support the notion that actively transcribed genes are NM-attached, but that attachment per se is not synonymous with transcription. Images PMID:2428014

  2. Gene Ranking of RNA-Seq Data via Discriminant Non-Negative Matrix Factorization.

    PubMed

    Jia, Zhilong; Zhang, Xiang; Guan, Naiyang; Bo, Xiaochen; Barnes, Michael R; Luo, Zhigang

    2015-01-01

    RNA-sequencing is rapidly becoming the method of choice for studying the full complexity of transcriptomes, however with increasing dimensionality, accurate gene ranking is becoming increasingly challenging. This paper proposes an accurate and sensitive gene ranking method that implements discriminant non-negative matrix factorization (DNMF) for RNA-seq data. To the best of our knowledge, this is the first work to explore the utility of DNMF for gene ranking. When incorporating Fisher's discriminant criteria and setting the reduced dimension as two, DNMF learns two factors to approximate the original gene expression data, abstracting the up-regulated or down-regulated metagene by using the sample label information. The first factor denotes all the genes' weights of two metagenes as the additive combination of all genes, while the second learned factor represents the expression values of two metagenes. In the gene ranking stage, all the genes are ranked as a descending sequence according to the differential values of the metagene weights. Leveraging the nature of NMF and Fisher's criterion, DNMF can robustly boost the gene ranking performance. The Area Under the Curve analysis of differential expression analysis on two benchmarking tests of four RNA-seq data sets with similar phenotypes showed that our proposed DNMF-based gene ranking method outperforms other widely used methods. Moreover, the Gene Set Enrichment Analysis also showed DNMF outweighs others. DNMF is also computationally efficient, substantially outperforming all other benchmarked methods. Consequently, we suggest DNMF is an effective method for the analysis of differential gene expression and gene ranking for RNA-seq data.

  3. Activity of matrix metalloproteinases during antimycobacterial therapy in mice with simulated tuberculous inflammation.

    PubMed

    Sumenkova, D V; Russkikh, G S; Poteryaeva, O N; Polyakov, L M; Panin, L E

    2013-05-01

    Matrix metalloproteinases are shown to be involved in the pathogenesis of tuberculosis inflammation. In the early stages of BCG-granuloma formation in mouse liver and lungs, the serum levels of matrix metalloproteinases 2 and 7 increased by 4.5 times and remained unchanged while the pathology developed. Antimycobacterial therapy with isoniazid reduced enzyme activity almost to the level of intact control. The decrease in activity of matrix metalloproteinases 2 and 7 that play the most prominent role in the development of destructive forms of tuberculosis is of great therapeutic importance.

  4. [A novel mutation of cartilage oligomeric matrix protein gene underlies multiple epiphyseal dysplasia].

    PubMed

    Wang, Hui; Xie, Jiansheng; Wu, Weiqing; Xu, Zhiyong; Luo, Fuwei; Geng, Qian

    2013-06-01

    To perform mutation analysis for a female with multiple epiphyseal dysplasia (MED) and provide pre-symptomatic and prenatal diagnosis. Mutation screening of cartilage oligomeric matrix protein (COMP) gene was carried out through targeted next-generation DNA sequencing and Sanger sequencing. A novel c.956 A>T resulting in substitution of Aspartic acid 319 for Valine (p.Asp319Val) has been identified in exon 9 of the COMP gene in the patient. As predicted by a SIFT software, above mutation can cause damage to the structure of COMP protein. A novel c.956 A>T substitution mutation has been identified in a patient featuring MED.

  5. Use of staurosporine, an actin-modifying agent, to enhance fibrochondrocyte matrix gene expression and synthesis.

    PubMed

    Hoben, Gwendolyn M; Athanasiou, Kyriacos A

    2008-12-01

    Modulation of the actin cytoskeleton in chondrocytes has been used to prevent or reverse dedifferentiation and to enhance protein synthesis. We have hypothesized that an actin-modifying agent, staurosporine, could be used with fibrochondrocytes to increase the gene expression and synthesis of critical fibrocartilage proteins. A range of concentrations (0.1-100 nM) was applied to fibrochondrocytes in monolayer and evaluated after 24 h and after 4 days. High-dose staurosporine treatment (10-100 nM) increased cartilage oligomeric matrix protein 60- to 500-fold and aggrecan gene expression two-fold. This effective range of staurosporine was then applied to scaffoldless tissue-engineered fibrochondrocyte constructs for 4 weeks. Whereas glycosaminoglycan synthesis was not affected, collagen content doubled, from 27.6 +/- 8.8 microg in the untreated constructs to 55.2 +/- 12.2 microg per construct with 100 nM treatment. When analyzed for specific collagens, the 10-nM group showed a significant increase in collagen type I content, whereas collagen type II was unaffected. A concomitant dose-dependent reduction was noted in construct contraction, reflecting the actin-disrupting action of staurosporine. Thus, staurosporine increases the gene expression for important matrix proteins and can be used to enhance matrix production and reduce contraction in tissue-engineered fibrocartilage constructs.

  6. Interactions between the nuclear matrix and an enhancer of the tryptophan oxygenase gene

    SciTech Connect

    Kaneoka, Hidenori; Miyake, Katsuhide; Iijima, Shinji

    2009-10-02

    The gene for tryptophan oxygenase (TO) is expressed in adult hepatocytes in a tissue- and differentiation-specific manner. The TO promoter has two glucocorticoid-responsive elements (GREs), and its expression is regulated by glucocorticoid hormone in the liver. We found a novel GRE in close proximity to a scaffold/matrix attachment region (S/MAR) that was located around -8.5 kb from the transcriptional start site of the TO gene by electrophoretic mobility shift and chromatin immunoprecipitation (ChIP) assays. A combination of nuclear fractionation and quantitative PCR analysis showed that the S/MAR was tethered to the nuclear matrix in both fetal and adult hepatocytes. ChIP assay showed that, in adult hepatocytes, the S/MAR-GRE and the promoter proximal regions interacted with lamin and heterogeneous nuclear ribonucleoprotein U in a dexamethasone dependent manner, but this was not the case in fetal cells, suggesting that developmental stage-specific expression of the TO gene might rely on the binding of the enhancer (the -8.5 kb S/MAR-GRE) and the promoter to the inner nuclear matrix.

  7. A strategy to establish a gene-activated matrix on titanium using gene vectors protected in a polylactide coating.

    PubMed

    Kolk, Andreas; Haczek, Cornelia; Koch, Christian; Vogt, Stephan; Kullmer, Martin; Pautke, Christoph; Deppe, Herbert; Plank, Christian

    2011-10-01

    Bioactive implants are promising tools in regenerative medicine. Here we describe a versatile procedure for preparing a gene-activated matrix on titanium. Lyophilized copolymer-protected gene vectors (COPROGs) suspended in poly(d,l-lactide) (PDLLA) solutions in ethyl acetate were used to varnish solid surfaces. The gene-activated PDLLA surfaces were first established on polypropylene 96-well plates. Vector release from these surfaces in aqueous buffer, cell viability and gene transfer efficiency to NIH 3T3 fibroblasts was strongly dependent on the vector dose and its ratio to PDLLA film thickness. A detailed analysis of these relationships allowed establishing correlations which can be used to calculate suitable combinations of COPROGs and PDLLA yielding optimal gene transfer efficiency. This was verified with COPROG-activated PDLLA coatings on titanium foils. HEK 293 and mesenchymal stem cells expressed the BMP-2 gene comprised in the gene-activated surface in a manner that was consistent with the predicted dose-response and toxicity profiles found in NIH 3T3 cells. The systematic procedure presented here for identifying optimal coating compositions can be applied to any combination of vector type and coating material.

  8. Gene Ranking of RNA-Seq Data via Discriminant Non-Negative Matrix Factorization

    PubMed Central

    Jia, Zhilong; Zhang, Xiang; Guan, Naiyang; Bo, Xiaochen; Barnes, Michael R.; Luo, Zhigang

    2015-01-01

    RNA-sequencing is rapidly becoming the method of choice for studying the full complexity of transcriptomes, however with increasing dimensionality, accurate gene ranking is becoming increasingly challenging. This paper proposes an accurate and sensitive gene ranking method that implements discriminant non-negative matrix factorization (DNMF) for RNA-seq data. To the best of our knowledge, this is the first work to explore the utility of DNMF for gene ranking. When incorporating Fisher’s discriminant criteria and setting the reduced dimension as two, DNMF learns two factors to approximate the original gene expression data, abstracting the up-regulated or down-regulated metagene by using the sample label information. The first factor denotes all the genes’ weights of two metagenes as the additive combination of all genes, while the second learned factor represents the expression values of two metagenes. In the gene ranking stage, all the genes are ranked as a descending sequence according to the differential values of the metagene weights. Leveraging the nature of NMF and Fisher’s criterion, DNMF can robustly boost the gene ranking performance. The Area Under the Curve analysis of differential expression analysis on two benchmarking tests of four RNA-seq data sets with similar phenotypes showed that our proposed DNMF-based gene ranking method outperforms other widely used methods. Moreover, the Gene Set Enrichment Analysis also showed DNMF outweighs others. DNMF is also computationally efficient, substantially outperforming all other benchmarked methods. Consequently, we suggest DNMF is an effective method for the analysis of differential gene expression and gene ranking for RNA-seq data. PMID:26348772

  9. Discovering gene functional relationships using FAUN (Feature Annotation Using Nonnegative matrix factorization)

    PubMed Central

    2010-01-01

    Background Searching the enormous amount of information available in biomedical literature to extract novel functional relationships among genes remains a challenge in the field of bioinformatics. While numerous (software) tools have been developed to extract and identify gene relationships from biological databases, few effectively deal with extracting new (or implied) gene relationships, a process which is useful in interpretation of discovery-oriented genome-wide experiments. Results In this study, we develop a Web-based bioinformatics software environment called FAUN or Feature Annotation Using Nonnegative matrix factorization (NMF) to facilitate both the discovery and classification of functional relationships among genes. Both the computational complexity and parameterization of NMF for processing gene sets are discussed. FAUN is tested on three manually constructed gene document collections. Its utility and performance as a knowledge discovery tool is demonstrated using a set of genes associated with Autism. Conclusions FAUN not only assists researchers to use biomedical literature efficiently, but also provides utilities for knowledge discovery. This Web-based software environment may be useful for the validation and analysis of functional associations in gene subsets identified by high-throughput experiments. PMID:20946597

  10. Discovering gene functional relationships using FAUN (Feature Annotation Using Nonnegative matrix factorization).

    PubMed

    Tjioe, Elina; Berry, Michael W; Homayouni, Ramin

    2010-10-07

    Searching the enormous amount of information available in biomedical literature to extract novel functional relationships among genes remains a challenge in the field of bioinformatics. While numerous (software) tools have been developed to extract and identify gene relationships from biological databases, few effectively deal with extracting new (or implied) gene relationships, a process which is useful in interpretation of discovery-oriented genome-wide experiments. In this study, we develop a Web-based bioinformatics software environment called FAUN or Feature Annotation Using Nonnegative matrix factorization (NMF) to facilitate both the discovery and classification of functional relationships among genes. Both the computational complexity and parameterization of NMF for processing gene sets are discussed. FAUN is tested on three manually constructed gene document collections. Its utility and performance as a knowledge discovery tool is demonstrated using a set of genes associated with Autism. FAUN not only assists researchers to use biomedical literature efficiently, but also provides utilities for knowledge discovery. This Web-based software environment may be useful for the validation and analysis of functional associations in gene subsets identified by high-throughput experiments.

  11. Calcium channel blockade reduces mechanical strain-induced extracellular matrix gene response in lamina cribrosa cells.

    PubMed

    Quill, B; Irnaten, M; Docherty, N G; McElnea, E M; Wallace, D M; Clark, A F; O'Brien, C J

    2015-07-01

    This study examines the effect of the L-type calcium channel blocker verapamil on mechanical strain-induced extracellular matrix genes in optic nerve head lamina cribrosa (LC) cells. Changes in LC cell intracellular calcium [Ca(2+)]i following hypotonic cell membrane stretch were measured with the fluorescent probe fura-2/AM. Fluorescence intensity was measured, after labelling, by calcium (Ca2+) imaging confocal microscopy. Confluent human LC cell cultures were serum starved for 24 h prior to exposure to cyclical mechanical strain (1 Hz, 15%) for 24 h in the presence or absence of verapamil (10 mm). Transforming growth factor-β 1 (TGF-β1), collagen 6A3 (COL6A3) and chondroitin sulfate proteoglycan 2 (CSPG2) mRNA expression levels were assessed by quantitative RT-PCR. Hypotonic cell membrane stretch of LC cells from normal donors significantly increased [Ca2+]i (p<0.05). Exposure to cyclical mechanical strain (15% strain) produced a statistically significant increase in the three matrix genes that were examined (TGF-β1, COL6A3 and CSPG2). This response in both cyclical and mechanical stretch was significantly reduced by pretreating LC cells with the L-type calcium channel blocker verapamil (p<0.05). This study provides evidence of a novel mechanotransduction pathway linking mechanical strain, cation channel function and the induction of LC cell matrix gene transcription. This highlights the potential involvement of calcium influx in the activation of matrix remodelling responses in the optic nerve head and supports the rationale that calcium channel blockers may attenuate disease progression in glaucoma. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Effects of enamel matrix genes on dental caries are moderated by fluoride exposures.

    PubMed

    Shaffer, John R; Carlson, Jenna C; Stanley, Brooklyn O C; Feingold, Eleanor; Cooper, Margaret; Vanyukov, Michael M; Maher, Brion S; Slayton, Rebecca L; Willing, Marcia C; Reis, Steven E; McNeil, Daniel W; Crout, Richard J; Weyant, Robert J; Levy, Steven M; Vieira, Alexandre R; Marazita, Mary L

    2015-02-01

    Dental caries (tooth decay) is the most common chronic disease, worldwide, affecting most children and adults. Though dental caries is highly heritable, few caries-related genes have been discovered. We investigated whether 18 genetic variants in the group of non-amelogenin enamel matrix genes (AMBN, ENAM, TUFT1, and TFIP11) were associated with dental caries experience in 13 age- and race-stratified samples from six parent studies (N = 3,600). Linear regression was used to model genetic associations and test gene-by-fluoride interaction effects for two sources of fluoride: daily tooth brushing and home water fluoride concentration. Meta-analysis was used to combine results across five child and eight adult samples. We observed the statistically significant association of rs2337359 upstream of TUFT1 with dental caries experience via meta-analysis across adult samples (p < 0.002) and the suggestive association for multiple variants in TFIP11 across child samples (p < 0.05). Moreover, we discovered two genetic variants (rs2337359 upstream of TUFT1 and missense rs7439186 in AMBN) involved in gene-by-fluoride interactions. For each interaction, participants with the risk allele/genotype exhibited greater dental caries experience only if they were not exposed to the source of fluoride. Altogether, these results confirm that variation in enamel matrix genes contributes to individual differences in dental caries liability, and demonstrate that the effects of these genes may be moderated by protective fluoride exposures. In short, genes may exert greater influence on dental caries in unprotected environments, or equivalently, the protective effects of fluoride may obviate the effects of genetic risk alleles.

  13. Effects of enamel matrix genes on dental caries are moderated by fluoride exposures

    PubMed Central

    Shaffer, John R.; Carlson, Jenna C.; Stanley, Brooklyn O. C.; Feingold, Eleanor; Cooper, Margaret; Vanyukov, Michael M.; Maher, Brion S.; Slayton, Rebecca L.; Willing, Marcia C.; Reis, Steven E.; McNeil, Daniel W.; Crout, Richard J.; Weyant, Robert J.; Levy, Steven M.; Vieira, Alexandre R.; Marazita, Mary L.

    2014-01-01

    Dental caries (tooth decay) is the most common chronic disease, worldwide, affecting most children and adults. Though dental caries is highly heritable, few caries-related genes have been discovered. We investigated whether 18 genetic variants in the group of nonamelogenin enamel matrix genes (AMBN, ENAM, TUFT1, and TFIP11) were associated with dental caries experience in 13 age- and race-stratified samples from six parent studies (N=3,600). Linear regression was used to model genetic associations and test gene-byfluoride interaction effects for two sources of fluoride: daily tooth brushing and home water fluoride concentration. Meta-analysis was used to combine results across five child and eight adult samples. We observed the statistically significant association of rs2337359 upstream of TUFT1 with dental caries experience via meta-analysis across adult samples (p<0.002) and the suggestive association for multiple variants in TFIP11 across child samples (p<0.05). Moreover, we discovered two genetic variants (rs2337359 upstream of TUFT1 and missense rs7439186 in AMBN) involved in gene-by-fluoride interactions. For each interaction, participants with the risk allele/genotype exhibited greater dental caries experience only if they were not exposed to the source of fluoride. Altogether, these results confirm that variation in enamel matrix genes contributes to individual differences in dental caries liability, and demonstrate that the effects of these genes may be moderated by protective fluoride exposures. In short, genes may exert greater influence on dental caries in unprotected environments, or equivalently, the protective effects of fluoride may obviate the effects of genetic risk alleles. PMID:25373699

  14. A polygenic burden of rare variants across extracellular matrix genes among individuals with adolescent idiopathic scoliosis.

    PubMed

    Haller, Gabe; Alvarado, David; Mccall, Kevin; Yang, Ping; Cruchaga, Carlos; Harms, Matthew; Goate, Alison; Willing, Marcia; Morcuende, Jose A; Baschal, Erin; Miller, Nancy H; Wise, Carol; Dobbs, Matthew B; Gurnett, Christina A

    2016-01-01

    Adolescent idiopathic scoliosis (AIS) is a complex inherited spinal deformity whose etiology has been elusive. While common genetic variants are associated with AIS, they explain only a small portion of disease risk. To explore the role of rare variants in AIS susceptibility, exome sequence data of 391 severe AIS cases and 843 controls of European ancestry were analyzed using a pathway burden analysis in which variants are first collapsed at the gene level then by Gene Ontology terms. Novel non-synonymous/splice-site variants in extracellular matrix genes were significantly enriched in AIS cases compared with controls (P = 6 × 10(-9), OR = 1.7, CI = 1.4-2.0). Specifically, novel variants in musculoskeletal collagen genes were present in 32% (126/391) of AIS cases compared with 17% (146/843) of in-house controls and 18% (780/4300) of EVS controls (P = 1 × 10(-9), OR = 1.9, CI = 1.6-2.4). Targeted resequencing of six collagen genes replicated this association in combined 919 AIS cases (P = 3 × 10(-12), OR = 2.2, CI = 1.8-2.7) and revealed a highly significant single-gene association with COL11A2 (P = 6 × 10(-9), OR = 3.8, CI = 2.6-7.2). Importantly, AIS cases harbor mainly non-glycine missense mutations and lack the clinical features of monogenic musculoskeletal collagenopathies. Overall, our study reveals a complex genetic architecture of AIS in which a polygenic burden of rare variants across extracellular matrix genes contributes strongly to risk.

  15. In vivo evaluation of matrix metalloproteinase responsive silk-elastinlike protein polymers for cancer gene therapy.

    PubMed

    Price, Robert; Poursaid, Azadeh; Cappello, Joseph; Ghandehari, Hamidreza

    2015-09-10

    Silk-elastinlike protein polymers (SELPs) have been effectively used as controlled release matrices for the delivery of viruses for cancer gene therapy in preclinical models. However, the degradability of these polymers needs to be tuned for improved localized intratumoral gene delivery. Using recombinant techniques, systematic modifications in distinct regions of the polymer backbone, namely, within the elastin blocks, silk blocks, and adjacent to silk and elastin blocks, have been made to impart sensitivity to specific matrix metalloproteinases (MMPs) known to be overexpressed in the tumor environment. In this report we investigated the structure-function relationship of MMP-responsive SELPs for viral mediated gene therapy of head and neck cancer. These polymers showed significant degradation in vitro in the presence of MMPs. Their degradation rate was a function of the location of the MMP-responsive sequence in the polymer backbone when in hydrogel form. Treatment efficacy of the adenoviral vectors released from the MMP responsive SELP analogs in a xenograft mouse model of head and neck squamous cell carcinoma (HNSCC) was shown to be polymer structure dependent. These results demonstrate the tunable nature of MMP-responsive SELPs for localized matrix-mediated gene delivery.

  16. Hessian regularization based symmetric nonnegative matrix factorization for clustering gene expression and microbiome data.

    PubMed

    Ma, Yuanyuan; Hu, Xiaohua; He, Tingting; Jiang, Xingpeng

    2016-12-01

    Nonnegative matrix factorization (NMF) has received considerable attention due to its interpretation of observed samples as combinations of different components, and has been successfully used as a clustering method. As an extension of NMF, Symmetric NMF (SNMF) inherits the advantages of NMF. Unlike NMF, however, SNMF takes a nonnegative similarity matrix as an input, and two lower rank nonnegative matrices (H, H(T)) are computed as an output to approximate the original similarity matrix. Laplacian regularization has improved the clustering performance of NMF and SNMF. However, Laplacian regularization (LR), as a classic manifold regularization method, suffers some problems because of its weak extrapolating ability. In this paper, we propose a novel variant of SNMF, called Hessian regularization based symmetric nonnegative matrix factorization (HSNMF), for this purpose. In contrast to Laplacian regularization, Hessian regularization fits the data perfectly and extrapolates nicely to unseen data. We conduct extensive experiments on several datasets including text data, gene expression data and HMP (Human Microbiome Project) data. The results show that the proposed method outperforms other methods, which suggests the potential application of HSNMF in biological data clustering. Copyright © 2016. Published by Elsevier Inc.

  17. Phenotypic diversity of neoplastic chondrocytes and extracellular matrix gene expression in cartilaginous neoplasms.

    PubMed Central

    Aigner, T.; Dertinger, S.; Vornehm, S. I.; Dudhia, J.; von der Mark, K.; Kirchner, T.

    1997-01-01

    Chondrocyte differentiation is characterized by distinct cellular phenotypes, which can be identified by specific extracellular matrix gene expression profiles. By applying in situ analysis on the mRNA and protein level in a series of benign and malignant human chondrogenic neoplasms, we were able to identify for the first time different phenotypes of neoplastic chondrocytes in vivo: 1) mature chondrocytes, which synthesized the characteristic cartilaginous extracellular tumor matrix, 2) cells resembling hypertrophic chondrocytes of the fetal growth plate, 3) cells resembling so-called dedifferentiated chondrocytes, and 4) well differentiated chondrocytic cells, which expressed type I collagen, indicating the presence of post-hypertrophic differentiated neoplastic chondrocytes. Chondrocytes exhibiting a range of phenotypes were found to be present in the same neoplasm. The different observed phenotypes, including the dedifferentiated phenotype, were in contrast to the anaplastic cells of high-grade chondrosarcomas. Comparison of expression data with tumor morphology revealed a relationship between the cellular phenotypes, the tumor matrix composition, and the matrix and cell morphology within the neoplasms. The distinctly different phenotypes of neoplastic chondrocytes are the basis of the characteristic high biochemical and morphological heterogeneity of chondroid neoplasms and shed light on their biological and clinical behavior. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9176404

  18. Semi-supervised Nonnegative Matrix Factorization for gene expression deconvolution: a case study.

    PubMed

    Gaujoux, Renaud; Seoighe, Cathal

    2012-07-01

    Heterogeneity in sample composition is an inherent issue in many gene expression studies and, in many cases, should be taken into account in the downstream analysis to enable correct interpretation of the underlying biological processes. Typical examples are infectious diseases or immunology-related studies using blood samples, where, for example, the proportions of lymphocyte sub-populations are expected to vary between cases and controls. Nonnegative Matrix Factorization (NMF) is an unsupervised learning technique that has been applied successfully in several fields, notably in bioinformatics where its ability to extract meaningful information from high-dimensional data such as gene expression microarrays has been demonstrated. Very recently, it has been applied to biomarker discovery and gene expression deconvolution in heterogeneous tissue samples. Being essentially unsupervised, standard NMF methods are not guaranteed to find components corresponding to the cell types of interest in the sample, which may jeopardize the correct estimation of cell proportions. We have investigated the use of prior knowledge, in the form of a set of marker genes, to improve gene expression deconvolution with NMF algorithms. We found that this improves the consistency with which both cell type proportions and cell type gene expression signatures are estimated. The proposed method was tested on a microarray dataset consisting of pure cell types mixed in known proportions. Pearson correlation coefficients between true and estimated cell type proportions improved substantially (typically from about 0.5 to approximately 0.8) with the semi-supervised (marker-guided) versions of commonly used NMF algorithms. Furthermore known marker genes associated with each cell type were assigned to the correct cell type more frequently for the guided versions. We conclude that the use of marker genes improves the accuracy of gene expression deconvolution using NMF and suggest modifications to how

  19. Regularized Non-negative Matrix Factorization for Identifying Differential Genes and Clustering Samples: a Survey.

    PubMed

    Liu, Jin-Xing; Wang, Dong; Gao, Ying-Lian; Zheng, Chun-Hou; Xu, Yong; Yu, Jiguo

    2017-02-07

    Non-negative Matrix Factorization (NMF), a classical method for dimensionality reduction, has been applied in many fields. It is based on the idea that negative numbers are physically meaningless in various data-processing tasks. Apart from its contribution to conventional data analysis, the recent overwhelming interest in NMF is due to its newly discovered ability to solve challenging data mining and machine learning problems, especially in relation to gene expression data. This survey paper mainly focuses on research examining the application of NMF to identify differentially expressed genes and to cluster samples, and the main NMF models, properties, principles, and algorithms with its various generalizations, extensions, and modifications are summarized. The experimental results demonstrate the performance of the various NMF algorithms in identifying differentially expressed genes and clustering samples.

  20. Prediction on the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase based on gene expression programming.

    PubMed

    Li, Yuqin; You, Guirong; Jia, Baoxiu; Si, Hongzong; Yao, Xiaojun

    2014-01-01

    Quantitative structure-activity relationships (QSAR) were developed to predict the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase via heuristic method (HM) and gene expression programming (GEP). The descriptors of 33 pyrrolidine derivatives were calculated by the software CODESSA, which can calculate quantum chemical, topological, geometrical, constitutional, and electrostatic descriptors. HM was also used for the preselection of 5 appropriate molecular descriptors. Linear and nonlinear QSAR models were developed based on the HM and GEP separately and two prediction models lead to a good correlation coefficient (R (2)) of 0.93 and 0.94. The two QSAR models are useful in predicting the inhibition ratio of pyrrolidine derivatives on matrix metalloproteinase during the discovery of new anticancer drugs and providing theory information for studying the new drugs.

  1. A global test for gene‐gene interactions based on random matrix theory

    PubMed Central

    Amos, Christopher I.; Moore, Jason H.

    2016-01-01

    ABSTRACT Statistical interactions between markers of genetic variation, or gene‐gene interactions, are believed to play an important role in the etiology of many multifactorial diseases and other complex phenotypes. Unfortunately, detecting gene‐gene interactions is extremely challenging due to the large number of potential interactions and ambiguity regarding marker coding and interaction scale. For many data sets, there is insufficient statistical power to evaluate all candidate gene‐gene interactions. In these cases, a global test for gene‐gene interactions may be the best option. Global tests have much greater power relative to multiple individual interaction tests and can be used on subsets of the markers as an initial filter prior to testing for specific interactions. In this paper, we describe a novel global test for gene‐gene interactions, the global epistasis test (GET), that is based on results from random matrix theory. As we show via simulation studies based on previously proposed models for common diseases including rheumatoid arthritis, type 2 diabetes, and breast cancer, our proposed GET method has superior performance characteristics relative to existing global gene‐gene interaction tests. A glaucoma GWAS data set is used to demonstrate the practical utility of the GET method. PMID:27386793

  2. Hessian regularization based non-negative matrix factorization for gene expression data clustering.

    PubMed

    Liu, Xiao; Shi, Jun; Wang, Congzhi

    2015-01-01

    Since a key step in the analysis of gene expression data is to detect groups of genes that have similar expression patterns, clustering technique is then commonly used to analyze gene expression data. Data representation plays an important role in clustering analysis. The non-negative matrix factorization (NMF) is a widely used data representation method with great success in machine learning. Although the traditional manifold regularization method, Laplacian regularization (LR), can improve the performance of NMF, LR still suffers from the problem of its weak extrapolating power. Hessian regularization (HR) is a newly developed manifold regularization method, whose natural properties make it more extrapolating, especially for small sample data. In this work, we propose the HR-based NMF (HR-NMF) algorithm, and then apply it to represent gene expression data for further clustering task. The clustering experiments are conducted on five commonly used gene datasets, and the results indicate that the proposed HR-NMF outperforms LR-based NMM and original NMF, which suggests the potential application of HR-NMF for gene expression data.

  3. Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates myogenesis and {beta}1 integrin expression in vitro

    SciTech Connect

    Lluri, Gentian; Langlois, Garret D.; Soloway, Paul D.; Jaworski, Diane M.

    2008-01-01

    Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2{sup -/-} myotube formation. When differentiated in horse serum-containing medium, TIMP-2{sup -/-} myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2{sup -/-} myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with {beta}1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2{sup -/-} myotube size and induces increased MMP-9 activation and decreased {beta}1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on {beta}1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and {beta}1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo.

  4. Characterization and expression of two matrix metalloproteinase genes during sea urchin development.

    PubMed

    Ingersoll, Eric P; Pendharkar, Ninad C

    2005-08-01

    Matrix metalloproteinases (MMPs) play an essential role in a variety of processes in development that require extracellular matrix remodeling and degradation. In this study, we characterize two MMPs from the sea urchin Strongylocentrotus purpuratus. These clones can both be identified as MMPs based on the presence of conserved domains such as the cysteine switch, zinc-binding, and hemopexin domains. In addition, both of these genes contain consensus furin cleavage sites and putative transmembrane domains, classifying them as membrane-type MMPs. We have named these clones SpMMP14 and SpMMP16 based on the vertebrate MMPs with which they share the greatest similarity. SpMMP14 is expressed in all cells from the egg to mesenchyme blastula stage embryo. Expression of this gene is strongest in the animal and vegetal poles early in gastrulation and in the animal pole only later in gastrulation. SpMMP16 is expressed at low levels in eggs. Expression of SpMMP16 becomes more pronounced in the vegetal pole region at the blastula and mesenchyme blastula stages and becomes confined to vegetal pole descendants, such as pigment cells, later in development. In the future, we hope to learn more about the possible functions of these genes in sea urchin development.

  5. Extracellular matrix gene expression profiling using microfluidics for colorectal carcinoma stratification

    PubMed Central

    Hayes, Christopher J.; Dowling, Catriona M.; Dwane, Susan; McCumiskey, Mary E.; Tormey, Shona M.; Anne Merrigan, B.; Coffey, John C.; Kiely, Patrick A.; Dalton, Tara M.

    2016-01-01

    In cancer, biomarkers have many potential applications including generation of a differential diagnosis, prediction of response to treatment, and monitoring disease progression. Many molecular biomarkers have been put forward for different diseases but most of them do not possess the required specificity and sensitivity. A biomarker with a high sensitivity has a low specificity and vice versa. The inaccuracy of the biomarkers currently in use has led to a compelling need to identify more accurate markers with diagnostic and prognostic significance. The aim of the present study was to use a novel, droplet-based, microfluidic platform to evaluate the prognostic value of a panel of thirty-four genes that regulate the composition of extracellular matrices in colorectal carcinoma. Our method is a novel approach as it uses using continuous-flowing Polymerase Chain Reaction for the sensitive detection and accurate quantitation of gene expression. We identified a panel of relevant extracellular matrix genes whose expression levels were measured by real-time quantitative polymerase chain reaction using Taqman® reagents in twenty-four pairs of matched colorectal cancer tumour and associated normal tissue. Differential expression patterns occurred between the normal and malignant tissue and correlated with histopathological parameters and overall surgical staging. The findings demonstrate that a droplet-based microfluidic quantitative PCR system enables biomarker classification. It was further possible to sub-classify colorectal cancer based on extracellular matrix protein expressing groups which in turn correlated with prognosis. PMID:27822332

  6. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    SciTech Connect

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V. . E-mail: reddysv@musc.edu

    2007-01-01

    Osteoclast differentiation is tightly regulated by receptor activator of NF-{kappa}B ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity in RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity

  7. The Use of EST Expression Matrixes for the Quality Control of Gene Expression Data

    PubMed Central

    Milnthorpe, Andrew T.; Soloviev, Mikhail

    2012-01-01

    EST expression profiling provides an attractive tool for studying differential gene expression, but cDNA libraries' origins and EST data quality are not always known or reported. Libraries may originate from pooled or mixed tissues; EST clustering, EST counts, library annotations and analysis algorithms may contain errors. Traditional data analysis methods, including research into tissue-specific gene expression, assume EST counts to be correct and libraries to be correctly annotated, which is not always the case. Therefore, a method capable of assessing the quality of expression data based on that data alone would be invaluable for assessing the quality of EST data and determining their suitability for mRNA expression analysis. Here we report an approach to the selection of a small generic subset of 244 UniGene clusters suitable for identification of the tissue of origin for EST libraries and quality control of the expression data using EST expression information alone. We created a small expression matrix of UniGene IDs using two rounds of selection followed by two rounds of optimisation. Our selection procedures differ from traditional approaches to finding “tissue-specific” genes and our matrix yields consistency high positive correlation values for libraries with confirmed tissues of origin and can be applied for tissue typing and quality control of libraries as small as just a few hundred total ESTs. Furthermore, we can pick up tissue correlations between related tissues e.g. brain and peripheral nervous tissue, heart and muscle tissues and identify tissue origins for a few libraries of uncharacterised tissue identity. It was possible to confirm tissue identity for some libraries which have been derived from cancer tissues or have been normalised. Tissue matching is affected strongly by cancer progression or library normalisation and our approach may potentially be applied for elucidating the stage of normalisation in normalised libraries or for cancer

  8. Extracellular matrix and cytochrome P450 gene expression can distinguish steatohepatitis from steatosis in mice

    PubMed Central

    Hennig, Ewa E; Mikula, Michal; Goryca, Krzysztof; Paziewska, Agnieszka; Ledwon, Joanna; Nesteruk, Monika; Woszczynski, Marek; Walewska-Zielecka, Bozena; Pysniak, Kazimiera; Ostrowski, Jerzy

    2014-01-01

    One of the main questions regarding nonalcoholic fatty liver disease is the molecular background of the transition from simple steatosis (SS) to the inflammatory and fibrogenic condition of steatohepatitis (NASH). We examined the gene expression changes during progression from histologically normal liver to SS and NASH in models of obesity caused by hyperphagia or a high-fat diet. Microarray-based analysis revealed that the expression of 1445 and 264 probe sets was changed exclusively in SS and NASH samples, respectively, and 1577 probe sets were commonly altered in SS and NASH samples. Functional annotations indicated that transcriptome alterations that were common for NASH and SS, as well as exclusive for NASH, involved extracellular matrix (ECM)-related processes, although they differed in the type of matrix structure change. The expression of 80 genes was significantly changed in all three comparisons: SS versus control, NASH versus control and NASH versus SS. Of these genes, epithelial membrane protein 1, IKBKB interacting protein and decorin were progressively up-regulated in both SS and NASH compared to normal tissue. The molecular context of interactions of encoded 80 proteins revealed that they are highly interconnected and significantly enriched for processes involving metabolism by cytochrome P450. Validation of 10 selected mRNAs encoding genes related to ECM and cytochrome P450 with quantitative RT-PCR analysis showed consistent changes in their expression during NASH development. The expression profile of these genes has the potential to distinguish NASH from SS and normal tissue and may possibly be beneficial in the clinical diagnosis of NASH. PMID:24913135

  9. Cerebral ischemia induces transcription of inflammatory and extracellular-matrix-related genes in rat cerebral arteries.

    PubMed

    Vikman, Petter; Ansar, Saema; Henriksson, Marie; Stenman, Emelie; Edvinsson, Lars

    2007-12-01

    Cerebral ischemia results in a local inflammatory response that contributes to the size of the lesion, however, the involvement of the cerebral vasculature is unknown. We hypothesise that the expression of inflammatory genes (Il6, iNOS, cxcl2, TNF-alpha and Il-1beta) and extracellular-matrix-related genes (MMP9, MMP13) is induced in cerebral arteries following cerebral ischemia via activation of mitogen activated kinases (MAPKs). This hypothesis was tested in vivo by experimental subarachnoid haemorrhage (SAH) and temporal middle cerebral artery occlusion (MCAO), and by organ culture of isolated cerebral arteries with quantitative real time PCR (mRNA expression) and immunohistochemistry (localization of protein expression). The gene promoters were investigated in silica with computer analysis. The mRNA analysis revealed that the ischemic models, SAH and MCAO, as well as organ culture of isolated cerebral arteries resulted in transcriptional upregulation of the abovementioned genes. The protein expression involved phosphorylation of three different MAPKs signalling pathways (p38, ERK 1/2 and SAPK/JNK) and the downstream transcription factors (ATF-2, Elk-1, c-Jun) shown by immunohistochemistry and quantified by image analysis. All three models revealed the same pattern of activation in the cerebrovascular smooth muscle cells. The in silica analysis demonstrated binding sites for said transcription factors. The results suggest that cerebral ischemia and organ culture induce activation of p38, ERK 1/2 and SAPK/JNK in cerebral arteries which in turn activate the transcription factors ATF-2, Elk-1 and c-Jun and the expression of inflammatory and extracellular-matrix-related genes in the wall of cerebral arteries.

  10. The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation

    PubMed Central

    Mangos, Steve; Lam, Pui-ying; Zhao, Angela; Liu, Yan; Mudumana, Sudha; Vasilyev, Aleksandr; Liu, Aiping; Drummond, Iain A.

    2010-01-01

    SUMMARY Mutations in polycystin1 (PKD1) account for the majority of autosomal dominant polycystic kidney disease (ADPKD). PKD1 mutations are also associated with vascular aneurysm and abdominal wall hernia, suggesting a role for polycystin1 in extracellular matrix (ECM) integrity. In zebrafish, combined knockdown of the PKD1 paralogs pkd1a and pkd1b resulted in dorsal axis curvature, hydrocephalus, cartilage and craniofacial defects, and pronephric cyst formation at low frequency (10–15%). Dorsal axis curvature was identical to the axis defects observed in pkd2 knockdown embryos. Combined pkd1a/b, pkd2 knockdown demonstrated that these genes interact in axial morphogenesis. Dorsal axis curvature was linked to notochord collagen overexpression and could be reversed by knockdown of col2a1 mRNA or chemical inhibition of collagen crosslinking. pkd1a/b- and pkd2-deficient embryos exhibited ectopic, persistent expression of multiple collagen mRNAs, suggesting a loss of negative feedback signaling that normally limits collagen gene expression. Knockdown of pkd1a/b also dramatically sensitized embryos to low doses of collagen-crosslinking inhibitors, implicating polycystins directly in the modulation of collagen expression or assembly. Embryos treated with wortmannin or LY-29400 also exhibited dysregulation of col2a1 expression, implicating phosphoinositide 3-kinase (PI3K) in the negative feedback signaling pathway controlling matrix gene expression. Our results suggest that pkd1a/b and pkd2 interact to regulate ECM secretion or assembly, and that altered matrix integrity may be a primary defect underlying ADPKD tissue pathologies. PMID:20335443

  11. Theoretical mechanisms for synthesis of carcinogen-induced embryonic proteins: XX. Embryonic gene perturbations expressed in terms of matrix algebra.

    PubMed

    Hancock, R L

    1988-09-01

    Simple matrix expressions can be devised for gene repressor associations that lend themselves to manipulations such as linear transformation matrices. Such transformation matrices act in perturbing representations for given repressed genic states and may be analogous to carcinogens. Although the matrix algebraic expressions are developed by using simple repressor theory, it can equally serve to represent modifications of chromatin domains that may be more consistent with mechanisms of derepression of embryonic genes. In general, it is proposed that the potentially exploitable algebras such as abstract, geometric, matrix, vector and tensor be a subset of mathematical biology termed "Bioalgebraic Field Theory".

  12. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    PubMed

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  13. A bioinformatics analysis of alternative exon usage in human genes coding for extracellular matrix proteins.

    PubMed

    Sakabe, Noboru Jo; Vibranovski, Maria Dulcetti; de Souza, Sandro José

    2004-12-30

    Alternative splicing increases protein diversity through the generation of different mRNA molecules from the same gene. Although alternative splicing seems to be a widespread phenomenon in the human transcriptome, it is possible that different subgroups of genes present different patterns, related to their biological roles. Analysis of a subgroup may enhance common features of its members that would otherwise disappear amidst a heterogeneous population. Extracellular matrix (ECM) proteins are a good set for such analyses since they are structurally and functionally related. This family of proteins is involved in a large variety of functions, probably achieved by the combinatorial use of protein domains through exon shuffling events. To determine if ECM genes have a different pattern of alternative splicing, we compared clusters of expressed sequences of ECM to all other genes regarding features related to the most frequent type of alternative splicing, alternative exon usage (AEU), such as: the number of alternative exon-intron structures per cluster, the number of AEU events per exon-intron structure, the number of exons per event, among others. Although we did not find many differences between the two sets, we observed a higher frequency of AEU events involving entire protein domains in the ECM set, a feature that could be associated with their multi-domain nature. As other subgroups or even the ECM set in different tissues could present distinct patterns of AEU, it may be premature to conclude that alternative splicing is homogeneous among groups of related genes.

  14. OSG-GEM: Gene Expression Matrix Construction Using the Open Science Grid.

    PubMed

    Poehlman, William L; Rynge, Mats; Branton, Chris; Balamurugan, D; Feltus, Frank A

    2016-01-01

    High-throughput DNA sequencing technology has revolutionized the study of gene expression while introducing significant computational challenges for biologists. These computational challenges include access to sufficient computer hardware and functional data processing workflows. Both these challenges are addressed with our scalable, open-source Pegasus workflow for processing high-throughput DNA sequence datasets into a gene expression matrix (GEM) using computational resources available to U.S.-based researchers on the Open Science Grid (OSG). We describe the usage of the workflow (OSG-GEM), discuss workflow design, inspect performance data, and assess accuracy in mapping paired-end sequencing reads to a reference genome. A target OSG-GEM user is proficient with the Linux command line and possesses basic bioinformatics experience. The user may run this workflow directly on the OSG or adapt it to novel computing environments.

  15. OSG-GEM: Gene Expression Matrix Construction Using the Open Science Grid

    PubMed Central

    Poehlman, William L.; Rynge, Mats; Branton, Chris; Balamurugan, D.; Feltus, Frank A.

    2016-01-01

    High-throughput DNA sequencing technology has revolutionized the study of gene expression while introducing significant computational challenges for biologists. These computational challenges include access to sufficient computer hardware and functional data processing workflows. Both these challenges are addressed with our scalable, open-source Pegasus workflow for processing high-throughput DNA sequence datasets into a gene expression matrix (GEM) using computational resources available to U.S.-based researchers on the Open Science Grid (OSG). We describe the usage of the workflow (OSG-GEM), discuss workflow design, inspect performance data, and assess accuracy in mapping paired-end sequencing reads to a reference genome. A target OSG-GEM user is proficient with the Linux command line and possesses basic bioinformatics experience. The user may run this workflow directly on the OSG or adapt it to novel computing environments. PMID:27499617

  16. Lack of association of matrix metalloproteinase-9 promoter gene polymorphism in obstructive sleep apnea syndrome.

    PubMed

    Yalcınkaya, Mustafa; Erbek, Selim S; Babakurban, Seda Turkoglu; Kupeli, Elif; Bozbas, Serife; Terzi, Yunus K; Sahin, Feride Iffet

    2015-09-01

    Obstructive sleep apnea syndrome (OSAS) is a public health problem. There is an effort to establish the genetic contributions to the development of OSAS. One is matrix metalloproteinases, extracellular matrix degrading enzymes related to systemic inflammation. However, the impact of matrix metalloproteinase-9 (MMP-9) genotypes on the development of OSAS is unknown. Our aim was to determine whether MMP-9 single nucleotide polymorphism (SNP) (MMP-9 -1562C > T) is related to susceptibility to OSAS. A total of 106 patients with a history of sleep apnea and 88 controls without a history of sleep apnea were enrolled in this study. Genotypes were determined by restriction fragment length polymorphism analyses after polymerase chain reaction. Genotypes and allele frequencies of the MMP-9 -1562C > T SNP was not statistically different between the patient and control groups (p > 0.05). There was a statistical association between apnea-hypopnea index (AHI) and body mass index (BMI), and also between AHI and neck circumference (p < 0.001). There was no association among the genotypes and AHI, neck circumference, or BMI (p > 0.05). We found no association between MMP-9 -1562C > T SNP and OSAS. Studies to investigate the role of other polymorphisms and expression of MMP-9 gene will provide more information. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Differential Expression of Matrix-Metalloproteinase-1 and -2 Genes in Normal and Fibrotic Human Liver

    PubMed Central

    Milani, Stefano; Herbst, Hermann; Schuppan, Detlef; Grappone, Cecilia; Pellegrini, Giulia; Pinzani, Massimo; Casini, Alessandro; Calabró, Antonio; Ciancio, Giuseppe; Stefanini, Francesco; Ciancio, Andrew K.; Surrenti, Calogero

    1994-01-01

    Altered degradation of extracellular matrix has been implicated in the pathogenesis of hepatic fibrosis. We investigated levels and cellular sites of gene expression of two major collagebn-degrading enzymes, matrix-metalloproteinase (MMP)-l (fibroblast type-interstitial collagenase)and MMP-2 (72-kd gelatinase, type IV collagenase) in five normal and 18 fibrotic human livers as well as in cultured human hepatic fat-storing cells by Northern blot analysis and in situ hybridization. Fatstoring cells expressed both MMP-1 and MMP-2 RNA in vitro. In vivo, MMP-1 was undetectable in mesenchymal and parenchymal cells of all liver specimens, whereas MMP-2 transcripts were expressed in all livers by vimentin-positive, CD68 negative mesenchymal cells. Mesenchymal cells of all fibrotic livers displayed high transcript levels of transforming growth factor-β1, which is known to modulate MMP expression. Along with de novo fibrogenesis and possibly influenced by transforming growth factor-β1, expression of MMP-2 in the absence of MMP-1 expression may be responsible for the quantitative and qualitative changes of extracellular matrix observed in chronic liver disease. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 7 PMID:8129038

  18. Bone marrow extracellular matrix molecules improve gene transfer into human hematopoietic cells via retroviral vectors.

    PubMed

    Moritz, T; Patel, V P; Williams, D A

    1994-04-01

    Direct contact between hematopoietic cells and viral packaging cell lines or other sources of stroma has been shown to increase the efficiency of retroviral-mediated gene transfer into these target cells compared with infection with viral supernatant. We have investigated the role of defined bone marrow extracellular matrix molecules (ECM) in this phenomenon. Here we report that infection of cells adhering to the carboxy-terminal 30/35-kD fragment of the fibronectin molecule (30/35 FN), which contains the alternatively spliced CS-1 cell adhesion domain, significantly increases gene transfer into hematopoietic cells. Two retroviral vectors differing in recombinant viral titer were used. Gene transfer into committed progenitor cells and long-term culture-initiating cells, an in vitro assay for human stem cells, was significantly increased when the cells were infected while adherent to 30/35 FN-coated plates compared with cells infected on BSA-coated control plates or plates coated with other bone marrow ECM molecules. Although gene transfer into committed progenitor cells and to a lesser degree into long-term culture-initiating cells was increased on intact fibronectin as well, increased gene transfer efficiency into hematopoietic cells on 30/35 FN was dependent on CS-1 sequence since infection on a similar FN fragment lacking CS-1 (42 FN) was suboptimal. 30/35 FN has previously been shown by our laboratory and other investigators to mediate adhesion of primitive murine and human hematopoietic stem cells to the hematopoietic microenvironment. Additional studies showed that neither soluble 30/35 FN nor nonspecific binding of hematopoietic cells to poly-L-lysine-coated plates had any appreciable effect on the infection efficiency of these cells. Our findings indicate that hematopoietic stem cell adhesion to specific ECM molecules alters retroviral infection efficiency. These findings should aid in the design of gene transfer protocols using hematopoietic progenitor and

  19. Pentosan polysulfate inhibits atherosclerosis in Watanabe heritable hyperlipidemic rabbits: differential modulation of metalloproteinase-2 and -9.

    PubMed

    Lupia, Enrico; Zheng, Feng; Grosjean, Fabrizio; Tack, Ivan; Doublier, Sophie; Elliot, Sharon J; Vlassara, Helen; Striker, Gary E

    2012-02-01

    Pentosan polysulfate (PPS), a heparinoid compound essentially devoid of anticoagulant activity, modulates cell growth and decreases inflammation. We investigated the effect of PPS on the progression of established atherosclerosis in Watanabe heritable hyperlipidemic (WHHL) rabbits. After severe atherosclerosis developed on an atherogenic diet, WHHL rabbits were treated with oral PPS or tap water for 1 month. The aortic intima-to-media ratio and macrophage infiltration were reduced, plaque collagen content was increased, and plaque fibrous caps were preserved by PPS treatment. Plasma lipid levels and post-heparin hepatic lipase activity remained unchanged. However, net collagenolytic activity in aortic extracts was decreased, and the levels of matrix metalloproteinase (MMP)-2 and tissue inhibitor of metalloproteinase (TIMP) activity were increased by PPS. Moreover, PPS treatment decreased tumor necrosis factor α (TNFα)-stimulated proinflammatory responses, in particular activation of nuclear factor-κB and p38, and activation of MMPs in macrophages. In conclusion, oral PPS treatment prevents progression of established atherosclerosis in WHHL rabbits. This effect may be partially mediated by increased MMP-2 and TIMP activities in the aortic wall and reduced TNFα-stimulated inflammation and MMP activation in macrophages. Thus, PPS may be a useful agent in inhibiting the progression of atherosclerosis.

  20. Matrix metalloproteinase 9 is a distal-less 3 target-gene in placental trophoblast cells

    PubMed Central

    Clark, Patricia A.; Xie, Jianjun; Li, Sha; Zhang, Xuesen; Coonrod, Scott

    2013-01-01

    Matrix metalloproteinases (MMPs) are enzymes that regulate extracellular matrix composition and contribute to cell migration. Microarray studies in mouse placenta suggested that MMP-9 transcript abundance was dependent on distal-less 3 (Dlx3), a placental-specific transcriptional regulator; however, it was not clear if this was a direct or indirect effect. Here we investigate mechanism(s) for Dlx3-dependent MMP-9 gene transcription and gelatinase activity in placental trophoblasts. Initial studies confirmed that MMP-9 activity was reduced in placental explants from Dlx3−/− mice and that murine MMP-9 promoter activity was induced by Dlx3 overexpression. Two binding sites within a murine MMP-9 promoter fragment bound Dlx3, and mutations in both elements reduced basal MMP-9-luciferase reporter activity and abolished regulation by Dlx3. Chromatin immunoprecipitation studies in JEG3 cells confirmed Dlx3 binding to the endogenous human MMP-9 promoter at three distinct sites and knockdown of human Dlx3 resulted in reduced endogenous MMP-9 transcripts and secreted activity. These studies provide novel evidence that Dlx3 is involved directly in the transcriptional regulation of mouse and human MMP-9 gene expression in placental trophoblasts. PMID:23657566

  1. Different circadian expression of major matrix-related genes in various types of cartilage: modulation by light-dark conditions.

    PubMed

    Honda, Kiyomasa K; Kawamoto, Takeshi; Ueda, Hiroki R; Nakashima, Ayumu; Ueshima, Taichi; Yamada, Rikuhiro G; Nishimura, Masahiro; Oda, Ryo; Nakamura, Shigeo; Kojima, Tomoko; Noshiro, Mitsuhide; Fujimoto, Katsumi; Hashimoto, Seiichi; Kato, Yukio

    2013-10-01

    We screened circadian-regulated genes in rat cartilage by using a DNA microarray analysis. In rib growth-plate cartilage, numerous genes showed statistically significant circadian mRNA expression under both 12:12 h light-dark and constant darkness conditions. Type II collagen and aggrecan genes--along with several genes essential for post-translational modifications of collagen and aggrecan, including prolyl 4-hydroxylase 1, lysyl oxidase, lysyl oxidase-like 2 and 3'-phosphoadenosine 5'-phosphosulphate synthase 2--showed the same circadian phase. In addition, the mRNA level of SOX9, a master transcription factor for the synthesis of type II collagen and aggrecan, has a similar phase of circadian rhythms. The circadian expression of the matrix-related genes may be critical in the development and the growth of various cartilages, because similar circadian expression of the matrix-related genes was observed in hip joint cartilage. However, the circadian phase of the major matrix-related genes in the rib permanent cartilage was almost the converse of that in the rib growth-plate cartilage under light-dark conditions. We also found that half of the oscillating genes had conserved clock-regulatory elements, indicating contribution of the elements to the clock outputs. These findings suggest that the synthesis of the cartilage matrix macromolecules is controlled by cell-autonomous clocks depending upon the in vivo location of cartilage.

  2. Simultaneous Non-Negative Matrix Factorization for Multiple Large Scale Gene Expression Datasets in Toxicology

    PubMed Central

    Lee, Clare M.; Mudaliar, Manikhandan A. V.; Haggart, D. R.; Wolf, C. Roland; Miele, Gino; Vass, J. Keith; Higham, Desmond J.; Crowther, Daniel

    2012-01-01

    Non-negative matrix factorization is a useful tool for reducing the dimension of large datasets. This work considers simultaneous non-negative matrix factorization of multiple sources of data. In particular, we perform the first study that involves more than two datasets. We discuss the algorithmic issues required to convert the approach into a practical computational tool and apply the technique to new gene expression data quantifying the molecular changes in four tissue types due to different dosages of an experimental panPPAR agonist in mouse. This study is of interest in toxicology because, whilst PPARs form potential therapeutic targets for diabetes, it is known that they can induce serious side-effects. Our results show that the practical simultaneous non-negative matrix factorization developed here can add value to the data analysis. In particular, we find that factorizing the data as a single object allows us to distinguish between the four tissue types, but does not correctly reproduce the known dosage level groups. Applying our new approach, which treats the four tissue types as providing distinct, but related, datasets, we find that the dosage level groups are respected. The new algorithm then provides separate gene list orderings that can be studied for each tissue type, and compared with the ordering arising from the single factorization. We find that many of our conclusions can be corroborated with known biological behaviour, and others offer new insights into the toxicological effects. Overall, the algorithm shows promise for early detection of toxicity in the drug discovery process. PMID:23272042

  3. DNA methylation of extracellular matrix remodeling genes in children exposed to arsenic.

    PubMed

    Gonzalez-Cortes, Tania; Recio-Vega, Rogelio; Lantz, Robert Clark; Chau, Binh T

    2017-08-15

    Several novel mechanistic findings regarding to arsenic's pathogenesis has been reported and some of them suggest that the etiology of some arsenic induced diseases are due in part to heritable changes to the genome via epigenetic processes such as DNA methylation, histone maintenance, and mRNA expression. Recently, we reported that arsenic exposure during in utero and early life was associated with impairment in the lung function and abnormal receptor for advanced glycation endproducts (RAGE), matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) sputum levels. Based on our results and the reported arsenic impacts on DNA methylation, we designed this study in our cohort of children exposed in utero and early childhood to arsenic with the aim to associate DNA methylation of MMP9, TIMP1 and RAGE genes with its protein sputum levels and with urinary and toenail arsenic levels. The results disclosed hypermethylation in MMP9 promotor region in the most exposed children; and an increase in the RAGE sputum levels among children with the mid methylation level; there were also positive associations between MMP9 DNA methylation with arsenic toenail concentrations; RAGE DNA methylation with iAs, and %DMA; and finally between TIMP1 DNA methylation with the first arsenic methylation. A negative correlation between MMP9 sputum levels with its DNA methylation was registered. In conclusion, arsenic levels were positive associated with the DNA methylation of extracellular matrix remodeling genes;, which in turn could modifies the biological process in which they are involved causing or predisposing to lung diseases. Copyright © 2017. Published by Elsevier Inc.

  4. Massive-Scale Gene Co-Expression Network Construction and Robustness Testing Using Random Matrix Theory

    PubMed Central

    Isaacson, Sven; Luo, Feng; Feltus, Frank A.; Smith, Melissa C.

    2013-01-01

    The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust. PMID:23409071

  5. Extracellular Matrix-Regulated Gene Expression RequiresCooperation of SWI/SNF and Transcription Factors

    SciTech Connect

    Xu, Ren; Spencer, Virginia A.; Bissell, Mina J.

    2006-05-25

    Extracellular cues play crucial roles in the transcriptional regulation of tissue-specific genes, but whether and how these signals lead to chromatin remodeling is not understood and subject to debate. Using chromatin immunoprecipitation (ChIP) assays and mammary-specific genes as models, we show here that extracellular matrix (ECM) molecules and prolactin cooperate to induce histone acetylation and binding of transcription factors and the SWI/SNF complex to the {beta}- and ?-casein promoters. Introduction of a dominant negative Brg1, an ATPase subunit of SWI/SNF complex, significantly reduced both {beta}- and ?-casein expression, suggesting that SWI/SNF-dependent chromatin remodeling is required for transcription of mammary-specific genes. ChIP analyses demonstrated that the ATPase activity of SWI/SNF is necessary for recruitment of RNA transcriptional machinery, but not for binding of transcription factors or for histone acetylation. Coimmunoprecipitation analyses showed that the SWI/SNF complex is associated with STAT5, C/EBP{beta}, and glucocorticoid receptor (GR). Thus, ECM- and prolactin-regulated transcription of the mammary-specific casein genes requires the concerted action of chromatin remodeling enzymes and transcription factors.

  6. Massive-scale gene co-expression network construction and robustness testing using random matrix theory.

    PubMed

    Gibson, Scott M; Ficklin, Stephen P; Isaacson, Sven; Luo, Feng; Feltus, Frank A; Smith, Melissa C

    2013-01-01

    The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust.

  7. Metalloproteinase 2 and 9 Activity Increase in Epicardial Adipose Tissue of Patients with Coronary Artery Disease.

    PubMed

    Miksztowicz, Verónica; Morales, Celina; Barchuk, Magalí; López, Graciela; Póveda, Ricardo; Gelpi, Ricardo; Schreier, Laura; Rubio, Miguel; Berg, Gabriela

    2017-01-01

    Epicardial adipose tissue (EAT) is a visceral adipose tissue (AT) surrounding and infiltrating myocardium and coronary arteries. Increased EAT may represent a chronic inflammatory injury and a link with coronary artery disease (CAD). Metalloproteinases (MMPs) are involved in expansion of AT. To evaluate MMP-2 and -9 behaviour in EAT from CAD patients. In EAT and subcutaneous AT (SAT) from patients undergoing coronary artery bypass graft (CABG, n=26) or valve replacement (No CABG, n=18), MMP-2 and -9 activity and localization, inflammatory cells and vascular endothelial growth factor (VEGF) levels were determined. In EAT from CABG, MMP-2 and -9 activity was increased compared with No CABG (p=0.041 and p=0.027, respectively) and compared with SAT (p=0.005 and p=0.048, respectively). In CABG patients EAT showed higher infiltration of macrophages and T lymphocytes than SAT (p=0.01 and p=0.002, respectively). In No CABG patients no sign of cellular retention was observed in EAT or SAT. Vascular density was higher in EAT from CABG than No CABG (p=0.015) and it was directly correlated with MMP-2 (p=0.006) and MMP-9 (p=0.02). VEGF levels in EAT were directly associated with MMP-2 (p=0.016). In EAT from CABG patients the increase of MMP-2 and -9 activity and the presence of inflammatory cells would be partially responsible for extracellular matrix (ECM) remodeling and major vascular density necessary for EAT expansion. Improved knowledge of EAT behaviour may allow to identify new therapeutic targets for the treatment of CAD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Association of matrix metalloproteinase gene polymorphisms with refractive error in Amish and Ashkenazi families.

    PubMed

    Wojciechowski, Robert; Bailey-Wilson, Joan E; Stambolian, Dwight

    2010-10-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are involved in scleral extracellular matrix remodeling and have shown differential expression in experimental myopia. The genetic association of refractive error and polymorphisms in MMP and TIMP genes in Old Order Amish (AMISH) and Ashkenazi Jewish (ASHK) families was investigated. Individuals from 55 AMISH and 63 ASHK families participated in the study. Ascertainment was designed to enrich the families for myopia; the mean spherical equivalent (MSE) refractive error (SD) was -1.61 (2.72) D in the AMISH, and -3.56 (3.32) D in the ASHK. One hundred forty-six common haplotype tagging SNPs covering 14 MMP and 4 TIMP genes were genotyped in 358 AMISH and 535 ASHK participants. Association analyses of MSE and the spherical component of refraction (SPH) were performed separately for the AMISH and the ASHK. Bonferroni-corrected significance thresholds and local false discovery rates were used to account for multiple testing. After they were filtered for quality-control, 127 SNPs were included in the analyses. No polymorphisms showed statistically significant association to refraction in the ASHK (minimum P = 0.0132). In AMISH, two SNPs showed evidence of association with refractive phenotypes: rs1939008 (P = 0.00016 for SPH); and rs9928731 (P = 0.00026 for SPH). These markers were each estimated to explain <5% of the variance of SPH in the AMISH sample. Statistically significant genetic associations of ocular refraction to polymorphisms near MMP1 and within MMP2 were identified in the AMISH but not among the ASHK families. The results suggest that the MMP1 and MMP2 genes are involved in refractive variation in the AMISH. Genetic and/or environmental heterogeneity most likely contribute to differences in association results between ethnic groups.

  9. Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes

    PubMed Central

    2013-01-01

    Background Secondary edentulism (toothlessness) has evolved on multiple occasions in amniotes including several mammalian lineages (pangolins, anteaters, baleen whales), birds, and turtles. All edentulous amniote clades have evolved from ancestors with enamel-capped teeth. Previous studies have documented the molecular decay of tooth-specific genes in edentulous mammals, all of which lost their teeth in the Cenozoic, and birds, which lost their teeth in the Cretaceous. By contrast with mammals and birds, tooth loss in turtles occurred in the Jurassic (201.6-145.5 Ma), providing an extended time window for tooth gene degradation in this clade. The release of the painted turtle and Chinese softshell turtle genomes provides an opportunity to recover the decayed remains of tooth-specific genes in Testudines. Results We queried available genomes of Testudines (Chrysemys picta [painted turtle], Pelodiscus sinensis [Chinese softshell turtle]), Aves (Anas platyrhynchos [duck], Gallus gallus [chicken], Meleagris gallopavo [turkey], Melopsittacus undulatus [budgerigar], Taeniopygia guttata [zebra finch]), and enamelless mammals (Orycteropus afer [aardvark], Choloepus hoffmanni [Hoffmann’s two-toed sloth], Dasypus novemcinctus [nine-banded armadillo]) for remnants of three enamel matrix protein (EMP) genes with putative enamel-specific functions. Remnants of the AMBN and ENAM genes were recovered in Chrysemys and retain their original synteny. Remnants of AMEL were recovered in both testudines, although there are no shared frameshifts. We also show that there are inactivated copies of AMBN, AMEL and ENAM in representatives of divergent avian lineages including Galloanserae, Passeriformes, and Psittaciformes, and that there are shared frameshift mutations in all three genes that predate the basal split in Neognathae. Among enamelless mammals, all three EMP genes exhibit inactivating mutations in Orycteropus and Choloepus. Conclusions Our results highlight the power of

  10. Molecular decay of enamel matrix protein genes in turtles and other edentulous amniotes.

    PubMed

    Meredith, Robert W; Gatesy, John; Springer, Mark S

    2013-01-23

    Secondary edentulism (toothlessness) has evolved on multiple occasions in amniotes including several mammalian lineages (pangolins, anteaters, baleen whales), birds, and turtles. All edentulous amniote clades have evolved from ancestors with enamel-capped teeth. Previous studies have documented the molecular decay of tooth-specific genes in edentulous mammals, all of which lost their teeth in the Cenozoic, and birds, which lost their teeth in the Cretaceous. By contrast with mammals and birds, tooth loss in turtles occurred in the Jurassic (201.6-145.5 Ma), providing an extended time window for tooth gene degradation in this clade. The release of the painted turtle and Chinese softshell turtle genomes provides an opportunity to recover the decayed remains of tooth-specific genes in Testudines. We queried available genomes of Testudines (Chrysemys picta [painted turtle], Pelodiscus sinensis [Chinese softshell turtle]), Aves (Anas platyrhynchos [duck], Gallus gallus [chicken], Meleagris gallopavo [turkey], Melopsittacus undulatus [budgerigar], Taeniopygia guttata [zebra finch]), and enamelless mammals (Orycteropus afer [aardvark], Choloepus hoffmanni [Hoffmann's two-toed sloth], Dasypus novemcinctus [nine-banded armadillo]) for remnants of three enamel matrix protein (EMP) genes with putative enamel-specific functions. Remnants of the AMBN and ENAM genes were recovered in Chrysemys and retain their original synteny. Remnants of AMEL were recovered in both testudines, although there are no shared frameshifts. We also show that there are inactivated copies of AMBN, AMEL and ENAM in representatives of divergent avian lineages including Galloanserae, Passeriformes, and Psittaciformes, and that there are shared frameshift mutations in all three genes that predate the basal split in Neognathae. Among enamelless mammals, all three EMP genes exhibit inactivating mutations in Orycteropus and Choloepus. Our results highlight the power of combining fossil and genomic evidence

  11. Leptin acts on neoplastic behavior and expression levels of genes related to hypoxia, angiogenesis, and invasiveness in oral squamous cell carcinoma.

    PubMed

    Sobrinho Santos, Eliane Macedo; Guimarães, Talita Antunes; Santos, Hércules Otacílio; Cangussu, Lilian Mendes Borborema; de Jesus, Sabrina Ferreira; Fraga, Carlos Alberto de Carvalho; Cardoso, Claudio Marcelo; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; Gomez, Ricardo Santiago; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2017-05-01

    Leptin, one of the main hormones controlling energy homeostasis, has been associated with different cancer types. In oral cancer, its effect is not well understood. We investigated, through in vitro and in vivo assays, whether leptin can affect the neoplastic behavior of oral squamous cell carcinoma. Expression of genes possibly linked to the leptin pathway was assessed in leptin-treated oral squamous cell carcinoma cells and also in tissue samples of oral squamous cell carcinoma and oral mucosa, including leptin, leptin receptor, hypoxia-inducible factor 1-alpha, E-cadherin, matrix metalloproteinase-2, matrix metalloproteinase-9, Col1A1, Ki67, and mir-210. Leptin treatment favored higher rates of cell proliferation and migration, and reduced apoptosis. Accordingly, leptin-treated oral squamous cell carcinoma cells show decreased messenger RNA caspase-3 expression, and increased levels of E-cadherin, Col1A1, matrix metalloproteinase-2, matrix metalloproteinase-9, and mir-210. In tissue samples, hypoxia-inducible factor 1-alpha messenger RNA and protein expression of leptin and leptin receptor were high in oral squamous cell carcinoma cases. Serum leptin levels were increased in first clinical stages of the disease. In animal model, oral squamous cell carcinoma-induced mice show higher leptin receptor expression, and serum leptin level was increased in dysplasia group. Our findings suggest that leptin seems to exert an effect on oral squamous cell carcinoma cells behavior and also on molecular markers related to cell proliferation, migration, and tumor angiogenesis.

  12. Changes in gene expression of matrix constituents with respect to passage of ligament and tendon fibroblasts.

    PubMed

    Almarza, Alejandro J; Augustine, Serena M; Woo, Savio L-Y

    2008-12-01

    Trauma to the knee joint often results in injury to one or more supporting soft tissue structures, such as the medial collateral (MCL) and anterior cruciate (ACL) ligaments. Also, a portion of the patellar tendon (PT) is frequently used as a replacement graft for the ACL, resulting in a PT defect. The healing responses of these tissues are dramatically different and range from spontaneous healing to little or no healing. Studies have suggested that native cell behavior could be responsible for differences in healing potential. However, it is difficult to make comparisons as the reported results are based on different cellular passages which could have a dramatic effect on their potential to form healing tissues. Therefore, the objective of this study was to quantify the gene expression of collagen and other matrix constituents of fibroblasts from the MCL, ACL, and PT to document how they change with cell passage. We hypothesized that MCL fibroblasts would possess higher potential for matrix production through passages than ACL and PT cells because the MCL mounts a robust healing response unlike the ACL and PT. These differences in matrix expression would be dependent on passage because at earlier passages all cells would mostly be proliferating while at later passages they would tend to become senescent. Cells were isolated from the MCL, ACL, and PT of three rats and passaged a total of five times (Passage 1 to Passage 5). Using real time RT-PCR, expression of all genes of interest (Collagen Type I (ligament/tendon's main matrix constituent), Collagen Type III, Fibronectin, Metalloprotease-13 [MMP-13], and Tissue Inhibitor of Metallopreotease-1 [TIMP-1]) were quantitatively assessed. It was found that cell number for all three fibroblast types remained high from Passage 1 to Passage 5. There was a statistically significant increase in Collagen Type I of rat MCL fibroblasts throughout passage (p < 0.05). This was evident in the higher relative abundance (to GAPDH

  13. Urinary Tissue Inhibitor of Metalloproteinase-2 and Insulin-Like Growth Factor-Binding Protein 7 for Risk Stratification of Acute Kidney Injury in Patients With Sepsis

    PubMed Central

    Honore, Patrick M.; Nguyen, H. Bryant; Gong, Michelle; Chawla, Lakhmir S.; Bagshaw, Sean M.; Artigas, Antonio; Shi, Jing; Joannes-Boyau, Olivier; Vincent, Jean-Louis

    2016-01-01

    Objectives: To examine the performance of the urinary biomarker panel tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 in patients with sepsis at ICU admission. To investigate the effect of nonrenal organ dysfunction on tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 in this population. Method: In this ancillary analysis, we included patients with sepsis who were enrolled in either of two trials including 39 ICUs across Europe and North America. The primary endpoint was moderate-severe acute kidney injury (equivalent to Kidney Disease Improving Global Outcome stage 2–3) within 12 hours of enrollment. We assessed biomarker performance by calculating the area under the receiver operating characteristic curve, sensitivity, specificity, and negative and positive predictive values at three cutoffs: 0.3, 1.0, and 2.0 (ng/mL)2/1,000. We also calculated nonrenal Sequential Organ Failure Assessment scores for each patient on enrollment and compared tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 results in patients with and without acute kidney injury and across nonrenal Sequential Organ Failure Assessment scores. Finally, we constructed a clinical model for acute kidney injury in this population and compared the performance of the model with and without tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7. Results: We included 232 patients in the analysis and 40 (17%) developed acute kidney injury. We observed significantly higher urine tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 in patients with acute kidney injury than without acute kidney injury in both patients with low and high nonrenal Sequential Organ Failure Assessment scores (p < 0.001). The area under the receiver operating characteristic curve (95% CI) of tissue inhibitor of metalloproteinase-2 and insulin

  14. Matrix metalloproteinase-3 gene promoter polymorphisms: A potential risk factor for pelvic organ prolapse

    PubMed Central

    Karachalios, Charalampos; Bakas, Panagiotis; Kaparos, Georgios; Demeridou, Styliani; Liapis, Ilias; Grigoriadis, Charalampos; Liapis, Aggelos

    2016-01-01

    Pelvic organ prolapse (POP) is a common multifactorial condition. Matrix metalloproteinases (MMPs) are enzymes capable of breaking down various connective tissue elements. Single-nucleotide polymorphisms (SNPs) in regulatory areas of MMP-encoding genes can alter their transcription rate, and therefore the possible effect on pelvic floor supporting structures. The insertion of an adenine (A) base in the promoter of the MMP-3 gene at position −1612/−1617 produces a sequence of six adenines (6A), whereas the other allele has five (5A). The aim of the present study was to investigate the possible association of MMP-3 gene promoter SNPs with the risk of POP. The patient group comprised 80 women with clinically significant POP [Stage II, III or IV; POP quantification (POP-Q) system]. The control group consisted of 80 females without any or important pelvic floor support defects (Stages 0 or I; POP-Q system). All the participants underwent the same preoperative evaluation. SNP detection was determined with whole blood sample DNA analysis by quantitative polymerase chain reaction (PCR) in LightCycler® PCR platforms, using the technique of sequence-specific hybridization probe-binding assays and melting temperature curve analysis. The results showed there was no statistically significant difference between 5A/5A, 5A/6A and 6A/6A MMP-3 gene promoter variants in the two study groups (P=0.4758). Therefore, MMP-3 gene promoter SNPs alone is insufficient to increase the genetic susceptibility to POP development. PMID:27588175

  15. Gene expression based mouse brain parcellation using Markov random field regularized non-negative matrix factorization

    NASA Astrophysics Data System (ADS)

    Pathak, Sayan D.; Haynor, David R.; Thompson, Carol L.; Lein, Ed; Hawrylycz, Michael

    2009-02-01

    Understanding the geography of genetic expression in the mouse brain has opened previously unexplored avenues in neuroinformatics. The Allen Brain Atlas (www.brain-map.org) (ABA) provides genome-wide colorimetric in situ hybridization (ISH) gene expression images at high spatial resolution, all mapped to a common three-dimensional 200μm3 spatial framework defined by the Allen Reference Atlas (ARA) and is a unique data set for studying expression based structural and functional organization of the brain. The goal of this study was to facilitate an unbiased data-driven structural partitioning of the major structures in the mouse brain. We have developed an algorithm that uses nonnegative matrix factorization (NMF) to perform parts based analysis of ISH gene expression images. The standard NMF approach and its variants are limited in their ability to flexibly integrate prior knowledge, in the context of spatial data. In this paper, we introduce spatial connectivity as an additional regularization in NMF decomposition via the use of Markov Random Fields (mNMF). The mNMF algorithm alternates neighborhood updates with iterations of the standard NMF algorithm to exploit spatial correlations in the data. We present the algorithm and show the sub-divisions of hippocampus and somatosensory-cortex obtained via this approach. The results are compared with established neuroanatomic knowledge. We also highlight novel gene expression based sub divisions of the hippocampus identified by using the mNMF algorithm.

  16. Influence of extracellular matrix on cytokine stimulated pro-labour gene expression in human uterine myocytes.

    PubMed

    Engineer, Neelam; Sooranna, Suren R; Liang, Zhiqing; Bennett, Phillip R; Johnson, Mark R

    2008-11-01

    Cellular function is modulated by the interaction with the extracellular matrix within the myometrium. We formed the hypothesis that the cytokine-stimulated pro-labour gene expression by human uterine smooth muscle cells would be increased by growing the cells on collagen-coated plates. Primary cultures of human uterine smooth muscle cells grown on uncoated plates and on plates coated with collagen were exposed to the inflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta and interleukin-6) and assessed the messenger RNA expression of oxytocin receptor, interleukin-8, prostaglandin H synthase type-2 and prostaglandin F(2) alpha receptor. Basal pro-labour gene expression was unaffected by collagen coating and the response to the inflammatory cytokines was similar for oxytocin receptor and prostaglandin H synthase type-2, but appeared to be reduced for interleukin-8 and enhanced for FP. Collagen coating made no significant impact on basal integrin expression and interleukin-1beta induced phosphorylation of extracellular-regulated-kinase1/2 and RelA subunit of nuclear factor-kappa B (p65). We conclude that growing human uterine smooth muscle cells on collagen-coated plates may modulate the pro-labour gene response to the inflammatory cytokines.

  17. Pyrophosphate Stimulates Differentiation, Matrix Gene Expression and Alkaline Phosphatase Activity in Osteoblasts

    PubMed Central

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Lu, Xi; Lind, Thomas; Melhus, Håkan; Engstrand, Thomas; Karlsson-Ott, Marjam; Engqvist, Hakan

    2016-01-01

    Pyrophosphate is a potent mitogen, capable of stimulating proliferation in multiple cell types, and a critical participant in bone mineralization. Pyrophosphate can also affect the resorption rate and bioactivity of orthopedic ceramics. The present study investigated whether calcium pyrophosphate affected proliferation, differentiation and gene expression in early (MC3T3 pre-osteoblast) and late stage (SAOS-2 osteosarcoma) osteoblasts. Pyrophosphate stimulated peak alkaline phosphatase activity by 50% and 150% at 100μM and 0.1μM in MC3T3, and by 40% in SAOS-2. The expression of differentiation markers collagen 1 (COL1), alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) were increased by an average of 1.5, 2, 2 and 3 fold, by high concentrations of sodium pyrophosphate (100μM) after 7 days of exposure in MC3T3. COX-2 and ANK expression did not differ significantly from controls in either treatment group. Though both high and low concentrations of pyrophosphate stimulate ALP activity, only high concentrations (100μM) stimulated osteogenic gene expression. Pyrophosphate did not affect proliferation in either cell type. The results of this study confirm that chronic exposure to pyrophosphate exerts a physiological effect upon osteoblast differentiation and ALP activity, specifically by stimulating osteoblast differentiation markers and extracellular matrix gene expression. PMID:27701417

  18. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells.

    PubMed

    Ting, David T; Wittner, Ben S; Ligorio, Matteo; Vincent Jordan, Nicole; Shah, Ajay M; Miyamoto, David T; Aceto, Nicola; Bersani, Francesca; Brannigan, Brian W; Xega, Kristina; Ciciliano, Jordan C; Zhu, Huili; MacKenzie, Olivia C; Trautwein, Julie; Arora, Kshitij S; Shahid, Mohammad; Ellis, Haley L; Qu, Na; Bardeesy, Nabeel; Rivera, Miguel N; Deshpande, Vikram; Ferrone, Cristina R; Kapur, Ravi; Ramaswamy, Sridhar; Shioda, Toshi; Toner, Mehmet; Maheswaran, Shyamala; Haber, Daniel A

    2014-09-25

    Circulating tumor cells (CTCs) are shed from primary tumors into the bloodstream, mediating the hematogenous spread of cancer to distant organs. To define their composition, we compared genome-wide expression profiles of CTCs with matched primary tumors in a mouse model of pancreatic cancer, isolating individual CTCs using epitope-independent microfluidic capture, followed by single-cell RNA sequencing. CTCs clustered separately from primary tumors and tumor-derived cell lines, showing low-proliferative signatures, enrichment for the stem-cell-associated gene Aldh1a2, biphenotypic expression of epithelial and mesenchymal markers, and expression of Igfbp5, a gene transcript enriched at the epithelial-stromal interface. Mouse as well as human pancreatic CTCs exhibit a very high expression of stromal-derived extracellular matrix (ECM) proteins, including SPARC, whose knockdown in cancer cells suppresses cell migration and invasiveness. The aberrant expression by CTCs of stromal ECM genes points to their contribution of microenvironmental signals for the spread of cancer to distant organs. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Symposium: Role of the extracellular matrix in mammary development. Regulation of milk protein and basement membrane gene expression: The influence of the extracellular matrix

    SciTech Connect

    Aggeler, J.; Park, C.S.; Bissell, M.J.

    1988-10-01

    Synthesis and secretion of milk proteins ({alpha}-casein, {beta}-casein, {gamma}-casein, and transferrin) by cultured primary mouse mammary epithelial cells is modulated by the extracellular matrix. In cells grown on released or floating type I collagen gels, mRNA for {beta}-casein and transferrin is increased as much as 30-fold over cells grown on plastic. Induction of {beta}-casein expression depends strongly on the presence of lactogenic hormones, especially prolactin, in the culture. When cells are plated onto partially purified reconstituted basement membrane, dramatic changes in morphology and milk protein gene expression are observed. Cells cultured on the matrix for 6 to 8 d in the presence of prolactin, insulin, and hydrocortisone form hollow spheres and duct-like structures that are completely surrounded by matrix. The cells lining these spheres appear actively secretory and are oriented with their apices facing the lumen. Hybridization experiments indicate that mRNA for {beta}-casein can be increased as much as 70-fold in these cultures. Because > 90% of the cultured cells synthesize immunoreactive {beta}-casein, as compared with only 40% of cells in the late pregnant gland, the matrix appears to be able to induce protein expression in previously silent cells. Synthesis of laminin and assembly of a mammary-specific basal lamina by cells cultured on different extracellular matrices also appears to depend on the presence of lactogenic hormones. These studies provide support for the concept of dynamic reciprocity in which complex interactions between extracellular matrix and the cellular cytoskeleton contribute to the induction and maintenance of tissue-specific gene expression in the mammary gland.

  20. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur

    NASA Technical Reports Server (NTRS)

    Evans, G. L.; Morey-Holton, E.; Turner, R. T.

    1998-01-01

    In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.

  1. Dermatopontin, a shell matrix protein gene from pearl oyster Pinctada martensii, participates in nacre formation.

    PubMed

    Jiao, Yu; Wang, Huan; Du, Xiaodong; Zhao, Xiaoxia; Wang, Qingheng; Huang, Ronglian; Deng, Yuewen

    2012-08-31

    Dermatopontin (DPT) is identified as a major component of the shell matrix protein. However, its exact function in the shell formation remains obscure. In this study, we described the characteristic and function of DPT gene from Pinctada martensii. DPT cDNA was 797 bp long, containing an open reading fragment (ORF) of 537 bp encoding a polypeptide of 178 amino acids with an estimated molecular mass of 21.4 kDa and theoretical isoelectric point of 5.97. The 5' untranslated region (UTR) was 11 bp and the 3'UTR was 249 with 18 bp poly (A) tail. In the peptide, there was a signal sequence, six potential phosphorylation sites, one glycosylation site and eight cysteine residues. Moreover, a sequence motif (D-R-X-W/F/Y-X-F/Y/I/L/M-X(1-2)-C) was contained and repeated itself three times in the entire sequence. DPT mRNA was constitutively expressed in all studied tissues with the most abundant mRNA in the mantle, which was nacre formation-related tissue. After decreasing DPT expression using RNA interference (RNAi) technology in the mantle, the nacreous layer showed a disordered growth; whereas the prismatic layer of the shells has no significant changes. These results suggested that DPT obtained in this study was a constitutive matrix protein and participated in nacre formation in P. martensii.

  2. Significance of caveolin-1 and matrix metalloproteinase 14 gene expression in canine mammary tumours.

    PubMed

    Ebisawa, M; Iwano, H; Nishikawa, M; Tochigi, Y; Komatsu, T; Endou, Y; Hirayama, K; Taniyama, H; Kadosawa, T; Yokota, H

    2015-11-01

    Canine mammary tumours (CMTs) are the most common neoplasms affecting female dogs. There is an urgent need for molecular biomarkers that can detect early stages of the disease in order to improve accuracy of CMT diagnosis. The aim of this study was to examine whether caveolin-1 (Cav-1) and matrix metalloproteinase 14 (MMP14) are associated with CMT histological malignancy and invasion. Sixty-five benign and malignant CMT samples and six normal canine mammary glands were analysed using quantitative reverse transcription-polymerase chain reaction. Cav-1 and MMP14 genes were highly expressed in CMT tissues compared to normal tissues. Cav-1 especially was overexpressed in malignant and invasive CMT tissues. When a CMT cell line was cultured on fluorescent gelatin-coated coverslips, localisation of Cav-1 was observed at invadopodia-mediated degradation sites of the gelatin matrix. These findings suggest that Cav-1 may be involved in CMT invasion and that the markers may be useful for estimating CMT malignancy.

  3. Aberrant alternative splicing and extracellular matrix gene expression in mouse models of myotonic dystrophy

    PubMed Central

    Du, Hongqing; Cline, Melissa S.; Osborne, Robert J.; Tuttle, Daniel L.; Clark, Tyson A.; Donohue, John Paul; Hall, Megan P.; Shiue, Lily; Swanson, Maurice S.; Thornton, Charles A.; Ares, Manuel

    2009-01-01

    Myotonic dystrophy (DM1) is associated with expression of expanded CTG DNA repeats as RNA (CUGexp RNA). To test whether CUGexp RNA creates a global splicing defect, we compared skeletal muscle of two mouse DM1 models, one expressing a CTGexp transgene, and another homozygous for a defective Mbnl1 gene. Strong correlation in splicing changes for ~100 new Mbnl1-regulated exons indicates loss of Mbnl1 explains >80% of the splicing pathology due to CUGexp RNA. In contrast, only about half of mRNA level changes can be attributed to loss of Mbnl1, indicating CUGexp RNA has Mbnl1-independent effects, particularly on mRNAs for extracellular matrix (ECM) proteins. We propose that CUGexp RNA causes two separate effects: loss of Mbnl1 function, disrupting splicing, and loss of another function that disrupts ECM mRNA regulation, possibly mediated by MBNL2. These findings reveal unanticipated similarities between DM1 and other muscular dystrophies. PMID:20098426

  4. Extracellular matrix macromolecules: potential tools and targets in cancer gene therapy.

    PubMed

    Sainio, Annele; Järveläinen, Hannu

    2014-01-01

    Tumour cells create their own microenvironment where they closely interact with a variety of soluble and non-soluble molecules, different cells and numerous other components within the extracellular matrix (ECM). Interaction between tumour cells and the ECM is bidirectional leading to either progression or inhibition of tumourigenesis. Therefore, development of novel therapies targeted primarily to tumour microenvironment (TME) is highly rational. Here, we give a short overview of different macromolecules of the ECM and introduce mechanisms whereby they contribute to tumourigenesis within the TME. Furthermore, we present examples of individual ECM macromolecules as regulators of cell behaviour during tumourigenesis. Finally, we focus on novel strategies of using ECM macromolecules as tools or targets in cancer gene therapy in the future.

  5. Quantification of DNA in urinary porcine bladder matrix using the ACTB gene.

    PubMed

    Silva-Benítez, Erika; Soto-Sáinz, Eduardo; Pozos-Guillen, Amaury; Romero-Quintana, José Geovanni; Aguilar-Medina, Maribel; Ayala-Ham, Alfredo; Peña-Martínez, Eri; Ramos-Payán, Rosalío; Flores, Héctor

    2015-11-01

    Extracellular matrix (ECM) is a rich network of proteins and proteoglycans that has proved to be very useful in tissue regeneration. Porcine ECM has been proposed as a biological scaffold, and urinary bladder matrix (UBM) has demonstrated superior biological properties; however, its use in human treatment requires ensuring that it is DNA free. Several protocols have been used for decellularization and to demonstrate the absence of DNA, but until now, a porcine housekeeping gene for quantifying DNA by real-time quantitative PCR (qPCR) has been limiting. The aim of this study was to propose a protocol to quantify the DNA content of decellularized UBM by qPCR for the beta-actin gene (ACTB). A total of 20 porcine bladders were used, and each bladder was divided into three pieces: one as a control and the others decellularized with either SDS or Triton X-100 detergent. The presence of DNA was assessed by histology, spectrophotometry, conventional PCR, and qPCR for the ACTB. Histological analysis demonstrated the absence of nuclei using both protocols. Spectrophotometrical evaluation resulted in DNA concentrations of 1561.4 ± 357.1 and 1211.9 ± 635.2 ng of DNA/mg dry weight after the SDS and Triton X-100 protocols, respectively. DNA was not detected in any protocol by conventional PCR. In contrast, using qPCR, we found 3.9 ± 2.8 ng of DNA/mg dry weight in the Triton X-100 protocol. Therefore, the use of qPCR is a reliable method to quantify residual DNA content after decellularization procedures.

  6. Gene expression of matrix metalloproteinases and LH receptors in mare follicular development.

    PubMed

    Bastos, H B A; Kretzmann, N A; Santos, G O; Esmeraldino, A T; Rechsteiner, S Fiala; Mattos, R C; Neves, A P

    2014-11-01

    The period from the emergence of a dominant follicle until its formation requires tissue remodeling. Enzymes promoting collagen lysis, such as matrix metalloproteinases (MMPs), are fundamental for the process of extracellular matrix remodeling, which allows changes in ovarian tissue architecture during follicular growth. It has been suggested that the production of these enzymes may be affected by the rise in circulating concentrations of LH, which acts on the ovarian surface epithelium (OSE). The aim of this study was to determine the expression of MMP-1, MMP-2, and LH receptor (LHR) in the ovulation fossa and in the central portion of the equine ovary during follicular deviation and dominance. Ovaries of 12 cyclic mares were selected and subsequently divided into two groups: development (DEV) group and dominant (DOM) group. The DEV group consisted of ovaries from six animals whose follicles were less than 28 mm in diameter (follicular deviation), and the DOM group consisted of ovaries from six animals whose follicles measured 28 mm or more in diameter (dominant follicles). The latter group was divided into two subgroups: the group of ovaries with a dominant follicle (DOM-D) and the group of contralateral ovaries (DOM-C). Our results showed that mRNA for MMP-1, MMP-2, and LHR was present in the equine ovary during follicle development, in the ovulation fossa, and in the central portion of the ovary. MMP-1 and LHR gene expression was greater (P < 0.05) for the DOM-D group compared with the DOM-C group. In the DOM-D group, MMP-1, MMP-2, and LHR gene expression was greater (P < 0.05) in the ovarian stroma compared with the ovulation fossa. Using immunohistochemistry, OSE from the DOM group showed increased expression compared with the DEV group (P < 0.05). In conclusion, we demonstrated that MMP-1 and MMP-2 might be fundamental for events related to tissue remodeling, which occurs during follicular development until the formation of the dominant follicle. We also

  7. Matrix metalloproteinase genes on chromosome 11q22 and risk of carpal tunnel syndrome.

    PubMed

    Burger, Marilize C; De Wet, Hanli; Collins, Malcolm

    2016-03-01

    Involvement of tendons and/or connective tissue structures in the aetiology of idiopathic carpal tunnel syndrome (CTS) has been proposed. DNA sequence variants within genes encoding structural components of the collagen fibril, the basic structural unit of connective tissue, have been shown to associate with modulating CTS risk. The matrix metalloproteinases (MMPs) play an important role in connective tissue remodelling. Variants within the MMP10, MMP1, MMP3 and MMP12 gene cluster on chromosome 11q22 have been associated with connective tissue injuries. The aim of this study was to investigate whether variants within these MMP genes are associated with CTS. Ninety-seven, self-reported Coloured participants with a history of CTS release surgery and 131 appropriately matched controls were genotyped for MMP10 rs486055 (C/T), MMP1 rs1799750 (G/GG), MMP3 rs679620 (A/G) or MMP12 rs2276109 (A/G) variants. A Pearson's Chi-squared test or a Fisher's exact test was used to determine any significant differences between the genotype distributions or any other categorical data of the groups. An analysis of variance (ANOVA) was used to detect any significant differences between CTS and control groups for continuous data. There were no independent associations between any of the investigated MMP variants and CTS. There were also no significant differences in the relative distributions of the constructed MMP inferred haplotypes between CTS and CON groups. The MMP variants previously associated with other connective tissue injuries were not associated with CTS in this population. These findings do not exclude the possibility that other variants within this locus or other MMP genes are associated with CTS.

  8. Differential expression of extracellular matrix remodeling genes in a murine model of bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Swiderski, R. E.; Dencoff, J. E.; Floerchinger, C. S.; Shapiro, S. D.; Hunninghake, G. W.

    1998-01-01

    Exposure to the chemotherapeutic drug bleomycin leads to pulmonary fibrosis in humans and has been widely used in animal models of the disease. Using C57BL/6 bleomycin-sensitive mice, pulmonary fibrosis was induced by multiple intraperitoneal injections of the drug. An increase in the relative amounts of steady-state alpha1(I) procollagen, alpha1(III) procollagen, and fibronectin mRNA as well as histopathological evidence of fibrosis was observed. The effect of bleomycin on the expression of the enzymes responsible for extracellular matrix degradation, the matrix metalloproteinases (MMPs), and their inhibitors (TIMPs), was selective and showed temporal differences during the development of fibrosis. Of the MMPs tested, bleomycin treatment resulted in the up-regulation of gelatinase A and macrophage metalloelastase gene expression in whole-lung homogenates, whereas gelatinase B, stromelysin-1, and interstitial collagenase gene expression was not significantly changed. Timp2 and Timp3, the murine homologues of the respective TIMP genes, were constitutively expressed, whereas Timp1 was markedly up-regulated during fibrosis. The strong correlation between enhanced extracellular matrix gene expression, differential MMP and TIMP gene expression, and histopathological evidence of fibrosis suggest that dysregulated matrix remodeling is likely to contribute to the pathology of bleomycin-induced pulmonary fibrosis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9502424

  9. NOTCH1 regulates matrix gla protein and calcification gene networks in human valve endothelium.

    PubMed

    White, Mark P; Theodoris, Christina V; Liu, Lei; Collins, William J; Blue, Kathleen W; Lee, Joon Ho; Meng, Xianzhong; Robbins, Robert C; Ivey, Kathryn N; Srivastava, Deepak

    2015-07-01

    Valvular and vascular calcification are common causes of cardiovascular morbidity and mortality. Developing effective treatments requires understanding the molecular underpinnings of these processes. Shear stress is thought to play a role in inhibiting calcification. Furthermore, NOTCH1 regulates vascular and valvular endothelium, and human mutations in NOTCH1 can cause calcific aortic valve disease. Here, we determined the genome-wide impact of altering shear stress and NOTCH signaling on human aortic valve endothelium. mRNA-sequencing of primary human aortic valve endothelial cells (HAVECs) with or without knockdown of NOTCH1, in the presence or absence of shear stress, revealed NOTCH1-dependency of the atherosclerosis-related gene connexin 40 (GJA5), and numerous repressors of endochondral ossification. Among these, matrix gla protein (MGP) is highly expressed in aortic valve and vasculature, and inhibits soft tissue calcification by sequestering bone morphogenetic proteins (BMPs). Altering NOTCH1 levels affected MGP mRNA and protein in HAVECs. Furthermore, shear stress activated NOTCH signaling and MGP in a NOTCH1-dependent manner. NOTCH1 positively regulated endothelial MGP in vivo through specific binding motifs upstream of MGP. Our studies suggest that shear stress activates NOTCH1 in primary human aortic valve endothelial cells leading to downregulation of osteoblast-like gene networks that play a role in tissue calcification.

  10. Polymorphisms of the matrix metalloproteinase 9 gene and abdominal aortic aneurysm.

    PubMed

    Smallwood, L; Allcock, R; van Bockxmeer, F; Warrington, N; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2008-10-01

    Increased matrix metalloproteinase (MMP) 9 activity has been implicated in the formation of abdominal aortic aneurysm (AAA). The aim was to explore the association between potentially functional variants of the MMP-9 gene and AAA. The -1562C > T and -1811A > T variants of the MMP-9 gene were genotyped in 678 men with an AAA (at least 30 mm in diameter) and 659 control subjects (aortic diameter 19-22 mm) recruited from a population-based trial of screening for AAA. Levels of MMP-9 were measured in a random subset of 300 cases and 84 controls. The association between genetic variants (including haplotypes) and AAA was assessed by multivariable logistic regression. There was no association between the MMP-9-1562C > T (odds ratio (OR) 0.70 (95 per cent confidence interval (c.i.) 0.27 to 1.82)) or -1811A > T (OR 0.71 (95 per cent c.i. 0.28 to 1.85)) genotypes, or the most common haplotype (OR 0.81 (95 per cent c.i. 0.62 to 1.05)) and AAA. The serum MMP-9 concentration was higher in cases than controls, and in minor allele carriers in cases and controls, although the differences were not statistically significant. In this study, the genetic tendency to higher levels of circulating MMP-9 was not associated with AAA.

  11. Correlation of Endostatin and Tissue Inhibitor of Metalloproteinases 2 (TIMP2) Serum Levels With Cardiovascular Involvement in Systemic Sclerosis Patients

    PubMed Central

    Dziankowska-Bartkowiak, Bożena; Waszczykowska, Elżbieta; Zalewska, Anna; Sysa-Jędrzejowska, Anna

    2005-01-01

    Fibrosis of oesophagus, lungs, heart, and kidney in the course of systemic sclerosis (SSc) may lead to dysfunction of the above organs or even patients death. Recent studies point out the role of angiogenesis and fibrosis disturbances in the pathogenesis of SSc. Heart fibrosis is one of the most important prognostic factors in SSc patients. So, the aim of our study was to examine cardiovascular dysfunction in SSc patients and its correlation with serum levels of vascular endothelial growth factor (VEGF), endostatin, and tissue inhibitor of metalloproteinase 2 (TIMP2). The study group comprised 34 patients (19 with limited scleroderma (lSSc) and 15 with diffuse scleroderma (dSSc)). The control group consisted of 20 healthy persons, age and sex matched. Internal organ involvement was assessed on the basis of specialist procedures. Serum VEGF, endostatin, and TIMP2 levels were evaluated by ELISA. We found cardiovascular changes in 15 patients with SSc (8 with lSSc and 7 with dSSc). The observed symptoms were of different characters and also coexisted with each other. Higher endostatin serum levels in all systemic sclerosis patients in comparison to the control group were demonstrated (P < .05). Also higher serum levels of endostatin and TIMP2 were observed in patients with cardiovascular changes in comparison to the patients without such changes (P < .05). The obtained results support the notion that angiogenesis and fibrosis disturbances may play an important role in SSc. Evaluation of endostatin and TIMP2 serum levels seems to be one of the noninvasive, helpful examinations of heart involvement in the course of systemic sclerosis. PMID:16106100

  12. Matrix immobilization enhances the tissue repair activity of growth factor gene therapy vectors.

    PubMed

    Doukas, J; Chandler, L A; Gonzalez, A M; Gu, D; Hoganson, D K; Ma, C; Nguyen, T; Printz, M A; Nesbit, M; Herlyn, M; Crombleholme, T M; Aukerman, S L; Sosnowski, B A; Pierce, G F

    2001-05-01

    Although growth factor proteins display potent tissue repair activities, difficulty in sustaining localized therapeutic concentrations limits their therapeutic activity. We reasoned that enhanced histogenesis might be achieved by combining growth factor genes with biocompatible matrices capable of immobilizing vectors at delivery sites. When delivered to subcutaneously implanted sponges, a platelet-derived growth factor B-encoding adenovirus (AdPDGF-B) formulated in a collagen matrix enhanced granulation tissue deposition 3- to 4-fold (p < or = 0.0002), whereas vectors encoding fibroblast growth factor 2 or vascular endothelial growth factor promoted primarily angiogenic responses. By day 8 posttreatment of ischemic excisional wounds, collagen-formulated AdPDGF-B enhanced granulation tissue and epithelial areas up to 13- and 6-fold (p < 0.009), respectively, and wound closure up to 2-fold (p < 0.05). At longer times, complete healing without excessive scar formation was achieved. Collagen matrices were shown to retain both vector and transgene products within delivery sites, enabling the transduction and stimulation of infiltrating repair cells. Quantitative PCR and RT-PCR demonstrated both vector DNA and transgene mRNA within wound beds as late as 28 days posttreatment. By contrast, aqueous formulations allowed vector seepage from application sites, leading to PDGF-induced hyperplasia in surrounding tissues but not wound beds. Finally, repeated applications of PDGF-BB protein were required for neotissue induction approaching equivalence to a single application of collagen-immobilized AdPDGF-B, confirming the utility of this gene transfer approach. Overall, these studies demonstrate that immobilizing matrices enable the controlled delivery and activity of tissue promoting genes for the effective regeneration of injured tissues.

  13. Achondrogenesis type IB: agenesis of cartilage interterritorial matrix as the link between gene defect and pathological skeletal phenotype.

    PubMed

    Corsi, A; Riminucci, M; Fisher, L W; Bianco, P

    2001-10-01

    Achondrogenesis type IB is a lethal osteochondrodysplasia caused by mutations in the diastrophic dysplasia sulfate transporter gene. How these mutations lead to the skeletal phenotype is not known. Histology of plastic-embedded skeletal fetal achondrogenesis type IB samples suggested that interterritorial epiphyseal cartilage matrix was selectively missing. Cartilage was organized in "chondrons" separated by cleft spaces; chondrocyte seriation, longitudinal septa, and, in turn, mineralized cartilaginous septa were absent. Agenesis of interterritorial matrix as the key histologic change was confirmed by immunohistology using specific markers of territorial and interterritorial matrix. Biglycan-enriched territorial matrix was preserved; decorin-enriched interterritorial areas were absent, although immunostaining was observed within chondrocytes. Thus, in achondrogenesis type IB: (1) a complex derangement in cartilage matrix assembly lies downstream of the deficient sulfate transporter activity; (2) the severely impaired decorin deposition participates in the changes in matrix organization with lack of development of normal interterritorial matrix; and (3) this change determines the lack of the necessary structural substrate for proper endochondral bone formation and explains the severe skeletal phenotype.

  14. Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study

    PubMed Central

    Le Maitre, Christine L; Hoyland, Judith A; Freemont, Anthony J

    2007-01-01

    Data implicate IL-1 in the altered matrix biology that characterizes human intervertebral disc (IVD) degeneration. In the current study we investigated the enzymic mechanism by which IL-1 induces matrix degradation in degeneration of the human IVD, and whether the IL-1 inhibitor IL-1 receptor antagonist (IL-1Ra) will inhibit degradation. A combination of in situ zymography (ISZ) and immunohistochemistry was used to examine the effects of IL-1 and IL-1Ra on matrix degradation and metal-dependent protease (MDP) expression in explants of non-degenerate and degenerate human IVDs. ISZ employed three substrates (gelatin, collagen, casein) and different challenges (IL-1β, IL-1Ra and enzyme inhibitors). Immunohistochemistry was undertaken for MDPs. In addition, IL-1Ra was introduced into degenerate IVD explants using genetically engineered constructs. The novel findings from this study are: IL-1Ra delivered directly onto explants of degenerate IVDs eliminates matrix degradation as assessed by multi-substrate ISZ; there is a direct relationship between matrix degradation assessed by ISZ and MDP expression defined by immunohistochemistry; single injections of IVD cells engineered to over-express IL-1Ra significantly inhibit MDP expression for two weeks. Our findings show that IL-1 is a key cytokine driving matrix degradation in the degenerate IVD. Furthermore, IL-1Ra delivered directly or by gene therapy inhibits IVD matrix degradation. IL-1Ra could be used therapeutically to inhibit degeneration of the IVD. PMID:17760968

  15. Transcriptome analysis of mammary epithelial cell gene expression reveals novel roles of the extracellular matrix.

    PubMed

    Wanyonyi, Stephen S; Kumar, Amit; Du Preez, Ryan; Lefevre, Christophe; Nicholas, Kevin R

    2017-12-01

    The unique lactation strategy of the tammar wallaby (Macropus eugeni) has been invaluable in evaluating the role of lactogenic hormones and the extracellular matrix (ECM) in the local control of mammary gland function. However molecular pathways through which hormones and ECM exert their effect on wallaby mammary gland function remain unclear. This study undertakes transcriptome analysis of wallaby mammary epithelial cells (WallMEC) following treatment with mammary ECM from two distinct stages of lactation. WallMEC from MID lactation mammary glands were cultured on ECM from MID or LATE lactation and treated for 5 days with 1 μg/ml cortisol, 1 μg/ml insulin, 0.2 µg/ml prolactin, 650 pg/ml triodothyronine and 1 pg/ml estradiol to induce lactation. WallMEC RNA from triplicate ECM treatments was used to perform RNAseq. ECM from MID and LATE lactation differentially regulated key genes in sugar and lipid metabolism. Seven pathways including galactose metabolism, lysosome, cell adhesion molecules (CAM), p53 signaling, the complement and coagulation and Nod-like receptor signaling pathways were only significantly responsive to ECM in the presence of hormones. The raw RNA-seq data for this project are available on the NCBI Gene Expression Omnibus (GEO) browser (accession number GSE81210). A potential role of ECM in regulation of the caloric content of milk, among other functions including apoptosis, cell proliferation and differentiation has been identified. This study has used a non-eutherian lactation model to demonstrate the synergy between ECM and hormones in the local regulation of mammary function.

  16. Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases.

    PubMed

    Takino, Takahisa; Koshikawa, Naohiko; Miyamori, Hisashi; Tanaka, Motohiro; Sasaki, Takuma; Okada, Yasunori; Seiki, Motoharu; Sato, Hiroshi

    2003-07-24

    A human placenta cDNA library was screened by the expression cloning method for gene products that interact with matrix metalloproteinases (MMPs), and we isolated a cDNA whose product formed a stable complex with pro-MMP-2 and pro-MMP-9. The cDNA encoded the metastasis suppressor gene KiSS-1. KiSS-1 protein was shown to form a complex with pro-MMP. KiSS-1 protein is known to be processed to peptide ligand of a G-protein-coupled receptor (hOT7T175) named metastin, and suppresses metastasis of tumors expressing the receptor. Active MMP-2, MMP-9, MT1-MMP, MT3-MMP and MT5-MMP cleaved the Gly118-Leu119 peptide bond of not only full-length KiSS-1 protein but also metastin decapeptide. Metastin decapeptide induced formation of focal adhesion and actin stress fibers in cells expressing the receptor, and digestion of metastin decapeptide by MMP abolished its ligand activity. Migration of HT1080 cells expressing hOT7T175 that harbor a high-level MMP activity was only slightly suppressed by either metastin decapeptide or MMP inhibitor BB-94 alone, but the combination of metastin decapeptide and BB-94 showed a synergistic effect in blocking cell migration. We propose that metastin could be used as an antimetastatic agent in combination with MMP inhibitor, or MMP-resistant forms of metastin could be developed and may also be efficacious.

  17. Matrix metalloproteinase gene polymorphisms and periodontitis susceptibility: a meta-analysis involving 6,162 individuals.

    PubMed

    Weng, Hong; Yan, Yan; Jin, Ying-Hui; Meng, Xiang-Yu; Mo, Yuan-Yuan; Zeng, Xian-Tao

    2016-04-20

    We aimed to systematically investigate the potential association of matrix metalloproteinase (MMP)-9, -3, -2, and -8 gene polymorphisms with susceptibility to periodontitis using meta-analysis. A literature search in PubMed, Embase, and Web of Science was conducted to obtain relevant publications. Finally a total of 16 articles with 24 case-control studies (nine on MMP-9-1562 C/T, seven on MMP-3-1171 A5/A6, four on MMP-2-753C/T, and four on MMP-8-799 C/T) were considered in this meta-analysis. The results based on 2,724 periodontitis patients and 3,438 controls showed that MMP-9-1562C/T, MMP-3-1171 A5/A6, and MMP-8-799C/T polymorphisms were associated with periodontitis susceptibility. No significant association was found between MMP-2-753 C/T and periodontitis susceptibility. Subgroup analyses suggested that the MMP-9-1562 C/T polymorphism reduced chronic periodontitis susceptibility and MMP-3-1171 A5/A6 polymorphism increased chronic periodontitis susceptibility. In summary, current evidence demonstrated that MMP-9-753 C/T polymorphism reduced the risk of periodontitis, MMP-3-1171 5A/6A and MMP-8-799 C/T polymorphisms increased the risk of periodontitis, and MMP-2-753 C/T was not associated with risk of periodontitis.

  18. F2 Gel Matrix a Novel Delivery System for Immune and Gene Vaccinations.

    PubMed

    Tuorkey, Muobarak J

    2016-01-01

    Exploiting the immune system to abolish cancer growth via vaccination is a promising strategy but that is limited by many clinical issues. For DNA vaccines, viral vectors as a delivery system mediate a strong immune response due to their protein structure, which could afflect the cellular uptake of the genetic vector or even induce cytotoxic immune responses against transfected cells. Recently, synthetic DNA delivery systems have been developed and recommended as much easier and simple approaches for DNA delivery compared with viral vectors. These are based on the attraction of the positively charged cationic transfection reagents to negatively charged DNA molecules, which augments the cellular DNA uptake. In fact, there are three major cellular barriers which hinder successful DNA delivery systems: low uptake across the plasma membrane; inadequate release of DNA molecules with limited stability; and lack of nuclear targeting. Recently, a polysaccharide polymer produced by microalgae has been synthesized in a form of polymeric fiber material polyNacetyl glucosamine (pGlcNAc). Due its unique properties, the F2 gel matrix was suggested as an effective delivery system for immune and gene vaccinations.

  19. Tumor Immunotherapy Using Gene-Modified Human Mesenchymal Stem Cells Loaded into Synthetic Extracellular Matrix Scaffolds

    PubMed Central

    Compte, Marta; Cuesta, Ángel M; Sánchez-Martín, David; Alonso-Camino, Vanesa; Vicario, José Luís; Sanz, Laura; Álvarez-Vallina, Luís

    2009-01-01

    Mesenchymal stem cells (MSCs) are appealing as gene therapy cell vehicles given their ease of expansion and transduction. However, MSCs exhibit immunomodulatory and proangiogenic properties that may pose a risk in their use in anticancer therapy. For this reason, we looked for a strategy to confine MSCs to a determined location, compatible with a clinical application. Human MSCs genetically modified to express luciferase (MSCluc), seeded in a synthetic extracellular matrix (sECM) scaffold (sentinel scaffold) and injected subcutaneously in immunodeficient mice, persisted for more than 40 days, as assessed by bioluminescence imaging in vivo. MSCs modified to express a bispecific α-carcinoembryonic antigen (αCEA)/αCD3 diabody (MSCdAb) and seeded in an sECM scaffold (therapeutic scaffolds) supported the release of functional diabody into the bloodstream at detectable levels for at least 6 weeks after implantation. Furthermore, when therapeutic scaffolds were implanted into CEA-positive human colon cancer xenograft-bearing mice and human T lymphocytes were subsequently transferred, circulating αCEA/αCD3 diabody activated T cells and promoted tumor cell lysis. Reduction of tumor growth in MSCdAb-treated mice was statistically significant compared with animals that only received MSCluc. In summary, we report here for the first time that human MSCs genetically engineered to secrete a bispecific diabody, seeded in an sECM scaffold and implanted in a location distant from the primary tumor, induce an effective antitumor response and tumor regression. PMID:19096041

  20. A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation

    PubMed Central

    Al Adhami, Hala; Evano, Brendan; Le Digarcher, Anne; Gueydan, Charlotte; Dubois, Emeric; Parrinello, Hugues; Dantec, Christelle; Bouschet, Tristan; Varrault, Annie

    2015-01-01

    Genomic imprinting is an epigenetic mechanism that restrains the expression of ∼100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor–activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm. PMID:25614607

  1. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture

    NASA Astrophysics Data System (ADS)

    Abbah, Sunny A.; Thomas, Dilip; Browne, Shane; O'Brien, Timothy; Pandit, Abhay; Zeugolis, Dimitrios I.

    2016-02-01

    Extracellular matrix synthesis and remodelling are driven by increased activity of transforming growth factor beta 1 (TGF-β1). In tendon tissue repair, increased activity of TGF-β1 leads to progressive fibrosis. Decorin (DCN) and interleukin 10 (IL-10) antagonise pathological collagen synthesis by exerting a neutralising effect via downregulation of TGF-β1. Herein, we report that the delivery of DCN and IL-10 transgenes from a collagen hydrogel system supresses the constitutive expression of TGF-β1 and a range of pro-fibrotic extracellular matrix genes.

  2. Matrix gene of influenza a viruses isolated from wild aquatic birds: ecology and emergence of influenza a viruses.

    PubMed

    Widjaja, Linda; Krauss, Scott L; Webby, Richard J; Xie, Tao; Webster, Robert G

    2004-08-01

    Wild aquatic birds are the primary reservoir of influenza A viruses, but little is known about the viruses' gene pool in wild birds. Therefore, we investigated the ecology and emergence of influenza viruses by conducting phylogenetic analysis of 70 matrix (M) genes of influenza viruses isolated from shorebirds and gulls in the Delaware Bay region and from ducks in Alberta, Canada, during >18 years of surveillance. In our analysis, we included 61 published M genes of isolates from various hosts. We showed that M genes of Canadian duck viruses and those of shorebird and gull viruses in the Delaware Bay shared ancestors with the M genes of North American poultry viruses. We found that North American and Eurasian avian-like lineages are divided into sublineages, indicating that multiple branches of virus evolution may be maintained in wild aquatic birds. The presence of non-H13 gull viruses in the gull-like lineage and of H13 gull viruses in other avian lineages suggested that gulls' M genes do not preferentially associate with the H13 subtype or segregate into a distinct lineage. Some North American avian influenza viruses contained M genes closely related to those of Eurasian avian viruses. Therefore, there may be interregional mixing of the two clades. Reassortment of shorebird M and HA genes was evident, but there was no correlation among the HA or NA subtype, M gene sequence, and isolation time. Overall, these results support the hypothesis that influenza viruses in wild waterfowl contain distinguishable lineages of M genes.

  3. MATRIX FACTORIZATION-BASED DATA FUSION FOR GENE FUNCTION PREDICTION IN BAKER’S YEAST AND SLIME MOLD

    PubMed Central

    ŽITNIK, MARINKA; ZUPAN, BLAŽ

    2014-01-01

    The development of effective methods for the characterization of gene functions that are able to combine diverse data sources in a sound and easily-extendible way is an important goal in computational biology. We have previously developed a general matrix factorization-based data fusion approach for gene function prediction. In this manuscript, we show that this data fusion approach can be applied to gene function prediction and that it can fuse various heterogeneous data sources, such as gene expression profiles, known protein annotations, interaction and literature data. The fusion is achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological annotations in slime mold D. discoideum and on recognizing proteins of baker’s yeast S. cerevisiae that participate in the ribosome or are located in the cell membrane. Our approach achieves predictive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires fewer data preprocessing steps. PMID:24297565

  4. S100B-p53 disengagement by pentamidine promotes apoptosis and inhibits cellular migration via aquaporin-4 and metalloproteinase-2 inhibition in C6 glioma cells

    PubMed Central

    CAPOCCIA, ELENA; CIRILLO, CARLA; MARCHETTO, ANNALISA; TIBERI, SAMANTA; SAWIKR, YOUSSEF; PESCE, MARCELLA; D'ALESSANDRO, ALESSANDRA; SCUDERI, CATERINA; SARNELLI, GIOVANNI; CUOMO, ROSARIO; STEARDO, LUCA; ESPOSITO, GIUSEPPE

    2015-01-01

    S100 calcium-binding protein B (S100B) is highly expressed in glioma cells and promotes cancer cell survival via inhibition of the p53 protein. In melanoma cells, this S100B-p53 interaction is known to be inhibited by pentamidine isethionate, an antiprotozoal agent. Thus, the aim of the present study was to evaluate the effect of pentamidine on rat C6 glioma cell proliferation, migration and apoptosis in vitro. The change in C6 cell proliferation following treatment with pentamidine was determined by performing a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide-formazan assay. Significant dose-dependent decreases in proliferation were observed at pentamidine concentrations of 0.05 µM (58.5±5%; P<0.05), 0.5 µM (40.6±7%; P<0.01) and 5 µM (13±4%; P<0.001) compared with the control (100% viability). Furthermore, treatment with 0.05, 0.5 and 5 µM pentamidine was associated with a significant increase in apoptosis versus the untreated cells, as determined by DNA fragmentation assays, immunofluorescence analysis of C6 chromatin using Hoechst staining, and immunoblot analysis of B-cell lymphoma-2 (Bcl-2)-associated X protein (100%, P<0.05; 453%, P<0.01; and 1000%, P<0.001, respectively) and Bcl-2 (-60%, P<0.001; −80.13%, P<0.001; −95%, P<0.001, respectively). In addition, the administration of 0.05, 0.5 and 5 µM pentamidine significantly upregulated the protein expression levels of p53 (681±87.5%, P<0.05; 1244±94.3%, P<0.01; and 2244±111%, P<0.001, respectively), and significantly downregulated the expression levels of matrix metalloproteinase-2 (42±2.3%, P<0.05; 71±2.5%, P<0.01; and 95.8±3.3%, P<0.001, respectively) and aquaporin 4 (38±2.5%, P<0.05; 69±2.6%, P<0.01; and 88±3.0%, P<0.001, respectively), compared with the untreated cells. The wound healing assay demonstrated that cell migration was significantly impaired by treatment with 0.05, 0.5 and 5 µM pentamidine compared with untreated cells (88±4.2%, P<0.05; 64±2%, P<0.01; and 42

  5. S100B-p53 disengagement by pentamidine promotes apoptosis and inhibits cellular migration via aquaporin-4 and metalloproteinase-2 inhibition in C6 glioma cells.

    PubMed

    Capoccia, Elena; Cirillo, Carla; Marchetto, Annalisa; Tiberi, Samanta; Sawikr, Youssef; Pesce, Marcella; D'Alessandro, Alessandra; Scuderi, Caterina; Sarnelli, Giovanni; Cuomo, Rosario; Steardo, Luca; Esposito, Giuseppe

    2015-06-01

    S100 calcium-binding protein B (S100B) is highly expressed in glioma cells and promotes cancer cell survival via inhibition of the p53 protein. In melanoma cells, this S100B-p53 interaction is known to be inhibited by pentamidine isethionate, an antiprotozoal agent. Thus, the aim of the present study was to evaluate the effect of pentamidine on rat C6 glioma cell proliferation, migration and apoptosis in vitro. The change in C6 cell proliferation following treatment with pentamidine was determined by performing a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide-formazan assay. Significant dose-dependent decreases in proliferation were observed at pentamidine concentrations of 0.05 µM (58.5±5%; P<0.05), 0.5 µM (40.6±7%; P<0.01) and 5 µM (13±4%; P<0.001) compared with the control (100% viability). Furthermore, treatment with 0.05, 0.5 and 5 µM pentamidine was associated with a significant increase in apoptosis versus the untreated cells, as determined by DNA fragmentation assays, immunofluorescence analysis of C6 chromatin using Hoechst staining, and immunoblot analysis of B-cell lymphoma-2 (Bcl-2)-associated X protein (100%, P<0.05; 453%, P<0.01; and 1000%, P<0.001, respectively) and Bcl-2 (-60%, P<0.001; -80.13%, P<0.001; -95%, P<0.001, respectively). In addition, the administration of 0.05, 0.5 and 5 µM pentamidine significantly upregulated the protein expression levels of p53 (681±87.5%, P<0.05; 1244±94.3%, P<0.01; and 2244±111%, P<0.001, respectively), and significantly downregulated the expression levels of matrix metalloproteinase-2 (42±2.3%, P<0.05; 71±2.5%, P<0.01; and 95.8±3.3%, P<0.001, respectively) and aquaporin 4 (38±2.5%, P<0.05; 69±2.6%, P<0.01; and 88±3.0%, P<0.001, respectively), compared with the untreated cells. The wound healing assay demonstrated that cell migration was significantly impaired by treatment with 0.05, 0.5 and 5 µM pentamidine compared with untreated cells (88±4.2%, P<0.05; 64±2%, P<0.01; and 42±3

  6. Pharmacology of the cell/matrix form of adhesion.

    PubMed

    Meldolesi, Jacopo

    2016-05-01

    Cell adhesions are heterogeneous processes including two main forms, CAM and cell/matrix forms. Both these forms induce the interaction among cells and with the extracellular matrix, and the generation of intracellular signals. The signaling of the two adhesion forms include, at the cell surface, involvement of distinct integrins, necessary for intracellular cascade activation. I will focus on the cell/integrin form based on two specific integrins, α5β1 (the most important) and αvβ3, activated by the preferential binding of fibronectin, a unique extracellular matrix protein. Such binding induces local assembly of stratified adhesion complexes containing protein kinases, that trigger the intracellular signaling cascades (Akt, ERK and others); proteins that sustain mechanical processes; and proteins associated with the cytoskeleton. In view of its role in several diseases, from cancers to the eye macular-degeneration; from brain neurodegeneration to fibroses, the pharmacological interest for the cell/integrin adhesion has grown, and presumably will further grow in the near future. The agents identified and developed for therapy include antibodies, many peptides and chemical drugs against α5β1 integrin; drugs against fibronectin and metalloproteinases 2/9, responsible of the latter enzyme proteolysis; anti-kinase and anti-cascade drugs, some of which targeted to the activation of transcription factors and/or their transfer to the nucleus, with repression or activation of gene expression. A new perspective, based on the investigation of both animal models and human patients, includes factors active on the cell/matrix and CAM adhesions, considered separately or coordinately in distinct therapeutic approaches, integrated or not with classical chemotherapic treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Drosophila convoluted/dALS is an essential gene required for tracheal tube morphogenesis and apical matrix organization.

    PubMed

    Swanson, Lianna E; Yu, Marcus; Nelson, Kevin S; Laprise, Patrick; Tepass, Ulrich; Beitel, Greg J

    2009-04-01

    Insulin-like growth factors (IGFs) control cell and organism growth through evolutionarily conserved signaling pathways. The mammalian acid-labile subunit (ALS) is a secreted protein that complexes with IGFs to modulate their activity. Recent work has shown that a Drosophila homolog of ALS, dALS, can also complex with and modulate the activity of a Drosophila IGF. Here we report the first mutations in the gene encoding dALS. Unexpectedly, we find that these mutations are allelic to a previously described mutation in convoluted (conv), a gene required for epithelial morphogenesis. In conv mutants, the tubes of the Drosophila tracheal system become abnormally elongated without altering tracheal cell number. conv null mutations cause larval lethality, but do not disrupt several processes required for tracheal tube size control, including septate junction formation, deposition of a lumenal/apical extracellular matrix, and lumenal secretion of Vermiform and Serpentine, two putative matrix-modifying proteins. Clearance of lumenal matrix and subcellular localization of clathrin also appear normal in conv mutants. However, we show that Conv/dALS is required for the dynamic organization of the transient lumenal matrix and normal structure of the cuticle that lines the tracheal lumen. These and other data suggest that the Conv/dALS-dependent tube size control mechanism is distinct from other known processes involved in tracheal tube size regulation. Moreover, we present evidence indicating that Conv/dALS has a novel, IGF-signaling independent function in tracheal morphogenesis.

  8. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing.

    PubMed

    Schiller, Meinhard; Javelaud, Delphine; Mauviel, Alain

    2004-08-01

    Members of the transforming growth factor-beta (TGF-beta) superfamily are pleiotropic cytokines that have the ability to regulate numerous cell functions, including proliferation, differentiation, apoptosis, epithelial-mesenchymal transition, and production of extracellular matrix, allowing them to play an important role during embryonic development and for maintenance of tissue homeostasis. Three TGF-beta isoforms have been identified in mammals. They propagate their signal via a signal transduction network involving receptor serine/threonine kinases at the cell surface and their substrates, the SMAD proteins. Upon phosphorylation and oligomerization, the latter move into the nucleus to regulate transcription of target genes. This review will summarize recent advances in the understanding of the mechanisms underlying SMAD modulation of extracellular matrix gene expression in the context of wound healing and tissue fibrosis.

  9. Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus

    NASA Technical Reports Server (NTRS)

    Kitajima, T.; Tomita, M.; Killian, C. E.; Akasaka, K.; Wilt, F. H.

    1996-01-01

    We have isolated a cDNA clone for spicule matrix protein, SM30, from sea urchin Hemicentrotus pulcherrimus and have studied the expression of this gene in comparison with that of another spicule matrix protein gene, SM50. In cultured micromeres as well as in intact embryos transcripts of SM30 were first detectable around the onset of spicule formation and rapidly increased with the growth of spicules, which accompanied accumulation of glycosylated SM30 protein(s). When micromeres were cultured in the presence of Zn2+, spicule formation and SM30 expression were suppressed, while both events resumed concurrently after the removal of Zn2+ from the culture medium. Expression of SM50, in contrast, started before the appearance of spicules and was not sensitive to Zn2+. Differences were also observed in adult tissues; SM30 mRNA was detected in spines and tube feet but not in the test, while SM50 mRNA was apparent in all of these mineralized tissues at similar levels. These results strongly suggest that the SM30 gene is regulated by a different mechanism to that of the SM50 gene and that the products of these two genes are differently involved in sea urchin biomineralization. A possible role of SM30 protein in skeleton formation is discussed.

  10. The effect of enamel matrix derivative (Emdogain®) on gene expression profiles of human primary alveolar bone cells.

    PubMed

    Yan, X Z; Rathe, F; Gilissen, C; van der Zande, M; Veltman, J; Junker, R; Yang, F; Jansen, J A; Walboomers, X F

    2014-06-01

    Emdogain® is frequently used in regenerative periodontal treatment. Understanding its effect on gene expression of bone cells would enable new products and pathways promoting bone formation to be established. The aim of the study was to analyse the effect of Emdogain® on expression profiles of human-derived bone cells with the help of the micro-array, and subsequent validation. Bone was harvested from non-smoking patients during dental implant surgery. After outgrowth, cells were cultured until subconfluence, treated for 24 h with either Emdogain® (100 µg/ml) or control medium, and subsequently RNA was isolated and micro-array was performed. The most important genes demonstrated by micro-array data were confirmed by qPCR and ELISA tests. Emdogain tipped the balance between genes expressed for bone formation and bone resorption towards a more anabolic effect, by interaction of the PGE2 pathway and inhibition of IL-7 production. In addition the results of the present study indicate that Emdogain possibly has an effect on gene expression for extracellular matrix formation of human bone cells, in particular on bone matrix formation and on proliferation and differentiation. With the micro-array and the subsequent validation, the genes possibly involved in Emdogain action on bone cells were identified. These results can contribute to establishing new products and pathways promoting bone formation.

  11. Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus

    NASA Technical Reports Server (NTRS)

    Kitajima, T.; Tomita, M.; Killian, C. E.; Akasaka, K.; Wilt, F. H.

    1996-01-01

    We have isolated a cDNA clone for spicule matrix protein, SM30, from sea urchin Hemicentrotus pulcherrimus and have studied the expression of this gene in comparison with that of another spicule matrix protein gene, SM50. In cultured micromeres as well as in intact embryos transcripts of SM30 were first detectable around the onset of spicule formation and rapidly increased with the growth of spicules, which accompanied accumulation of glycosylated SM30 protein(s). When micromeres were cultured in the presence of Zn2+, spicule formation and SM30 expression were suppressed, while both events resumed concurrently after the removal of Zn2+ from the culture medium. Expression of SM50, in contrast, started before the appearance of spicules and was not sensitive to Zn2+. Differences were also observed in adult tissues; SM30 mRNA was detected in spines and tube feet but not in the test, while SM50 mRNA was apparent in all of these mineralized tissues at similar levels. These results strongly suggest that the SM30 gene is regulated by a different mechanism to that of the SM50 gene and that the products of these two genes are differently involved in sea urchin biomineralization. A possible role of SM30 protein in skeleton formation is discussed.

  12. Expression of spicule matrix protein gene SM30 in embryonic and adult mineralized tissues of sea urchin Hemicentrotus pulcherrimus.

    PubMed

    Kitajima, T; Tomita, M; Killian, C E; Akasaka, K; Wilt, F H

    1996-12-01

    We have isolated a cDNA clone for spicule matrix protein, SM30, from sea urchin Hemicentrotus pulcherrimus and have studied the expression of this gene in comparison with that of another spicule matrix protein gene, SM50. In cultured micromeres as well as in intact embryos transcripts of SM30 were first detectable around the onset of spicule formation and rapidly increased with the growth of spicules, which accompanied accumulation of glycosylated SM30 protein(s). When micromeres were cultured in the presence of Zn2+, spicule formation and SM30 expression were suppressed, while both events resumed concurrently after the removal of Zn2+ from the culture medium. Expression of SM50, in contrast, started before the appearance of spicules and was not sensitive to Zn2+. Differences were also observed in adult tissues; SM30 mRNA was detected in spines and tube feet but not in the test, while SM50 mRNA was apparent in all of these mineralized tissues at similar levels. These results strongly suggest that the SM30 gene is regulated by a different mechanism to that of the SM50 gene and that the products of these two genes are differently involved in sea urchin biomineralization. A possible role of SM30 protein in skeleton formation is discussed.

  13. Coordination of cell signaling, chromatin remodeling, histone modifications, and regulator recruitment in human matrix metalloproteinase 9 gene transcription.

    PubMed

    Ma, Zhendong; Shah, Reesha C; Chang, Mi Jung; Benveniste, Etty N

    2004-06-01

    Transcriptional activation of eukaryotic genes depends on the precise and ordered recruitment of activators, chromatin modifiers/remodelers, coactivators, and general transcription factors to the promoters of target genes. Using the human matrix metalloproteinase 9 (MMP-9) gene as a model system, we investigated the sequential assembly and dynamic formation of transcription complexes on a human promoter under the influence of mitogen signaling. We find that, coincident with activation of the MMP-9 gene, activators, chromatin remodeling complexes, and coactivators are recruited to the preassembled MMP-9 promoter in a stepwise and coordinated order, which is dependent on activation of MEK-1/extracellular signal-regulated kinase and NF-kappa B signaling pathways. Conversely, corepressor complexes are released from the MMP-9 promoter after transcriptional activation. Histone modifications shift from repressive to permissive modifications concurrent with activation of the MMP-9 gene. Chromatin remodeling induced by Brg-1 is required for MMP-9 gene transcription, which is concomitant with initiation of transcription. Therefore, coordination of cell signaling, chromatin remodeling, histone modifications, and stepwise recruitment of transcription regulators is critical to precisely regulate MMP-9 gene transcription in a temporally and spatially dependent manner. Given the important role of MMP-9 in both normal development and pathological conditions, understanding MMP-9 gene regulation is of great relevance.

  14. Optimising parallel R correlation matrix calculations on gene expression data using MapReduce.

    PubMed

    Wang, Shicai; Pandis, Ioannis; Johnson, David; Emam, Ibrahim; Guitton, Florian; Oehmichen, Axel; Guo, Yike

    2014-11-05

    High-throughput molecular profiling data has been used to improve clinical decision making by stratifying subjects based on their molecular profiles. Unsupervised clustering algorithms can be used for stratification purposes. However, the current speed of the clustering algorithms cannot meet the requirement of large-scale molecular data due to poor performance of the correlation matrix calculation. With high-throughput sequencing technologies promising to produce even larger datasets per subject, we expect the performance of the state-of-the-art statistical algorithms to be further impacted unless efforts towards optimisation are carried out. MapReduce is a widely used high performance parallel framework that can solve the problem. In this paper, we evaluate the current parallel modes for correlation calculation methods and introduce an efficient data distribution and parallel calculation algorithm based on MapReduce to optimise the correlation calculation. We studied the performance of our algorithm using two gene expression benchmarks. In the micro-benchmark, our implementation using MapReduce, based on the R package RHIPE, demonstrates a 3.26-5.83 fold increase compared to the default Snowfall and 1.56-1.64 fold increase compared to the basic RHIPE in the Euclidean, Pearson and Spearman correlations. Though vanilla R and the optimised Snowfall outperforms our optimised RHIPE in the micro-benchmark, they do not scale well with the macro-benchmark. In the macro-benchmark the optimised RHIPE performs 2.03-16.56 times faster than vanilla R. Benefiting from the 3.30-5.13 times faster data preparation, the optimised RHIPE performs 1.22-1.71 times faster than the optimised Snowfall. Both the optimised RHIPE and the optimised Snowfall successfully performs the Kendall correlation with TCGA dataset within 7 hours. Both of them conduct more than 30 times faster than the estimated vanilla R. The performance evaluation found that the new MapReduce algorithm and its

  15. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    SciTech Connect

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Rouis, Mustapha

    2008-11-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1{beta}, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPAR{alpha} and PPAR{gamma}, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPAR{alpha} and {gamma} isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1{beta}-treated macrophages only in the presence of a specific PPAR{alpha} agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1{beta}-stimulated peritoneal macrophages isolated from PPAR{alpha}{sup -/-} mice and treated with the PPAR{alpha} agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by {approx} 50% in IL-1{beta}-stimulated PPAR{alpha}-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1{beta} effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPAR{alpha} and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies

  16. Mayer-Rokitansky-Küster-Hauser syndrome discordance in monozygotic twins: matrix metalloproteinase 14, low-density lipoprotein receptor-related protein 10, extracellular matrix, and neoangiogenesis genes identified as candidate genes in a tissue-specific mosaicism.

    PubMed

    Rall, Katharina; Eisenbeis, Simone; Barresi, Gianmaria; Rückner, Daniel; Walter, Michael; Poths, Sven; Wallwiener, Diethelm; Riess, Olaf; Bonin, Michael; Brucker, Sara

    2015-02-01

    To find a potential underlying cause for Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) discordance in monozygotic twins. Prospective comparative study. University hospital. Our study genetically analyzed 5 MRKHS-discordant monozygotic twin pairs with the unique opportunity to include saliva and rudimentary uterine tissue. Blood, saliva, or rudimentary uterine tissue from five MRKHS-discordant twins was analyzed and compared between twin pairs as well as within the same individual where applicable. We used copy number variations (CNVs) to identify differences. CNVs in blood, rudimentary uterine tissue, and saliva, network analysis, and review of the literature. One duplication found in the affected twin included two genes, matrix metalloproteinase 14 (MMP14) and low-density lipoprotein receptor-related protein 10 (LRP10), which have known functions in the embryonic development of the uterus and endometrium. The duplicated region was detected in rudimentary uterine tissue from the same individual but not in saliva, making a tissue-specific mosaicism a possible explanation for twin discordance. Additional network analysis revealed important connections to differentially expressed genes from previous studies. These genes encode several molecules involved in extracellular matrix (ECM) remodeling and neoangiogenesis. MMP-14, LRP-10, ECM, and neoangiogenesis genes are identified as candidate genes in a tissue-specific mosaicism. The detected clusters provide evidence of deficient vascularization during uterine development and/or disturbed reorganization of ECM components, potentially during müllerian duct elongation signaled by the embryologically relevant phosphatidylinositol 3-kinase/protein kinase B pathway. Therefore, we consider these genes to be new candidates in the manifestation of MRKHS. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. Aryl Hydrocarbon Receptor Activation by TCDD Modulates Expression of Extracellular Matrix Remodeling Genes during Experimental Liver Fibrosis

    PubMed Central

    Lamb, Cheri L.; Cholico, Giovan N.; Perkins, Daniel E.; Fewkes, Michael T.; Oxford, Julia Thom; Lujan, Trevor J.; Morrill, Erica E.

    2016-01-01

    The aryl hydrocarbon receptor (AhR) is a soluble, ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Increasing evidence implicates the AhR in regulating extracellular matrix (ECM) homeostasis. We recently reported that TCDD increased necroinflammation and myofibroblast activation during liver injury elicited by carbon tetrachloride (CCl4). However, TCDD did not increase collagen deposition or exacerbate fibrosis in CCl4-treated mice, which raises the possibility that TCDD may enhance ECM turnover. The goal of this study was to determine how TCDD impacts ECM remodeling gene expression in the liver. Male C57BL/6 mice were treated for 8 weeks with 0.5 mL/kg CCl4, and TCDD (20 μg/kg) was administered during the last two weeks. Results indicate that TCDD increased mRNA levels of procollagen types I, III, IV, and VI and the collagen processing molecules HSP47 and lysyl oxidase. TCDD also increased gelatinase activity and mRNA levels of matrix metalloproteinase- (MMP-) 3, MMP-8, MMP-9, and MMP-13. Furthermore, TCDD modulated expression of genes in the plasminogen activator/plasmin system, which regulates MMP activation, and it also increased TIMP1 gene expression. These findings support the notion that AhR activation by TCDD dysregulates ECM remodeling gene expression and may facilitate ECM metabolism despite increased liver injury. PMID:27672655

  18. FTY-720P Suppresses Osteoclast Formation by Regulating Expression of Interleukin-6 (IL-6), Interleukin-4 (IL-4), and Matrix Metalloproteinase 2 (MMP-2)

    PubMed Central

    Zhang, Dawei; Huang, Yongjun; Huang, Zongwen; Zhang, Rongkai; Wang, Honggang; Huang, Dong

    2016-01-01

    Background Osteoclast formation is closely related to the immune system. FTY720, a new immunosuppressive agent, has some functions in immune regulation. Its main active ingredients become FTY-720P in vivo by phosphorylation modification. The objective of this study was to determine the effects of FTY-720 with various concentrations on osteoclasts in vitro. Material/Methods RAW264.7 cells and bone marrow-derived mononuclear phagocytes (BMMs) were treated with RANKL to obtain osteoclasts in vitro. To investigate the role of FTY-720 in osteoclast formation, trap enzyme staining was performed and the number of osteoclasts was counted. Bone slices were stained with methylene blue, we counted the number of lacunae after bone slices were placed into dishes together with osteoclasts, and we observed the effect and function of FTY-720 in osteoclasts induced by RAW264.7 cells and BMMs. Then, we used a protein array kit to explore the effects of FTY-720P on osteoclasts. Results The results of enzyme trap staining and F-actin staining experiments show that, with the increasing concentration of FTY-720P, the number of osteoclast induced by RAW264.7 cells and BMMs gradually decreased (P<0.05), especially when the FTY-720P concentration reached 1000 ng/ml, and the number of osteoclasts formed was the lowest (P<0.05). With bone lacuna toluidine blue staining, the results also show that, with the increasing concentration of FTY-720P, the number of bone lacuna gradually decreased (P<0.05), and the number of lacunae is lowest when the concentration reached 800 ng/ml. Finally, protein array results showed that IL-4, IL-6, IL-12, MMP-2, VEGF-C, GFR, basic FGF, MIP-2, and insulin proteins were regulated after FTY-720P treatment. Conclusions FTY-720P can suppress osteoclast formation and function, and FTY-720P induces a series of cytokine changes. PMID:27344392

  19. Unraveling the molecular structure of the catalytic domain of matrix metalloproteinase-2 in complex with a triple-helical peptide by means of molecular dynamics simulations.

    PubMed

    Díaz, Natalia; Suárez, Dimas; Valdés, Haydeé

    2013-11-26

    Herein, we present the results of a computational study that employed various simulation methodologies to build and validate a series of molecular models of a synthetic triple-helical peptide (fTHP-5) both in its native state and in a prereactive complex with the catalytic domain of the MMP-2 enzyme. First, the structure and dynamical properties of the fTHP-5 substrate are investigated by means of molecular dynamics (MD) simulations. Then, the propensity of each of the three peptide chains in fTHP-5 to be distorted around the scissile peptide bond is assessed by carrying out potential of mean force calculations. Subsequently, the distorted geometries of fTHP-5 are docked within the MMP-2 active site following a semirigid protocol, and the most stable docked structures are fully relaxed and characterized by extensive MD simulations in explicit solvent. Following a similar approach, we also investigate a hypothetical ternary complex formed between two MMP-2 catalytic units and a single fTHP-5 molecule. Overall, our models for the MMP-2/fTHP-5 complexes unveil the extent to which the triple helix is distorted to allow the accommodation of an individual peptide chain within the MMP active site.

  20. Molecular dynamics simulations of the active matrix metalloproteinase-2: positioning of the N-terminal fragment and binding of a small peptide substrate.

    PubMed

    Díaz, Natalia; Suárez, Dimas

    2008-07-01

    Herein we use different computational methods to study the structure and energetic stability of the catalytic domain of the active MMP-2 enzyme considering two different orientations of its N-terminal coil. The first orientation is largely solvent accessible and corresponds to that observed in the 1CK7 crystal structure of the proenzyme. In the second orientation, the N-terminal coil is packed against the Omega-loop and the alpha3-helix of the MMP-2 enzyme likewise in the so-called "superactivated" form of other MMPs. Binding to the MMP-2 catalytic domain of a short peptide substrate, which mimics the sequence of the alpha1 chain of collagen type I, is also examined considering again the two configurations of the N-terminal coil. All these MMP-2 models are subject to 20 ns molecular dynamics (MD) simulations followed by MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) calculations. The positioning of the N-terminal coil in the "superactivated" form is found to be energetically favored for the MMP-2 enzyme. Moreover, this configuration of the N-terminal moiety can facilitate the binding of peptide substrates. Globally, the results obtained in this study could be relevant for the structural-based design of specific MMP inhibitors.

  1. Effects of tumor necrosis factor-alpha and interferon-gamma on expressions of matrix metalloproteinase-2 and -9 in human bladder cancer cells.

    PubMed

    Shin, K Y; Moon, H S; Park, H Y; Lee, T Y; Woo, Y N; Kim, H J; Lee, S J; Kong, G

    2000-10-31

    We have investigated the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon (INF-gamma), the potent Bacillus Calmette-Guerin (BCG)-induced cytokines on the production of MMP-2, MMP-9, TIMP-1, TIMP-2 and MT1-MMP in high grade human bladder cancer cell lines, T-24, J-82 and HT-1376 cell lines. MMP-2 expression and activity were decreased in T-24 cells treated with both cytokines in a dose dependent manner. However, J-82 cells treated with TNF-alpha and INF-gamma revealed dose dependent increases of MMP-9 expression and activity with similar baseline expression and activity of MMP-2. HT-1376 cells after exposure to TNF-alpha only enhanced the expression and activity of MMP-9. These results indicate that TNF-alpha and INF-gamma could regulate the production of MMP-2 or MMP-9 on bladder cancer cells and their patterns of regulation are cell specific. Furthermore, this diverse response of bladder cancer cells to TNF-alpha and INF-gamma suggests that BCG immunotherapy may enhance the invasiveness of bladder cancer in certain conditions with induction of MMPs.

  2. Solamargine inhibits migration and invasion of human hepatocellular carcinoma cells through down-regulation of matrix metalloproteinases 2 and 9 expression and activity.

    PubMed

    Sani, Iman Karimi; Marashi, Seyed Hassan; Kalalinia, Fatemeh

    2015-08-01

    Solamargine is a steroidal alkaloid glycoside isolated from Solanum nigrum. The aim of this study was to investigate the effects of solamargine on tumor migration and invasion in aggressive human hepatocellular carcinoma cells. The MTT assay was used to assess the effects of solamargine on the viability of HepG2 cells. Migration and invasion ability of HepG2 cells under solamargine treatment were examined by a wound healing migration assay and Boyden chamber assay, respectively. Western blotting assays were used to detect the expression of MMP-2 and MMP-9 proteins and MMP-2 and MMP-9 activity were analyzed by gelatin zymography assay. Solamargine reduced HepG2 cell viability in a concentration-dependent manner. At 7.5μM solamargine decreased cell viability by less than 20% in HepG2 cells. A wound healing migration assay and Boyden chamber invasion assay showed that solamargine significantly inhibited in vitro migration and invasion of HepG2 cells. At the highest dose, solamargine decreased cell migration and invasion by more than 70% and 72% in HepG2 cells, respectively. Western blotting and gelatin zymography results showed that solamargine reduced expression and function of MMP-2 and MMP-9 proteins. In conclusion, the results showed that solamargine significantly inhibits migration and invasion of HepG2 cells by down-regulating MMP-2 and MMP-9 expression and activity.

  3. Gene targeting reveals the role of Oc90 as the essential organizer of the otoconial organic matrix.

    PubMed

    Zhao, Xing; Yang, Hua; Yamoah, Ebenezer N; Lundberg, Yunxia Wang

    2007-04-15

    A critical part of the functional development of our peripheral balance system is the embryonic formation of otoconia, composite crystals that overlie and provide optimal stimulus input to the sensory epithelium of the gravity receptor in the inner ear. To date neither the functions of otoconial proteins nor the processes of crystal formation are clearly defined. Using gene targeting and protein analysis strategies, we demonstrate that the predominant mammalian otoconin, otoconin-90/95 (Oc90), is essential for formation of the organic matrix of otoconia by specifically recruiting other matrix components, which includes otolin, a novel mammalian otoconin that we identified to be in wildtype murine otoconia. We show that this matrix controls otoconia growth and morphology by embedding the crystallites during seeding and growth. During otoconia development, the organic matrix forms prior to CaCO3 deposition and provides optimal calcification efficiency. Histological and ultrastructural examinations show normal inner ear epithelial morphology but reduced acellular matrices, including otoconial, cupular and tectorial membranes, in Oc90 null mice, likely due to an absence of Oc90 and a profound reduction of otolin. Our data demonstrate the critical roles of otoconins in otoconia seeding, growth and anchoring and suggest mechanistic similarities and differences between otoconia and bone calcification.

  4. Gene targeting reveals the role of Oc90 as the essential organizer of the otoconial organic matrix

    PubMed Central

    Zhao, Xing; Yang, Hua; Yamoah, Ebenezer N; Lundberg, Yunxia Wang

    2007-01-01

    A critical part of the functional development of our peripheral balance system is the embryonic formation of otoconia, composite crystals that overlie and provide optimal stimulus input to the sensory epithelium of the gravity receptor in the inner ear. To date neither the functions of otoconial proteins nor the processes of crystal formation are clearly defined. Using gene targeting and protein analysis strategies, we demonstrate that the predominant mammalian otoconin, otoconin-90/95 (Oc90), is essential for formation of the organic matrix of otoconia by specifically recruiting other matrix components, which includes otolin, a novel mammalian otoconin that we identified to be in wildtype murine otoconia. We show that this matrix controls otoconia growth and morphology by embedding the crystallites during seeding and growth. During otoconia development, the organic matrix forms prior to CaCO3 deposition and provides optimal calcification efficiency. Histological and ultrastructural examinations show normal inner ear epithelial morphology but reduced acellular matrices, including otoconial, cupular and tectorial membranes, in Oc90 null mice, likely due to an absence of Oc90 and a profound reduction of otolin. Our data demonstrate the critical roles of otoconins in otoconia seeding, growth and anchoring and suggest mechanistic similarities and differences between otoconia and bone calcification. PMID:17300776

  5. The matrix attachment region-binding protein SATB1 participates in negative regulation of tissue-specific gene expression.

    PubMed Central

    Liu, J; Bramblett, D; Zhu, Q; Lozano, M; Kobayashi, R; Ross, S R; Dudley, J P

    1997-01-01

    The nuclear matrix has been implicated in several cellular processes, including DNA replication, transcription, and RNA processing. In particular, transcriptional regulation is believed to be accomplished by binding of chromatin loops to the nuclear matrix and by the concentration of specific transcription factors near these matrix attachment regions (MARs). A number of MAR-binding proteins have been identified, but few have been directly linked to tissue-specific transcription. Recently, we have identified two cellular protein complexes (NBP and UBP) that bind to a region of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) previously shown to contain at least two negative regulatory elements (NREs) termed the promoter-proximal and promoter-distal NREs. These NREs are absent from MMTV strains that cause T-cell lymphomas instead of mammary carcinomas. We show here that NBP binds to a 22-bp sequence containing an imperfect inverted repeat in the promoter-proximal NRE. Previous data showed that a mutation (p924) within the inverted repeat elevated basal transcription from the MMTV promoter and destabilized the binding of NBP, but not UBP, to the proximal NRE. By using conventional and affinity methods to purify NBP from rat thymic nuclear extracts, we obtained a single major protein of 115 kDa that was identified by protease digestion and partial sequencing analysis as the nuclear matrix-binding protein special AT-rich sequence-binding protein 1 (SATB1). Antibody ablation, distamycin inhibition of binding, renaturation and competition experiments, and tissue distribution data all confirmed that the NBP complex contained SATB1. Similar types of experiments were used to show that the UBP complex contained the homeodomain protein Cux/CDP that binds the MAR of the intronic heavy-chain immunoglobulin enhancer. By using the p924 mutation within the MMTV LTR upstream of the chloramphenicol acetyltransferase gene, we generated two strains of transgenic mice

  6. Temperature and food influence shell growth and mantle gene expression of shell matrix proteins in the pearl oyster Pinctada margaritifera.

    PubMed

    Joubert, Caroline; Linard, Clémentine; Le Moullac, Gilles; Soyez, Claude; Saulnier, Denis; Teaniniuraitemoana, Vaihiti; Ky, Chin Long; Gueguen, Yannick

    2014-01-01

    In this study, we analyzed the combined effect of microalgal concentration and temperature on the shell growth of the bivalve Pinctada margaritifera and the molecular mechanisms underlying this biomineralization process. Shell growth was measured after two months of rearing in experimental conditions, using calcein staining of the calcified structures. Molecular mechanisms were studied though the expression of 11 genes encoding proteins implicated in the biomineralization process, which was assessed in the mantle. We showed that shell growth is influenced by both microalgal concentration and temperature, and that these environmental factors also regulate the expression of most of the genes studied. Gene expression measurement of shell matrix protein thereby appears to be an appropriate indicator for the evaluation of the biomineralization activity in the pearl oyster P. margaritifera under varying environmental conditions. This study provides valuable information on the molecular mechanisms of mollusk shell growth and its environmental control.

  7. Induction of matrix metalloprotease-1 gene expression by retinoic acid in the human pancreatic tumour cell line Dan-G

    PubMed Central

    Marschall, Z von; Riecken, E-O; Rosewicz, S

    1999-01-01

    We have investigated the effects of retinoic acid (RA) on matrix metalloprotease-1 (MMP-1) gene expression in the human pancreatic tumour cell line Dan-G. 13-cis RA results in a time- and dose-dependent increase of MMP-1 protein concentration. These stimulatory effects were paralleled by a time- and dose-dependent increase of MMP-1 mRNA steady-state concentrations. Nuclear run-on analysis revealed that the increase of MMP-1 mRNA was partially due to an increase of MMP-1 gene transcription. In addition, 13-cis RA treatment results in an increase of MMP-1 mRNA stability. These data demonstrate that RA stimulates MMP-1 gene expression in human pancreatic carcinoma cells by transcriptional and post-transcriptional mechanisms. © 1999 Cancer Research Campaign PMID:10362099

  8. Spatial, Temporal, and Matrix Variability of Clostridium botulinum Type E Toxin Gene Distribution at Great Lakes Beaches.

    PubMed

    Wijesinghe, Rasanthi U; Oster, Ryan J; Haack, Sheridan K; Fogarty, Lisa R; Tucker, Taaja R; Riley, Stephen C

    2015-07-01

    Clostridium botulinum type E toxin is responsible for extensive mortality of birds and fish in the Great Lakes. The C. botulinum bontE gene that produces the type E toxin was amplified with quantitative PCR from 150 sloughed algal samples (primarily Cladophora species) collected during summer 2012 from 10 Great Lakes beaches in five states; concurrently, 74 sediment and 37 water samples from four sites were also analyzed. The bontE gene concentration in algae was significantly higher than in water and sediment (P < 0.05), suggesting that algal mats provide a better microenvironment for C. botulinum. The bontE gene was detected most frequently in algae at Jeorse Park and Portage Lake Front beaches (Lake Michigan) and Bay City State Recreation Area beach on Saginaw Bay (Lake Huron), where 77, 100, and 83% of these algal samples contained the bontE gene, respectively. The highest concentration of bontE was detected at Bay City (1.98 × 10(5) gene copies/ml of algae or 5.21 × 10(6) g [dry weight]). This study revealed that the bontE gene is abundant in the Great Lakes but that it has spatial, temporal, and matrix variability. Further, embayed beaches, low wave height, low wind velocity, and greater average water temperature enhance the bontE occurrence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Angiogenesis-related genes may be a more important factor than matrix metalloproteinases in bronchopulmonary dysplasia development

    PubMed Central

    Yang, Min; Chen, Bo-Lin; Huang, Jian-Bao; Meng, Yan-Ni; Duan, Xiao-Jun; Chen, Lu; Li, Lin-Rui; Chen, Yan-Ping

    2017-01-01

    We characterized the expression profile of angiogenesis-related genes (ARG) and matrix metalloproteinase (MMP) genes in preterm infants, with and without bronchopulmonary dysplasia (BPD). We reanalyzed a gene expression dataset for preterm infants from the Gene Expression Omnibus database using the Gene-Cloud of Biotechnology Information platform. A total of 1,652 genes were differentially (1.2-fold change) expressed: 811 were highly expressed in infants with BPD, and 841 were highly expressed in those without BPD. Twenty-eight and 11 ARGs were upregulated in infants with and without BPD, respectively. Among 27 detected MMPs and TIMPs, MMP8, MMP9, MMP25, TIMP2 and TIMP3 were differently expressed. Levels of THBS1, MMP8, MMP9, MMP25, TIMP2 and TIMP3 increased as severity of BPD and retinopathy of prematurity (ROP) increased, whereas ETS1, LEF1 and SPOCK2 exhibited the opposite trend. Expression of ETS1 and LEF1 had a fitting rate of R2 = 0.849 and P < 0.001. ELISAs showed a positive correlation between THBS1 and CD36 (receptor of THBS1) levels in serum samples from preterm infants. Our study indicates that the upregulation of THBS1 and downregulation of ETS1, LEF1 promotes BPD in preterm infants by disrupting blood vessel formation rather than by dysregulation of MMPs and TIMPs. PMID:28103583

  10. Retinoic acid is a negative regulator of matrix Gla protein gene expression in teleost fish Sparus aurata.

    PubMed

    Conceição, Natércia; Laizé, Vincent; Simões, Brigite; Pombinho, António R; Cancela, M Leonor

    2008-01-01

    Matrix Gla protein (MGP) is an extracellular mineral-binding protein expressed in several tissues while accumulated only in bone and cartilage under physiological conditions. Although the precise molecular mechanism of action of MGP remains unknown, all available evidence indicates that it acts as a physiological inhibitor of mineralization. This work presents the cloning of gilthead seabream MGP gene (SaMGP) and the functional analysis of its promoter. SaMGP gene was found to be organized in five exons and to be under control of a distal and a proximal promoter, both, capable of activating SaMGP transcription in transient transfections. Furthermore, we present strong evidence that retinoic acid down-regulates SaMGP gene transcription by interacting, through binding of its receptor, with a specific region within distal promoter. Interestingly, the presence of repetitive motifs in the proximity of SaMGP gene regulatory regions suggests that they may modulate promoter accessibility to transcription machinery, as already seen for other genes. This work provides additional evidence of the usefulness of non-mammalian model systems to elucidate the complex regulation of MGP gene transcription.

  11. Spatial, Temporal, and Matrix Variability of Clostridium botulinum Type E Toxin Gene Distribution at Great Lakes Beaches

    PubMed Central

    Oster, Ryan J.; Haack, Sheridan K.; Fogarty, Lisa R.; Tucker, Taaja R.; Riley, Stephen C.

    2015-01-01

    Clostridium botulinum type E toxin is responsible for extensive mortality of birds and fish in the Great Lakes. The C. botulinum bontE gene that produces the type E toxin was amplified with quantitative PCR from 150 sloughed algal samples (primarily Cladophora species) collected during summer 2012 from 10 Great Lakes beaches in five states; concurrently, 74 sediment and 37 water samples from four sites were also analyzed. The bontE gene concentration in algae was significantly higher than in water and sediment (P < 0.05), suggesting that algal mats provide a better microenvironment for C. botulinum. The bontE gene was detected most frequently in algae at Jeorse Park and Portage Lake Front beaches (Lake Michigan) and Bay City State Recreation Area beach on Saginaw Bay (Lake Huron), where 77, 100, and 83% of these algal samples contained the bontE gene, respectively. The highest concentration of bontE was detected at Bay City (1.98 × 105 gene copies/ml of algae or 5.21 × 106 g [dry weight]). This study revealed that the bontE gene is abundant in the Great Lakes but that it has spatial, temporal, and matrix variability. Further, embayed beaches, low wave height, low wind velocity, and greater average water temperature enhance the bontE occurrence. PMID:25888178

  12. Matrix Metalloproteinases: The Gene Expression Signatures of Head and Neck Cancer Progression

    PubMed Central

    Iizuka, Shinji; Ishimaru, Naozumi; Kudo, Yasusei

    2014-01-01

    Extracellular matrix degradation by matrix metalloproteinases (MMPs) plays a pivotal role in cancer progression by promoting motility, invasion and angiogenesis. Studies have shown that MMP expression is increased in head and neck squamous cell carcinomas (HNSCCs), one of the most common cancers in the world, and contributes to poor outcome. In this review, we examine the expression pattern of MMPs in HNSCC by microarray datasets and summarize the current knowledge of MMPs, specifically MMP-1, -3, -7 -10, -12, -13, 14 and -19, that are highly expressed in HNSCCs and involved cancer invasion and angiogenesis. PMID:24531055

  13. Beneficial effect of the antioxidant riboflavin on gene expression of extracellular matrix elements, antioxidants and oxidases in keratoconic stromal cells.

    PubMed

    Cheung, Isabella M Y; McGhee, Charles N J; Sherwin, Trevor

    2014-07-01

    Keratoconus manifests as a conical protrusion of the cornea and is characterised by stromal thinning. This causes debilitating visual impairment which may necessitate corneal transplantation. Therapeutic targets related to disease mechanisms are currently lacking, as the pathobiology remains unclear. Many pathological features may be manifestations of defects in wound healing and reactive oxygen species (ROS)-associated functions. In a wide range of tissue and cell types, antioxidant exposure has beneficial effects on both of these pathways. This study investigated the effect of treatment with the antioxidant riboflavin on wound healing and ROS-associated functions in keratoconus. Stromal cells were isolated from human central keratoconic (n = 3) and normal (n = 3) corneas. Total RNA was extracted and reverse-transcribed into complementary DNA. The gene expression of 22 genes involved in repair (eight normal and four repair-type extracellular matrix constituents) and ROS-associated processes (eight antioxidants and two ROS-synthesising oxidases) was quantified using quantitative polymerase chain reaction. This was also performed on keratoconic stromal cells treated in vitro with riboflavin (n = 3). In stromal cells from untreated keratoconic corneas (compared with untreated normal corneas), there was an up-regulation of 7/12 extracellular matrix elements. Four of eight antioxidants and two of two oxidases were also increased. In treated keratoconic corneas (compared with untreated keratoconic corneas), six out of eight normal extracellular matrix constituents were up-regulated and two of four repair-type molecules were reduced. An increase was also observed in seven out of eight antioxidants and there was a diminution in two out of two oxidases. Riboflavin encourages the synthesis of a normal extracellular matrix and reduces reactive oxygen species levels in keratoconus. This supports the occurrence of wound healing and ROS-associated abnormalities in keratoconus

  14. The matrix protein gene sequence analysis reveals close relationship between peste des petits ruminants virus (PPRV) and dolphin morbillivirus.

    PubMed

    Haffar, A; Libeau, G; Moussa, A; Cécile, M; Diallo, A

    1999-10-01

    The gene encoding the matrix protein of peste des petits ruminants virus (PPRV) has been cloned and its nucleotide sequence determined. This gene is 1466 nucleotides long and contains an open reading frame (ORF) capable of encoding a basic protein of 335 amino acid residues with a predicted molecular weight of 38,057 Da. This ORF starts at position 33-35 and ends with the codon TAA at position 1038-1040 thus leaving a long untranslated region (426 nucleotides) at the 3' end of the messenger RNA. This fragment is very G/C rich (68.5%) and in contrast to the ORF region appears to be least conserved in the M gene sequence of the morbilliviruses. A comparison of the PPRV M protein with those of other viruses in the group confirms the previously noted high degree of conservation for this protein sequence. The percent of identity within the group ranges from 76.7 to 86.9%, the highest being with the dolphin morbillivirus matrix protein.

  15. Balancing Cell Migration with Matrix Degradation Enhances Gene Delivery to Cells Cultured Three-Dimensionally Within Hydrogels

    PubMed Central

    Shepard, Jaclyn A.; Huang, Alyssa; Shikanova, Ariella; Shea, Lonnie D.

    2010-01-01

    In regenerative medicine, hydrogels are employed to fill defects and support the infiltration of cells that can ultimately regenerate tissue. Gene delivery within hydrogels targeting infiltrating cells has the potential to promote tissue formation, but the delivery efficiency of nonviral vectors within hydrogels is low hindering their applicability in tissue regeneration. To improve their functionality, we have conducted a mechanistic study to investigate the contribution of cell migration and matrix degradation on gene delivery. In this report, lipoplexes were entrapped within hydrogels based on poly(ethylene glycol) (PEG) crosslinked with peptides containing matrix metalloproteinase degradable sequences. The mesh size of these hydrogels is substantially less than the size of the entrapped lipoplexes, which can function to retain vectors. Cell migration and transfection were simultaneously measured within hydrogels with varying density of cell adhesion sites (Arg-Gly-Asp peptides) and solids content. Increasing RGD density increased expression levels up to 100-fold, while greater solids content sustained expression levels for 16 days. Increasing RGD density and decreasing solids content increased cell migration, which indicates expression levels increase with increased cell migration. Initially exposing cells to vector resulted in transient expression that declined after 2 days, verifying the requirement of migration to sustain expression. Transfected cells were predominantly located within the population of migrating cells for hydrogels that supported cell migration. Although the small mesh size retained at least 70% of the lipoplexes in the absence of cells after 32 days, the presence of cells decreased retention to 10% after 16 days. These results indicate that vectors retained within hydrogels contact migrating cells, and that persistent cell migration can maintain elevated expression levels. Thus matrix degradation and cell migration are fundamental design

  16. Construction of citrus gene coexpression networks from microarray data using random matrix theory.

    PubMed

    Du, Dongliang; Rawat, Nidhi; Deng, Zhanao; Gmitter, Fred G

    2015-01-01

    After the sequencing of citrus genomes, gene function annotation is becoming a new challenge. Gene coexpression analysis can be employed for function annotation using publicly available microarray data sets. In this study, 230 sweet orange (Citrus sinensis) microarrays were used to construct seven coexpression networks, including one condition-independent and six condition-dependent (Citrus canker, Huanglongbing, leaves, flavedo, albedo, and flesh) networks. In total, these networks contain 37 633 edges among 6256 nodes (genes), which accounts for 52.11% measurable genes of the citrus microarray. Then, these networks were partitioned into functional modules using the Markov Cluster Algorithm. Significantly enriched Gene Ontology biological process terms and KEGG pathway terms were detected for 343 and 60 modules, respectively. Finally, independent verification of these networks was performed using another expression data of 371 genes. This study provides new targets for further functional analyses in citrus.

  17. Construction of citrus gene coexpression networks from microarray data using random matrix theory

    PubMed Central

    Du, Dongliang; Rawat, Nidhi; Deng, Zhanao; Gmitter, Fred G.

    2015-01-01

    After the sequencing of citrus genomes, gene function annotation is becoming a new challenge. Gene coexpression analysis can be employed for function annotation using publicly available microarray data sets. In this study, 230 sweet orange (Citrus sinensis) microarrays were used to construct seven coexpression networks, including one condition-independent and six condition-dependent (Citrus canker, Huanglongbing, leaves, flavedo, albedo, and flesh) networks. In total, these networks contain 37 633 edges among 6256 nodes (genes), which accounts for 52.11% measurable genes of the citrus microarray. Then, these networks were partitioned into functional modules using the Markov Cluster Algorithm. Significantly enriched Gene Ontology biological process terms and KEGG pathway terms were detected for 343 and 60 modules, respectively. Finally, independent verification of these networks was performed using another expression data of 371 genes. This study provides new targets for further functional analyses in citrus. PMID:26504573

  18. TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves.

    PubMed

    Hagler, Michael A; Hadley, Thomas M; Zhang, Heyu; Mehra, Kashish; Roos, Carolyn M; Schaff, Hartzell V; Suri, Rakesh M; Miller, Jordan D

    2013-07-01

    Myxomatous mitral valve disease (MMVD) is associated with leaflet thickening, fibrosis, matrix remodelling, and leaflet prolapse. Molecular mechanisms contributing to MMVD, however, remain poorly understood. We tested the hypothesis that increased transforming growth factor-β (TGF-β) signalling and reactive oxygen species (ROS) are major contributors to pro-fibrotic gene expression in human and mouse mitral valves. Using qRT-PCR, we found that increased expression of TGF-β1 in mitral valves from humans with MMVD (n = 24) was associated with increased expression of connective tissue growth factor (CTGF) and matrix metalloproteinase 2 (MMP2). Increased levels of phospho-SMAD2/3 (western blotting) and expression of SMAD-specific E3 ubiquitin-protein ligases (SMURF) 1 and 2 (qRT-PCR) suggested that TGF-β1 signalling occurred through canonical signalling cascades. Oxidative stress (dihydroethidium staining) was increased in human MMVD tissue and associated with increases in NAD(P)H oxidase catalytic subunits (Nox) 2 and 4, occurring despite increases in superoxide dismutase 1 (SOD1). In mitral valves from SOD1-deficient mice, expression of CTGF, MMP2, Nox2, and Nox4 was significantly increased, suggesting that ROS can independently activate pro-fibrotic and matrix remodelling gene expression patterns. Furthermore, treatment of mouse mitral valve interstitial cells with cell permeable antioxidants attenuated TGF-β1-induced pro-fibrotic and matrix remodelling gene expression in vitro. Activation of canonical TGF-β signalling is a major contributor to fibrosis and matrix remodelling in MMVD, and is amplified by increases in oxidative stress. Treatments aimed at reducing TGF-β activation and oxidative stress in early MMVD may slow progression of MMVD.

  19. Gene-expression analysis of matrix metalloproteinases 1 and 2 and their tissue inhibitors in chronic periapical inflammatory lesions.

    PubMed

    Hadziabdic, Naida; Kurtovic-Kozaric, Amina; Pojskic, Naris; Sulejmanagic, Nedim; Todorovic, Ljubomir

    2016-03-01

    Periapical inflammatory lesions have been investigated previously, but understanding of pathogenesis of these lesions (granulomas and radicular cysts) at the molecular level is still questionable. Matrix metalloproteinases (MMPs) are enzymes involved in the development of periapical pathology, specifically inflammation and tissue destruction. To elucidate pathogenesis of periapical granulomas and radicular cysts, we undertook a detailed analysis of gene expression of MMP-1, MMP-2 and their tissue inhibitors, TIMP-1 and TIMP-2. A total of 149 samples were analyzed using real-time PCR (59 radicular cysts, 50 periapical granulomas and 40 healthy gingiva samples as controls) for expression of MMP-1, MMP-2, TIMP-1 and TIMP-2 genes. The determination of best reference gene for expression analysis of periapical lesions was done using a panel of 12 genes. We have shown that β-actin and GAPDH are not the most stable reference controls for gene expression analysis of inflammatory periapical tissues and healthy gingiva. The most suitable reference gene was determined to be SDHA (a succinate dehydrogenase complex, subunit A, flavoprotein [Fp]). We found that granulomas (n = 50) and radicular cysts (n = 59) exhibited significantly higher expression of all four examined genes, MMP-1, MMP-2, TIMP-1, and TIMP-2, when compared to healthy gingiva (n = 40; P < 0.05). This study has confirmed that the expression of MMP-1, MMP-2, TIMP-1, and TIMP-2 genes is important for the pathogenesis of periapical inflammatory lesions. Since the abovementioned markers were not differentially expressed in periapical granulomas and radicular cysts, the challenge of finding the genetic differences between the two lesions still remains. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Sequence analysis and expression of the M1 and M2 matrix protein genes of hirame rhabdovirus (HIRRV)

    USGS Publications Warehouse

    Nishizawa, T.; Kurath, G.; Winton, J.R.

    1997-01-01

    We have cloned and sequenced a 2318 nucleotide region of the genomic RNA of hirame rhabdovirus (HIRRV), an important viral pathogen of Japanese flounder Paralichthys olivaceus. This region comprises approximately two-thirds of the 3' end of the nucleocapsid protein (N) gene and the complete matrix protein (M1 and M2) genes with the associated intergenic regions. The partial N gene sequence was 812 nucleotides in length with an open reading frame (ORF) that encoded the carboxyl-terminal 250 amino acids of the N protein. The M1 and M2 genes were 771 and 700 nucleotides in length, respectively, with ORFs encoding proteins of 227 and 193 amino acids. The M1 gene sequence contained an additional small ORF that could encode a highly basic, arginine-rich protein of 25 amino acids. Comparisons of the N, M1, and M2 gene sequences of HIRRV with the corresponding sequences of the fish rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) or viral hemorrhagic septicemia virus (VHSV) indicated that HIRRV was more closely related to IHNV than to VHSV, but was clearly distinct from either. The putative consensus gene termination sequence for IHNV and VHSV, AGAYAG(A)(7), was present in the N-M1, M1-M2, and M2-G intergenic regions of HIRRV as were the putative transcription initiation sequences YGGCAC and AACA. An Escherichia coli expression system was used to produce recombinant proteins from the M1 and M2 genes of HIRRV. These were the same size as the authentic M1 and M2 proteins and reacted with anti-HIRRV rabbit serum in western blots. These reagents can be used for further study of the fish immune response and to test novel control methods.

  1. Structural defect linked to nonrandom mutations in the matrix gene of Biden strain subacute sclerosing panencephalitis virus defined by cDNA cloning and expression of chimeric genes

    SciTech Connect

    Ayata, M.; Hirano, A.; Wong, T.C.

    1989-03-01

    Biken strain, a nonproductive measles viruslike agent isolated from a subacute sclerosing panencephalitis (SSPE) patient, contains a posttranscriptional defect affecting matrix (M) protein. A putative M protein was translated in vitro with RNA from Biken strain-infected cells. A similar protein was detected in vivo by an antiserum against a peptide synthesized from the cloned M gene of Edmonston strain measles virus. By using a novel method, full-length cDNAs of the Biken M gene were selectively cloned. The cloned Biken M gene contained an open reading frame which encoded 8 extra carboxy-terminal amino acid residues and 20 amino acid substitutions predicted to affect both the hydrophobicity and secondary structure of the gene product. The cloned gene was expressed in vitro and in vivo into a 37,500 M/sub r/ protein electrophoretically and antigenically distinct from the M protein of Edmonston strain but identical to the M protein in Biken strain-infected cells. Chimeric M proteins synthesized in vitro and in vivo showed that the mutations in the carboxy-proximal region altered the local antigenicity and those in the amino region affected the overall protein conformation. The protein expressed from the Biken M gene was unstable in vivo. Instability was attributed to multiple mutations. These results offer insights into the basis of the defect in Biken strain and pose intriguing questions about the evolutionary origins of SSPE viruses in general.

  2. Global Gene Expression Profiling Of Human Pleural Mesotheliomas: Identification of Matrix Metalloproteinase 14 (MMP-14) as Potential Tumour Target

    PubMed Central

    Crispi, Stefania; Calogero, Raffaele A.; Santini, Mario; Mellone, Pasquale; Vincenzi, Bruno; Citro, Gennaro; Vicidomini, Giovanni; Fasano, Silvia; Meccariello, Rosaria; Cobellis, Gilda; Menegozzo, Simona; Pierantoni, Riccardo; Facciolo, Francesco; Baldi, Alfonso; Menegozzo, Massimo

    2009-01-01

    Background The goal of our study was to molecularly dissect mesothelioma tumour pathways by mean of microarray technologies in order to identify new tumour biomarkers that could be used as early diagnostic markers and possibly as specific molecular therapeutic targets. Methodology We performed Affymetrix HGU133A plus 2.0 microarray analysis, containing probes for about 39,000 human transcripts, comparing 9 human pleural mesotheliomas with 4 normal pleural specimens. Stringent statistical feature selection detected a set of differentially expressed genes that have been further evaluated to identify potential biomarkers to be used in early diagnostics. Selected genes were confirmed by RT-PCR. As reported by other mesothelioma profiling studies, most of genes are involved in G2/M transition. Our list contains several genes previously described as prognostic classifier. Furthermore, we found novel genes, never associated before to mesotheliom that could be involved in tumour progression. Notable is the identification of MMP-14, a member of matrix metalloproteinase family. In a cohort of 70 mesothelioma patients, we found by a multivariate Cox regression analysis, that the only parameter influencing overall survival was expression of MMP14. The calculated relative risk of death in MM patients with low MMP14 expression was significantly lower than patients with high MMp14 expression (P = 0.002). Conclusions Based on the results provided, this molecule could be viewed as a new and effective therapeutic target to test for the cure of mesothelioma. PMID:19753302

  3. Arnica montana Stimulates Extracellular Matrix Gene Expression in a Macrophage Cell Line Differentiated to Wound-Healing Phenotype

    PubMed Central

    Marzotto, Marta; Bonafini, Clara; Olioso, Debora; Baruzzi, Anna; Bettinetti, Laura; Di Leva, Francesca; Galbiati, Elisabetta; Bellavite, Paolo

    2016-01-01

    Arnica montana (Arnica m.) is used for its purported anti-inflammatory and tissue healing actions after trauma, bruises, or tissue injuries, but its cellular and molecular mechanisms are largely unknown. This work tested Arnica m. effects on gene expression using an in vitro model of macrophages polarized towards a “wound-healing” phenotype. The monocyte-macrophage human THP-1 cell line was cultured and differentiated with phorbol-myristate acetate and Interleukin-4, then exposed for 24h to Arnica m. centesimal (c) dilutions 2c, 3c, 5c, 9c, 15c or Control. Total RNA was isolated and cDNA libraries were sequenced with a NextSeq500 sequencer. Genes with significantly positive (up-regulated) or negative (down-regulated) fold changes were defined as differentially expressed genes (DEGs). A total of 20 DEGs were identified in Arnica m. 2c treated cells. Of these, 7 genes were up-regulated and 13 were down-regulated. The most significantly up-regulated function concerned 4 genes with a conserved site of epidermal growth factor-like region (p<0.001) and three genes of proteinaceous extracellular matrix, including heparin sulphate proteoglycan 2 (HSPG2), fibrillin 2 (FBN2), and fibronectin (FN1) (p<0.01). Protein assay confirmed a statistically significant increase of fibronectin production (p<0.05). The down-regulated transcripts derived from mitochondrial genes coding for some components of electron transport chain. The same groups of genes were also regulated by increasing dilutions of Arnica m. (3c, 5c, 9c, 15c), although with a lower effect size. We further tested the healing potential of Arnica m. 2c in a scratch model of wound closure based on the motility of bone marrow-derived macrophages and found evidence of an accelerating effect on cell migration in this system. The results of this work, taken together, provide new insights into the action of Arnica m. in tissue healing and repair, and identify extracellular matrix regulation by macrophages as a

  4. Arnica montana Stimulates Extracellular Matrix Gene Expression in a Macrophage Cell Line Differentiated to Wound-Healing Phenotype.

    PubMed

    Marzotto, Marta; Bonafini, Clara; Olioso, Debora; Baruzzi, Anna; Bettinetti, Laura; Di Leva, Francesca; Galbiati, Elisabetta; Bellavite, Paolo

    2016-01-01

    Arnica montana (Arnica m.) is used for its purported anti-inflammatory and tissue healing actions after trauma, bruises, or tissue injuries, but its cellular and molecular mechanisms are largely unknown. This work tested Arnica m. effects on gene expression using an in vitro model of macrophages polarized towards a "wound-healing" phenotype. The monocyte-macrophage human THP-1 cell line was cultured and differentiated with phorbol-myristate acetate and Interleukin-4, then exposed for 24h to Arnica m. centesimal (c) dilutions 2c, 3c, 5c, 9c, 15c or Control. Total RNA was isolated and cDNA libraries were sequenced with a NextSeq500 sequencer. Genes with significantly positive (up-regulated) or negative (down-regulated) fold changes were defined as differentially expressed genes (DEGs). A total of 20 DEGs were identified in Arnica m. 2c treated cells. Of these, 7 genes were up-regulated and 13 were down-regulated. The most significantly up-regulated function concerned 4 genes with a conserved site of epidermal growth factor-like region (p<0.001) and three genes of proteinaceous extracellular matrix, including heparin sulphate proteoglycan 2 (HSPG2), fibrillin 2 (FBN2), and fibronectin (FN1) (p<0.01). Protein assay confirmed a statistically significant increase of fibronectin production (p<0.05). The down-regulated transcripts derived from mitochondrial genes coding for some components of electron transport chain. The same groups of genes were also regulated by increasing dilutions of Arnica m. (3c, 5c, 9c, 15c), although with a lower effect size. We further tested the healing potential of Arnica m. 2c in a scratch model of wound closure based on the motility of bone marrow-derived macrophages and found evidence of an accelerating effect on cell migration in this system. The results of this work, taken together, provide new insights into the action of Arnica m. in tissue healing and repair, and identify extracellular matrix regulation by macrophages as a therapeutic

  5. Planarians as a model to assess in vivo the role of matrix metalloproteinase genes during homeostasis and regeneration.

    PubMed

    Isolani, Maria Emilia; Abril, Josep F; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata

    2013-01-01

    Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results

  6. Planarians as a Model to Assess In Vivo the Role of Matrix Metalloproteinase Genes during Homeostasis and Regeneration

    PubMed Central

    Isolani, Maria Emilia; Abril, Josep F.; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata

    2013-01-01

    Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results

  7. Sub-toxic nicotine concentrations affect extracellular matrix and growth factor signaling gene expressions in human osteoblasts.

    PubMed

    Marinucci, Lorella; Bodo, Maria; Balloni, Stefania; Locci, Paola; Baroni, Tiziano

    2014-12-01

    Exposure to nicotine and other compounds contained in cigarette smoking affects human health. This study examined the effects of exposure to a single or multiple sub-toxic nicotine concentrations on human osteoblasts. Cell growth and expression of genes involved in bone differentiation, extracellular matrix (ECM) metabolism, and growth factor signaling pathways were investigated in nicotine-treated cells compared to untreated cells. Depending on osteoblast concentration and maturation stages, nicotine differently regulated cell growth. Real-time PCR showed regulated expressions of genes expressed by nicotine-treated osteoblasts compared to untreated cells. Among ECM genes, type I collagen was down-regulated and osteonectin was up-regulated in nicotine-treated osteoblasts; similarly, fibroblast growth factor-1 (FGF1) and fibroblast growth factor-2 (FGF2), two members of FGF signaling system, were discordantly modulated; genes involved in osteoblast maturation and differentiation such as alkaline phosphatase (ALP), runt-related transcription factor-2 (RUNX2), and bone sialoprotein (BSP) were over-expressed after drug treatment. Our results show a positive association between nicotine exposure and osteoblast phenotype and illustrate for the first time a mechanism whereby acute or chronic exposure to sub-toxic nicotine concentrations may affect bone formation through the impairment of growth factor signaling system and ECM metabolism.

  8. Human Umbilical Cord Matrix Mesenchymal Stem Cells Suppress the Growth of Breast Cancer by Expression of Tumor Suppressor Genes

    PubMed Central

    Ohta, Naomi; Ishiguro, Susumu; Kawabata, Atsushi; Uppalapati, Deepthi; Pyle, Marla; Troyer, Deryl; De, Supriyo; Zhang, Yongqing; Becker, Kevin G.; Tamura, Masaaki

    2015-01-01

    Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species’ breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression. PMID:25942583

  9. Structural defect linked to nonrandom mutations in the matrix gene of biken strain subacute sclerosing panencephalitis virus defined by cDNA cloning and expression of chimeric genes.

    PubMed Central

    Ayata, M; Hirano, A; Wong, T C

    1989-01-01

    Biken strain, a nonproductive measles viruslike agent isolated from a subacute sclerosing panencephalitis (SSPE) patient, contains a posttranscriptional defect affecting matrix (M) protein. A putative M protein was translated in vitro with RNA from Biken strain-infected cells. A similar protein was detected in vivo by an antiserum against a peptide synthesized from the cloned M gene of Edmonston strain measles virus. By using a novel method, full-length cDNAs of the Biken M gene were selectively cloned. The cloned Biken M gene contained an open reading frame which encoded 8 extra carboxy-terminal amino acid residues and 20 amino acid substitutions predicted to affect both the hydrophobicity and secondary structure of the gene product. The cloned gene was expressed in vitro and in vivo into a 37,500 Mr protein electrophoretically and antigenically distinct from the M protein of Edmonston strain but identical to the M protein in Biken strain-infected cells. Chimeric M proteins synthesized in vitro and in vivo showed that the mutations in the carboxy-proximal region altered the local antigenicity and those in the amino region affected the overall protein conformation. The protein expressed from the Biken M gene was unstable in vivo. Instability was attributed to multiple mutations in both the amino and carboxy regions. A surprising number of mutations in both the coding and noncoding regions of the Biken M gene were identical to those in an independently isolated SSPE virus strain with a similar defect. These results offer insights into the basis of the defect in Biken strain and pose intriguing questions about the evolutionary origins of SSPE viruses in general. Images PMID:2915379

  10. Role of the extracellular matrix in tissue-specific gene expression in the sea urchin embryo.

    PubMed

    Benson, S; Rawson, R; Killian, C; Wilt, F

    1991-07-01

    The role of extracellular matrix (ECM) in the differentiation of tissue types was examined in embryos of Strongylocentrotus purpuratus. We have examined the expression of various tissue-specific molecular markers after disrupting the ECM by culturing embryos in the presence of beta-aminoproprionitrile fumarate (BAPN), which disrupts collagen deposition, and beta-D-xyloside, which disrupts proteoglycan metabolism. The markers examined included accumulation of primary mesenchyme-specific mRNA (SM 50); an aboral ectoderm-specific mRNA (Spec 1); and a gut-specific enzyme, alkaline phosphatase. Treatment with BAPN or beta-D-xyloside results in developmental arrest at the mesenchyme blastula stage. Although spicule formation is inhibited, the accumulation of SM 50 transcripts and the synthesis of most of the prominent spicule matrix proteins is similar to that of control embryos. Spec 1 mRNA, in contrast, while accumulating to a significant extent when collagen and proteoglycan metabolism is disrupted, does accumulate to a level somewhat lower than that seen in control embryos. Additionally, the postgastrula rise in gut-specific alkaline phosphatase is reversibly inhibited by BAPN and xyloside treatment. These results demonstrate a differential effect of the ECM on expression of tissue-specific molecular markers.

  11. Role of Nuclear Matrix in Estrogen Regulated Gene Expression in Human Breast Cancer Cells

    DTIC Science & Technology

    1998-08-01

    A novel retinoic acid receptor alpha gene in human breast carcinoma fusion between MOZ and the nuclear receptor coactivator TIF2 cells is mediated...Gene Expression in Human Breast DAMD17-96-1-6269 Cancer Cells 6 . AUTHORIS) Laurel T. Holth, Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8...kinases (serine/threonine or tyrosine) (99). Criteria for selection NMBCs 1-5 in ER+ human breast tumours and NMBC 6 in were similar to that of the 10T

  12. Tenascin-X: a novel extracellular matrix protein encoded by the human XB gene overlapping P450c21B

    PubMed Central

    1993-01-01

    A human gene termed XB overlaps the P450c21B gene encoding steroid 21- hydroxylase and encodes a protein that closely resembles extracellular matrix proteins. Sequencing of phage and cosmid clones and of cDNA fragments shows that the XB gene spans 65 kb of DNA, consisting of 39 exons that encode a 12-kb mRNA. The predicted protein of over 400 kD consists of five distinct domains: a signal peptide, a hydrophobic domain containing three heptad repeats, a series of 18.5 EGF-like repeats, 29 fibronectin type III repeats, and a carboxy-terminal fibrinogen-like domain. Because the structure of the protein encoded by the XB gene closely resembles tenascin, we term this protein tenascin-X (TN-X), and propose a simplified nomenclature system for the family of tenascins. RNase protection experiments show that the TN-X transcript is expressed ubiquitously in human fetal tissues, with the greatest expression in the fetal testis and in fetal skeletal, cardiac, and smooth muscle. Two adrenal-specific transcripts, P450c21B (steroid 21- hydroxylase) and Y (an untranslated transcript) overlap the XB gene on the complementary strand of DNA, yielding a unique array of overlapping transcripts: a "polygene." In situ hybridization histochemistry experiments show that the TN-X transcript and the P450c21 and Y transcripts encoded on the complementary DNA strand are all expressed in the same cells of the human adrenal cortex. Genetic data suggest that TN-X may be essential for life. PMID:7686164

  13. Analysis of matrix metalloproteinase-1 gene polymorphisms and expression in benign and malignant breast tumors

    PubMed Central

    Zhou, Jing; Brinckerhoff, Constance; Lubert, Susan; Yang, Kui; Saini, Jasmine; Hooke, Jeffrey; Mural, Richard; Shriver, Craig; Somiari, Stella

    2013-01-01

    A guanine insertion polymorphism in matrix metalloproteinase-1 promoter (MMP-1 2G) is linked to early onset and aggressiveness in cancer. We determined the role of MMP-1 2G on the level of MMP-1 expression and breast cancer severity in benign breast disease, atypical hyperplasia, invasive and non invasive (in situ) breast cancer. We observed no significant difference in genotype distribution among the different breast disease groups. However, the level of MMP-1 expression was significantly higher in atypical ductal hyperplasia compared to benign breast disease; and in invasive breast cancer compared to in situ breast cancer. MMP-1 2G insertion polymorphism in the invasive group also correlated significantly with the expression of MMP-1 and breast cancer prognostic markers HER2 and P53. PMID:22011282

  14. Heart failure alters matrix metalloproteinase gene expression and activity in rat skeletal muscle.

    PubMed

    Carvalho, Robson Francisco; Dariolli, Rafael; Justulin Junior, Luis Antonio; Sugizaki, Mário Mateus; Politi Okoshi, Marina; Cicogna, Antonio Carlos; Felisbino, Sérgio Luis; Dal Pai-Silva, Maeli

    2006-12-01

    Heart failure is associated with a skeletal muscle myopathy with cellular and extracellular alterations. The hypothesis of this investigation is that extracellular changes may be associated with enhanced mRNA expression and activity of matrix metalloproteinases (MMP). We examined MMP mRNA expression and MMP activity in Soleus (SOL), extensor digitorum longus (EDL), and diaphragm (DIA) muscles of young Wistar rat with monocrotaline-induced heart failure. Rats injected with saline served as age-matched controls. MMP2 and MMP9 mRNA contents were determined by RT-PCR and MMP activity by electrophoresis in gelatin-containing polyacrylamide gels in the presence of SDS under non-reducing conditions. Heart failure increased MMP9 mRNA expression and activity in SOL, EDL and DIA and MMP2 mRNA expression in DIA. These results suggest that MMP changes may contribute to the skeletal muscle myopathy during heart failure.

  15. The Enhancement of Bone Regeneration by Gene Activated Matrix Encoding for Platelet Derived Growth Factor

    PubMed Central

    Elangovan, Satheesh; D’Mello, Sheetal R.; Hong, Liu; Ross, Ryan D.; Allamargot, Chantal; Dawson, Deborah V.; Stanford, Clark M.; Johnson, Georgia K.; Sumner, D. Rick; Salem, Aliasger K.

    2013-01-01

    Gene therapy using non-viral vectors that are safe and efficient in transfecting target cells is an effective approach to overcome the shortcomings of protein delivery of growth factors. The objective of this study was to develop and test a non-viral gene delivery system for bone regeneration utilizing a collagen scaffold to deliver polyethylenimine (PEI)-plasmid DNA (pDNA) [encoding platelet derived growth factor-B (PDGF-B)] complexes. The PEI-pPDGF-B complexes were fabricated at amine (N) to phosphate (P) ratio of 10 and characterized for size, surface charge, and in vitro cytotoxicity and transfection efficacy in human bone marrow stromal cells (BMSCs). The influence of the complex-loaded collagen scaffold on cellular attachment and recruitment was evaluated in vitro using microscopic techniques. The in vivo regenerative capacity of the gene delivery system was assessed in 5 mm diameter critical-sized calvarial defects in Fisher 344 rats. The complexes were ~100 nm in size with a positive surface charge. Complexes prepared at an N/P ratio of 10 displayed low cytotoxicity as assessed by a cell viability assay. Confocal microscopy revealed significant proliferation of BMSCs on complex-loaded collagen scaffolds compared to empty scaffolds. In vivo studies showed significantly higher new bone volume/total volume (BV/TV) % in calvarial defects treated with the complex-activated scaffolds following 4 weeks of implantation (14- and 44-fold higher) when compared to empty defects or empty scaffolds, respectively. Together, these findings suggest that non-viral PDGF-B gene-activated scaffolds are effective for bone regeneration and are an attractive gene delivery system with significant potential for clinical translation. PMID:24161167

  16. Impact of acetaminophen consumption and resistance exercise on extracellular matrix gene expression in human skeletal muscle.

    PubMed

    Patel, Shivam H; D'Lugos, Andrew C; Eldon, Erica R; Curtis, Donald; Dickinson, Jared M; Carroll, Chad C

    2017-07-01

    Acetaminophen (APAP) given during chronic exercise reduces skeletal muscle collagen and cross-linking in rats. We propose that the effect of APAP on muscle extracellular matrix (ECM) may, in part, be mediated by dysregulation of the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs). The purpose of this study was to evaluate the impact of APAP consumption during acute resistance exercise (RE) on several regulators of the ECM in human skeletal muscle. In a double-blinded, placebo-controlled, randomized crossover design, recreationally active men (n = 8, 25 ± 2 yr) performed two trials of knee extension. Placebo (PLA) or APAP (1,000 mg/6 h) was given for 24 h before and immediately following RE. Vastus lateralis biopsies were taken at baseline and 1 and 3 h post-RE. Quantitative RT-PCR was used to determine differences in mRNA expression. MMP-2, type I collagen, and type III collagen mRNA expression was not altered by exercise or APAP (P > 0.05). When compared with PLA, TIMP-1 expression was lower at 1 h post-RE during APAP conditions but greater than PLA at 3 h post-RE (P < 0.05). MMP-9 expression and protein levels were elevated at 3 h post-RE independent of treatment (P < 0.05). Lysyl oxidase expression was greater at 3 h post-RE during APAP consumption (P < 0.05) compared with PLA. MMP-2 and TIMP-1 protein was not altered by RE or APAP (P > 0.05). Phosphorylation of ERK1/2 and p38-MAPK increased (P < 0.05) with RE but was not influenced by APAP. Our findings do not support our hypothesis and suggest that short-term APAP consumption before RE has a sma