Science.gov

Sample records for matrix metalloproteinase-9 persists

  1. Matrix Metalloproteinase-9 Regulates Neuronal Circuit Development and Excitability.

    PubMed

    Murase, Sachiko; Lantz, Crystal L; Kim, Eunyoung; Gupta, Nitin; Higgins, Richard; Stopfer, Mark; Hoffman, Dax A; Quinlan, Elizabeth M

    2016-07-01

    In early postnatal development, naturally occurring cell death, dendritic outgrowth, and synaptogenesis sculpt neuronal ensembles into functional neuronal circuits. Here, we demonstrate that deletion of the extracellular proteinase matrix metalloproteinase-9 (MMP-9) affects each of these processes, resulting in maladapted neuronal circuitry. MMP-9 deletion increases the number of CA1 pyramidal neurons but decreases dendritic length and complexity. Parallel changes in neuronal morphology are observed in primary visual cortex and persist into adulthood. Individual CA1 neurons in MMP-9(-/-) mice have enhanced input resistance and a significant increase in the frequency, but not amplitude, of miniature excitatory postsynaptic currents (mEPSCs). Additionally, deletion of MMP-9 significantly increases spontaneous neuronal activity in awake MMP-9(-/-) mice and enhances response to acute challenge by the excitotoxin kainate. Our data document a novel role for MMP-9-dependent proteolysis: the regulation of several aspects of circuit maturation to constrain excitability throughout life.

  2. Increased matrix metalloproteinase 9 activity in mild cognitive impairment.

    PubMed

    Bruno, Martin A; Mufson, Elliott J; Wuu, Joanne; Cuello, A Claudio

    2009-12-01

    Nerve growth factor (NGF)-dependent cholinergic basal forebrain neurons degenerate during the progression of Alzheimer disease (AD). Elevated proNGF and reduced levels of the TrkA high-affinity NGF receptor occur in prodromal and advanced stages of AD. We recently described a protease cascade responsible for the conversion of proNGF to mature NGF (mNGF) in which matrix metalloproteinase 9 (MMP-9) degrades mNGF in the extracellular space. To determine whether this proteolytic cascade is altered during the progression of AD, we examined human frontal and parietal cortex tissues from aged subjects with a clinical diagnosis of AD, mild cognitive impairment, or no cognitive impairment. The analysis demonstrated greater MMP-9 activity in both AD and mild cognitive impairment compared with no cognitive impairment brain samples (p < 0.01), which supports the notion that a metabolic failure in the NGF-maturation/degradation pathway may be associated with an exacerbated degradation of mNGF in the cerebral cortex in early AD. Moreover, there were inverse correlations between Global Cognitive Score and Mini-Mental State Examination score and MMP-9 activity. These findings suggest that a reduction in mNGF as a consequence of MMP-9-mediated degradation may in part underlie the pathogenesis of cognitive deficits in mild cognitive impairment and AD.

  3. Increased Matrix Metalloproteinase-9 Activity in Mild Cognitive Impairment

    PubMed Central

    Bruno, Martin A.; Mufson, Elliott J.; Wuu, Joanne; Cuello, A. Claudio

    2010-01-01

    Nerve growth factor (NGF)-dependent cholinergic basal forebrain neurons degenerate during the progression of Alzheimer disease (AD). Elevated proNGF and reduced levels of the TrkA high-affinity NGF receptor occur in prodromal and advanced stages of AD. We recently described a protease cascade responsible for the conversion of proNGF to mature NGF (mNGF) in which matrix metalloproteinase 9 (MMP-9) degrades mNGF in the extracellular space. To determine whether this proteolytic cascade is altered during the progression of AD, we examined human frontal and parietal cortex tissue from aged subjects with a clinical diagnosis of AD, mild cognitive impairment (MCI) or no cognitive impairment (NCI). The analysis demonstrated greater MMP-9 activity in both AD and MCI compared to NCI brain samples (p < 0.01), which supports the notion that a metabolic failure in the NGF-maturation/degradation pathway may be associated with an exacerbated degradation of mNGF in the cerebral cortex in early AD. Moreover, there were inverse correlations between Global Cognitive Score and Mini-Mental State Examination score and MMP-9 activity. These findings suggest that a reduction in mNGF as a consequence of MMP-9-mediated degradation may in part underlie the pathogenesis of cognitive deficits in MCI and AD. PMID:19915485

  4. Matrix Metalloproteinase 9 Exerts Antiviral Activity against Respiratory Syncytial Virus

    PubMed Central

    Dabo, Abdoulaye J.; Cummins, Neville; Eden, Edward; Geraghty, Patrick

    2015-01-01

    Increased lung levels of matrix metalloproteinase 9 (MMP9) are frequently observed during respiratory syncytial virus (RSV) infection and elevated MMP9 concentrations are associated with severe disease. However little is known of the functional role of MMP9 during lung infection with RSV. To determine whether MMP9 exerted direct antiviral potential, active MMP9 was incubated with RSV, which showed that MMP9 directly prevented RSV infectivity to airway epithelial cells. Using knockout mice the effect of the loss of Mmp9 expression was examined during RSV infection to demonstrate MMP9’s role in viral clearance and disease progression. Seven days following RSV infection, Mmp9-/- mice displayed substantial weight loss, increased RSV-induced airway hyperresponsiveness (AHR) and reduced clearance of RSV from the lungs compared to wild type mice. Although total bronchoalveolar lavage fluid (BALF) cell counts were similar in both groups, neutrophil recruitment to the lungs during RSV infection was significantly reduced in Mmp9-/- mice. Reduced neutrophil recruitment coincided with diminished RANTES, IL-1β, SCF, G-CSF expression and p38 phosphorylation. Induction of p38 signaling was required for RANTES and G-CSF expression during RSV infection in airway epithelial cells. Therefore, MMP9 in RSV lung infection significantly enhances neutrophil recruitment, cytokine production and viral clearance while reducing AHR. PMID:26284919

  5. Matrix metalloproteinase 9 modulates collagen matrices and wound repair

    PubMed Central

    LeBert, Danny C.; Squirrell, Jayne M.; Rindy, Julie; Broadbridge, Elizabeth; Lui, Yuming; Zakrzewska, Anna; Eliceiri, Kevin W.; Meijer, Annemarie H.; Huttenlocher, Anna

    2015-01-01

    Acute and chronic injuries are characterized by leukocyte infiltration into tissues. Although matrix metalloproteinase 9 (Mmp9) has been implicated in both conditions, its role in wound repair remains unclear. We previously reported a zebrafish chronic inflammation mutant caused by an insertion in the hepatocyte growth factor activator inhibitor gene 1 (hai1; also known as spint1) that is characterized by epithelial extrusions and neutrophil infiltration into the fin. Here, we performed a microarray analysis and found increased inflammatory gene expression in the mutant larvae, including a marked increase in mmp9 expression. Depletion of mmp9 partially rescued the chronic inflammation and epithelial phenotypes, in addition to restoring collagen fiber organization, as detected by second-harmonic generation imaging. Additionally, we found that acute wounding induces epithelial cell mmp9 expression and is associated with a thickening of collagen fibers. Interestingly, depletion of mmp9 impaired this collagen fiber reorganization. Moreover, mmp9 depletion impaired tissue regeneration after tail transection, implicating Mmp9 in acute wound repair. Thus, Mmp9 regulates both acute and chronic tissue damage and plays an essential role in collagen reorganization during wound repair. PMID:26015541

  6. Matrix metalloproteinase-7 and matrix metalloproteinase-9 in pediatric multiple sclerosis.

    PubMed

    Yılmaz, Ünsal; Unsal, Yılmaz; Gücüyener, Kıvılcım; Kıvılcım, Gücüyener; Atak, Ayşegül; Ayşegül, Atak; Aral, Arzu; Arzu, Aral; Gürkaş, Esra; Esra, Gürkaş; Demir, Ercan; Ercan, Demir; Serdaroğlu, Ayşe; Ayşe, Serdaroğlu

    2012-09-01

    Matrix metalloproteinases and their tissue inhibitors play a key role in the pathogenesis of adult-onset multiple sclerosis, and were suggested as biomarkers of response to interferon-β, an established treatment in multiple sclerosis. However, data regarding pediatric population are scarce. We determined serum levels of matrix metalloproteinase-7, matrix metalloproteinase-9, and tissue inhibitor of matrix metalloproteinase-1 in children, and evaluated effects of interferon-β therapy on these measures. Serum samples from 14 children with relapsing, remitting multiple sclerosis at baseline and at month 12, and from 15 controls, were collected. Interferon-β treatment was initiated in eight patients. Mean serum matrix metalloproteinase-9 levels and matrix metalloproteinase-9/tissue inhibitor of matrix metalloproteinase-1 ratio were higher in patients compared with controls, and were reduced significantly in treated patients at month 12, but did not change in untreated patients. Mean matrix metalloproteinase-7 levels were lower in patients compared with controls, and increased significantly in the treated group, but did not change significantly in the untreated group. In pediatric multiple sclerosis, a shift in matrix metalloproteinase-9/tissue inhibitor of matrix metalloproteinase-1 balance toward proteolytic activity is evident, and interferon-β therapy demonstrates a beneficial effect on this disturbed balance. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Matrix Metalloproteinase-9 Protects Islets from Amyloid-induced Toxicity*

    PubMed Central

    Meier, Daniel T.; Tu, Ling-Hsien; Zraika, Sakeneh; Hogan, Meghan F.; Templin, Andrew T.; Hull, Rebecca L.; Raleigh, Daniel P.; Kahn, Steven E.

    2015-01-01

    Deposition of human islet amyloid polypeptide (hIAPP, also known as amylin) as islet amyloid is a characteristic feature of the pancreas in type 2 diabetes, contributing to increased β-cell apoptosis and reduced β-cell mass. Matrix metalloproteinase-9 (MMP-9) is active in islets and cleaves hIAPP. We investigated whether hIAPP fragments arising from MMP-9 cleavage retain the potential to aggregate and cause toxicity, and whether overexpressing MMP-9 in amyloid-prone islets reduces amyloid burden and the resulting β-cell toxicity. Synthetic hIAPP was incubated with MMP-9 and the major hIAPP fragments observed by MS comprised residues 1–15, 1–25, 16–37, 16–25, and 26–37. The fragments 1–15, 1–25, and 26–37 did not form amyloid fibrils in vitro and they were not cytotoxic when incubated with β cells. Mixtures of these fragments with full-length hIAPP did not modulate the kinetics of fibril formation by full-length hIAPP. In contrast, the 16–37 fragment formed fibrils more rapidly than full-length hIAPP but was less cytotoxic. Co-incubation of MMP-9 and fragment 16–37 ablated amyloidogenicity, suggesting that MMP-9 cleaves hIAPP 16–37 into non-amyloidogenic fragments. Consistent with MMP-9 cleavage resulting in largely non-amyloidogenic degradation products, adenoviral overexpression of MMP-9 in amyloid-prone islets reduced amyloid deposition and β-cell apoptosis. These findings suggest that increasing islet MMP-9 activity might be a strategy to limit β-cell loss in type 2 diabetes. PMID:26483547

  8. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    PubMed Central

    Cui, Yun-Liang; Zhang, Sheng; Tian, Zhao-Tao; Lin, Zhao-Fen; Chen, De-Chang

    2016-01-01

    Background: Intact endothelial structure and function are critical for maintaining microcirculatory homeostasis. Dysfunction of the latter is an underlying cause of various organ pathologies. In a previous study, we showed that rhubarb, a traditional Chinese medicine, protected intestinal mucosal microvascular endothelial cells in rats with metastasizing septicemia. In this study, we investigated the effects and mechanisms of rhubarb on matrix metalloproteinase-9 (MMP9)-induced vascular endothelial (VE) permeability. Methods: Rhubarb monomers were extracted and purified by a series of chromatography approaches. The identity of these monomers was analyzed by hydrogen-1 nuclear magnetic resonance (NMR), carbon-13 NMR, and distortionless enhancement by polarization transfer magnetic resonance spectroscopy. We established a human umbilical vein endothelial cell (HUVEC) monolayer on a Transwell insert. We measured the HUVEC permeability, proliferation, and the secretion of VE-cadherin into culture medium using fluorescein isothiocyanate-dextran assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, and enzyme-linked immunosorbent assay, respectively, in response to treatment with MMP9 and/or rhubarb monomers. Results: A total of 21 rhubarb monomers were extracted and identified. MMP9 significantly increased the permeability of the HUVEC monolayer, which was significantly reduced by five individual rhubarb monomer (emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein) or a combination of all five monomers (1 μmol/L for each monomer). Mechanistically, the five-monomer mixture at 1 μmol/L promoted HUVEC proliferation. In addition, MMP9 stimulated the secretion of VE-cadherin into the culture medium, which was significantly inhibited by the five-monomer mixture. Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2

  9. A NEW APPROACH TO KERATOCONUS DIAGNOSTICS USING MATRIX METALLOPROTEINASE-9 MARKER.

    PubMed

    Zilfyan, A; Abovyan, A

    2017-09-01

    In spite of numerous studies, the exact mechanism of the keratoconus development remains unknown. Nowadays, it is considered to be a multifactorial disorder, caused by a combination of both genetic and environmental factors. Some recent studies have indicated that IL-6 and matrix metalloproteinase-9 take crucial part in disease development. The study aims to test the association of keratoconus with elevated Matrix Metalloproteinase-9 levels in the lacrimal fluid of patients. In controlled, cross-sectional, double-masked study, the patients were examined as they attended the clinic; this method approximated random sampling. The study took place in "Shengavit" Medical Center (Yerevan). The study procedures were carried out in a standard examination room. The level of Matrix Metalloproteinase-9 was assessed using immunochromatographic analyses. In addition, a Shirmer's test was performed on all patients. In total, 90 patients (one eye of every patient) were examined. Three groups were distinguished: I (control) group - patients without any ocular pathology (n=30); II - patients with subclinical keratoconus (n=30); III - patients in the first, second, and third stages of keratoconus (n=30). In the third group (patients with obvious keratoconus), elevated levels of Matrix Metalloproteinase-9 were observed in 27 out of 30 eyes (90%). In the second group (patients with subclinical keratoconus), high levels of Matrix Metalloproteinase-9 were observed in 25 out of 30 eyes (83.33%). In the control group, only one eye out of 30 had an elevated level of Matrix Metalloproteinase-9 (3.33%). The results of the study demonstrate that the tear fluids of patients in the first to third stages of keratoconus or with subclinical keratoconus contain elevated levels of Matrix Metalloproteinase-9 as compared to the control group. Consequently, the detection of Matrix Metalloproteinase-9 in tear fluid can be used in the diagnostics of keratoconus.

  10. Molecular Cloning, Expression and Genome Organization of Channel Catfish (Ictalurus punctatus) Matrix Metalloproteinase-9

    USDA-ARS?s Scientific Manuscript database

    In the course of studying pathogenesis of enteric septicemia of catfish, we noted that channel catfish matrix metalloproteinase-9 (MMP-9) gene was up-regulated after Edwardsiella ictaluri infection. In this study, we cloned, sequenced using the RACE (rapid amplification of cDNA ends) method and cha...

  11. German cockroach frass proteases cleave pro-matrix metalloproteinase-9.

    PubMed

    Hughes, Valerie S; Page, Kristen

    2007-01-01

    Matrix metalloproteinase (MMP)-9, secreted as pro-MMP-9, is cleaved by serine proteases at the N-terminus to generate active MMP-9. Pro-MMP-9 has been found in the bronchoalveolar lavage fluid of patients with asthma. Because many inhaled aeroallergens contain active proteases, the authors sought to determine whether German cockroach (GC) fecal remnants (frass) and house dust mite (HDM) were able to cleave pro-MMP-9. Treatment of recombinant human (rh) pro-MMP-9 with GC frass resulted in a dose- and time-dependent cleavage. This was abrogated by pretreating frass with an inhibitor of serine, but not cysteine protease activity. GC frass also induced cleavage of pro-MMP-9 from primary human neutrophils dependent on the active serine proteases in GC frass. HDM was less potent at cleaving pro-MMP-9. Alpha1-antitrypsin (A1AT), a naturally occurring protease inhibitor, attenuated GC frass-induced cleavage of pro-MMP-9. A1AT partially inactivated the serine protease activity in GC frass, while GC frass cleaved A1AT in a dose- and time-dependent manner. These data suggest that GC frass-derived serine proteases could regulate the activity of MMP-9 and that A1AT may play an important role in modulating GC frass activity in vivo. These data suggest a mechanism by which inhalation of GC frass could regulate airway remodeling through the activation of pro-MMP-9.

  12. Environmental arsenic exposure and serum matrix metalloproteinase-9

    PubMed Central

    Burgess, Jefferey L.; Kurzius-Spencer, Margaret; O’Rourke, Mary Kay; Littau, Sally R.; Roberge, Jason; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Harris, Robin B.

    2014-01-01

    The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake estimated. Urine was speciated for arsenic and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike’s Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9, than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure was positively associated with MMP-9 using all three exposure metrics evaluated. PMID:23232971

  13. Important role of matrix metalloproteinase 9 in epileptogenesis

    PubMed Central

    Wilczynski, Grzegorz M.; Konopacki, Filip A.; Wilczek, Ewa; Lasiecka, Zofia; Gorlewicz, Adam; Michaluk, Piotr; Wawrzyniak, Marcin; Malinowska, Monika; Okulski, Pawel; Kolodziej, Lukasz R.; Konopka, Witold; Duniec, Kamila; Mioduszewska, Barbara; Nikolaev, Evgeni; Walczak, Agnieszka; Owczarek, Dorota; Gorecki, Dariusz C.; Zuschratter, Werner; Ottersen, Ole Petter; Kaczmarek, Leszek

    2008-01-01

    Temporal lobe epilepsy (TLE) is a devastating disease in which aberrant synaptic plasticity plays a major role. We identify matrix metalloproteinase (MMP) 9 as a novel synaptic enzyme and a key pathogenic factor in two animal models of TLE: kainate-evoked epilepsy and pentylenetetrazole (PTZ) kindling–induced epilepsy. Notably, we show that the sensitivity to PTZ epileptogenesis is decreased in MMP-9 knockout mice but is increased in a novel line of transgenic rats overexpressing MMP-9. Immunoelectron microscopy reveals that MMP-9 associates with hippocampal dendritic spines bearing asymmetrical (excitatory) synapses, where both the MMP-9 protein levels and enzymatic activity become strongly increased upon seizures. Further, we find that MMP-9 deficiency diminishes seizure-evoked pruning of dendritic spines and decreases aberrant synaptogenesis after mossy fiber sprouting. The latter observation provides a possible mechanistic basis for the effect of MMP-9 on epileptogenesis. Our work suggests that a synaptic pool of MMP-9 is critical for the sequence of events that underlie the development of seizures in animal models of TLE. PMID:18332222

  14. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue.

    PubMed

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-12-05

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression.

  15. Huoxue Rongluo Tablet reduces matrix metalloproteinase-9 expression in infarcted brain tissue

    PubMed Central

    Zhou, Desheng; Li, Mei; Hu, Hua; Chen, Yao; Yang, Yang; Zhong, Jie; Liu, Lijuan

    2013-01-01

    Huoxue Rongluo Tablet was made of tall gastrodis tuber, dahurian angelica root, honeysuckle stem, grassleaf sweetflag rhizome, common flowering quince fruit, figwort root, red peony root and peach seed at a ratio of 3:2:6:2:3:3:3:3. Huoxue Rongluo Tablet is a well-established and common pre-scription for the treatment of cerebral infarction. In this study, a rat model of cerebral ischemia was established and the animals were intragastrically administered Huoxue Rongluo Tablet. This treat-ment reduced infarct volume, decreased matrix metalloproteinase-9 expression, and improved neurological function. Moreover, the effects of Huoxue Rongluo Tablet were better than those of buflomedil pyridoxal phosphate. These results indicate that Huoxue Rongluo Tablet is effective in treating cerebral infarction by regulating matrix metalloproteinase-9 protein expression. PMID:25206642

  16. The Matrix Metalloproteinase 9 Point-of-Care Test in Dry Eye.

    PubMed

    Lanza, Nicole L; Valenzuela, Felipe; Perez, Victor L; Galor, Anat

    2016-04-01

    Dry eye is a common, multifactorial disease currently diagnosed by a combination of symptoms and signs. However, the subjective symptoms of dry eye poorly correlate to the current gold standard for diagnostic tests, reflecting the need to develop better objective tests for the diagnosis of dry eye. This review considers the role of ocular surface matrix metalloproteinase 9 (MMP-9) in dry eye and the implications of a novel point-of-care test that measures MMP-9 levels, InflammaDry (RPS, Sarasota, FL) on choosing appropriate therapeutic treatments.

  17. Reduction of matrix metalloproteinase-9 expression by culture filtrate of Paecilomyces farinosus J3.

    PubMed

    Lee, Hyun-Jin; Park, Chul-Hong; Son, Hyung-U; Heo, Jin-Chul; Nam, Sung-Hee; Lee, Kwang-Gil; Yeo, Joo-Hong; Yoon, Cheol-Sik; Kim, Jong-Myeung; Shin, Yong-Kyu; Kim, Si-Oh; Lee, Sang-Han

    2011-03-01

    The aim of the present study was to investigate the anti-tumor effects of a culture filtrate of Paecilomyces farinosus J3. Various anti-tumor assays using B16 melanoma cells were carried out. Paecilomyces farinosus J3 significantly decreased the wound healing capability, invasiveness and angiogenic activity, which was confirmed by wound healing, human umbilical vein endothelial cell and invasion assays. Paecilomyces farinosus J3 strongly inhibited cell migration, tube formation and the angiogenic process in a concentration-dependent manner. Zymographic analysis also indicated a reduced expression of matrix metalloproteinase-9 (MMP-9), a 92-kDa gelatinase. Taken together, the results indicate that the anti-tumor activities of Paecilomyces farinosus J3 originate from the reduction of MMP-9 expression in B16F10 cells.

  18. Reduction of matrix metalloproteinase-9 expression by culture filtrate of Paecilomyces farinosus J3

    PubMed Central

    LEE, HYUN-JIN; PARK, CHUL-HONG; SON, HYUNG-U; HEO, JIN-CHUL; NAM, SUNG-HEE; LEE, KWANG-GIL; YEO, JOO-HONG; YOON, CHEOL-SIK; KIM, JONG-MYEUNG; SHIN, YONG-KYU; KIM, SI-OH; LEE, SANG-HAN

    2011-01-01

    The aim of the present study was to investigate the anti-tumor effects of a culture filtrate of Paecilomyces farinosus J3. Various anti-tumor assays using B16 melanoma cells were carried out. Paecilomyces farinosus J3 significantly decreased the wound healing capability, invasiveness and angiogenic activity, which was confirmed by wound healing, human umbilical vein endothelial cell and invasion assays. Paecilomyces farinosus J3 strongly inhibited cell migration, tube formation and the angiogenic process in a concentration-dependent manner. Zymographic analysis also indicated a reduced expression of matrix metalloproteinase-9 (MMP-9), a 92-kDa gelatinase. Taken together, the results indicate that the anti-tumor activities of Paecilomyces farinosus J3 originate from the reduction of MMP-9 expression in B16F10 cells. PMID:22977510

  19. A highly soluble matrix metalloproteinase-9 inhibitor for potential treatment of dry eye syndrome.

    PubMed

    Mori, Mattia; De Lorenzo, Emanuele; Torre, Eugenio; Fragai, Marco; Nativi, Cristina; Luchinat, Claudio; Arcangeli, Annarosa

    2012-11-01

    Dry eye syndrome (DES) or keratoconjunctivitis sicca is an eye disease caused by the chronic lack of lubrication and moisture of the eye. The pathogenesis of DES involves the over-expression and over-activity of corneal Matrix Metalloproteinase 9 (MMP-9). We propose herein a new, non-symptomatic approach for the treatment of DES based on the inhibition of MMP-9 by a new highly soluble molecule, designed as PES_103 that has been shown to inhibit MMP-9 both in vitro and in vivo. The efficacy of PES_103 in vivo and the potential benefits of this treatment in restoring tear production were studied in this work using an animal model of reduced lacrimation. PES_103 did not show any significant corneal toxicity. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  20. Regulation of matrix metalloproteinase-9 expression between gingival fibroblast cells from old and young rats

    SciTech Connect

    Kim, Su-Jung; Chung, Yong-Koo; Chung, Tae-Wook; Kim, Jeong-Ran; Moon, Sung-Kwon; Kim, Cheorl-Ho Park, Young-Guk

    2009-01-09

    Gingival fibroblast cells (rGF) from aged rats have an age-related decline in proliferative capacity compared with young rats. We investigated G1 phase cell cycle regulation and MMP-9 expression in both young and aged rGF. G1 cell cycle protein levels and activity were significantly reduced in response to interleukin-1{beta} (IL-1{beta}) stimulation with increasing in vitro age. Tumor necrosis factor-{alpha} (TNF-{alpha})-induced matrix metalloproteinase-9 (MMP-9) expression was also decreased in aged rGF in comparison with young rGF. Mutational analysis and gel shift assays demonstrated that the lower MMP-9 expression in aged rGF is associated with lower activities of transcription factors NF-{kappa}B and AP-1. These results suggest that cell cycle dysregulation and down-regulation of MMP-9 expression in rGF may play a role in gingival remodeling during in vitro aging.

  1. Impaired lung repair during neutropenia can be reverted by matrix metalloproteinase-9.

    PubMed

    Blázquez-Prieto, Jorge; López-Alonso, Inés; Amado-Rodríguez, Laura; Huidobro, Covadonga; González-López, Adrián; Kuebler, Wolfgang M; Albaiceta, Guillermo M

    2017-09-25

    Neutrophils may cause tissue disruption during migration and by releasing cytotoxic molecules. However, the benefits of neutrophil depletion observed in experimental models of lung injury do not correspond with the poor outcome of neutropenic patients. To clarify the role of neutrophils during repair, mice with ventilator induced lung injury (VILI) were rendered neutropenic after damage, and followed for 48 hours of spontaneous breathing. Lungs were harvested and inflammatory mediators and matrix metalloproteinases measured. Bronchoalveolar lavage fluid (BALF) from ventilated patients with acute respiratory distress syndrome, with or without neutropenia, was collected, the same mediators measured and their effects in an ex vivo model of alveolar repair studied. Finally, neutropenic mice were treated after VILI with exogenous matrix metalloproteinase-9 (MMP-9). Lungs from neutropenic animals showed delayed repair and displayed higher levels of tumour necrosis factor α, interferon γ and macrophage inflammatory protein 2, and absence of MMP-9. BALF from ventilated neutropenic patients with acute respiratory distress syndrome showed similar results. BALFs from neutropenic patients yielded a delayed closure rate of epithelial wounds ex vivo, which was improved by removal of collagen or addition of exogenous MMP-9. Lastly, treatment of neutropenic mice with exogenous MMP-9 after VILI reduced tissue damage without modifying cytokine concentrations. Release of MMP-9 from neutrophils is required for adequate matrix processing and lung repair. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Lack of association of matrix metalloproteinase-9 promoter gene polymorphism in obstructive sleep apnea syndrome.

    PubMed

    Yalcınkaya, Mustafa; Erbek, Selim S; Babakurban, Seda Turkoglu; Kupeli, Elif; Bozbas, Serife; Terzi, Yunus K; Sahin, Feride Iffet

    2015-09-01

    Obstructive sleep apnea syndrome (OSAS) is a public health problem. There is an effort to establish the genetic contributions to the development of OSAS. One is matrix metalloproteinases, extracellular matrix degrading enzymes related to systemic inflammation. However, the impact of matrix metalloproteinase-9 (MMP-9) genotypes on the development of OSAS is unknown. Our aim was to determine whether MMP-9 single nucleotide polymorphism (SNP) (MMP-9 -1562C > T) is related to susceptibility to OSAS. A total of 106 patients with a history of sleep apnea and 88 controls without a history of sleep apnea were enrolled in this study. Genotypes were determined by restriction fragment length polymorphism analyses after polymerase chain reaction. Genotypes and allele frequencies of the MMP-9 -1562C > T SNP was not statistically different between the patient and control groups (p > 0.05). There was a statistical association between apnea-hypopnea index (AHI) and body mass index (BMI), and also between AHI and neck circumference (p < 0.001). There was no association among the genotypes and AHI, neck circumference, or BMI (p > 0.05). We found no association between MMP-9 -1562C > T SNP and OSAS. Studies to investigate the role of other polymorphisms and expression of MMP-9 gene will provide more information. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Serum matrix metalloproteinase 9 (MMP9) as a biochemical marker for wasting marmoset syndrome

    PubMed Central

    YOSHIMOTO, Takuro; NIIMI, Kimie; TAKAHASHI, Eiki

    2016-01-01

    Use of the common marmoset (Callithrix jacchus) as a non-human primate experimental animal has increased in recent years. Although wasting marmoset syndrome (WMS) is one of the biggest problems in captive marmoset colonies, the molecular mechanisms, biochemical markers for accurate diagnosis and a reliable treatment remain unknown. In this study, as a first step to finding biochemical marker(s) for the accurate diagnosis of WMS, we conducted blood cell counts, including hematocrit, hemoglobin and platelets, and examined serum chemistry values, including albumin, calcium and levels of serum matrix metalloproteinase 9 (MMP9), using a colony of marmosets with and without weight loss. MMP9 is thought to be an enzyme responsible for the degradation of extracellular matrix components and participates in the pathogenesis of inflammatory conditions, such as human and murine inflammatory bowel disease, which, like WMS, are characterized histologically by inflammatory cell infiltrations in the intestines. The values of hematocrit and hemoglobin and levels of serum albumin and calcium in the WMS group were significantly decreased versus the control group. The platelet values and serum MMP9 concentrations were increased significantly in the WMS group compared with the control group. MMP9 could be a new and useful marker for the diagnosis of WMS in addition to hematocrit, hemoglobin, serum albumin and calcium. Our results also indicate that MMP9 could be a useful molecular candidate for treatment. PMID:26876041

  4. LMAN1 (ERGIC-53) is a potential carrier protein for matrix metalloproteinase-9 glycoprotein secretion

    PubMed Central

    Duellman, Tyler; Burnett, John; Shin, Alice; Yang, Jay

    2015-01-01

    Matrix metalloproteinase-9 (MMP-9) is a secreted glycoprotein with a major role in shaping the extra-cellular matrix and a detailed understanding of the secretory mechanism could help identify methods to correct diseases resulting from dysregulation of secretion. MMP-9 appears to follow a canonical secretory pathway through a quality control cycle in the endoplasmic reticulum (ER) before transport of the properly folded protein to the Golgi apparatus and beyond for secretion. Through a complementation assay, we determined that LMAN1, a well-studied lectin-carrier protein, interacts with a secretion-competent N-glycosylated MMP-9 in the ER while N-glycosylation-deficient secretion-compromised MMP-9 does not. In contrast, co-immunoprecipitation demonstrated protein interaction between LMAN1 and secretion-compromised N-glycosylation-deficient MMP-9. MMP-9 secretion was reduced in the LMAN1 knockout cell line compared to control cells confirming the functional role of LMAN1. These observations support the role of LMAN1 as a lectin-carrier protein mediating efficient MMP-9 secretion. PMID:26150355

  5. Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation.

    PubMed

    Ortega, Nathalie; Behonick, Danielle J; Colnot, Céline; Cooper, Douglas N W; Werb, Zena

    2005-06-01

    Endochondral bone formation is characterized by the progressive replacement of a cartilage anlagen by bone at the growth plate with a tight balance between the rates of chondrocyte proliferation, differentiation, and cell death. Deficiency of matrix metalloproteinase-9 (MMP-9) leads to an accumulation of late hypertrophic chondrocytes. We found that galectin-3, an in vitro substrate of MMP-9, accumulates in the late hypertrophic chondrocytes and their surrounding extracellular matrix in the expanded hypertrophic cartilage zone. Treatment of wild-type embryonic metatarsals in culture with full-length galectin-3, but not galectin-3 cleaved by MMP-9, mimicked the embryonic phenotype of Mmp-9 null mice, with an increased hypertrophic zone and decreased osteoclast recruitment. These results indicate that extracellular galectin-3 could be an endogenous substrate of MMP-9 that acts downstream to regulate hypertrophic chondrocyte death and osteoclast recruitment during endochondral bone formation. Thus, the disruption of growth plate homeostasis in Mmp-9 null mice links galectin-3 and MMP-9 in the regulation of the clearance of late chondrocytes through regulation of their terminal differentiation.

  6. Matrix metalloproteinase-9 and vascular endothelial growth factor expression change in experimental retinal neovascularization

    PubMed Central

    Di, Yu; Nie, Qing-Zhu; Chen, Xiao-Long

    2016-01-01

    AIM To investigate the signal transduction mechanism of matrix metalloproteinase-9 (MMP-9) mediated- vascular endothelial growth factor (VEGF) expression and retinal neovascularization (RNV) in oxygen-induced retinopathy (OIR) model. METHODS C57BL/6J mice were divided into four groups: control group, OIR group, OIR control group (phosphate-buffered saline by intravitreal injection) and treated group [tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) by intravitreal injection]. OIR model was established in C57BL/6J mice exposed to 75%±2% oxygen for 5d. mRNA level and protein expression of MMP-9, TIMP-1 and VEGF were measured by real-time polymerase chain reaction and Western blotting, and located by immunohistochemistry. RESULTS Levels of MMP-9 and VEGF in retina were significantly increased in animals with OIR and OIR control group. Levels of TIMP-1 in retina was significantly reduced in animals with OIR and OIR control group. Furthermore, a significant correlation was found between MMP-9 and VEGF. Intravitreal injection of TIMP-1 significantly reduced MMP-9 and VEGF expression of the OIR mouse model (all P<0.05). CONCLUSION These results demonstrate that MMP-9-mediated up-regulation of VEGF promotes RNV in retinopathy of prematurity (ROP). TIMP-1 may be a potential target for the prevention and treatment of ROP. PMID:27366678

  7. LMAN1 (ERGIC-53) is a potential carrier protein for matrix metalloproteinase-9 glycoprotein secretion.

    PubMed

    Duellman, Tyler; Burnett, John; Shin, Alice; Yang, Jay

    2015-08-28

    Matrix metalloproteinase-9 (MMP-9) is a secreted glycoprotein with a major role in shaping the extracellular matrix and a detailed understanding of the secretory mechanism could help identify methods to correct diseases resulting from dysregulation of secretion. MMP-9 appears to follow a canonical secretory pathway through a quality control cycle in the endoplasmic reticulum (ER) before transport of the properly folded protein to the Golgi apparatus and beyond for secretion. Through a complementation assay, we determined that LMAN1, a well-studied lectin-carrier protein, interacts with a secretion-competent N-glycosylated MMP-9 in the ER while N-glycosylation-deficient secretion-compromised MMP-9 does not. In contrast, co-immunoprecipitation demonstrated protein interaction between LMAN1 and secretion-compromised N-glycosylation-deficient MMP-9. MMP-9 secretion was reduced in the LMAN1 knockout cell line compared to control cells confirming the functional role of LMAN1. These observations support the role of LMAN1 as a lectin-carrier protein mediating efficient MMP-9 secretion.

  8. Circulating levels of matrix metalloproteinase-9 and abdominal aortic pathology: from the Dallas Heart Study.

    PubMed

    Grodin, Justin L; Powell-Wiley, Tiffany M; Ayers, Colby R; Kumar, Darpan S; Rohatgi, Anand; Khera, Amit; McGuire, Darren K; de Lemos, James A; Das, Sandeep R

    2011-10-01

    Prior reports have associated increased circulating levels of matrix metalloproteinase-9 (MMP-9), an endopeptidase active in the extracellular matrix, with the formation and rupture of aortic aneurysms, raising the possibility that MMP-9 may be a useful diagnostic or therapeutic target for aortic pathology. However, associations between MMP-9 and pathological abdominal aortic phenotypes in the general population have not been reported. In the Dallas Heart Study, a population-based sample of Dallas County residents (n = 2304), we measured MMP-9 and performed magnetic resonance imaging (MRI) of the abdominal aorta, measuring aortic compliance, plaque, wall thickness and luminal diameter. After adjustment for traditional cardiac risk factors and body size, higher MMP-9 quartiles were independently associated with higher aortic wall thickness and larger luminal diameter (p < 0.0001 for each), but not abdominal aortic plaque (p = 0.08), coronary artery calcium (p = 0.20) or the aortic luminal diameter/aortic wall thickness ratio (p = 0.37), supporting the hypothesis that therapies targeting MMP-9 may affect the abdominal aortic wall and modify aortic pathology.

  9. Circulating levels of matrix metalloproteinase-9 and abdominal aortic pathology: From the Dallas Heart Study

    PubMed Central

    Grodin, Justin L; Powell-Wiley, Tiffany M; Ayers, Colby R; Kumar, Darpan S; Rohatgi, Anand; Khera, Amit; McGuire, Darren K; de Lemos, James A; Das, Sandeep R

    2012-01-01

    Prior reports have associated increased circulating levels of matrix metalloproteinase-9 (MMP-9), an endopeptidase active in the extracellular matrix, with the formation and rupture of aortic aneurysms, raising the possibility that MMP-9 may be a useful diagnostic or therapeutic target for aortic pathology. However, associations between MMP-9 and pathological abdominal aortic phenotypes in the general population have not been reported. In the Dallas Heart Study, a population-based sample of Dallas County residents (n = 2304), we measured MMP-9 and performed magnetic resonance imaging (MRI) of the abdominal aorta, measuring aortic compliance, plaque, wall thickness and luminal diameter. After adjustment for traditional cardiac risk factors and body size, higher MMP-9 quartiles were independently associated with higher aortic wall thickness and larger luminal diameter (p < 0.0001 for each), but not abdominal aortic plaque (p = 0.08), coronary artery calcium (p = 0.20) or the aortic luminal diameter/aortic wall thickness ratio (p = 0.37), supporting the hypothesis that therapies targeting MMP-9 may affect the abdominal aortic wall and modify aortic pathology. PMID:22002999

  10. Ultrasound Enhanced Matrix Metalloproteinase-9 Triggered Release of Contents from Echogenic Liposomes

    PubMed Central

    Nahire, Rahul; Paul, Shirshendu; Scott, Michael D.; Singh, Raushan K.; Muhonen, Wallace W.; Shabb, John; Gange, Kara N.; Srivastava, D. K.; Sarkar, Kausik; Mallik, Sanku

    2012-01-01

    The extracellular enzyme matrix metalloproteinase-9 (MMP-9) is overexpressed in atherosclerotic plaques and in metastatic cancers. The enzyme is responsible for rupture of the plaques and for the invasion and metastasis of a large number of cancers. The ability of ultrasonic excitation to induce thermal and mechanical effects has been used to release drugs from different carriers. However, majority of these studies were performed with low frequency ultrasound (LFUS) at kHz frequencies. Clinical usage of LFUS excitations will be limited due to harmful biological effects. Herein, we report our results on the release of encapsulated contents from substrate lipopeptide incorporated echogenic liposomes triggered by recombinant human MMP-9. The contents release was further enhanced by the application of diagnostic frequency (3 MHz) ultrasound. The echogenic liposomes were successfully imaged employing a medical ultrasound transducer (4 – 15 MHz). The conditioned cell culture media from cancer cells (secreting MMP-9) released the encapsulated dye from the liposomes (30 – 50%) and this release is also increased (50 – 80%) by applying diagnostic frequency ultrasound (3 MHz) for 3 minutes. With further developments, these liposomes have the potential to serve as multimodal carriers for triggered release and simultaneous ultrasound imaging. PMID:22849291

  11. Matrix Metalloproteinase 9 in Epilepsy: The Role of Neuroinflammation in Seizure Development

    PubMed Central

    2016-01-01

    Matrix metalloproteinase 9 is a proteolytic enzyme which is recently one of the more often studied biomarkers. Its possible use as a biomarker of neuronal damage in stroke, heart diseases, tumors, multiple sclerosis, and epilepsy is being widely indicated. In epilepsy, MMP-9 is suggested to play a role in epileptic focus formation and in the stimulation of seizures. The increase of MMP-9 activity in the epileptic focus was observed both in animal models and in clinical studies. MMP-9 contributes to formation of epileptic focus, for example, by remodeling of synapses. Its proteolytic action on the elements of blood-brain barrier and activation of chemotactic processes facilitates accumulation of inflammatory cells and induces seizures. Also modification of glutamatergic transmission by MMP-9 is associated with seizures. In this review we will try to recapitulate the results of previous studies about MMP-9 in terms of its association with epilepsy. We will discuss the mechanisms of its actions and present the results revealed in animal models and clinical studies. We will also provide a comparison of the results of various studies on MMP-9 levels in the context of its possible use as a biomarker of the activity of epilepsy. PMID:28104930

  12. The Association of Nailfold Capillaroscopy with Systemic Matrix Metalloproteinase-9 Concentration in Normal-Tension Glaucoma.

    PubMed

    Lee, Na Young; Park, Hae-Young Lopilly; Park, Sung-Hwan; Park, Chan Kee

    2015-01-01

    To investigate the association of nailfold capillaroscopy, heart rate variability (HRV), and clinical characteristics of glaucoma with the plasma matrix metalloproteinase-9 (MMP-9) level in normal-tension glaucoma (NTG). We conducted a prospective, cross-sectional study on 25 patients with NTG. Subjects with systemic diseases were excluded. The patients underwent a complete ophthalmic examination and were referred to the Rheumatology Department, where nailfold capillaroscopy and HRV assessment were performed. The patients were assigned to the lowest and highest HRV groups according to the standard deviation value of the qualified normal-to-normal intervals of the HRV assessment. Blood samples from all the subjects were assayed for MMP-9 concentrations. The systemic MMP-9 level was significantly associated with the nailfold capillaroscopy result (ρ = 0.439, p = 0.032). Of the 25 patients, seven had optic disc hemorrhage (ODH). The mean MMP-9 concentration was 4375.6 ± 2923.2 pg/ml in ODH patients and 5932.1 ± 1265.4 pg/ml in patients without ODH. However, there was no significant association of HRV parameters or disc hemorrhage with the systemic MMP-9 level. The systemic MMP-9 level was associated with the nailfold capillaroscopy results in patients with NTG but had no direct association with ODH.

  13. Relationship of plasma matrix metalloproteinase-9 and hematoma expansion in acute hypertensive cerebral hemorrhage.

    PubMed

    Yang, Qingwei; Zhuang, Xiaorong; Peng, Feng; Zheng, Weihong

    2016-01-01

    In the present study, we aimed to investigate the relationship of plasma matrix metalloproteinase-9 (MMP-9) and hematoma expansion (HE) in acute hypertensive cerebral hemorrhage (AHCH) (HE-in-AHCH). Patients with hypertensive cerebral hemorrhage, confirmed by head computed tomography (CT) within 12 h of onset, were prospectively collected. Venous blood was sampled within 4 h of the confirmation to determine the serum MMP-9 concentration. The blood pressure and National Institute of Health Stroke Score of the patients were recorded on hospital admission. CT re-scanning was performed within 42-54 h of the first head CT examination or immediately after worsening of the patients' consciousness disorder. The relationship between MMP-9 level and HE was analyzed. A total of 186 patients were included. Of these patients, 41 had HE (22.0%). Multivariate logistic regression analysis showed that, in addition to the short interval between onset and the first CT examination, and the irregularity of hematoma shape, increasing MMP-9 level was an independent risk factor for HE-in-AHCH (OR value = 15.65, 95% CI: 5.30-46.15). Moreover, increasing plasma MMP-9 level was identified as an independent risk factor in patients with HE-in-AHCH.

  14. Dentin Sialoprotein is a Novel Substrate of Matrix Metalloproteinase 9 in vitro and in vivo

    PubMed Central

    Yuan, Guohua; Chen, Lei; Feng, Junsheng; Yang, Guobin; Ni, Qingwen; Xu, Xiaoping; Wan, Chunyan; Lindsey, Merry; Donly, Kevin J.; MacDougall, Mary; Chen, Zhi; Chen, Shuo

    2017-01-01

    Dentin sialoprotein (DSP) is essential for dentinogenesis and processed into fragments in the odontoblast-like cells and the tooth compartments. Matrix metalloproteinase 9 (MMP9) is expressed in teeth from early embryonic to adult stage. Although MMP9 has been reported to be involved in some physiological and pathological conditions through processing substrates, its role in tooth development and whether DSP is a substrate of MMP9 remain unknown. In this study, the function of MMP9 in the tooth development was examined by observation of Mmp9 knockout (Mmp9−/−) mouse phenotype, and whether DSP is a substrate of MMP9 was explored by in vitro and in vivo experiments. The results showed that Mmp9−/− teeth displayed a phenotype similar to dentinogenesis imperfecta, including decreased dentin mineral density, abnormal dentin architecture, widened predentin and irregular predentin-dentin boundary. The distribution of MMP9 and DSP overlapped in the odontoblasts, the predentin, and the mineralized dentin, and MMP9 was able to specifically bind to DSP. MMP9 highly efficiently cleaved DSP into distinct fragments in vitro, and the deletion of Mmp9 caused improper processing of DSP in natural teeth. Therefore, our findings demonstrate that MMP9 is important for tooth development and DSP is a novel target of MMP9 during dentinogenesis. PMID:28195206

  15. Expression of matrix metalloproteinase-9 in oral potentially malignant disorders: A systematic review.

    PubMed

    Venugopal, Archana; Uma Maheswari, T N

    2016-01-01

    Matrix metalloproteinase-9 (MMP-9) is an inducible enzyme. Oral potentially malignant disorders (OPMDs) are considered as the early tissue changes that happen due to various habits such as smoking tobacco, chewing tobacco or stress. This alteration in the tissues alters the expression of MMP-9. The rationale of the review is to know the expression of MMP-9 in OPMDs. Hand searching and electronic databases such as PubMed and ScienceDirect were done for mesh terms such as OPMDs and MMP-9. Eight articles were obtained, after applying inclusion and exclusion criteria. These articles were assessed with QUADAS and data were extracted and evaluated. The included eight studies were done in 182 oral squamous cell carcinoma cases, 430 OPMDs (146 oral lichen planus, 264 leukoplakia and 20 oral submucous fibrosis) and 352 healthy controls evaluated for MMP-9. MMP-9 expression was found to be elevated in tissue, serum and saliva samples of OPMDs than in healthy controls. There is only one study in each serum and saliva samples to evaluate MMP-9. Saliva being noninvasive and serum being minimally invasive, more studies need to be done in both serum and saliva to establish MMP-9 as an early diagnostic marker in OPMDs to know its potential in malignant transformation.

  16. Real-time monitoring of matrix metalloproteinase-9 collagenolytic activity with a surface plasmon resonance biosensor.

    PubMed

    Shoji, Atsushi; Kabeya, Mitsutaka; Sugawara, Masao

    2011-12-01

    We describe a simple method for real-time monitoring of matrix metalloproteinase-9 (MMP-9) collagenolytic activity for native triple helical collagen IV with a surface plasmon resonance (SPR) biosensor. The proteolytic activity of MMP-9 is measured as a decrease in the SPR signal resulting from the cleavage of collagen IV immobilized on the sensor surface. The kinetic parameters of full-length MMP-9 and its catalytic domain-catalytic constant (k(cat)), association rate constant (k(a)), and dissociation rate constant (k(d))-were estimated by the SPR method. The presence of sodium chloride and a nonionic detergent Brij-35 in a reaction solution led to the lower collagenolytic activity of MMP-9, whereas they suppressed the nonspecific interaction between MMP-9 and a cysteamine-modified chip. The comparison of kinetic parameters between MMP-9 and its catalytic domain revealed that the association constant of MMP-9 is much larger than that of the catalytic domain, suggesting that the interplay among hemopexin-like domain, fibronectin type II repeats motif, and linker region (O-glycosylated domain) plays an important role in recognizing collagen IV.

  17. Discovery of potent inhibitor for matrix metalloproteinase-9 by pharmacophore based modeling and dynamics simulation studies.

    PubMed

    Kalva, Sukesh; Azhagiya Singam, E R; Rajapandian, V; Saleena, Lilly M; Subramanian, V

    2014-04-01

    Matrix metalloproteinase-9 (MMP-9) is an attractive target for anticancer therapy. In the present study ligand based pharmacophore modeling was performed to elucidate the structural elements for a diverse class of MMP-9 inhibitors. The pharmacophore model was validated through Güner-Henry (GH) scoring method. The final pharmacophore model consisted of three hydrogen bond acceptors (HBA), and two ring aromatic regions (RA). This model was utilized to screen the natural compound database to seek novel compounds as MMP-9 inhibitors. The identified hits were validated using molecular docking and molecular dynamics simulation studies. Finally, one compound named Hinokiflavone from Juniperus communis had high binding free energy of -26.54kJ/mol compared with the known inhibitors of MMP-9. Cytotoxicity for hinokiflavone was evaluated by MTT assay. Inhibition of MMP-9 in the presence of hinokiflavone was detected by gelatin zymography and gelatinolytic inhibition assay. Results revealed that the natural compounds derived based on the developed pharmacophore model would be useful for further design and development of MMP-9 inhibitors.

  18. Inhibitory effect of chitooligosaccharides on matrix metalloproteinase-9 in human fibrosarcoma cells (HT1080).

    PubMed

    Van Ta, Quang; Kim, Moon-Moo; Kim, Se-Kwon

    2006-01-01

    Matrix metalloproteinase-9 (MMP-9) has gelatinase activity and plays an important role in cancer invasion and metastasis. Therefore, inhibition of specific types of MMPs including MMP-9 has become an attractive target for therapeutic intervention. The aim of this study was to investigate the effect of chitooligosaccharides (COS) on activity and expression of MMP-9 in HT1080 cells. The inhibitory effect of COS with different molecular masses was examined by gelatin zymography, reverse transcriptase-polymerase chain reaction (RT-PCR), gene reporter assay, and Western blot analysis. MMP-9 inhibition in the presence of COS was clearly observed in gelatin zymography. Specifically, 1- to 3-kDa COS (COS-I) exhibited the highest inhibitory effect on MMP-9 activity in HT1080 cells among tested molecular mass fractions. It was also found that COS-I was capable of inhibiting both gene and protein expression of MMP-9 (P<0.01). These results suggest that low molecular mass COS can be considered as a potent inhibitor of MMP-9.

  19. Matrix metalloproteinase 9 expression and survival of patients with osteosarcoma: a meta-analysis.

    PubMed

    Liu, Y; Wang, Y; Teng, Z; Chen, J; Li, Y; Chen, Z; Li, Z; Zhang, Z

    2017-01-01

    Several studies have evaluated the effect of matrix metalloproteinase-9 (MMP-9) expression on the overall survival of patients with osteosarcoma, but the results remain conflicting. To examine the prognostic significance of MMP-9 expression in osteosarcoma risk, we conducted this meta-analysis to systematically review the published studies. We searched the commonly used electronic databases updated to September 2013 for relevant studies which evaluated the correction between MMP-9 expression and survival of patients with osteosarcoma. Overall, a total of eight studies including 437 cases were screened out. No significant heterogeneity was observed between studies. The MMP-9 was expressed in 73.9% (323/437) of cases, and the results showed that MMP-9 expression was associated with increased mortality rate of osteosarcoma during the follow-up (risk ratio = 2.79, 95% confidence interval, CI = 1.96-3.97, P < 0.00001). By ethnicity analysis, a significant correction was also found between MMP-9 expression and osteosarcoma risk among Asian and non-Asian population (P < 0.001), indicating that MMP-9 was an indicator of prognosis of osteosarcoma. In conclusion, this meta-analysis indicated that MMP-9 expression might be a biomarker of poor prognosis for patients with osteosarcoma. However, the prognostic value of MMP-9 on survival of osteosarcoma patients still needs further large-scale trials to be clarified. © 2015 John Wiley & Sons Ltd.

  20. Matrix metalloproteinase 9 (MMP-9) in osteosarcoma: review and meta-analysis.

    PubMed

    Wang, Jing; Shi, Qiong; Yuan, Tai-Xian; Song, Qi-Lin; Zhang, Yan; Wei, Qiang; Zhou, Lan; Luo, Jinyong; Zuo, Guowei; Tang, Min; He, Tong-Chuan; Weng, Yaguang

    2014-06-10

    The aim of this study is to determine the value of matrix metalloproteinase 9 (MMP-9) in diagnosis of osteosarcoma (OS). A systematic review and meta-analysis was conducted using MEDLINE, Embase, ISI Web of Knowledge, the Cochrane Library, Scopus, BioMed Central, ScienceDirect, China Biomedical literature Database (CBM) and China National Knowledge Internet (CNKI) from inception through Aug 29, 2013. Articles written in English or Chinese that investigated the accuracy of MMP-9 for the diagnosis of OS were included. Pooled sensitivity, specificity and the area under the receiver operating characteristic curve (AUC) were determined. I(2) was used to test heterogeneity and source of heterogeneity was investigated by meta-regression (tested with Meta-DiSc and STATA 12.0 statistical softwares). A total of 3729 articles were retrieved, of which 18 were included, accounting for 892 patients. Overall, the pooled sensitivity, specificity and AUC were 0.78 (95% CI 0.730-0.83), 0.90 (95% CI 0.79-0.95), and 0.87 (95% CI 0.83-0.89), respectively. The studies had substantial heterogeneity (I(2)=84%, 95% CI 65-100) (96%, 95% CI 94-99). Assay kit subgroup was the main source of the heterogeneity. Although MMP-9 was identified as a potential biomarker for OS, more studies were clearly needed to establish its diagnostic value.

  1. Omega-3 fatty acid supplementation decreases matrix metalloproteinase-9 production in relapsing-remitting multiple sclerosis.

    PubMed

    Shinto, L; Marracci, G; Baldauf-Wagner, S; Strehlow, A; Yadav, V; Stuber, L; Bourdette, D

    2009-01-01

    The primary objective was to evaluate the effect of omega-3 fatty acids (omega-3 FA) on matrix metalloproteinase-9 (MMP-9) production by immune cells in multiple sclerosis (MS). Quality of life, fatty acid levels, and safety were also evaluated. Ten participants with relapsing-remitting MS (RRMS) received omega-3 FA supplementation (9.6g/day fish oil) in an open-label study. Participants were evaluated at four time points, baseline, after 1 month of omega-3 FA supplementation, after 3 months of omega-3 FA supplementation, and after a 3-month wash out. Immune cell secretion of MMP-9 decreased by 58% after 3 months of omega-3 FA supplementation when compared with baseline levels (p<0.01). This effect was coupled with a significant increase in omega-3 FA levels in red blood cell membranes. Omega-3 FA significantly decreased MMP-9 levels in RRMS and may act as an immune-modulator that has potential therapeutic benefit in MS patients.

  2. Serum matrix metalloproteinase-9 in colorectal cancer family-risk population screening

    PubMed Central

    Otero-Estévez, Olalla; Chiara, Loretta De; Rodríguez-Girondo, Mar; Rodríguez-Berrocal, Francisco Javier; Cubiella, Joaquín; Castro, Inés; Hernández, Vicent; Martínez-Zorzano, Vicenta Soledad

    2015-01-01

    Matrix metalloproteinase-9 (MMP-9) is related to tumour development and progression in colorectal cancer (CRC) and its utility as biomarker has been suggested. The aim of our study was to measure serum MMP-9 in asymptomatic first-degree relatives of CRC patients, and to analyse its diagnostic accuracy for the detection of advanced neoplasia (AN: advanced adenomas and CRC). Additionally, we compared its diagnostic capability with the most used non-invasive faecal immunochemical test (FIT). Serum MMP-9 was quantified by ELISA in 516 asymptomatic individuals that underwent a colonoscopy and a FIT. MMP-9 levels were significantly related to age and gender and therefore the concentration was corrected by these confounders. Corrected MMP-9 (cMMP-9) levels were higher in individuals with advanced adenomas (AA; p-value = 0.029) and AN (p-value = 0.056) compared to individuals with no neoplasia. Moreover, elevated cMMP-9 concentration was associated with more severe characteristics of adenomas (number of lesions, size and histology). Nevertheless, the diagnostic accuracy of cMMP-9 was considerably lower than that of FIT for identifying AA (22.64% vs. 47.17% sensitivity, 90% specificity) or AN (19.30% vs. 52.63% sensitivity, 90% specificity). According to our results, serum MMP-9 cannot be considered of utility for the diagnosis of AN in CRC family-risk population screening. PMID:26264519

  3. Dynamic DNA methylation of matrix metalloproteinase-9 in the development of diabetic retinopathy

    PubMed Central

    Kowluru, Renu A.; Shen, Yang; Mishra, Manish

    2016-01-01

    Diabetes elevates matrix metalloproteinase-9 (MMP-9) in the retina and its capillary cells, and activated MMP-9 damages mitochondria, accelerating retinal capillary cell apoptosis, a phenomenon which precedes the development of retinopathy. Diabetes also favors epigenetic modifications regulating expression of many genes. DNA methylation is maintained by methylating-hydroxymethylating enzymes, and retinal DNA methyltransferase (Dnmt) is activated in diabetes. Our aim is to investigate the role of DNA methylation in MMP-9 regulation. Effect of high glucose on 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), and binding of Dnmt1 and hydroxymethylating enzyme (Tet2) on MMP-9 promoter were quantified in retinal endothelial cells. Specific role of Tet2 in MMP-9 activation was validated using Tet2-siRNA. The results were confirmed in the retina from streptozotocin-induced diabetic mouse. Although glucose increased Dnmt1 binding at MMP-9 promoter, it decreased 5mC levels. At the same promoter site, Tet2 binding and 5hmC levels were elevated. Tet2-siRNA ameliorated increase in 5hmC and MMP-9 transcription, and protected mitochondrial damage. Diabetic mice also presented similar dynamic DNA methylation changes in the retinal MMP-9 promoter. Thus, in diabetes transcription of retinal MMP-9 is maintained, in part, by an active DNA methylation-hydroxymethylation process, and regulation of this machinery should help maintain mitochondrial homeostasis and inhibit the development/ progression of diabetic retinopathy. PMID:27454437

  4. Functional Roles of N-Linked Glycosylation of Human Matrix Metalloproteinase 9.

    PubMed

    Duellman, Tyler; Burnett, John; Yang, Jay

    2015-10-01

    Matrix metalloproteinase-9 (MMP-9) is a secreted endoproteinase with a critical role in the regulation of the extracellular matrix and proteolytic activation of signaling molecules. Human (h)MMP-9 has two well-defined N-glycosylation sites at residues N38 and N120; however, their role has remained mostly unexplored partly because expression of the N-glycosylation-deficient N38S has been difficult due to a recently discovered single nucleotide polymorphism-dependent miRNA-mediated inhibitory mechanism. hMMP-9 cDNA encoding amino acid substitutions at residues 38 (modified-S38, mS38) or 120 (N120S) were created in the background of a miRNA-binding site disrupted template and expressed by transient transfection. hMMP-9 harboring a single mS38 replacement secreted well, whereas N120S, or a double mS38/N120S hMMP-9 demonstrated much reduced secretion. Imaging indicated endoplasmic reticulum (ER) retention of the non-secreted variants and co-immunoprecipitation confirmed an enhanced strong interaction between the non-secreted hMMP-9 and the ER-resident protein calreticulin (CALR). Removal of N-glycosylation at residue 38 revealed an amino acid-dependent strong interaction with CALR likely preventing unloading of the misfolded protein from the ER chaperone down the normal secretory pathway. As with other glycoproteins, N-glycosylation strongly regulates hMMP-9 secretion. This is mediated, however, through a novel mechanism of cloaking an N-glycosylation-independent strong interaction with the ER-resident CALR.

  5. Matrix metalloproteinase-9 expression in folliculostellate cells of rat anterior pituitary gland.

    PubMed

    Ilmiawati, Cimi; Horiguchi, Kotaro; Fujiwara, Ken; Yashiro, Takashi

    2012-03-01

    Folliculostellate (FS) cells of the anterior pituitary gland express a variety of regulatory molecules. Using transgenic rats that express green fluorescent protein specifically in FS cells, we recently demonstrated that FS cells in vitro showed marked changes in motility, proliferation, and that formation of cellular interconnections in the presence of laminin, a component of the extracellular matrix, closely resembled those observed in vivo. These findings suggested that FS cells express matrix metalloproteinase-9 (MMP-9), which assists their function on laminin. In the present study, we investigate MMP-9 expression in rat anterior pituitary gland and examine its role in motility and proliferation of FS cells on laminin. Immunohistochemistry, RT-PCR, immunoblotting, and gelatin zymography were performed to assess MMP-9 expression in the anterior pituitary gland and cultured FS cells. Real-time RT-PCR was used to quantify MMP-9 expression in cultured FS cells under different conditions and treatments. MMP-9 expression was inhibited by pharmacological inhibitor or downregulated by siRNA and time-lapse images were acquired. A 5-bromo-2'-deoxyuridine assay was performed to analyze the proliferation of FS cells. Our results showed that MMP-9 was expressed in FS cells, that this expression was upregulated by laminin, and that laminin induced MMP-9 secretion by FS cells. MMP-9 inhibition and downregulation did not impair FS motility; however, it did impair the capacity of FS cells to form interconnections and it significantly inhibited proliferation of FS cells on laminin. We conclude that MMP-9 is necessary in FS cell interconnection and proliferation in the presence of laminin.

  6. Matrix Metalloproteinase 9 (MMP-9) Regulates Vein Wall Biomechanics in Murine Thrombus Resolution

    PubMed Central

    Nguyen, Khanh P.; McGilvray, Kirk C.; Puttlitz, Christian M.; Mukhopadhyay, Subhradip; Chabasse, Christine; Sarkar, Rajabrata

    2015-01-01

    Objective Deep venous thrombosis is a common vascular problem with long-term complications including post-thrombotic syndrome. Post-thrombotic syndrome consists of leg pain, swelling and ulceration that is related to incomplete or maladaptive resolution of the venous thrombus as well as loss of compliance of the vein wall. We examine the role of metalloproteinase-9 (MMP-9), a gene important in extracellular remodeling in other vascular diseases, in mediating thrombus resolution and biomechanical changes of the vein wall. Methods and Results The effects of targeted deletion of MMP-9 were studied in an in vivo murine model of thrombus resolution using the FVB strain of mice. MMP-9 expression and activity significantly increased on day 3 after DVT. The lack of MMP-9 impaired thrombus resolution by 27% and this phenotype was rescued by the transplantation of wildtype bone marrow cells. Using novel biomechanical techniques, we demonstrated that the lack of MMP-9 significantly decreased thrombus-induced loss of vein wall compliance. Biomechanical analysis of the contribution of individual structural components showed that MMP-9 affected the elasticity of the extracellular matrix and collagen-elastin fibers. Biochemical and histological analyses correlated with these biomechanical effects as thrombi of mice lacking MMP-9 had significantly fewer macrophages and collagen as compared to those of wildtype mice. Conclusions MMP-9 mediates thrombus-induced loss of vein wall compliance by increasing stiffness of the extracellular matrix and collagen-elastin fibers during thrombus resolution. MMP-9 also mediates macrophage and collagen content of the resolving thrombus and bone-marrow derived MMP-9 plays a role in resolution of thrombus mass. These disparate effects of MMP-9 on various aspects of thrombus illustrate the complexity of individual protease function on biomechanical and morphometric aspects of thrombus resolution. PMID:26406902

  7. Selective inhibition of matrix metalloproteinase-9 attenuates secondary damage resulting from severe traumatic brain injury.

    PubMed

    Hadass, Orr; Tomlinson, Brittany N; Gooyit, Major; Chen, Shanyan; Purdy, Justin J; Walker, Jennifer M; Zhang, Chunyang; Giritharan, Andrew B; Purnell, Whitley; Robinson, Christopher R; Shin, Dmitriy; Schroeder, Valerie A; Suckow, Mark A; Simonyi, Agnes; Sun, Grace Y; Mobashery, Shahriar; Cui, Jiankun; Chang, Mayland; Gu, Zezong

    2013-01-01

    Traumatic brain injury (TBI) is a leading cause of death and long-term disability. Following the initial insult, severe TBI progresses to a secondary injury phase associated with biochemical and cellular changes. The secondary injury is thought to be responsible for the development of many of the neurological deficits observed after TBI and also provides a window of opportunity for therapeutic intervention. Matrix metalloproteinase-9 (MMP-9 or gelatinase B) expression is elevated in neurological diseases and its activation is an important factor in detrimental outcomes including excitotoxicity, mitochondrial dysfunction and apoptosis, and increases in inflammatory responses and astrogliosis. In this study, we used an experimental mouse model of TBI to examine the role of MMP-9 and the therapeutic potential of SB-3CT, a mechanism-based gelatinase selective inhibitor, in ameliorating the secondary injury. We observed that activation of MMP-9 occurred within one day following TBI, and remained elevated for 7 days after the initial insult. SB-3CT effectively attenuated MMP-9 activity, reduced brain lesion volumes and prevented neuronal loss and dendritic degeneration. Pharmacokinetic studies revealed that SB-3CT and its active metabolite, p-OH SB-3CT, were rapidly absorbed and distributed to the brain. Moreover, SB-3CT treatment mitigated microglial activation and astrogliosis after TBI. Importantly, SB-3CT treatment improved long-term neurobehavioral outcomes, including sensorimotor function, and hippocampus-associated spatial learning and memory. These results demonstrate that MMP-9 is a key target for therapy to attenuate secondary injury cascades and that this class of mechanism-based gelatinase inhibitor-with such desirable pharmacokinetic properties-holds considerable promise as a potential pharmacological treatment of TBI.

  8. Pigment epithelium-derived factor and matrix metalloproteinase-9 in liver cirrhosis.

    PubMed

    Kozlowska, Joanna; Mikula, Tomasz; Suchacz, Magdalena; Jabnonska, Joanna; Stanczak, Wojciech; Cianciara, Janusz; Wiercinska-Drapalo, Alicja

    2016-01-01

    The aim of this study was to assess the role of serum pigment epithelium-derived factor (PEDF) and matrix metalloproteinase-9 (MMP-9) in progression of liver cirrhosis and development of hepatocellular carcinoma (HCC). Serum levels of PEDF and MMP-9 were tested in 212 patients with liver cirrhosis and in a control group of 30 healthy volunteers. HCC was diagnosed in 45 of the 212 patients studied (21%). Serum PEDF and MMP-9 were higher in the study group than that in the control group (P < 0.001). In patients with alcoholic or mixed (alcoholic and viral hepatitis-related) cirrhosis, serum PEDF was higher than that in other patients (13970.2 ± 13406.9 ng/ml vs. 8563.5 ± 9602.7 ng/ml, P = 0.008). In patients with viral hepatitis-related cirrhosis, significantly higher PEDF levels were recorded in those with HCC (13429.1 ± 12045.8) than that in patients without HCC (6660.1 ± 7927.1; P = 0.04). There was a trend for higher serum MMP-9 in patients with HCC (5778.7 ± 12426.6 vs. 1389.8 ± 1944.7 in those without HCC; P = 0.07). Significant negative correlation between serum MMP-9 and serum alpha-fetoprotein in patients with HCC was observed (r = -0.54; P = 0.04). Serum PEDF and MMP-9 could be auxiliary markers in diagnosis of HCC, especially in patients with low alpha-fetoprotein level. Alcohol consumption can affect serum PEDF.

  9. Transgenic expression of human matrix metalloproteinase-9 augments monocrotaline-induced pulmonary arterial hypertension in mice

    PubMed Central

    George, Joseph; D’Armiento, Jeanine

    2013-01-01

    Objectives Pulmonary arterial hypertension (PAH) is characterized by intimal lesions, right ventricular hypertrophy, and adventitial thickening of pulmonary arteries with progressive pulmonary hypertension. This investigation was aimed to examine the effects of transgenic expression of human matrix metalloproteinase-9 (MMP-9) in the pathogenesis of PAH. Methods PAH was induced using serial subcutaneous administration of monocrotaline (MCT). Right ventricular pressure was measured through the right jugular vein using a 1.4F Millar Mikro-tip catheter-transducer. Zymography, western blotting, and quantitative reverse transcription PCR (qRT-PCR) were carried out for MMP-9. Immunohistochemistry was performed for α-smooth muscle actin (α-SMA) and Mac-3 antigen. Results Measurement of right ventricular pressure demonstrated 2.5-fold and 3.7-fold elevation after the administration of MCT in wild-type and MMP-9 transgenic mice, respectively. Zymography, western blotting, and qRT-PCR depicted increased activity and expression of MMP-9 after treatment with MCT, which were augmented in transgenic mice. There was marked pulmonary inflammation with extensive infiltration of mononuclear cells, which was more intense in MMP-9 transgenic mice. SMA and Mac-3 staining demonstrated hypertrophy of pulmonary arteries with occlusion of precapillary vessels and extensive infiltration of macrophages, respectively. All these changes were aggravated in MCT-treated MMP-9 transgenic mice when compared to normal littermates. Conclusion Our study demonstrated that the MCT-induced PAH in mouse is a reproducible and potentially valuable animal model for the human disease. Our results further demonstrated that MMP-9 plays a significant role in the pathogenesis of PAH and effective blocking of MMP-9 could provide an option in the therapeutic intervention of human PAH. PMID:21063214

  10. Transgenic expression of human matrix metalloproteinase-9 augments monocrotaline-induced pulmonary arterial hypertension in mice.

    PubMed

    George, Joseph; D'Armiento, Jeanine

    2011-02-01

    Pulmonary arterial hypertension (PAH) is characterized by intimal lesions, right ventricular hypertrophy, and adventitial thickening of pulmonary arteries with progressive pulmonary hypertension. This investigation was aimed to examine the effects of transgenic expression of human matrix metalloproteinase-9 (MMP-9) in the pathogenesis of PAH. PAH was induced using serial subcutaneous administration of monocrotaline (MCT). Right ventricular pressure was measured through the right jugular vein using a 1.4F Millar Mikro-tip catheter-transducer. Zymography, western blotting, and quantitative reverse transcription PCR (qRT-PCR) were carried out for MMP-9. Immunohistochemistry was performed for α-smooth muscle actin (α-SMA) and Mac-3 antigen. Measurement of right ventricular pressure demonstrated 2.5-fold and 3.7-fold elevation after the administration of MCT in wild-type and MMP-9 transgenic mice, respectively. Zymography, western blotting, and qRT-PCR depicted increased activity and expression of MMP-9 after treatment with MCT, which were augmented in transgenic mice. There was marked pulmonary inflammation with extensive infiltration of mononuclear cells, which was more intense in MMP-9 transgenic mice. SMA and Mac-3 staining demonstrated hypertrophy of pulmonary arteries with occlusion of precapillary vessels and extensive infiltration of macrophages, respectively. All these changes were aggravated in MCT-treated MMP-9 transgenic mice when compared to normal littermates. Our study demonstrated that the MCT-induced PAH in mouse is a reproducible and potentially valuable animal model for the human disease. Our results further demonstrated that MMP-9 plays a significant role in the pathogenesis of PAH and effective blocking of MMP-9 could provide an option in the therapeutic intervention of human PAH.

  11. Keratinocyte growth factor induces matrix metalloproteinase-9 expression and correlates with venous invasion in pancreatic cancer

    PubMed Central

    CHO, KAZUMITSU; MATSUDA, YOKO; UEDA, JUNJI; UCHIDA, EIJI; NAITO, ZENYA; ISHIWATA, TOSHIYUKI

    2012-01-01

    Keratinocyte growth factor (KGF), also known as fibroblast growth factor-7, and KGF receptor (KGFR) play important roles in the growth of epithelial cells and are overexpressed in a variety of malignant epithelial tumors, including pancreatic ductal adenocarcinoma (PDAC). We previously reported that co-expression of KGF and KGFR in PDAC is associated with venous invasion, enhanced vascular endothelial growth factor A expression and poor prognosis. Matrix metalloproteinase-9 (MMP-9) is known to participate in the degradation of type IV collagen, which is a primary component of extracellular matrices in the vascular basement membrane. In the present study, we examined the expression and roles of KGF, KGFR and MMP-9 in human PDAC cell lines and tissues. Quantitative real-time polymerase chain reaction analysis demonstrated the expression of MMP-9 mRNA in all eight PDAC cell lines. KGF, KGFR and MMP-9 were, respectively, expressed in 27 (43%), 23 (37%) and 35 (56%) of 63 patients. Each expression of KGF, KGFR or MMP-9 correlated positively with venous invasion. Furthermore, expression of KGF or MMP-9 correlated positively with liver metastasis. KGF-positive cases exhibited shorter survival than KGF-negative cases, while KGFR and MMP-9 expression were unrelated to prognosis. Administration of recombinant human KGF increased MMP-9 expression in PDAC cells, while transient transfection with short hairpin RNAs targeting KGF transcripts reduced MMP-9 expression in PDAC cells. Moreover, recombinant human KGF significantly enhanced migration and invasion of PDAC cells. These findings suggest that KGF and KGFR promote venous invasion via MMP-9 in PDAC, and closely correlate with liver metastasis. The KGF/KGFR pathway may be a critical therapeutic target for PDAC metastasis. PMID:22159401

  12. Salvianolic Acid A, a Novel Matrix Metalloproteinase-9 Inhibitor, Prevents Cardiac Remodeling in Spontaneously Hypertensive Rats

    PubMed Central

    Deng, Yanping; Teng, Fukang; Chen, Jing; Xue, Song; Kong, Xiangqian; Luo, Cheng; Shen, Xu; Jiang, Hualiang; Xu, Feng; Yang, Wengang; Yin, Jun; Wang, Yanhui; Chen, Hui; Wu, Wanying; Liu, Xuan; Guo, De-an

    2013-01-01

    Cardiac fibrosis is a deleterious consequence of hypertension which may further advance to heart failure and increased matrix metalloproteinase-9 (MMP-9) contributes to the underlying mechanism. Therefore, new therapeutic strategies to attenuate the effects of MMP-9 are urgently needed. In the present study, we characterize salvianolic acid A (SalA) as a novel MMP-9 inhibitor at molecular, cellular and animal level. We expressed a truncated form of MMP-9 which contains only the catalytic domain (MMP-9 CD), and used this active protein for enzymatic kinetic analysis and Biacore detection. Data generated from these assays indicated that SalA functioned as the strongest competitive inhibitor of MMP-9 among 7 phenolic acids from Salvia miltiorrhiza. In neonatal cardiac fibroblast, SalA inhibited fibroblast migration, blocked myofibroblast transformation, inhibited secretion of intercellular adhesion molecule (ICAM), interleukin-6 (IL-6) and soluble vascular cell adhesion molecule-1 (sVCAM-1) as well as collagen induced by MMP-9 CD. Functional effects of SalA inhibition on MMP-9 was further confirmed in cultured cardiac H9c2 cell overexpressing MMP-9 in vitro and in heart of spontaneously hypertensive rats (SHR) in vivo. Moreover, SalA treatment in SHR resulted in decreased heart fibrosis and attenuated heart hypertrophy. These results indicated that SalA is a novel inhibitor of MMP-9, thus playing an inhibitory role in hypertensive fibrosis. Further studies to develop SalA and its analogues for their potential clinical application of cardioprotection are warranted. PMID:23533637

  13. Mesenchymal stem cells overexpressing CXCR4 attenuate remodeling of postmyocardial infarction by releasing matrix metalloproteinase-9.

    PubMed

    Huang, Wei; Wang, Tao; Zhang, Dongsheng; Zhao, Tiemin; Dai, Bo; Ashraf, Atif; Wang, Xiaohong; Xu, Meifeng; Millard, Ronald W; Fan, Guo-Chang; Ashraf, Muhammad; Yu, Xi-Yong; Wang, Yigang

    2012-03-20

    Myocardial infarction (MI) results in loss of myofibers in the ischemic zone of the heart, followed by scar formation. These factors increase barriers to mobilization of mesenchymal stem cells (MSC), thereby impeding their effectiveness in cardiac repair. This study examined MSC overexpressing CXCR4 (MSC(CX4)) to determine penetration into infarcted myocardium by releasing collagen degrading enzyme, matrix metalloproteinase-9 (MMP-9). In vitro, mouse MSC were utilized, including MSC using adenoviral transduction, to express CXCR4/green fluorescent protein (GFP) (MSC(CX4)), Null/GFP (MSC(Null)), MSC treated with siRNA targeting CXCR4 (MSC(siR)), MSC treated with control siRNA(MSC(Con-siR)), MSC(CX4) treated with siRNA targeting MMP-9 (MSC(CX4-siRMP9)) and MMP-14 (MSC(CX4-siRMP14)), MSC derived from MMP-9 knockout mouse with adenoviral transduction for GFP (MSC(MP9-)), or MSC(MP9-) plus overexpressing CXCR4 (MSC(MP9-CX4)). The ability to cross the basement membrane was evaluated in all MSC using a trans-collagen gel invasion assay. The CXCR4 and MMP expression were analyzed by Western blot. In vivo, MSC with various treatments were infused into mice via tail vein injections 7 days after MI. Echocardiography was performed before harvesting hearts for analysis at 4 weeks after MSC injection. Both in vitro and in vivo studies demonstrated upregulation of MMP-9 induced by MSC(CX4), promoting increased GFP(+) cell migration into the infarcted area in comparison to control group. This enhanced response was associated with reduced left ventricular (LV) fibrosis, increased LV free wall thickness, angiogenesis, and improved LV function. Under hypoxic conditions, MMP-9 is upregulated in MSC(CX4), thus facilitating cross of the basement membrane, resulting in an improved remodeling of post-MI tissue.

  14. Elevated matrix metalloproteinase-9 expression may contribute to the pathogenesis of bladder cancer

    PubMed Central

    ZENG, FAN-CHANG; CEN, SONG; TANG, ZHENG-YAN; KANG, XIN-LI

    2016-01-01

    The present study investigated the potential association between matrix metalloproteinase-9 (MMP-9) expression and the pathogenesis of bladder cancer. The present study reviewed previous studies published in Chinese and English using predefined selection criteria, which identified high-quality studies concerning MMP-9 and bladder cancer. Statistical analyses of the data were conducted using Comprehensive Meta-Analysis software version 2.0. In total, 23 case-control studies were selected, which consisted of 1,040 bladder cancer patients and 244 healthy controls. The expression rates and protein levels of MMP-9 were significantly increased in bladder cancer patients compared with the healthy controls, which was demonstrated using immunohistochemistry (IHC) and enzyme-linked immunosorbent assay-based methods. Furthermore, the expression rate of MMP-9 in histological G1/G2 grade bladder cancer tumors was significantly decreased compared with G3 tumors. Subgroup analysis based on ethnicity demonstrated that the rate of MMP-9 protein expression between bladder cancer patients and healthy controls was significantly different in African, Asian and Caucasian patients, which was identified using IHC. The MMP-9 protein levels in bladder cancer patients and healthy controls were significantly different between Asian and Caucasian patients, but not African patients. The differences between MMP-9 expression in ethnic groups were also evident in the expression rate of MMP-9 identified in histological G1/G2 grade tumors in Asian and Caucasian patients compared with G3 grade tumors, which was not evident in African patients. In conclusion, the present meta-analysis results markedly indicate that MMP-9 expression is associated with clinicopathological features of bladder cancer, suggesting that MMP-9 may be a useful biomarker in the diagnosis and clinical management of bladder cancer, and may be a valuable therapeutic target. PMID:26998151

  15. Attenuation of dextran sodium sulphate induced colitis in matrix metalloproteinase-9 deficient mice

    PubMed Central

    Santana, Alfredo; Medina, Carlos; Paz-Cabrera, Maria Cristina; Díaz-Gonzalez, Federico; Farré, Esther; Salas, Antonio; Radomski, Marek W; Quintero, Enrique

    2006-01-01

    AIM: To study whether matrix metalloproteinase-9 (MMP-9) is a key factor in epithelial damage in the dextran sodium sulphate (DSS) model of colitis in mice. METHODS: MMP-9-deficient and wild-type (wt) mice were given 5% DSS in drinking water for 5 d followed by recovery up to 7 d. On d 5 and 12 after induction of colitis, gelatinases, MMP-2 and MMP-9, were measured in homogenates of colonic tissue by zymography and Western blot, whereas tissue inhibitor of metalloproteinases (TIMPs) were measured by reverse zymography. The gelatinolytic activity was also determined in supernatants of polymorphonuclear leukocytes (PMN) isolated from mice blood. Moreover, intestinal epithelial cells were stimulated with TNF-α to study whether these cells were able to produce MMPs. Finally, colonic mucosal lesions were measured by microscopic examination. RESULTS: On d 5 of colitis, the activity of MMP-9 was increased in homogenates of colonic tissues (0.24 ± 0.1 vs 21.3 ± 6.4, P < 0.05) and PMN from peripheral blood in wt (0.5 ± 0.1 vs 10.4 ± 0.7, P < 0.05), but not in MMP-9-deficient animals. The MMP-9 activity was also up-regulated by TNF-α in epithelial intestinal cells (2.5 ± 0.5 vs 14.7 ± 3.0, P < 0.05). Although colitis also led to increase of TIMP-1 activity, the MMP-9/TIMP-1 balance remained elevated. Finally, in the MMP-9-deficient colitic mice both the extent and severity of intestinal epithelial injury were significantly attenuated when compared with wt mice. CONCLUSION: We conclude that DSS induced colitis is markedly attenuated in animals lacking MMP-9. This suggests that intestinal injury induced by DSS is modulated by MMP-9 and that inhibition of this gelatinase may reduce inflammation. PMID:17072979

  16. Betaine prevents homocysteine-induced memory impairment via matrix metalloproteinase-9 in the frontal cortex.

    PubMed

    Kunisawa, K; Nakashima, N; Nagao, M; Nomura, T; Kinoshita, S; Hiramatsu, M

    2015-10-01

    Betaine plays important roles that include acting as a methyl donor and converting homocysteine (Hcy) to methionine. Elevated plasma Hcy levels are known as hyperhomocysteinemia (HHcy) and contribute to impairments of learning and memory. Although it is commonly known that betaine plays an important role in Hcy metabolism, the effects of betaine on Hcy-induced memory impairment have not been investigated. Previously, we demonstrated the beneficial effects of betaine on acute stress and lipopolysaccharide-induced memory impairment. In the present study, we investigated whether betaine ameliorates Hcy-induced memory impairment and the underlying mechanisms of this putative effect. Mice were treated with Hcy (0.162mg/kg, s.c.) twice a day for nine days, and betaine (25mg/kg, s.c.) was administered 30min before the Hcy injections. The memory functions were evaluated using a spontaneous alternation performance test (Y-maze) at seven days and a step-down type passive avoidance test (SD) at nine and ten days after Hcy injection. We found that betaine suppressed the memory impairment induced by repeated Hcy injections. However, the blood concentrations of Hcy were significantly increased in the Hcy-treated mice immediately after the passive avoidance test, and betaine did not prevent this increase. Furthermore, Hcy induces redox stress in part by activating matrix metalloproteinase-9 (MMP-9), which leads to BBB dysfunction. Therefore, we tested whether betaine affected MMP-9 activity. Interestingly, treatment with betaine significantly inhibited Hcy-induced MMP-9 activity in the frontal cortex but not in the hippocampus after acute Hcy injection. These results suggest that the changes in MMP-9 activity after betaine treatment might have been partially responsible for the amelioration of the memory deficits and that MMP-9 might be a candidate therapeutic target for HHcy.

  17. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation

    SciTech Connect

    Sundaram, Kumaran; Nishimura, Riko; Senn, Joseph; Youssef, Rimon F.; London, Steven D.; Reddy, Sakamuri V. . E-mail: reddysv@musc.edu

    2007-01-01

    Osteoclast differentiation is tightly regulated by receptor activator of NF-{kappa}B ligand (RANKL) signaling. Matrix metalloproteinase-9 (MMP-9), a type IV collagenase is highly expressed in osteoclast cells and plays an important role in degradation of extracellular matrix; however, the molecular mechanisms that regulate MMP-9 gene expression are unknown. In this study, we demonstrate that RANKL signaling induces MMP-9 gene expression in osteoclast precursor cells. We further show that RANKL regulates MMP-9 gene expression through TRAF6 but not TRAF2. Interestingly, blockade of p38 MAPK activity by pharmacological inhibitor, SB203580 increases MMP-9 activity whereas ERK1/2 inhibitor, PD98059 decreases RANKL induced MMP-9 activity in RAW264.7 cells. These data suggest that RANKL differentially regulates MMP-9 expression through p38 and ERK signaling pathways during osteoclast differentiation. Transient expression of MMP-9 gene (+ 1 to - 1174 bp relative to ATG start codon) promoter-luciferase reporter plasmids in RAW264.7 cells and RANKL stimulation showed significant increase (20-fold) of MMP-9 gene promoter activity; however, there is no significant change with respect to + 1 bp to - 446 bp promoter region and empty vector transfected cells. These results indicated that MMP-9 promoter sequence from - 446 bp to - 1174 bp relative to start codon is responsive to RANKL stimulation. Sequence analysis of the mouse MMP-9 gene promoter region further identified the presence of binding motif (- 1123 bp to - 1153 bp) for the nuclear factor of activated T cells 1 (NFATc1) transcription factor. Inhibition of NFATc1 using siRNA and VIVIT peptide inhibitor significantly decreased RANKL stimulation of MMP-9 activity. We further confirm by oligonucleotide pull-down assay that RANKL stimuli enhanced NFATc1 binding to MMP-9 gene promoter element. In addition, over-expression of constitutively active NFAT in RAW264.7 cells markedly increased (5-fold) MMP-9 gene promoter activity

  18. Cortisol/cortisone ratio and matrix metalloproteinase-9 activity are associated with pediatric primary hypertension.

    PubMed

    Martinez-Aguayo, Alejandro; Campino, Carmen; Baudrand, Rene; Carvajal, Cristian A; García, Hernán; Aglony, Marlene; Bancalari, Rodrigo; García, Lorena; Loureiro, Carolina; Vecchiola, Andrea; Tapia-Castillo, Alejandra; Valdivia, Carolina; Sanhueza, Sebastian; Fuentes, Cristobal A; Lagos, Carlos F; Solari, Sandra; Allende, Fidel; Kalergis, Alexis M; Fardella, Carlos E

    2016-09-01

    To identify novel biomarkers associated with pediatric primary hypertension. We recruited 350 participants (4-16 years). Anthropometric parameters and aldosterone, plasma renin activity, cortisol, cortisone, Homeostasis Model Assessment Insulin Resistance (HOMA-IR), high-sensitivity C-reactive protein, adiponectin, IL-6, plasminogen activator inhibitor type 1 levels and matrix metalloproteinase-9 and matrix metalloproteinase-2 (MMP-9 and MMP-2) activities were measured. Genomic DNA was isolated. Patients with altered glucose metabolism, severe obesity [BMI-SD score (BMI-SDS) > 2.5], renovascular disease, primary aldosteronism and apparent mineralocorticoid excess syndrome were excluded. In selected participants (n = 320), SBP was positively correlated with BMI-SDS (r = 0.382, P < 0.001), HOMA-IR (r = 0.211, P < 0.001), MMP-9 activity (r = 0.215, P < 0.001) and the cortisol/cortisone ratio (r = 0.231, P < 0.001). DBP showed similar correlations with these variables. No correlation was observed with aldosterone or plasma renin activity. Participants were categorized as hypertensive (n = 59) or nonhypertensive (n = 261). In the univariate analysis, hypertensive patients had higher BMI-SDS (P < 0.001), HOMA-IR (P < 0.001), high-sensitivity C-reactive protein (P < 0.001), MMP-9 activity (P < 0.001), plasminogen activator inhibitor type 1 (P < 0.001) and cortisol/cortisone ratio (P < 0.001) than nonhypertensive patients. Multiple regression analysis showed that the variables that remained associated with hypertension were higher BMI-SDS [odds ratio (OR) = 3.74; 95% confidence interval (CI) = 1.84-7.58], a higher cortisol/cortisone ratio (OR = 3.92; 95% CI = 1.98-7.71) and increased MMP-9 activity (OR = 4.23; 95% CI = 2.15-8.32). We report that MMP-9 activity and the cortisol/cortisone ratio were higher in pediatric primary hypertensive patients, and these associations were

  19. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells

    SciTech Connect

    Rose, Peter . E-mail: bchpcr@nus.edu.sg; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependant manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  20. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells.

    PubMed

    Rose, Peter; Huang, Qing; Ong, Choon Nam; Whiteman, Matt

    2005-12-01

    A high dietary intake of cruciferous vegetables has been associated with a reduction in numerous human pathologies particularly cancer. In the current study, we examined the inhibitory effects of broccoli (Brassica oleracea var. italica) and watercress (Rorripa nasturtium aquaticum) extracts on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cancer cell invasion and matrix metalloproteinase-9 activity using human MDA-MB-231 breast cancer cells. Aberrant overexpression of matrix metalloproteinases, including metalloproteinase-9, is associated with increased invasive potential in cancer cell lines. Our results demonstrate that extracts of broccoli and Rorripa suppressed TPA-induced MMP-9 activity and invasiveness in a concentration dependent manner as determined by zymographic analysis. Furthermore, fractionation of individual extracts followed by liquid chromatography mass spectroscopy analysis (LC-MS) revealed that the inhibitory effects of each vegetable were associated with the presence of 4-methysulfinylbutyl (sulforaphane) and 7-methylsulphinylheptyl isothiocyanates. Taken together, our data indicate that isothiocyanates derived form broccoli and Rorripa inhibit metalloproteinase 9 activities and also suppress the invasive potential of human MDA-MB-231 breast cancer cells in vitro. The inhibitory effects observed in the current study may contribute to the suppression of carcinogenesis by diets high in cruciferous vegetables.

  1. Melatonin Preserves Blood-Brain Barrier Integrity and Permeability via Matrix Metalloproteinase-9 Inhibition

    PubMed Central

    Alluri, Himakarnika; Wilson, Rickesha L.; Anasooya Shaji, Chinchusha; Wiggins-Dohlvik, Katie; Patel, Savan; Liu, Yang; Peng, Xu; Beeram, Madhava R.; Davis, Matthew L.; Huang, Jason H.; Tharakan, Binu

    2016-01-01

    Microvascular hyperpermeability that occurs at the level of the blood-brain barrier (BBB) often leads to vasogenic brain edema and elevated intracranial pressure following traumatic brain injury (TBI). At a cellular level, tight junction proteins (TJPs) between neighboring endothelial cells maintain the integrity of the BBB via TJ associated proteins particularly, zonula occludens-1 (ZO-1) that binds to the transmembrane TJPs and actin cytoskeleton intracellularly. The pro-inflammatory cytokine, interleukin-1β (IL-1β) as well as the proteolytic enzymes, matrix metalloproteinase-9 (MMP-9) are key mediators of trauma-associated brain edema. Recent studies indicate that melatonin a pineal hormone directly binds to MMP-9 and also might act as its endogenous inhibitor. We hypothesized that melatonin treatment will provide protection against TBI-induced BBB hyperpermeability via MMP-9 inhibition. Rat brain microvascular endothelial cells grown as monolayers were used as an in vitro model of the BBB and a mouse model of TBI using a controlled cortical impactor was used for all in vivo studies. IL-1β (10 ng/mL; 2 hours)-induced endothelial monolayer hyperpermeability was significantly attenuated by melatonin (10 μg/mL; 1 hour), GM6001 (broad spectrum MMP inhibitor; 10 μM; 1 hour), MMP-9 inhibitor-1 (MMP-9 specific inhibitor; 5 nM; 1 hour) or MMP-9 siRNA transfection (48 hours) in vitro. Melatonin and MMP-9 inhibitor-1 pretreatment attenuated IL-1β-induced MMP-9 activity, loss of ZO-1 junctional integrity and f-actin stress fiber formation. IL-1β treatment neither affected ZO-1 protein or mRNA expression or cell viability. Acute melatonin treatment attenuated BBB hyperpermeability in a mouse controlled cortical impact model of TBI in vivo. In conclusion, one of the protective effects of melatonin against BBB hyperpermeability occurs due to enhanced BBB integrity via MMP-9 inhibition. In addition, acute melatonin treatment provides protection against BBB

  2. Proliferation, apoptosis and expression of matrix metalloproteinase-9 in human fetal lung.

    PubMed

    Kraljevic, Daniela; Vukojevic, Katarina; Karan, Dragana; Rajic, Borko; Todorovic, Jelena; Miskovic, Josip; Tomic, Vajdana; Kordic, Mario; Soljic, Violeta

    2015-01-01

    Expression pattern of the Ki-67, caspase-3 and matrix metalloproteinases-9 (MMP-9) factors were immunohistochemically analyzed in 48 human fetal lungs from 12 to 40 weeks of gestation. The number of Ki-67 positive cells in the epithelium of canaliculare (88cells/mm(2)) and sacculare stage (93cells/mm(2)) were significantly higher than in the epithelium of pseudoglandular stage (12cells/mm(2)) (p=0.0008 vs. p=0.003). The number of Ki-67 positive cells in the mesenchyme of canaliculare stage (132cells/mm(2)) was significantly higher than in the mesenchyme of pseudoglandular stage (37cells/mm(2)) (p=0.001). The proliferation of mesenchymal cells was higher than the epithelial cells in all developmental stages, especially in the canaliculare stage (p=0.007). Similarly, the number of caspase-3 positive cells in the epithelium of canalicular stage (13cells/mm(2)) was significantly higher than in the epithelium of pseudoglandular stage (6cells/mm(2)) (p=0.002) with peaks in the conductive epithelium of canalicular stage. The number of caspase-3 positive cells in the mesenchyme of canaliculare stage (3cells/mm(2)) was significantly higher than in the mesenchyme of saccular stage (0cells/mm(2)) (p=0.05). There were no caspase-3 positive cells in the mesenchyme of pseudoglandular stage. However, unlike the Ki-67 expression, mesenchymal cells in comparison to epithelial cells express substantially less caspase-3 in all developmental stages. Up to the saccular stage, the expression of MMP-9 in mesenchymal cells showed a linear increase with most pronounced expression in that stage. The number of MMP-9 positive cells in the mesenchyme of canaliculare (20cells/mm(2)) and sacculare (39cells/mm(2)) stage were significantly higher than in the mesenchyme of pseudoglandular stage (12cells/mm(2)) (p=0.04 vs. p=0.004). The first epithelial cells that express MMP-9 were present only at the alveolar stage. Increased proliferation and apoptosis of the mesenchymal cells of canalicular

  3. Epigenetics of Epileptogenesis-Evoked Upregulation of Matrix Metalloproteinase-9 in Hippocampus

    PubMed Central

    Zybura-Broda, Katarzyna; Amborska, Renata; Ambrozek-Latecka, Magdalena; Wilemska, Joanna; Bogusz, Agnieszka; Bucko, Joanna; Konopka, Anna; Grajkowska, Wieslawa; Roszkowski, Marcin; Marchel, Andrzej; Rysz, Andrzej; Koperski, Lukasz; Wilczynski, Grzegorz M.; Kaczmarek, Leszek; Rylski, Marcin

    2016-01-01

    Enhanced levels of Matrix Metalloproteinase-9 (MMP-9) have been implicated in the pathogenesis of epilepsy in humans and rodents. Lack of Mmp-9 impoverishes, whereas excess of Mmp-9 facilitates epileptogenesis. Epigenetic mechanisms driving the epileptogenesis-related upregulation of MMP-9 expression are virtually unknown. The aim of this study was to reveal these mechanisms. We analyzed hippocampi extracted from adult and pediatric patients with temporal lobe epilepsy as well as from partially and fully pentylenetetrazole kindled rats. We used a unique approach to the analysis of the kindling model results (inclusion in the analysis of rats being during kindling, and not only a group of fully kindled animals), which allowed us to separate the molecular effects exerted by the epileptogenesis from those related to epilepsy and epileptic activity. Consequently, it allowed for a disclosure of molecular mechanisms underlying causes, and not consequences, of epilepsy. Our data show that the epileptogenesis-evoked upregulation of Mmp-9 expression is regulated by removal from Mmp-9 gene proximal promoter of the two, interweaved potent silencing mechanisms–DNA methylation and Polycomb Repressive Complex 2 (PRC2)-related repression. Demethylation depends on a gradual dissociation of the DNA methyltransferases, Dnmt3a and Dnmt3b, and on progressive association of the DNA demethylation promoting protein Gadd45β to Mmp-9 proximal gene promoter in vivo. The PRC2-related mechanism relies on dissociation of the repressive transcription factor YY1 and the dissipation of the PRC2-evoked trimethylation on Lys27 of the histone H3 from the proximal Mmp-9 promoter chromatin in vivo. Moreover, we show that the DNA hydroxymethylation, a new epigenetic DNA modification, which is localized predominantly in the gene promoters and is particularly abundant in the brain, is not involved in a regulation of MMP-9 expression during the epileptogenesis in the rat hippocampus as well as in the

  4. Immunocharacterization of matrix metalloproteinase-2 and matrix metalloproteinase-9 in canine transmissible venereal tumors.

    PubMed

    Akkoc, A; Nak, D; Demirer, A; Şimşek, G

    2017-01-01

    Matrix metalloproteases (MMPs) are endogenous proteases that are responsible for degradation of extracellular matrix (ECM) proteins and cell surface antigens. The breakdown of ECM participates in the local invasion and distant metastases of malignant tumors. Canine transmissible venereal tumor (CTVT) is a naturally occurring contagious round cell neoplasm of dogs that affects mainly the external genitalia of both sexes. CTVT generally is a locally invasive tumor, but distant metastases also are common in puppies and immunocompromised dogs. We investigated the immune expressions and activities of MMP-2 and MMP-9 in CTVT. The presence of these enzymes in tumor cells and tissue homogenates was demonstrated by immunohistochemistry and western blotting. We used gelatin substrate zymography to evaluate the activities of MMP-2 and MMP-9 enzymes in tumor homogenates. We found that tumor cells expressed both MMP-2 and MMP-9. Electrophoretic bands corresponding to MMP-9 and MMP-2 were identified in immunoblots and clear bands that corresponded to the active forms of MMP-2 and MMP-9 also were detected in gelatin zymograms. Our study is the first detailed documentation of MMPs in CTVT.

  5. Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas

    PubMed Central

    Liu, Hong-Yan; Gu, Wei-Jun; Wang, Cheng-Zhi; Ji, Xiao-Jian; Mu, Yi-Ming

    2016-01-01

    Abstract The extracellular matrix is important for tumor invasion and metastasis. Normal function of the extracellular matrix depends on the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The objective of this meta-analysis was to assess the relationship between expression of MMP-9, MMP-2, and TIMP-2 and invasion of pituitary adenomas. We searched Pubmed, Embase, and the Chinese Biomedical Database up to October 2015. RevMan 5.1 software (Cochrane Collaboration, Copenhagen, Denmark) was used for statistical analysis. We calculated the standardized mean difference (SMD) for data expressed as mean ± standard deviation because of the difference in the detection method. Twenty-four studies (1320 patients) were included. MMP-9 expression was higher in the patients with invasive pituitary adenomas (IPAs) than patients with noninvasive pituitary adenomas (NIPAs) with detection methods of IHC [odds ratio (OR) = 5.48, 95% confidence interval (CI) = 2.61–11.50, P < 0.00001), and reverse transcriptase-polymerase chain reaction (SMD = 2.28, 95% CI = 0.91–3.64, P = 0.001). MMP-2 expression was also increased in patients with IPAs at the protein level (OR = 3.58, 95% CI = 1.63–7.87, P = 0.001), and RNA level (SMD = 3.91, 95% CI = 1.52–6.29, P = 0.001). Meta-analysis showed that there was no difference in TIMP-2 expression between invasive and NIPAs at the protein level (OR = 0.38, 95% CI = 0.06–2.26, P = 0.29). MMP-9 expression in prolactinomas and nonfunctioning pituitary adenomas was also no difference (OR = 1.03, 95% CI = 0.48–2.20, P = 0.95). The results indicated that MMP-9 and -2 may be correlated with invasiveness of pituitary adenomas, although their relationship with functional status of pituitary adenomas is still not clear. TIMP-2 expression in IPAs needs to be investigated further. PMID:27310993

  6. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients.

    PubMed

    Trentini, Alessandro; Castellazzi, Massimiliano; Cervellati, Carlo; Manfrinato, Maria Cristina; Tamborino, Carmine; Hanau, Stefania; Volta, Carlo Alberto; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Granieri, Enrico; Dallocchio, Franco; Bellini, Tiziana; Dujmovic, Irena; Fainardi, Enrico

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process.

  7. Interplay between Matrix Metalloproteinase-9, Matrix Metalloproteinase-2, and Interleukins in Multiple Sclerosis Patients

    PubMed Central

    Tamborino, Carmine; Baldi, Eleonora; Kostic, Vladimir; Drulovic, Jelena; Dujmovic, Irena

    2016-01-01

    Matrix Metalloproteases (MMPs) and cytokines have been involved in the pathogenesis of multiple sclerosis (MS). However, no studies have still explored the possible associations between the two families of molecules. The present study aimed to evaluate the contribution of active MMP-9, active MMP-2, interleukin- (IL-) 17, IL-18, IL-23, and monocyte chemotactic proteins-3 to the pathogenesis of MS and the possible interconnections between MMPs and cytokines. The proteins were determined in the serum and cerebrospinal fluid (CSF) of 89 MS patients and 92 other neurological disorders (OND) controls. Serum active MMP-9 was increased in MS patients and OND controls compared to healthy subjects (p < 0.001 and p < 0.01, resp.), whereas active MMP-2 and ILs did not change. CSF MMP-9, but not MMP-2 or ILs, was selectively elevated in MS compared to OND (p < 0.01). Regarding the MMPs and cytokines intercorrelations, we found a significant association between CSF active MMP-2 and IL-18 (r = 0.3, p < 0.05), while MMP-9 did not show any associations with the cytokines examined. Collectively, our results suggest that active MMP-9, but not ILs, might be a surrogate marker for MS. In addition, interleukins and MMPs might synergistically cooperate in MS, indicating them as potential partners in the disease process. PMID:27555667

  8. Anacardic Acid Inhibits the Catalytic Activity of Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9

    PubMed Central

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M.; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K.; Kumar, Geetha B.; Tainer, John A.; Banerji, Asoke; Perry, J. Jefferson P.

    2012-01-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1′ pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC50 of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  9. Matrix Metalloproteinase-1 and Matrix Metalloproteinase-9 in the Aqueous Humor of Diabetic Macular Edema Patients

    PubMed Central

    Choi, Jin A.; Jee, Donghyun

    2016-01-01

    Purpose To assess the concentrations of matrix metalloproteinase (MMP)-1 and MMP-9 in the aqueous humor of diabetic macular edema (DME) patients. Method The concentrations of MMP-1 and MMP-9 in the aqueous humors of 15 cataract patients and 25 DME patients were compared. DME patients were analyzed according to the diabetic retinopathy (DR) stage, diabetes mellitus (DM) duration, pan-retinal photocoagulation (PRP) treatment, recurrence within 3 months, HbA1C (glycated hemoglobin) level, and axial length. Results The concentrations of MMP-1 and MMP-9 of the DME groups were higher than those of the control group (p = 0.005 and p = 0.002, respectively). There was a significant difference in MMP-1 concentration between the mild non-proliferative diabetic retinopathy (NPDR) group and the proliferative diabetic retinopathy (PDR) group (p = 0.012). MMP-1 concentrations were elevated in PRP-treated patients (p = 0.005). There was a significant difference in MMP-9 concentrations between the mild NPDR group and the PDR group (p < 0.001), and between the moderate and severe NPDR group and the PDR group (p < 0.001). The MMP-9 concentrations in PRP treated patients, DM patients with diabetes ≥ 10 years and recurrent DME within 3months were elevated (p = 0.023, p = 0.011, and p = 0.027, respectively). In correlation analyses, the MMP-1 level showed a significant correlation with age (r = -0.48, p = 0.01,), and the MMP-9 level showed significant correlations with axial length (r = -0.59, p < 0.01) and DM duration (r = 049, p = 0.01). Conclusions Concentrations of MMP-1 and MMP-9 were higher in the DME groups than in the control group. MMP-9 concentrations also differed depending on DR staging, DM duration, PRP treatment, and degree of axial myopia. MMP-9 may be more important than MMP-1 in the induction of DM complications in eyes. PMID:27467659

  10. miR-132 Regulates Dendritic Spine Structure by Direct Targeting of Matrix Metalloproteinase 9 mRNA.

    PubMed

    Jasińska, Magdalena; Miłek, Jacek; Cymerman, Iwona A; Łęski, Szymon; Kaczmarek, Leszek; Dziembowska, Magdalena

    2016-09-01

    Mir-132 is a neuronal activity-regulated microRNA that controls the morphology of dendritic spines and neuronal transmission. Similar activities have recently been attributed to matrix metalloproteinase-9 (MMP-9), an extrasynaptic protease. In the present study, we provide evidence that miR-132 directly regulates MMP-9 mRNA in neurons to modulate synaptic plasticity. With the use of luciferase reporter system, we show that miR-132 binds to the 3'UTR of MMP-9 mRNA to regulate its expression in neurons. The overexpression of miR-132 in neurons reduces the level of endogenous MMP-9 protein secretion. In synaptoneurosomes, metabotropic glutamate receptor (mGluR)-induced signaling stimulates the dissociation of miR-132 from polyribosomal fractions and shifts it towards the messenger ribonucleoprotein (mRNP)-containing fraction. Furthermore, we demonstrate that the overexpression of miR-132 in the cultured hippocampal neurons from Fmr1 KO mice that have increased synaptic MMP-9 level provokes enlargement of the dendritic spine heads, a process previously implicated in enhanced synaptic plasticity. We propose that activity-dependent miR-132 regulates structural plasticity of dendritic spines through matrix metalloproteinase 9.

  11. Serum haptoglobin-matrix metalloproteinase 9 (Hp-MMP 9) complex as a biomarker of systemic inflammation in cattle.

    PubMed

    Bannikov, G A; Hinds, C A; Rajala-Schultz, P J; Premanandan, C; Rings, D M; Lakritz, J

    2011-01-01

    A reliable and specific test that discriminates between acute neutrophil activation and chronic inflammatory disease may be useful in clinical decision making in a variety of conditions encountered in veterinary medical practice. An ELISA specific for neutrophil-derived haptoglobin-matrix metalloproteinase 9 (Hp-MMP 9) complexes was used to determine serum concentrations of Hp-MMP 9 and was compared to ELISA assays for Haptoglobin (Hp) and matrix metalloproteinase 9 (MMP 9) in 15 animals with acute sepsis, 10 animals with chronic inflammatory or metabolic disease and 10 healthy cows. Animal disease classifications were completed prior to the determination of serum concentrations of the 3 proteins. Duration of illness, disease process and lesions observed at necropsy were used to place animals into a specific classification. The serum MMP 9 concentrations in healthy cows differed significantly from those measured in sera of acutely septic and chronically ill animals. Serum haptoglobin concentrations in healthy cows were negligible when compared to animals with acute septic or chronic diseases. There was substantial overlap in MMP 9 and Hp concentrations between acute and chronic disease animals. In contrast, serum concentrations of Hp-MMP 9 complexes found almost exclusively in sera from acutely septic animals but not in chronically ill and normal cattle. The Hp-MMP 9 ELISA may be the serological test of choice in the determination of systemic inflammation associated with bacterial sepsis. 2010 Elsevier B.V. All rights reserved.

  12. Overexpression of membrane sialic acid-specific sialidase Neu3 inhibits matrix metalloproteinase-9 expression in vascular smooth muscle cells

    SciTech Connect

    Moon, Sung-Kwon; Cho, Seung-Hak; Kim, Kyung-Woon; Jeon, Jae Heung; Ko, Jeong-Heon; Kim, Bo Yeon; Kim, Cheorl-Ho . E-mail: chkimbio@skku.edu

    2007-05-11

    The ganglioside-specific sialidase Neu3 has been suggested to participate in cell growth, migration, and differentiation. Recent reports suggest that sialidase may be involved in intimal thickening, an early stage in the development of atherosclerosis. However, the role of the Neu3 gene in vascular smooth muscle cells (VSMC) responses has not yet been elucidated. To determine whether a Neu3 is able to modulate VSMC growth, the effect of overexpression of the Neu3 gene on cell proliferation was examined. However, the results show that the overexpression of this gene has no effect on DNA synthesis and ERK phosphorylation in cultured VSMC in the presence of TNF-{alpha}. Because atherogenic effects need not be limited to proliferation, we decided to examine whether Neu3 exerted inhibitory effects on matrix metalloproteinase-9 (MMP-9) activity in TNF-{alpha}-induced VSMC. The expression of the Neu3 gene led to the inhibition of TNF-{alpha}-induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, Neu3 gene expression strongly decreased MMP-9 promoter activity in response to TNF-{alpha}. This inhibition was characterized by the down-regulation of MMP-9, which was transcriptionally regulated at NF-{kappa}B and activation protein-1 (AP-1) sites in the MMP-9 promoter. These findings suggest that the Neu3 gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis.

  13. The Effects of Matrix Metalloproteinase-9 on Dairy Goat Mastitis and Cell Survival of Goat Mammary Epithelial Cells.

    PubMed

    Li, Hui; Zheng, Huiling; Li, Lihui; Shen, Xingai; Zang, Wenjuan; Sun, Yongsen

    2016-01-01

    Matrix metalloproteinase-9 (MMP-9) is a zinc-dependent enzyme, and plays a crucial role in extracellular matrix degeneration, inflammation and tissue remodeling. However, the relationship between MMP-9 and somatic cell count (SCC) in goat milk and the role of MMP-9 in the regulation of mastitis are still unknown. In this study, we found MMP-9 was predominantly expressed in the spleen, intestine and mammary gland. The SCC in goat milk was positively correlated with MMP-9 expression, and staphylococcus aureus could markedly increase MMP-9 expression in goat mammary epithelial cells (GMEC) in dosage and time dependent manner. We also demonstrated that SB-3CT, an inhibitor of MMP-9, promoted apoptosis and inhibited proliferation in GMEC. Thus, MMP-9 may emerge as an easily measurable and sensitive parameter that reflects the number of somatic cells present in milk and a regulatory factor of apoptosis in GMEC.

  14. Significance of Circulating and Crevicular Matrix Metalloproteinase-9 in Rheumatoid Arthritis-Chronic Periodontitis Association

    PubMed Central

    Silosi, Isabela; Cojocaru, Manole; Foia, Lili; Boldeanu, Mihail Virgil; Petrescu, Florin; Biciusca, Viorel

    2015-01-01

    In the recent years, statistically significant associations between rheumatoid arthritis (RA) and periodontal disease have been identified. Emerging as a chronic inflammatory joint disease, RA displays various features and pathogenetic events similar to chronic periodontitis (CP). The purpose of this study was to evaluate the utility of determining systemic and crevicular levels of metalloproteinase-9 (MMP-9) as potential biomarkers for association between RA and CP. A total of fifty-six patients were included in the study. The subjects were categorized into four groups as follows: healthy-control (n = 21), active RA (n = 16), CP (n = 14), and RA-CP association (n = 12). Assessment of serum and crevicular concentrations of total MMP-9 (active and pro-MMP-9) was based on ELISA technique. The results of this study showed statistically significant differences of serum MMP-9 between patients groups and control. Serum levels of MMP-9 were similar in RA and RA-CP associated patients. Gingival crevicular fluid (GCF) recorded increased MMP-9 levels in RA-CP association subjects as compared to CP. Considering that RA-CP association is characterized by a disregulation of the inflammatory response, MMP-9 may play a role in the pathogenesis of RA-CP association. MMP-9 is therefore a sensitive tool in the diagnosis and management of patients affected by this binomial association. PMID:25821836

  15. Matrix Metalloproteinase-9 −1562C/T Gene Polymorphism Is Associated with Diabetic Nephropathy

    PubMed Central

    Feng, Shufen; Ye, Gang; Bai, Shi; Liao, Xueling; Li, Lu

    2016-01-01

    To investigate the association between the metalloproteinase-9 (MMP9) −1562C/T polymorphism and diabetic nephropathy (DN) in Han Chinese, the patients with type 2 diabetes were collected and divided into the non-DN (NDN) and DN groups; controls were recruited. Genotype and allele frequencies were assessed using polymerase chain reaction and restriction fragment length polymorphism. Results showed that SBP, DBP, HbA1c, UAER, Cr, BUN, TG, and TC were higher in the DN group compared with the control and NDN groups. SBP, HbA1c, and TC in DN patients with the TT and CT genotypes were lower than in those with CC. Compared with controls, the frequency of the T allele in the DN group was significantly lower. The MMP9 −1562C allele, SBP, Cr, BUN, TG, and TC were independent risk factors for DN. All of the above suggested that the MMP9 −1562C/T polymorphism was associated with DN in Han Chinese. PMID:27631001

  16. Serum matrix metalloproteinase-9 (MMP-9) as a biomarker for monitoring disease progression in Duchenne muscular dystrophy (DMD).

    PubMed

    Nadarajah, V D; van Putten, M; Chaouch, A; Garrood, P; Straub, V; Lochmüller, H; Ginjaar, H B; Aartsma-Rus, A M; van Ommen, G J B; den Dunnen, J T; 't Hoen, P A C

    2011-08-01

    To identify serum biomarkers that allow monitoring of disease progression and treatment effects in Duchenne muscular dystrophy (DMD) patients, levels of matrix metalloproteinase-9 (MMP-9), tissue inhibitors of metalloproteinase-1 (TIMP-1) and osteopontin (OPN) were determined in 63 DMD patients on corticosteroid therapy. These proteins were selected for their role in the pathogenesis of muscular dystrophy. Levels of MMP-9 and TIMP-1 were significantly higher in sera of DMD patients compared to healthy controls, whereas the OPN levels showed no significant difference. MMP-9 levels were also observed to be significantly higher in older, nonambulant patients, compared to ambulant patients. Longitudinal data from a smaller cohort of DMD patients followed up for over 4years showed that MMP-9, but not TIMP-1 increased significantly with age. Hence, MMP-9 is a potential DMD biomarker for disease progression. Future studies have to confirm whether serum MMP-9 levels can be used to monitor therapeutic response.

  17. [Effect of spearmint oil on lipopolysaccharide induced emphysema-like changes and expression of matrix metalloproteinase-9].

    PubMed

    Liu, Junbo; Wang, Yan; Tang, Fadi; Yu, Chenxi; Huang, Mengshan; Zhao, Xiaojing; Zhu, Youfa

    2011-04-01

    To investigate the effect of spearmint oil on emphysema-like changes and the expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta(IL-1beta), matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-9) in lipopolysaccharide (LPS) treated rats. Emphysematous changes model was induced by intratracheal instillation of LPS once a week for up to 8 weeks in rats. Rats were divided into control, dexamethasone (0.3 mg x kg(-1)), and spearmint oil (10, 30,100 mg x kg(-1)) groups. Each group was treated with saline, dexamethasone, and spearmint of oil respectively for 4 weeks. Then total and different white blood cell counts in bronchoalveolar lavage fluid(BALF) were carried out. The pathologic changes of lung tissue such as alveolar structure, airway inflammation, and goblet cell metaplasia were observed by HE and AB-PAS staining. Expression of TNF-alpha, IL-1beta, TIMP-1 and MMP-9 were measured. Both spearmint and dexamethasone decreased the destruction of pulmonary alveolus. The total and different white blood cell counts in BALF including neutrophile and lymphocyte of spearmint oil 100 mg x kg(-1) and dexamethasone group were significantly reduced, and the goblet cell metaplasia was also inhibited. Dexamethasone had inhibitory effect on the expression of TNF-alpha, IL-1beta, TIMP-1 and MMP-9. Spearmint oil 30, 100 mg x kg(-1) significantly reduced TNF-alpha and IL-1beta respectively. Spearmint oil 10, 30 and 100 mg x kg(-1) had no effect on the expression of TIMP-1, but could decrease the expression of MMP-9 significantly in lung tissues. Spearmint oil has protective effect on rats with emphysematous changes, since it improves alveolar destruction, pulmonary inflammation, and goblet cell metaplasia. The mechanism may include reducing TNF-alpha, IL-1beta content and inhibiting overexpression of matrix metalloproteinase-9 in lung tissues.

  18. CCR2+CCR5+ T Cells Produce Matrix Metalloproteinase-9 and Osteopontin in the Pathogenesis of Multiple Sclerosis

    PubMed Central

    Sato, Wakiro; Tomita, Atsuko; Ichikawa, Daijyu; Lin, Youwei; Kishida, Hitaru; Miyake, Sachiko; Ogawa, Masafumi; Okamoto, Tomoko; Murata, Miho; Kuroiwa, Yoshiyuki

    2012-01-01

    Multiple sclerosis (MS) is a demyelinating disease of the CNS that is presumably mediated by CD4+ autoimmune T cells. Although both Th1 and Th17 cells have the potential to cause inflammatory CNS pathology in rodents, the identity of pathogenic T cells remains unclear in human MS. Given that each Th cell subset preferentially expresses specific chemokine receptors, we were interested to know whether T cells defined by a particular chemokine receptor profile play an active role in the pathogenesis of MS. In this article, we report that CCR2+CCR5+ T cells constitute a unique population selectively enriched in the cerebrospinal fluid of MS patients during relapse but not in patients with other neurologic diseases. After polyclonal stimulation, the CCR2+CCR5+ T cells exhibited a distinct ability to produce matrix metalloproteinase-9 and osteopontin, which are involved in the CNS pathology of MS. Furthermore, after TCR stimulation, the CCR2+CCR5+ T cells showed a higher invasive potential across an in vitro blood–brain barrier model compared with other T cells. Of note, the CCR2+CCR5+ T cells from MS patients in relapse are reactive to myelin basic protein, as assessed by production of IFN-γ. We also demonstrated that the CCR6−, but not the CCR6+, population within CCR2+CCR5+ T cells was highly enriched in the cerebrospinal fluid during MS relapse (p < 0.0005) and expressed higher levels of IFN-γ and matrix metalloproteinase-9. Taken together, we propose that autoimmune CCR2+CCR5+CCR6− Th1 cells play a crucial role in the pathogenesis of MS. PMID:23071279

  19. Matrix metalloproteinase 9 polymorphisms and systemic lupus erythematosus: correlation with systemic inflammatory markers and oxidative stress.

    PubMed

    Bahrehmand, F; Vaisi-Raygani, A; Kiani, A; Rahimi, Z; Tavilani, H; Ardalan, M; Vaisi-Raygani, H; Shakiba, E; Pourmotabbed, T

    2015-05-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease that involves multiple organs and is characterized by persistent systemic inflammation. Among the effects of inflammatory mediators, the induction of matrix metalloproteinases-2 and -9 (MMP-2 and MMP-9) and oxidative stress has been demonstrated to be important in the development of SLE. In this study, the possible association between MMP-9 and MMP-2 functional promoter polymorphism, stress, and inflammatory markers with development of severe cardiovascular disease (CVD), high blood pressure (HBP), and lupus nephropathy (LN) in SLE patients was investigated. The present case-control study consisted of 109 SLE patients with and without CVD, HBP and LN and 101 gender- and age-matched unrelated healthy controls from a population in western Iran. MMP-2 -G1575A and MMP-9 -C1562T polymorphisms were detected by PCR-RFLP, serum MMP-2 and MMP-9, neopterin, malondialdehyde (MDA) and lipid levels were determined by ELISA, HPLC and enzyme assay, respectively. We found that MMP-9 -C1562 T and MMP-2 -G1575A alleles act synergistically to increase the risk of SLE by 2.98 times (p = 0.015). Findings of this study also demonstrated that there is a significant increase in the serum levels of MMP-2, neopterin and MDA and a significant decrease in serum level of MMP-9 in the presence of MMP-9-C1562 T and MMP-2 -G1575A alleles in SLE patients compared to controls. Further, SLE patients with MMP-9 (C/T + T/T) genotype had significantly higher serum concentrations of MMP-2, neopterin, MDA and LDL-C, but lower serum MMP-9 and HDL-C levels than corresponding members of the control group. MMP-9 (C/T + T/T) genotype increased risk of hypertension in SLE patients 2.71-fold. This study for the first time not only suggests that MMP-9 -C1562 T and MMP-2 -G1575A alleles synergistically increase the risk of SLE but also high serum levels of MDA, neopterin, and circulatory levels of MMP-2 and lower MMP-9 in SLE patients. This

  20. Evaluation of inflammatory markers interleukin-6 (IL-6) and matrix metalloproteinase-9 (MMP-9) in asthma.

    PubMed

    Naik, Srilata Puru; P A, Mahesh; B S, Jayaraj; Madhunapantula, SubbaRao V; Jahromi, Sarah Raeiszadeh; Yadav, Manish Kumar

    2017-08-01

    Even though IL-6 and MMP-9 are associated with airway inflammation in asthma, there is paucity of data in Indian population. To determine the levels of IL-6 and MMP-9 in the serum of patients suffering from asthma, and correlate with (a) disease severity, as per GINA guidelines; (b) clinical phenotypes; and (c) response to treatment. The levels of IL-6 and MMP-9 were compared between moderate persistent asthma (n = 25), severe persistent asthma (n = 25) and normal controls (n = 30). IL-6 and MMP-9 were measured by ELISA (R&D Systems Inc., USA and Canada) and compared between controls and asthmatics and between groups of different asthma severity, clinical variables, spirometry, and allergen sensitization. Spirometry was repeated after 2 months of ICS+LABA to assess response to treatment in relation to baseline IL-6 and MMP-9 levels. We observed a significant difference in both IL-6 and MMP-9 levels among asthmatics versus controls (p < 0.001), moderate versus severe persistent asthma (p < 0.001). A significant negative correlation was observed between MMP-9 and pre-bronchodilator FEV1 and FVC, but not with IL-6. There was no association between IL-6 and MMP-9 with asthma duration, total IgE, AEC, number of allergens sensitized and degree of sensitization. No significant correlation (p > 0.5) was observed with IL-6 and MMP-9 levels and FEV1 improvement after 2 months of ICS+LABA. Higher levels of IL-6 and MMP-9 were observed in asthmatics as compared to controls and in severe persistent asthma as compared to moderate persistent asthma, higher levels of MMP-9 was associated with lower lung functions.

  1. Respective contribution of neutrophil elastase and matrix metalloproteinase 9 in the degradation of BP180 (type XVII collagen) in human bullous pemphigoid.

    PubMed

    Verraes, S; Hornebeck, W; Polette, M; Borradori, L; Bernard, P

    2001-11-01

    Bullous pemphigoid is a blistering disorder associated with autoantibodies directed against two components of hemidesmosomes, BP180 and BP230. Autoantibodies to the extracellular collagenous domain of BP180 are thought to play a key role in the pathogenesis of the disease. In a murine model of bullous pemphigoid, neutrophil elastase and 92 kDa gelatinase (matrix metalloproteinase 9) have been implicated in subepidermal blister formation via proteolytic degradation of BP180. In this study we sought to elucidate the contribution of these two enzymes to subepidermal blister formation by assessing the expression, localization, and activity of the two proteases in lesional skin, serum samples, and blister fluids obtained from 17 patients with bullous pemphigoid. The results indicate that (i) neutrophil elastase is found in skin biopsy specimens from bullous pemphigoid lesions and is recovered as active enzyme in blister fluids, and (ii) although proform of matrix metalloproteinase 9 is present in lesional skin, it is present only as proenzyme in blister fluids, which also contain high levels of tissue inhibitor of metalloproteinase-1. Next, the capacity of matrix metalloproteinase 9 and neutrophil elastase to degrade a recombinant protein corresponding to the extracellular collagenous domain of the BP180 was studied. Our data illustrate that (i) recombinant matrix metalloproteinase 9, neutrophil elastase, and blister fluid from bullous pemphigoid patients are all able to hydrolyze recombinant BP180; (ii) the pattern of recombinant BP180 proteolysis with blister fluid was similar to that obtained with neutrophil elastase; and (iii) recombinant BP180 degradation by blister fluid could be inhibited by chloromethylketone, a specific elastase inhibitor, but not by batimastat, a wide spectrum matrix metalloproteinase inhibitor. Our results confirm the importance of neutrophil elastase but not matrix metalloproteinase 9 in the direct cleavage of BP180 autoantigen and

  2. A coding polymorphism in matrix metalloproteinase 9 reduces risk of scarring sequelae of ocular Chlamydia trachomatis infection

    PubMed Central

    Natividad, Angels; Cooke, Graham; Holland, Martin J; Burton, Matthew J; Joof, Hassan M; Rockett, Kirk; Kwiatkowski, Dominic P; Mabey, David CW; Bailey, Robin L

    2006-01-01

    Background Trachoma, an infectious disease of the conjunctiva caused by Chlamydia trachomatis, is an important global cause of blindness. A dysregulated extracellular matrix (ECM) proteolysis during the processes of tissue repair following infection and inflammation are thought to play a key role in the development of fibrotic sequelae of infection, which ultimately leads to blindness. Expression and activity of matrix metalloproteinase 9 (MMP-9), a major effector of ECM turnover, is up-regulated in the inflamed conjunctiva of trachoma subjects. Genetic variation within the MMP9 gene affects in vitro MMP9 expression levels, enzymatic activity and susceptibility to various inflammatory and fibrotic conditions. Methods We genotyped 651 case-control pairs from trachoma endemic villages in The Gambia for coding single nucleotide polymorphisms (SNPs) in the MMP9 gene using the high-throughput Sequenom® system. Single marker and haplotype conditional logistic regression (CLR) analysis for disease association was performed. Results The Q279R mutation located in exon 6 of MMP9 was found to be associated with lower risk for severe disease sequelae of ocular Chlamydia trachomatis infection. This mutation, which leads to a nonsynonymous amino-acid change within the active site of the enzyme may reduce MMP-9-induced degradation of the structural components of the ECM during inflammatory episodes in trachoma and its associated fibrosis. Conclusion This work supports the hypothesis that MMP-9 has a role in the pathogenesis of blinding trachoma. PMID:16643654

  3. Matrix metalloproteinase-9 plays a role in protecting zebrafish from lethal infection with Listeria monocytogenes by enhancing macrophage migration.

    PubMed

    Shan, Ying; Zhang, Yikai; Zhuo, Xunhui; Li, Xiaoliang; Peng, Jinrong; Fang, Weihuan

    2016-07-01

    Zebrafish could serve as an alternative animal model for pathogenic bacteria in multiple infectious routes. Our previous study showed that immersion infection in zebrafish with Listeria monocytogenes did not cause lethality but induced transient expression of several immune response genes. We used an Affymetrix gene chip to examine the expression profiles of genes of zebrafish immersion-infected with L. monocytogenes. A total of 239 genes were up-regulated and 56 genes down-regulated compared with uninfected fish. Highest expression (>20-fold) was seen with the mmp-9 gene encoding the matrix metalloproteinase-9 (Mmp-9) known to degrade the extracellular matrix proteins. By morpholino knockdown of mmp-9, we found that the morphants showed rapid death with much higher bacterial load after intravenous or intraventricular (brain ventricle) infection with L. monocytogenes. Macrophages in mmp-9-knockdown morphants had significant defect in migrating to the brain cavity upon intraventricular infection. Decreased migration of murine macrophages with knockdown of mmp-9 and cd44 was also seen in transwell inserts with 8-μm pore polycarbonate membrane, as compared with the scrambled RNA. These findings suggest that Mmp-9 is a protective molecule against infection by L. monocytogenes by engaging in migration of zebrafish macrophages to the site of infection via a non-proteolytic role. Further work is required on the molecular mechanisms governing Mmp-9-driven macrophage migration in zebrafish.

  4. Methamphetamine and HIV-1 gp120 effects on lipopolysaccharide stimulated matrix metalloproteinase-9 production by human monocyte-derived macrophages.

    PubMed

    Reynolds, Jessica L; Mahajan, Supriya D; Aalinkeel, Ravikumar; Nair, Bindukumar; Sykes, Donald E; Schwartz, Stanley A

    2011-01-01

    Monocytes/macrophages are a primary source of human immunodeficiency virus (HIV-1) in the central nervous system (CNS). Macrophages infected with HIV-1 produce a plethora of factors, including matrix metalloproteinase-9 (MMP-9) that may contribute to the development of HIV-1-associated neurocognitive disorders (HAND). MMP-9 plays a pivotal role in the turnover of the extracellular matrix (ECM) and functions to remodel cellular architecture. We have investigated the role of methamphetamine and HIV-1 gp120 in the regulation of lipopolysaccaride (LPS) induced-MMP-9 production in monocyte-derived macrophages (MDM). Here, we show that LPS-induced MMP-9 gene expression and protein secretion are potentiated by incubation with methamphetamine alone and gp120 alone. Further, concomitant incubation with gp120 and methamphetamine potentiated LPS-induced MMP-9 expression and biological activity in MDM. Collectively methamphetamine and gp120 effects on MMPs may modulate remodeling of the extracellular environment enhancing migration of monocytes/macrophages to the CNS.

  5. Methamphetamine and HIV-1 gp120 Effects on Lipopolysaccharide Stimulated Matrix Metalloproteinase-9 Production by Human Monocyte-Derived Macrophages

    PubMed Central

    Reynolds, Jessica L.; Mahajan, Supriya D.; Aalinkeel, Ravikumar; Nair, Bindukumar; Sykes, Donald E.; Schwartz, Stanley A.

    2011-01-01

    Monocytes/macrophages are a primary source of human immunodeficiency virus (HIV-1) in the central nervous system (CNS). Macrophages infected with HIV-1 produce a plethora of factors, including matrix metalloproteinase-9 (MMP-9) that may contribute to the development of HIV-1-associated neurocognitive disorders (HAND). MMP-9 plays a pivotal role in the turnover of the extracellular matrix (ECM) and functions to remodel cellular architecture. We have investigated the role of methamphetamine and HIV-1 gp120 in the regulation of lipopolysaccaride (LPS) induced-MMP-9 production in monocyte-derived macrophages (MDM). Here, we show that LPS-induced MMP-9 gene expression and protein secretion are potentiated by incubation with methamphetamine alone and gp120 alone. Further, concomitant incubation with gp120 and methamphetamine potentiated LPS-induced MMP-9 expression and biological activity in MDM. Collectively methamphetamine and gp120 effects on MMPs may modulate remodeling of the extracellular environment enhancing migration of monocytes/macrophages to the CNS. PMID:21425912

  6. Transgenic overexpression of macrophage matrix metalloproteinase-9 exacerbates age-related cardiac hypertrophy, vessel rarefaction, inflammation, and fibrosis.

    PubMed

    Toba, Hiroe; Cannon, Presley L; Yabluchanskiy, Andriy; Iyer, Rugmani Padmanabhan; D'Armiento, Jeanine; Lindsey, Merry L

    2017-03-01

    Advancing age is an independent risk factor for cardiovascular disease. Matrix metalloproteinase-9 (MMP-9) is secreted by macrophages and robustly increases in the left ventricle (LV) with age. The present study investigated the effect of MMP-9 overexpression in macrophages on cardiac aging. We compared 16- to 21-mo-old C57BL/6J wild-type (WT) and transgenic (TG) male and female mice (n = 15-20/group). MMP-9 overexpression amplified the hypertrophic response to aging, as evidenced by increased LV wall thickness and myocyte cross-sectional areas (P < 0.05 for both). MMP-9 overexpression reduced LV expression of the angiogenesis-related factors ICAM-1, integrins α3 and β3, platelet/endothelial cell adhesion molecule-1, thrombospondin-1, tenascin-c, and versican (all P < 0.05). Concomitantly, the number of vessels in the TG was lower than WT LV (P < 0.05). This led to a mismatch in the muscle-to-vessel ratio and resulted in increased cardiac inflammation. Out of 84 inflammatory genes analyzed, 16 genes increased in the TG compared with WT (all P < 0.05). Of the elevated genes, 14 were proinflammatory genes. The increase in cardiac inflammation resulted in greater accumulation of interstitial collagen in TG (P < 0.05). Fractional shortening was similar between groups, indicating that global cardiac function was still preserved at this age. In conclusion, overexpression of MMP-9 in macrophages resulted in exacerbated cardiac hypertrophy in the setting of vessel rarefaction, which resulted in enhanced inflammation and fibrosis to augment the cardiac-aging phenotype. Our results provide evidence that macrophage-derived MMP-9 may be a therapeutic target in elderly subjects.NEW & NOTEWORTHY The present study was the first to use mice with transgenic overexpression of matrix metalloproteinase-9 (MMP-9) in macrophages to examine the effects of macrophage-derived MMP-9 on cardiac aging. We found that an elevation in macrophage-derived MMP-9 induced a greater age

  7. Fluctuating Roles of Matrix Metalloproteinase-9 in Oral Squamous Cell Carcinoma

    PubMed Central

    Vilen, Suvi-Tuuli; Salo, Tuula; Sorsa, Timo; Nyberg, Pia

    2013-01-01

    One hallmark of cancer is the degradation of the extracellular matrix (ECM), which is caused by proteinases. In oral cancers, matrix metalloproteinases (MMPs), especially MMP-9, are associated with this degradation. MMPs break down the ECM allowing cancer to spread; they also release various factors from their cryptic sites, including cytokines. These factors modulate cell behavior and enhance cancer progression by regulating angiogenesis, migration, proliferation, and invasion. The development of early metastases is typical for oral cancer, and increased MMP-9 expression is associated with a poor disease prognosis. However, many studies fail to relate MMP-9 expression with metastasis formation. Contrary to earlier models, recent studies show that MMP-9 plays a protective role in oral cancers. Therefore, the role of MMP-9 is complicated and may fluctuate throughout the different types and stages of oral cancers. PMID:23365550

  8. Matrix Metalloproteinase-9 Polymorphism 1562 C > T (rs3918242) Associated with Protection against Placental Malaria

    PubMed Central

    Apoorv, Thittayil Suresh; Babu, Phanithi Prakash; Meese, Stefanie; Gai, Prabhanjan P.; Bedu-Addo, George; Mockenhaupt, Frank P.

    2015-01-01

    Phagocytosis of malaria pigment (hemozoin) induces increased activity of matrix metalloproteinase (MMP)-9, an endopeptidase involved in cytokine regulation. In this study, we examined whether a common functional MMP-9 promoter polymorphism (rs3918242) affects Plasmodium falciparum infection in pregnancy. Eighteen percent of Ghanaian primiparae carried the minor T allele. It was associated with reduced odds of placental hemozoin and of placental as well as peripheral blood parasitemia. The results indicate that a common MMP-9 polymorphism protects against placental malaria indicating that this endopeptidase is involved in susceptibility to P. falciparum. PMID:26013370

  9. Prophylactic sesame oil attenuates sinusoidal obstruction syndrome by inhibiting matrix metalloproteinase-9 and oxidative stress.

    PubMed

    Periasamy, Srinivasan; Yang, Shan-Shan; Chen, Shin-Yi; Chang, Chih-Ching; Liu, Ming-Yie

    2013-07-01

    Sinusoidal obstruction syndrome (SOS) occurs in patients undergoing hematopoietic cell transplantation and chemotherapy. The chemotherapeutic drugs oxaliplatin and cyclophosphamide cause SOS. Sesame oil is a nutrient-rich antioxidant popular in alternative medicine. It contains sesamin, sesamol, and sesamolin, all of which contribute to its antioxidant property. The authors investigated the protective effect of prophylactic sesame oil against monocrotaline-induced SOS in rats. Male Sprague-Dawley rats were gavaged with a single dose of sesame oil (0.5, 1, 2, or 4 mL/kg). One hour later, those rats were gavaged with monocrotaline (90 mg/kg) to induce SOS. Control rats were treated with saline only. Aspartate transaminase, alanine transaminase, laminin, collagen, myeloperoxidase, nitrate content, lipid peroxidation, glutathione levels, matrix metalloproteinase (MMP)-9, and tissue inhibitor of matrix metalloproteinases (TIMP)-1 were assessed 48 hours after the monocrotaline gavage. All tested parameters except TIMP-1, laminin, collagen, and glutathione were higher in monocrotaline-treated rats than in saline-only-treated control rats. In sesame oil-treated rats, all tested parameters except TIMP-1, laminin, collagen, and glutathione were significantly attenuated compared with monocrotaline-only-treated rats. Sesame oil downregulated MMP-9 expression but upregulated TIMP-1 expression in monocrotaline-only-treated rats. In addition, a histological analysis of liver tissue samples showed that sesame oil showed significant protection. A single prophylactic dose of sesame oil protects against SOS by downregulating MMP-9 expression, upregulating TIMP-1 expression, and inhibiting oxidative stress.

  10. Matrix metalloproteinase-9 and cell division in neuroblastoma cells and bone marrow macrophages.

    PubMed

    Sans-Fons, M Gloria; Sole, Sonia; Sanfeliu, Coral; Planas, Anna M

    2010-12-01

    Matrix metalloproteinases (MMPs) degrade the extracellular matrix and carry out key functions in cell development, cancer, injury, and regeneration. In addition to its well recognized extracellular action, functional intracellular MMP activity under certain conditions is supported by increasing evidence. In this study, we observed higher gelatinase activity by in situ zymography and increased MMP-9 immunoreactivity in human neuroblastoma cells and in bone marrow macrophages undergoing mitosis compared with resting cells. We studied the pattern of immunoreactivity at the different stages of cell division by confocal microscopy. Immunostaining with different monoclonal antibodies against MMP-9 revealed a precise, dynamic, and well orchestrated localization of MMP-9 at the different stages of cell division. The cellular distribution of MMP-9 staining was studied in relation to that of microtubules. The spatial pattern of MMP-9 immunoreactivity suggested some participation in both the reorganization of the nuclear content and the process of chromatid segmentation. We then used several MMP-9 inhibitors to find out whether MMP-9 might be involved in the cell cycle. These drugs impaired the entry of cells into mitosis, as revealed by flow cytometry, and reduced cell culture growth. In addition, the silencing of MMP-9 expression with small interfering RNA also reduced cell growth. Taken together, these results suggest that intracellular MMP-9 is involved in the process of cell division in neuroblastoma cells and in primary cultures of macrophages.

  11. Matrix metalloproteinase 9 is a distal-less 3 target-gene in placental trophoblast cells

    PubMed Central

    Clark, Patricia A.; Xie, Jianjun; Li, Sha; Zhang, Xuesen; Coonrod, Scott

    2013-01-01

    Matrix metalloproteinases (MMPs) are enzymes that regulate extracellular matrix composition and contribute to cell migration. Microarray studies in mouse placenta suggested that MMP-9 transcript abundance was dependent on distal-less 3 (Dlx3), a placental-specific transcriptional regulator; however, it was not clear if this was a direct or indirect effect. Here we investigate mechanism(s) for Dlx3-dependent MMP-9 gene transcription and gelatinase activity in placental trophoblasts. Initial studies confirmed that MMP-9 activity was reduced in placental explants from Dlx3−/− mice and that murine MMP-9 promoter activity was induced by Dlx3 overexpression. Two binding sites within a murine MMP-9 promoter fragment bound Dlx3, and mutations in both elements reduced basal MMP-9-luciferase reporter activity and abolished regulation by Dlx3. Chromatin immunoprecipitation studies in JEG3 cells confirmed Dlx3 binding to the endogenous human MMP-9 promoter at three distinct sites and knockdown of human Dlx3 resulted in reduced endogenous MMP-9 transcripts and secreted activity. These studies provide novel evidence that Dlx3 is involved directly in the transcriptional regulation of mouse and human MMP-9 gene expression in placental trophoblasts. PMID:23657566

  12. Matrix metalloproteinase-9 contributes to intestinal tumourigenesis in the adenomatous polyposis coli multiple intestinal neoplasia mouse.

    PubMed

    Sinnamon, Mark J; Carter, Kathy J; Fingleton, Barbara; Matrisian, Lynn M

    2008-12-01

    Matrix metalloproteinases (MMPs) are a family of 23 extracellular proteases that are best known for their collective ability to degrade all components of the extracellular matrix. We previously demonstrated that genetic ablation of MMP-7 reduced tumour multiplicity in multiple intestinal neoplasia (Min) mice possessing a genetic alteration in the adenomatous polyposis coli gene (APC). These mice, commonly referred to as APC-Min mice, are a frequently used model of early intestinal tumourigenesis. To examine further the role of MMPs in intestinal tumour development, we generated APC-Min mice genetically deficient in MMP-2, -9, -12 or -19. Genetic ablation of MMP-2, -12 or -19 did not affect multiplicity or size of intestinal tumours when crossed into the APC-Min system. However, MMP-9 deficient animals developed 40% fewer tumours than littermate controls, although tumour size distribution remained unaffected. Intestinal adenomas from MMP-9 deficient mice demonstrated a 50% decrease in proliferating cells compared with control tissues, with no difference in apoptosis. To determine the cellular origin of MMP-9 in these tumours, immunofluorescent co-staining with markers for different leucocyte lineages was used to demonstrate that intratumoural MMP-9 is largely a product of neutrophils. These studies extend the potential targets for chemoprevention of intestinal adenomas to MMP-9 in addition to MMP-7 and exclude MMP-2,-12,-19 as attractive targets for intervention.

  13. N-acetyl-cysteine attenuates remifentanil-induced postoperative hyperalgesia via inhibiting matrix metalloproteinase-9 in dorsal root ganglia

    PubMed Central

    Zhang, Wei; Sun, Yu-E; Ma, Zhengliang; Gu, Xiaoping

    2017-01-01

    Treatment of remifentanil-induced postoperative hyperalgesia (RIH) remains a clinical challenge because the mechanisms are not fully understood. Matrix metalloproteinase-9 (MMP-9) is a key component in neuroinflammation because of its facilitation of pro-inflammatory cytokine maturation. Therefore, inhibition of MMP-9 may represent a novel therapeutic approach to the treatment of RIH. Sprague-Dawley rats were randomly divided into three groups: Control, Incision and Remifentanil. A right plantar surgical incision was performed in Group Incision, and intraoperative remifentanil (0.04 mg/kg, 0.4 ml) was infused subcutaneously for 30 min in Group Remifentanil. The results indicated that intraoperative remifentanil induced an up-regulation and activation of MMP-9 in DRGs but not spinal cords. MMP-9 was expressed primarily in DRG neurons co-expressing mu opioid receptors (MOR), and elicited interleukin-1β (IL-1β) cleavage in DRG neurons and satellite glial cells (SGCs). Intraperitoneal injection of N-acetyl-cysteine (NAC), a broadly used safe drug, significantly attenuated RIH via suppressing the activation of MMP-9 in DRGs. NAC inhibited the cleavage of IL-1β in DRGs, which is a critical substrate of MMP-9, and markedly suppressed glial activation and neuron excitability in spinal dorsal horn induced by remifentanil. These results demonstrated that NAC can effectively alleviate RIH via powerfully inhibiting MMP-9 activation in DRGs. PMID:28199982

  14. Plasma matrix metalloproteinase-9 and ACE-inhibitor-induced improvement of urinary albumin excretion in non-diabetic, microalbuminuric subjects.

    PubMed

    van de Wal, Ruud M A; van der Harst, Pim; Gerritsen, Wim B M; van der Horst, Fal; Plokker, Thijs H W; Gansevoort, Ron T; van Gilst, Wiek H; Voors, Adriaan A

    2007-12-01

    Elevated plasma matrix metalloproteinase-9 (MMP-9) levels have been suggested to precede the development of microalbuminuria. As angiotensin-converting enzyme (ACE) inhibitors effectively reduce urinary albumin excretion (UAE), in the present study we have investigated the potential association of plasma MMP-9 levels with UAE and treatment effects of ACE-inhibition. In a placebo-controlled randomised trial we determined plasma MMP-9 levels at baseline and after three months of randomisation to either placebo (n=202) or fosinopril (20 mg/day, n=204) treatment. Baseline plasma MMP-9 levels were not related to baseline UAE (r=-0.008, p=0.871). Three months of fosinopril treatment effectively reduced UAE compared to placebo treatment (-10.4+/-2.4 vs. 1.8+/-1.3 mg/24 hours, p<0.001, respectively). However, fosinopril treatment failed to significantly change plasma MMP-9 levels compared to placebo (-0.47+/-7.68 vs. 0.06+/-9.20, p=0.646, respectively). In addition, the change in UAE was not related with change in MMP-9 levels. The effective reduction of UAE with fosinopril was not related to plasma MMP-9 levels.

  15. Ethanol extract of Justicia gendarussa inhibits lipopolysaccharide stimulated nitric oxide and matrix metalloproteinase-9 expression in murine macrophage.

    PubMed

    Varma, R Sandeep; Ashok, G; Vidyashankar, S; Patki, P; Nandakumar, Krishna S

    2011-06-01

    Justicia gendarussa Burm (Acanthaceae) is a plant used to treat inflammatory diseases such as rheumatoid arthritis. However, the mechanism involved in the anti-inflammatory properties of this plant has not been studied well. The in vitro anti-inflammatory activities of ethanol extract of Justicia gendarussa leaves (J-01) are studied here for the first time. The ethanol extract, J-01 was prepared from the leaves of Justicia gendarussa. The inhibitory effect of J-01 in nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) and matrix metalloproteinase-9 (MMP-9) gene expressions were studied in lipopolysaccharide (LPS) stimulated macrophage cell line RAW 264.7. J-01 in a concentration dependent manner (200-50 μg/mL) attenuated NO production from macrophage stimulated with LPS (1 μg/mL). Further, J-01 significantly suppressed iNOS mRNA expression in these cells. J-01 has also downregulated the MMP-9 gene expression in LPS stimulated macrophage. The modulatory function of J-01 in inhibiting NO, iNOS, and MMP-9 as obtained from the present in vitro studies provide first scientific evidence to support the anti-inflammatory properties of Justicia gendarussa. This plant may have potential use in the management of inflammatory conditions such as arthritis.

  16. Coordination of cell signaling, chromatin remodeling, histone modifications, and regulator recruitment in human matrix metalloproteinase 9 gene transcription.

    PubMed

    Ma, Zhendong; Shah, Reesha C; Chang, Mi Jung; Benveniste, Etty N

    2004-06-01

    Transcriptional activation of eukaryotic genes depends on the precise and ordered recruitment of activators, chromatin modifiers/remodelers, coactivators, and general transcription factors to the promoters of target genes. Using the human matrix metalloproteinase 9 (MMP-9) gene as a model system, we investigated the sequential assembly and dynamic formation of transcription complexes on a human promoter under the influence of mitogen signaling. We find that, coincident with activation of the MMP-9 gene, activators, chromatin remodeling complexes, and coactivators are recruited to the preassembled MMP-9 promoter in a stepwise and coordinated order, which is dependent on activation of MEK-1/extracellular signal-regulated kinase and NF-kappa B signaling pathways. Conversely, corepressor complexes are released from the MMP-9 promoter after transcriptional activation. Histone modifications shift from repressive to permissive modifications concurrent with activation of the MMP-9 gene. Chromatin remodeling induced by Brg-1 is required for MMP-9 gene transcription, which is concomitant with initiation of transcription. Therefore, coordination of cell signaling, chromatin remodeling, histone modifications, and stepwise recruitment of transcription regulators is critical to precisely regulate MMP-9 gene transcription in a temporally and spatially dependent manner. Given the important role of MMP-9 in both normal development and pathological conditions, understanding MMP-9 gene regulation is of great relevance.

  17. Late SV40 factor (LSF) enhances angiogenesis by transcriptionally up-regulating matrix metalloproteinase-9 (MMP-9).

    PubMed

    Santhekadur, Prasanna K; Gredler, Rachel; Chen, Dong; Siddiq, Ayesha; Shen, Xue-Ning; Das, Swadesh K; Emdad, Luni; Fisher, Paul B; Sarkar, Devanand

    2012-01-27

    The transcription factor late SV40 factor (LSF) is overexpressed in human hepatocellular carcinoma (HCC) fostering a highly aggressive and metastatic phenotype. Angiogenesis is an essential component of cancer aggression and metastasis and HCC is a highly aggressive and angiogenic cancer. In the present studies, we analyzed the molecular mechanism of LSF-induced angiogenesis in HCC. Employing human umbilical vein endothelial cells (HUVEC) differentiation assay and chicken chorioallantoic membrane (CAM) assay we document that stable LSF overexpression augments and stable dominant negative inhibition of LSF (LSFdn) abrogates angiogenesis by human HCC cells. A quest for LSF-regulated factors contributing to angiogenesis, by chromatin immunoprecipitation-on-chip (ChIP-on-chip) assay, identified matrix metalloproteinase-9 (MMP-9) as a direct target of LSF. MMP-9 expression and enzymatic activity were higher in LSF-overexpressing cells and lower in LSFdn-expressing cells. Deletion mutation analysis identified the LSF-responsive regions in the MMP-9 promoter and ChIP assay confirmed LSF binding to the MMP-9 promoter. Inhibition of MMP-9 significantly abrogated LSF-induced angiogenesis as well as in vivo tumorigenesis, thus reinforcing the role of MMP-9 in facilitating LSF function. The present findings identify a novel target of LSF contributing to its oncogenic properties.

  18. Matrix metalloproteinase-9 silencing by RNA interference promotes the adhesive-invasive switch in HT1080 human fibrosarcoma cells.

    PubMed

    Zhu, Xishan; Tai, Weiping; Shi, Wei; Song, Yuguang; Zhang, Hongmei; An, Guangyu

    2012-01-01

    A high level of matrix metalloproteinase-9 (MMP-9) is associated with human tumor invasion and/or metastasis. The HT1080 human fibrosarcoma cell line is highly invasive and metastatic which constitutively express MMP-9. HT1080 cells transfected with a double stranded RNA that targeted the MMP-9 mRNA and the cellular characteristics were examined before and after interference. The inhibition effects of MMP-9 interference on the tumor growth of HT1080 cells in nude mice was also tested by xenograft assay. MMP-9 extinction in HT1080 resulted in the following: (1) inhibited cell mobility; (2) increased cell adhesion, and (3) attenuated tumor cell migration. In addition, MMP-9 knockdown concomitantly resulted in decreased levels of soluble ICAM-1, leading to an adhesion defect and tumor metastasis. Moreover, in vivo assay further demonstrated MMP-9 interference affecting the tumorigenesis of HT1080 cells in mice as follows (1) inhibition of tumor growth; (2) reduced tumor volume, and (3) prolonged survival time. Our observations defined a novel critical role for MMP-9 in the progression of HT1080 fibrosarcoma by changing the inter-cellular adhesion molecular-1 from membrane-anchored state to a soluble one which provides a target for promising tumor therapy in clinics.

  19. N-acetyl-cysteine attenuates remifentanil-induced postoperative hyperalgesia via inhibiting matrix metalloproteinase-9 in dorsal root ganglia.

    PubMed

    Liu, Yue; Ni, Yuan; Zhang, Wei; Sun, Yu-E; Ma, Zhengliang; Gu, Xiaoping

    2017-02-09

    Treatment of remifentanil-induced postoperative hyperalgesia (RIH) remains a clinical challenge because the mechanisms are not fully understood. Matrix metalloproteinase-9 (MMP-9) is a key component in neuroinflammation because of its facilitation of pro-inflammatory cytokine maturation. Therefore, inhibition of MMP-9 may represent a novel therapeutic approach to the treatment of RIH. Sprague-Dawley rats were randomly divided into three groups: Control, Incision and Remifentanil. A right plantar surgical incision was performed in Group Incision, and intraoperative remifentanil (0.04 mg/kg, 0.4 ml) was infused subcutaneously for 30 min in Group Remifentanil. The results indicated that intraoperative remifentanil induced an up-regulation and activation of MMP-9 in DRGs but not spinal cords. MMP-9 was expressed primarily in DRG neurons co-expressing mu opioid receptors (MOR), and elicited interleukin-1β (IL-1β) cleavage in DRG neurons and satellite glial cells (SGCs). Intraperitoneal injection of N-acetyl-cysteine (NAC), a broadly used safe drug, significantly attenuated RIH via suppressing the activation of MMP-9 in DRGs. NAC inhibited the cleavage of IL-1β in DRGs, which is a critical substrate of MMP-9, and markedly suppressed glial activation and neuron excitability in spinal dorsal horn induced by remifentanil. These results demonstrated that NAC can effectively alleviate RIH via powerfully inhibiting MMP-9 activation in DRGs.

  20. Regulation of matrix metalloproteinase-9 protein expression by 1α, 25-(OH)₂D₃ during osteoclast differentiation.

    PubMed

    Gu, Jian-Hong; Tong, Xi-Shuai; Chen, Guo-Hong; Liu, Xue-Zhong; Bian, Jian-Chun; Yuan, Yan; Liu, Zong-Ping

    2014-01-01

    To investigate 1α,25-(OH)₂D₃ regulation of matrix metalloproteinase-9 (MMP-9) protein expression during osteoclast formation and differentiation, receptor activator of nuclear factor kB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) were administered to induce the differentiation of RAW264.7 cells into osteoclasts. The cells were incubated with different concentrations of 1α,25-(OH)₂D₃ during culturing, and cell proliferation was measured using the methylthiazol tetrazolium method. Osteoclast formation was confirmed using tartrate-resistant acid phosphatase (TRAP) staining and assessing bone lacunar resorption. MMP-9 protein expression levels were measured with Western blotting. We showed that 1α,25-(OH)₂D₃ inhibited RAW264.7 cell proliferation induced by RANKL and M-CSF, increased the numbers of TRAP-positive osteoclasts and their nuclei, enhanced osteoclast bone resorption, and promoted MMP-9 protein expression in a concentration-dependent manner. These findings indicate that 1α,25-(OH)₂D₃ administered at a physiological relevant concentration promoted osteoclast formation and could regulate osteoclast bone metabolism by increasing MMP-9 protein expression during osteoclast differentiation.

  1. Complete structure, genomic organization, and expression of channel catfish (Ictalurus punctatus, Rafinesque 1818) matrix metalloproteinase-9 gene.

    PubMed

    Yeh, Hung-Yueh; Klesius, Phillip H

    2008-03-01

    In this study, the channel catfish (CC) matrix metalloproteinase-9 (MMP-9) gene was cloned, sequenced, and characterized at both the cDNA and the genomic DNA levels. The complete sequence of the CC MMP-9 cDNA consisted of 2,551 nucleotides, including one open reading frame and 5'- and 3'-end untranslated regions. The open reading frame potentially encoded a 686-amino-acid peptide with a calculated molecular mass (without glycosylation) of approximately 77.4 kDa, which included a signal peptide and potentially heavy O-glycosylation sites. CC MMP-9 did not have the tripeptide Arg-Gly-Asp motif. The degree of conservation of the CC MMP-9 amino acid sequence to human and mouse counterparts was 55%, while to those of other fish species was 67-74%. The full-length CC MMP-9 genomic DNA comprised 5,663 nucleotides, much shorter than human or mouse counterparts. The exon-intron structure followed the splice acceptor/donor consensus rule, and the sequence contained 13 exons. The MMP-9 transcript was constitutively expressed in restrictive CC tissues. This result should provide fundamental information for further exploration of the role of MMP-9 in fish pathophysiology.

  2. Increased Serum Activity of Matrix Metalloproteinase-9 in Patients with Acute Variceal Bleeding

    PubMed Central

    Kwon, Oh Sang; Jung, Hyuk Sang; Bae, Kyung Sook; Jung, Young Kul; Kim, Yeon Suk; Choi, Duck Joo; Kim, Yun Soo

    2012-01-01

    Background/Aims Matrix metalloproteinases (MMP)-2 and -9 can degrade essential components of vascular integrity. The aim of this study was to investigate the association between those MMPs and variceal bleeding (VB). Methods Fifteen controls, 12 patients with acute ulcer bleeding (UB) group, 37 patients with varix (V group), and 35 patients with acute VB group were enrolled. Serum was obtained to measure MMP-2 and -9 activity by zymogram protease assays. Results The activity levels of these compounds were compared with the controls' median value. The median MMP-9 activity was 1.0 in controls, 1.05 in the UB group, 0.43 in the V group, and 0.96 in the VB group. The level of MMP-9 activity was higher in the VB group than in the V group (p<0.001). In the VB group, there was a signifi cant decrease in MMP-9 activity over time after bleeding (p<0.001). The median MMP-2 activity level was 1.0 in controls, 1.01 in the UB group, 1.50 in the V group, and 1.55 in the VB group. The level of MMP-2 activity was similar in the VB and V groups. Conclusions The level of MMP-9 activity increased in association with VB. The role of MMP-9 in the pathogenesis of VB should be verified. PMID:22570756

  3. On the structure and functions of gelatinase B/matrix metalloproteinase-9 in neuroinflammation.

    PubMed

    Vandooren, Jennifer; Van Damme, Jo; Opdenakker, Ghislain

    2014-01-01

    The blood-brain barrier (BBB) is a specific structure that is composed of two basement membranes (BMs) and that contributes to the control of neuroinflammation. As long as the BBB is intact, extravasated leukocytes may accumulate between two BMs, generating vascular cuffs. Specific matrix metalloproteinases, MMP-2 and MMP-9, have been shown to cleave BBB beta-dystroglycan and to disintegrate thereby the parenchymal BM, resulting in encephalomyelitis. This knowledge has been added to the molecular basis of the REGA model to understand the pathogenesis of multiple sclerosis, and it gives further ground for the use of MMP inhibitors for the treatment of acute neuroinflammation. MMP-9 is associated with central nervous system inflammation and occurs in various forms: monomers and multimers. None of the various neurological and neuropathologic functions of MMP-9 have been associated with either molecular structure or molecular form, and therefore, in-depth structure-function studies are needed before medical intervention with MMP-9-specific inhibitors is initiated.

  4. Promising Noninvasive Cellular Phenotype in Prostate Cancer Cells Knockdown of Matrix Metalloproteinase 9

    PubMed Central

    Gupta, Aditi; Cao, Wei; Sadashivaiah, Kavitha; Chen, Wantao; Schneider, Abraham; Chellaiah, Meenakshi A.

    2013-01-01

    Cell surface interaction of CD44 and MMP9 increases migration and invasion of PC3 cells. We show here that stable knockdown of MMP9 in PC3 cells switches CD44 isoform expression from CD44s to CD44v6 which is more glycosylated. These cells showed highly adhesive morphology with extensive cell spreading which is due to the formation of focal adhesions and well organized actin-stress fibers. MMP9 knockdown blocks invadopodia formation and matrix degradation activity as well. However, CD44 knockdown PC3 cells failed to develop focal adhesions and stress fibers; hence these cells make unstable adhesions. A part of the reason for these changes could be caused by silencing of CD44v6 as well. Immunostaining of prostate tissue microarray sections illustrated significantly lower levels of CD44v6 in adenocarcinoma than normal tissue. Our results suggest that interaction between CD44 and MMP9 is a potential mechanism of invadopodia formation. CD44v6 expression may be essential for the protection of non-invasive cellular phenotype. CD44v6 decrease may be a potential marker for prognosis and therapeutics. PMID:23476138

  5. Matrix metalloproteinase 9 (MMP-9) and biodegradable polymers in the engineering of a vascular construct

    NASA Astrophysics Data System (ADS)

    Sung, Hak-Joon

    The role of matrix metalloproteinase (MMP)-9 and processing conditions of biodegradable polymer scaffolds has been investigated to optimize engineering vascular constructs. For a small diameter vascular construct, uniform 10 mum thickness of highly porous scaffolds were developed using a computer-controlled knife coater and exploiting phase transition properties of salts. The comparative study of fast vs. slow degrading three-dimensional scaffolds using a fast degrading poly D, L-lactic-glycolic acid copolymer (PLGA) and a slow degrading poly e-caprolactone (PCL) indicated that fast degradation negatively affects cell viability and migration into the scaffold in vitro and in vivo, which is likely due to the fast polymer degradation mediated acidification of the local environment. MMP-9 was crucial for collagen remodeling process by smooth muscle cells (SMC). MMP-9 deficiency dramatically decreased inflammatory cell invasion as well as capillary formation within the scaffolds implanted in vivo. This study reports that the angiogenic response developed within the scaffolds in vivo was related to the presence of inflammatory response. Combinatorial polymer libraries fabricated from blended PLGA and PCL and processed at gradient annealing temperatures were utilized to investigate polymeric interactions with SMC. Surface roughness was also found to correlate with SMC adhesion. SMC aggregation, proliferation, and protein production, were highest in regions that exhibited increased surface roughness, reduced hardness, and decreased crystallinity of the PCL-rich phases. This study revealed a previously unknown processing temperature and blending compositions for two well-known polymers, which optimized SMC interactions.

  6. Induced sputum-retrieved matrix metalloproteinase 9 and tissue metalloproteinase inhibitor 1 in granulomatous diseases

    PubMed Central

    Fireman, E; Kraiem, Z; Sade, O; Greif, J; Fireman, Z

    2002-01-01

    Matrix metalloproteinases (MMPs) capable of degrading various components of connective tissue matrices, and tissue inhibitor metalloproteinases (TIMPs) are considered important in lung parenchymal remodeling and repair processes in pulmonary diseases. Induced sputum (IS) is a reliable noninvasive method to investigate pathogenesis, pathophysiology and treatment of lung disease. This study was designed to determine whether IS-MMP9/TIMP1 levels demonstrate lung parenchymal remodeling in sarcoidosis (SA) and Crohn's disease (CRD) patients. Sputum was induced and processed conventionally in 13 SA patients, 18 CRD patients and 9 controls. Two-hundred cells were counted on Giemsa-stained cytopreps, and T lymphocytes subsets (CD4 = T helper and CD8 = T suppressor cytotoxic cells) were analysed by FACS using monoclonal antibodies.MMP-9 and TIMP-1 were measured using commercial ELISA kits. MMP-9 concentrations, but not those of TIMP-1, were significantly greater in the sputum supernatant in SA and CRD patients compared to controls (P = 0·018 and P = 0·0019, respectively). The molar ratio, MMP-9/TIMP-1, was significantly higher in SA and CRD patients compared to controls (P = 0·008 and P = 0·024, respectively). Gelatinase species having a molecular weight similar to that of MMP-9 were demonstrated by zymographic analysis. MMP-9 levels were highly correlated with the CD4/CD8 ratio and DLCO capacity in SA but less in CRD patients. MMP-9 levels in IS provide a sensitive marker for pulmonary damage. PMID:12390324

  7. Prevotella intermedia induces matrix metalloproteinase-9 expression in human periodontal ligament cells.

    PubMed

    Guan, Su-Min; Shu, Lei; Fu, Shan-Min; Liu, Bin; Xu, Xiu-Li; Wu, Jun-Zheng

    2008-06-01

    Matrix metalloproteinases (MMPs) play pivotal roles in inflammatory diseases including chronic periodontitis. The effects of Prevotella intermedia, a major periodontal pathogen, on MMP-9 production in primary human periodontal ligament (hPDL) cells were examined in the present study. MMP-9 mRNA expression was measured by semiquantitative reverse transcriptase PCR and its protein secretion was assayed by gelatin zymography. Prevotella intermedia ATCC 25611 supernatant time and dose-dependently induced MMP-9 expression. In contrast, Porphyromanas gingivalis ATCC 33277 supernatants, Escherichia coli lipopolysacchride and IL-1beta exhibited no stimulatory effects on MMP-9 production in hPDL cells. Mitogen-activated protein kinases [MAPK, including extracellular signal-related kinases (ERK), c-jun N-terminal kinases (JNK) and p38] inhibitors exerted no effect on the P. intermedia-induced MMP-9 production, indicating that P. intermedia induced MMP-9 production through an MAPK-independent pathway. Our results demonstrated that P. intermedia may contribute to periodontal tissue destruction during chronic periodontitis by inducing MMP-9 production in hPDL cells.

  8. Polymorphisms of the matrix metalloproteinase 9 gene and abdominal aortic aneurysm.

    PubMed

    Smallwood, L; Allcock, R; van Bockxmeer, F; Warrington, N; Palmer, L J; Iacopetta, B; Golledge, J; Norman, P E

    2008-10-01

    Increased matrix metalloproteinase (MMP) 9 activity has been implicated in the formation of abdominal aortic aneurysm (AAA). The aim was to explore the association between potentially functional variants of the MMP-9 gene and AAA. The -1562C > T and -1811A > T variants of the MMP-9 gene were genotyped in 678 men with an AAA (at least 30 mm in diameter) and 659 control subjects (aortic diameter 19-22 mm) recruited from a population-based trial of screening for AAA. Levels of MMP-9 were measured in a random subset of 300 cases and 84 controls. The association between genetic variants (including haplotypes) and AAA was assessed by multivariable logistic regression. There was no association between the MMP-9-1562C > T (odds ratio (OR) 0.70 (95 per cent confidence interval (c.i.) 0.27 to 1.82)) or -1811A > T (OR 0.71 (95 per cent c.i. 0.28 to 1.85)) genotypes, or the most common haplotype (OR 0.81 (95 per cent c.i. 0.62 to 1.05)) and AAA. The serum MMP-9 concentration was higher in cases than controls, and in minor allele carriers in cases and controls, although the differences were not statistically significant. In this study, the genetic tendency to higher levels of circulating MMP-9 was not associated with AAA.

  9. Complementary interplay between matrix metalloproteinase-9, vascular endothelial growth factor and osteoclast function drives endochondral bone formation

    PubMed Central

    Ortega, Nathalie; Wang, Ke; Ferrara, Napoleone; Werb, Zena; Vu, Thiennu H.

    2010-01-01

    SUMMARY Long bone development depends on endochondral bone formation, a complex process requiring exquisite balance between hypertrophic cartilage (HC) formation and its ossification. Dysregulation of this process may result in skeletal dysplasias and heterotopic ossification. Endochondral ossification requires the precise orchestration of HC vascularization, extracellular matrix remodeling, and the recruitment of osteoclasts and osteoblasts. Matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) and osteoclasts have all been shown to regulate endochondral ossification, but how their function interrelates is not known. We have investigated the functional relationship among these regulators of endochondral ossification, demonstrating that they have complementary but non-overlapping functions. MMP-9, VEGF and osteoclast deficiency all cause impaired growth plate ossification resulting in the accumulation of HC. VEGF mRNA and protein expression are increased at the MMP-9−/− growth plate, and VEGF activity contributes to endochondral ossification since sequestration of VEGF by soluble receptors results in further inhibition of growth plate vascularization and ossification. However, VEGF bioavailability is still limited in MMP-9 deficiency, as exogenous VEGF is able to rescue the MMP-9−/− phenotype, demonstrating that MMP-9 may partially, but not fully, regulate VEGF bioavailability. The organization of the HC extracellular matrix at the MMP-9−/− growth plate is altered, supporting a role for MMP-9 in HC remodeling. Inhibition of VEGF impairs osteoclast recruitment, whereas MMP-9 deficiency leads to an accumulation of osteoclasts at the chondro-osseous junction. Growth plate ossification in osteoclast-deficient mice is impaired in the presence of normal MMP-9 expression, indicating that other osteoclastic functions are also necessary. Our data delineate the complementary interplay between MMP-9, VEGF and osteoclast function that is

  10. Complementary interplay between matrix metalloproteinase-9, vascular endothelial growth factor and osteoclast function drives endochondral bone formation.

    PubMed

    Ortega, Nathalie; Wang, Ke; Ferrara, Napoleone; Werb, Zena; Vu, Thiennu H

    2010-01-01

    Long bone development depends on endochondral bone formation, a complex process requiring exquisite balance between hypertrophic cartilage (HC) formation and its ossification. Dysregulation of this process may result in skeletal dysplasias and heterotopic ossification. Endochondral ossification requires the precise orchestration of HC vascularization, extracellular matrix remodeling, and the recruitment of osteoclasts and osteoblasts. Matrix metalloproteinase-9 (MMP-9), vascular endothelial growth factor (VEGF) and osteoclasts have all been shown to regulate endochondral ossification, but how their function interrelates is not known. We have investigated the functional relationship among these regulators of endochondral ossification, demonstrating that they have complementary but non-overlapping functions. MMP-9, VEGF and osteoclast deficiency all cause impaired growth plate ossification resulting in the accumulation of HC. VEGF mRNA and protein expression are increased at the MMP-9-/- growth plate, and VEGF activity contributes to endochondral ossification since sequestration of VEGF by soluble receptors results in further inhibition of growth plate vascularization and ossification. However, VEGF bioavailability is still limited in MMP-9 deficiency, as exogenous VEGF is able to rescue the MMP-9-/- phenotype, demonstrating that MMP-9 may partially, but not fully, regulate VEGF bioavailability. The organization of the HC extracellular matrix at the MMP-9-/- growth plate is altered, supporting a role for MMP-9 in HC remodeling. Inhibition of VEGF impairs osteoclast recruitment, whereas MMP-9 deficiency leads to an accumulation of osteoclasts at the chondro-osseous junction. Growth plate ossification in osteoclast-deficient mice is impaired in the presence of normal MMP-9 expression, indicating that other osteoclastic functions are also necessary. Our data delineate the complementary interplay between MMP-9, VEGF and osteoclast function that is necessary for normal

  11. Matrix metalloproteinase-9 reduces islet amyloid formation by degrading islet amyloid polypeptide.

    PubMed

    Aston-Mourney, Kathryn; Zraika, Sakeneh; Udayasankar, Jayalakshmi; Subramanian, Shoba L; Green, Pattie S; Kahn, Steven E; Hull, Rebecca L

    2013-02-01

    Deposition of islet amyloid polypeptide (IAPP) as amyloid is a pathological hallmark of the islet in type 2 diabetes, which is toxic to β-cells. We previously showed that the enzyme neprilysin reduces islet amyloid deposition and thereby reduces β-cell apoptosis, by inhibiting fibril formation. Two other enzymes, matrix metalloproteinase (MMP)-2 and MMP-9, are extracellular gelatinases capable of degrading another amyloidogenic peptide, Aβ, the constituent of amyloid deposits in Alzheimer disease. We therefore investigated whether MMP-2 and MMP-9 play a role in reducing islet amyloid deposition. MMP-2 and MMP-9 mRNA were present in mouse islets but only MMP-9 activity was detectable. In an islet culture model where human IAPP (hIAPP) transgenic mouse islets develop amyloid but nontransgenic islets do not, a broad spectrum MMP inhibitor (GM6001) and an MMP-2/9 inhibitor increased amyloid formation and the resultant β-cell apoptosis. In contrast, a specific MMP-2 inhibitor had no effect on either amyloid deposition or β-cell apoptosis. Mass spectrometry demonstrated that MMP-9 degraded amyloidogenic hIAPP but not nonamyloidogenic mouse IAPP. Thus, MMP-9 constitutes an endogenous islet protease that limits islet amyloid deposition and its toxic effects via degradation of hIAPP. Because islet MMP-9 mRNA levels are decreased in type 2 diabetic subjects, islet MMP-9 activity may also be decreased in human type 2 diabetes, thereby contributing to increased islet amyloid deposition and β-cell loss. Approaches to increase islet MMP-9 activity could reduce or prevent amyloid deposition and its toxic effects in type 2 diabetes.

  12. Plasma matrix metalloproteinase 9 as an early surrogate biomarker of advanced colorectal neoplasia.

    PubMed

    Gimeno-García, Antonio Z; Triñanes, Javier; Quintero, Enrique; Salido, Eduardo; Nicolás-Pérez, David; Adrián-de-Ganzo, Zaida; Alarcón-Fernández, Onofre; Abrante, Beatriz; Romero, Rafael; Carrillo, Marta; Ramos, Laura; Alonso, Inmaculada; Ortega, Juan; Jiménez, Alejandro

    2016-01-01

    Matrix metalloproteinases (MMPs) are overexpressed at different stages of colorectal carcinogenesis and could serve as early surrogate biomarkers of colorectal neoplasia. To assess the utility of plasma MMP2 and MMP9 levels in the detection of advanced colorectal neoplasia and their correlation with tissue levels. We analysed blood and tissue samples from patients with non-advanced adenomas (n=25), advanced adenomas (n=25), colorectal cancer (n=25) and healthy controls (n=75). Plasma and tissue gelatinase levels were determined by Luminex XMAP technology and gelatin zymography. Receiver operating characteristic (ROC) curve analysis was used to calculate the optimum cut-off for the detection of advanced colorectal neoplasia. Plasma MMP2 levels were similar between groups whatever the type of lesion. Plasma MMP9 levels were significantly higher in patients with neoplastic lesions than in healthy controls (median 292.3ng/ml vs. 139.08ng/ml, P<0.001). MMP9 levels were also higher in colorectal cancer than in non-advanced adenomas (median 314.6ng/ml vs. 274.3ng/ml, P=0.03). There was a significant correlation between plasma and tissue levels of MMP9 (r=0.5, P<0.001). The plasma MMP9 cut-off range with the highest diagnostic accuracy was between 173ng/ml and 204ng/ml (AUC=0.80 [95% CI: 0.72-0.86], P<0.001; sensitivity, 80-86% and specificity, 57-67%). Plasma MMP9 could be a surrogate biomarker for the early detection of advanced colorectal neoplasia, although its diagnostic performance could be increased by combination with other biomarkers. Copyright © 2015 Elsevier España, S.L.U. y AEEH y AEG. All rights reserved.

  13. Hydrogen sulfide mitigates matrix metalloproteinase-9 activity and neurovascular permeability in hyperhomocysteinemic mice.

    PubMed

    Tyagi, Neetu; Givvimani, Srikanth; Qipshidze, Natia; Kundu, Soumi; Kapoor, Shray; Vacek, Jonathan C; Tyagi, Suresh C

    2010-01-01

    An elevated level of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), was associated with neurovascular diseases. At physiological levels, hydrogen sulfide (H(2)S) protected the neurovascular system. Because Hcy was also a precursor of hydrogen sulfide (H(2)S), we sought to test whether the H(2)S protected the brain during HHcy. Cystathionine-beta-synthase heterozygous (CBS+/-) and wild type (WT) mice were supplemented with or without NaHS (30 microM/L, H(2)S donor) in drinking water. Blood flow and cerebral microvascular permeability in pial vessels were measured by intravital microscopy in WT, WT+NaHS, CBS-/+ and (CBS-/+)+NaHS-treated mice. The brain tissues were analyzed for matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) by Western blot and RT-PCR. The mRNA levels of CBS and cystathionine gamma lyase (CSE, enzyme responsible for conversion of Hcy to H(2)S) genes were measured by RT-PCR. The results showed a significant increase in MMP-2, MMP-9, TIMP-3 protein and mRNA in CBS (-/+) mice, while H(2)S treatment mitigated this increase. Interstitial localization of MMPs was also apparent through immunohistochemistry. A decrease in protein and mRNA expression of TIMP-4 was observed in CBS (-/+) mice. Microscopy data revealed increase in permeability in CBS (-/+) mice. These effects were ameliorated by H(2)S and suggested that physiological levels of H(2)S supplementation may have therapeutic potential against HHcy-induced microvascular permeability, in part, by normalizing the MMP/TIMP ratio in the brain.

  14. Withaferin A inhibits matrix metalloproteinase-9 activity by suppressing the Akt signaling pathway.

    PubMed

    Lee, Dae Hyung; Lim, In-Hye; Sung, Eon-Gi; Kim, Joo-Young; Song, In-Hwan; Park, Yoon Ki; Lee, Tae-Jin

    2013-08-01

    Withaferin A (Wit A), a steroidal lactone isolated from Withania somnifera, exhibits anti-inflammatory, immuno-modulatory and anti-angiogenic properties and antitumor activities. In the present study, we investigated the effects of Wit A on protease-mediated invasiveness of the human metastatic cancer cell lines Caski and SK-Hep1. We found that treatment with Wit A resulted in marked inhibition of the TGF‑β‑induced increase in expression and activity of matrix metalloproteinase (MMP)‑9 in Caski cell line. These effects of Wit A were dose-dependent and showed a correlation with suppression of MMP‑9 mRNA expression levels. Treatment with Wit A resulted in an ~1.6-fold induction of MMP-9 promoter activity, which was also suppressed by treatment with Wit A in Caski cells. We found that treatment with Wit A resulted in inhibition of TGF‑β‑induced phosphorylation of Akt, which was involved in the downregulation of expression of MMP-9 at the protein level. Introduction with constitutively active (CA)‑Akt resulted in a partial increase in the secretion of TGF-β-induced MMP-9 blocked by treatment with Wit A in Caski cells. According to these results, Wit A may inhibit the invasive and migratory abilities of Caski cells through a reduction in MMP-9 expression through suppression of the pAkt signaling pathway. These findings indicate that use of Wit A may be an effective strategy for control of metastasis and invasiveness of tumors.

  15. Increased expression of matrix metalloproteinase-9 associated with gastric ulcer recurrence.

    PubMed

    Li, Sen-Lin; Zhao, Jing-Run; Ren, Xiao-Yan; Xie, Jia-Ping; Ma, Qing-Zhu; Rong, Qiu-Hua

    2013-07-28

    To compare matrix metalloproteinase (MMP)-9 and tissue inhibitor of metalloproteinase (TIMP)-1 in gastric ulcer (GU) and chronic superficial gastritis (CSG). This study enrolled 63 patients with GU and 25 patients with CSG. During upper gastroduodenal endoscopy, we took samples of gastric mucosa from the antrum and ulcer site from patients with GU, and samples of antral mucosa from patients with CSG. Mucosal biopsy tissues were cultured for 24 h, and the culture supernatant was measured for levels of MMP-9 and TIMP-1. After receiving eradication therapy for Helicobacter pylori (H. pylori) and 8 wk proton-pump inhibitor therapy for GU, follow-up endoscopy examination was performed after 6 mo and whenever severe symptoms occurred. Levels of MMP-9 and TIMP-1 at the ulcer site or in the antrum were significantly higher in GU than CSG patients. MMP-9 levels at the ulcer site were significantly higher than in the antrum in GU patients, and had a significantly positive correlation with TIMP-1. MMP-9 levels were significantly higher in H. pylori-positive than H. pylori-negative GU and CSG patients. Levels of MMP-9 or TIMP-1 at the ulcer site were associated with the histological severity of activity and inflammation. About 57 GU patients were followed up, and seven had GU recurrence. H. pyloriinfection and MMP-9 levels were risk factors for the recurrence of GU adjusted for age and sex by multiple logistic regression analysis. MMP-9 may perform an important function in gastric ulcer formation and recurrence.

  16. The role of matrix metalloproteinase-9 in cigarette smoke-induced emphysema.

    PubMed

    Atkinson, Jeffrey J; Lutey, Barbara A; Suzuki, Yoko; Toennies, Holly M; Kelley, Diane G; Kobayashi, Dale K; Ijem, Whitney G; Deslee, Gaetan; Moore, Carla H; Jacobs, M Eileen; Conradi, Susan H; Gierada, David S; Pierce, Richard A; Betsuyaku, Tomoko; Senior, Robert M

    2011-04-01

    Matrix metalloprotease (MMP)-9 is an elastolytic endopeptidase produced by activated macrophages that may be involved in the development of human pulmonary emphysema and could be inhibited with existing compounds. Mouse models have demonstrated that excess MMP-9 production can result in permanent alveolar destruction. To determine if MMP-9 causes cigarette smoke-induced emphysema using MMP-9 knockout mice and human samples. Mouse lungs were analyzed for inflammation and airspace enlargement using a mainstream smoke-exposure model. Human macrophage mRNA was isolated from subjects with emphysema by laser capture microdissection. Human blood monocyte mRNA was isolated from subjects with greater than 30 pack-year smoking history. Human gene expression was determined by quantitative polymerase chain reaction and compared with emphysema severity determined by automated computed tomography analysis. Plasma Clara cell secretory protein and surfactant protein-D were quantified to measure ongoing lung injury. Mice deficient in MMP-9 develop the same degree of cigarette smoke-induced inflammation and airspace enlargement as strain-matched controls. Macrophages are the predominant source of MMP-9 production in human emphysema specimens and similar quantities of macrophage MMP-9 mRNA is present in areas of lung with and without emphysema. Circulating monocytes produce more MMP-9 in individuals with advanced emphysema severity despite no correlation of MMP-9 with markers of ongoing lung damage. These results suggest that MMP-9 in humans who smoke is similar to smoke-exposed mice, where MMP-9 is present in emphysematous lung but not correlated with the emphysema. To the degree that the mechanisms of emphysema in humans who smoke resemble the mouse model, these data suggest specific inhibition of MMP-9 is unlikely to be an effective therapy for cigarette smoke-induced emphysema. Clinical trial registered with www.clinicaltrials.gov (NCT 00757120).

  17. Role of matrix metalloproteinase-9 in chronic kidney disease: a new biomarker of resistant albuminuria.

    PubMed

    Pulido-Olmo, Helena; García-Prieto, Concha F; Álvarez-Llamas, Gloria; Barderas, María G; Vivanco, Fernando; Aranguez, Isabel; Somoza, Beatriz; Segura, Julián; Kreutz, Reinhold; Fernández-Alfonso, María S; Ruilope, Luis M; Ruiz-Hurtado, Gema

    2016-04-01

    Resistant albuminuria, developed under adequate chronic blockade of the renin-angiotensin system, is a clinical problem present in a small number of patients with chronic kidney disease (CKD). The mechanism underlying this resistant albuminuria remains unknown. Matrix metalloproteinases (MMPs) are involved in the pathophysiology of cardiovascular and renal diseases. In the present study we tested the role of MMPs in resistant albuminuria. First we evaluated gelatinase MMP-2 and MMP-9 activity by zymography in the Munich Wistar Frömter (MWF) rat, a model of progressive albuminuria, and subsequently in patients with resistant albuminuria. Markers of oxidative stress were observed in the kidneys of MWF rats, together with a significant increase in pro-MMP-2 and active MMP-9 forms. These changes were normalized together with reduced albuminuria in consomic MWF-8(SHR) rats, in which chromosome 8 of MWF was replaced with the respective chromosome from spontaneously hypertensive rats. The MMP-2 and MMP-9 protein levels were similar in patients with normal and resistant albuminuria; however, high circulating levels of collagen IV, a specific biomarker of tissue collagen IV degradation, were observed in patients with resistant albuminuria. These patients showed a significant increase in gelatinase MMP-2 and MMP-9 activity, but only a significant increase in the active MMP-9 form quantified by ELISA, which correlated significantly with the degree of albuminuria. Although the expression of the tissue inhibitor of MMP-9 (TIMP)-1 was similar, a novel AlphaLISA assay demonstrated that the MMP-9-TIMP-1 interaction was reduced in patients with resistant albuminuria. It is of interest that oxidized TIMP-1 expression was higher in patients with resistant albuminuria. Therefore, increased circulating MMP-9 activity is associated with resistant albuminuria and a deleterious oxidative stress environment appears to be the underlying mechanism. These changes might contribute to the

  18. Hemodynamic benefits of matrix metalloproteinase-9 inhibition by doxycycline during experimental acute pulmonary embolism.

    PubMed

    Palei, Ana C T; Zaneti, Rafael A G; Fortuna, Geisa M; Gerlach, Raquel F; Tanus-Santos, Jose E

    2005-01-01

    The authors examined whether acute pulmonary embolism (APE) increases lung matrix metalloproteinase (MMP)-2 and MMP-9 activities and whether inhibition of MMPs with doxycycline attenuates the hemodynamic changes associated with APE. Anesthetized male Wistar rats were monitored for mean arterial blood pressure (MAP) and heart rate (HR). Rats in the control group (n = 5) received only saline IV; rats in the embolism (Emb) group (n = 8) received saline IV followed 10 minutes later by an injection of Sephadex microspheres (9 mg/kg) IV; rats in the doxycycline (Doxy) group (n = 4) received only doxycycline (30 mg/kg) IV, followed 10 minutes later by an injection of saline IV; rats in the Doxy + Emb group (n = 8) received the same dose of doxycycline followed 10 minutes later by the same amount of microspheres described above. Lung samples were homogenized and assayed by SDS-polyacrilamide gel electrophoresis gelatin zymography to evaluate lung MMP-2 and MMP-9 activities. Saline or doxycycline produced no significant changes in MAP, HR, and in MMP-2 and MMP-9 activities. Conversely, lung embolization significantly reduced MAP by > 32 mm Hg and HR by > 90 bpm for more than 60 minutes, and increased MMP-9 activity by 43% (all p < 0.05). No significant differences were observed in MMP-2 activity. However, lung embolization produced only transient hypotension in rats pretreated with doxycycline. In this group, MAP returned to baseline values 5 to 10 minutes after embolization. In addition, pretreatment with doxycycline blunted the increase in lung MMP-9 activity after lung embolization (p < 0.05). This study demonstrates for the first time that MMP-9 inhibition with doxycycline attenuates APE-induced hemodynamic changes in the animal model examined. These findings indicate that MMP-9 activation plays a role in the pathophysiology of APE and suggest that pharmacologic strategies targeting specific MMPs with selective inhibitors may prevent the detrimental acute hemodynamic

  19. Mouse model of pulmonary cavitary tuberculosis and expression of matrix metalloproteinase-9

    PubMed Central

    Ordonez, Alvaro A.; Tasneen, Rokeya; Pokkali, Supriya; Xu, Ziyue; Converse, Paul J.; Klunk, Mariah H.; Mollura, Daniel J.; Nuermberger, Eric L.

    2016-01-01

    ABSTRACT Cavitation is a key pathological feature of human tuberculosis (TB), and is a well-recognized risk factor for transmission of infection, relapse after treatment and the emergence of drug resistance. Despite intense interest in the mechanisms underlying cavitation and its negative impact on treatment outcomes, there has been limited study of this phenomenon, owing in large part to the limitations of existing animal models. Although cavitation does not occur in conventional mouse strains after infection with Mycobacterium tuberculosis, cavitary lung lesions have occasionally been observed in C3HeB/FeJ mice. However, to date, there has been no demonstration that cavitation can be produced consistently enough to support C3HeB/FeJ mice as a new and useful model of cavitary TB. We utilized serial computed tomography (CT) imaging to detect pulmonary cavitation in C3HeB/FeJ mice after aerosol infection with M. tuberculosis. Post-mortem analyses were performed to characterize lung lesions and to localize matrix metalloproteinases (MMPs) previously implicated in cavitary TB in situ. A total of 47-61% of infected mice developed cavities during primary disease or relapse after non-curative treatments. Key pathological features of human TB, including simultaneous presence of multiple pathologies, were noted in lung tissues. Optical imaging demonstrated increased MMP activity in TB lesions and MMP-9 was significantly expressed in cavitary lesions. Tissue MMP-9 activity could be abrogated by specific inhibitors. In situ, three-dimensional analyses of cavitary lesions demonstrated that 22.06% of CD11b+ signal colocalized with MMP-9. C3HeB/FeJ mice represent a reliable, economical and tractable model of cavitary TB, with key similarities to human TB. This model should provide an excellent tool to better understand the pathogenesis of cavitation and its effects on TB treatments. PMID:27482816

  20. Activation of the osteopontin/matrix metalloproteinase-9 pathway correlates with prostate cancer progression.

    PubMed

    Castellano, Giancarlo; Malaponte, Grazia; Mazzarino, Maria C; Figini, Mariangela; Marchese, Francesco; Gangemi, Pietro; Travali, Salvatore; Stivala, Franca; Canevari, Silvana; Libra, Massimo

    2008-11-15

    Prostate cancer remains the second most frequent cause of tumor-related deaths in the Western world. Additional markers for the identification of prostate cancer development and progression are needed. Osteopontin (OPN), which activates matrix metalloproteinases (MMP), is considered a prognostic biomarker in several cancers. "In silico" and experimental approaches were used to determine whether OPN-mediated MMP activation may be a signal of prostate cancer progression. Pearson correlation coefficients were computed for each OPN/MMP pair across seven publicly available prostate cancer gene expression data sets. Using Gene Set Enrichment Analysis, 101 cancer-related gene sets were analyzed for association with OPN and MMP-9 expression. OPN, MMP-9, MMP-2 tissue inhibitor of metalloproteinase-1 plasma levels, and MMP gelatinase activity were measured by ELISA and zymography in 96 and 92 patients with prostate cancer and benign prostatic hyperplasia, respectively, and 125 age-matched healthy men. Computational analyses identified a significant correlation only between MMP-9 and OPN, and showed significant enrichment scores in "cell proliferation", "genes constituting the phosphoinositide-3-kinase predictor", "proliferation signature", and "tumor metastasis" gene sets in association with both OPN and MMP-9. Plasma analyses revealed a significant increase in OPN and MMP-9 levels and activity in patients with prostate cancer in association with clinical variables (prostate-specific antigen > 4 ng/mL and Gleason score > 7). Significant correlation between OPN and MMP-9 levels were also observed. Mean plasma levels of OPN and MMP-9 decreased in patients with prostate cancer within 6 months after prostatectomy. The concordant computational and experimental data indicate that the extent of OPN pathway activation correlates with prostate cancer progression.

  1. Long-term alcohol consumption increases pro-matrix metalloproteinase-9 levels via oxidative stress.

    PubMed

    Koken, Tulay; Gursoy, Fatih; Kahraman, Ahmet

    2010-06-01

    Matrix metalloproteinases (MMPs) play an important role in alcoholic liver disease. In this study, we evaluated the relationship between pro MMP-9 (pMMP-9) and oxidative stress in plasma of rat exposed to chronic alcohol consumption. Twenty four rats were divided into four groups. Rats in the control group (n = 6) were subjected to physiologic saline by intragastric (i.g.) route. Group Ethanol (n = 6) was given 1 ml of 80% ethanol (v/v) in distilled water through i.g. route. Group Vitamin E (Vit E), (n = 6) was given vitamin E (100 mg kg⁻¹ day⁻¹) by intra peritonealy. Group Vitamin E + Ethanol (n = 6) was given vitamin E 2 h before the administration of ethanol. At the end of 4 weeks, blood samples were taken and plasma malondialdehyde (MDA), protein carbonyls (PCs), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α) and pMMP-9 levels were measured. Chronic ethanol administration increased the AST, MDA, PCs, TNF-α and pMMP-9 levels when compared to those in control group (p < 0.05, p < 0.01, p < 0.01, p < 0.05, p < 0.05, respectively). Vitamin E treatment was found to decrease lipid peroxidation and protein oxidation (p < 0.01, p < 0.01, respectively). Also TNF-α and pMMP-9 levels returned to normal by vitamin E treatment. Within all subjects, there was positive correlation between pMMP-9 levels and MDA, PCs levels (p = 0.045, r = 0.454; p = 0.004, r = 0.574, respectively). We conclude that since antioxidant supplementation decreases the alcohol-induced pMMP-9 levels, oxidative stress could be one of the mediators of the generation of MMP-9.

  2. 92-kd type IV collagenase (matrix metalloproteinase-9) activity in human amniochorion increases with labor.

    PubMed Central

    Vadillo-Ortega, F.; González-Avila, G.; Furth, E. E.; Lei, H.; Muschel, R. J.; Stetler-Stevenson, W. G.; Strauss, J. F.

    1995-01-01

    To determine whether specific collagenolytic enzymes are expressed in human fetal membranes with labor, we examined gelatinase activity in extracts of amniochorion by zymography. The 92-kd gelatinase (MMP-9) was barely detectable in extracts of fetal membranes before the onset of labor but was readily demonstrable in extracts prepared from membranes isolated from laboring women or membranes collected immediately after delivery. In contrast, the 72-kd gelatinase (MMP-2) was detectable in extracts from pre- and post-labor membranes. Ethylenediaminetetracetic acid and the tissue inhibitor of metalloproteinases, TIMP-1, inhibited the gelatinase activities detected by zymography, confirming that the enzymes are metalloproteinase. Assay of amniochorion gelatinase activity using a radiolabeled denatured collagen substrate revealed a more than twofold increase in activity comparing pre-labor with post-labor fetal membrane extracts. A function-blocking anti-MMP-9 monoclonal antibody inhibited pre-labor membrane gelatinase activity by approximately 11.5%, which was only slightly greater inhibition than observed with irrelevant monoclonal antibodies. However, post-labor membrane gelatinase activity was reduced by 53% by the function-blocking antibody, indicating that MMP-9 is a major contributor to the increased gelatinase activity extractable from post-labor membranes. Western blot analyses demonstrated increased MMP-9 protein in amniochorion extracts after onset of labor. MMP-9 protein and mRNA were co-localized in amnion epithelium, underlying macrophages and chorion laeve trophoblast and decidual cells after labor. We conclude that 1) MMP-9 activity and protein in human amniochorion increases with labor and 2) MMP-9 is expressed by amnion epithelium, macrophages and chorion laeve trophoblast and decidual cells. The increased expression of MMP-9 may result in degradation of the extracellular matrix of the fetal membranes and facilitate their rupture under both

  3. Matrix metalloproteinase-9 expression correlated with tumor response in patients with locally advanced rectal cancer undergoing preoperative chemoradiotherapy

    SciTech Connect

    Unsal, Diclehan . E-mail: diclehan@yahoo.com; Uner, Aytug; Akyurek, Nalan; Erpolat, Petek; Dursun, Ayse; Pak, Yucel

    2007-01-01

    Purpose: To analyze whether the expression of matrix metalloproteinases (MMPs) and their tissue inhibitors are associated with tumor response to preoperative chemoradiotherapy in rectal cancer patients. Methods and Materials: Forty-four patients who had undergone preoperative chemoradiotherapy were evaluated retrospectively. Treatment consisted of pelvic radiotherapy and two cycles of 5-fluorouracil plus leucovorin. Surgery was performed 6-8 weeks later. MMP-2, MMP-9, and tissue inhibitors of metalloproteinase-1 and -2 expression was analyzed by immunohistochemistry of the preradiation biopsy and surgical specimens. The intensity and extent of staining were evaluated separately, and a final score was calculated by multiplying the two scores. The primary endpoint was the correlation of expression with tumor response, with the secondary endpoint the effect of chemoradiotherapy on the expression. Results: Preoperative treatment resulted in downstaging in 20 patients (45%) and no clinical response in 24 (55%). The pathologic tumor response was complete in 11 patients (25%), partial in 23 (52%), and none in 10 (23%). Positive MMP-9 staining was observed in 20 tumors (45%) and was associated with the clinical nodal stage (p = 0.035) and the pathologic and clinical response (p < 0.0001). The staining status of the other markers was associated with neither stage nor response. The overall pathologic response rate was 25% in MMP-9-positive patients vs. 52% in MMP-9-negative patients (p = 0.001). None of the 11 patients with pathologic complete remission was MMP-9 positive. Conclusions: Matrix metalloproteinase-9 expression correlated with a poor tumor response to preoperative chemoradiotherapy in rectal carcinoma patients.

  4. Elevated Plasma Matrix Metalloproteinase-9 and Its Correlations with Severity of Disease in Patients with Ventilator-Associated Pneumonia

    PubMed Central

    Li, Yia-Ting; Wang, Yao-Chen; Lee, Hsiang-Lin; Lu, Min-Chi; Yang, Shun-Fa

    2016-01-01

    Ventilator-associated pneumonia (VAP) increases patient mortality and medical expenditure, and a real-time and reliable method for the rapid diagnosis of VAP may help reduce fatal complications. Matrix metalloproteinases-9 (MMP-9) is considered significant in the pathogenesis of lung inflammation and infection. Therefore, we examined its relationship with the clinical course of VAP. This retrospective observational study recruited 30 healthy volunteers, 12 patients who used mechanical ventilation without the development of VAP (hereafter, patients without VAP), and 30 patients with a clinical diagnosis of VAP (hereafter, patients with VAP). The activity and level of plasma MMP-9 were determined through a gelatin zymography assay and ELISA. Our results report that both plasma MMP-9 activity and concentration were significantly elevated in the acute stage of patients with VAP when compared with control group and patients without VAP (p < 0.001). Subsequently, the plasma MMP-9 of patients with VAP decreased significantly after antibiotic treatment. Furthermore, plasma MMP-9 concentration was positively correlated with the clinical pulmonary infection score (r = 0.409, p = 0.007), WBCs (r = 0.620, p < 0.001), and neutrophils counts (r = 0.335, p = 0.035). In addition, plasma MMP-9 is an excellent tool for recognizing VAP when the cutoff level is set to 92.62 ng/mL (AUC = 0.863, 95% CI = 0.761 to 0.932). In conclusions, we concluded that MMP-9 levels play a role in the development of VAP and might have the potential to be applied in the development of VAP therapies. PMID:27499696

  5. Cerebral ischaemia and matrix metalloproteinase-9 modulate the angiogenic function of early and late outgrowth endothelial progenitor cells.

    PubMed

    Morancho, Anna; Hernández-Guillamon, Mar; Boada, Cristina; Barceló, Verónica; Giralt, Dolors; Ortega, Laura; Montaner, Joan; Rosell, Anna

    2013-12-01

    The enhancement of endogenous angiogenesis after stroke will be critical in neurorepair therapies where endothelial progenitor cells (EPCs) might be key players. Our aim was to determine the influence of cerebral ischaemia and the role of matrix metalloproteinase-9 (MMP-9) on the angiogenic function of EPCs. Permanent focal cerebral ischaemia was induced by middle cerebral artery (MCA) occlusion in MMP-9/knockout (MMP-9/KO) and wild-type (WT) mice. EPCs were obtained for cell counting after ischaemia (6 and 24 hrs) and in control animals. Matrigel(™) assays and time-lapse imaging were conducted to monitor angiogenic function of WT and MMP9-deficient EPCs or after treatment with MMP-9 inhibitors. Focal cerebral ischaemia increased the number of early EPCs, while MMP-9 deficiency decreased their number in non-ischaemic mice and delayed their release after ischaemia. Late outgrowth endothelial cells (OECs) from ischaemic mice shaped more vessel structures than controls, while MMP-9 deficiency reduced the angiogenic abilities of OECs to form vascular networks, in vitro. Treatment with the MMP inhibitor GM6001 and the specific MMP-9 inhibitor I also decreased the number of vessel structures shaped by both human and mouse WT OECs, while exogenous MMP-9 could not revert the impaired angiogenic function in MMP-9/KO OECs. Finally, time-lapse imaging showed that the extension of vascular networks was influenced by cerebral ischaemia and MMP-9 deficiency early during the vascular network formation followed by a dynamic vessel remodelling. We conclude that focal cerebral ischaemia triggers the angiogenic responses of EPCs, while MMP-9 plays a key role in the formation of vascular networks by EPCs. © 2013 The Authors. Journal of Cellular and Molecular Medicine Published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Fluid-attenuated inversion recovery hyperintensity correlates with matrix metalloproteinase-9 level and hemorrhagic transformation in acute ischemic stroke.

    PubMed

    Jha, Ruchira; Battey, Thomas W K; Pham, Ly; Lorenzano, Svetlana; Furie, Karen L; Sheth, Kevin N; Kimberly, W Taylor

    2014-04-01

    Matrix metalloproteinase-9 (MMP-9) is elevated in patients with acute stroke who later develop hemorrhagic transformation (HT). It is controversial whether early fluid-attenuated inversion recovery (FLAIR) hyperintensity on brain MRI predicts hemorrhagic transformation (HT). We assessed whether FLAIR hyperintensity was associated with MMP-9 and HT. We analyzed a prospectively collected cohort of acute stroke subjects with acute brain MRI images and MMP-9 values within the first 12 hours after stroke onset. FLAIR hyperintensity was measured using a signal intensity ratio between the stroke lesion and corresponding normal contralateral hemisphere. MMP-9 was measured using enzyme-linked immunosorbent assay. The relationships between FLAIR ratio (FR), MMP-9, and HT were evaluated. A total of 180 subjects were available for analysis. Patients were imaged with brain MRI at 5.6±4.3 hours from last seen well time. MMP-9 blood samples were drawn within 7.7±4.0 hours from last seen well time. The time to MRI (r=0.17, P=0.027) and MMP-9 level (r=0.29, P<0.001) were each associated with FR. The association between MMP-9 and FR remained significant after multivariable adjustment (P<0.001). FR was also associated with HT and symptomatic hemorrhage (P=0.012). FR correlates with both MMP-9 level and risk of hemorrhage. FLAIR changes in the acute phase of stroke may predict hemorrhagic transformation, possibly as a reflection of altered blood-brain barrier integrity.

  7. Role of human neutrophil gelatinase associated lipocalin (NGAL) and Matrix Metalloproteinase-9 (MMP-9) overexpression in neoplastic colon polyps.

    PubMed

    Odabasi, Mehmet; Yesil, Atakan; Ozkara, Selvinaz; Paker, Nurcan; Ozkan, Sevil; Eris, Cengiz; Yildiz, Mehmet Kamil; Abuoglu, Hacı Hasan; Gunay, Emre; Tekeşin, Kemal

    2014-01-01

    To explore the role of Human neutrophil gelatinase associated lipocalin (NGAL) and Matrix Metalloproteinase-9 (MMP-9) overexpression in neoplastic polyps and might used as a marker to separate those from non-noeplastic polyps. The study was performed on total 65 cases, 40% (n = 26) of them females and 60% (n = 39) of them males, in Haydarpasa Numune Education and Research Hospital between March 2012 and June 2012. The assessment of immunostained sections was performed by a random principle by one experinced pathologists to the clinico-pathological data. NGAL expression was based on the presence of cytoplasmic and membranous staining. The NGAL intensities of the cases show highly statistically significantly difference according to the pathological results (p < 0.01). The NGAL prevalences of the cases show highly statistically significantly difference according to the pathological results (p < 0.01). The NGAL ID scores of the cases show highly statistically significantly difference according to the pathological results (p < 0.01). We could hypothesize that NGAL and MMP-9 overexpression in neoplastic polyps might be used as a marker to separate those from non-noeplastic polyps. However, in this study, we determined that NGAL overexpression could not distinguish dysplasia from adenocancer. Finally, we suggest NGAL and MMP-9 as an immunohistochemical marker for colonic dysplasia. To determine dysplasia in early steps of colorectal adenoma-carcinoma sequence, it could help to determine new targets in preventive cancer therapy for colorectal cancer. We suggest development of standards for study method, introduction to routine practice by investigating in future studies including many patients.

  8. Resveratrol suppresses TPA-induced matrix metalloproteinase-9 expression through the inhibition of MAPK pathways in oral cancer cells.

    PubMed

    Lin, Feng-Yan; Hsieh, Yi-Hsien; Yang, Shun-Fa; Chen, Chang-Tai; Tang, Chih-Hsin; Chou, Ming-Yung; Chuang, Yi-Ting; Lin, Chiao-Wen; Chen, Mu-Kuan

    2015-10-01

    Naturally occurring agents, such as resveratrol, have been determined to benefit health. Numerous studies have demonstrated that resveratrol has antioxidative, cardioprotective, and neuroprotective properties. However, the effect of resveratrol exerts on the metastasis of oral cancer cells remains unclear. In this study, we investigated the effect the anti-invasive activity of resveratrol on a human oral cancer cell line (SCC-9) in vitro and the underlying mechanisms. Cell viability was examined by MTT assay, whereas cell motility was measured by migration and wound-healing assays. Zymography, reverse-transcriptase polymerase chain reaction (PCR), and promoter assays confirmed the inhibitory effects of resveratrol on matrix metalloproteinase-9 (MMP-9) expression in oral cancer cells. We established that various concentrations (0-100 μM) of resveratrol inhibited the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced migration capacities of SCC-9 cells and caused no cytotoxic effects. Zymography and Western blot analyses suggested that resveratrol inhibited TPA-induced MMP-9 gelatinolytic activity and protein expression. In addition, the results indicated that resveratrol inhibited the phosphorylation of c-Jun N-terminal kinase (JNK)1/2 and extracellular-signal-regulated kinase (ERK)1/2 involved in downregulating protein expression and the transcription of MMP-9. In summary, resveratrol inhibited MMP-9 expression and oral cancer cell metastasis by downregulating JNK1/2 and ERK1/2 signals pathways and, thus, exerts beneficial effects in chemoprevention. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Pioglitazone inhibits the expression of matrix metalloproteinase-9, a protein involved in diabetes-associated wound healing.

    PubMed

    Zhang, Jun; Huang, Xiaoyuan; Wang, Lingfeng

    2014-08-01

    Matrix metalloproteinase-9 (MMP-9) is a protein involved in diabetes-associated wound healing. The present study aimed to determine whether pioglitazone, an agonist of peroxisome proliferator-activated receptor‑γ (PPAR-γ), inhibits the expression of MMP-9. HaCaT cells at a density of 6x105 cells/well were seeded into 6-well plates in medium and were cultured for 24 h. The cells were then treated with bovine serum albumin (BSA) only or advanced glycation end‑product (AGE)-BSA (50, 100, 200, 300 or 400 µg/ml), with or without pioglitazone (0.5 or 1 µM). The effects of AGE-BSA on cell viability were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of MMP-9 secreted into the medium were detected by an enzyme-linked immunosorbent assay. The mRNA and protein levels were analyzed by quantitative polymerase chain reaction (qPCR) and western blot analysis, respectively. AGEs are able to increase the level of MMP-9 mRNA in HaCaT cells and the levels of MMP-9 protein secreted into the medium. Pioglitazone (0.5 or 1 µΜ) significantly inhibited the levels of MMP-9 in the treated HaCaT cells. Pioglitazone (0.5 or 1 µΜ) also suppressed the levels of MMP-9 in the cell culture medium. Pioglitazone at concentrations of 0.5 and 1 µΜ significantly suppressed the levels of MMP-9 mRNA to 20 or 8%, respectively. These results suggest that pioglitazone is able to effectively suppress the expression of MMP-9 via a transcriptional mechanism.

  10. Measurement of matrix metalloproteinase 9-mediated collagen type III degradation fragment as a marker of skin fibrosis.

    PubMed

    Vassiliadis, Efstathios; Veidal, Sanne Skovgård; Barascuk, Natasha; Mullick, Jhinuk Basu; Clausen, Rikke Elgaard; Larsen, Lise; Simonsen, Henrik; Larsen, Dorthe Vang; Bay-Jensen, Anne-Christine; Segovia-Silvestre, Toni; Leeming, Diana Julie; Karsdal, Morten A

    2011-03-29

    The current study utilized a Bleomycin-induced model of skin fibrosis to investigate the neo-epitope CO3-610 (KNGETGPQGP), a fragment of collagen III released during matrix metalloproteinase-9 (MMP9) degradation of the protein, we have previously described as a novel biomarker for liver fibrosis. The aim was to investigate CO3-610 levels in another well characterised model of fibrosis, to better describe the biomarker in relation to additional fibrotic pathologies. Skin fibrosis was induced by daily injections of Bleomycin to a total of 52 female C3 H mice, while control mice (n = 28) were treated with phosphate buffered saline (PBS), for 2, 4, 6 or 8 weeks. Skin fibrosis was evaluated using Visiopharm software on Sirius-red stained skin sections. Urine ELISA assays and creatinine corrections were performed to measure CO3-610 levels. CO3-610 levels were significantly higher in Bleomycin-treated vs. PBS-treated mice at each time point of termination. The mean increases were: 59.2%, P < 0.0008, at 2 weeks; 113.5%, P < 0.001, at 4 weeks; 136.8%, P < 0.0001 at 6 weeks; 157.2%, P < 0.0001 at 8 weeks). PBS-treated mice showed a non-significant increase in CO3-610 levels (mean increase for weeks 2-8 = 1.7%, P = 0.789) CO3-610 levels assayed in urine were statistically significantly correlated with Western blot analysis showing increased skin fibrosis (P < 0.0001, r = 0.65). Increased levels in mouse urine of the MMP-9 mediated collagen III degradation fragment CO3-610 were correlated with skin fibrosis progression, suggesting that CO3-610 may be a potential positive biomarker to study the pathogenesis of skin fibrosis in mice.

  11. Keratoconus Progression in Patients With Allergy and Elevated Surface Matrix Metalloproteinase 9 Point-of-Care Test.

    PubMed

    Mazzotta, Cosimo; Traversi, Claudio; Mellace, Pierfrancesco; Bagaglia, Simone A; Zuccarini, Silvio; Mencucci, Rita; Jacob, Soosan

    2017-10-04

    To assess keratoconus (KC) progression in patients with allergies who also tested positive to surface matrix metalloproteinase 9 (MMP-9) point-of-care test. Prospective comparative study including 100 stage I-II keratoconic patients, mean age 16.7±4.6 years. All patients underwent an anamnestic questionnaire for concomitant allergic diseases and were screened with the MMP-9 point-of-care test. Patients were divided into two groups: patients KC with allergies (KC AL) and patients KC without allergies (KC NAL). Severity of allergy was established by papillary subtarsal response grade and KC progression assessed by Scheimpflug corneal tomography, corrected distance visual acuity (CDVA) measurement in a 12-month follow-up. The KC AL group included 52 patients and the KC NAL group 48. In the KC AL group, 42/52 of patients (81%) were positive to MMP-9 point-of-care test versus two positive patients in the KC NAL group (4%). The KC AL group data showed a statistically significant decrease of average CDVA, from 0.155±0.11 to 0.301±0.2 logarithm of the minimum angle of resolution (P<0.005) at 12 months; Kmax value increased significantly, from 50.2 D±2.7 to 55.2 D±1.9 on average. The KC NAL group revealed a slight KC progression without statistically significant changes. Pearson correlation test showed a high correlation between Kmax worsening and severity of PSR in the KC AL group. The study demonstrated a statistically significant progression of KC in patients with concomitant allergies, positive to MMP-9 point-of-care test versus negative. A high correlation between severity of allergy and KC progression was documented.

  12. Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis

    PubMed Central

    Nighot, Prashant; Al-Sadi, Rana; Guo, Shuhong; Watterson, D. Martin; Ma, Thomas

    2015-01-01

    Recent studies have implicated a pathogenic role for matrix metalloproteinases 9 (MMP-9) in inflammatory bowel disease. Although loss of epithelial barrier function has been shown to be a key pathogenic factor for the development of intestinal inflammation, the role of MMP-9 in intestinal barrier function remains unclear. The aim of this study was to investigate the role of MMP-9 in intestinal barrier function and intestinal inflammation. Wild-type (WT) and MMP-9−/− mice were subjected to experimental dextran sodium sulfate (DSS) colitis by administration of 3% DSS in drinking water for 7 days. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon using fluorescently labeled dextran. The DSS-induced increase in the colonic permeability was accompanied by an increase in intestinal epithelial cell MMP-9 expression in WT mice. The DSS-induced increase in intestinal permeability and the severity of DSS colitis was found to be attenuated in MMP-9−/− mice. The colonic protein expression of myosin light chain kinase (MLCK) and phospho-MLC was found to be significantly increased after DSS administration in WT mice but not in MMP-9−/− mice. The DSS-induced increase in colonic permeability and colonic inflammation was attenuated in MLCK−/− mice and MLCK inhibitor ML-7-treated WT mice. The DSS-induced increase in colonic surface epithelial cell MLCK mRNA was abolished in MMP-9−/− mice. Lastly, increased MMP-9 protein expression was detected within the colonic surface epithelial cells in ulcerative colitis cases. These data suggest a role of MMP-9 in modulation of colonic epithelial permeability and inflammation via MLCK. PMID:26514773

  13. Effect of folate on neointima formation and matrix metalloproteinase-9 expression after balloon injury in hyperhomocysteinemic rabbits.

    PubMed

    Liu, Fenye; Zhang, Jidong; Yu, Shudong; Wang, Rong; Wang, Bo; Lai, Liping; Yin, Huiqiu; Liu, Guilin

    2008-12-17

    It is known that hyperhomocysteinemia (Hhcy) is associated with the risk of restenosis after angioplasty. Folate can lower plasma homocysteine (Hcy) level and alleviate the Hhcy-induced neointima formation after balloon injury. This study aims to explore the mechanisms of folate in inhibiting neointima formation. 24 New Zealand White rabbits were randomly divided into three groups: Control, 2% methionine (Meth) and 2% methionine+folate (Meth+folate). At the end of 8 experimental weeks, all rabbits underwent the balloon injury in abdominal aorta. 4 weeks following this procedure, plasma Hcy concentration, aortic maximal neointimal thickness (NT), neointimal area (NA), medial area (MA), and ratio of neointimal area to medial area (NA/MA), ultrastructure of vascular smooth muscle cells (VSMCs), and matrix metalloproteinase-9 (MMP-9) expression were detected by high performance liquid chromatography, histomorphometric analysis, transmission electron microscope (TEM) and real-time PCR, respectively. It was observed in our study that Hcy concentration, NT, NA, NA/MA and the expression of MMP-9 mRNA were higher in the Meth group than in the control. VSMCs in media exhibited typical synthetic phenotype in the Meth group compared with the transitional state between contractile phenotype and synthetic phenotype in the control group. However, in the rabbits treated with folate, Hcy concentration, NT, NA and MMP-9 mRNA expression were lower than those in the Meth group. The phenotype of VSMCs was close to that in the control group. This study suggested that folate could decrease the level of Hcy, reverse the Hhcy-induced exacerbation of neointima formation in rabbits following balloon injury, and the mechanisms in it may be related to the suppressive effect of folate on the expression of MMP-9 mRNA in arterial wall.

  14. Salvianolic acid B functioned as a competitive inhibitor of matrix metalloproteinase-9 and efficiently prevented cardiac remodeling

    PubMed Central

    2010-01-01

    Background Infarct-induced left ventricular (LV) remodeling is a deleterious consequence after acute myocardial infarction (MI) which may further advance to congestive heart failure. Therefore, new therapeutic strategies to attenuate the effects of LV remodeling are urgently needed. Salvianolic acid B (SalB) from Salviae mitiorrhizae, which has been widely used in China for the treatment of cardiovascular diseases, is a potential candidate for therapeutic intervention of LV remodeling targeting matrix metalloproteinase-9 (MMP-9). Results Molecular modeling and LIGPLOT analysis revealed in silico docking of SalB at the catalytic site of MMP-9. Following this lead, we expressed truncated MMP-9 which contains only the catalytic domain, and used this active protein for in-gel gelatin zymography, enzymatic analysis, and SalB binding by Biacore. Data generated from these assays indicated that SalB functioned as a competitive inhibitor of MMP-9. In our rat model for cardiac remodeling, western blot, echocardiography, hemodynamic measurement and histopathological detection were used to detect the effects and mechanism of SalB on cardio-protection. Our results showed that in MI rat, SalB selectively inhibited MMP-9 activities without affecting MMP-9 expression while no effect of SalB was seen on MMP-2. Moreover, SalB treatment in MI rat could efficiently increase left ventricle wall thickness, improve heart contractility, and decrease heart fibrosis. Conclusions As a competitive inhibitor of MMP-9, SalB presents significant effects on preventing LV structural damage and preserving cardiac function. Further studies to develop SalB and its analogues for their potential for cardioprotection in clinic are warranted. PMID:20735854

  15. Activation of matrix metalloproteinase-9 is associated with mobilization of bone marrow-derived cells after coronary stent implantation.

    PubMed

    Inoue, Teruo; Taguchi, Isao; Abe, Shichiro; Toyoda, Shigeru; Nakajima, Kohsuke; Sakuma, Masashi; Node, Koichi

    2011-11-03

    After stent-related vascular injury, an inflammatory response triggers the mobilization of bone marrow-derived stem cells, including both endothelial and smooth muscle progenitors, leading to re-endothelialization as well as restenosis. It has been postulated that neutrophil-released matrix metalloproteinase-9 (MMP-9) induces stem cell mobilization. To elucidate the mechanistic link between inflammation and stem cell mobilization after coronary stenting. In 31 patients undergoing coronary stenting, we serially measured activated Mac-1 on the surface of neutrophils and active MMP-9 levels in the coronary sinus blood plasma, and the number of circulating CD34-positive cells in the peripheral blood. After bare-metal stent implantation (n=21), significant increases in the numbers of CD34-positive cells (maximum on post-procedure day 7, P<0.001), activated Mac-1 (at 48 h, P<0.001), and active MMP-9 levels (at 24h, P<0.001) were observed. However, these changes were absent after sirolimus-eluting stent implantation (n=10). In overall patients, the numbers of CD34-positive cells on day 7 (R=0.58, P<0.01) and activated Mac-1 at 48 h (R=0.58, P<0.01) were both correlated with active MMP-9 levels at 24h. Stimulation of activated Mac-1 on the surface of isolated human neutrophils produced active MMP-9 release in vitro. These results suggest that stent-induced activation of Mac-1 on the surface of neutrophils might trigger their MMP-9 release, possibly leading to the mobilization of bone marrow-derived stem cells. These reactions were substantially inhibited by sirolimus-eluting stents. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Cerebral ischaemia and matrix metalloproteinase-9 modulate the angiogenic function of early and late outgrowth endothelial progenitor cells

    PubMed Central

    Morancho, Anna; Hernández-Guillamon, Mar; Boada, Cristina; Barceló, Verónica; Giralt, Dolors; Ortega, Laura; Montaner, Joan; Rosell, Anna

    2013-01-01

    The enhancement of endogenous angiogenesis after stroke will be critical in neurorepair therapies where endothelial progenitor cells (EPCs) might be key players. Our aim was to determine the influence of cerebral ischaemia and the role of matrix metalloproteinase-9 (MMP-9) on the angiogenic function of EPCs. Permanent focal cerebral ischaemia was induced by middle cerebral artery (MCA) occlusion in MMP-9/knockout (MMP-9/KO) and wild-type (WT) mice. EPCs were obtained for cell counting after ischaemia (6 and 24 hrs) and in control animals. Matrigel™ assays and time-lapse imaging were conducted to monitor angiogenic function of WT and MMP9-deficient EPCs or after treatment with MMP-9 inhibitors. Focal cerebral ischaemia increased the number of early EPCs, while MMP-9 deficiency decreased their number in non-ischaemic mice and delayed their release after ischaemia. Late outgrowth endothelial cells (OECs) from ischaemic mice shaped more vessel structures than controls, while MMP-9 deficiency reduced the angiogenic abilities of OECs to form vascular networks, in vitro. Treatment with the MMP inhibitor GM6001 and the specific MMP-9 inhibitor I also decreased the number of vessel structures shaped by both human and mouse WT OECs, while exogenous MMP-9 could not revert the impaired angiogenic function in MMP-9/KO OECs. Finally, time-lapse imaging showed that the extension of vascular networks was influenced by cerebral ischaemia and MMP-9 deficiency early during the vascular network formation followed by a dynamic vessel remodelling. We conclude that focal cerebral ischaemia triggers the angiogenic responses of EPCs, while MMP-9 plays a key role in the formation of vascular networks by EPCs. PMID:23945132

  17. Mechanical Strain Induced Expression of Matrix Metalloproteinase-9 via Stretch-Activated Channels in Rat Abdominal Aortic Dissection

    PubMed Central

    Qiu, ZhiHuang; Chen, LiangWan; Cao, Hua; Chen, Qiang; Peng, Hua

    2017-01-01

    Background The aim of the study was to investigate the expression of matrix metalloproteinase-9 (MMP-9) in rat abdominal aortic dissection (AD) induced by mechanical strain, so as to offer a better understanding of the possible mechanisms of AD. Material/Methods Experimental AD in rats was achieved by the injection of porcine pancreatic elastase. At days 0, 1, 3, 5, 7, 14, 21, and 30 after the establishment of AD model, serum MMP-9 levels were measured by enzyme-linked immunosorbent assay (ELISA). Four groups of vascular rings were stretched in vitro with a mechanical strength of 0 g, 1 g, 3 g, or 5 g for 30 min. Another four groups were pretreated with GdCl3, streptomycin, SN50, and SN50M, followed by stretching with 3 g for 30 min. The messenger RNA and the protein of MMP-9 were analyzed by real-time RT-PCR and Western blotting, and NF-κB p65 was detected by ELISA. Results After the establishment of rat abdominal AD model, the serum MMP-9 levels of AD groups increased significantly. The results showed increased expression of MMP-9 in rat AD vessels stretched with mechanical strength of 1 g, 3 g, and 5 g, but this effect was mostly blocked by Gd Cl3 and streptomycin. The NF-κB activity in aortic rings was activated by stretching with a mechanical strength of 3 g and was blocked by SN50, but not by SN50M. Conclusions The expression of MMP-9 in serum was increased significantly after rat abdominal AD formation. Mechanical strain induced MMP-9 expression in AD vessels, which was mediated through the activation of the stretch-activated channel-induced NF-κB pathway. PMID:28286334

  18. Immunohistochemical expression of vascular endothelial growth factor and matrix metalloproteinase-9 in radicular and residual radicular cysts

    PubMed Central

    RUIZ, Patrícia Alvarez; de TOLEDO, Orlando Ayrton; NONAKA, Cassiano Francisco Weege; PINTO, Leão Pereira; de SOUZA, Lélia Batista

    2010-01-01

    Objective This study assessed and compared the immunoexpression of vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) in radicular cysts (RCs) and residual radicular cysts (RRCs), relating them to the angiogenic index and the intensity of the inflammatory infiltrate. Material and Methods Twenty RCs and 10 RRCs were evaluated by immunohistochemistry using anti-VEGF and anti-MMP-9 antibodies. The angiogenic index was determined by microvessel count (MVC) using anti-von Willebrand factor antibody. Results The expression of both VEGF and MMP-9 was higher in RCs than in RRCs. RCs and RRCs presented strong epithelial expression of VEGF, irrespective of the intensity of the inflammatory infiltrate. Lesions with strong expression of MMP-9 showed significantly higher number of immunopositive cells for VEGF (p<0.05) and higher MVC (p<0.05). Lesions with dense inflammatory infiltrate exhibited significantly higher MVC (p<0.05) and higher number of immunopositive cells for VEGF (p<0.05). There was a positive correlation between both MVC (p<0.05) and the quantity of immunopositive cells for VEGF (p<0.05), with intensity of the inflammatory infiltrate. In addition, it was observed a positive correlation between the number of immunopositive cells for VEGF and MVC (p<0.05). Conclusions VEGF and MMP-9 might play important roles in the angiogenesis in RCs and RRCs. In these lesions, the expression of these molecules and the MVC is closely related to the intensity of the inflammatory infiltrate. The expression of VEGF in the epithelial lining of RCs and RRCs might be important for the enlargement of these lesions. PMID:21308293

  19. The role of annexin A1 in expression of matrix metalloproteinase-9 and invasion of breast cancer cells

    SciTech Connect

    Kang, Hyereen; Ko, Jesang; Jang, Sung-Wuk

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer We evaluated the effect of ANXA1 on promoting migration and invasion in MDA-MB-231 cells. Black-Right-Pointing-Pointer ANXA1 siRNA inhibits invasion and migration. Black-Right-Pointing-Pointer ANXA1 regulates MMP-9 expression and activity. Black-Right-Pointing-Pointer ANX-1 siRNA inhibits the activation of NF-{kappa}B in MDA-MB-231 cells. -- Abstract: Matrix metalloproteinase-9 (MMP-9) plays an important role in the invasion and metastasis of cancer cells. However, the regulatory mechanism of MMP-9 expression and its biological effects on breast cancer development remain obscure. In the current study, we examined the potential role of annexin A1 (ANXA1) in regulating migration and invasion in breast cancer cell lines. Both ANXA1 mRNA and protein are expressed in the highly invasive, hormone-insensitive human breast cancer cell lines MDA-MB-231 and SKBr3, but not in the hormone-responsive cell lines MCF-7 and T47D. Downregulation of ANXA1 expression with specific small interfering RNAs (ANXA1 siRNA) in MDA-MB-231 cells resulted in decreased cancer cell migration and invasion. Ablation of ANXA1 expression decreases the expression of MMP-9 at both the mRNA and protein levels and also reduces the proteolytic activity of MMP-9 in MDA-MB-231 cells. Moreover, silencing ANXA1 also decreases the transcriptional activity of MMP-9 by the suppression of nuclear factor kappa-B (NF-{kappa}B) activity. Collectively, these results indicate that ANXA1 functions as a positive regulator of MMP-9 expression and invasion of breast cancer cells through specific activation of the NF-{kappa}B signaling pathway.

  20. Matrix metalloproteinase 9 is decreased in natalizumab-treated multiple sclerosis patients at risk for progressive multifocal leukoencephalopathy.

    PubMed

    Fissolo, Nicolas; Pignolet, Béatrice; Matute-Blanch, Clara; Triviño, Juan Carlos; Miró, Berta; Mota, Miriam; Perez-Hoyos, Santiago; Sanchez, Alex; Vermersch, Patrick; Ruet, Aurélie; de Sèze, Jérôme; Labauge, Pierre; Vukusic, Sandra; Papeix, Caroline; Almoyna, Laurent; Tourbah, Ayman; Clavelou, Pierre; Moreau, Thibault; Pelletier, Jean; Lebrun-Frenay, Christine; Montalban, Xavier; Brassat, David; Comabella, Manuel

    2017-08-01

    To identify biomarkers associated with the development of progressive multifocal leukoencephalopathy (PML) in multiple sclerosis (MS) patients treated with natalizumab (NTZ). Relapsing-remitting MS patients who developed PML under NTZ therapy (pre-PML) and non-PML NTZ-treated patients (NTZ-ctr) were included in the study. Cryopreserved peripheral blood mononuclear cells and serum samples collected at baseline, at 1- and 2-year treated time points, and during PML were analyzed for gene expression by RNA sequencing and for serum protein levels by Luminex and enzyme-linked immunosorbent assays, respectively. Among top differentially expressed genes in the RNA sequencing between pre-PML and NTZ-ctr patients, pathway analysis revealed a high representation of genes belonging to the following categories: proangiogenic factors (MMP9, VEGFA), chemokines (CXCL1, CXCL5, IL8, CCL2), cytokines (IL1B, IFNG), and plasminogen- and coagulation-related molecules (SERPINB2, PLAU, PLAUR, TFPI, THBD). Serum protein levels for these candidates were measured in a 2-step manner in a screening cohort and a validation cohort of pre-PML and NTZ-ctr patients. Only matrix metalloproteinase 9 (MMP9) was validated; in pre-PML patients, MMP9 protein levels were significantly reduced at baseline compared with NTZ-ctr patients, and levels remained lower at later time points during NTZ treatment. The results from this study suggest that the proangiogenic factor MMP9 may play a role as a biomarker associated with the development of PML in MS patients treated with NTZ. Ann Neurol 2017;82:186-195. © 2017 American Neurological Association.

  1. Association of Matrix Metalloproteinase 9 C-1562T Polymorphism with Genetic Susceptibility to Myocardial Infarction: A Meta-Analysis

    PubMed Central

    Juan, Zhang; Wei-Guo, Zhang; Heng-Liang, Song; Da-Guo, Wan

    2015-01-01

    Background Myocardial infarction (MI) is the major cause of death by disease in the world. Many studies have identified the associations between matrix metalloproteinase 9 (MMP9) C-1562T polymorphisms and MI. However, the results remain inconclusive. To clarify the role of MMP9 C-1562T polymorphism in MI risk, we conducted a systematic review and large-scale meta-analysis. Methods Studies published between January 2005 and March 2014 were obtained from the electronic databases PubMed, Medline, and Embase. The odds ratios (ORs) with 95% CIs were calculated for comparisons of the alleles and genotypes in the overall population and in ethnicity subgroups to measure the strength of genetic associations. Results A total of 7 related studies, including 3952 MI cases and 4977 healthy control subjects were included in our meta-analysis. Our results show a statistically significant association between T allele and MI in the overall population (OR = 1.23; 95% CI, 1.02–1.48; P = 0.03). The risk of MI was also significantly higher in patients carrying the T allele (TC + TT genotypes) than in those with the CC genotype (P < 0.05). In stratified analysis by ethnicity, we found the T allele was strongly associated with MI in white populations, whereas in Asian populations there appeared no significant association. Conclusions Our data show that the MMP9 C-1562T polymorphism is a risk factor associated with increased MI susceptibility in the total population and white populations, although no significant association was observed in Asians populations. Further studies with larger sample sizes and assessing gene–gene and gene–environment interactions are required. PMID:26082814

  2. The dineolignan from Saururus chinensis, manassantin B, inhibits tumor-induced angiogenesis via downregulation of matrix metalloproteinases 9 in human endothelial cells.

    PubMed

    Liu, Zhaojie; Lu, Hong; Liu, Rong; Chen, Bin; Wang, Shan; Ma, Junchao; Fu, Jianjiang

    2014-08-01

    Manassantin B (MB) is a neolignan isolated from Saururus chinensis that exhibits a range of activities, including anti-inflammatory, antiseptic and antitumor activity. MB was recently found to affect cell adhesion and expression of several adhesion molecules. Based on the important roles of these adhesion molecules in angiogenesis, we evaluated a possible role for MB in tumor-induced angiogenesis in endothelial cells (ECs). In the present study, we found that MB blocked tumor-induced tube formation of ECs and significantly inhibited the invasion of ECs through the reconstituted basement membrane. MB suppressed the activity of matrix metalloproteinases (MMPs) and downregulated the expression of matrix metalloproteinases 9. Western blotting showed reduction of RUNX2 activation by MB. RUNX2 transcription factor assay and chromatin immunoprecipitation assay showed that the interaction between RUNX2 and target sequences in the matrix metalloproteinases 9 promoters was inhibited by MB. Our findings suggested that the inhibitory effects of MB on tumor-induced angiogenesis were caused by matrix metalloproteinases 9 inhibition, which was associated with the downregulation of RUNX2 transcriptional activity.

  3. Plasma concentration, genetic variation, and gene expression levels of matrix metalloproteinase 9 in Iranian patients with coronary artery disease

    PubMed Central

    Mahmoodi, Khalil; Kamali, Koorosh; Karami, Elham; Soltanpour, Mohammad Soleiman

    2017-01-01

    Background: Matrix metalloproteinase 9 (MMP9) -1562C>T (rs3918242) polymorphism has been proposed as a risk factor for coronary artery disease (CAD) with conflicting results. The aim of the present study was to investigate the association of -1562C>T genetic polymorphism, gene expression and circulating levels of MMP9 with CAD risk in an Iranian subpopulation in in Zanjan City. Materials and Methods: This was a retrospective case–control study we investigated retrospectively 100 patients with angiographically verified CAD and 100 matched controls. Genotyping of -1562C>T polymorphism was done by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Gene expression levels and circulating levels of MMP9 was determined by real-time reverse transcription-PCR and enzyme immunoassay method, respectively. Statistical analysis was done using Student's t-test or Chi-square test by SPSS 16 software. Results: The mean circulating levels of MMP9 were significantly higher in CAD Group than control group (P = 0.002). Mean plasma levels of MMP9 were also significantly higher in triple vessel stenosis patients than double vessel or single vessel stenosis patients (P < 0.001). Moreover, mean plasma levels and gene expression levels of MMP9 were significantly higher in T allele carrier than C allele carrier of MMP9 -1562C>T polymorphism (P = 0.002, P = 0.01, respectively). However, genotype and allele frequencies of MMP9 -1562C>T polymorphism were similar between CAD patients and controls (P > 0.05). Additionally, the -1562C>T polymorphism of MMP9 gene didn't increase the risk of CAD in dominant (P = 0.537) or recessive (P = 0.249) genetic models. Conclusion: Our study demonstrated that circulating levels of MMP9 but not -1562C>T polymorphism of MMP9 gene may be a risk factor for development and severity of CAD in an Iranian subpopulation in Zanjan. PMID:28400830

  4. [Effects of dexamethasone pretreatment on expression of matrix metalloproteinase-9 in rats with acute lung injury induced by phosgene].

    PubMed

    He, Dai-Kun; Shen, Jie; Zhang, Lin; Huang, Wen-Bin

    2011-04-01

    To investigate the effects of dexamethasone on expression of matrix metalloproteinase-9 (MMP-9) in rats with acute lung injury induced by phosgene. The rats were randomly divided into 3 groups: normal control group that consists of the rats with air exposure, phosgene group that consists of the rats with phosgene exposure and dexamethasone group that consists of the rats with phosgene exposure after 2.5 mg/kg dexamethasone being injected. Wet and dry ratio of the lung (W/D) was calculated, and leukocyte count and total protein content of bronchoalveolar lavage fluid (BALF) were recorded at 2 h after exposure. The concentrations of MMP-9 in the serum and BALF were measured by enzyme-linked immunosorbent assay. The pathologic changes of lung tissues were observed under light microscopy. The immunohistochemistry and the RT-PCR were used to detect the contents of MMP-9 in the lung tissue. Compared with phosgene group, the lung W/D, protein content and WBC count in of BALF dexamethasone group was significantly decreased (P < 0.01). MMP-9 levels of the serum and BALF in dexamethasone group were (4.799 +/- 0.043) microg/L and (15.052 +/- 0.029) microg/L, respectively, which were significantly lower than those [(9.439 +/- 0.100) and (20.640 +/- 0.446) microg/L] in phosgene group (P < 0.01). Compared with phosgene group (2.789 +/- 0.282),the expression level (1.183 +/- 0.260) of lung MMP-9 mRNA in dexamethasone group was significantly lower than that in phosgene group (P < 0.01). Histological experimental results showed the marked hyperemia and thickening of alveolar walls and stroma cells infiltrating and more visible alveolar structure damage of alveolar walls in phosgene group while the alveolar structure and the alveolar walls were clear and slightly thickened with inflammatory cells in dexamethasone group. Immunohistochemical results showed that MMP-9 protein expression levels of lung and bronchus tissues in normal control group and dexamethasone group were weakly

  5. Evaluation of point-of-care test for elevated tear matrix metalloproteinase 9 in post-LASIK dry eyes.

    PubMed

    Chan, Tommy C Y; Ye, Cong; Chan, Kwok Ping; Chu, Kai On; Jhanji, Vishal

    2016-09-01

    To evaluate the performance of a point-of-care test for detection of matrix metalloproteinase 9 (MMP-9) levels in post-laser-assisted in situ keratomileusis (LASIK) dry eyes. A comparative study between patients with mild to moderate post-LASIK dry eyes and age-matched normal subjects was conducted. Ocular surface disease index (OSDI), tear break-up time (TBUT), and tear film MMP-9 and total protein levels were compared between the two groups. A point-of-care test device (RPS InflammaDry, Sarasota, Florida, USA) was utilised to confirm elevated MMP-9 levels in tear film. Fourteen post-LASIK dry eyes and 34 normal eyes were included. There was no significant difference in age and gender between both groups (p>0.175). The OSDI was significantly higher (25.5±7.7 vs 7.4±2.5; p<0.001) and TBUT levels were significantly lower (5.4±0.9 vs 13.5±2.3; p<0.001) in patients with dry eye compared with normal subjects. The tear film MMP-9 levels were 52.7±32.5 ng/mL in dry eyes and 4.1±2.1 ng/mL in normal eyes (p<0.001). MMP-9 levels were >40 ng/mL in 7/14 (50.0%) post-LASIK dry eyes. The InflammaDry was positive in 8/14 (57.1%) post-LASIK eyes. All positive cases had tear film MMP-9 levels ≥38.03 ng/mL. Agreement between InflammaDry and MMP-9 was excellent with Cohen κ value of 0.857 in post-LASIK dry eyes. Only half of post-LASIK dry eyes were found to have significant inflammation associated with elevated MMP-9. The OSDI is useful to non-specifically identify patients with symptomatic dry eye while the InflammaDry determined which patients with dry eye were associated with significant inflammation that may guide therapeutic management decisions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Sequential in-office vitreous aspirates demonstrate vitreous matrix metalloproteinase 9 levels correlate with the amount of subretinal fluid in eyes with wet age-related macular degeneration

    PubMed Central

    Pfahler, Scott M.; Hines, Joshua C.; Lovelace, Ann S.; Glaser, Bert M.

    2012-01-01

    Purpose To evaluate levels of 37 native pathway proteins of the vitreous proteome from a subset of wet age-related macular degeneration (AMD) patients with and without subretinal fluid (SRF). Methods A total of 62 consecutive samples were aspirated from 12 patients with AMD, six who had SRF at baseline, and six who did not have SRF at any point during the study. Vitreous levels of the 37 native pathway proteins were analyzed in these patients using reverse phase protein microarray technology. At each visit, at which the 62 samples were taken, SRF and central retinal thickness were measured. These values were then compared to the relative intensity level of the 37 proteins screened. Results In the subset of AMD patients with SRF, the average matrix metalloproteinase 9 (MMP-9), interleukin (IL)-12, Abelson murine leukemia viral oncogene homolog 1 (cABL) Thr735, heme oxygenase-1, Musashi, platelet-derived growth factor receptor beta Tyr751 (PDGFRβ), IL-8, and BCL-2 associated death promoter (BAD) Ser112 levels in the vitreous were found to be significantly different with a 21%–82% increase in expression compared to those without SRF (p<0.0001). Within the SRF group, there was a positive correlation between the vitreous MMP-9 levels and the SRF level. MMP-9 levels in the vitreous proteome varied with the level of SRF but not retinal edema. Compared to patients without SRF, the patients with initial SRF had persistent or progressive disease. Conclusions This is the first prospective case series sequentially monitoring the vitreous proteome in patients with wet AMD. The results suggest that MMP-9 is a proteomic biomarker of SRF accumulation, separate from macular edema. PMID:22773904

  7. Clonorchis sinensis excretory-secretory products regulate migration and invasion in cholangiocarcinoma cells via extracellular signal-regulated kinase 1/2/nuclear factor-κB-dependent matrix metalloproteinase-9 expression.

    PubMed

    Pak, Jhang Ho; Shin, Jimin; Song, In-Sung; Shim, Sungbo; Jang, Sung-Wuk

    2017-01-01

    Matrix metalloproteinase-9 plays an important role in the invasion and metastasis of various types of cancer cells. We have previously reported that excretory-secretory products from Clonorchis sinensis increases matrix metalloproteinase-9 expression. However, the regulatory mechanisms through which matrix metalloproteinase-9 expression affects cholangiocarcinoma development remain unclear. In the current study, we examined the potential role of excretory-secretory products in regulating the migration and invasion of various cholangiocarcinoma cell lines. We demonstrated that excretory-secretory products significantly induced matrix metalloproteinase-9 expression and activity in a concentration-dependent manner. Reporter gene and chromatin immunoprecipitation assays showed that excretory-secretory products induced matrix metalloproteinase-9 expression by enhancing the activity of nuclear factor-kappa B. Moreover, excretory-secretory products induced the degradation and phosphorylation of IκBα and stimulated nuclear factor-kappa B p65 nuclear translocation, which was regulated by extracellular signal-regulated kinase 1/2. Taken together, our findings indicated that the excretory-secretory product-dependent enhancement of matrix metalloproteinase-9 activity and subsequent induction of IκBα and nuclear factor-kappa B activities may contribute to the progression of cholangiocarcinoma.

  8. Increased Plasma Matrix Metalloproteinase-9 Levels Contribute to Intracerebral Hemorrhage during Thrombolysis after Concomitant Stroke and Influenza Infection

    PubMed Central

    Muhammad, Sajjad; Planz, Oliver; Schwaninger, Markus

    2016-01-01

    Background Thrombolysis is the only approved therapy for acute stroke. However, life-threatening complications such as intracerebral hemorrhage (ICH) can develop after intravenous administration of tissue plasminogen activator (tPA). Both infection and thrombolysis during cerebral ischemia disrupt the blood-brain barrier (BBB). tPA can induce matrix metalloproteinase-9 (MMP-9), which is known to be involved in BBB disruption. However, it has still not been investigated whether preexisting influenza virus infection during thrombolysis after acute stroke affects systemic levels of MMP-9 and its inhibitor TIMP-1 and whether increased systemic MMP-9 levels affect ICH. This study aimed to investigate the influence of influenza virus infection on plasma levels of MMP-9 and TIMP-1 after thrombolysis in acute stroke, and to determine whether the infection correlates with intracerebral bleeding. Methods C57BL/6 mice were infected by administering 1 × 105 plaque-forming units of human influenza (H1N1) virus intranasally. After 3 days of infection the middle cerebral artery was occluded for 45 min and then reperfused. Intravenous tPA (10 mg/kg) treatment was started 10 min after stroke onset. Twenty-four hours after stroke onset, mice were deeply anesthetized with ketamine, venous blood was drawn from the caval vein and centrifuged at 2,000 rpm, and the supernatant was collected and frozen at −80°C. Plasma levels of MMP-9 and TIMP-1 were quantified by using ELISA. Results After stroke, plasma MMP-9 was significantly increased in mice with a concomitant influenza infection that were treated with tPA (9.99 ± 0.62 ng/ml, n = 7) as compared to noninfected control mice that were treated with tPA (4.74 ± 0.48 ng/ml, n = 8). Moreover, plasma levels of TIMP-1, an inhibitor of MMP-9, were also significantly increased in mice treated with tPA after concomitant infection and stroke (42.17 ± 7.02 ng/ml, n = 7) as compared to noninfected control mice that were treated with t

  9. [Protective effects of ulinastatin on phosgene-induced acute lung injury and relation to matrix metalloproteinase-9].

    PubMed

    Huang, Wen-bin; Shen, Jie; Zhang, Lin; He, Dai-kun; Xu, Tie

    2010-07-01

    To observe the protective mechanism of ulinastatin on mice with acute lung injury induced by exposure to phosgene and its relationship to the expressions of matrix metalloproteinase-9 (MMP-9) in the lung tissues. Sixty-four healthy male SD rats were randomly divided into two groups: the experimental group and the control group. 32 rats in the experiment group were randomly subdivided into four groups: rats with phosgene exposure group, rats with phosgene exposure after saline injected group, rats with phosgene exposure after dexamethasone injected group. 32 rats in the control group were randomly subdivided into four groups: rats with air exposure group, pretreated with ulinastatin before air exposure group, pretreated with saline before air exposure group, pretreated with dexamethasone before air exposure group, 8 animals in each group. After pretreated with the same dose of ulinastatin, saline, dexamethasone respectively, 32 rats in the control groups were exposed to the air on the same condition respectively for 5 min. While after pretreated with the same dose of ulinastatin, saline, dexamethasone respectively, 32 rats in the experiment groups were exposed to the phosgene which the concentration was 8.33 mg/L and with 100% purity for 5 min. The lung wet/dry (W/D) weight ratio was calculated, and total protein content and BALF leukocyte count were detected. The immunohistochemistry was used to detect lung tissue protein expression MMP-9 while enzyme-linked immunosorbent method was employed to detect MMP-9 in serum levels and enzyme original gelatinases spectrum method to detect BALF MMP-9 enzyme original content. Compared with A1, A2, A3, A4 group, the lung W/D, BALF of protein content and WBC count in B1 and B2 group rats were significantly increased, and the difference was statistically significant (P < 0.01). There was statistically significant difference in lung W/D, BALF of protein content and white blood cell count between B1,B2 group and the B3 and B4 rats

  10. Site-specific elevation of interleukin-1β and matrix metalloproteinase-9 in the Willis circle by hemodynamic changes is associated with rupture in a novel rat cerebral aneurysm model.

    PubMed

    Miyamoto, Takeshi; Kung, David K; Kitazato, Keiko T; Yagi, Kenji; Shimada, Kenji; Tada, Yoshiteru; Korai, Masaaki; Kurashiki, Yoshitaka; Kinouchi, Tomoya; Kanematsu, Yasuhisa; Satomi, Junichiro; Hashimoto, Tomoki; Nagahiro, Shinji

    2017-08-01

    The pathogenesis of subarachnoid hemorrhage remains unclear. No models of cerebral aneurysms elicited solely by surgical procedures and diet have been established. Elsewhere we reported that only few rats in our original rat aneurysm model manifested rupture at the anterior and posterior Willis circle and that many harbored unruptured aneurysms at the anterior cerebral artery-olfactory artery bifurcation. This suggests that rupture was site-specific. To test our hypothesis that a site-specific response to hemodynamic changes is associated with aneurysmal rupture, we modified our original aneurysm model by altering the hemodynamics. During 90-day observation, the incidence of ruptured aneurysms at the anterior and posterior Willis circle was significantly increased and the high incidence of unruptured aneurysms at the anterior cerebral artery-olfactory artery persisted. This phenomenon was associated with an increase in the blood flow volume. Notably, the level of matrix metalloproteinase-9 associated with interleukin-1β was augmented by the increase in the blood flow volume, suggesting that these molecules exacerbated the vulnerability of the aneurysmal wall. The current study first demonstrates that a site-specific increase in interleukin-1β and matrix metalloproteinase-9 elicited by hemodynamic changes is associated with rupture. Our novel rat model of rupture may help to develop pharmaceutical approaches to prevent rupture.

  11. Targeting neutrophil collagenase/matrix metalloproteinase-8 and gelatinase B/matrix metalloproteinase-9 with a peptidomimetic inhibitor protects against endotoxin shock.

    PubMed

    Hu, Jialiang; Van den Steen, Philippe E; Dillen, Chris; Opdenakker, Ghislain

    2005-08-15

    Gram-negative sepsis, bacterial meningitis and endotoxin shock are life-threatening disorders, associated with the rapid release of neutrophil enzymes. Neutrophil collagenase/matrix metalloproteinase-8 (MMP-8) and gelatinase B/matrix metalloproteinase-9 (MMP-9) are contained in granules, are quickly exocytosed upon granulocyte activation and efficiently cleave intact and denatured collagens, respectively. Genetic ablation of gelatinase B protects against endotoxin-induced mortality. Therefore, we designed and synthesized a peptidomimetic gelatinase B inhibitor Regasepin1, and compared the selectivity for the collagenases MMP-1, MMP-8 and MMP-13. Regasepin1 was found to inhibit, almost to the same degree, the neutrophil enzymes MMP-8 and MMP-9 and the monocytic tumor necrosis factor-alpha (TNF-alpha) converting enzyme (TACE/ADAM-17) in vitro. With the use of mass spectrometry analysis, the plasma half-life of inhibitor levels was determined after an intraperitoneal bolus injection in mice. Plasma peak levels of the inhibitor were reached at 50 min after intraperitoneal injection and the subsequent half-life in the circulation exceeded 40 min. Regasepin1 protected mice against lethal endotoxinemia by intraperitoneal and intravenous injection routes. This proves the principle that early neutrophil MMP inhibition followed by TACE blockade may become a treatment strategy of gram-negative sepsis, endotoxinemia and other life-threatening inflammatory reactions.

  12. Omega-3 and Omega-6 Fatty Acids Act as Inhibitors of the Matrix Metalloproteinase-2 and Matrix Metalloproteinase-9 Activity.

    PubMed

    Nicolai, Eleonora; Sinibaldi, Federica; Sannino, Gianpaolo; Laganà, Giuseppina; Basoli, Francesco; Licoccia, Silvia; Cozza, Paola; Santucci, Roberto; Piro, Maria Cristina

    2017-08-01

    Polyunsaturated fatty acids have been reported to play a protective role in a wide range of diseases characterized by an increased metalloproteinases (MMPs) activity. The recent finding that omega-3 and omega-6 fatty acids exert an anti-inflammatory effect in periodontal diseases has stimulated the present study, designed to determine whether such properties derive from a direct inhibitory action of these compounds on the activity of MMPs. To this issue, we investigated the effect exerted by omega-3 and omega-6 fatty acids on the activity of MMP-2 and MMP-9, two enzymes that actively participate to the destruction of the organic matrix of dentin following demineralization operated by bacteria acids. Data obtained (both in vitro and on ex-vivo teeth) reveal that omega-3 and omega-6 fatty acids inhibit the proteolytic activity of MMP-2 and MMP-9, two enzymes present in dentin. This observation is of interest since it assigns to these compounds a key role as MMPs inhibitors, and stimulates further study to better define their therapeutic potentialities in carious decay.

  13. Elevated Expression of Matrix Metalloproteinase-9 not Matrix Metalloproteinase-2 Contributes to Progression of Extracranial Arteriovenous Malformation

    PubMed Central

    Wei, Ting; Zhang, Haihong; Cetin, Neslihan; Miller, Emily; Moak, Teri; Suen, James Y.; Richter, Gresham T.

    2016-01-01

    Extracranial arteriovenous malformations (AVMs) are rare but dangerous congenital lesions arising from direct arterial-venous shunts without intervening capillaries. Progressive infiltration, expansion, and soft tissue destruction lead to bleeding, pain, debilitation and disfigurement. The pathophysiology of AVMs is not well understood. Matrix Metalloproteinases (MMPs) are thought to play an important role in pathologic processes underlying many diseases. This study investigates the expression of MMP-9 and MMP-2 in aggressive extracranial AVMs. The differential expression of MMP-9 and its regulatory factors is also examined. Herein we demonstrate that mRNA and protein expressions of MMP-9, but not MMP-2, are significantly higher in AVM tissues compared to normal tissues. The serum level of MMP-9, but not MMP-2, is also elevated in AVM patients compared to healthy controls. MMP-9/neutrophil gelatinase-associated lipocalin (NGAL) complex is also significantly increased in AVM tissues. The MMP-9/ tissue inhibitor of metalloproteases-1 (TIMP-1) complex presents as a major form detected in normal tissues. The increased and aberrant expression of MMP-9 and specific MMP-9 forms may help explain the constitutive vascular remodeling and infiltrative nature of these lesions. Specific MMP-9 inhibitors would be a promising treatment for AVMs. PMID:27075045

  14. Expression of matrix metalloproteinase-9 (MMP-9) in human midpregnancy amniotic fluid and risk of preterm labor.

    PubMed

    Di Ferdinando, A; Patacchiola, F; Perilli, M G; Amicosante, G; Carta, G

    2010-01-01

    This work stands as a pilot study in assessing the reliability of metalloproteinase-9 (MMP-9) as a marker for intraamiotic infection and preterm birth already in early pregnancy. 100 amniotic fluids taken at the Midwife Obstetrics and Gynaecological Clinic of the University of L'Aquila (Italy). Our results show that MMP-9 is a sensitive marker of intraamionic infection (an important risk factor for preterm delivery) already in early pregnancy, because only women with a significant elevation were subsequently exposed to preterm birth. Early identification of women at risk of preterm birth is of important clinical significance. Indeed exposing women to deep diagnostic and therapeutic protocols could possibly reduce the incidence of preterm birth in the near future and have a positive impact on fetal prognosis related to unknown intraamniotic infection.

  15. Effects of omega-3 on matrix metalloproteinase-9, myoblast transplantation and satellite cell activation in dystrophin-deficient muscle fibers.

    PubMed

    de Carvalho, Samara Camaçari; Hindi, Sajedah M; Kumar, Ashok; Marques, Maria Julia

    2017-06-17

    In Duchenne muscular dystrophy (DMD), lack of dystrophin leads to progressive muscle degeneration, with DMD patients suffering from cardiorespiratory failure. Cell therapy is an alternative to life-long corticoid therapy. Satellite cells, the stem cells of skeletal muscles, do not completely compensate for the muscle damage in dystrophic muscles. Elevated levels of proinflammatory and profibrotic factors, such as metalloproteinase 9 (MMP-9), impair muscle regeneration, leading to extensive fibrosis and poor results with myoblast transplantation therapies. Omega-3 is an anti-inflammatory drug that protects against muscle degeneration in the mdx mouse model of DMD. In the present study, we test our hypothesis that omega-3 affects MMP-9 and thereby benefits muscle regeneration and myoblast transplantation in the mdx mouse. We observe that omega-3 reduces MMP-9 gene expression and improves myoblast engraftment, satellite cell activation, and muscle regeneration by mechanisms involving, at least in part, the regulation of macrophages, as shown here with the fluorescence-activated cell sorting technique. The present study demonstrates the benefits of omega-3 on satellite cell survival and muscle regeneration, further supporting its use in clinical trials and cell therapies in DMD.

  16. A relevant enzyme in granulomatous reaction, active matrix metalloproteinase-9, found in bovine Echinococcus granulosus hydatid cyst wall and fluid.

    PubMed

    Marco, M; Baz, A; Fernandez, C; Gonzalez, G; Hellman, U; Salinas, G; Nieto, A

    2006-12-01

    In addition to the ability of matrix metalloproteinases (MMP) to degrade components of the extracellular matrix and their involvement in pathology-related processes of tissue remodeling, they were recently reported to enhance inflammation by activation of proinflammatory cytokines, or their release from the cell surface. In the work reported here, proteolytic activity previously found for hydatid cysts was further characterized as MMP-9. Active host MMP-9 was found in walls and fluids of bovine hydatid cysts of Echinococcus granulosus in the environment of granulomatous reaction. Pooled walls and fluids of hydatid cysts obtained from infected cattle were processed. Strong proteolytic activity was detected by zymography. The proteolytic fraction was purified by anion exchange and gelatin-agarose affinity chromatography. Major proteinases of the purified fraction were subjected to mass spectrometry and their identities were further confirmed by Western blotting using commercial anti-human MMP-9 monoclonal antibodies. Two proteinases were characterized as latent and active forms of host MMP-9. Using the same antibody for immunoblot, activity was localized, in paraffin-embedded sections of the parasite and the local host environment, to epithelioid and giant multinucleated cells. It is proposed here that MMP-9 is secreted by specialized host cells of monocytic lineage (epithelioid/giant cells) as an effector, in an attempt to digest the persistent foreign body. In vivo activation of MMP-9 suggests its involvement in inflammatory reaction and in the chemotaxis of inflammatory cells to the cyst. However, E. granulosus can deal efficiently with MMP-9. Research is suggested into possible immune evasion mechanisms, including the secretion of an inhibitory molecule.

  17. Roles of mitogen activated protein kinases and EGF receptor in arsenite-stimulated matrix metalloproteinase-9 production

    SciTech Connect

    Cooper, Karen L.; Myers, Terrance Alix; Rosenberg, Martina; Chavez, Miquella; Hudson, Laurie G. . E-mail: lghudson@unm.edu

    2004-11-01

    The dermatotoxicity of arsenic is well established and epidemiological studies identify an increased incidence of keratinocytic tumors (basal cell and squamous cell carcinoma) associated with arsenic exposure. Little is known about the underlying mechanisms of arsenic-mediated skin carcinogenesis, but activation of mitogen-activated protein (MAP) kinases and subsequent regulation of downstream target genes may contribute to tumor promotion and progression. In this study, we investigated activation of the extracellular signal regulated kinase (ERK) and the stress-associated kinase p38 by arsenite in HaCat cells, a spontaneously immortalized human keratinocyte cell line. Arsenite concentrations {>=}100 {mu}M stimulate rapid activation of p38 and ERK MAP kinases. However, upon extended exposure (24 h), persistent stimulation of p38 and ERK MAP kinases was detected at low micromolar concentrations of arsenite. Although ERK and p38 were activated with similar time and concentration dependence, the mechanism of activation differed for these two MAP kinases. ERK activation by arsenite was fully dependent on the catalytic activity of the epidermal growth factor (EGF) receptor and partially dependent on Src-family kinase activity. In contrast, p38 activation was independent of EGF receptor or Src-family kinase activity. Arsenite-stimulated MAP kinase signal transduction resulted in increased production of matrix metalloproteinase (MMP)-9, an AP-1 regulated gene product. MMP-9 induction by arsenite was prevented when EGF receptor or MAP kinase signaling was inhibited. These studies indicate that EGF receptor activation is a component of arsenite-mediated signal transduction and gene expression in keratinocytes and that low micromolar concentrations of arsenite stimulate key signaling pathways upon extended exposure. Stimulation of MAP kinase cascades by arsenic and subsequent regulation of genes including c-fos, c-jun, and the matrix degrading proteases may play an important

  18. Membrane vesicles containing matrix metalloproteinase-9 and fibroblast growth factor-2 are released into the extracellular space from mouse mesoangioblast stem cells.

    PubMed

    Candela, Maria Elena; Geraci, Fabiana; Turturici, Giuseppina; Taverna, Simona; Albanese, Ida; Sconzo, Gabriella

    2010-07-01

    Certain proteins, including fibroblast growth factor-2 (FGF-2) and matrix metalloproteinase-9 (MMP-9), have proved very effective in increasing the efficacy of mesoangioblast stem cell therapy in repairing damaged tissue. We provide the first evidence that mouse mesoangioblast stem cells release FGF-2 and MMP-9 in their active form through the production of membrane vesicles. These vesicles are produced and turned over continuously, but are stable for some time in the extracellular milieu. Mesoangioblasts shed membrane vesicles even under oxygen tensions that are lower than those typically used for cell culture and more like those of mouse tissues. These findings suggest that mesoangioblasts may themselves secrete paracrine signals and factors that make damaged tissues more amenable to cell therapy through the release of membrane vesicles. (c) 2010 Wiley-Liss, Inc.

  19. Identification of daidzein as a ligand of retinoic acid receptor that suppresses expression of matrix metalloproteinase-9 in HaCaT cells.

    PubMed

    Oh, Hyeon-Jeong; Kang, Young-Gyu; Na, Tae-Young; Kim, Hyeon-Ji; Park, Jun Seong; Cho, Won-Jea; Lee, Mi-Ock

    2013-08-25

    Retinoids have been used as therapeutics for diverse skin diseases, but their side effects limit clinical usage. Here, we report that extracts of two soybeans, Glycine max and Rhynchosia nulubilis, and their ethyl acetate fractions increased the transcriptional activity of retinoic acid receptors (RARs), and that daidzin and genistin were the major constituents of the active fractions. Daidzin and its aglycone, daidzein, induced transcriptional activity of RAR and RARγ. FRET analysis demonstrated that daidzein, but not daidzin, bound both RAR and RARγ with EC50 values of 28μM and 40μM, respectively. Daidzein increased expression of mRNA of RARγ through direct binding of RAR and recruitment of p300 to the RARγ2 promoter. Further, mRNA and gelatinolytic activity of matrix metalloproteinase-9 were decreased by daidzein in HaCaT cells. Together, these results indicate that daidzein functions as a ligand of RAR that could be a candidate therapeutic for skin diseases.

  20. Tamarixetin 3-O-β-d-Glucopyranoside from Azadirachta indica Leaves: Gastroprotective Role through Inhibition of Matrix Metalloproteinase-9 Activity in Mice.

    PubMed

    Yadav, Dharmendra K; Bharitkar, Yogesh P; Hazra, Abhijit; Pal, Uttam; Verma, Sugreev; Jana, Sayantan; Singh, Umesh P; Maiti, Nakul C; Mondal, Nirup B; Swarnakar, Snehasikta

    2017-05-26

    Neem (Azadirachta indica) is a well-known medicinal and insecticidal plant. Although previous studies have reported the antiulcer activity of neem leaf extract, the lead compound is still unidentified. The present study reports tamarixetin 3-O-β-d-glucopyranoside (1) from a methanol extract of neem leaves and its gastroprotective activity in an animal model. Compound 1 showed significant protection against indomethacin-induced gastric ulceration in mice in a dose-dependent manner. Moreover, ex vivo and circular dichroism studies confirmed that 1 inhibited the enzyme matrix metalloproteinase-9 (MMP-9) activity with an IC50 value of ca. 50 μM. Molecular docking and dynamics showed the binding of 1 into the pocket of the active site of MMP-9, forming a coordination complex with the catalytic zinc, thus leading to inhibition of MMP-9 activity.

  1. [Expression of matrix metalloproteinases-9 and tissue inhibitors of matrix metalloproteinases-1 in connective tissue of vaginal wall of women with stress urinary incontinence].

    PubMed

    Zhang, Qun-Fang; Song, Yan-Feng; Zhu, Zhong-Yong

    2006-12-01

    To study semi-quantitatively mRNA expression of matrix metalloproteinase-9 (MMP-9) and its inhibitor, tissue inhibitor of matrix metalloproteinase-1 (TIMP-1), in vaginal wall connective tissue in women with stress urinary incontinence (SUI) compared to continent controls, and to explore the relationship between MMP-9, TIMP-1 and SUI. Vaginal wall tissues were obtained from 24 women with SUI who were followed-up (12 cases are > 60 years old and 12 cases < or = 60 years old). Seven patients undergoing total hysterectomy for carcinoma in situ of cervix without urinary incontinence served as control group. RNA was extracted and quantified. Semi-quantitative competitive reverse transcription was carried out with oligo-nucleotide primers to quantify MMP-9 and TIMP-1 mRNA expression. We used GeneSnap to analyze the data. MMP-9 in three groups (> 60, < or = 60 years and control) was 0.56 +/- 0.20, 0.56 +/- 0.19, 0.37 +/- 0.18, significantly decreased (P < 0.05). There was no difference between > 60 and < or = 60 year age groups (P > 0.05). TIMP-1 in three groups was 0.23 +/- 0.11, 0.31 +/- 0.12, 0.41 +/- 0.13, significantly increased (P < 0.05). There was a great difference between > 60 and < or = 60 year age groups in TIMP expression (P > 0.05). The ratio of MMP-9/TIMP-1 in > 60, < or = 60 year age groups and control group was 2.49 +/- 1.82, 1.82 +/- 1.58, 0.90 +/- 1.38, significantly decreased (P < 0.05). Stress urinary incontinent women demonstrate a significant increase in MMP-9 mRNA expression and significant decrease in TIMP-1 mRNA expression. In SUI patients, proportion of MMP-9 and TIMP-1 was overbalanced. Both these findings are consistent with increased collagen breakdown and may play an important role in the onset and development of SUI.

  2. Regulation of proteinases during mouse peri-implantation development: urokinase-type plasminogen activator expression and cross talk with matrix metalloproteinase 9.

    PubMed

    Martínez-Hernández, M G; Baiza-Gutman, L A; Castillo-Trápala, A; Armant, D Randall

    2011-02-01

    Trophoblast cells express urokinase-type plasminogen activator (PLAU) and may depend on its activity for endometrial invasion and tissue remodeling during peri-implantation development. However, the developmental regulation, tissue distribution, and function of PLAU are not completely understood. In this study, the expression of PLAU and its regulation by extracellular matrix proteins was examined by RT-PCR, immunocytochemistry, and plasminogen-casein zymography in cultured mouse embryos. There was a progressive increase in Plau mRNA expression in blastocysts cultured on gestation days 4-8. Tissue-type plasminogen activator (55 kDa) and PLAU (a triplet of 40, 37, and 31 kDa) were present in conditioned medium and embryo lysates, and were adsorbed to the culture plate surface. The temporal expression pattern of PLAU, according to semi-quantitative gel zymography, was similar in non-adhering embryos and embryos cultured on fibronectin, laminin, or type IV collagen, although type IV collagen and laminin upregulated Plau mRNA expression. Immunofluorescence revealed PLAU on the surface of the mural trophectoderm and in non-spreading giant trophoblast cells. Exogenous human plasminogen was transformed to plasmin by cultured embryos and activated endogenous matrix metalloproteinase 9 (MMP9). Indeed, the developmental expression profile of MMP9 was similar to that of PLAU. Our data suggest that the intrinsic developmental program predominantly regulates PLAU expression during implantation, and that PLAU could be responsible for activation of MMP9, leading to localized matrix proteolysis as trophoblast invasion commences.

  3. Regulation of proteinases during mouse peri-implantation development: urokinase-type plasminogen activator expression and cross talk with matrix metalloproteinase 9

    PubMed Central

    Martínez-Hernández, M G; Baiza-Gutman, L A; Castillo-Trápala, A; Armant, D Randall

    2011-01-01

    Trophoblast cells express urokinase-type plasminogen activator (PLAU) and may depend on its activity for endometrial invasion and tissue remodeling during peri-implantation development. However, the developmental regulation, tissue distribution, and function of PLAU are not completely understood. In this study, the expression of PLAU and its regulation by extracellular matrix proteins was examined by RT-PCR, immunocytochemistry, and plasminogen–casein zymography in cultured mouse embryos. There was a progressive increase in Plau mRNA expression in blastocysts cultured on gestation days 4–8. Tissue-type plasminogen activator (55 kDa) and PLAU (a triplet of 40, 37, and 31 kDa) were present in conditioned medium and embryo lysates, and were adsorbed to the culture plate surface. The temporal expression pattern of PLAU, according to semi-quantitative gel zymography, was similar in non-adhering embryos and embryos cultured on fibronectin, laminin, or type IV collagen, although type IV collagen and laminin upregulated Plau mRNA expression. Immunofluorescence revealed PLAU on the surface of the mural trophectoderm and in non-spreading giant trophoblast cells. Exogenous human plasminogen was transformed to plasmin by cultured embryos and activated endogenous matrix metalloproteinase 9 (MMP9). Indeed, the developmental expression profile of MMP9 was similar to that of PLAU. Our data suggest that the intrinsic developmental program predominantly regulates PLAU expression during implantation, and that PLAU could be responsible for activation of MMP9, leading to localized matrix proteolysis as trophoblast invasion commences. PMID:21075828

  4. The Extracellular Protease Matrix Metalloproteinase-9 Is Activated by Inhibitory Avoidance Learning and Required for Long-Term Memory

    ERIC Educational Resources Information Center

    Nagy, Vanja; Bozdagi, Ozlem; Huntley, George W.

    2007-01-01

    Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the…

  5. The Extracellular Protease Matrix Metalloproteinase-9 Is Activated by Inhibitory Avoidance Learning and Required for Long-Term Memory

    ERIC Educational Resources Information Center

    Nagy, Vanja; Bozdagi, Ozlem; Huntley, George W.

    2007-01-01

    Matrix metalloproteinases (MMPs) are a family of extracellularly acting proteolytic enzymes with well-recognized roles in plasticity and remodeling of synaptic circuits during brain development and following brain injury. However, it is now becoming increasingly apparent that MMPs also function in normal, nonpathological synaptic plasticity of the…

  6. ROS-NFkappaB mediates TGF-beta1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion.

    PubMed

    Tobar, Nicolas; Villar, Victor; Santibanez, Juan F

    2010-07-01

    TGF-beta1 has been postulated as a pro-oncogenic factor in the late step of the tumoral progression. In transformed cells, TGF-beta1 enhances the capacity to degrade the extracellular matrix, cell invasiveness and epithelial-mesenchymal transition, which are crucial steps for metastasis. Urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) are critical components in cell migration and invasion induced by TGF-beta1, however, the exact mechanism by which TGF-beta1 regulates uPA and MMP-9 is not well elucidated so far. In the present study, we analyzed the role of ROS-NFkappaB, signal as mediator in the cell malignity enhancement by TGF-beta1. We found that TGF-beta1 activates NFkappaB, through Rac1-NOXs-ROS-dependent mechanism. Our results shows that TGF-beta1 stimulation of uPA and MMP-9 expression involve NOXs-dependent ROS and NFkappaB, activation, demonstrated by using DPI, NOXs inhibitor, ROS scavenger N-acetylcysteine and SN50, an NFkb inhibitor. Furthermore, we found that the inhibition of ROS and NFkappaB, abrogates TGF-beta1 stimulation of EMT, cell motility and invasion. Thus, ROS-NFkappaB acts as the crucial signal in TGF-beta1-induced uPA and MMP-9 expression thereby mediating the enhancement of cellular malignity by TGF-beta1.

  7. Interleukin-1β activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells

    PubMed Central

    Mon, Naing Naing; Senga, Takeshi; Ito, Satoko

    2017-01-01

    Interleukin-1β (IL-1b) is a pleiotropic cytokine that is important in tumor progression and invasion. Matrix metalloproteinase-9 (MMP-9), which is a secreted matrix-degrading enzyme, is one of the key regulators of tumor invasion and metastasis. The current report indicated that IL-1b promotes MMP-9 production and cell invasion in non-metastatic MCF-7 breast cancer cells. IL-1b activated focal adhesion kinase (FAK) and proto-oncogene tyrosine-protein kinase Src (Src). Moreover, inhibiting the Src/FAK pathway reduced the IL-1b-induced production of MMP-9 and cell invasion. To investigate the functional role of FAK in MMP-9 production cell lines expressing mutant FAK in FAK knock-out mouse fibroblasts were generated. In wild-type FAK-expressing cells, MMP-9 production was induced by IL-1b stimulation. By contrast, IL-1b-induced MMP-9 production was abrogated in FAK knock-out, FAK Y397F, FAK Y925F, and kinase dead mutant-expressing cells. Therefore the results of the current study indicate that FAK and Src kinases are activated by IL-1b and play a critical role in MMP-9 production and tumor cell invasion. PMID:28356984

  8. Abnormal activation of calpain and protein kinase Cα promotes a constitutive release of matrix metalloproteinase 9 in peripheral blood mononuclear cells from cystic fibrosis patients.

    PubMed

    Averna, Monica; Bavestrello, Margherita; Cresta, Federico; Pedrazzi, Marco; De Tullio, Roberta; Minicucci, Laura; Sparatore, Bianca; Salamino, Franca; Pontremoli, Sandro; Melloni, Edon

    2016-08-15

    Matrix metalloproteinase 9 (MMP9) is physiologically involved in remodeling the extracellular matrix components but its abnormal release has been observed in several human pathologies. We here report that peripheral blood mononuclear cells (PBMCs), isolated from cystic fibrosis (CF) patients homozygous for F508del-cystic fibrosis transmembrane conductance regulator (CFTR), express constitutively and release at high rate MMP9 due to the alteration in their intracellular Ca(2+) homeostasis. This spontaneous and sustained MMP9 secretion may contribute to the accumulation of this protease in fluids of CF patients. Conversely, in PBMCs isolated from healthy donors, expression and secretion of MMP9 are undetectable but can be evoked, after 12 h of culture, by paracrine stimulation which also promotes an increase in [Ca(2+)]i. We also demonstrate that in both CF and control PBMCs the Ca(2+)-dependent MMP9 secretion is mediated by the concomitant activation of calpain and protein kinase Cα (PKCα), and that MMP9 expression involves extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation. Our results are supported by the fact that either the inhibition of Ca(2+) entry or chelation of [Ca(2+)]i as well as the inhibition of single components of the signaling pathway or the restoration of CFTR activity all promote the reduction of MMP9 secretion. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The influence of opioid peptides on matrix metalloproteinase-9 and urokinase plasminogen activator expression in three cancer cell lines.

    PubMed

    Gach, K; Wyrebska, A; Szemraj, J; Janecka, A

    2012-01-01

    Matrix metalloproteinases (MMPs) and urokinase plasminogen activator (uPA) regulate proteolysis of the extracellular matrix (ECM) and as a consequence are involved in a number of physiological and pathological states, including cancer. A crucial feature of cancer progression and metastasis is the disruption of the ECM and spreading of proliferating cancer cells. Over-expression of MMPs and uPA is common for most types of cancers and correlates well with the adverse prognosis. Compounds able to modulate the activity of these proteolytic enzymes may become important agents in cancer therapy. In the present study, we examined the effect of the mu-opioid receptor selective peptide, morphiceptin, and its two synthetic analogs on mRNA and protein levels of MMP-9 and uPA in three human cancer cell lines: MCF-7, HT-29, and SH-SY5Y. Our findings indicate that in all three cell lines morphiceptin and its analogs attenuated MMP-9 expression and secretion and that this effect is not mediated by opioid receptors but is under control of the nitric oxide system. On the other hand, tested opioids up-regulated uPA levels through a mechanism that involved opioid-receptors. Different pathways by which opioid peptides exert their actionin cancer cells can explain their contradictory influence on the level of cancer markers.

  10. Effect of sodium butyrate on pro-matrix metalloproteinase-9 and -2 differential secretion in pediatric tumors and cell lines.

    PubMed

    Rodríguez-Salvador, J; Armas-Pineda, C; Perezpeña-Diazconti, M; Chico-Ponce de León, F; Sosa-Sáinz, G; Lezama, P; Recillas-Targa, F; Arenas-Huertero, F

    2005-09-01

    Matrix metalloproteinases (MMPs) are enzymes responsible for extracellular matrix degradation and contribute to local and distant cell invasion during cancer progression or metastasis. The effects of chromatin structure on gene expression and the use of histone deacetylase inhibitors such as sodium butyrate (NaBu) may directly influence pro-MMPs secretion. In the present study, we evaluated the effect of NaBu on pro-MMP-9 and pro-MMP-2 secretion in human Jurkat and HT1080 cells, and in 36 pediatric solid tumors. Cell lines and samples were exposed to 8 mM of NaBu and proteinase activity was evaluated in the supernatant by gelatin zymograms. Our results showed, for Jurkat cells treated with NaBu, increases of 2-fold and 1.5-fold in pro-MMP-9 and pro-MMP-2 secretion, respectively. A 50% decrease in pro-MMP-9 secretion due to NaBu was observed in HT1080 cells. NaBu induced a 0.62 reduction in levels of pro-MMP-9 secretion in untreated tumors. For cell lines and some NaBu-treated tumors we found histone H4 hyperacetylation. We conclude that pro-MMPs gene expression and their secretion can be epigenetically mis-regulated in tumoral processes.

  11. Engineering autoactivating forms of matrix metalloproteinase-9 and expression of the active enzyme in cultured cells and transgenic mouse brain.

    PubMed

    Fisher, Katherine E; Fei, Qing; Laird, Ellen R; Stock, Jeffrey L; Allen, Melanie R; Sahagan, Barbara G; Strick, Christine A

    2002-07-02

    Matrix metalloproteinases (MMPs) are hypothesized to play an important role in the pathogenesis of several central nervous system disorders. Increased levels of expression of MMP-9 (gelatinase B) and MMP-2 (gelatinase A) have been observed in Alzheimer's disease, stroke, multiple sclerosis, and amyotrophic lateral sclerosis. This suggests an aberrant regulation of MMPs that could lead to inappropriate expression of MMP activity. To allow us to evaluate the effect of increased levels of active MMP-9 in the central nervous system, mutant forms of the enzyme were designed to autocatalytically remove the pro domain, yielding active enzyme. This was accomplished by modifying residues in the cysteine switch autoinhibitor region of the propeptide. Stable cell lines and transgenic mice that express G100L and D103N autoactive forms of human MMP-9 were developed to study the role of dysregulation of MMP-9 in disease.

  12. Inhibition of Matrix Metalloproteinase 9 Enhances Rod Survival in the S334ter-line3 Retinitis Pigmentosa Model

    PubMed Central

    Shin, Jung-A; Kim, Hwa Sun; Vargas, Andrew; Yu, Wan-Qing; Eom, Yun Sung; Craft, Cheryl Mae; Lee, Eun-Jin

    2016-01-01

    Retinitis Pigmentosa (RP) is one of the most common forms of inherited visual loss with the initial degeneration of rod photoreceptors, followed by a progressive cone photoreceptor deterioration. Coinciding with this visual loss, the extracellular matrix (ECM) is reorganized, which alters matrix metalloproteinase (MMP) activity levels. A potential pathological role of MMPs, MMP-9 in particular, involves an excitotoxicity-mediated physiological response. In the current study, we examine the MMP-9 and MMP-2 expression levels in the rhodopsin S334ter-line3 RP rat model and investigate the impact of treatment with SB-3CT, a specific MMP-9 and MMP-2 inhibitor, on rod cell survival was tested. Retinal MMP-9 and MMP-2 expression levels were quantified by immunoblot analysis from S334ter-line3 rats compared to controls. Gelatinolytic activities of MMP-9 and MMP-2 by zymography were examined. The geometry of rod death was further evaluated using Voronoi analysis. Our results revealed that MMP-9 was elevated while MMP-2 was relatively unchanged when S334ter-line 3 retinas were compared to controls. With SB-3CT treatment, we observed gelatinolytic activity of both MMPs was decreased and diminished clustering associated with rod death, in addition to a robust preservation of rod photoreceptors. These results demonstrate that up-regulation of MMP-9 in retinas of S334ter-line3 are associated with rod death. The application of SB-3CT dramatically interferes with mechanisms leading to apoptosis in an MMP-9-dependent manner. Future studies will determine the feasibility of using SB-3CT as a potential therapeutic strategy to slow progression of vision loss in genetic inherited forms of human RP. PMID:27893855

  13. Matrix metalloproteinase-9 inhibition improves proliferation and engraftment of myogenic cells in dystrophic muscle of mdx mice.

    PubMed

    Hindi, Sajedah M; Shin, Jonghyun; Ogura, Yuji; Li, Hong; Kumar, Ashok

    2013-01-01

    Duchenne muscular dystrophy (DMD) caused by loss of cytoskeletal protein dystrophin is a devastating disorder of skeletal muscle. Primary deficiency of dystrophin leads to several secondary pathological changes including fiber degeneration and regeneration, extracellular matrix breakdown, inflammation, and fibrosis. Matrix metalloproteinases (MMPs) are a group of extracellular proteases that are involved in tissue remodeling, inflammation, and development of interstitial fibrosis in many disease states. We have recently reported that the inhibition of MMP-9 improves myopathy and augments myofiber regeneration in mdx mice (a mouse model of DMD). However, the mechanisms by which MMP-9 regulates disease progression in mdx mice remain less understood. In this report, we demonstrate that the inhibition of MMP-9 augments the proliferation of satellite cells in dystrophic muscle. MMP-9 inhibition also causes significant reduction in percentage of M1 macrophages with concomitant increase in the proportion of promyogenic M2 macrophages in mdx mice. Moreover, inhibition of MMP-9 increases the expression of Notch ligands and receptors, and Notch target genes in skeletal muscle of mdx mice. Furthermore, our results show that while MMP-9 inhibition augments the expression of components of canonical Wnt signaling, it reduces the expression of genes whose products are involved in activation of non-canonical Wnt signaling in mdx mice. Finally, the inhibition of MMP-9 was found to dramatically improve the engraftment of transplanted myoblasts in skeletal muscle of mdx mice. Collectively, our study suggests that the inhibition of MMP-9 is a promising approach to stimulate myofiber regeneration and improving engraftment of muscle progenitor cells in dystrophic muscle.

  14. Matrix metalloproteinase-9 expression in the nuclear compartment of neurons and glial cells in aging and stroke.

    PubMed

    Pirici, Daniel; Pirici, Ionica; Mogoanta, Laurentiu; Margaritescu, Otilia; Tudorica, Valerica; Margaritescu, Claudiu; Ion, Daniela A; Simionescu, Cristiana; Coconu, Marieta

    2012-10-01

    Matrix metalloproteinases (MMPs) are well-recognized denominators for extracellular matrix remodeling in the pathology of both ischemic and hemorrhagic strokes. Recent data on non-nervous system tissue showed intracellular and even intranuclear localizations for different MMPs, and together with this, a plethora of new functions have been proposed for these intracellular active enzymes, but are mostly related to apoptosis induction and malign transformation. In neurons and glial cells, on human tissue, animal models and cell cultures, different active MMPs have been also proven to be located in the intra-cytoplasmic or intra-nuclear compartments, with no clear-cut function. In the present study we show for the first time on human tissue the nuclear expression of MMP-9, mainly in neurons and to a lesser extent in astrocytes. We have studied ischemic and hemorrhagic stroke patients, as well as aged control patients. Age and ischemic suffering seemed to be the best predictors for an elevated MMP-9 nuclear expression, and there was no evidence of a clear-cut extracellular proteolytic activity for this compartment, as revealed by intact vascular basement membranes and assessment of vascular densities. More, the majority of the cells expressing MMP-9 in the nuclear compartment also co-expressed activated-caspase 3, indicating a possible link between nuclear MMP-9 localization and apoptosis in neuronal and glial cells following an ischemic or hemorrhagic event. These results, besides showing for the first time the nuclear localization of MMP-9 on a large series of human stroke and aged brain tissues, raise new questions regarding the unknown spectrum of the functions MMPs in human CNS pathology.

  15. Class I to III histone deacetylases differentially regulate inflammation-induced matrix metalloproteinase 9 expression in primary amnion cells.

    PubMed

    Poljak, Marin; Lim, Ratana; Barker, Gillian; Lappas, Martha

    2014-06-01

    Matrix metalloproteinase (MMP) 9 plays an important role in the degradation of the extracellular matrix in fetal membranes, and pathological activation of MMP-9 can lead to preterm birth. In nongestational tissues, modulation of histone deacetylases (HDACs) regulates MMP-9 expression. The aim of this study was to determine whether class I to III HDACs regulate MMP-9 expression and activity in primary amnion cells. Class I and II HDAC regulation of MMP-9 was assessed using the general class I and II HDAC inhibitors (HDACi) trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), the class I HDACi MS-275, and the class II HDACi MC1568. Class III HDAC regulation of MMP-9 was assessed using the SIRT1 activators resveratrol and SRT1720 as well as SIRT1 small interfering RNA (siRNA). Primary amnion epithelial cells were incubated with 1 ng/mL interleukin (IL) 1β in the absence or presence of 0.3 μmol/L TSA, 5 μmol/L SAHA, 2.5 μmol/L MS-275, 2.5 μmol/L MC1568, 50 μmol/L resveratrol, or 10 μmol/L SRT1720 for 20 hours. We found that the class I and II HDACi TSA and SAHA and the class II HDACi MC1568 significantly decreased IL-β-induced MMP-9 gene and pro-MMP-9 expression in primary amnion cells. There was, however, no effect of the class I HDACi MS-275 on IL-β-induced MMP-9 expression. On the other hand, inhibition of class III HDAC SIRT1 using siRNA significantly augmented IL-1β-induced MMP-9, and SIRT1 activation using resveratrol and SRT1720 inhibited IL-1β-induced MMP-9 expression. In summary, class I to III HDACs differentially regulate inflammation-induced MMP-9 expression in primary amnion cells.

  16. Melatonin suppresses TPA-induced metastasis by downregulating matrix metalloproteinase-9 expression through JNK/SP-1 signaling in nasopharyngeal carcinoma.

    PubMed

    Ho, Hsin-Yu; Lin, Chiao-Wen; Chien, Ming-Hsien; Reiter, Russel J; Su, Shih-Chi; Hsieh, Yi-Hsien; Yang, Shun-Fa

    2016-11-01

    Nasopharyngeal carcinoma (NPC), a disease common in the South-East Asian population, has high lymph node metastatic ability. Melatonin, an endogenously produced substance present in animals, plants, fungi, and bacteria, has oncostatic activity via several mechanisms. The molecular mechanisms involved in melatonin-mediated tumor inhibitory potential are not completely defined. Here, we show that melatonin treatment inhibits TPA-induced cell motility by regulating the matrix metalloproteinase-9 (MMP-9) expression in NPC. We also identified the signaling cascade through which melatonin inhibits MMP-9 expression; this involves melatonin regulating the binding activity of the transcription factor specificity protein-1 (SP-1)-DNA. Our mechanistic analysis further reveals that the c-Jun N-terminal kinase/mitogen-activated protein kinase pathway is involved in the melatonin-mediated tumor suppressor activity. Furthermore, the findings indicate a functional link between melatonin-mediated MMP-9 regulation and tumor suppressing ability and provide new insights into the role of melatonin-induced molecular and epigenetic regulation of tumor growth. Thus, we conclude that melatonin suppresses the motility of NPC by regulating TPA-induced MMP-9 gene expression via inhibiting SP-1-DNA binding ability. The results provide a functional link between melatonin-mediated SP-1 regulation and the antimetastatic actions of melatonin on nasopharyngeal carcinoma. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Significance of Matrix Metalloproteinase 9 Expression as Supporting Marker to Cytokeratin 19 mRNA in Sentinel Lymph Nodes in Breast Cancer Patients.

    PubMed

    Murawski, Marek; Woźniak, Marta; Duś-Szachniewicz, Kamila; Kołodziej, Paweł; Rzeszutko, Marta; Ziółkowski, Piotr

    2016-04-21

    One-step nucleic acid amplification (OSNA) detects and quantifies, with the use of a polymerase chain reaction, the presence of cytokeratin 19 mRNA in sentinel lymph nodes. The main advantage of the OSNA assay is the avoidance of second surgery in case of positive sentinel lymph node diagnosis. The objective of this study was to evaluate the significance of matrix metalloproteinase 9 expression by immunohistochemistry as supporting marker to cytokeratin 19 mRNA in sentinel lymph nodes in breast cancer patients and to relate this expression with clinicopathological data. This study was conducted on fresh sentinel lymph nodes obtained from 40 patients with tumors classified as carcinoma of no special type. The presence of metastatic cells in the slices of lymph nodes was evaluated by immunohistochemistry using antibodies for CK19 and MMP-9. Expression of CK19 and MMP-9 in lymph nodes was also confirmed by means of Western blot analysis. Results indicated that the strongest correlation with CK19 mRNA was displayed by MMP-9, CK19 (by immunohistochemistry, IHC), and nodal metastases (p < 0.001). Higher histological grading also positively correlated with CK19 mRNA, however that correlation was less significant. Since MMP-9 shows very strong correlation with CK19 mRNA in breast carcinoma of no special type metastases, expression of MMP-9 in sentinel lymph nodes should be considered as useful method whenever OSNA analysis is not available.

  18. Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine.

    PubMed

    Yamamori, Hidenaga; Hashimoto, Ryota; Ishima, Tamaki; Kishi, Fukuko; Yasuda, Yuka; Ohi, Kazutaka; Fujimoto, Michiko; Umeda-Yano, Satomi; Ito, Akira; Hashimoto, Kenji; Takeda, Masatoshi

    2013-11-27

    Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. Peripheral BDNF levels in patients with schizophrenia have been widely reported in the literature. However, it is still controversial whether peripheral levels of BDNF are altered in patients with schizophrenia. The peripheral BDNF levels previously reported in patients with schizophrenia were total BDNF (proBDNF and mature BDNF) as it was unable to specifically measure mature BDNF due to limited BDNF antibody specificity. In this study, we examined whether peripheral levels of mature BDNF were altered in patients with treatment-resistant schizophrenia. Matrix metalloproteinase-9 (MMP-9) levels were also measured, as MMP-9 plays a role in the conversion of proBDNF to mature BDNF. Twenty-two patients with treatment-resistant schizophrenia treated with clozapine and 22 age- and sex-matched healthy controls were enrolled. The plasma levels of mature BDNF and MMP-9 were measured using ELISA kits. No significant difference was observed for mature BDNF however, MMP-9 was significantly increased in patients with schizophrenia. The significant correlation was observed between mature BDNF and MMP-9 plasma levels. Neither mature BDNF nor MMP-9 plasma levels were associated clinical variables. Our results do not support the view that peripheral BDNF levels are associated with schizophrenia. MMP-9 may play a role in the pathophysiology of schizophrenia and serve as a biomarker for schizophrenia.

  19. Matrix metalloproteinase-9 modulation by resident arterial cells is responsible for injury-induced accelerated atherosclerotic plaque development in apolipoprotein E-deficient mice.

    PubMed

    Choi, Eric T; Collins, Emily T; Marine, Leopoldo A; Uberti, Maria G; Uchida, Hisashi; Leidenfrost, Jeremy E; Khan, M Faisal; Boc, Kenneth P; Abendschein, Dana R; Parks, William C

    2005-05-01

    Although matrix metalloproteinase-9 (MMP-9) has been implicated in atherosclerotic plaque instability, the exact role it plays in the plaque development and progression remains largely unknown. We generated apolipoprotein E (apoE)-deficient (apoE-/-) MMP-9-deficient (MMP-9-/-) mice to determine the mechanisms and the main cell source of MMP-9 responsible for the plaque composition during accelerated atherosclerotic plaque formation. Three weeks after temporary carotid artery ligation revealed that while on a Western-type diet, apoE-/- MMP-9-/- mice had a significant reduction in intimal plaque length and volume compared with apoE-/- MMP-9+/+ mice. The reduction in plaque volume correlated with a significantly lower number of intraplaque cells of resident cells and bone marrow-derived cells. To determine the cellular origin of MMP-9 in plaque development, bone marrow transplantation after total-body irradiation was performed with apoE-/- MMP-9+/+ and apoE-/- MMP-9-/- mice, which showed that only MMP-9 derived from resident arterial cells is required for plaque development. MMP-9 is derived from resident arterial cells and is required for early atherosclerotic plaque development and cellular accumulation in apoE-/- mice.

  20. miR-204-5p acts as a tumor suppressor by targeting matrix metalloproteinases-9 and B-cell lymphoma-2 in malignant melanoma

    PubMed Central

    Luan, Wenkang; Qian, Yao; Ni, Xin; Bu, Xuefeng; Xia, Yun; Wang, Jinlong; Ruan, Hongru; Ma, Shaojun; Xu, Bin

    2017-01-01

    An increasing number of microRNAs have been found to be involved in tumorigenesis, including melanoma tumorigenesis. miR-204-5p is down-regulated and functions as a tumor suppressor in many human malignant tumors. miR-204-5p expression is also decreased in melanoma tissues, but its biological roles and molecular mechanisms in malignant melanoma remain unclear. In this study, the aberrant down-regulation of miR-204-5p was detected in melanoma, especially in metastatic melanoma. miR-204-5p also served as a protective factor for the prognosis of melanoma patients. We determined that miR-204-5p suppresses cell proliferation, migration and invasion, and promotes cell apoptosis in melanoma. Matrix metalloproteinases-9 and B-cell lymphoma-2 are the functional targets of miR-204-5p, through which it plays an important biological role in malignant melanoma. The effect of miR-204-5p on malignant melanoma is verified using a xenograft model. We also determined that miR-204-5p increases 5-fluorouracil and cisplatin (DDP) chemosensitivity in malignant melanoma cells. This finding elucidates new functions and mechanisms for miR-204-5p in melanoma development, and provides potential therapeutic targets for the treatment of melanoma. PMID:28280358

  1. Crotonis Fructus Extract Inhibits 12-O-Tetradecanoylphorbol-13-Acetate-Induced Expression of Matrix Metalloproteinase-9 via the Activator Protein-1 Pathway in MCF-7 Cells.

    PubMed

    Song, Hyun-Kyung; Lee, Guem-San; Park, Sueng Hyuk; Noh, Eun-Mi; Kim, Jeong-Mi; Ryu, Do-Gon; Jung, Sung Hoo; Youn, Hyun Jo; Lee, Young-Rae; Kwon, Kang-Beom

    2017-09-01

    Metastatic cancers spread from the primary site of origin to other parts of the body. Matrix metalloproteinase-9 (MMP-9) is essential in metastatic cancers owing to its major role in cancer cell invasion. Crotonis fructus (CF), the mature fruits of Croton tiglium L., have been used for the treatment of gastrointestinal disturbance in Asia. In this study, the effect of the ethanol extract of CF (CFE) on MMP-9 activity and the invasion of 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 cells was examined. The cell viability was evaluated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The expression of MMP-9 was examined by Western blotting, zymography, and real-time polymerase chain reaction. An electrophoretic mobility gel shift assay was performed to detect activator protein-1 (AP-1) DNA binding activity and cell invasiveness was measured by an in vitro Matrigel invasion assay. CFE significantly suppressed MMP-9 expression and activation in a dose-dependent manner. Furthermore, CFE attenuated the TPA-induced activation of AP-1. The results indicated that the inhibitory effects of CFE against TPA-induced MMP-9 expression and MCF-7 cell invasion were dependent on the protein kinase C δ/p38/c-Jun N-terminal kinase/AP-1 pathway. Therefore, CFE could restrict breast cancer invasiveness owing to its ability to inhibit MMP-9 activity.

  2. Crotonis Fructus Extract Inhibits 12-O-Tetradecanoylphorbol-13-Acetate-Induced Expression of Matrix Metalloproteinase-9 via the Activator Protein-1 Pathway in MCF-7 Cells

    PubMed Central

    Song, Hyun-Kyung; Lee, Guem-San; Park, Sueng Hyuk; Noh, Eun-Mi; Kim, Jeong-Mi; Ryu, Do-Gon; Jung, Sung Hoo; Youn, Hyun Jo; Lee, Young-Rae

    2017-01-01

    Purpose Metastatic cancers spread from the primary site of origin to other parts of the body. Matrix metalloproteinase-9 (MMP-9) is essential in metastatic cancers owing to its major role in cancer cell invasion. Crotonis fructus (CF), the mature fruits of Croton tiglium L., have been used for the treatment of gastrointestinal disturbance in Asia. In this study, the effect of the ethanol extract of CF (CFE) on MMP-9 activity and the invasion of 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated MCF-7 cells was examined. Methods The cell viability was evaluated using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The expression of MMP-9 was examined by Western blotting, zymography, and real-time polymerase chain reaction. An electrophoretic mobility gel shift assay was performed to detect activator protein-1 (AP-1) DNA binding activity and cell invasiveness was measured by an in vitro Matrigel invasion assay. Results CFE significantly suppressed MMP-9 expression and activation in a dose-dependent manner. Furthermore, CFE attenuated the TPA-induced activation of AP-1. Conclusion The results indicated that the inhibitory effects of CFE against TPA-induced MMP-9 expression and MCF-7 cell invasion were dependent on the protein kinase C δ/p38/c-Jun N-terminal kinase/AP-1 pathway. Therefore, CFE could restrict breast cancer invasiveness owing to its ability to inhibit MMP-9 activity. PMID:28970848

  3. Epimorphin promotes human hepatocellular carcinoma invasion and metastasis through activation of focal adhesion kinase/extracellular signal-regulated kinase/matrix metalloproteinase-9 axis.

    PubMed

    Jia, Ya-Li; Shi, Lei; Zhou, Jun-Nian; Fu, Chun-Jiang; Chen, Lin; Yuan, Hong-Feng; Wang, Yun-Fang; Yan, Xin-Long; Xu, Ying-Chen; Zeng, Quan; Yue, Wen; Pei, Xue-Tao

    2011-11-01

    The high incidence rate of hepatocellular carcinoma (HCC) is mainly the result of frequent metastasis and tumor recurrence. Unfortunately, the underlying molecular mechanisms driving HCC metastasis are still not fully understood. It has been demonstrated that tumor stroma cells contribute to primary tumor growth and metastasis. Within the HCC environment, activated hepatic stellate cells (HSCs) can release a number of molecules and enhance cancer cell proliferation and invasiveness in a paracrine manner. Here, for the first time, we demonstrate that epimorphin (EPM; also called syntaxin-2), an extracellular protein, is strongly elevated in activated HSCs within tumor stroma. We show that knockdown of EPM expression in HSCs substantially abolishes their effects on cancer cell invasion and metastasis. Ectopic expression of EPM in HCC cancer cells enhances their invasiveness; we demonstrate that the cells expressing EPM have markedly increased metastasis potential. Furthermore, EPM-mediated invasion and metastasis of cancer cells is found to require up-regulation of matrix metalloproteinase-9 (MMP-9) through the activation of focal adhesion kinase (FAK)/extracellular signal-regulated kinase (ERK) axis. Our results show that EPM, secreted by activated HSCs within HCC stroma, promotes invasion and metastasis of cancer cells by activating MMP-9 expression through the FAK-ERK pathway. Copyright © 2011 American Association for the Study of Liver Diseases.

  4. Modulation of matrix metalloproteinase-9 activity by hyaluronan is dependent on NF-kappaB activity in lymphoma cell lines with dissimilar invasive behavior.

    PubMed

    Alaniz, Laura; García, Mariana; Cabrera, Paula; Arnaiz, María; Cavaliere, Victoria; Blanco, Guillermo; Alvarez, Elida; Hajos, Silvia

    2004-11-12

    Expression and activity of matrix metalloproteinase-9 (MMP-9) as well as its relationship with hyaluronan (HA) and NF-kappaB activity were analyzed in two murine lymphoma cell lines with dissimilar migration and invasive behavior. MMP activity was evaluated by zymograms in supernatants, membrane extracts of tumor cells, and in the organs invaded by these cells. The more aggressive LBLa cell line showed MMP-9 activity in vitro, which increased after HA treatment and was blocked by anti-CD44 mAb. Such activity was not found in the less aggressive LBLc. MMP-9 and MMP-2 activity was found in organs invaded by both cell lines, although differential MMP-9 activity was observed in lung infiltrated only by LBLa cell line. NF-kappaB activation was evaluated to determine whether differential activity of MMP-9 was dependent on downstream signaling pathway, showing higher NF-kappaB activity in the more aggressive LBLa cell line. Our results showed that MMP-9 activity modulated by HA through NF-kappaB signaling pathway may be involved in the aggressive behavior of LBLa.

  5. Dry Eye Profiles in Patients with a Positive Elevated Surface Matrix Metalloproteinase 9 Point-of-Care Test Versus Negative Patients

    PubMed Central

    Lanza, Nicole L.; McClellan, Allison; Batawi, Hatim; Felix, Elizabeth R.; Sarantopoulos, Konstantinos D.; Levitt, Roy C.; Galor, Anat

    2016-01-01

    Purpose To compare dry eye (DE) symptoms and signs in subjects who tested positive versus those who tested negative for ocular surface matrix metalloproteinase 9 (MMP-9) using the InflammaDry point of care test (RPS, Sarasota, FL). Methods In this cross-sectional study, individuals seen in the Miami Veterans Affairs eye clinic with DE symptoms, as evidenced by DE questionnaire 5 (DEQ5) ≥6, were given standardized questionnaires to assess DE symptoms and ocular and non-ocular pain complaints. Also, a complete evaluation was conducted to measure ocular surface signs of DE. MMP-9 testing was performed using the InflammaDry once in each eye, per the manufacturer’s instructions. The main outcome measure was a comparison of DE symptoms and signs in MMP-9 positive versus negative subjects. Results Of 128 subjects, 50 (39%) were positive for MMP-9 for InflammaDry testing in either eye. No statistically significant differences in mental health indices, DE symptoms, or ocular surface signs were seen in subjects based on MMP-9 status. Conclusion In our population, there was no difference in the DE profile by both symptoms and signs between those testing positive versus negative for MMP-9 on the ocular surface. This suggests that clinical exam alone cannot predict patients with clinically significant inflammation. PMID:26807724

  6. Neuropeptide Y Induces Hematopoietic Stem/Progenitor Cell Mobilization by Regulating Matrix Metalloproteinase-9 Activity Through Y1 Receptor in Osteoblasts.

    PubMed

    Park, Min Hee; Lee, Jong Kil; Kim, Namoh; Min, Woo-Kie; Lee, Jeong Eun; Kim, Kyoung-Tae; Akiyama, Haruhiko; Herzog, Herbert; Schuchman, Edward H; Jin, Hee Kyung; Bae, Jae-Sung

    2016-08-01

    Hematopoietic stem/progenitor cell (HSPC) mobilization is an essential homeostatic process regulated by the interaction of cellular and molecular components in bone marrow niches. It has been shown by others that neurotransmitters released from the sympathetic nervous system regulate HSPC egress from bone marrow to peripheral blood. In this study, we investigate the functional role of neuropeptide Y (NPY) on this process. NPY deficient mice had significantly impaired HSPC mobilization due to increased expression of HSPC maintenance factors by reduction of matrix metalloproteinase-9 (MMP-9) activity in bone marrow. Pharmacological or endogenous elevation of NPY led to decrease of HSPC maintenance factors expression by activating MMP-9 in osteoblasts, resulting in HSPC mobilization. Mice in which the Y1 receptor was deleted in osteoblasts did not exhibit HSPC mobilization by NPY. Furthermore, NPY treatment in ovariectomized mice caused reduction of bone loss due to HSPC mobilization. These results suggest a new role of NPY on HSPC mobilization, as well as the potential therapeutic application of this neuropeptide for stem cell-based therapy. Stem Cells 2016;34:2145-2156.

  7. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats.

    PubMed

    Justicia, Carles; Panés, Julián; Solé, Sònia; Cervera, Alvaro; Deulofeu, Ramon; Chamorro, Angel; Planas, Anna M

    2003-12-01

    Matrix metalloproteinase-9 (MMP-9) activity increases in the brain during the first day after focal ischemia and might be involved in the pathogenesis of tissue damage. We previously showed MMP-9 in the extracellular space of brain parenchyma along with neutrophil recruitment after ischemia. In the present study, we tested whether neutrophils were a direct source of enhanced MMP-9 in the ischemic brain. Neutrophil infiltration was prevented either by injecting an antibody against ICAM-1, which abrogates neutrophil adhesion to the endothelial vessel wall, or by inducing neutropenia. One-hour intraluminal middle cerebral artery occlusion with reperfusion was induced, and studies were performed at 24 hours. Circulating neutrophils expressed 95-kDa MMP-9 and dimers, and infiltrated neutrophils stained positive for MMP-9. The expression of MMP-9 (mainly 95-kDa proform and dimers and, to a lesser extent, 88-kDa form) increased in brain after ischemia/reperfusion. Treatments preventing neutrophil infiltration failed to preclude the ischemia-induced increase in 88-kDa MMP-9 form and gelatinase activity in neurons and blood vessels. However, these treatments prevented the major increase in 95-kDa MMP-9 form and dimers. We conclude that neutrophil infiltration highly contributes to enhanced MMP-9 in the ischemic brain by releasing MMP-9 proform, which might participate in the tissular inflammatory reaction.

  8. Liver X receptors agonist T0901317 downregulates matrix metalloproteinase-9 expression in non-small-cell lung cancer by repressing nuclear factor-κB.

    PubMed

    Chen, Qiong-Ju; Shi, Ying; Shi, Jun-Feng; Yuan, Zhen-Hua; Ma, Ji-Yong; Fang, Su-Rong; Gu, Wei

    2017-10-01

    The liver X receptors (LXRs) is an important component of the nuclear receptor (NR) superfamily. Previous studies have shown that the LXRs possessed antitumor activity in various types of tumor cells. However, the complicated mechanisms underlying the antitumor activity remain largely unexplored. In this study, we incubated A549 cells with the compound T0901317, a specific LXRs agonist, for 24 h. The MTT assay was used to assess cell viability. Transwell assays were used to evaluate cell migration and invasion. The shRNA was utilized for RNA interference. The target gene and protein expression levels were assessed using reverse transcription-PCR and western blot assay. The DNA-binding activity of nuclear factor κB (NF-κB) was examined using electrophoretic mobility shift assays. Luciferase reporter assay was used to detect the binding of NF-κB to the matrix metalloproteinase-9 (MMP-9) promoter. We found that T0901317 inhibited the invasion and migration of A549 cells in a dose-dependent manner. Meanwhile, we further indicated that activation of LXRβ, one subtype of LXRs, can downregulate MMP-9 expression. More importantly, activation of LXRβ triggered by T0901317 inhibited the invasion and metastasis of A549 cells by repressing NF-κB/MMP-9 signaling pathway. Taken together, our study shows that activation of LXRs triggered by T0901317 inhibits the invasion and metastasis of human non-small-cell lung cancer by repressing the NF-κB/MMP-9 signaling pathway.

  9. Matrix metalloproteinase-9 and its natural inhibitor TIMP-1 expressed or secreted by peripheral blood mononuclear cells from patients with systemic lupus erythematosus.

    PubMed

    Matache, Cristiana; Stefanescu, Maria; Dragomir, Cristina; Tanaseanu, Stefanita; Onu, Adrian; Ofiteru, Augustin; Szegli, Geza

    2003-06-01

    Matrix metalloproteinase-9 (MMP-9) was involved in inflammation and immune system dysfunctions. Besides immunologic abnormalities, systemic lupus erythematosus (SLE) also presents chronic inflammatory components. Therefore, a role of MMP-9 in SLE pathology might be supposed. To verify this hypothesis, SLE patients and healthy donors were compared for the MMP-9 and MMP-9 mRNA levels in peripheral blood mononuclear cells (PBMCs), the spontaneous secretion of MMP-9 and TIMP-1 and the MMP-9 activity. Thus, we found that fresh PBMCs from SLE patients expressed a significantly higher activity of MMP-9 and spontaneously released higher levels of MMP-9, as compared to healthy donors, while the secreted TIMP-1 level was the same for both groups. When the patients were sub-grouped based on disease status, the most increased pro-MMP-9 activity inside the PBMCs was identified for relapse SLE sub-group. A similar observation for SLE patients with positive serum fibrinogen was found. Following culture, the PBMCs from remission SLE patients secreted significantly higher MMP-9 level, than the PBMCs from relapse SLE patients. PBMCs from relapse SLE patients secreted the highest levels of TIMP-1, although this difference was not statistically significant. Taken together, these observations suggested the multiple roles of MMP-9 and TIMP-1 in progress of inflammation and tissue damage and/or in repair, depending on clinical stages of SLE.

  10. The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells.

    PubMed

    Arriola Benitez, Paula Constanza; Rey Serantes, Diego; Herrmann, Claudia Karina; Pesce Viglietti, Ayelén Ivana; Vanzulli, Silvia; Giambartolomei, Guillermo Hernán; Comerci, Diego José; Delpino, María Victoria

    2015-12-14

    The liver is frequently affected in patients with active brucellosis. In the present study, we identified a virulence factor involved in the modulation of hepatic stellate cell function and consequent fibrosis during Brucella abortus infection. This study assessed the role of BPE005 protein from B. abortus in the fibrotic phenotype induced on hepatic stellate cells during B. abortus infection in vitro and in vivo. We demonstrated that the fibrotic phenotype induced by B. abortus on hepatic stellate (LX-2) cells was dependent on BPE005, a protein associated with the type IV secretion system (T4SS) VirB from B. abortus. Our results indicated that B. abortus inhibits matrix metalloproteinase 9 (MMP-9) secretion through the activity of the BPE005-secreted protein and induces concomitant collagen deposition by LX-2 cells. BPE005 is a small protein containing a cyclic nucleotide monophosphate binding domain (cNMP) that modulates the LX-2 cell phenotype through a mechanism that is dependent on the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway. Altogether, these results indicate that B. abortus tilts LX-2 cells to a profibrogenic phenotype employing a functional T4SS and the secreted BPE005 protein through a mechanism that involves the cAMP and PKA signaling pathway.

  11. The Effector Protein BPE005 from Brucella abortus Induces Collagen Deposition and Matrix Metalloproteinase 9 Downmodulation via Transforming Growth Factor β1 in Hepatic Stellate Cells

    PubMed Central

    Arriola Benitez, Paula Constanza; Rey Serantes, Diego; Herrmann, Claudia Karina; Pesce Viglietti, Ayelén Ivana; Vanzulli, Silvia; Giambartolomei, Guillermo Hernán; Comerci, Diego José

    2015-01-01

    The liver is frequently affected in patients with active brucellosis. In the present study, we identified a virulence factor involved in the modulation of hepatic stellate cell function and consequent fibrosis during Brucella abortus infection. This study assessed the role of BPE005 protein from B. abortus in the fibrotic phenotype induced on hepatic stellate cells during B. abortus infection in vitro and in vivo. We demonstrated that the fibrotic phenotype induced by B. abortus on hepatic stellate (LX-2) cells was dependent on BPE005, a protein associated with the type IV secretion system (T4SS) VirB from B. abortus. Our results indicated that B. abortus inhibits matrix metalloproteinase 9 (MMP-9) secretion through the activity of the BPE005-secreted protein and induces concomitant collagen deposition by LX-2 cells. BPE005 is a small protein containing a cyclic nucleotide monophosphate binding domain (cNMP) that modulates the LX-2 cell phenotype through a mechanism that is dependent on the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway. Altogether, these results indicate that B. abortus tilts LX-2 cells to a profibrogenic phenotype employing a functional T4SS and the secreted BPE005 protein through a mechanism that involves the cAMP and PKA signaling pathway. PMID:26667834

  12. Stachybotrys microspora triprenyl phenol-7, a novel fibrinolytic agent, suppresses superoxide production, matrix metalloproteinase-9 expression, and thereby attenuates ischemia/reperfusion injury in rat brain.

    PubMed

    Akamatsu, Yosuke; Saito, Atsushi; Fujimura, Miki; Shimizu, Hiroaki; Mekawy, Moataz; Hasumi, Keiji; Tominaga, Teiji

    2011-10-03

    Stachybotrys microspora triprenyl phenol-7 (SMTP-7) is a novel fibrinolytic agent with anti-inflammatory effect. Previous study demonstrated that SMTP-7 further ameliorated infarction volume in a mouse embolic stroke model compared with tissue type plasminogen activator (tPA), but the reason SMTP-7 has more beneficial effect than tPA has not yet been determined. In the present study, we investigated whether SMTP-7 has an intrinsic neuroprotective effect against transient focal cerebral ischemia (tFCI). Sprague-Dawley rats were subjected to tFCI by intraluminal middle cerebral artery occlusion for 2h. Following induction of tFCI, rats were randomized into two groups based on the agent administered: SMTP-7 group and vehicle group. We examined cerebral infarction volume 24h after reperfusion, and evaluated superoxide production, the expressions of nitrotyrosine and matrix metalloproteinase-9 (MMP-9), which play major roles in secondary brain injury and hemorrhagic transformation. The findings showed that SMTP-7 significantly suppressed superoxide production, the expression of nitrotyrosine and MMP-9 after tFCI, and consequently attenuated ischemic neuronal damage. These results suggest that SMTP-7 has an intrinsic neuroprotective effect on ischemia/reperfusion injury through the suppression of oxidative stress and MMP-9 activation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Terminalia catappa Exerts Antimetastatic Effects on Hepatocellular Carcinoma through Transcriptional Inhibition of Matrix Metalloproteinase-9 by Modulating NF-κB and AP-1 Activity.

    PubMed

    Yeh, Chao-Bin; Hsieh, Ming-Ju; Hsieh, Yih-Shou; Chien, Ming-Hsien; Lin, Pen-Yuan; Chiou, Hui-Ling; Yang, Shun-Fa

    2012-01-01

    High mortality and morbidity rates for hepatocellular carcinoma (HCC) in Taiwan primarily result from uncontrolled tumor metastasis. Previous studies have identified that Terminalia catappa leaf extracts (TCE) exert hepatoprotective, antioxidative, antiinflammatory, anticancer, and antimetastatic activities. However, the effects of TCE on HCC and the underlying molecular mechanisms of its activities have yet to be fully elucidated. The present study's findings demonstrate that TCE concentration dependently inhibits human HCC migration/invasion. Zymographic and western blot analyses revealed that TCE inhibited the activities and expression of matrix metalloproteinase-9 (MMP-9). Assessment of mRNA levels, using reverse transcriptase polymerase chain reaction (PCR) and real-time PCR, and promoter assays confirmed the inhibitory effects of TCE on MMP-9 expression in HCC cells. The inhibitory effects of TCE on MMP-9 proceeded by upregulating tissue inhibitor of metalloproteinase-1 (TIMP-1), as well as suppressing nuclear translocation and DNA binding activity of nuclear factor-kappa B (NF-κB) and activating protein-1 (AP-1) on the MMP-9 promoter in Huh7 cells. In conclusion, TCE inhibits MMP-9 expression and HCC cell metastasis and, thus, has potential use as a chemopreventive agent. Its inhibitory effects are associated with downregulation of the binding activities of the transcription factors NF-κB and AP-1.

  14. Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1

    PubMed Central

    Vandooren, Jennifer; Born, Benjamin; Solomonov, Inna; Zajac, Ewa; Saldova, Radka; Senske, Michael; Ugarte-Berzal, Estefanía; Martens, Erik; Van den Steen, Philippe E.; Van Damme, Jo; Garcia-Pardo, Angeles; Froeyen, Matheus; Deryugina, Elena I.; Quigley, James P.; Moestrup, Søren K.; Rudd, Pauline M.; Sagi, Irit; Opdenakker, Ghislain

    2015-01-01

    Gelatinase B/matrix metalloproteinase-9 (MMP-9) (EC 3.4.24.35) cleaves many substrates and is produced by most cell types as a zymogen, proMMP-9, in complex with the tissue inhibitor of metalloproteinases-1 (TIMP-1). Natural proMMP-9 occurs as monomers, homomultimers, and heterocomplexes, but our knowledge about the overall structure of proMMP-9 monomers and multimers is limited. We investigated biochemical, biophysical, and functional characteristics of zymogen and activated forms of MMP-9 monomers and multimers. In contrast to a conventional notion of a dimeric nature of MMP-9 homomultimers, we demonstrate that these are reduction-sensitive trimers. Based on the information from electrophoresis, atomic force microscopy (AFM) and transmission electron microscopy (TEM), we generated a 3Dstructure model of the proMMP-9 trimer. Remarkably, the proMMP-9 trimers possessed a 50-fold higher affinity for TIMP-1 than the monomers. In vivo, this finding was reflected in a higher extent of TIMP-1 inhibition of angiogenesis induced by trimers versus monomers. Our results show that proMMP-9 trimers constitute a novel structural and functional entity that is differentially regulated by TIMP-1. PMID:25360794

  15. Eicosapentaenoic acid inhibits TNF-{alpha}-induced matrix metalloproteinase-9 expression in human keratinocytes, HaCaT cells

    SciTech Connect

    Kim, Hyeon Ho; Lee, Youngae; Eun, Hee Chul Chung, Jin Ho

    2008-04-04

    Eicosapentaenoic acid (EPA) is an omega-3 ({omega}-3) polyunsaturated fatty acid (PUFA), which has anti-inflammatory and anti-cancer properties. Some reports have demonstrated that EPA inhibits NF-{kappa}B activation induced by tumor necrosis factor (TNF)-{alpha} or lipopolysaccharide (LPS) in various cells. However, its detailed mode of action is unclear. In this report, we investigated whether EPA inhibits the expression of TNF-{alpha}-induced matrix metalloproteinases (MMP)-9 in human immortalized keratinocytes (HaCaT). TNF-{alpha} induced MMP-9 expression by NF-{kappa}B-dependent pathway. Pretreatment of EPA inhibited TNF-{alpha}-induced MMP-9 expression and p65 phosphorylation. However, EPA could not affect I{kappa}B-{alpha} phosphorylation, nuclear translocation of p65, and DNA binding activity of NF-{kappa}B. EPA inhibited TNF-{alpha}-induced p65 phosphorylation through p38 and Akt inhibition and this inhibition was IKK{alpha}-dependent event. Taken together, we demonstrate that EPA inhibits TNF-{alpha}-induced MMP-9 expression through inhibition of p38 and Akt activation.

  16. Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation

    PubMed Central

    Yeh, Chia-Ming; Lin, Chiao-Wen; Yang, Jia-Sin; Yang, Wei-En; Su, Shih-Chi; Yang, Shun-Fa

    2016-01-01

    Melatonin exerts antimetastatic effects on liver and breast cancer and also inhibits matrix metalloproteinase (MMP) activity. However, the detailed impacts and underlying mechanisms of melatonin on oral cancer cell metastasis are still unclear. This study showed that melatonin attenuated the 12-O-tetradecanoylphorbol-13-acetate-induced migration of oral cancer cell lines, HSC-3 and OECM-1. Zymography, quantitative real-time PCR, and Western blotting analyses revealed that melatonin lessened MMP-9 enzyme activity as well as the expression of MMP-9 mRNA and protein. Furthermore, melatonin suppressed the phosphorylation of the ERK1/2 signalling pathway, which dampened MMP-9 gene transcription by affecting the expression of transcriptional coactivators, such as CREB-binding protein (CREBBP) and E1A binding protein p300 (EP300), and decreasing histone acetylation in HSC-3 and OECM-1 cells. Examinations on clinical samples exhibited that MMP-9, CREBBP, and EP300 were significantly increased in oral cancer tissues. Moreover, the relative level of CREBBP was positively correlated with the expression of MMP-9 and EP300. In conclusion, we demonstrated that melatonin inhibits the motility of HSC-3 and OECM-1 cells in vitro through a molecular mechanism that involves attenuation of MMP-9 expression and activity mediated by decreased histone acetylation. PMID:26980735

  17. Matrix metalloproteinase-9 mediates post-hypoxic vascular pruning of cerebral blood vessels by degrading laminin and claudin-5.

    PubMed

    Boroujerdi, Amin; Welser-Alves, Jennifer V; Milner, Richard

    2015-07-01

    Vascular remodeling involves a highly coordinated break-down and build-up of the vascular basal lamina and inter-endothelial tight junction proteins. In light of the important role of matrix metalloproteinases (MMPs) in tissue remodeling, the goal of this study was to examine the role of MMP-9 in remodeling of cerebral blood vessels, both in hypoxia-induced angiogenesis and in the vascular pruning that accompanies the switch from hypoxia back to normoxia. In a chronic mild hypoxia model of cerebrovascular remodeling, gel zymography revealed that MMP-9 levels were increased, both during hypoxic-induced angiogenesis and in the post-hypoxic pruning response. Interestingly, compared to wild-type mice, MMP-9 KO mice showed no alteration in hypoxic-induced angiogenesis, but did show marked delay in post-hypoxic vascular pruning. In wild-type mice, vascular pruning was associated with fragmentation of vascular laminin and the tight junction protein claudin-5, while this process was markedly attenuated in MMP-9 KO mice. In vitro experiments showed that hypoxia stimulated MMP-9 expression in brain endothelial cells but not pericytes. These results show that while MMP-9 is not essential for hypoxic-induced cerebral angiogenesis, it plays an important role in post-hypoxic vascular pruning by degrading laminin and claudin-5.

  18. Elevated levels of active matrix metalloproteinase-9 cause hypertrophy in skeletal muscle of normal and dystrophin-deficient mdx mice

    PubMed Central

    Dahiya, Saurabh; Bhatnagar, Shephali; Hindi, Sajedah M.; Jiang, Chunhui; Paul, Pradyut K.; Kuang, Shihuan; Kumar, Ashok

    2011-01-01

    Matrix metalloproteinases (MMPs) are a group of extracellular proteases involved in tissue remodeling in several physiological and pathophysiological conditions. While increased expression of MMPs (especially MMP-9) has been observed in skeletal muscle in numerous conditions, their physiological significance remains less-well understood. By generating novel skeletal muscle-specific transgenic (Tg) mice expressing constitutively active mutant of MMP-9 (i.e. MMP-9G100L), in this study, we have investigated the effects of elevated levels of MMP-9 on skeletal muscle structure and function in vivo. Tg expression of enzymatically active MMP-9 protein significantly increased skeletal muscle fiber cross-section area, levels of contractile proteins and force production in isometric contractions. MMP-9 stimulated the activation of the Akt signaling pathway in Tg mice. Moreover, expression of active MMP-9 increased the proportion of fast-type fiber in soleus muscle of mice. Overexpression of MMP-9 also considerably reduced the deposition of collagens I and IV in skeletal muscle in vivo. In one-year-old mdx mice (a model for Duchenne muscular dystrophy, DMD), deletion of the Mmp9 gene reduced fiber hypertrophy and phosphorylation of Akt and p38 mitogen-activated protein kinase. Collectively, our study suggests that elevated levels of active MMP-9 protein cause hypertrophy in skeletal muscle and that the modulation of MMP-9 levels may have therapeutic value in various muscular disorders including DMD. PMID:21846793

  19. Deficiency of the protein-tyrosine phosphatase DEP-1/PTPRJ promotes matrix metalloproteinase-9 expression in meningioma cells.

    PubMed

    Petermann, Astrid; Stampnik, Yvonn; Cui, Yan; Morrison, Helen; Pachow, Doreen; Kliese, Nadine; Mawrin, Christian; Böhmer, Frank-D

    2015-05-01

    Brain-invasive growth of a subset of meningiomas is associated with less favorable prognosis. The molecular mechanisms causing invasiveness are only partially understood, however, the expression of matrix metalloproteinases (MMPs) has been identified as a contributing factor. We have previously found that loss of density enhanced phosphatase-1 (DEP-1, also designated PTPRJ), a transmembrane protein-tyrosine phosphatase, promotes meningioma cell motility and invasive growth in an orthotopic xenotransplantation model. We have now analyzed potential alterations of the expression of genes involved in motility control, caused by DEP-1 loss in meningioma cell lines. DEP-1 depleted cells exhibited increased expression of mRNA encoding MMP-9, and the growth factors EGF and FGF-2. The increase of MMP-9 expression in DEP-1 depleted cells was also readily detectable at the protein level by zymography. MMP-9 upregulation was sensitive to chemical inhibitors of growth factor signal transduction. Conversely, MMP-9 mRNA levels could be stimulated with growth factors (e.g. EGF) and inflammatory cytokines (e.g. TNFα). Increase of MMP-9 expression by DEP-1 depletion, or growth factor/cytokine stimulation qualitatively correlated with increased invasiveness in vitro scored as transmigration through matrigel-coated membranes. The studies suggest induction of MMP-9 expression promoted by DEP-1 deficiency, or potentially by growth factors and inflammatory cytokines, as a mechanism contributing to meningioma brain invasiveness.

  20. Tetraspanin CD9 Promotes the Invasive Phenotype of Human Fibrosarcoma Cells via Upregulation of Matrix Metalloproteinase-9

    PubMed Central

    Herr, Michael J.; Kotha, Jayaprakash; Hagedorn, Nikolaus; Smith, Blake; Jennings, Lisa K.

    2013-01-01

    Tumor cell metastasis, a process which increases the morbidity and mortality of cancer patients, is highly dependent upon matrix metalloproteinase (MMP) production. Small molecule inhibitors of MMPs have proven unsuccessful at reducing tumor cell invasion in vivo. Therefore, finding an alternative approach to regulate MMP is an important endeavor. Tetraspanins, a family of cell surface organizers, play a major role in cell signaling events and have been implicated in regulating metastasis in numerous cancer cell lines. We stably expressed tetraspanin CD9 in an invasive and metastatic human fibrosarcoma cell line (CD9-HT1080) to investigate its role in regulating tumor cell invasiveness. CD9-HT1080 cells displayed a highly invasive phenotype as demonstrated by matrigel invasion assays. Statistically significant increases in MMP-9 production and activity were attributed to CD9 expression and were not due to any changes in other key tetraspanin complex members or MMP regulators. Increased invasion of CD9-HT1080 cells was reversed upon silencing of MMP-9 using a MMP-9 specific siRNA. Furthermore, we determined that the second extracellular loop of CD9 was responsible for the upregulation of MMP-9 production and subsequent cell invasion. We demonstrated for the first time that tetraspanin CD9 controls HT1080 cell invasion via upregulation of an integral member of the MMP family, MMP-9. Collectively, our studies provide mounting evidence that altered expression of CD9 may be a novel approach to regulate tumor cell progression. PMID:23840773

  1. Tetraspanin CD9 promotes the invasive phenotype of human fibrosarcoma cells via upregulation of matrix metalloproteinase-9.

    PubMed

    Herr, Michael J; Kotha, Jayaprakash; Hagedorn, Nikolaus; Smith, Blake; Jennings, Lisa K

    2013-01-01

    Tumor cell metastasis, a process which increases the morbidity and mortality of cancer patients, is highly dependent upon matrix metalloproteinase (MMP) production. Small molecule inhibitors of MMPs have proven unsuccessful at reducing tumor cell invasion in vivo. Therefore, finding an alternative approach to regulate MMP is an important endeavor. Tetraspanins, a family of cell surface organizers, play a major role in cell signaling events and have been implicated in regulating metastasis in numerous cancer cell lines. We stably expressed tetraspanin CD9 in an invasive and metastatic human fibrosarcoma cell line (CD9-HT1080) to investigate its role in regulating tumor cell invasiveness. CD9-HT1080 cells displayed a highly invasive phenotype as demonstrated by matrigel invasion assays. Statistically significant increases in MMP-9 production and activity were attributed to CD9 expression and were not due to any changes in other key tetraspanin complex members or MMP regulators. Increased invasion of CD9-HT1080 cells was reversed upon silencing of MMP-9 using a MMP-9 specific siRNA. Furthermore, we determined that the second extracellular loop of CD9 was responsible for the upregulation of MMP-9 production and subsequent cell invasion. We demonstrated for the first time that tetraspanin CD9 controls HT1080 cell invasion via upregulation of an integral member of the MMP family, MMP-9. Collectively, our studies provide mounting evidence that altered expression of CD9 may be a novel approach to regulate tumor cell progression.

  2. Orally administered betaine reduces photodamage caused by UVB irradiation through the regulation of matrix metalloproteinase-9 activity in hairless mice.

    PubMed

    Im, A-Rang; Lee, Hee Jeong; Youn, Ui Joung; Hyun, Jin Won; Chae, Sungwook

    2016-01-01

    Betaine is widely distributed in plants, microorganisms, in several types of food and in medical herbs, including Lycium chinense. The administration of 100 mg betaine/kg body weight/day is an effective strategy for preventing ultraviolet irradiation‑induced skin damage. The present study aimed to determine the preventive effects of betaine on ultraviolet B (UVB) irradiation‑induced skin damage in hairless mice. The mice were divided into three groups: Control (n=5), UVB‑treated vehicle (n=5) and UVB‑treated betaine (n=5) groups. The level of irradiation was progressively increased between 60 mJ/cm2 per exposure at week 1 (one minimal erythematous dose = 60 mJ/cm2) and 90 mJ/cm2 per exposure at week 7. The formation of wrinkles significantly increased following UVB exposure in the UVB‑treated vehicle group. However, treatment with betaine suppressed UVB‑induced wrinkle formation, as determined by the mean length, mean depth, number, epidermal thickness and collagen damage. Furthermore, oral administration of betaine also inhibited the UVB‑induced expression of mitogen‑activated protein kinase kinase (MEK), extracellular signal‑regulated kinase (ERK), and matrix metalloproteinase‑9 (MMP‑9). These findings suggested that betaine inhibits UVB‑induced skin damage by suppressing increased expression of MMP‑9 through the inhibition of MEK and ERK.

  3. Liver-derived matrix metalloproteinase-9 (gelatinase B) recruits progenitor cells from bone marrow into the blood circulation.

    PubMed

    Watanabe, Yoshifumi; Haruyama, Takahiro; Akaike, Toshihiro

    2003-04-01

    Matrix metalloproteinases (MMPs) are involved in invasive cell behavior, embryonic development and organ remodeling. In this report, we investigated the role of liver-derived MMP-9 in the in vivo system at liver injury. Liver injury induced MMP-9 expression in the liver 3 to 12 h after intravenous administration of anti-Fas antibody, followed by the expression of the activity and the protein detected by zymography and Western blotting, respectively, in the blood circulation. Interestingly, the MMP-9 expression was accompanied by the recruitment of hematopoietic progenitor cells from bone marrow into the circulation. The recruitment was blocked by a specific MMP-9 inhibitor, R94138, which did not affect the Fas-mediated liver injury or induced expression of MMP-9. Compulsive expression of mutant active MMP-9 in the liver also recruited the progenitor cells into the circulation. In contrast, partial hepatectomy, which treatment does not directly injure hepatocytes, did not recruit progenitor cells despite the increased expression of MMP-9 in the circulation. These results suggest that liver-derived MMP-9 induced by liver injury plays an essential role in the recruitment of hematopoietic progenitor cells from bone marrow into the blood circulation.

  4. Matrix metalloproteinase-9 expression in mammary gland tumors in dogs and its relationship with prognostic factors and patient outcome.

    PubMed

    Santos, Andreia A; Lopes, Célia C; Marques, Raquel M; Amorim, Irina F; Gärtner, Maria F; de Matos, Augusto J F

    2012-05-01

    To immunohistochemically evaluate matrix metalloproteinase (MMP)-9 expression in benign and malignant mammary gland tumors (MMTs) in dogs and relate expression to prognostic factors and patient outcome. 118 female dogs with naturally occurring mammary gland tumors and 8 dogs without mammary gland tumors. 24 benign mammary gland tumors and 94 MMTs (1/affected dog) were obtained during surgical treatment; control mammary gland tissue samples were collected from unaffected dogs after euthanasia for reasons unrelated to the study. Tumors were evaluated for proliferation, invasive growth, histologic grade, and metastatic capacity; expression of MMP-9 was determined immunohistochemically, and its relationship with clinical and histologic findings was investigated. For dogs with MMTs, follow-up continued for 2 years; data were used to compute overall survival time and disease-free interval and construct survival curves. MMTs had significantly higher MMP-9 expression in stromal cells and in neo-plastic cells than did the benign neoplasms. Stromal MMP-9 expression was also higher in highly proliferative tumors and in tumors with invasive growth, high histologic grade, and metastatic capacity. Furthermore, tumors from patients with shorter overall survival times and disease-free intervals had higher expression of MMP-9 in stromal cells. In dogs with MMTs, level of MMP-9 expression by stromal cells was related to factors of poor prognosis and shorter overall survival times and disease-free intervals. These results suggested that MMP-9 produced by tumor-adjacent stromal cells contributed to MMT progression in female dogs and that assessment of MMP-9 expression may be a valuable prognostic factor.

  5. IL-6-mediated induction of matrix metalloproteinase-9 is modulated by JAK-dependent IL-10 expression in macrophages.

    PubMed

    Kothari, Poonam; Pestana, Roberto; Mesraoua, Rim; Elchaki, Rim; Khan, K M Faisal; Dannenberg, Andrew J; Falcone, Domenick J

    2014-01-01

    The mechanisms by which IL-6 contributes to the pathogenesis of chronic inflammatory diseases and cancer are not fully understood. We previously reported that cyclooxygenase-2 (Cox-2)-dependent PGE2 synthesis regulates macrophage matrix metalloproteinase (MMP)-9 expression, an endopeptidase that participates in diverse pathologic processes. In these studies, we determined whether IL-6 regulates the Cox-2→PGE2→MMP-9 pathway in murine macrophages. IL-6 coinduced Cox-2 and microsomal PGE synthase-1, and inhibited the expression of 15-hydroxyprostaglandin dehydrogenase, leading to increased levels of PGE2. In addition, IL-6 induced MMP-9 expression, suggesting that the observed proteinase expression was regulated by the synthesis of PGE2. However, inhibition of PGE2 synthesis partially suppressed IL-6-mediated induction of MMP-9. In the canonical model of IL-6-induced signaling, JAK activation triggers STAT and MAPK(erk1/2)-signaling pathways. Therefore, the ability of structurally diverse JAK inhibitors to block IL-6-induced MMP-9 expression was examined. Inhibition of JAK blocked IL-6-induced phosphorylation of STAT3, but failed to block the phosphorylation of MAPK(erk1/2), and unexpectedly enhanced MMP-9 expression. In contrast, MEK-1 inhibition blocked IL-6-induced phosphorylation of MAPK(erk1/2) and MMP-9 expression without affecting the phosphorylation of STAT3. Thus, IL-6-induced MMP-9 expression is dependent on the activation of MAPK(erk1/2) and is restrained by a JAK-dependent gene product. Using pharmacologic and genetic approaches, we identified JAK-dependent induction of IL-10 as a potent feedback mechanism controlling IL-6-induced MMP-9 expression. Together, these data reveal that IL-6 induces MMP-9 expression in macrophages via Cox-2-dependent and -independent mechanisms, and identifies a potential mechanism linking IL-6 to the pathogenesis of chronic inflammatory diseases and cancer.

  6. Diagnostic value of neutrophil gelatinase-associated lipocalin/matrix metalloproteinase-9 pathway in transitional cell carcinoma of the bladder.

    PubMed

    Candido, Saverio; Di Maso, Matteo; Serraino, Diego; McCubrey, James A; Bortolus, Roberto; Zanin, Martina; Battiston, Monica; Salemi, Rossella; Libra, Massimo; Polesel, Jerry

    2016-07-01

    Neutrophil gelatinase-associated lipocalin (NGAL), matrix metalloproteinase (MMP)-9, and NGAL/MMP-9 complex have been evaluated as diagnostic markers of several cancers, but results for bladder cancer are scanty. We evaluated these proteins in urine and serum of 89 patients with histologically confirmed bladder cancer and 119 cancer-free controls from a case-control study. Urinary concentrations were standardized on creatinine level. The performance of these proteins as cancer biomarkers was evaluated through the receiver operating characteristic (ROC) analysis. Urinary level of NGAL, MMP-9, and NGAL/MMP-9 complex was higher in current smokers, whereas no impact of dietary habits was observed. After adjusting for tobacco smoking, urinary concentration of MMP-9 was independently associated with cancer invasiveness, grading, and histological subtype, with elevated concentrations among T2-T4 and non-papillary bladder cancers. Conversely, NGAL and NGAL/MMP-9 complex were significantly higher in non-papillary than in papillary subtype. The pattern was less clear in serum, but correlation between urinary and serum concentration was poor, especially for Ta/is-T1 tumors. The ROC analysis confirmed that MMP-9 was the best marker (area under the ROC curve (AUC) = 0.68). Performances were much greater for muscle-invasive bladder cancers (AUC = 0.90), with elevated negative predictive values (97 %). The present study suggests that NGAL/MMP-9 pathway is associated with an aggressive phenotype of bladder cancer. The elevated negative predictive value of MMP-9 and NGAL/MMP-9 complex makes them candidate markers of exclusion test for bladder cancer. These proteins may be integrated in the surveillance of bladder cancer, thus diminishing patients' discomfort and improving compliance.

  7. Kinetics and Role of Plasma Matrix Metalloproteinase-9 Expression in Acute Lung Injury and the Acute Respiratory Distress Syndrome

    PubMed Central

    Hsu, Albert T.; Barrett, Christopher D.; DeBusk, M. George; Ellson, Christian D.; Gautam, Shiva; Talmor, Daniel S.; Gallagher, Diana C.; Yaffe, Michael B.

    2016-01-01

    Primed neutrophils that are capable of releasing matrix metalloproteinases (MMPs) into the circulation are thought to play a significant role in the pathophysiology of acute respiratory distress syndrome (ARDS). We hypothesized that direct measurement of plasma MMP-9 activity may be a predictor of incipient tissue damage and subsequent lung injury, which was investigated in both an animal model of ARDS and a small cohort of 38 critically ill human patients. In a mouse model of ARDS involving instillation of intratracheal LPS to induce lung inflammation, we measured neutrophil-mediated inflammation, along with MMP-9 activity in the airways and lung tissue and MMP-9 expression in the plasma. Neutrophil recruitment, inflammation, and MMP-9 activity in the airways and lung tissue increased throughout the 72 hours after LPS instillation, while plasma MMP-9 expression was greatest at 12–24 hours after LPS instillation. The results suggest that the peak in plasma MMP-9 activity may precede the peak of neutrophil inflammation in the airways and lung tissue in the setting of ARDS. Based on this animal study, a retrospective observational cohort study involving 38 patients admitted to a surgical intensive care unit (SICU) at a tertiary care university hospital with acute respiratory failure requiring intubation and mechanical ventilation was conducted. Plasma samples were collected daily, and MMP-9 activity was compared with lung function as determined by the PaO2/FiO2 ratio. In patients that developed ARDS, a notable increase in plasma MMP-9 activity on a particular day correlated with a decrease in the PaO2/FiO2 ratio on the following day (r = −0.503, p < 0.006). Taken together, these results suggest that plasma MMP-9 activity changes as a surrogate for primed neutrophils may have predictive value for the development of ARDS in a selected subset of critically ill patients. PMID:26009816

  8. Discovery of a highly selective chemical inhibitor of matrix metalloproteinase-9 (MMP-9) that allosterically inhibits zymogen activation.

    PubMed

    Scannevin, Robert H; Alexander, Richard; Mezzasalma Haarlander, Tara; Burke, Sharon L; Singer, Monica; Hou, Cuifen; Zhang, Yue-Mei; Maguire, Diane; Spurlino, John; Deckman, Ingrid; Carroll, Karen I; Lewandowski, Frank; Devine, Eric; Dzordzorme, Keli; Tounge, Brett; Milligan, Cindy; Bayoumy, Shariff; Williams, Robyn; Schalk-Hihi, Celine; Leonard, Kristi; Jackson, Paul; Todd, Matthew; Kuo, Lawrence C; Rhodes, Kenneth J

    2017-08-31

    Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders such as cancer, fibrosis, immune dysregulation and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9 or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis (EAE) model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  9. White Matter Injury After Subarachnoid Hemorrhage: Role of Blood-Brain Barrier Disruption and Matrix Metalloproteinase-9.

    PubMed

    Egashira, Yusuke; Zhao, Hao; Hua, Ya; Keep, Richard F; Xi, Guohua

    2015-10-01

    We recently observed early white matter injury after experimental subarachnoid hemorrhage (SAH), but the underlying mechanisms are uncertain. This study investigated the potential role of matrix metalloproteinase (MMP)-9 in blood-brain barrier (BBB) disruption and consequent white matter injury. SAH was induced by endovascular perforation in adult male mice. The following 3 experiments were devised: (1) mice underwent magnetic resonance imaging at 24 h after SAH and were euthanized to determine BBB disruption and MMP-9 activation in white matter; (2) to investigate the role of MMP-9 in BBB disruption, lesion volumes on magnetic resonance imaging were compared between wild-type (WT) and MMP-9 knockout (MMP-9-/-) mice at 24 h after SAH; (3) WT and MMP-9-/- mice underwent magnetic resonance imaging at 1 and 8 days after SAH to detect time-dependent changes in brain injury. Brains were used to investigate myelin integrity in white matter. In WT mice with SAH, white matter showed BBB disruption (albumin leakage) and T2 hyperintensity on magnetic resonance imaging. MMP-9 activity was elevated at 24 h after SAH. MMP-9-/- mice had less white matter T2 hyperintensity after SAH than WT mice. At 8 days after SAH, WT mice had decreased myelin integrity and MMP-9-/- mice developed less white matter injury. SAH causes BBB disruption and consequent injury in white matter. MMP-9 plays an important role in those pathologies and could be a therapeutic target for SAH-induced white matter injury. © 2015 American Heart Association, Inc.

  10. Kinetics and Role of Plasma Matrix Metalloproteinase-9 Expression in Acute Lung Injury and the Acute Respiratory Distress Syndrome.

    PubMed

    Hsu, Albert T; Barrett, Christopher D; DeBusk, George M; Ellson, Christian D; Gautam, Shiva; Talmor, Daniel S; Gallagher, Diana C; Yaffe, Michael B

    2015-08-01

    Primed neutrophils that are capable of releasing matrix metalloproteinases (MMPs) into the circulation are thought to play a significant role in the pathophysiology of acute respiratory distress syndrome (ARDS). We hypothesized that direct measurement of plasma MMP-9 activity may be a predictor of incipient tissue damage and subsequent lung injury, which was investigated in both an animal model of ARDS and a small cohort of 38 critically ill human patients. In a mouse model of ARDS involving instillation of intratracheal lipopolysaccharide (LPS) to induce lung inflammation, we measured neutrophil-mediated inflammation, along with MMP-9 activity in the airways and lung tissue and MMP-9 expression in the plasma. Neutrophil recruitment, inflammation, and MMP-9 activity in the airways and lung tissue increased throughout the 72 h after LPS instillation, whereas plasma MMP-9 expression was greatest at 12 to 24 h after LPS instillation. The results suggest that the peak in plasma MMP-9 activity may precede the peak of neutrophil inflammation in the airways and lung tissue in the setting of ARDS. Based on this animal study, a retrospective observational cohort study involving 38 patients admitted to a surgical intensive care unit at a tertiary care university hospital with acute respiratory failure requiring intubation and mechanical ventilation was conducted. Plasma samples were collected daily, and MMP-9 activity was compared with lung function as determined by the PaO2/FiO2 ratio. In patients who developed ARDS, a notable increase in plasma MMP-9 activity on a particular day correlated with a decrease in the PaO2/FiO2 ratio on the following day (r = -0.503, P < 0.006). Taken together, these results suggest that plasma MMP-9 activity changes, as a surrogate for primed neutrophils may have predictive value for the development of ARDS in a selected subset of critically ill patients.

  11. Timing and duration of nursing from birth affect neonatal porcine uterine matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1.

    PubMed

    Ho, T Y; Rahman, K M; Camp, M E; Wiley, A A; Bartol, F F; Bagnell, C A

    2017-04-01

    Nursing for 2 d from birth supports neonatal porcine uterine and cervical development. However, it is not clear how timing or duration of lactocrine signaling from birth (postnatal day = PND 0) affects development of neonatal female reproductive tract tissues. Therefore, studies were conducted to determine effects of age at first nursing and duration of nursing from birth on specific elements of the matrix metalloproteinase (MMP)/tissue inhibitor of metalloproteinase (TIMP) system in uterine and cervical tissues at PND 2. When nursing was initiated at 0 h or 30 min of age, targeted proteins, including proMMP9 and MMP9, were detected in uterine and cervical tissues on PND 2, as was uterine TIMP1. However, these proteins were undetectable when nursing was delayed for 12 h and when gilts were fed milk replacer for 48 h from birth. Increasing the duration of nursing from 30 min to 12 h from birth increased uterine (P < 0.05) and cervical (P < 0.001) MMP9 levels to those observed in gilts nursed for 48 h. Similarly, uterine TIMP1 levels increased with duration of nursing. Uterine MMP2 levels were detectable but unaffected by age at first nursing or duration of nursing from birth. Uterine MMP2 and MMP9 activities, monitored by zymography, reflected immunoblotting data. Results provide evidence for the utility of MMP9 and TIMP1 as markers of age- and lactocrine-sensitive porcine female reproductive tract development.

  12. Toll-like Receptor-4 Polymorphisms and Serum Matrix Metalloproteinase-9 in Newly Diagnosed Patients With Calcified Neurocysticercosis and Seizures

    PubMed Central

    Lachuriya, Gaurav; Garg, Ravindra Kumar; Jain, Amita; Malhotra, Hardeep Singh; Singh, Arvind Kumar; Jain, Bhawna; Kumar, Neeraj; Verma, Rajesh; Sharma, Praveen Kumar

    2016-01-01

    Abstract We evaluated seizure profile, Toll-like receptor (TLR)-4 polymorphisms, and serum matrix metalloproteinases (MMPs) in patients with calcified neurocysticercosis. One-hundred nine patients with calcified neurocysticercosis with newly diagnosed seizures and 109 control subjects were enrolled. TLR-4 Asp299Gly and Thr399Ile polymorphisms and serum MMP-9 levels were evaluated. The patients were followed for 1 year. Asp/Gly (P = 0.012) and Thr/Ile (P = 0.002), Gly (Asp/Gly plus Gly/Gly) (P = 0.008) and Ile (Thr/Ile plus Ile/Ile) (P = 0.003) genotypes were significantly associated with calcified neurocysticercosis compared with controls. Gly/Gly and Ile/Ile genotypes were not significantly associated (P = 0.529 for Gly/Gly, P = 0.798 for Ile/Ile) with either group. The levels of MMP-9 were higher in calcified neurocysticercosis (P =  < 0.001). The levels of MMP-9 were higher in patients with multiple calcified neurocysticercosis compared with single calcified neurocysticercosis (P =  < 0.001). Headache (P = 0.031), status epilepticus (P = 0.029), Todd paralysis (P = 0.039), lesion size >10 mm (P = 0.001), and perilesional edema (P =  < 0.001) were significantly associated with seizure recurrence. Heterozygous form Asp/Gly (P =  < 0.001) and heterozygous form Thr/Ile (P =  < 0.001) were significantly associated with seizure recurrence. The Gly (Asp/Gly plus Gly/Gly) (P =  < 0.001) and Ile (Thr/Ile plus Ile/Ile) (P =  < 0.001) genotypes were also significantly associated with seizure recurrence. Higher serum MMP-9 levels were significantly associated with seizure recurrence (P =  < 0.001). The TLR-4 gene abnormalities may trigger inflammation around calcified neurocysticercosis leading to an increase in perilesional edema and provocation of seizures. PMID:27124018

  13. Association of genetic polymorphisms in matrix metalloproteinase-9 and coronary artery disease in the Chinese Han population: a case-control study.

    PubMed

    Wu, Hai-di; Bai, Xiao; Chen, Dong-mei; Cao, Hong-yan; Qin, Ling

    2013-09-01

    Matrix metalloproteinase-9 (MMP-9) plays an important role in inflammation and matrix degradation involved in atherosclerosis and plaque rupture. The T allele of rs3918242 has been reported to lead to a high promoter activity and associate with the extent of coronary artery disease (CAD). And some studies have reported that the G allele of rs17576 might be associated with CAD. The aim of this study was to assess the association between the polymorphisms of the MMP-9 gene and CAD in the Chinese Han population. This case-control study comprised 258 CAD cases and 153 controls from the Chinese Han Population. The genomic DNA of MMP-9 was isolated from whole blood. Polymerase chain reaction-based restriction fragment length polymorphism was used to determine the rs3918242 and rs17576 genotypes in the MMP-9 gene and the total serum levels of MMP-9 were measured using enzyme-linked immunosorbent assay in both case and control groups. Analysis of MMP-9 gene polymorphisms showed that the frequencies of the T allele and CT+TT genotypes of rs3918242 were significantly higher in the case group than in the control group (p<0.05). However, the distribution of variant genotypes of rs17576 did not differ between the case and control groups (p>0.05). The total serum level of MMP-9 was significantly higher in the case group than in the control group (p<0.05). The subjects carrying T alleles in the CAD group had higher average serum MMP-9 levels compared with CC genotypes (p<0.05). Our results suggest that the single-nucleotide polymorphism of rs3918242 in the MMP-9 gene is associated with CAD and high serum levels of MMP-9 are also associated with CAD in the Chinese Han population. Therefore, genetic variation of rs3918242 may participate in the development of CAD through influencing MMP-9 expression.

  14. Methamphetamine transiently increases the blood-brain barrier permeability in the hippocampus: role of tight junction proteins and matrix metalloproteinase-9.

    PubMed

    Martins, Tânia; Baptista, Sofia; Gonçalves, Joana; Leal, Ermelindo; Milhazes, Nuno; Borges, Fernanda; Ribeiro, Carlos F; Quintela, Oscar; Lendoiro, Elena; López-Rivadulla, Manuel; Ambrósio, António F; Silva, Ana P

    2011-09-09

    Methamphetamine (METH) is a powerful stimulant drug of abuse that has steadily gained popularity worldwide. It is known that METH is highly neurotoxic and causes irreversible damage of brain cells leading to neurological and psychiatric abnormalities. Recent studies suggested that METH-induced neurotoxicity might also result from its ability to compromise blood-brain barrier (BBB) function. Due to the crucial role of BBB in the maintenance of brain homeostasis and protection against toxic molecules and pathogenic organisms, its dysfunction could have severe consequences. In this study, we investigated the effect of an acute high dose of METH (30mg/kg) on BBB permeability after different time points and in different brain regions. For that, young adult mice were sacrificed 1h, 24h or 72h post-METH administration. METH increased BBB permeability, but this effect was detected only at 24h after administration, being therefore a transitory effect. Interestingly, we also found that the hippocampus was the most susceptible brain region to METH, comparing to frontal cortex and striatum. Moreover, in an attempt to identify the key players in METH-induced BBB dysfunction we further investigated potential alterations in tight junction (TJ) proteins and matrix metalloproteinase-9 (MMP-9). METH was able to decrease the protein levels of zonula occludens (ZO)-1, claudin-5 and occludin in the hippocampus 24h post-injection, and increased the activity and immunoreactivity of MMP-9. The pre-treatment with BB-94 (30mg/kg), a matrix metalloproteinase inhibitor, prevented the METH-induced increase in MMP-9 immunoreactivity in the hippocampus. Overall, the present data demonstrate that METH transiently increases the BBB permeability in the hippocampus, which can be explained by alterations on TJ proteins and MMP-9.

  15. Beta-adrenoceptor Activation by Norepinephrine Enhances Lipopolysaccharide-induced Matrix Metalloproteinase-9 Expression Through the ERK/JNK-c-Fos Pathway in Human THP-1 Cells

    PubMed Central

    Yin, Xiang; Zhou, Linli; Han, Fei; Han, Jie; Zhang, Yuanyuan; Sun, Zewei; Zhao, Wenting; Wang, Zhen

    2017-01-01

    Aim: Atherosclerosis is a chronic inflammatory disease, which leads to thrombosis and acute coronary syndrome. Matrix metalloproteinase-9 (MMP-9) is involved in the stability of the extracellular matrix (ECM) and atherosclerosis plaque. Until now, it is established that lipopolysaccharide (LPS) and norepinephrine (NE) are associated with the pathological process of atherosclerosis. However, the combined effect of LPS and NE on MMP-9 is unclear. We investigated the combined effect of LPS and NE on MMP-9 expression in human monocytes and the mechanism involved in the process. Methods: THP-1 cells were cultured and treated with LPS and/or NE. MMP-9 and TIMP-1 gene and protein expression were detected by real time PCR and ELISA, respectively. MMP-9 activity was detected by gelatin zymography. Adrenoceptor antagonists and MAPKs inhibitors were used to clarify the mechanism. Pathway-related proteins were detected by Western blot. Results: We found that NE enhances LPS-induced MMP-9 and TIMP-1 expression as well as MMP-9 activity in THP-1 cells. This effect is reversed by the beta (β)-adrenoceptor antagonist propranolol, extracellular signal-regulated kinases (ERK) inhibitor U0126, and c-Jun N-terminal kinase (JNK) inhibitor SP600125. NE enhances LPS-induced ERK/JNK phosphorylation. NE up-regulates LPS-induced c-Fos expression, which is counteracted by propranolol, U0126, and SP600125. Furthermore, c-Fos silence reverses the effect of NE on MMP-9 activity. Conclusions: Our results suggest that NE enhances LPS-induced MMP-9 expression through β-adrenergic receptor and downstream ERK/JNK-c-Fos pathway. This study may help us to understand the combined effect and mechanism of NE/LPS on MMP-9 expression. PMID:27237101

  16. Noninvasive detection of matrix metalloproteinase-9 in atherosclerotic lesions using technetium-99m-labeled single-photon emission computed tomography in vivo.

    PubMed

    Wang, Zhongjuan; Deng, Gang; Zhang, Zhuiyang; Huang, Hongbo; Zhao, Yanjun

    2017-04-01

    Previous studies have suggested that matrix metalloproteinase (MMP) inhibitor uptake may offer a precise estimation of MMP activity in atherosclerotic lesions. In this study, we explored the feasibility of noninvasive detection of MMP-9 activity using technetium-99m-labeled matrix metalloproteinase-9 antibody (Tc-McAb) in vivo. ApoE-deficient (ApoE) atherosclerosis mice models (n=10) were induced through a high-cholesterol diet following ligation of their left common carotid artery. After 4 weeks, the models were verified through proton density-weighted and T2-weighted images obtained by MRI. C57BL/6 sham mice (n=8) were used as controls. In addition, normal mice (n=20) were used to characterize blood clearance. After radiolabeled McAb administration, single-photon emission computed tomography (SPECT) was performed. Subsequently, left common carotid arteries were harvested for ex-vivo autoradiograph imaging. Then, morphology and activity assays of MMP-9 were histologically and immunohistochemically examined. MRI showed higher signal intensities in the left common carotid arteries with irregular stenoses in the lumen of blood vessels in atherosclerosis mice models in vivo. Atherosclerotic lesions on left common carotid artery specimens were also clearly visualized using SPECT 2 h after Tc-McAb administration in vivo. Note that the radiochemistry purity of the Tc-McAb used was 85-95%. Biodistribution studies have shown that the clearance of Tc-McAb from blood was rapid. In addition, atherosclerotic lesions were clearly visualized on radioautography film shadows ex vivo. MMP-9 activities within the atherosclerotic lesions were noninvasively detected using Tc-labeled SPECT in vivo.

  17. Impact of losartan and angiotensin II on the expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in rat vascular smooth muscle cells.

    PubMed

    Guo, Yan-Song; Wu, Zong-Gui; Yang, Jun-Ke; Chen, Xin-Jing

    2015-03-01

    The present study aimed to investigate the impact of losartan and angiotensin II (AngII) on the expression of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinase-1 (TIMP-1), secreted by rat vascular smooth muscle cells (VSMCs). Rat VSMCs were isolated and cultured in different concentrations of AngII and losartan for 24 h and western blot analysis and quantitative polymerase chain reaction were performed to observe the subsequent impact on the gene and protein expression of MMP-9 and TIMP-1. AngII was shown to promote the protein and gene expression of MMP-9 in VSMCs in a concentration-dependent manner. No effect was observed on the expression of TIMP-1, therefore, an increase in the MMP-9/TIMP-1 ratio was observed. Losartan was shown to be able to inhibit MMP-9 protein and gene expression in a concentration-dependent manner, whilst promoting an increase in TIMP-1 expression, thus decreasing the ratio of MMP-9/TIMP-1. The combined action of losartan and AngII resulted in the same directional changes in MMP-9 and TIMP-1 expression as observed for losartan alone. The comparison of AngII, losartan and the combinatory effect on the expression of MMP-9 and TIMP-1 in VSMCs indicated that losartan inhibited the effects of AngII, therefore reducing the MMP-9/TIMP-1 ratio, which may contribute to the molecular mechanism of losartan in preventing atherosclerosis. In atherosclerosis, the development of the extracellular matrix of plaque is closely correlated with the evolution of AS. The balance between MMPs and TIMPs is important in maintaining the dynamic equilibrium between the ECM, and the renin-angiotensin-aldosterone system, which is involved in the pathologenesis of AS, and in which AngII has a central role.

  18. Rosa hybrida extract suppresses vascular smooth muscle cell responses by the targeting of signaling pathways, cell cycle regulation and matrix metalloproteinase-9 expression.

    PubMed

    Lee, Se-Jung; Won, Se Yeon; Park, Sung Lyea; Song, Jun-Hui; Noh, Dae-Hwa; Kim, Hong-Man; Yin, Chang Shik; Kim, Wun-Jae; Moon, Sung-Kwon

    2016-04-01

    The pharmacological effects of Rosa hybrida are well known in the cosmetics industry. However, the role of Rosa hybrida in cardiovascular biology had not previously been investigated, to the best of our knowledge. The aim of the present study was to elucidate the effect of water extract of Rosa hybrida (WERH) on platelet‑derived growth factor (PDGF)-stimulated vascular smooth muscle cells (VSMCs). VSMC proliferation, which was stimulated by PDGF, was inhibited in a non-toxic manner by WERH treatment, which also diminished the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT. Treatment with WERH also induced G1-phase cell cycle arrest, which was due to the decreased expression of cyclins and cyclin-dependent kinases (CDKs), and induced p21WAF1 expression in PDGF-stimulated VSMCs. Moreover, WERH treatment suppressed the migration and invasion of VSMCs stimulated with PDGF. Treatment with WERH abolished the expression of matrix metalloproteinase-9 (MMP-9) and decreased the binding activity of nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and specificity protein 1 (Sp1) motifs in PDGF-stimulated VSMCs. WERH treatment inhibited the proliferation of PDGF‑stimulated VSMCs through p21WAF1‑mediated G1-phase cell cycle arrest, by decreasing the kinase activity of cyclin/CDK complexes. Furthermore, WERH suppressed the PDGF-induced phosphorylation of ERK1/2 and AKT in VSMCs. Finally, treatment with WERH impeded the migration and invasion of VSMCs stimulated by PDGF by downregulating MMP-9 expression and a reduction in NF-κB, AP-1 and Sp1 activity. These results provide new insights into the effects of WERH on PDGF-stimulated VSMCs, and we suggest that WERH has the potential to act as a novel agent for the prevention and/or treatment of vascular diseases.

  19. Ubiquitin-specific peptidase 22 inhibits colon cancer cell invasion by suppressing the signal transducer and activator of transcription 3/matrix metalloproteinase 9 pathway.

    PubMed

    Ao, Ning; Liu, Yanyan; Bian, Xiaocui; Feng, Hailiang; Liu, Yuqin

    2015-08-01

    Colon cancer is associated with increased cell migration and invasion. In the present study, the role of ubiquitin-specific peptidase 22 (USP22) in signal transducer and activator of transcription 3 (STAT3)-mediated colon cancer cell invasion was investigated. The messenger RNA levels of STAT3 target genes were measured by reverse transcription-quantitative polymerase chain reaction, following USP22 knockdown by RNA interference in SW480 colon cancer cells. The matrix metalloproteinase 9 (MMP9) proteolytic activity and invasion potential of SW480 cells were measured by zymography and Transwell assay, respectively, following combined USP22 and STAT3 short interfering (si)RNA treatment or STAT3 siRNA treatment alone. Similarly, a cell counting kit-8 assay was used to detect the proliferation potential of SW480 cells. The protein expression levels of USP22, STAT3 and MMP9 were detected by immunohistochemistry in colon cancer tissue microarrays (TMAs) and the correlation between USP22, STAT3 and MMP9 was analyzed. USP22/STAT3 co-depletion partly rescued the MMP9 proteolytic activity and invasion of SW480 cells, compared with that of STAT3 depletion alone. However, the proliferation of USP22/STAT3si-SW480 cells was decreased compared with that of STAT3si-SW480 cells. USP22 expression was positively correlated with STAT3 and MMP9 expression in colon cancer TMAs. In conclusion, USP22 attenuated the invasion capacity of colon cancer cells by inhibiting the STAT3/MMP9 signaling pathway.

  20. Aliskiren attenuates bleomycin-induced pulmonary fibrosis in rats: focus on oxidative stress, advanced glycation end products, and matrix metalloproteinase-9.

    PubMed

    Abuelezz, Sally A; Hendawy, Nevien; Osman, Wesam M

    2016-08-01

    Pulmonary fibrosis is a progressive lung disorder with high mortality rate and limited successful treatment. This study was designed to assess the potential anti-oxidant and anti-fibrotic effects of aliskiren (Alsk) during bleomycin (BLM)-induced pulmonary fibrosis. Male Wistar rats were used as control untreated or treated with the following: a single dose of 2.5 mg/kg of BLM endotracheally and BLM and Alsk (either low dose 30 mg/kg/day or high dose 60 mg/kg/day), and another group was given Alsk 60 mg/kg/day alone. Alsk was given by gavage. Alsk anti-oxidant and anti-fibrotic effects were assessed. BLM significantly increased relative lung weight and the levels of lactate dehydrogenase and total and differential leucocytic count in bronchoalveolar lavage that was significantly ameliorated by high-dose Alsk treatment. As markers of oxidative stress, BLM caused a significant increase in the levels of lipid peroxides and nitric oxide accompanied with a significant decrease of superoxide dismutase and glutathione transferase enzymes. High-dose Alsk treatment restored these markers toward normal values. Alsk counteracted the overexpression of advanced glycation end products, matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 in lung tissue induced by BLM. Fibrosis assessed by measuring hydroxyproline content, which markedly increased in the BLM group, was also significantly reduced by Alsk. These were confirmed by histopathological and immunohistochemical examination which revealed that Alsk attenuates signs of pulmonary fibrosis and decreased the overexpressed MMP-9 and transforming growth factor β1. Collectively, these findings indicate that Alsk has a potential anti-fibrotic effect beside its anti-oxidant activity.

  1. Multiple receptor-ligand based pharmacophore modeling and molecular docking to screen the selective inhibitors of matrix metalloproteinase-9 from natural products

    NASA Astrophysics Data System (ADS)

    Gao, Qi; Wang, Yijun; Hou, Jiaying; Yao, Qizheng; Zhang, Ji

    2017-07-01

    Matrix metalloproteinase-9 (MMP-9) is an attractive target for cancer therapy. In this study, the pharmacophore model of MMP-9 inhibitors is built based on the experimental binding structures of multiple receptor-ligand complexes. It is found that the pharmacophore model consists of six chemical features, including two hydrogen bond acceptors, one hydrogen bond donor, one ring aromatic regions, and two hydrophobic (HY) features. Among them, the two HY features are especially important because they can enter the S1' pocket of MMP-9 which determines the selectivity of MMP-9 inhibitors. The reliability of pharmacophore model is validated based on the two different decoy sets and relevant experimental data. The virtual screening, combining pharmacophore model with molecular docking, is performed to identify the selective MMP-9 inhibitors from a database of natural products. The four novel MMP-9 inhibitors of natural products, NP-000686, NP-001752, NP-014331, and NP-015905, are found; one of them, NP-000686, is used to perform the experiment of in vitro bioassay inhibiting MMP-9, and the IC50 value was estimated to be only 13.4 µM, showing the strongly inhibitory activity of NP-000686 against MMP-9, which suggests that our screening results should be reliable. The binding modes of screened inhibitors with MMP-9 active sites were discussed. In addition, the ADMET properties and physicochemical properties of screened four compounds were assessed. The found MMP-9 inhibitors of natural products could serve as the lead compounds for designing the new MMP-9 inhibitors by carrying out structural modifications in the future.

  2. NFκB- and AP-1-mediated DNA looping regulates matrix metalloproteinase-9 transcription in TNF-α-treated human leukemia U937 cells.

    PubMed

    Chen, Ying-Jung; Chang, Long-Sen

    2015-10-01

    The aim of this study is to explore the spatial association of critical genomic elements in the effect of TNF-α on matrix metalloproteinase-9 (MMP-9) expression in human leukemia U937 cells. TNF-α up-regulated MMP-9 protein expression and mRNA level in U937 cells, and Akt-mediated-NFκB/p65 activation and JNK-mediated c-Jun activation were proven to be involved in TNF-α-induced MMP-9 up-regulation. Promoter luciferase activity assay revealed that NFκB (nt-600) and AP-1 (nt-79) binding sites were crucial for TNF-α-induced transcription of MMP-9 gene. The results of a chromatin immunoprecipitation assay indicated that TNF-α reduced histone deacetylase-1 (HDAC-1) recruitment but increased p300 (a histone acetyltransferase) recruitment to MMP-9 promoter regions surrounding NFκB and AP-1 binding sites. Consistently, TNF-α increased enrichment of the acetylated histone H3 mark on MMP-9 promoter regions. DNA affinity purification assay revealed that p300 and HDAC1 could bind oligonucleotides containing AP-1/c-Jun and NFκB/p65 binding sites. Chromosome conformation capture assay showed that TNF-α stimulated chromosomal loops in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun. The p300-associated acetyltransferase activity was crucial for p65/c-Jun-mediated DNA looping, and inhibition of HDAC activity increased the level of DNA looping. Reduction in the level of DNA looping eliminated all TNF-α-stimulated MMP-9 up-regulation. Taken together, our data suggest that p65/c-Jun-mediated DNA looping is involved in TNF-α-induced MMP-9 up-regulation and that the recruitment of p300 or HDAC1 to NFκB and AP-1 binding sites modifies the level of DNA looping.

  3. Secreted Matrix Metalloproteinase-9 of Proliferating Smooth Muscle Cells as a Trigger for Drug Release from Stent Surface Polymers in Coronary Arteries.

    PubMed

    Gliesche, Daniel G; Hussner, Janine; Witzigmann, Dominik; Porta, Fabiola; Glatter, Timo; Schmidt, Alexander; Huwyler, Jörg; Meyer Zu Schwabedissen, Henriette E

    2016-07-05

    Cardiovascular diseases are the leading causes of death in industrialized countries. Atherosclerotic coronary arteries are commonly treated with percutaneous transluminal coronary intervention followed by stent deployment. This treatment has significantly improved the clinical outcome. However, triggered vascular smooth muscle cell (SMC) proliferation leads to in-stent restenosis in bare metal stents. In addition, stent thrombosis is a severe side effect of drug eluting stents due to inhibition of endothelialization. The aim of this study was to develop and test a stent surface polymer, where cytotoxic drugs are covalently conjugated to the surface and released by proteases selectively secreted by proliferating smooth muscle cells. Resting and proliferating human coronary artery smooth muscle cells (HCASMC) and endothelial cells (HCAEC) were screened to identify an enzyme exclusively released by proliferating HCASMC. Expression analyses and enzyme activity assays verified selective and exclusive activity of the matrix metalloproteinase-9 (MMP-9) in proliferating HCASMC. The principle of drug release exclusively triggered by proliferating HCASMC was tested using the biodegradable stent surface polymer poly-l-lactic acid (PLLA) and the MMP-9 cleavable peptide linkers named SRL and AVR. The specific peptide cleavage by MMP-9 was verified by attachment of the model compound fluorescein. Fluorescein release was observed in the presence of MMP-9 secreting HCASMC but not of proliferating HCAEC. Our findings suggest that cytotoxic drug conjugated polymers can be designed to selectively release the attached compound triggered by MMP-9 secreting smooth muscle cells. This novel concept may be beneficial for stent endothelialization thereby reducing the risk of restenosis and thrombosis.

  4. Genetic polymorphism in matrix metalloproteinase-9 and transforming growth factor-β1 and susceptibility to combined pulmonary fibrosis and emphysema in a Chinese population.

    PubMed

    Xu, Ling; Bian, Wei; Gu, Xiao-Hua; Shen, Ce

    2017-03-01

    In this study, we aimed to explore the association of genetic polymorphism in matrix metalloproteinase-9 (MMP-9) and transforming growth factor-β1 (TGF-β1) and the susceptibility to combined pulmonary fibrosis and emphysema (CPFE). We examined the polymorphisms of the MMP-9 C-1562T and TGF-β1 T869C in 38 CPFE patients, 50 pulmonary emphysema patients, and 34 idiopathic pulmonary fibrosis (IPF) patients. The frequencies of polymorphic genotypes in MMP-9 were 78.95% CC and 21.05% CT in CPFE group, 76.0% CC and 24.0% CT in emphysema group, and 100.0% CC in IPF group. There were highly statistically significant increased frequencies of the CT genotype and T allele in CPFE and emphysema groups compared with IPF group (p < 0.05). The frequencies of polymorphic genotypes in TGF-β1 were 2.63% CC, 28.95% CT, 68.42% TT in CPFE group, 4.00% CC, 16.00% CT, 80.00% TT in emphysema group, and 5.88% CC, 41.18% CT, 52.94% TT in IPF group. Significant increases in the TT genotype and T allele frequencies were observed in emphysema group compared with IPF group (p < 0.05). Our study has showed that T allele in MMP-9 (C-1562T) and T allele in TGF-β1 (T869C) are risk factors of pulmonary emphysema. The T allele in MMP-9 (C-1562T) possibly predisposes patients with pulmonary fibrosis to develop emphysema. Copyright © 2017. Published by Elsevier Taiwan.

  5. Plasma Levels and Diagnostic Utility of Macrophage Colony-Stimulating Factor, Matrix Metalloproteinase-9, and Tissue Inhibitor of Metalloproteinases-1 as New Biomarkers of Breast Cancer

    PubMed Central

    Głażewska, Edyta Katarzyna; Sobolewska, Monika; Będkowska, Grażyna Ewa; Szmitkowski, Maciej

    2016-01-01

    Background Macrophage colony-stimulating factor (M-CSF), matrix metalloproteinase-9 (MMP-9), and its specific tissue inhibitor - tissue inhibitor of metalloproteinases-1 (TIMP-1) may play an important role in the pathogenesis and spread of cancer. We investigated the plasma levels of M-CSF, MMP-9, and TIMP-1 in comparison with a commonly accepted tumor marker CA 15-3 in breast cancer patients and in control groups. Methods The cohort included 110 breast cancer patients in groups at stages I-IV. The control group consisted of 50 healthy volunteers and 50 benign tumor patients. Plasma levels of M-CSF, MMP-9, and TIMP-1 were determined by using ELISA, while CA 15-3 concentrations were determined by using chemiluminescent microparticle immunoassay (CMIA). Results The results showed significant differences in concentrations of the analyzed parameters and in levels of CA 15-3 between the groups of breast cancer patients and the two control groups. Diagnosis using these markers was equal to that using CA 15-3 in terms of sensitivity, predictive values of positive and negativetest results (PPV, NPV) and area under the ROC curve (AUC) in the studied groups. The diagnostic specificities of MMP-9, TIMP-1, M-CSF, and CA 15-3 showed equally high values (95%). The combined use of all tested parameters with CA 15-3 resulted in increased sensitivity, NPV, and AUC, especially in the combination of M-CSF with tumor markers (76%, 64%, and 0.8653). Conclusions These findings suggest the tested parameters are useful in the diagnosis of breast cancer patients (except stage I), when combined with CA 15-3. PMID:26915610

  6. Sesamin inhibits macrophage-induced vascular endothelial growth factor and matrix metalloproteinase-9 expression and proangiogenic activity in breast cancer cells.

    PubMed

    Lee, Chun-Chung; Liu, Ko-Jiunn; Wu, Yu-Chen; Lin, Sue-Jane; Chang, Ching-Chun; Huang, Tze-Sing

    2011-06-01

    Sesamin is a sesame component with antihypertensive and antioxidative activities and has recently aroused much interest in studying its potential anticancer application. Macrophage is one of the infiltrating inflammatory cells in solid tumor and may promote tumor progression via enhancement of tumor angiogenesis. In this study, we investigated whether sesamin inhibited macrophage-enhanced proangiogenic activity of breast cancer cell lines MCF-7 and MDA-MB-231. Using vascular endothelial cell capillary tube and network formation assays, both breast cancer cell lines exhibited elevated proangiogenic activities after coculture with macrophages or pretreatment with macrophage-conditioned medium. This elevation of proangiogenic activity was drastically suppressed by sesamin. Vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) induced by macrophages in both cell lines were also inhibited by sesamin. Nuclear levels of HIF-1α and NF-κB, important transcription factors for VEGF and MMP-9 expression, respectively, were obviously reduced by sesamin. VEGF induction by macrophage in MCF-7 cells was shown to be via ERK, JNK, phosphatidylinositol 3-kinase, and NF-κB-mediated pathways. These signaling molecules and additional p38(MAPK) were also involved in macrophage-induced MMP-9 expression. Despite such diverse pathways were induced by macrophage, only Akt and p38(MAPK) activities were potently inhibited by sesamin. Expression of interleukin (IL)-6, IL-8, and tumor necrosis factor-α were substantially increased and involved in macrophage-induced VEGF and MMP-9 mRNA expression in MCF-7 cells. Sesamin effectively inhibited the expression of these cytokines to avoid the reinforced induction of VEGF and MMP-9. In conclusion, sesamin potently inhibited macrophage-enhanced proangiogenic activity of breast cancer cells via inhibition of VEGF and MMP-9 induction.

  7. Salvianolic Acid B Down-regulates Matrix Metalloproteinase-9 Activity and Expression in Tumor Necrosis Factor-α-induced Human Coronary Artery Endothelial Cells

    PubMed Central

    Ma, Le; Guan, Yun-Qian; Du, Zhong-Dong

    2015-01-01

    Background: Salvianolic acid B (Sal B) is a bioactive water-soluble compound of Salviae miltiorrhizae, a traditional herbal medicine that has been used clinically for the treatment of cardiovascular diseases. This study sought to evaluate the effect of Sal B on matrix metalloproteinase-9 (MMP-9) and on the underlying mechanisms in tumor necrosis factor-α (TNF-α)-activated human coronary artery endothelial cells (HCAECs), a cell model of Kawasaki disease. Methods: HCAECs were pretreated with 1–10 μmol/L of Sal B, and then stimulated by TNF-α at different time points. The protein expression and activity of MMP-9 were determined by Western blot assay and gelatin zymogram assay, respectively. Nuclear factor-κB (NF-κB) activation was detected with immunofluorescence, electrophoretic mobility shift assay, and Western blot assay. Protein expression levels of mitogen-activated protein kinase (c-Jun N-terminal kinase [JNK], extra-cellular signal-regulated kinase [ERK], and p38) were determined by Western blot assay. Results: After HCAECs were exposed to TNF-α, 1–10 μmol/L Sal B significantly inhibited TNF-α-induced MMP-9 expression and activity. Furthermore, Sal B significantly decreased IκBα phosphorylation and p65 nuclear translocation in HCAECs stimulated with TNF-α for 30 min. In addition, Sal B decreased the phosphorylation of JNK and ERK1/2 proteins in cells treated with TNF-α for 10 min. Conclusions: The data suggested that Sal B suppressed TNF-α-induced MMP-9 expression and activity by blocking the activation of NF-κB, JNK, and ERK1/2 signaling pathways. PMID:26415806

  8. M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop

    PubMed Central

    Carroll, Molly J.; Kapur, Arvinder; Felder, Mildred; Patankar, Manish S.; Kreeger, Pamela K.

    2016-01-01

    In ovarian cancer, a high ratio of anti-inflammatory M2 to pro-inflammatory M1 macrophages correlates with poor patient prognosis. The mechanisms driving poor tumor outcome as a result of the presence of M2 macrophages in the tumor microenvironment remain unclear and are challenging to study with current techniques. Therefore, in this study we utilized a micro-culture device previously developed by our lab to model concentrated paracrine signaling in order to address our hypothesis that interactions between M2 macrophages and ovarian cancer cells induce tumor cell proliferation. Using the micro-culture device, we determined that co-culture with M2-differentiated primary macrophages or THP-1 increased OVCA433 proliferation by 10–12%. This effect was eliminated with epidermal growth factor receptor (EGFR) or heparin-bound epidermal growth factor (HB-EGF) neutralizing antibodies and HBEGF expression in peripheral blood mononuclear cells from ovarian cancer patients was 9-fold higher than healthy individuals, suggesting a role for HB-EGF in tumor progression. However, addition of HB-EGF at levels secreted by macrophages or macrophage-conditioned media did not induce proliferation to the same extent, indicating a role for other factors in this process. Matrix metalloproteinase-9, MMP-9, which cleaves membrane-bound HB-EGF, was elevated in co-culture and its inhibition decreased proliferation. Utilizing inhibitors and siRNA against MMP9 in each population, we determined that macrophage-secreted MMP-9 released HB-EGF from macrophages, which increased MMP9 in OVCA433, resulting in a positive feedback loop to drive HB-EGF release and increase proliferation in co-culture. Identification of multi-cellular interactions such as this may provide insight into how to most effectively control ovarian cancer progression. PMID:27888810

  9. Inhibitory effect of quercetin on matrix metalloproteinase 9 activity molecular mechanism and structure-activity relationship of the flavonoid-enzyme interaction.

    PubMed

    Saragusti, Alejandra C; Ortega, María G; Cabrera, José L; Estrin, Darío A; Marti, Marcelo A; Chiabrando, Gustavo A

    2010-10-10

    Epidemiological studies have demonstrated an inverse association between the consumption of flavonoid-rich diets and the risk of atherosclerosis. In addition, an increased activity of the matrix metalloproteinase 9 (MMP-9) has been implicated in the development and progression of atherosclerotic lesions. Even though the relationship between flavonoid chemical structure and the inhibitory property on MMP activity has been established, the molecular mechanisms of this inhibition are still unknown. Herein, we first evaluated the inhibitory effect of quercetin on MMP-9 activity by zymography and a fluorescent gelatin dequenching assay, secondly we determined the most probable sites and modes of quercetin interaction with the MMP-9 catalytic domain by using molecular modelling techniques, and finally, we investigated the structure-activity relationship of the inhibitory effect of flavonoids on MMP-9 activity. We show that quercetin inhibited MMP-9 activity with an IC(50) value of 22 microM. By using docking and molecular dynamics simulations, it was shown that quercetin interacted in the S1' subsite of the MMP-9 active site. Moreover, the structure-activity relationship analysis demonstrated that flavonoid R(3)(')-OH and R(4)(')-OH substitutions were relevant to the inhibitory property against MMP-9 activity. In conclusion, our data constitute the first evidence about the quercetin and MMP-9 interaction, suggesting a mechanism to explain the inhibitory effect of the flavonoid on the enzymatic activity of MMP-9, which provides an additional molecular target for the cardioprotective activity of quercetin. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Blockade of recombinant human IL-6 by tocilizumab suppresses matrix metalloproteinase-9 production in the C28/I2 immortalized human chondrocyte cell line.

    PubMed

    Meszaros, Evan C; Dahoud, Wissam; Mesiano, Sam; Malemud, Charles J

    Two immortalized human juvenile chondrocyte cell lines, T/C28a2 and C28/I2, were employed to determine the extent to which recombinant human (rh) IL-6 or rh-TNF-α increased the production of matrix metalloproteinase-9 (MMP-9). The effect of rhIL-6 on neutrophil gelatinase-associated lipocalin (NGAL) was also assessed. Although C28/I2 chondrocytes incubated with rhIL-6 (50 ng/ml) increased MMP-9 production which could not be mimicked by the T/C28a2 chondrocyte line, the effect of rhTNF-α on MMP-9 was more robust than with rhIL-6. The combinations of rhIL-6 and soluble IL-6 receptor-α (sIL-6Rα) or rhIL-6 and tocilizumab (TCZ), a fully-humanized recombinant monoclonal antibody that neutralizes the interaction between IL-6 and IL-6R significantly reduced MMP-9 production by C28/I2 chondrocytes. However, TCZ had no effect on rhTNF-α-induced MMP-9 production. By contrast, rhIL-6 did not increase the production of NGAL by C28/I2 chondrocytes although the number of NGAL-positive cells was significantly reduced by sIL-6R compared to its control group, but not by the combination of rhIL-6 plus TCZ compared to rhIL-6. In summary, these results showed that rhIL-6 stimulated the production of MMP-9, but not NGAL, in the C28/I2 chondrocyte line. TCZ or sIL-6Rα suppressed rhIL-6-induced MMP-9 production.

  11. Expression and survival significance of B-cell-specific Moloney murine leukemia virus integration site 1 and matrix metalloproteinase-9 in non-small-cell lung cancer

    PubMed Central

    Mu, Mingkui; Song, Yang; Zhang, Bin

    2016-01-01

    One of the main challenges in lung cancer research is identifying patients at high risk of progression and metastasis following surgical resection. In the present study, the prognostic significance of B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1) and matrix metalloproteinase-9 (MMP9) in non-small-cell lung cancer (NSCLC) was evaluated. BMI1 and MMP9 expression in tumors from 132 surgical NSCLC patients [squamous cell carcinoma (SCC), n=79; and adenocarcinoma (AD), n=53] was evaluated by immunohistochemistry. The clinical significance was determined using multivariate Cox regression analysis, Kaplan-Meier curves and the log-rank test. High BMI1 expression was more frequent in SCC compared with that in AD (P=0.015). Comparisons between the expression of BMI1 and that of other known biological markers revealed that the expression of BMI1 was correlated with that of MMP9 (χ2=4.241, P=0.039) in SCC. Although an association was not identified between high BMI1 expression and overall survival (OS) in NSCLC or AD, high BMI1 expression was an unfavorable predictor of survival in SCC according to the survival curves (P=0.038). In addition, combined high BMI1 and MMP9 expression levels were significantly correlated with SCC nodal/distant metastasis (χ2=6.392, P=0.014). Multivariate Cox proportional model analysis demonstrated that this combined marker was an independent prognostic indicator of OS in SCC (P=0.025; hazard ratio = 12.963; 95% confidence interval: 1.142–7.637). Therefore, this study demonstrated that combined BMI1 and MMP9 expression may be used as a marker for the progression and metastasis of SCC. These results may aid in the elucidation of the potential mechanism underlying the involvement of BMI1 and MMP9 in tissue-specific SCC progression. PMID:27900059

  12. Silencing of bach1 gene by small interfering RNA-mediation regulates invasive and expression level of miR-203, miR-145, matrix metalloproteinase-9, and CXCR4 receptor in MDA-MB-468 breast cancer cells.

    PubMed

    Mohammadzadeh, Reza; Saeid Harouyan, Mojgan; Ale Taha, Seyed Mansour

    2017-03-01

    Recently experimental validation of the networks revealed bach1, a basic leucine zipper transcription factor, as the common regulator of several functional invasive genes. The expression of bach1 and its target genes was linked to the higher risk of breast cancer recurrence in patients. The aim of this study was to investigate the effect of specific bach1 small interfering RNAs, on the invasive and expression level of miR-203, miR-145, matrix metalloproteinase-9, and CXCR4 receptor which play a role in cancer metastasis, in MDA-MB-468 cell lines. Small interfering RNA transfection was performed with transfection regent. The survival effects of small interfering RNA were determined using trypan blue assay cells. The expression level of messenger RNA and matrix metalloproteinase-9 to assess cell invasion and the expression level of miR-203, miR-145, and CXCR4 receptor were measured by quantitative real-time polymerase chain reaction analysis on the MDA-MB-468 cell lines. Transfection with small interfering RNA significantly suppressed the expression of bach1 gene in dose-dependent manner after 48 h ( p < 0.0001). A significant reduction in cell invasion and CXCR4 receptor, matrix metalloproteinase-9 expression were observed ( p < 0.0001). It was also a dramatic increase in the expression level of miR-203 and miR-145 ( p < 0.0001). Our results suggest that the bach1-specific small interfering RNA effectively decrease CXCR4 receptor, matrix metalloproteinase-9 expression and breast adenocarcinoma cells invasive, also increased the expression of tumor-suppressive microRNA-203 and miR-145. Thus, these microRNAs may play a role in invasive/metastasis of carcinogenic breast cancer cells. Therefore, bach1 knockdown can be considered as a potent adjuvant in breast cancer therapy.

  13. Immunohistochemical expression of matrix metalloproteinase-1, matrix metalloproteinase-2 and matrix metalloproteinase-9, myofibroblasts and Ki-67 in actinic cheilitis and lip squamous cell carcinoma.

    PubMed

    Bianco, Bianca C; Scotti, Fernanda M; Vieira, Daniella S C; Biz, Michelle T; Castro, Renata G; Modolo, Filipe

    2015-10-01

    Matrix metalloproteinases (MMPs), myofibroblasts (MFs) and epithelial proliferation have key roles in neoplastic progression. In this study immunoexpression of MMP-1, MMP-2 and MMP-9, presence of MFs and the epithelial proliferation index were investigated in actinic cheilitis (AC), lip squamous cell carcinoma (LSCC) and mucocele (MUC). Thirty cases of AC, thirty cases of LSCC and twenty cases of MUC were selected for immunohistochemical investigation of the proteins MMP-1, MMP-2, MMP-9, α-smooth muscle actin (α-SMA) and Ki-67. The MMP-1 expression in the epithelial component was higher in the AC than the MUC and LSCC. In the connective tissue, the expression was higher in the LSCC. MMP-2 showed lower epithelial and stromal immunostaining in the LSCC when compared to the AC and MUC. The epithelial staining for MMP-9 was higher in the AC when compared to the LSCC. However, in the connective tissue, the expression was lower in the AC compared to other lesions. The cell proliferation rate was increased in proportion to the severity of dysplasia in the AC, while in the LSCC it was higher in well-differentiated lesions compared to moderately differentiated. There were no statistically significant differences in number of MFs present in the lesions studied. The results suggest that MMPs could affect the biological behaviour of ACs and LSCCs inasmuch as they could participate in the development and progression from premalignant lesions to malignant lesions.

  14. Thrombin mediates migration of rat brain astrocytes via PLC, Ca²⁺, CaMKII, PKCα, and AP-1-dependent matrix metalloproteinase-9 expression.

    PubMed

    Lin, Chih-Chung; Lee, I-Ta; Wu, Wen-Bin; Liu, Chiung-Ju; Hsieh, Hsi-Lung; Hsiao, Li-Der; Yang, Chien-Chung; Yang, Chuen-Mao

    2013-12-01

    Matrix metalloproteinase-9 (MMP-9) plays a crucial role in pathological processes of brain inflammation, injury, and neurodegeneration. Thrombin has been known as a regulator of MMP-9 expression and cells migration. However, the mechanisms underlying thrombin-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) remain unclear. Here, we demonstrated that thrombin induced the expression of pro-form MMP-9 and migration of RBA-1 cells, which were inhibited by pretreatment with the inhibitor of Gq-coupled receptor (GPAnt2A), Gi/o-coupled receptor (GPAnt2), PC-PLC (D609), PI-PLC (U73122), Ca(2+)-ATPase (thapsigargin, TG), calmodulin (CaMI), CaMKII (KN62), PKC (Gö6976 or GF109203X), MEK1/2 (PD98059), p38 MAPK (SB202190), JNK1/2 (SP600125), or AP-1 (Tanshinone IIA) or the intracellular calcium chelator (BAPTA/AM) and transfection with siRNA of PKCα, Erk2, JNK1, p38 MAPK, c-Jun, or c-Fos. In addition, thrombin-induced elevation of intracellular Ca(2+) concentration was attenuated by PPACK (a thrombin inhibitor). Thrombin further induced CaMKII phosphorylation and PKCα translocation, which were inhibited by U73122, D609, KN62, TG, or BAPTA/AM. Thrombin also induced PKCα-dependent p42/p44 MAPK and JNK1/2, but not p38 MAPK activation. Finally, we showed that thrombin enhanced c-Fos expression and c-Jun phosphorylation. c-Fos mRNA levels induced by thrombin were reduced by PD98059, SP600125, and Gö6976, but not SB202190. Thrombin stimulated in vivo binding of c-Fos to the MMP-9 promoter, which was reduced by pretreatment with SP600125 or PD98059, but not SB202190. These results concluded that thrombin activated a PLC/Ca(2+)/CaMKII/PKCα/p42/p44 MAPK and JNK1/2 pathway, which in turn triggered AP-1 activation and ultimately induced MMP-9 expression in RBA-1 cells.

  15. Acute morphine induces matrix metalloproteinase-9 up-regulation in primary sensory neurons to mask opioid-induced analgesia in mice

    PubMed Central

    2012-01-01

    Background Despite decades of intense research efforts, actions of acute opioids are not fully understood. Increasing evidence suggests that in addition to well-documented antinociceptive effects opioids also produce paradoxical hyperalgesic and excitatory effects on neurons. However, most studies focus on the pronociceptive actions of chronic opioid exposure. Matrix metalloproteinase 9 (MMP-9) plays an important role in neuroinflammation and neuropathic pain development. We examined MMP-9 expression and localization in dorsal root ganglia (DRGs) after acute morphine treatment and, furthermore, the role of MMP-9 in modulating acute morphine-induced analgesia and hyperalgesia in mice. Results Subcutaneous morphine induced a marked up-regulation of MMP-9 protein in DRGs but not spinal cords. Morphine also increased MMP-9 activity and mRNA expression in DRGs. MMP-9 up-regulation peaked at 2 h but returned to the baseline after 24 h. In DRG tissue sections, MMP-9 is expressed in small and medium-sized neurons that co-express mu opioid receptors (MOR). In DRG cultures, MOR agonists morphine, DAMGO, and remifentanil each increased MMP-9 expression in neurons, whereas the opioid receptor antagonist naloxone and the MOR-selective antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) suppressed morphine-induced MMP-9 expression. Notably, subcutaneous morphine-induced analgesia was enhanced and prolonged in Mmp9 knockout mice and also potentiated in wild-type mice receiving intrathecal injection of MMP-9 inhibitors. Consistently, intrathecal injection of specific siRNA targeting MMP-9 reduced MMP-9 expression in DRGs and enhanced and prolonged morphine analgesia. Subcutaneous morphine also produced heat hyperalgesia at 24 h, but this opioid-induced hyperalgesia was not enhanced after MMP-9 deletion or inhibition. Conclusions Transient MMP-9 up-regulation in DRG neurons can mask opioid analgesia, without modulating opioid-induced hyperalgesia. Distinct molecular

  16. Expression of matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase (TIMP-1) in tissues with a diagnosis of childhood lymphoma.

    PubMed

    Bozkurt, Ceyhun; Ertem, Ulya; Oksal, Aysegül; Sahin, Gürses; Yüksek, Nazmiye; Birgen, Dilek

    2008-09-01

    Matrix metalloproteinases (MMP) are enzymes involved in the reconfiguration of the microenvironment by means of degrading the extracellular matrix and have more than 20 subgroups containing zinc. Proteins that serve as the inhibitors of these enzymes are called tissue inhibitors of matrix metalloproteinase (TIMP). These enzymes have been shown to be active in a wide range of processes, from wound recovery to fetus development, heart diseases, and spread of malignant diseases. The aim of this study was to investigate whether there is a relationship between the type, stage, and prognosis of childhood lymphoma subjects and matrix metalloproteinase type-9 (MMP-9) and its inhibitor, tissue inhibitor of matrix metalloproteinase type-1 (TIMP-1). Paraffin blocks of childhood patients diagnosed with non-Hodgkin lymphoma (n = 23), Hodgkin lymphoma (n = 14), or reactive lymphadenopathy (n = 12) were retrospectively immunohistochemically stained with MMP-9 and TIMP-1 stains and whether there was a relationship between the degree of staining and the type, tumor stage, and prognosis of the disease was investigated. Moderate and high degrees of MMP-9 staining were detected in 94.6% of the lymphoma patient tissues and a slight TIMP-1 staining was detected in 21.6% of the lymphoma patient tissues. No relationship was observed between the degree of these staining patterns and the type, tumor stage, and prognosis of the disease. This study indicates that the equilibrium between MMP-9 and TIMP-1 is important in lymphomas in addition to all the physiological and pathologic events although MMP-9 and the TIMP-1 staining patterns are not related to the tumor stage, prognosis, and type of the disease. Larger series of patients are needed to determine the prognostic value of MMP-9 and TIMP-1 in childhood lymphoma.

  17. Hyperoxia decreases matrix metalloproteinase-9 and increases tissue inhibitor of matrix metalloproteinase-1 protein in the newborn rat lung: association with arrested alveolarization.

    PubMed

    Hosford, Gayle E; Fang, Xin; Olson, David M

    2004-07-01

    Matrix metalloproteinases (MMP) are likely effectors of normal lung development, especially branching morphogenesis, angiogenesis, and extracellular matrix degradation. Because hyperoxia exposure (>95% O(2)) from d 4 to 14 in newborn rat pups leads to arrest of alveolarization and mimics newborn chronic lung disease, we tested whether hyperoxia altered MMP-2 and -9 mRNA, protein, and enzymatic activity, and the mRNA and protein expression of the endogenous tissue inhibitor of MMP, TIMP-1. No changes due to hyperoxia exposure were observed in MMP-2 mRNA or pro-enzyme (72 kD) protein levels between d 6 and 14, although the overall protein mass and zymographic activity of the active (68 kD) enzyme were diminished (p < 0.05, ANOVA). However, hyperoxia significantly decreased levels of MMP-9 mRNA and pro-MMP-9 protein and diminished overall MMP-9 pro-enzyme activity. TIMP-1 mRNA was not elevated by hyperoxia until d 14, but protein levels were significantly (p < 0.001) elevated by hyperoxia from d 9 to 14. To estimate the potential of MMP inhibition to arrest alveolarization, administration of doxycycline (20 mg/kg, twice daily by gavage), a pan-MMP proteolysis inhibitor, arrested lung alveolarization. We conclude that hyperoxia decreases MMP-9 mRNA, protein, and activity and elevates TIMP-1 protein, and these changes have the potential to contribute to the arrest of normal lung development.

  18. Molecular Docking Analysis of Selected Clinacanthus nutans Constituents as Xanthine Oxidase, Nitric Oxide Synthase, Human Neutrophil Elastase, Matrix Metalloproteinase 2, Matrix Metalloproteinase 9 and Squalene Synthase Inhibitors

    PubMed Central

    Narayanaswamy, Radhakrishnan; Isha, Azizul; Wai, Lam Kok; Ismail, Intan Safinar

    2016-01-01

    Background: Clinacanthus nutans (Burm. f.) Lindau has gained popularity among Malaysians as a traditional plant for anti-inflammatory activity. Objective: This prompted us to carry out the present study on a selected 11 constituents of C. nutans which are clinacoside A–C, cycloclinacoside A1, shaftoside, vitexin, orientin, isovitexin, isoorientin, lupeol and β-sitosterol. Materials and Methods: Selected 11 constituents of C. nutans were evaluated on the docking behavior of xanthine oxidase (XO), nitric oxide synthase (NOS), human neutrophil elastase (HNE), matrix metalloproteinase (MMP 2 and 9), and squalene synthase (SQS) using Discovery Studio Version 3.1. Also, molecular physicochemical, bioactivity, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and toxicity prediction by computer assisted technology analyzes were also carried out. Results: The molecular physicochemical analysis revealed that four ligands, namely clinacoside A–C and cycloclinacoside A1 showed nil violations and complied with Lipinski's rule of five. As for the analysis of bioactivity, all the 11 selected constituents of C. nutans exhibited active score (>0) toward enzyme inhibitors descriptor. ADMET analysis showed that the ligands except orientin and isoorientin were predicted to have Cytochrome P4502D6 inhibition effect. Docking studies and binding free energy calculations revealed that clinacoside B exhibited the least binding energy for the target enzymes except for XO and SQS. Isovitexin and isoorientin showed the potentials in the docking and binding with all of the six targeted enzymes, whereas vitexin and orientin docked and bound with only NOS and HNE. Conclusion: This present study has paved a new insight in understanding these 11 C. nutans ligands as potential inhibitors against XO, NOS, HNE, MMP 2, MMP 9, and SQS. SUMMARY Isovitexin and isoorientin (Clinacanthus nutans constituent) showed potentials in the docking and binding with all of the six targeted

  19. Expression and correlation of CD44v6, vascular endothelial growth factor, matrix metalloproteinase-2, and matrix metalloproteinase-9 in Krukenberg tumor

    PubMed Central

    Lou, Ge; Gao, Ying; Ning, Xiao-Ming; Zhang, Qi-Fan

    2005-01-01

    AIM: To explore the expression and correlation of CD44v6, vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2 and matrix metalloproteinase (MMP)-9 in Krukenberg and primary epithelial ovarian carcinoma. METHODS: The expressions of CD44v6, VEGF, MMP-2 and MMP-9 were detected by immunohistochemical method in 20 cases of normal ovarian tissues, 38 cases of Krukenberg tumor and 45 cases of primary epithelial ovarian carcinoma. RESULTS: The expression of CD44v6 (primary epithelial ovarian carcinoma tissue vs normal ovarian tissue: χ2 = 4.516, P = 0.034; Krukenberg tumor tissue vs normal ovarian tissue: χ2 = 19.537, P = 0.001) and VEGF (primary epithelial ovarian carcinoma tissue vs normal ovarian tissue: P = 0.026; Krukenberg tumor tissue vs normal ovarian tissue: χ2 = 22.895, P = 0.001) was significantly higher in primary epithelial ovarian carcinoma tissue and Krukenberg tumor tissue than in normal ovarian tissue. The positive expression rate of MMP-2 and MMP-9 was 0% in the normal ovarian tissue. The positive expression rate of CD44v6 (χ2 = 10.398, P = 0.001), VEGF (χ2 = 13.149, P = 0.001), MMP-2 (χ2 = 33.668, P = 0.001) and MMP-9 (χ2 = 38.839, P = 0.001) was remarkably higher in Krukenberg tumor than in primary epithelial ovarian carcinoma. The correlation of CD44v6, VEGF, MMP-2, and MMP-9 was observed in primary epithelial ovarian carcinoma and Krukenberg tumor. CONCLUSION: CD44v6, VEGF, MMP-2, and MMP-9 are involved in ovarian carcinoma, gastric cancer and Krukenberg tumor. Detection of CD44v6, VEGF, MMP-2 and MMP-9 may contribute to the diagnosis of ovarian carcinoma, gastric cancer, and Krukenberg tumor. PMID:16124061

  20. Gelatinolytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9 in rat brain after implantation of 9L rat glioma cells.

    PubMed

    Zhao, J X; Yang, L P; Wang, Y F; Qin, L P; Liu, D Q; Bai, C X; Nan, X; Shi, S S; Pei, X J

    2007-05-01

    The matrix metalloproteinases (MMPs) have come to be highlighted by their close relation to the cell invasion of gliomas. The inhibitors of MMPs have undergone extensive development because of its effectiveness against tumor invasion and angiogenesis. Therefore, a suitable animal model is necessary for searching new MMPs inhibitors against gliomas. In this study, we established an experimental model by implanting 9L glioma cells stereotactically into Fisher344 (F344) rat's brain, and the expression and enzymatic activity of MMP-2 and MMP-9 in 9L glioma cells and in tumor tissue was determined by means of reverse transcription polymerase chain reaction (RT-PCR), sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) zymography, in situ film zymography and immunostaining. The results of RT-PCR showed that the mRNA level of MMP-2 in 9L glioma cells was higher than that of MMP-9, and the mRNA expression of MMP-9 was increased along with the growth of malignant gliomas. SDS-PAGE zymography revealed that the expression of MMP-2 and MMP-9 were significantly increased in tumor tissues, and the MMP-9 wasn't detected in normal tissue. The positive stain of MMP-2 and MMP-9 was enhanced with the growth of malignant gliomas, especially for MMP-9. The expression of active gelatinase was found in tumor tissue. In conclusion, the expression of active MMP-2 and MMP-9 was increased in 9L/F344 rat brain during the growth of malignant gliomas at different time intervals, which indicate that 9L/F344 animal model may be a prospective animal model to test new MMPs inhibitors.

  1. Proanthocyanidins from the American Cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways.

    PubMed

    Déziel, Bob A; Patel, Kunal; Neto, Catherine; Gottschall-Pass, Katherine; Hurta, Robert A R

    2010-10-15

    Prostate cancer is one of the most common cancers in the Western world, and it is believed that an individual's diet affects his risk of developing cancer. There has been an interest in examining phytochemicals, the secondary metabolites of plants, in order to determine their potential anti-cancer activities in vitro and in vivo. In this study we document the effects of proanthocyanidins (PACs) from the American Cranberry (Vaccinium macrocarpon) on matrix metalloproteinase (MMP) activity in DU145 human prostate cancer cells. Cranberry PACs decreased cellular viability of DU145 cells at a concentration of 25 µg/ml by 30% after 6 h of treatment. Treatment of DU145 cells with PACs resulted in an inhibition of both MMPs 2 and 9 activity. PACs increased the expression of TIMP-2, a known inhibitor of MMP activity, and decreased the expression of EMMPRIN, an inducer of MMP expression. PACs decreased the expression of PI-3 kinase and AKT proteins, and increased the phosphorylation of both p38 and ERK1/2. Cranberry PACs also decreased the translocation of the NF-κB p65 protein to the nucleus. Cranberry PACs increased c-jun and decreased c-fos protein levels. These results suggest that cranberry PACs decreases MMP activity through the induction and/or inhibition of specific temporal MMP regulators, and by affecting either the phosphorylation status and/or expression of MAP kinase, PI-3 kinase, NF-κB and AP-1 pathway proteins. This study further demonstrates that cranberry PACs are a strong candidate for further research as novel anti-cancer agents. © 2010 Wiley-Liss, Inc.

  2. Definition of peptide inhibitors from a synthetic peptide library by targeting gelatinase B/matrix metalloproteinase-9 (MMP-9) and TNF-α converting enzyme (TACE/ADAM-17).

    PubMed

    Qiu, Zheng; Yan, Ming; Li, Qian; Liu, Datao; Van den Steen, Philippe E; Wang, Min; Opdenakker, Ghislain; Hu, Jialiang

    2012-08-01

    Gelatinase B/matrix metalloproteinase-9 (MMP-9) is a regulatory and effector metalloproteinase in inflammation. TNF-α is an important proinflammatory cytokine and is released by the action of a Zn(2+)-containing converting enzyme (TACE/ADAM-17). Both metallo-enzymes play important roles during the development of shock syndromes. Combinatorial chemical synthesis and subsequent library deconvolution were previously used to define a peptide inhibitor (Regasepin1) acting, almost to the same degree, on neutrophil collagenase/MMP-8 and MMP-9 in vitro, and protecting mice against lethal endotoxinemia in vivo. We have now extended this approach by incorporating D-form amino acids and residues preferred by TACE. A new peptide library was designed and synthesized, and by deconvolution new peptide inhibitors were defined. These included a TACE-specific inhibitor, an MMP-9- specific inhibitor, and inhibitors for both enzymes.

  3. Involvement of TL1A and DR3 in induction of pro-inflammatory cytokines and matrix metalloproteinase-9 in atherogenesis.

    PubMed

    Kang, Yoon-Joong; Kim, Won-Jung; Bae, Hyung-Uk; Kim, Dong-Ik; Park, Yong Bok; Park, Jeong-Euy; Kwon, Byoung S; Lee, Won-Ha

    2005-03-07

    TL1A (VEGI/TNFSF15) is the ligand for DR3 (TNFRSF12) and is a newly identified member of the tumor necrosis factor superfamily (TNFSF). Previously, DR3 has been shown to have a role in atherogenesis through stimulation of matrix degrading enzymes including matrix metalloproteinase (MMP)-9. Immunohistochemical staining of human carotid atherosclerotic plaques revealed a high-level expression of TL1A in regions rich in macrophage/foam cells. To investigate the role of TL1A and DR3 in the functioning of macrophage/foam cells in relation to atherogenesis, we have analyzed cellular events mediated by TL1A and DR3 in a human macrophage-like cell line, THP-1. Treatment of THP-1 cells with immobilized anti-DR3 monoclonal antibody in combination with IFN-gamma caused induction of pro-atherogenic cytokines/chemokines such as TNF-alpha, monocyte chemoattractant protein (MCP)-1, and interleukin (IL)-8. Treatment of THP-1 cells with recombinant TL1A in combination with IFN-gamma also caused induction of MMP-9 and IL-8. Furthermore, the expression of DR3 in peripheral blood monocytes was induced after atherogenic stimulation. These data suggest that TL1A and DR3 is involved in atherosclerosis via the induction of pro-inflammatory cytokines/chemokines and decreasing plaque stability by inducing extracellular matrix degrading enzymes.

  4. An extract of Pueraria tuberosa tubers attenuates diabetic nephropathy by upregulating matrix metalloproteinase-9 expression in the kidney of diabetic rats.

    PubMed

    Tripathi, Yamini B; Shukla, Rashmi; Pandey, Nidhi; Pandey, Vivek; Kumar, Mohan

    2017-02-01

    Currently, no drug is available to directly target the signaling molecules involved in the pathogenesis of diabetic nephropathy (DN); only antihypertensive and antidiabetic drugs are in clinical use. In the present study, the therapeutic effects of a active fraction of tubers from Pueraria tuberosa (hereafter referred to as PTY-2) were investigated in streptozotocin (STZ)-diabetic rats with DN, with particular emphasis on its effects on extracellular matrix (ECM) accumulation and matrix metalloproteinase (Mmp)-9 expression in kidney tissue. Rats were injected with 55 mg/kg, i.p., STZ. After 40 days, rats were divided into groups as follows (n = 6 per group): Group 1, age-matched rats not injected with STZ (non-diabetic control); Group 2, STZ-diabetic DN rats; and Group 3, PTY-2 (30 mg/100 g, p.o.)-treated DN rats. After 20 days treatment, the effects of PTY-2 on serum urea and creatinine concentrations, urinary levels of glucose, creatinine, protein, and ketone bodies, and urine pH were determined. Kidney tissue was evaluated for Mmp-9 expression and histological changes. Blood glucose, serum urea, creatinine, and urine protein levels were significantly higher, and creatinine clearance was significantly lower, in Group 2 versus Group 1 rats. There was a higher degree of glomerulosclerosis, expansion of the mesangial matrix, and excess ECM deposition and eosinophilic casts in kidneys from Group 2 versus Group 1 rats. Furthermore, Mmp-9 activity and expression were significantly reduced in kidney homogenate of Group 2 versus Group 1 rats. Interestingly, PTY-2 treatment significantly reversed all these changes in DN rats. Treatment of DN rats with PTY-2 significantly attenuated the severity of DN by increasing the expression and activity of Mmp-9, consequently degrading the ECM accumulated in kidney tissue. © 2016 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  5. Novel Association between Plasma Matrix Metalloproteinase-9 and Risk of Incident Atrial Fibrillation in a Case-Cohort Study: The Atherosclerosis Risk in Communities Study

    PubMed Central

    Huxley, Rachel R.; Lopez, Faye L.; MacLehose, Richard F.; Eckfeldt, John H.; Couper, David; Leiendecker-Foster, Catherine; Hoogeveen, Ron C.; Chen, Lin Yee; Soliman, Elsayed Z.; Agarwal, Sunil K.; Alonso, Alvaro

    2013-01-01

    Background Previous cross-sectional studies have suggested that biomarkers of extracellular matrix remodelling are associated with atrial fibrillation (AF), but no prospective data have yet been published. Hence, we examine whether plasma matrix metalloproteinases (MMP) and their inhibitors are related to increased risk of incident AF. Methods We used a case-cohort design in the context of the prospective Atherosclerosis Risk in Communities (ARIC) study. From 13718 eligible men and women free from AF in 1990-92, we selected a stratified random sample of 500 individuals without and 580 with incident AF over a mean follow-up of 11.8 years. Using a weighted proportional hazards regression model, the relationships between MMP-1, MMP-2, MMP-9, tissue inhibitor of matrix metalloproteinase (TIMP)-1, TIMP-2 and C-terminal propeptide of collagen type-I with incident AF were examined after adjusting for confounders. Results In models adjusted for age, sex and race, all biomarkers were associated with AF, but only the relationship between plasma MMP-9 remained significant in the fully-adjusted model: each one standard deviation increase in MMP-9 was associated with 27% (95% Confidence Interval: 7% to 50%) increase in risk of AF with no evidence of an interaction with race or sex. Individuals with above mean levels of MMP-9 were more likely to be male, white and current smokers. Conclusions The findings suggest that elevated levels of MMP-9 are independently associated with increased risk of AF. However, given the lack of specificity of MMP-9 to atrial tissue, it remains to be determined whether the observed relationship reflects the impact of atrial fibrosis or more generalized fibrosis on risk of incident AF. PMID:23554968

  6. Evaluation of physiological risk factors, oxidant-antioxidant imbalance, proteolytic and genetic variations of matrix metalloproteinase-9 in patients with pressure ulcer.

    PubMed

    Latifa, Khlifi; Sondess, Sahli; Hajer, Graiet; Manel, Ben-Hadj-Mohamed; Souhir, Khelil; Nadia, Bouzidi; Abir, Jaballah; Salima, Ferchichi; Abdelhedi, Miled

    2016-07-11

    Pressure ulcer (PU) remains a common worldwide problem in all health care settings, it is synonymous with suffering. PU is a complex disease that is dependent on a number of interrelated factors. It involves multiple mechanisms such as physiological risk factors, chronic inflammation, oxidant-antioxidant imbalance and proteolytic attack on extracellular matrix by matrix metalloproteinases (MMP). Therefore, we propose that these wounds lead to molecular variations that can be detected by assessing biomarkers. In this study, we aimed to evaluate the major clinical elements and biological scars in Tunisian patients suffering from PU. Consistently, non-healing wound remains a challenging clinical problem. The complex challenges of the wound environment, involving nutrient deficiencies, bacterial infection, as well as the critical role played by inflammatory cells, should be considered because of their negative impact on wound healing. In addition, an imbalance between pro-oxidants and antioxidant systems seems to be more aggravated in patients with PU compared to healthy subjects. Of interest, this study provides further evidence to support a core role of the biological activity of MMP-9 in the pathogenesis of PU and indicates that the MMP9-1562 C/T (rs 3918242) functional polymorphism is associated with protection against this disease.

  7. Evaluation of physiological risk factors, oxidant-antioxidant imbalance, proteolytic and genetic variations of matrix metalloproteinase-9 in patients with pressure ulcer

    PubMed Central

    Latifa, Khlifi; Sondess, Sahli; Hajer, Graiet; Manel, Ben-Hadj-Mohamed; Souhir, Khelil; Nadia, Bouzidi; Abir, Jaballah; Salima, Ferchichi; Abdelhedi, Miled

    2016-01-01

    Pressure ulcer (PU) remains a common worldwide problem in all health care settings, it is synonymous with suffering. PU is a complex disease that is dependent on a number of interrelated factors. It involves multiple mechanisms such as physiological risk factors, chronic inflammation, oxidant–antioxidant imbalance and proteolytic attack on extracellular matrix by matrix metalloproteinases (MMP). Therefore, we propose that these wounds lead to molecular variations that can be detected by assessing biomarkers. In this study, we aimed to evaluate the major clinical elements and biological scars in Tunisian patients suffering from PU. Consistently, non-healing wound remains a challenging clinical problem. The complex challenges of the wound environment, involving nutrient deficiencies, bacterial infection, as well as the critical role played by inflammatory cells, should be considered because of their negative impact on wound healing. In addition, an imbalance between pro-oxidants and antioxidant systems seems to be more aggravated in patients with PU compared to healthy subjects. Of interest, this study provides further evidence to support a core role of the biological activity of MMP-9 in the pathogenesis of PU and indicates that the MMP9-1562 C/T (rs 3918242) functional polymorphism is associated with protection against this disease. PMID:27405842

  8. Differential Expression of Matrix Metalloproteinase-9 Gene in Wounds of Type 2 Diabetes Mellitus Cases With Susceptible -1562C>T Genotypes and Wound Severity.

    PubMed

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2014-06-01

    Coordinated extracellular matrix deposition is a prerequisite for proper wound healing which is mainly orchestrated by matrix metalloproteinases (MMPs). Diabetic wounds generally show compromised wound healing cascade and abnormal MMP9 concentration is one of the cause. Our group have recently shown that the polymorphism -1562 C>T in the promoter region of MMP9 gene is associated with pathogenesis of wound healing impairment in T2DM patients. In present study we have done expression profiling of MMP9 gene in the wound biopsy of DFU cases. Expression level of MMP9 mRNA was then compared with susceptible -1562 C>T genotypes (TT and CT) as well as with different grades of wounds. We also screened the promoter region of MMP9 gene to see the methylation state of CpGs present there. Our study suggests that levels of MMP9 mRNA increase significantly with the wound grades. Moreover, the MMP9 levels in diabetic wounds were also dependent on -1562 C>T polymorphism in the promoter region of MMP9. Diabetic wounds also showed a significant unmethylated status of MMP9 promoter compared to control wounds. In conclusion, The risk genotypes of -1562 C>T polymorphism along with lack of methylation of CpG sites in MMP9 gene promoter may result in altered expression of MMP9 in wounds of T2DM cases resulting into nonhealing chronic ulcers in them. © The Author(s) 2014.

  9. Interaction of plasminogen with dipeptidyl peptidase IV initiates a signal transduction mechanism which regulates expression of matrix metalloproteinase-9 by prostate cancer cells.

    PubMed Central

    Gonzalez-Gronow, M; Grenett, H E; Weber, M R; Gawdi, G; Pizzo, S V

    2001-01-01

    Both plasminogen (Pg) activation and matrix metalloproteinases (MMPs) are involved in the proteolytic degradation of extracellular matrix components, a requisite event for malignant cell metastasis. The highly invasive 1-LN human prostate tumour cell line synthesizes and secretes large amounts of Pg activators and MMPs. We demonstrate here that the Pg type 2 (Pg 2) receptor in these cells is composed primarily of the membrane glycoprotein dipeptidyl peptidase IV (DPP IV). Pg 2 has six glycoforms that differ in their sialic acid content. Only the highly sialylated Pg 2gamma, Pg 2delta and Pg 2epsilon glycoforms bind to DPP IV via their carbohydrate chains and induce a Ca(2+) signalling cascade; however, Pg 2epsilon alone is also able to significantly stimulate expression of MMP-9. We further demonstrate that the Pg-mediated invasive activity of 1-LN cells is dependent on the availability of Pg 2epsilon. This is the first demonstration of a direct association between the expression of MMP-9 and the Pg activation system. PMID:11284727

  10. Galangin and kaempferol suppress phorbol-12-myristate-13-acetate-induced matrix metalloproteinase-9 expression in human fibrosarcoma HT-1080 cells.

    PubMed

    Choi, Yu Jung; Lee, Young Hun; Lee, Seung-Taek

    2015-01-01

    Matrix metalloproteinase (MMP)-9 degrades type IV collagen in the basement membrane and plays crucial roles in several pathological implications, including tumorigenesis and inflammation. In this study, we analyzed the effect of flavonols on MMP-9 expression in phorbol-12-myristate-13-acetate (PMA)-induced human fibrosarcoma HT-1080 cells. Galangin and kaempferol efficiently decreased MMP-9 secretion, whereas fisetin only weakly decreased its secretion. Galangin and kaempferol did not affect cell viability at concentrations up to 30 μM. Luciferase reporter assays showed that galangin and kaempferol decrease transcription of MMP-9 mRNA. Moreover, galangin and kaempferol strongly reduce IκBα phosphorylation and significantly decrease JNK phosphorylation. These results indicate that galangin and kaempferol suppress PMA-induced MMP-9 expression by blocking activation of NF-κB and AP-1. Therefore, these flavonols could be used as chemopreventive agents to lower the risk of diseases involving MMP-9.

  11. Up-regulation of mRNA for matrix metalloproteinases-9 and -14 in advanced lesions of demyelinating canine distemper leukoencephalitis.

    PubMed

    Gröters, Sibylle; Alldinger, Susanne; Baumgärtner, Wolfgang

    2005-10-01

    Matrix metalloproteinases (MMPs) comprise a family of proteolytic zinc- and calcium-dependent enzymes that are capable of disrupting the blood-brain barrier and mediating the destruction of extracellular matrix and myelin components. MMPs are also involved in facilitating leukocyte migration into inflammatory sites of the central nervous system. To determine the cellular localization and the amount of mRNA for MMP-9, MMP-14 and a tissue inhibitor of metalloproteinases (TIMP-1) in dogs with spontaneous demyelinating distemper encephalitis, formalin-fixed paraffin-embedded cerebella were investigated by in situ hybridization using specific digoxigenin-labeled RNA probes. Additionally, immunohistochemistry was performed to characterize the different types of plaques of demyelinating leukoencephalitis. Furthermore, virus antigen and mRNA were detected by immunohistochemistry and in situ hybridization. Healthy control dogs revealed a weak signal for mRNA for MMP-9, MMP-14, and TIMP-1 in various numbers of neurons, astrocytes, microglial cells and oligodendrocytes. In the cerebella of dogs with distemper, a strong increase of both number and staining intensity of MMP-9, MMP-14, and TIMP-1 mRNA-expressing cells, mainly in subacute inflammatory lesions and chronic plaques, was observed. The number of cells expressing mRNA for MMP-9 and MMP-14 increased about two- to threefold compared to TIMP-1 mRNA-expressing cells, whereas staining intensity of individual cells was similar. In early lesions, especially astrocytes and activated macrophages/microglial cells displayed a positive signal for MMPs and TIMP-1, whereas in older lesions activated microglia/macrophages and infiltrating lymphocytes represented the main source for MMP-9, MMP-14, and TIMP-1 mRNA synthesis as revealed by double-labeling techniques. In summary, the proportionally higher increase of MMP mRNA-expressing cells might indicate an MMP/TIMP imbalance as a cause for lesion initiation and progression in

  12. Matrix metalloproteinase-9 expression is enhanced in renal parietal epithelial cells of zucker diabetic Fatty rats and is induced by albumin in in vitro primary parietal cell culture.

    PubMed

    Zhang, Yuanyuan; George, Jasmine; Li, Yun; Olufade, Rebecca; Zhao, Xueying

    2015-01-01

    As a subfamily of matrix metalloproteinases (MMPs), gelatinases including MMP-2 and MMP-9 play an important role in remodeling and homeostasis of the extracellular matrix. However, conflicting results have been reported regarding their expression level and activity in the diabetic kidney. This study investigated whether and how MMP-9 expression and activity were changed in glomerular epithelial cells upon albumin overload. In situ zymography, immunostaining and Western blot for renal MMP gelatinolytic activity and MMP-9 protein expression were performed in Zucker lean and Zucker diabetic rats. Confocal microscopy revealed a focal increase in gelatinase activity and MMP-9 protein in the glomeruli of diabetic rats. Increased glomerular MMP-9 staining was mainly observed in hyperplastic parietal epithelial cells (PECs) expressing claudin-1 in the diabetic kidneys. Interestingly, increased parietal MMP-9 was often accompanied by decreased staining for podocyte markers (nephrin and podocalyxin) in the sclerotic area of affected glomeruli in diabetic rats. Additionally, urinary excretion of podocyte marker proteins was significantly increased in association with the levels of MMP-9 and albumin in the urine of diabetic animals. To evaluate the direct effect of albumin on expression and activity of MMP-9, primary cultured rat glomerular PECs were incubated with rat serum albumin (0.25 - 1 mg/ml) for 24 - 48 hrs. MMP-9 mRNA levels were significantly increased following albumin treatment. Meanwhile, albumin administration resulted in a dose-dependent increase in MMP-9 protein and activity in culture supernatants of PECs. Moreover, albumin activated p44/42 mitogen-activated protein kinase (MAPK) in PECs. Inhibition of p44/42 MAPK suppressed albumin-induced MMP-9 secretion from glomerular PECs. Taken together, we have demonstrated that an up-regulation of MMP-9 in activated parietal epithelium is associated with a loss of adjacent podocytes in progressive diabetic nephropathy

  13. Matrix metalloproteinase-9, -10, and -12, MDM2 and p53 expression in mouse liver during dimethylnitrosamine-induced oxidative stress and genomic injury.

    PubMed

    Syed, Ismail; Rathod, Jasmine; Parmar, Mayur; Corcoran, George B; Ray, Sidhartha D

    2012-06-01

    Treatment during early tumor development has greater success because tissue growth remains largely confined to its original locus. At later stages, malignant cells migrate from their original location, invade surrounding normal areas, and can disseminate widely throughout the body. Remodeling of the extracellular matrix (ECM) serves as a key facilitator of this dissemination. Proteolytic enzymes including plasmin and matrix metalloproteinases (MMPs) play an integral role in degrading the surrounding ECM proteins and clearing a path for tumor cell migration. Specific MMPs are highly expressed late during malignant tumor invasion. It is not understood whether early changes in MMPs influence apoptotic and necrotic cell death, processes known to govern the early stages of carcinogenesis. Similarly, the interaction between MDM2 and p53 is tightly controlled by a complex array of post-translational modifications, which in turn dictates the stability and activity of both p53 and MDM2. The present studies examine the hypothesis that model hepatotoxin dimethylnitrosamine (DMN), which is also a model carcinogen, will induce the MMP family of proteins after administration in hepatotoxic doses. Doses of 25, 50, and 100 mg/kg DMN were administered i.p. to male C3H mice. Changes in parameters associated with apoptotic and necrotic cell death, DNA damage, cell proliferation, and extracellular proteinases were examined in liver at 24 h. Serum ALT activity, oxidative stress [malondialdehyde], and caspase-activated DNAse mediated DNA laddering increased in a dose-dependent manner, as did the level of MDM2 protein. MMP-9, -10 and -12 (gelatinase-B, stromelysin-2, macrophage elastase), and p53 protein levels increased following 25 mg/kg DMN, but were successively decreased after higher DMN doses. The results of this study demonstrate changes in MDM2 and MMPs during DMN-induced acute liver injury and provide a plausible linkage between DMN-induced oxidative stress-mediated genomic

  14. Dynamics of activities of matrix metalloproteinases-9 and -2, and the tissue inhibitors of MMPs in fetal fluid compartments during gestation and at parturition in the mare.

    PubMed

    Oddsdóttir, Charlotta; Riley, Simon C; Leask, Rosemary; Shaw, Darren J; Aurich, Christine; Palm, Franziska; Fowden, Abigail L; Ricketts, Sidney W; Watson, Elaine D

    2011-04-01

    During late gestation in the mare, rapid fetal growth is accompanied by considerable placental growth and further invasion of the endometrium by microvilli. This growth requires extensive remodeling of the extracellular matrix (ECM). In early pregnancy, we know that matrix metalloproteinase (MMP)-9 and -2 are involved in the endometrial invasion during endometrial cup formation. The present study investigated whether MMPs are found in fetal fluids later in gestation and during parturition, and if there was a difference in their activities between normal and preterm delivery. Amniotic fluids were collected from pony mares during the latter half of gestation, and amniotic and allantoic fluids from pony and thoroughbred mares at foaling. The fluids were analysed for the activity of MMP-9 and -2, and TIMPs using zymography techniques. There was an increase (P = 0.002) in activity of latent MMP-9 when approaching normal foaling, and a decrease (P < 0.001) during foaling. MMP-2 activity did not change through gestation, or during foaling. When comparing samples from pregnancies resulting in preterm deliveries with samples from foaling mares, the activity of MMP-9 was lower (P < 0.001) and MMP-2 activity was higher (P = 0.004) during foaling than preceding preterm delivery. The activity of MMP-9 was lower (P = 0.002) prior to preterm delivery than before delivery of a live foal at term, whereas no difference (P = 0.07) was demonstrated for latent MMP-2 activity when comparing the same groups. The activity of TIMP-2 was higher (P < 0.001) in the pre-parturient period before normal foaling than preceding preterm delivery. These results suggest that MMPs may have a role as markers for high risk pregnancy in the mare. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  15. Effects of macelignan isolated from Myristica fragrans Houtt. on UVB-induced matrix metalloproteinase-9 and cyclooxygenase-2 in HaCaT cells.

    PubMed

    Anggakusuma; Yanti; Hwang, Jae-Kwan

    2010-02-01

    UVB irradiation (290-320 nm) is the most damaging component of the UV spectrum and causes both direct and indirect damage to the basal cell layer of the epidermis; this results in the activation of a number of signaling pathways involved in pathophysiological processes in the skin, such as photoaging and inflammation. In photoaging UVB irradiation promotes degradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) and, in inflammation, UVB irradiation promotes the expression of inducible cyclooxygenase (COX-2), leading to overproduction of inflammatory mediators. We first investigated the protective effects of macelignan from Myristica fragrans Houtt. on immortalized human keratinocytes (HaCaT) against UVB damage. We then explored the inhibitory effects of macelignan on UVB-induced MMP-9 and COX-2 and investigated the molecular mechanism underlying those effects. HaCaT cells were treated with macelignan for the indicated times followed by irradiation with UVB. Secretion of MMP-9 was measured by gelatin zymography. Expression of COX-2, mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinase/Akt (PI3K/Akt), c-Fos, c-Jun, and CREB were assayed by western analysis. Macelignan at a concentration of 0.1-1 microM increased the viability of HaCaT cells following UVB irradiation and inhibited MMP-9 secretion and COX-2 expression in a concentration-dependent manner. An inhibitory effect was also seen in the signal transduction network, where macelignan treatment reduced the activation of UVB-induced MAPKs, PI3K/Akt, and their downstream transcription factors. These results suggest that macelignan protects skin keratinocytes from UVB-induced damage and inhibits MMP-9 and COX-2 expression by attenuating the activation of MAPKs and PI3K/Akt. Copyright 2009 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Matrix metalloproteinase-9 is up-regulated by CCL19/CCR7 interaction via PI3K/Akt pathway and is involved in CCL19-driven BMSCs migration.

    PubMed

    Zhang, Wei; Tu, Guanjun; Lv, Chen; Long, Jun; Cong, Lin; Han, Yaxin

    2014-08-22

    C-C chemokine receptor 7 (CCR7) and its ligands CCL19 contributes to the directional migration of certain cancer cell lines, but its role in the migration of BMSCs remains vague. The aim of this study was to determine the possible interaction between CCL19-induced conditions and matrix metalloproteinases-9 (MMP9) expression in BMSCs. Cell migration using Transwell assay indicated that activation of CCR7 by its specific ligand, exogenous chemokine ligand 19 (CCL19), was associated with a significant linear increase. Western blot and real-time PCR indicated that CCL19/CCR7 significantly upregulated expression of MMP9, which is related to metastasis-associated genes. The CCL19/CCR7 interaction significantly enhanced phosphorylation of Akt, as measured by Western blot. P-Akt and MMP9 protein expression exhibited a time-dependent pattern, and the peak was at 48h. LY294002 significantly abolished the effects of exogenous CCL19. These results suggest that CCL19/CCR7 contributes to the migration of BMSCs by upregulating MMP9 potentially via the PI3K/Akt pathway.

  17. Propofol post-conditioning protects the blood brain barrier by decreasing matrix metalloproteinase-9 and aquaporin-4 expression and improves the neurobehavioral outcome in a rat model of focal cerebral ischemia-reperfusion injury.

    PubMed

    Ji, Feng-Tao; Liang, Jian-Jun; Miao, Li-Ping; Wu, Qiang; Cao, Ming-Hui

    2015-08-01

    Propofol, an intravenous anesthetic, inhibits neuronal apoptosis induced by ischemic stroke, protects the brain from ischemia/reperfusion injury and improves neuronal function. However, whether propofol is able to protect the blood brain barrier (BBB) and the underlying mechanisms have remained to be elucidated. In the present study, a rat model of cerebral ischemia/reperfusion was established, using a thread embolism to achieve middle cerebral artery occlusion. Rats were treated with propofol (propofol post-conditioning) or physiological saline (control) administered by intravenous injection 30 min following reperfusion. Twenty-four hours following reperfusion, neurobehavioral manifestations were assessed. The levels of cephaloedema, damage to the BBB and expression levels of matrix metalloproteinase-9 (MMP-9), aquaporin-4 (AQP-4) and phosphorylated c-Jun N-terminal kinase (pJNK) were determined in order to evaluate the effects of propofol on the BBB. In comparison to the cerebral ischemia/reperfusion group, the levels of brain water content and Evans blue content, as well as the expression levels of MMP-9, AQP-4 and pJNK were significantly reduced in the propofol post-conditioning group. These results indicated that propofol post-conditioning improved the neurobehavioral manifestations and attenuated the BBB damage and cephaloedema induced following cerebral ischemia/reperfusion. This effect may be due to the inhibition of MMP-9 and AQP-4 expression, and the concurrent decrease in JNK phosphorylation.

  18. Low-level transcutaneous electrical stimulation of the auricular branch of vagus nerve ameliorates left ventricular remodeling and dysfunction by downregulation of matrix metalloproteinase 9 and transforming growth factor β1.

    PubMed

    Wang, Zhuo; Yu, Lilei; Huang, Bing; Wang, Songyun; Liao, Kai; Saren, Gaowa; Zhou, Xiaoya; Jiang, Hong

    2015-04-01

    Vagus nerve stimulation improves left ventricular (LV) remodeling by downregulation of matrix metalloproteinase 9 (MMP-9) and transforming growth factor β1 (TGF-β1). Our previous study found that low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve (LL-TS) could be substituted for vagus nerve stimulation to reverse cardiac remodeling. So, we hypothesize that LL-TS could ameliorate LV remodeling by regulation of MMP-9 and TGF-β1 after myocardial infarction (MI). Twenty-two beagle dogs were randomly divided into a control group (MI was induced by permanent ligation of the left coronary artery, n = 8), an LL-TS group (MI with long-term intermittent LL-TS, n = 8), and a normal group (sham ligation without stimulation, n = 6). At the end of 6 weeks follow-up, LL-TS significantly reduced LV end-systolic and end-diastolic dimensions, improved ejection fraction and ratio of early (E) to late (A) peak mitral inflow velocity. LL-TS attenuated interstitial fibrosis and collagen degradation in the noninfarcted myocardium compared with the control group. Elevated level of MMP-9 and TGF-β1 in LV tissue and peripheral plasma were diminished in the LL-TS treated dogs. LL-TS improves cardiac function and prevents cardiac remodeling in the late stages after MI by downregulation of MMP-9 and TGF-β1 expression.

  19. Epigallocatechin-3-gallate inhibits tax-dependent activation of nuclear factor kappa B and of matrix metalloproteinase 9 in human T-cell lymphotropic virus-1 positive leukemia cells.

    PubMed

    Harakeh, Steve; Diab-Assaf, Mona; Azar, Rania; Hassan, Hani Mutlak Abdulla; Tayeb, Safwan; Abou-El-Ardat, Khalil; Damanhouri, Ghazi Abdullah; Qadri, Ishtiaq; Abuzenadah, Adel; Chaudhary, Adeel; Kumosani, Taha; Niedzwiecki, Aleksandra; Rath, Mathias; Yacoub, Haitham; Azhar, Esam; Barbour, Elie

    2014-01-01

    Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol molecule from green tea and is known to exhibit antioxidative as well as tumor suppressing activity. In order to examine EGCG tumor invasion and suppressing activity against adult T-cell leukemia (ATL), two HTLV-1 positive leukemia cells (HuT-102 and C91- PL) were treated with non-cytotoxic concentrations of EGCG for 2 and 4 days. Proliferation was significantly inhibited by 100 μM at 4 days, with low cell lysis or cytotoxicity. HTLV-1 oncoprotein (Tax) expression in HuT- 102 and C91-PL cells was inhibited by 25 μM and 125 μM respectively. The same concentrations of EGCG inhibited NF-kB nuclearization and stimulation of matrix metalloproteinase-9 (MMP-9) expression in both cell lines. These results indicate that EGCG can inhibit proliferation and reduce the invasive potential of HTLV-1- positive leukemia cells. It apparently exerted its effects by suppressing Tax expression, manifested by inhibiting the activation of NF-kB pathway and induction of MMP-9 transcription in HTLV-1 positive cells.

  20. Matrix metalloproteinase-9 expression in retinal ganglion cell layer and effect of topically applied brimonidine tartrate 0.2% therapy on this expression in an endothelin-1-induced optic nerve ischemia model.

    PubMed

    Aktas, Zeynep; Gurelik, Gokhan; Göçün, Pinar Uyar; Akyürek, Nalan; Onol, Merih; Hasanreisoğlu, Berati

    2010-06-01

    The purpose of this research is to investigate the expression of matrix metalloproteinase-9 (MMP-9) in retinal ganglion cells (RGC) and the impact of topically applied brimonidine tartrate 0.2% (BMD) on this expression in an endothelin-1 (ET-1)-induced chronic optic nerve (ON) ischemia model of rabbit. Osmotically driven minipumps were implanted in one eye of 16 New Zealand albino rabbits to deliver ET-1 at the constant rate of 0.5 microl/h for 2 weeks. ET-1 was given with (group 3) and without topical BMD therapy (group 1). Groups 2 and 4 were taken as controls. MMP-9 expression by immunohistochemically and proportion of cells undergoing apoptosis in RGC layer were investigated. The correlation between the MMP-9 immunopositivity and the proportion of cells undergoing apoptosis in the RGC layer was evaluated. MMP-9 immunopositivity was found to be significantly higher in both groups 1 and 3 compared to that of the controls. There was no difference between groups 1 and 3 regarding MMP-9 expression (p = 0.495). A positive correlation was found between the proportion of cells undergoing apoptosis and MMP-9 expressions in the RGC layer in group 1 (p = 0.031, r = 0.754). MMP-9 expression in the RGC layer seems to significantly increase in the ET-1-induced chronic ON ischemia model. Topical BMD therapy does not seem to affect this MMP-9 expression.

  1. Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses.

    PubMed

    Abdulkhalek, Samar; Szewczuk, Myron R

    2013-11-01

    The precise mechanism(s) by which intracellular TOLL-like receptors (TLRs) become activated by their ligands remains unclear. Here, we report a molecular organizational G-protein coupled receptor (GPCR) signaling platform to potentiate a novel mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP-9) cross-talk in alliance with neuromedin B GPCR, all of which form a tripartite complex with TLR-7 and -9. siRNA silencing Neu1, MMP-9 and neuromedin-B GPCR in RAW-blue macrophage cells significantly reduced TLR7 imiquimod- and TLR9 ODN1826-induced NF-κB (NF-κB-pSer(536)) activity. Tamiflu, specific MMP-9 inhibitor, neuromedin B receptor specific antagonist BIM23127, and the selective inhibitor of whole heterotrimeric G-protein complex BIM-46174 significantly block nucleic acid-induced TLR-7 and -9 MyD88 recruitment, NF-κB activation and proinflammatory TNFα and MCP-1 cytokine responses. For the first time, Neu1 clearly plays a central role in mediating nucleic acid-induced intracellular TLR activation, and the interactions involving NMBR-MMP9-Neu1 cross-talk constitute a novel intracellular TLR signaling platform that is essential for NF-κB activation and pro-inflammatory responses.

  2. The nitric oxide donor DETA-NONOate decreases matrix metalloproteinase-9 expression and activity in rat aortic smooth muscle and abdominal aortic explants.

    PubMed

    Sinha, Indranil; Hannawa, Kevin K; Ailawadi, Gorav; Woodrum, Derek T; Ford, John W; Henke, Peter K; Stanley, James C; Eagleton, Matthew J; Upchurch, Gilbert R

    2006-01-01

    Our objective was to examine the role of an exogenous nitric oxide (NO) donor, DETA-NONOate (DETA), on matrix metalloproteinase (MMP)-9, MMP-2, and tissue inhibitor of matrix metalloproteinases (TIMP)-1 expression and activity in interleukin (IL)-1beta-induced rat aortic smooth muscle cells (RA-SMCs) and rat aortic explants (RAEs). RA-SMCs were incubated with IL-1beta (2 ng/ml), an inflammatory cytokine known to induce MMP-9 expression, and increasing concentrations of DETA (0, 1.0, 10, 100 microM; n = 3/group) for 48 hr. RAEs were incubated with IL-1beta (2 ng/mL) and increasing concentrations of DETA (0, 5.0, 50, 100, and 500 microM; n = 3/group) for 48 hr. Media were collected and assayed for NO(x) by the Griess reaction and MMP-9 activity by zymography. Messenger RNA (mRNA) was extracted from cells and analyzed for MMP-9, MMP-2, and TIMP-1 expression levels by quantitative real-time reverse-transcriptase polymerase chain reaction. All statistical analyses were performed by analysis of variance. In RA-SMCs and RAEs, DETA administration resulted in a dose-dependent increase in media NOx concentration (RA-SCM p < 0.01, RAE p < 0.01) and a concurrent decrease in both MMP-9 expression (RASMC p = 0.01, RAE p = 0.01) and activity (RASMC p = 0.04, RAE p = 0.006). There were no significant differences seen in MMP-2 and TIMP-1 expression or activity in response to DETA exposure. DETA decreased IL-1beta-induced MMP-9 expression and activity in both RA-SMCs and RAEs in a dose-dependent fashion. In addition, DETA administration had no effect on MMP-2 or TIMP-1 expression or activity in vitro. These data suggest that NO donors may be beneficial in decreasing MMP-9 levels and might serve to inhibit MMP-9-dependent vessel wall remodeling seen during abdominal aortic aneurysm formation.

  3. The relationship between the first episode of wheezing and matrix metalloproteinases-9 and MMP-2 and tissue inhibitors of MMP-1 levels in preterm infants

    PubMed Central

    Sezer, Rabia Gonul; Aydemir, Gokhan; Bozaykut, Abdulkadir; Hira, Serdar; Tanju, Ilhan Asya; Özcan, Ömer

    2013-01-01

    AIMS: Matrix metalloproteinases (MMP) have been associated with neonatal lung morbidity and MMP dysregulation contributes to the pathology of chronic and acute lung disorders. Most of the previous studies were performed in the 1st weeks of life of the preterm newborns. There are no data on the serum levels of MMP-2, MMP-9 or tissue inhibitors of matrix metalloproteinases (TIMP-1) from preterm infants recovering from lung morbidities. We aimed to compare MMP-2, MMP-9 and TIMP-1 levels in preterm and term infants hospitalized with their first episode of wheezing. METHODS: We prospectively evaluated 18 preterm infants with a history of chronic lung disease, respiratory distress syndrome or oxygen therapy and 14 age- and sex-matched term infants who were admitted for a first episode of wheezing. We quantified total serum concentrations of MMP-2, MMP-9 and TIMP-1 to assess whether these serum markers levels were associated with the first episode of wheezing in infants with a history of oxygen therapy during the neonatal period. RESULTS: Upon hospitalization, MMP-2 and TIMP-1 levels were higher in preterm infants than in term infants. In contrast, there was no significant relationship between MMP-9 levels or the MMP-9/TIMP-1 ratio between preterm and term infants. The area under the receiver operating characteristic curve for MMP-2 was 0.70 (95% confidence interval [CI] 0.51-0.89). The area under the curve for TIMP-1 was 0.78 (95% CI 0.61-0.94). MMP-9, MMP-2 and TIMP-1 levels did not correlate with gestational age, gender or severity of wheezing. CONCLUSION: The negative proportion of MMP-9 to TIMP-1 that we detected in term infants was not present in preterm infants. The balance of MMP-9 to TIMP-1 may have been disrupted by lung damage in the premature infants. Overproduction of MMP-2 and TIMP-1 in the serum may be associated with the pathogenesis of wheezing in preterm infants. PMID:24250734

  4. Differential expression of Low density lipoprotein Receptor-related Protein 1 (LRP-1) and matrix metalloproteinase-9 (MMP-9) in prostate gland: From normal to malignant lesions.

    PubMed

    Gilardoni, Mónica B; Remedi, María M; Oviedo, Mabel; Dellavedova, Tristán; Sarría, Juan P; Racca, Laura; Dominguez, Mariana; Pellizas, Claudia G; Donadio, Ana C

    2017-01-01

    Metalloproteinases (MMPs) are relevant modulators of inflammation, tumor microenvironment, cancer invasion and metastasis. They can be regulated by the Low density lipoprotein Receptor-related Protein 1 (LRP-1), a receptor reported to mediate the clearance of lipoproteins, extracellular matrix (ECM) macromolecules and proteinases. The aim of this study was to evaluate the expression of LRP-1, MMP-2 and MMP-9 across various grades of prostatic diseases as benign prostatic hyperplasia (BPH), BPH plus prostatitis (BPH+P), high grade prostatic intraepithelial neoplasia (HGPIN) and prostate cancer (PCa). LRP-1 was analyzed using immunohistochemistry and MMPs proteolytic activity by zymography in prostate tissues with different prostatic diseases. LRP-1 was detected in epithelial cells in BPH (16/18), BPH+P (21/21) and HGPIN (6/6), with a staining intensity of 1+, 1+/2+ and 3+, respectively. In PCa, LRP-1 was absent in 19/27 samples while a low expression was observed in 8/27 biopsies. MMP-9 activity was higher and statistically significant in PCa than in BPH (p≤0.01). Considering that LRP-1, by mediating the clearance of MMPs, is involved in the regulation of ECM remodeling and cell migration, we conclude that a decreased expression of LRP-1 could be involved with the increasing activity of MMPs shown in cancers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9.

    PubMed

    Li, Chenglin; Zhao, Yuanwei; Yang, Dan; Yu, Yanyan; Guo, Hao; Zhao, Ziming; Zhang, Bei; Yin, Xiaoxing

    2015-02-01

    Matrix metalloproteinases (MMPs) have been regarded as major critical molecules assisting tumor cells during metastasis, for excessive ECM (ECM) degradation, and cancer cell invasion. In the present study, in vitro and in vivo assays were employed to examine the inhibitory effects of kaempferol, a natural polyphenol of flavonoid family, on tumor metastasis. Data showed that kaempferol could inhibit adhesion, migration, and invasion of MDA-MB-231 human breast carcinoma cells. Moreover, kaempferol led to the reduced activity and expression of MMP-2 and MMP-9, which were detected by gelatin zymography, real-time PCR, and western blot analysis, respectively. Further elucidation of the mechanism revealed that kaempferol treatment inhibited the activation of transcription factor activator protein-1 (AP-1) and MAPK signaling pathway. Moreover, kaempferol repressed phorbol-12-myristate-13-acetate (PMA)-induced MMP-9 expression and activity through suppressing the translocation of protein kinase Cδ (PKCδ) and MAPK signaling pathway. Our results also indicated that kaempferol could block the lung metastasis of B16F10 murine melanoma cells as well as the expression of MMP-9 in vivo. Taken together, these results demonstrated that kaempferol could inhibit cancer cell invasion through blocking the PKCδ/MAPK/AP-1 cascade and subsequent MMP-9 expression and its activity. Therefore, kaempferol might act as a therapeutic potential candidate for cancer metastasis.

  6. N2 non-thermal atmospheric pressure plasma promotes wound healing in vitro and in vivo: Potential modulation of adhesion molecules and matrix metalloproteinase-9.

    PubMed

    Kang, Sung Un; Choi, Jae Won; Chang, Jae Won; Kim, Kang Il; Kim, Yeon Soo; Park, Ju Kyeong; Kim, Yang Eun; Lee, Yun Sang; Yang, Sang Sik; Kim, Chul-Ho

    2017-02-01

    Advances in physics and biology have made it possible to apply non-thermal atmospheric pressure plasma (NTP) in the biomedical field. Although accumulating evidence suggests that NTP has various medicinal effects, such as facilitating skin wound healing on exposed tissue while minimizing undesirable tissue damage, the underlying molecular mechanisms are not fully understood. In this study, NTP generated from N2 optimized wound healing in the scratch wound healing assay. In addition, matrix metalloproteinase (MMP)-9 expression and enzyme activity increased and the urokinase-type plasminogen activator (uPA) system was activated after NTP treatment. We also showed that NTP treatment increased Slug and TCF8/ZEB1 expression and decreased that of E-cadherin, suggesting induction of the epithelial-to-mesenchymal transition (EMT). The effect of N2 NTP was verified on rat wound model. Taken together, these results suggest that N2 NTP promotes wound healing by inducing the EMT and activating the MMP-9/uPA system. These findings show the therapeutic potential of NTP for skin wound healing.

  7. Matrix Metalloproteinase-9 Leads to Claudin-5 Degradation via the NF-κB Pathway in BALB/c Mice with Eosinophilic Meningoencephalitis Caused by Angiostrongylus cantonensis

    PubMed Central

    Chiu, Ping-Sung; Lai, Shih-Chan

    2013-01-01

    The epithelial barrier regulates the movement of ions, macromolecules, immune cells and pathogens. The objective of this study was to investigate the role of the matrix metalloproteinase (MMP)-9 in the degradation of tight junction protein during infection with rat nematode lungworm Angiostrongylus cantonensis. The results showed that phosphorylation of IκB and NF-κB was increased in mice with eosinophilic meningoencephalitis. Treatment with MG132 reduced the phosphorylation of NF-κB and the activity of MMP-9, indicating upregulation of MMP-9 through the NF-κB signaling pathway. Claudin-5 was reduced in the brain but elevated in the cerebrospinal fluid (CSF), implying that A. cantonensis infection caused tight junction breakdown and led to claudin-5 release into the CSF. Degradation of claudin-5 coincided with alteration of the blood-CSF barrier permeability and treatment with the MMP inhibitor GM6001 attenuated the degradation of claudin-5. These results suggested that degradation of claudin-5 was caused by MMP-9 in angiostrongyliasis meningoencephalitis. Claudin-5 could be used for the pathophysiologic evaluation of the blood-CSF barrier breakdown and tight junction disruption after infection with A. cantonensis. PMID:23505411

  8. T Cells Promote Bronchial Epithelial Cell Secretion of Matrix Metalloproteinase-9 via a C-C Chemokine Receptor Type 2 Pathway: Implications for Chronic Lung Allograft Dysfunction.

    PubMed

    Pain, M; Royer, P-J; Loy, J; Girardeau, A; Tissot, A; Lacoste, P; Roux, A; Reynaud-Gaubert, M; Kessler, R; Mussot, S; Dromer, C; Brugière, O; Mornex, J-F; Guillemain, R; Dahan, M; Knoop, C; Botturi, K; Pison, C; Danger, R; Brouard, S; Magnan, A

    2017-06-01

    Chronic lung allograft dysfunction (CLAD) is the major limitation of long-term survival after lung transplantation. CLAD manifests as bronchiolitis obliterans syndrome (BOS) or restrictive allograft syndrome (RAS). Alloimmune reactions and epithelial-to-mesenchymal transition have been suggested in BOS. However, little is known regarding the role of allogenicity in epithelial cell differentiation. Primary human bronchial epithelial cells (BECs) were treated with activated T cells in the presence or absence of transforming growth factor (TGF)-β. The expression of epithelial and mesenchymal markers was investigated. The secretion of inflammatory cytokines and matrix metalloproteinase (MMP)-9 was measured in culture supernatants and in plasma from lung transplant recipients (LTRs): 49 stable, 29 with BOS, and 16 with RAS. We demonstrated that C-C motif chemokine 2 secreted by T cells supports TGF-β-induced MMP-9 production by BECs after binding to C-C chemokine receptor type 2. Longitudinal investigation in LTRs revealed a rise in plasma MMP-9 before CLAD onset. Multivariate analysis showed that plasma MMP-9 was independently associated with BOS (odds ratio [OR] = 6.19, p = 0.002) or RAS (OR = 3.9, p = 0.024) and predicted the occurrence of CLAD 12 months before the functional diagnosis. Thus, immune cells support airway remodeling through the production of MMP-9. Plasma MMP-9 is a potential predictive biomarker of CLAD. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  9. Involvement of Matrix Metalloproteinase-9 in Amyloid-β 1–42–Induced Shedding of the Pericyte Proteoglycan NG2

    PubMed Central

    Schultz, Nina; Nielsen, Henrietta M.; Minthon, Lennart; Wennström, Malin

    2014-01-01

    Abstract Deposition of amyloid-β (Aβ) 1–42, the major component of senile plaques characteristic of Alzheimer disease, affects brain microvascular integrity and causes blood-brain barrier dysfunction, increased angiogenesis, and pericyte degeneration. To understand the cellular events underlying Aβ1–42 effects on microvascular alterations, we investigated whether different aggregation forms of Aβ1–42 affect shedding of the pericyte proteoglycan NG2 and whether they affect proteolytic cleavage mediated by matrix metalloproteinase (MMP)-9. We found decreased levels of soluble NG2, total MMP-9, and MMP-9 activity in pericyte culture supernatants in response to fibril-enriched preparations of Aβ1–42. Conversely, oligomer-enriched preparations of Aβ1–42 increased soluble NG2 levels in the supernatants. This increase was ablated by the MMP-9/MMP-2 inhibitor SB-3CT. There was also a trend toward increased MMP-9 activity observed after oligomeric Aβ1–42 exposure. Our results, demonstrating an Aβ1–42 aggregation-dependent effect on levels of NG2 and MMP-9, support previous studies showing an impact of Aβ1–42 on vascular integrity and thereby add to our understanding of mechanisms behind the microvascular changes commonly found in patients with Alzheimer disease. PMID:24918635

  10. Pseudomonas aeruginosa quorum-sensing signaling molecule N-3-oxododecanoyl homoserine lactone induces matrix metalloproteinase 9 expression via the AP1 pathway in rat fibroblasts.

    PubMed

    Nakagami, Gojiro; Minematsu, Takeo; Morohoshi, Tomohiro; Yamane, Takumi; Kanazawa, Toshiki; Huang, Lijuan; Asada, Mayumi; Nagase, Takashi; Ikeda, Shin-ichi; Ikeda, Tsukasa; Sanada, Hiromi

    2015-01-01

    Quorum sensing is a cell-to-cell communication mechanism, which is responsible for regulating a number of bacterial virulence factors and biofilm maturation and therefore plays an important role for establishing wound infection. Quorum-sensing signals may induce inflammation and predispose wounds to infection by Pseudomonas aeruginosa; however, the interaction has not been well investigated. We examined the effects of the P. aeruginosa las quorum-sensing signal, N-3-oxo-dodecanoyl homoserine lactone (3OC12-HSL), on matrix metalloproteinase (MMP) 9 expression in Rat-1 fibroblasts. 3OC12-HSL upregulated the expression of the MMP9 gene bearing an activator protein-1 (AP-1) binding site in the promoter region. We further investigated the mechanism underlying this effect. c-Fos gene expression increased rapidly after exposure to 3OC12-HSL, and nuclear translocation of c-Fos protein was observed; both effects were reduced by pretreatment with an AP-1 inhibitor. These results suggest that 3OC12-HSL can alter MMP9 gene expression in fibroblasts via the AP-1 signaling pathway.

  11. Simvastatin, an HMG-CoA reductase inhibitor, reduced the expression of matrix metalloproteinase-9 (Gelatinase B) in osteoblastic cells and HT1080 fibrosarcoma cells.

    PubMed

    Thunyakitpisal, Pasutha D; Chaisuparat, Risa

    2004-04-01

    MMP-9 or Gelatinase B, a member of the matrix metalloproteinase family (MMPs), plays important roles in physiological events such as tissue remodeling and in pathological processes that lead to destructive bone diseases, including osteoarthritis and periodontitis. In addition to its effect on the increase of total bone mass, statin (an HMG-CoA reductase inhibitor) suppresses the expression of MMPs. In this study, we proposed that simvastatin reduces MMP-9 expression in osteoblasts and HT1080 fibrosarcoma cell line. Gelatin zymography, Western blot analysis and reverse transcriptase-PCR were used to investigate the effects of simvastatin on MMP-9 in primary calvaria cells, U2-OS osteosarcoma cells, and HT1080 fibrosarcoma cells. The results from gelatin zymography and Western blot analysis revealed that simvastatin suppressed MMP-9 activity in these cells in concentration- and time-dependent manners. The effective concentrations of simvastatin were 100 - 500 nM, 5 - 15 microM, and 2.5 - 10 microM in primary calvaria, U2-OS, and HT1080 cells, respectively. Collectively, these results suggest that simvastatin is a potent drug for inhibition of MMP-9 expression in osteoblastic cells and HT1080 fibrosarcoma cells.

  12. 5-Azacytidine regulates matrix metalloproteinase-9 expression, and the migration and invasion of human fibrosarcoma HT1080 cells via PI3-kinase and ERK1/2 pathways.

    PubMed

    Yu, Seon-Mi; Kim, Song Ja

    2016-09-01

    Abnormal methylation of promoter CpG islands is one of the hallmarks of cancer cells, and is catalyzed by DNA methyltransferases. 5-azacytidine (5-aza C), a methyltransferase inhibitor, can cause demethylation of promoter regions of diverse genes. Epigenetic processes contribute to the regulation of matrix metalloproteinase (MMP) expression. However, little is known about the mechanisms and effects of 5-aza C on the invasive and migratory capacities of human fibrosarcoma HT1080 cells. In the present study, we found that 5-aza C induces MMP-9 activity, as determined by zymography. HT1080 cell proliferation was determined following 5-aza C administration by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell cycle was examined by flow cytometry. 5-aza C treatment inhibited cell proliferation without affecting cell viability. Furthermore, 5-aza C significantly promoted migration and invasion of HT1080 cells. 5-aza C treatment enhanced phosphorylation of extracellular signal-regulated kinase (ERK) and phosphoinositide (PI)3-kinase/Akt, and their inhibitors blocked MMP-9 activity induction, and cellular invasion and migration. Together, these findings suggest that promoter methylation may be one of the mechanisms modulating MMP-9 levels in HT1080 cells, and that 5-aza C-induced MMP-9 production is associated with the activation of ERK and PI3-kinase/Akt signaling pathways.

  13. Ureaplasma Infection Mediated Release of Matrix Metalloproteinase-9 and PGP – a Novel Mechanism of Preterm Rupture of Membranes and Chorioamnionitis

    PubMed Central

    Lal, Charitharth V.; Xu, Xin; Jackson, Patricia; Atkinson, Thomas P.; Faye-Petersen, Ona M.; Kandasamy, Jegen; Waites, Ken; Biggio, Joseph R.; Gaggar, Amit; Ambalavanan, Namasivayam

    2016-01-01

    Background Premature rupture of membranes and preterm delivery are associated with Ureaplasma infection. We hypothesized that Ureaplasma induced extracellular collagen fragmentation results in production of the tripeptide PGP (proline-glycine-proline), a neutrophil chemoattractant. PGP release from collagen requires matrix metalloproteases (MMP-8/MMP-9) along with a serine protease, prolyl endopeptidase (PE). Methods Ureaplasma culture negative amniotic fluid (indicated preterm birth, n=8; spontaneous preterm birth, n=8) and Ureaplasma positive amniotic fluid (spontaneous preterm birth, n=8) were analyzed by electro-spray ionization-liquid chromatography tandem mass spectrometry for PGP, and for MMP-9 by zymography. PE was evaluated in lysates of U. parvum serovar 3 (Up3) and U. urealyticum serovar 10 (Uu10) by western blotting and activity assay. Results PGP and MMP-9 were increased in amniotic fluid from spontaneous preterm birth with positive Ureaplasma cultures, but not with indicated preterm birth or spontaneous preterm birth with negative Ureaplasma cultures. Human neutrophils co-cultured with Ureaplasma strains showed increased MMP-9 activity. PE presence and activity were noted with both Ureaplasma strains. Conclusions Ureaplasma spp. carry the protease necessary for PGP release, and PGP and MMP-9 are increased in amniotic fluid during Ureaplasma infection, suggesting Ureaplasma spp. induced collagen fragmentation contributes to preterm rupture of membranes and neutrophil influx causing chorioamnionitis. PMID:27632777

  14. Peroxidized cholesterol-induced matrix metalloproteinase-9 activation and its suppression by dietary beta-carotene in photoaging of hairless mouse skin.

    PubMed

    Minami, Yuko; Kawabata, Kyuichi; Kubo, Yoshiaki; Arase, Seiji; Hirasaka, Katsuya; Nikawa, Takeshi; Bando, Noriko; Kawai, Yoshichika; Terao, Junji

    2009-05-01

    The activation of matrix metalloproteinase (MMP)-9 leading to the formation of wrinkle and sagging of skin is an essential step in the skin photoaging on exposure to ultraviolet A (UVA). This study attempted to elucidate the role of peroxidized cholesterol including cholesterol hydroperoxides (Chol-OOHs), primary products of lipid peroxidation in biomembranes, in MMP-9 activation and the effect of dietary beta-carotene in MMP-9 activation. Hairless mice were subjected to periodic UVA irradiation for 8 weeks. The amount of peroxidized cholesterol detected as total hydroxycholesterol in the skin was increased significantly by the exposure. The activity and protein level of MMP-9 were elevated with wrinkling and sagging formation. MMP-9 activity was also enhanced by the intracutaneous injection of Chol-OOHs into the mouse skin. Adding beta-carotene to the diet of the mice during the period of irradiation suppressed the activity and expression of MMP-9 as well as the wrinkling and sagging formation. The amount of cholesterol 5alpha-hydroperoxide, a singlet molecular oxygen oxygenation-specific peroxidized cholesterol, was significantly lowered by the addition of beta-carotene to the diet. These results strongly suggest that Chol-OOHs formed on exposure to UVA contribute to the expression of MMP-9, resulting in photoaging. Dietary beta-carotene prevents the expression of MMP-9, at least partly, by inhibiting photodynamic action involved in the formation of Chol-OOHs.

  15. Enzyme-Treated Asparagus Extract Attenuates Hydrogen Peroxide-Induced Matrix Metalloproteinase-9 Expression in Murine Skin Fibroblast L929 Cells.

    PubMed

    Shirato, Ken; Takanari, Jun; Ogasawara, Junetsu; Sakurai, Takuya; Imaizumi, Kazuhiko; Ohno, Hideki; Kizaki, Takako

    2016-05-01

    Enzyme-treated asparagus extract (ETAS) exerts a wide variety of beneficial biological actions including facilitating anti-cortisol stress and neurological anti-aging responses. However, the anti-skin aging effects of ETAS remain to be elucidated. Reactive oxygen species (ROS) play pivotal roles in skin aging. Increased ROS levels in fibroblasts in response to ultraviolet irradiation activate c-Jun N-terminal kinase (JNK) and its downstream transcription factor activator protein-1 (AP-1), and the resultant gene expression of matrix metalloproteinase (MMP) isoforms accelerates collagen breakdown in the dermis. Therefore, we explored whether ETAS has anti-skin aging effects by attenuating the oxidative stress responses in fibroblasts. Simultaneous treatment of murine skin L929 fibroblasts with hydrogen peroxide (H2O2) and either ETAS or dextrin showed that ETAS significantly suppressed H2O2-induced expression of MMP-9 mRNA as measured by real-time polymerase chain reaction. ETAS also clearly suppressed H2O2-stimulated phosphorylation of c-Jun (AP-1 subunit) and JNK as determined by Western blot. However, ETAS did not affect the increased amounts of carbonyl proteins in response to H2O2, also as determined by Western blotting. These results suggest that ETAS diminishes cellular responsiveness to ROS but does not scavenge ROS. Thus, ETAS has the potential to prevent skin aging through attenuating the oxidative stress responses in dermal fibroblasts.

  16. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    NASA Astrophysics Data System (ADS)

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.

  17. Low molecular-weight gel fraction of Aloe vera exhibits gastroprotection by inducing matrix metalloproteinase-9 inhibitory activity in alcohol-induced acute gastric lesion tissues.

    PubMed

    Park, Chul-Hong; Son, Hyeong-U; Yoo, Chi-Yeol; Lee, Sang-Han

    2017-12-01

    Aloe has been used for the prevention and cure of various diseases and symptoms including burns, injuries, oedema and pain. This study determines the specific inhibitory activity of matrix metalloproteinase (MMP)-9 induced by the low molecular-weight gel fraction of Aloe vera (L.) Burm.f. (lgfAv) on alcohol-induced acute gastric lesions. We examined the protective effects of oral (p.o.) administration of lgfAv (molecular weight cutoff <50.0 kDa, 150.0 mg/kg body weight) in a Balb/c mouse model of alcohol-induced acute gastritis for 1 h exposure. By measuring ulcer index, we compared the antiulcerative activity of the fraction. mRNA expression and immunohistochemical analysis of various biomarkers were performed. The lgfAv-treated mice exhibited drastically fewer ulcer lesions than the untreated control mice did. It featured that lgfAv lessened the ulcer lesions than their relevant controls. Moreover, the transcriptional level of MMP-9 was completely alleviated by lgfAv treatment in alcohol-treated gastritis-induced mice. The transcriptional level of MMP-9 was significantly alleviated by lgfAv treatment of the model. However, reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry experiments revealed that lgfAv treatment in mucosal tissues had the potential to inhibit the mRNA and protein expression levels of MMP-9, respectively. The protein expression of MMP-9 was closely associated with lgfAv-induced gastroprotection against alcohol-induced gastric lesions. The present findings suggest that lgfAv has the potential to alleviate alcohol-induced acute gastric lesions, which is mediated in part, mainly by the suppression of the mRNA expression of MMP-9.

  18. Fisetin regulates TPA-induced breast cell invasion by suppressing matrix metalloproteinase-9 activation via the PKC/ROS/MAPK pathways.

    PubMed

    Noh, Eun-Mi; Park, Yeon-Ju; Kim, Jeong-Mi; Kim, Mi-Seong; Kim, Ha-Rim; Song, Hyun-Kyung; Hong, On-Yu; So, Hong-Seob; Yang, Sei-Hoon; Kim, Jong-Suk; Park, Samg Hyun; Youn, Hyun-Jo; You, Yong-Ouk; Choi, Ki-Bang; Kwon, Kang-Beom; Lee, Young-Rae

    2015-10-05

    Invasion and metastasis are among the main causes of death in patients with malignant tumors. Fisetin (3,3',4',7-tetrahydroxyflavone), a natural flavonoid found in the smoke tree (Cotinus coggygria), is known to have antimetastatic effects on prostate and lung cancers; however, the effect of fisetin on breast cancer metastasis is unknown. The aim of this study was to determine the anti-invasive activity of fisetin in human breast cancer cells. Matrix metalloproteinase (MMP)-9 is a major component facilitating the invasion of many cancer tumor cell types, and thus the inhibitory effect of fisetin on MMP-9 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated human breast cancer cells was investigated in this study. Fisetin significantly attenuated TPA-induced cell invasion in MCF-7 human breast cancer cells, and was found to inhibit the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways. This effect was furthermore associated with reduced NF-κB activation, suggesting that the anti-invasive effect of fisetin on MCF-7 cells may result from inhibited TPA activation of NF-κB and reduced TPA activation of PKCα/ROS/ERK1/2 and p38 MAPK signals, ultimately leading to the downregulation of MMP-9 expression. Our findings indicate the role of fisetin in MCF-7 cell invasion, and clarify the underlying molecular mechanisms of this role, suggesting fisetin as a potential chemopreventive agent for breast cancer metastasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Thrombin/Matrix Metalloproteinase-9-Dependent SK-N-SH Cell Migration is Mediated Through a PLC/PKC/MAPKs/NF-κB Cascade.

    PubMed

    Yang, Chien-Chung; Lin, Chih-Chung; Chien, Peter Tzu-Yu; Hsiao, Li-Der; Yang, Chuen-Mao

    2016-11-01

    Thrombin has been known to activate inflammatory genes including matrix metalloproteinases (MMPs). The elevated expression of MMP-9 has been observed in patients with neuroinflammatory diseases and may contribute to the pathology of brain diseases. However, the mechanisms underlying thrombin-induced MMP-9 expression in SK-N-SH cells remain unknown. The effects of thrombin on MMP-9 expression were examined in SK-N-SH cells by gelatin zymography, Western blot, real-time PCR, promoter activity assay, and cell migration assay. The detailed mechanisms were analyzed by using pharmacological inhibitors and small intefering RNA (siRNA) transfection. Here, we demonstrated that thrombin induced the expression of proform MMP-9 and migration of SK-N-SH cells, which were attenuated by pretreatment with the inhibitor of thrombin (PPACK), Gq (GPA2A), PC-PLC (D609), PI-PLC (ET-18-OCH3), nonselective protien kinase C (PKC, GF109203X), PKCα/βII (Gö6983), PKCδ (Rottlerin), p38 mitogen-activated protein kinases (MAPK) (SB202190), JNK1/2 (SP600125), or NF-κB (Bay11-7082 or Helenalin) and transfection with siRNA of Gq, PKCα, PKCβ, PKCδ, p38, JNK1/2, IKKα, IKKβ, or p65. Moreover, thrombin-stimulated PKCα/βII, PKCδ, p38 MAPK, JNK1/2, or p65 phosphorylation was abrogated by their respective inhibitor of PPACK, GPA2A, D609, ET-18-OCH3, Gö6983, Rottlerin, SB202190, SP600125, Bay11-7082, or Helenalin. Pretreatment with these inhibitors or transfection with MMP-9 siRNA also blocked thrombin-induced SK-N-SH cell migration. Our results show that thrombin stimulates a Gq/PLC/PKCs/p38 MAPK and JNK1/2 cascade, which in turn triggers NF-κB activation and ultimately induces MMP-9 expression and cell migration in SK-N-SH cells.

  20. Emodin, aloe-emodin and rhein inhibit migration and invasion in human tongue cancer SCC-4 cells through the inhibition of gene expression of matrix metalloproteinase-9.

    PubMed

    Chen, Ya-Yin; Chiang, Su-Yin; Lin, Jaung-Geng; Ma, Yi-Shih; Liao, Ching-Lung; Weng, Shu-Wen; Lai, Tung-Yuan; Chung, Jing-Gung

    2010-05-01

    Emodin, aloe-emodin and rhein are major compounds in rhubarb (Rheum palmatum L.), used in Chinese herbal medicine, and found to have antitumor properties including cell cycle arrest and apoptosis in many human cancer cells. Our previous studies also showed that emodin, aloe-emodin and rhein induced apoptosis in human tongue cancer SCC-4 cells. However, the detail regarding emodin, aloe-emodin and rhein affecting migration and invasion in SCC-4 cells are not clear. In the present study, we investigated whether or not emodin, aloe-emodin and rhein inhibited migration and invasion of SCC-4 cells. Herein, we demonstrate that emodin, aloe-emodin and rhein inhibit the protein levels and activities of matrix metalloproteinase-2 (MMP-2) but did not affect gene expression of MMP-2, however, they inhibited the gene expression of MMP-9 and all also inhibited the migration and invasion of human tongue cancer SCC-4 cells. MMP-9 (gelatinase-B) plays an important role and is the most associated with tumor migration, invasion and metastasis in various human cancers. Results from zymography and Western blotting showed that emodin, aloe-emodin and rhein treatment decrease the levels of MMP-2, urokinase plasminogen activator (u-PA) in a concentration-dependent manner. The order of inhibition of associated protein levels and gene expression of migration and invasion in SCC-4 cells are emodin >aloe-emodin >rhein. Our results provide new insight into the mechanisms by which emodin, aloe-emodin and rhein inhibit tongue cancers. In conclusion, these findings suggest that molecular targeting of MMP-9 mRNA expression by emodin, aloe-emodin and rhein might be a useful strategy for chemo-prevention and/or chemo-therapeutics of tongue cancers.

  1. Certain forms of matrix metalloproteinase-9 accumulate in the extracellular space after microdialysis probe implantation and middle cerebral artery occlusion/reperfusion.

    PubMed

    Planas, Anna M; Justicia, Carles; Solé, Sònia; Friguls, Bibiana; Cervera, Alvaro; Adell, Albert; Chamorro, Angel

    2002-08-01

    Matrix metalloproteinases (MMPs) are activated in focal cerebral ischemia. The activation of MMP-9 is involved in blood-brain barrier breakdown and tissue remodeling. The MMPs are released to the extracellular space, but the form and fate of secreted enzymes in brain are unknown. Using microdialysis in vivo, the authors studied whether ischemia-induced MMP-9 in brain tissue was related to free MMP-9 in the extracellular fluid. A microdialysis probe was placed into the right striatum and microdialysis was initiated 24 hours later in controls (n = 7). One hour prior to microdialysis, a group of rats (n = 7) was subjected to 1-hour occlusion of the right middle cerebral artery, followed by reperfusion. Dialysates were collected at discrete time points up to 24 hours, and subjected to zymography and Western blot analysis. The MMP-9 was released after ischemia and accumulated in the extracellular space at 24 hours (P < 0.05). Free MMP-9 forms include mainly the 95-kd proform, and, to a lesser extent, dimers and cleaved active forms (70 kd), but not the 88-kd form found in tissue. Probe implantation and microdialysis increased free MMP-9 in the dialysate. This increase was concomitant with neutrophil infiltration after the mechanical lesion, as myeloperoxidase was found by means of Western blot analysis in the brain hemisphere subjected to microdialysis (P < 0.005), and immunohistochemistry revealed the presence of myeloperoxidase stain surrounding the site of probe implantation. The results suggest that certain forms of MMP-9 are released and accumulate in the extracellular space after brain injury, and that vascular alterations and neutrophil recruitment elicit MMP-9 activation in the brain after focal ischemia and trauma.

  2. Plasma Matrix Metalloproteinase-9 Levels Predict First-Time Coronary Heart Disease: An 8-Year Follow-Up of a Community-Based Middle Aged Population

    PubMed Central

    Garvin, Peter; Jonasson, Lena; Nilsson, Lennart; Falk, Magnus; Kristenson, Margareta

    2015-01-01

    Background The enzyme in matrix metalloproteinase (MMP)-9 has been suggested to be an important determinant of plaque degradation. While several studies have shown elevated levels in patients with coronary heart disease, results in prospective population based studies evaluating MMP-9 in relation to first time coronary events have been inconclusive. As of today, there are four published studies which have measured MMP-9 in serum and none using plasma. Measures of MMP-9 in serum have been suggested to have more flaws than measures in plasma. Aim To investigate the independent association between plasma levels of MMP-9 and first-time incidence of coronary events in an 8-year follow-up. Material and Methods 428 men and 438 women, aged 45–69 years, free of previous coronary events and stroke at baseline, were followed-up. Adjustments were made for sex, age, socioeconomic position, behavioral and cardiovascular risk factors, chronic disease at baseline, depressive symptoms, interleukin-6 and C-reactive protein. Results 53 events were identified during a risk-time of 6 607 person years. Hazard ratio (HR) for MMP-9 after adjustment for all covariates were HR = 1.44 (1.03 to 2.02, p = 0.033). Overall, the effect of adjustments for other cardiovascular risk factors was low. Conclusion Levels of plasma MMP-9 are independently associated with risk of first-time CHD events, regardless of adjustments. These results are in contrast to previous prospective population-based studies based on MMP-9 in serum. It is essential that more studies look at MMP-9 levels in plasma to further evaluate the association with first coronary events. PMID:26389803

  3. Association Between High Serum Matrix Metalloproteinase-9 and MMP-9 (-1562C>T) Polymorphism in Patients With ST-Elevation Acute Myocardial Infarction

    PubMed Central

    Setianto, Budi Y.; Mubarika, Sofia; Irawan, Bambang; Astuti, Indwiani

    2012-01-01

    Background Matrix metalloproteinase (MMP)-9 is excessively expressed in frail region of atherosclerotic plaque and released in circulation following plaque rupture. High MMP-9 level associated with severity of occluded thrombus and subsequent myocardial infarction. MMP-9 (-1562C>T) polymorphism associated with acute myocardial infarction, however conflicting data present regarding impact of MMP-9 (-1562C>T) polymorphism on circulating MMP-9 level in acute myocardial infarction with ST-elevation (STEMI), clinical entity represents totally occluded coronary thrombus. Methods We enrolled consecutively subjects with acute coronary syndrome treated in intensive coronary care unit. Acute coronary syndrome diagnosis were classified into STEMI and non-ST-elevation acute coronary syndrome (NSTEACS). Seventy consecutive subjects were enrolled for this study, 31 subjects with STEMI and 39 subjects with NSTEACS. Results On admission serum MMP-9 level, measured with sandwich enzyme immunoassay, were higher in STEMI as compared with NSTEACS (1,574.2 ± 604.1 ng/mL vs. 1,104.4 ± 591.5 ng/mL, P < 0.01). Proportion of subjects with MMP-9 (-1562C>T) polymorphism, analyzed with PCR-RFLP, were higher in STEMI as compared with NSTEACS (66.7% vs. 33.3%, P = 0.15). T allele frequency was almost twice in STEMI as compared to in NSTEACS. Almost all (83%) subjects with MMP-9 (-1562C>T) polymorphism had high serum MMP-9 level (> 1,334.5 ng/mL) during STEMI, whereas in NSTEACS all subjects had low level. Conclusion MMP-9 (-1562C>T) polymorphism associated with high serum MMP-9 level in patients with STEMI.

  4. Perioperative time course of matrix metalloproteinase-9 (MMP-9), its tissue inhibitor TIMP-1 & S100B protein in carotid surgery

    PubMed Central

    Nagy, Bálint; Woth, Gábor; Mérei, Ákos; Nagy, Lilla; Lantos, János; Menyhei, Gábor; Bogár, Lajos; Mühl, Diána

    2016-01-01

    Background & objectives: Ischaemic stroke is a life burdening disease for which carotid endarterectomy (CEA) is considered a gold standard intervention. Pro-inflammatory markers like matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) and S-100 Beta (S100B) may have a role in the early inflammation and cognitive decline following CEA. This study was aimed to describe the perioperative time courses and correlations between of MMP-9, TIMP-1 and S100B following CEA. Methods: Fifty four patients scheduled for CEA were enrolled. Blood samples were collected at four time points, T1: preoperative, T2: 60 min after cross-clamp release, T3: first postoperative morning, T4: third postoperative morning. Twenty atherosclerotic patients were included as controls. Plasma MMP-9, TIMP-1 and S100B levels were estimated by ELISA. Results: TIMP-1 was decreased significantly in the CEA group (P<0.01). Plasma MMP-9 was elevated and remained elevated from T1-4 in the CEA group (P<0.05) with a marked elevation in T3 compared to T1 (P<0.05). MMP-9/TIMP-1 was elevated in the CEA group and increased further by T2 and T3 (P<0.05). S100B was elevated on T2 and decreased on T3-4 compared to T1. Interpretation & conclusions: Our study provides information on the dynamic changes of MMP-9-TIMP-1 system and S100B in the perioperative period. Preoperative reduction of TIMP-1 might be predictive for shunt requirement but future studies are required for verification. PMID:27121520

  5. Osthole inhibits the invasive ability of human lung adenocarcinoma cells via suppression of NF-κB-mediated matrix metalloproteinase-9 expression

    SciTech Connect

    Kao, Shang-Jyh; Su, Jen-Liang; Chen, Chi-Kuan; Yu, Ming-Chih; Bai, Kuan-Jen; Chang, Jer-Hua; Bien, Mauo-Ying; Yang, Shun-Fa; Chien, Ming-Hsien

    2012-05-15

    The induction of matrix metalloproteinase (MMP)-9 is particularly important for the invasiveness of various cancer cells. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to inhibit the proliferation of a variety of tumor cells, but the effect of osthole on the invasiveness of tumor cells is largely unknown. This study determines whether and by what mechanism osthole inhibits invasion in CL1-5 human lung adenocarcinoma cells. Herein, we found that osthole effectively inhibited the migratory and invasive abilities of CL1-5 cells. A zymographic assay showed that osthole inhibited the proteolytic activity of MMP-9 in CL1-5 cells. Inhibition of migration, invasion, and MMP2 and/or MMP-9 proteolytic activities was also observed in other lung adenocarcinoma cell lines (H1299 and A549). We further found that osthole inhibited MMP-9 expression at the messenger RNA and protein levels. Moreover, a chromatin immunoprecipitation assay showed that osthole inhibited the transcriptional activity of MMP-9 by suppressing the DNA binding activity of nuclear factor (NF)-κB in the MMP-9 promoter. Using reporter assays with point-mutated promoter constructs further confirmed that the inhibitory effect of osthole requires an NF-κB binding site on the MMP-9 promoter. Western blot and immunofluorescence assays demonstrated that osthole inhibited NF-κB activity by inhibiting IκB-α degradation and NF-κB p65 nuclear translocation. In conclusion, we demonstrated that osthole inhibits NF-κB-mediated MMP-9 expression, resulting in suppression of lung cancer cell invasion and migration, and osthole might be a potential agent for preventing the invasion and metastasis of lung cancer. -- Highlights: ► Osthole treatment inhibits lung adenocarcinoma cells migration and invasion. ► Osthole reduces the expression and proteolytic activity of MMP-9. ► Osthole inhibits MMP-9 transcription via suppression of NF-κB binding activity. ► Osthole

  6. Ciglitazone ameliorates homocysteine-mediated mitochondrial translocation and matrix metalloproteinase-9 activation in endothelial cells by inducing peroxisome proliferator activated receptor-gamma activity.

    PubMed

    Tyagi, N; Moshal, K S; Sen, U; Lominadze, D; Ovechkin, A V; Tyagi, S C

    2006-12-31

    The activation of peroxisome proliferator activated receptor-gamma (PPARgamma) ameliorates the homocysteine (Hcy)-induced matrix metalloproteinase (MMP) by decreasing reactive oxygen species (ROS) production. However, the mechanism by which Hcy induces ROS generation and MMP activation is unclear. We hypothesize that Hcy increases NADH oxidase (Nox-4) and decreases thioredoxin (Trx). This leads to translocation of Nox-4 into the mitochondria and decrease in Trx. In addition, activation of PPARgamma ameliorates the translocation of Nox-4 into mitochondria and MMP-9 activation. Mouse aortic vascular endothelial cells (MVEC) were cultured in the presence or absence of 100 microM Hcy. The cells were pre-treated with ciglitazone (CZ, 150 microM). Activity of PPARgamma activity was measured by electrophoretic mobility shift assay (EMSA) and antibody super shift assay. In situ generation of ROS was measured using 2,7-dichlorofluorescin (DCF) as a probe. The expression of Nox-4 and Trx were measured by quantitative real-time polymerase chain reaction (Q-RT-PCR). The translocation of Nox-4 was measured by 2-D gel analysis. To determine the levels of Nox-4 and Trx, the mitochondria and cytosol were separated and Western blot analysis was preformed. The MMP-9 activity was measured by gelatin-zymography. The results suggested that CZ activated endothelial PPARgamma in the presence of Hcy. Production of ROS was ameliorated by PPARgamma activation. Expression of Nox-4 was increased, while production of Trx was decreased by Hcy. However, the treatment with CZ normalized the levels of Nox-4 and Trx. Nox-4 was translocated into mitochondria in Hcy-treated endothelial cells. This translocation was associated with decreased production of Trx in mitochondria. The treatment with CZ blocked this translocation and increased Trx levels in mitochondria. Hcy-mediated MMP-9 activity was decreased in cells pre-treated with CZ. These results suggest that Hcy increases NADH oxidase and

  7. Detection of circulating vascular endothelial growth factor and matrix metalloproteinase-9 in non-small cell lung cancer using Luminex multiplex technology

    PubMed Central

    ZHANG, YE; WU, JIAN-ZHONG; ZHANG, JUN-YING; XUE, JING; MA, RONG; CAO, HAI-XIA; FENG, JI-FENG

    2014-01-01

    It has been previously reported that vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-9 are important for the occurrence and development of non-small cell lung cancer (NSCLC). The present study was designed to detect the serum levels of VEGF and MMP-9 in NSCLC, and to explore their diagnostic and prognostic values. A total of 543 cases were involved, of which 332 were NSCLC (272 cases in the pretreatment group and 60 cases in the postoperative group), 91 were patients with benign lung diseases and 120 were healthy controls. The serum levels of VEGF and MMP-9 were determined by Luminex multiplex technology. The serum levels of VEGF and MMP-9 were found to be significantly higher in the pretreatment group than those in the patients with benign lung diseases and healthy controls (VEGF, P<0.0001; MMP-9, P<0.0001). Compared with the pretreatment group, the serum levels of VEGF and MMP-9 in the postoperative group were significantly decreased (VEGF, P=0.005; MMP-9, P=0.002), and the levels of VEGF and MMP-9 in the pretreatment group of patients with stages III and IV were higher than those with stages I and II (VEGF, P<0.0001; MMP-9, P=0.021). In addition, the levels of VEGF and MMP-9 were found to closely correlate with lymph node metastasis (VEGF, P<0.0001; MMP-9, P<0.0001) in the pretreatment group, while being independent of other clinicopathological parameters (P>0.05). Furthermore, a positive correlation was observed between the serum levels of VEGF and MMP-9 (r=0.159; P=0.009). A receiver operating characteristic curve analysis showed that the diagnostic value of MMP-9 was higher than that of VEGF in the pretreatment group. The log-rank test indicated that the inoperable NSCLC patients with low levels of VEGF exhibited a significantly longer overall survival time than those with high VEGF levels (P<0.0001). Additionally, the serum levels of VEGF and lymph node metastasis were identified as independent prognostic factors of the

  8. Effects of resveratrol and genistein on nuclear factor-κB, tumor necrosis factor-α and matrix metalloproteinase-9 in patients with chronic obstructive pulmonary disease

    PubMed Central

    LIU, XIAO-JU; BAO, HAI-RONG; ZENG, XIAO-LI; WEI, JUN-MING

    2016-01-01

    Chronic airway inflammation and airway remodeling are the major pathophysiological characteristics of chronic obstructive pulmonary disease (COPD). Resveratrol and genistein have been previously demonstrated to have anti-inflammatory and antioxidative properties. The present study aimed to measure the inhibitory effects of resveratrol and genistein on tumor necrosis factor (TNF)-α and matrix metalloproteinase (MMP)-9 concentration in patients with COPD. Lymphocytes were isolated from the blood of 34 patients with COPD and 30 healthy subjects, then randomly divided into the following four treatment groups: Control, dexamethasone (0.5 µmol/l), resveratrol (12.5 µmol/l) and genistein (25 µmol/l) groups. After 1 h of treatment, 100 µl lymphocytes were collected for nuclear factor (NF)-κB immunocytochemical staining. After 48 h treatment, the supernatant of the lymphocytes was collected for analysis of TNF-α and MMP-9 concentration levels. The percentage of lymphocytes with positive nuclear NF-κB expression was analyzed by immunocytochemical staining. The concentration levels of TNF-α and MMP-9 were measured using radioimmunoassay and enzyme-linked immunosorbent assay, respectively. The present study demonstrated that the percentage of NF-κB-positive cells, and the levels of TNF-α and MMP-9 in lymphocytes from patients with COPD patients were significantly higher compared with healthy subjects. Additionally, there were positive correlations between the percentage of NF-κB-positive cells, and the concentration levels of TNF-α and MMP-9 in patients with COPD. All three factors were significantly reduced in lymphocytes treated with resveratrol and genistein, and the inhibitory effects of resveratrol on NF-κB, TNF-α and MMP-9 were more potent than the effects of genistein. In conclusion, resveratrol and genistein may inhibit the NF-κB, TNF-α and MMP-9-associated pathways in patients with COPD. It is suggested that resveratrol and genistein may be potential

  9. Tumor necrosis factor stimulates matrix metalloproteinase 9 secretion from cultured human chorionic trophoblast cells through TNF receptor 1 signaling to IKBKB-NFKB and MAPK1/3 pathway.

    PubMed

    Li, Wei; Li, Han; Bocking, Alan D; Challis, John R G

    2010-09-01

    The identification of proinflammatory signal transduction pathways may suggest new therapeutic targets. In this study, we examine which signaling pathways are involved in tumor necrosis factor (TNF)-induced matrix metalloproteinase 9 (MMP9) secretion in human chorionic trophoblast (CT) cells. Purified CT cells were cultured in the presence of antibodies or chemical inhibitors that specifically block/inhibit distinct TNF receptors and kinase pathways. TNF-induced proMMP9 production, as measured by zymography, was significantly blocked/inhibited by TNF receptor 1 (TNFRSF1A) antibody, NFKB activation inhibitor (NFKBAI), and MAPK1/3 (ERK) inhibitor (U0126) (P < 0.01), but not by TNF receptor 2 (TNFRSF1B) antibody, MAPK14 (p38 MAPK) inhibitor (SB203580), and MAPK8/9/10 (JNK) inhibitor (SP600125). By Western blot analysis, we found that TNF rapidly and significantly increased phosphorylation of IKBKB, MAPK1/3, and MAPK8/9/10 and that the phosphorylation of these kinases by TNF was reduced significantly by TNFRSF1A neutralizing antibody, but not by TNFRSF1B neutralizing antibody. Moreover, we found that TNF increased TNF receptor-associated factor (TRAF) 1 and decreased TRAF2 protein expression through TNFRSF1A, but not TNFRSF1B. The CT cells that had increased TRAF1 and decreased TRAF2 after an initial TNF treatment demonstrated a dramatic deficiency in phosphorylation of the above protein kinases following a secondary TNF treatment. Localization of RELA subunit by immunocytochemistry was shifted to the nuclei after TNF treatment compared to cytosol in untreated controls. We also found cross-talk between the phosphoinositide 3-kinase pathway and ERK pathway. In summary, we have demonstrated that TNF stimulates proMMP9 production in CT cells through TNFRSF1A-TRAFs-IKBKB-NFKB and ERK signaling pathways, but not through TNFRSF1B and JNK/p38-AP-1 pathways.

  10. The interferon-gamma-induced GTPase, mGBP-2, inhibits tumor necrosis factor alpha (TNF-alpha) induction of matrix metalloproteinase-9 (MMP-9) by inhibiting NF-kappaB and Rac protein.

    PubMed

    Balasubramanian, Sujata; Fan, Meiyun; Messmer-Blust, Angela F; Yang, Chuan H; Trendel, Jill A; Jeyaratnam, Jonathan A; Pfeffer, Lawrence M; Vestal, Deborah J

    2011-06-03

    Matrix metalloproteinase-9 (MMP-9) is important in numerous normal and pathological processes, including the angiogenic switch during tumor development and tumor metastasis. Whereas TNF-α and other cytokines up-regulate MMP-9 expression, interferons (IFNs) inhibit MMP-9 expression. We found that IFN-γ treatment or forced expression of the IFN-induced GTPase, mGBP-2, inhibit TNF-α-induced MMP-9 expression in NIH 3T3 fibroblasts, by inhibiting MMP-9 transcription. The NF-κB transcription factor is required for full induction of MMP-9 by TNF-α. Both IFN-γ and mGBP-2 inhibit the transcription of a NF-κB-dependent reporter construct, suggesting that mGBP-2 inhibits MMP-9 induction via inhibition of NF-κB-mediated transcription. Interestingly, mGBP-2 does not inhibit TNF-α-induced degradation of IκBα or p65/RelA translocation into the nucleus. However, mGBP-2 inhibits p65 binding to a κB oligonucleotide probe in gel shift assays and to the MMP-9 promoter in chromatin immunoprecipitation assays. In addition, TNF-α activation of NF-κB in NIH 3T3 cells is dependent on Rac activation, as evidenced by the inhibition of TNF-α induction of NF-κB-mediated transcription by a dominant inhibitory form of Rac1. A role for Rac in the inhibitory action of mGBP-2 on NF-κB is further shown by the findings that mGBP-2 inhibits TNF-α activation of endogenous Rac and constitutively activate Rac can restore NF-κB transcription in the presence of mGBP-2. This is a novel mechanism by which IFNs can inhibit the cytokine induction of MMP-9 expression.

  11. Suppression of Heregulin-β1/HER2-Modulated Invasive and Aggressive Phenotype of Breast Carcinoma by Pterostilbene via Inhibition of Matrix Metalloproteinase-9, p38 Kinase Cascade and Akt Activation

    PubMed Central

    Pan, Min-Hsiung; Lin, Ying-Ting; Lin, Chih-Li; Wei, Chi-Shiang; Ho, Chi-Tang; Chen, Wei-Jen

    2011-01-01

    Invasive breast cancer is the major cause of death among females and its incidence is closely linked to HER2 (human epidermal growth factor receptor 2) overexpression. Pterostilbene, a natural analog of resveratrol, exerts its cancer chemopreventive activity similar to resveratrol by inhibiting cancer cell proliferation and inducing apoptosis. However, the anti-invasive effect of pterostilbene on HER2-bearing breast cancer has not been evaluated. Here, we used heregulin-β1 (HRG-β1), a ligand for HER3, to transactivate HER2 signaling. We found that pterostilbene was able to suppress HRG-β1-mediated cell invasion, motility and cell transformation of MCF-7 human breast carcinoma through down-regulation of matrix metalloproteinase-9 (MMP-9) activity and growth inhibition. In parallel, pterostilbene also inhibited protein and mRNA expression of MMP-9 driven by HRG-β1, suggesting that pterostilbene decreased HRG-β1-mediated MMP-9 induction via transcriptional regulation. Examining the signaling pathways responsible for HRG-β1-associated MMP-9 induction and growth inhibition, we observed that pterostilbene, as well as SB203580 (p38 kinase inhibitor), can abolish the phosphorylation of p38 mitogen-activated protein kinase (p38 kinase), a downstream HRG-β1-responsive kinase responsible for MMP-9 induction. In addition, HRG-β1-driven Akt phosphorylation required for cell proliferation was also suppressed by pterostilbene. Taken together, our present results suggest that pterostilbene may serve as a chemopreventive agent to inhibit HRG-β1/HER2-mediated aggressive and invasive phenotype of breast carcinoma through down-regulation of MMP-9, p38 kinase and Akt activation. PMID:19617202

  12. Tianeptine sodium salt suppresses TNF-α-induced expression of matrix metalloproteinase-9 in human carcinoma cells via suppression of the PI3K/Akt-mediated NF-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Dilshara, Matharage Gayani; Choi, Yung Hyun; Moon, Sung-Kwon; Kim, Wun-Jae; Kim, Gi-Young

    2014-09-01

    Tianeptine sodium salt (TSS) is a selective facilitator of serotonin, but there are no reports regarding anti-invasive effects of TSS. Therefore, we investigated the effect of TSS on the expression of matrix metalloproteinase-9 (MMP-9) and invasion in three different human carcinoma cell lines. Our findings showed that MMP-9 activity was significantly increased in response to tumor necrosis factor-α (TNF-α), and that TSS reduced TNF-α-induced MMP-9 activity in a dose-dependent manner. TSS also downregulated both MMP-9 expression and TNF-α-induced MMP-9 promoter activity. Using a matrigel invasion assay, we showed that TSS significantly attenuated invasive rates in TNF-α-stimulated LNCaP prostate carcinoma cells. Furthermore, TSS suppressed TNF-α-induced NF-κB activity, which is a potential transcriptional factor for regulating many invasive genes, including MMP-9, by suppressing IκB degradation and nuclear translocation of NF-κB subunits in LNCaP prostate carcinoma cells. TSS also downregulated TNF-α-induced phosphorylation of phosphatidyl-inositol 3 kinase (PI3K) and Akt, and a selective PI3K/Akt inhibitor, LY294002, diminished TNF-α-induced NF-κB activation followed by levels of MMP-9, suggesting that TSS also reduces MMP-9 expression by inhibiting the PI3K/Akt-mediated NF-κB pathway. These results indicate that TSS is a potential anti-invasive agent by suppression of TNF-α-induced MMP-9 expression via inhibition of PI3K/Akt-mediated NF-κB activity.

  13. Effects of hypoxia-inducible factor-1α and matrix metalloproteinase-9 on alveolar-capillary barrier disruption and lung edema in rat models of severe acute pancreatitis-associated lung injury.

    PubMed

    Qi, Bing; Chen, Hai-Long; Shang, Dong; Dong, Ying; Zhang, Gui-Xin; Yu, Lei

    2014-09-01

    The aim of this study was to investigate the effects of hypoxia-inducible factor-1α (HIF-1α) and matrix metalloproteinase-9 (MMP-9) on alveolar-capillary barrier disruption and lung edema in rat models of severe acute pancreatitis-associated lung injury (PALI). A total of 40 male Sprague-Dawley rats were randomly divided into a sham surgery group (n=10) and three PALI groups, in which acute pancreatitis was induced by the retrograde infusion of 5% sodium taurocholate (1 ml/kg). The PALI groups were as follows: i) Untreated PALI group (n=10); ii) 2-methoxyestradiol (2ME2) group (5 mg/kg body mass; n=10); and iii) 2ME2 group (15 mg/kg body mass; n=10). In the two 2ME2 groups, the HIF-1α inhibitor 2ME2 was administered intraperitoneally 1 h after the induction of AP. The severity of the pancreatitis was evaluated by the serum amylase levels and pathology. The severity of the lung injury was evaluated by the wet/dry ratio, blood gas analysis and pathology. The alveolar-capillary barrier disruption was assessed by Evans blue dye extravasation. The protein and mRNA expression levels of HIF-1α and MMP-9 were studied using enzyme-linked immunosorbent assays (ELISAs), western blot analysis and reverse transcription-polymerase chain reaction. The active tumor necrosis factor-α levels were measured using an ELISA. The HIF-1α inhibitor 2ME2 attenuated the severity of the pancreatitis and PALI, while the lung edema and alveolar-capillary barrier disruption were significantly ameliorated compared with those in the untreated PALI group. Administration of the higher dose of 2ME2 significantly suppressed the protein expression of MMP-9 in the lung tissues. The results indicate that HIF-1α has a major function in alveolar-capillary barrier disruption and lung edema in PALI via a molecular pathway cascade involving MMP-9. Inhibition of HIF-1α by 2ME2 attenuates alveolar-capillary barrier disruption and lung edema. Pharmacological blockade of this pathway in patients with PALI

  14. NADPH oxidase/ROS-dependent PYK2 activation is involved in TNF-α-induced matrix metalloproteinase-9 expression in rat heart-derived H9c2 cells

    SciTech Connect

    Yang, Chuen-Mao; Lee, I-Ta; Hsu, Ru-Chun; Chi, Pei-Ling; Hsiao, Li-Der

    2013-10-15

    TNF-α plays a mediator role in the pathogenesis of chronic heart failure contributing to cardiac remodeling and peripheral vascular disturbances. The implication of TNF-α in inflammatory responses has been shown to be mediated through up-regulation of matrix metalloproteinase-9 (MMP-9). However, the detailed mechanisms of TNF-α-induced MMP-9 expression in rat embryonic-heart derived H9c2 cells are largely not defined. We demonstrated that in H9c2 cells, TNF-α induced MMP-9 mRNA and protein expression associated with an increase in the secretion of pro-MMP-9. TNF-α-mediated responses were attenuated by pretreatment with the inhibitor of ROS (N-acetyl-L-cysteine, NAC), NADPH oxidase [apocynin (APO) or diphenyleneiodonium chloride (DPI)], MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), NF-κB (Bay11-7082), or PYK2 (PF-431396) and transfection with siRNA of TNFR1, p47{sup phox}, p42, p38, JNK1, p65, or PYK2. Moreover, TNF-α markedly induced NADPH oxidase-derived ROS generation in these cells. TNF-α-enhanced p42/p44 MAPK, p38 MAPK, JNK1/2, and NF-κB (p65) phosphorylation and in vivo binding of p65 to the MMP-9 promoter were inhibited by U0126, SB202190, SP600125, NAC, DPI, or APO. In addition, TNF-α-mediated PYK2 phosphorylation was inhibited by NAC, DPI, or APO. PYK2 inhibition could reduce TNF-α-stimulated MAPKs and NF-κB activation. Thus, in H9c2 cells, we are the first to show that TNF-α-induced MMP-9 expression is mediated through a TNFR1/NADPH oxidase/ROS/PYK2/MAPKs/NF-κB cascade. We demonstrated that NADPH oxidase-derived ROS generation is involved in TNF-α-induced PYK2 activation in these cells. Understanding the regulation of MMP-9 expression and NADPH oxidase activation by TNF-α on H9c2 cells may provide potential therapeutic targets of chronic heart failure. - Highlights: • TNF-α induces MMP-9 secretion and expression via a TNFR1-dependent pathway. • TNF-α induces ROS/PYK2-dependent MMP-9 expression in H9c2 cells. • TNF

  15. A 17-residue Sequence from the Matrix Metalloproteinase-9 (MMP-9) Hemopexin Domain Binds α4β1 Integrin and Inhibits MMP-9-induced Functions in Chronic Lymphocytic Leukemia B Cells*

    PubMed Central

    Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Vituri, Cidonia L.; del Cerro, Mercedes Hernández; Terol, María José; Albar, Juan P.; Rivas, Germán; García-Marco, José A.; García-Pardo, Angeles

    2012-01-01

    We previously showed that pro-matrix metalloproteinase-9 (proMMP-9) binds to B chronic lymphocytic leukemia (B-CLL) cells and contributes to B-CLL progression by regulating cell migration and survival. Induction of cell survival involves a non-proteolytic mechanism and the proMMP-9 hemopexin domain (PEX9). To help design specific inhibitors of proMMP-9-cell binding, we have now characterized B-CLL cell interaction with the isolated PEX9. B-CLL cells bound soluble and immobilized GST-PEX9, but not GST, and binding was mediated by α4β1 integrin. The ability to recognize PEX9 was observed in all 20 primary samples studied irrespective of their clinical stage or prognostic marker phenotype. By preparing truncated forms of GST-PEX9 containing structural blades B1B2 or B3B4, we have identified B3B4 as the primary α4β1 integrin-interacting region within PEX9. Overlapping synthetic peptides spanning B3B4 were then tested in functional assays. Peptide P3 (FPGVPLDTHDVFQYREKAYFC), a sequence present in B4 or smaller versions of this sequence (peptides P3a/P3b), inhibited B-CLL cell adhesion to GST-PEX9 or proMMP-9, with IC50 values of 138 and 279 μm, respectively. Mutating the two aspartate residues to alanine rendered the peptides inactive. An anti-P3 antibody also inhibited adhesion to GST-PEX9 and proMMP-9. GST-PEX9, GST-B3B4, and P3/P3a/P3b peptides inhibited B-CLL cell transendothelial migration, whereas the mutated peptide did not. B-CLL cell incubation with GST-PEX9 induced intracellular survival signals, namely Lyn phosphorylation and Mcl-1 up-regulation, and this was also prevented by the P3 peptides. The P3 sequence may, therefore, constitute an excellent target to prevent proMMP-9 contribution to B-CLL pathogenesis. PMID:22730324

  16. A 17-residue sequence from the matrix metalloproteinase-9 (MMP-9) hemopexin domain binds α4β1 integrin and inhibits MMP-9-induced functions in chronic lymphocytic leukemia B cells.

    PubMed

    Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Vituri, Cidonia L; del Cerro, Mercedes Hernández; Terol, María José; Albar, Juan P; Rivas, Germán; García-Marco, José A; García-Pardo, Angeles

    2012-08-10

    We previously showed that pro-matrix metalloproteinase-9 (proMMP-9) binds to B chronic lymphocytic leukemia (B-CLL) cells and contributes to B-CLL progression by regulating cell migration and survival. Induction of cell survival involves a non-proteolytic mechanism and the proMMP-9 hemopexin domain (PEX9). To help design specific inhibitors of proMMP-9-cell binding, we have now characterized B-CLL cell interaction with the isolated PEX9. B-CLL cells bound soluble and immobilized GST-PEX9, but not GST, and binding was mediated by α4β1 integrin. The ability to recognize PEX9 was observed in all 20 primary samples studied irrespective of their clinical stage or prognostic marker phenotype. By preparing truncated forms of GST-PEX9 containing structural blades B1B2 or B3B4, we have identified B3B4 as the primary α4β1 integrin-interacting region within PEX9. Overlapping synthetic peptides spanning B3B4 were then tested in functional assays. Peptide P3 (FPGVPLDTHDVFQYREKAYFC), a sequence present in B4 or smaller versions of this sequence (peptides P3a/P3b), inhibited B-CLL cell adhesion to GST-PEX9 or proMMP-9, with IC(50) values of 138 and 279 μm, respectively. Mutating the two aspartate residues to alanine rendered the peptides inactive. An anti-P3 antibody also inhibited adhesion to GST-PEX9 and proMMP-9. GST-PEX9, GST-B3B4, and P3/P3a/P3b peptides inhibited B-CLL cell transendothelial migration, whereas the mutated peptide did not. B-CLL cell incubation with GST-PEX9 induced intracellular survival signals, namely Lyn phosphorylation and Mcl-1 up-regulation, and this was also prevented by the P3 peptides. The P3 sequence may, therefore, constitute an excellent target to prevent proMMP-9 contribution to B-CLL pathogenesis.

  17. Methanol extract of Codium fragile inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 and invasiveness of MDA-MB-231 cells by suppressing nuclear factor-κB activation.

    PubMed

    Dilshara, Matharage Gayani; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Kang, Chang-Hee; Choi, Yung-Hyun; Kim, Gi-Young

    2016-06-01

    To evaluate whether the methanol extract of Codium fragile (MECF) regulates tumor necrosis factor-α (TNF-α)-induced invasion of human breast cancer MDA-MB-231 cells by suppressing matrix metalloproteinase-9 (MMP-9). Reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis were performed to analyze the expression of MMP-9 and nuclear factor-κB (NF-κB) subunits, p65 and p50, and IκB in MDA-MB-231 cells. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used for cell viability. MMP-9 activity and invasion were measured by gelatin zymography and a matrigel invasion assay, respectively. NF-κB activity was measured by an electrophoretic mobility shift assay and luciferase activity. MECF had no effect on cell viability up to a concentration of 100 μg/mL in human breast cancer MDA-MB-231 cells regardless of the presence of TNF-α. MDA-MB-231 cells that were stimulated with TNF-α showed a marked increase of invasion compared to the untreated control, whereas pretreatment with MECF downregulated the TNF-α-induced invasion of MDA-MB-231 cells. Additionally, zymography, western blot analysis, and RT-PCR confirmed that MECF decreased TNF-α-induced MMP-9 expression and activity which is a key regulator for cancer invasion. According to an electrophoretic morbidity shift assay, pretreatment with MECF in MDA-MB-231 cells significantly decreased the TNF-α-induced DNA-binding activity of NF-κB, which is an important transcription factor for regulating cancer invasion-related genes such as MMP-9. Furthermore, treatment with MECF sustained the expression of p65 and p50 in response to TNF-α in the cytosolic compartment. The luciferase assay demonstrated that MECF attenuated TNF-α-induced NF-κB luciferase activity. MECF exhibited its anti-invasive capability by downregulating TNF-α-induced MMP-9 expression, resulting from the suppression of NF-κB activity in the human breast cancer cell line MDA-MB-231

  18. Thymoquinone from nutraceutical black cumin oil activates Neu4 sialidase in live macrophage, dendritic, and normal and type I sialidosis human fibroblast cells via GPCR Galphai proteins and matrix metalloproteinase-9.

    PubMed

    Finlay, Trisha M; Jayanth, Preethi; Amith, Schammim Ray; Gilmour, Alanna; Guzzo, Christina; Gee, Katrina; Beyaert, Rudi; Szewczuk, Myron R

    2010-04-01

    ganglioside specific cholera toxin subunit B (CTXB) as well as with CTX, tyrosine kinase inhibitor K252a, and the broad range GPCR inhibitor suramin. The specific inhibitor of MMP-9, anti-MMP-9 antibody and anti-Neu4 antibody, but not the specific inhibitor of MMP-3 completely block TQ-induced sialidase activity in live THP-1 cells, which express Neu4 and MMP-9 on the cell surface. Neu4 sialidase activity in cell lysates from TQ-treated live THP-1 cells desialylates natural gangliosides and mucin substrates. RT-PCR and western blot analyses reveal no correlation between mRNA and protein values for Neu3 and Neu4 in human monocytic THP-1 cells, suggesting for the first time a varied post-transcriptional mechanism for these two mammalian sialidases independent of TQ activation. Our findings establish an unprecedented activation of Neu4 sialidase on the cell surface by thymoquinone, which is derived from the nutraceutical black cumin oil. The potentiation of GPCR-signaling by TQ via membrane targeting of Galphai subunit proteins and matrix metalloproteinase-9 activation may be involved in the activation process of Neu4 sialidase on the cell surface.

  19. Evaluation of New Diagnostic Biomarkers in Pediatric Sepsis: Matrix Metalloproteinase-9, Tissue Inhibitor of Metalloproteinase-1, Mid-Regional Pro-Atrial Natriuretic Peptide, and Adipocyte Fatty-Acid Binding Protein

    PubMed Central

    Alqahtani, Mashael F.; Smith, Craig M.; Weiss, Scott L.; Dawson, Susan; Ralay Ranaivo, Hantamalala; Wainwright, Mark S.

    2016-01-01

    Elevated plasma concentrations of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), mid-regional pro-atrial natriuretic peptide (mrProANP), and adipocyte fatty-acid-binding proteins (A-FaBPs) have been investigated as biomarkers for sepsis or detection of acute neurological injuries in adults, but not children. We carried out a single-center, prospective observational study to determine if these measures could serve as biomarkers to identify children with sepsis. A secondary aim was to determine if these biomarkers could identify children with neurologic complications of sepsis. A total of 90 patients ≤ 18 years-old were included in this study. 30 with severe sepsis or septic shock were compared to 30 age-matched febrile and 30 age-matched healthy controls. Serial measurements of each biomarker were obtained, beginning on day 1 of ICU admission. In septic patients, MMP9-/TIMP-1 ratios (Median, IQR, n) were reduced on day 1 (0.024, 0.004–0.174, 13), day 2 (0.020, 0.002–0.109, 10), and day 3 (0.018, 0.003–0.058, 23) compared with febrile (0.705, 0.187–1.778, 22) and healthy (0.7, 0.4–1.2, 29) (p< 0.05) controls. A-FaBP and mrProANP (Median, IQR ng/mL, n) were elevated in septic patients compared to control groups on first 2 days after admission to the PICU (p <0.05). The area under the curve (AUC) for MMP-9/TIMP-1 ratio, mrProANP, and A-FaBP to distinguish septic patients from healthy controls were 0.96, 0.99, and 0.76, respectively. MMP-9/TIMP-1 ratio was inversely and mrProANP was directly related to PIM-2, PELOD, and ICU and hospital LOS (p<0.05). A-FaBP level was associated with PELOD, hospital and ICU length of stay (p<0.05). MMP-9/TIMP-1 ratio associated with poor Glasgow Outcome Score (p<0.05). A-FaBP levels in septic patients with neurological dysfunction (29.3, 17.2–54.6, 7) were significantly increased compared to septic patients without neurological dysfunction (14.6, 13.3–20.6, 11). MMP-9/TIMP-1 ratios

  20. Evaluation of New Diagnostic Biomarkers in Pediatric Sepsis: Matrix Metalloproteinase-9, Tissue Inhibitor of Metalloproteinase-1, Mid-Regional Pro-Atrial Natriuretic Peptide, and Adipocyte Fatty-Acid Binding Protein.

    PubMed

    Alqahtani, Mashael F; Smith, Craig M; Weiss, Scott L; Dawson, Susan; Ralay Ranaivo, Hantamalala; Wainwright, Mark S

    2016-01-01

    Elevated plasma concentrations of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), mid-regional pro-atrial natriuretic peptide (mrProANP), and adipocyte fatty-acid-binding proteins (A-FaBPs) have been investigated as biomarkers for sepsis or detection of acute neurological injuries in adults, but not children. We carried out a single-center, prospective observational study to determine if these measures could serve as biomarkers to identify children with sepsis. A secondary aim was to determine if these biomarkers could identify children with neurologic complications of sepsis. A total of 90 patients ≤ 18 years-old were included in this study. 30 with severe sepsis or septic shock were compared to 30 age-matched febrile and 30 age-matched healthy controls. Serial measurements of each biomarker were obtained, beginning on day 1 of ICU admission. In septic patients, MMP9-/TIMP-1 ratios (Median, IQR, n) were reduced on day 1 (0.024, 0.004-0.174, 13), day 2 (0.020, 0.002-0.109, 10), and day 3 (0.018, 0.003-0.058, 23) compared with febrile (0.705, 0.187-1.778, 22) and healthy (0.7, 0.4-1.2, 29) (p< 0.05) controls. A-FaBP and mrProANP (Median, IQR ng/mL, n) were elevated in septic patients compared to control groups on first 2 days after admission to the PICU (p <0.05). The area under the curve (AUC) for MMP-9/TIMP-1 ratio, mrProANP, and A-FaBP to distinguish septic patients from healthy controls were 0.96, 0.99, and 0.76, respectively. MMP-9/TIMP-1 ratio was inversely and mrProANP was directly related to PIM-2, PELOD, and ICU and hospital LOS (p<0.05). A-FaBP level was associated with PELOD, hospital and ICU length of stay (p<0.05). MMP-9/TIMP-1 ratio associated with poor Glasgow Outcome Score (p<0.05). A-FaBP levels in septic patients with neurological dysfunction (29.3, 17.2-54.6, 7) were significantly increased compared to septic patients without neurological dysfunction (14.6, 13.3-20.6, 11). MMP-9/TIMP-1 ratios were

  1. Ingestion of proteoglycan fraction from shark cartilage increases serum inhibitory activity against matrix metalloproteinase-9 and suppresses development of N-nitrosobis(2-oxopropyl)amine-induced pancreatic duct carcinogenesis in hamster.

    PubMed

    Kitahashi, Tsukasa; Ikawa, Shoko; Sakamoto, Akika; Nomura, Yoshihiro; Tsujiuchi, Toshifumi; Shimizu, Kenji; Sasabe, Shuji; Park, Eun Young; Nakamura, Yasushi; Tsutsumi, Masahiro; Sato, Kenji

    2012-02-01

    A water extract of shark cartilage was fractionated into acidic and basic fractions by preparative isoelectric focusing on the basis of the amphoteric nature of samples. The acidic fraction was further fractionated into ethanol-soluble and -precipitate fractions. After the carcinogenesis treatment using N-nitrosobis(2-oxopropyl)amine, hamsters received a diet containing each fraction or purified chondroichin sulfate to give 0.4% (w/w) for 50 days. Only administration of the acidic ethanol-precipitate-fraction-containing diet significantly increased serum inhibitory activity against matrix metalloproteinase (MMP)-9 and reduced the number of adenocarcinomas in the pancreatic duct. The active fraction predominantly consisted of chondroichin sulfate-containing proteoglycan. However, the purified chondroichin sulfate had no significant activity. These results suggest that the protein moiety of the proteoglycan might be involved in the increase of serum inhibitory activity against MMP-9 and suppression of pancreatic carcinogenesis in hamster.

  2. Corticotropin-releasing hormone and urocortin induce secretion of matrix metalloproteinase-9 (MMP-9) without change in tissue inhibitors of MMP-1 by cultured cells from human placenta and fetal membranes.

    PubMed

    Li, Wei; Challis, John R G

    2005-12-01

    Matrix metalloproteinases (MMPs) are essential for human parturition due to their degrading of the extracellular matrix. CRH and urocortin (Ucn) are thought to play a central role in the mechanisms controlling human pregnancy and parturition. The aim of this study was to assess the effects of CRH and Ucn on MMP-9 and tissue inhibitors of MMP-1 (TIMP-1) protein and/or mRNA levels in vitro. Zymography, Western blotting, real-time RT-PCR, and culture/treatments of purified sycytiotrophoblast, chorion trophoblast, and amniotic epithelial cells from human placenta and fetal membranes were performed. CRH and Ucn significantly increased MMP-9 protein secretion from cultured chorionic trophoblast, amnion epithelial, and syncytiotrophoblast cells (P < 0.01, compared with control, respectively), but there was no effect on TIMP-1 secretion and MMP-9 mRNA expression. Antalarmin (a CRH receptor type 1 antagonist) significantly blocked CRH- and Ucn-induced pro-MMP-9 secretion from three cell types (P < 0.01, compared with treatment with CRH and Ucn alone, respectively). Antisauvagine 30 (a CRH receptor type 2 antagonist) resulted in a significant reduction in CRH- and Ucn-induced secretion from chorionic trophoblast cells (P < 0.05) and syncytiotrophoblast cells (P < 0.01) compared with treatment with CRH and Ucn alone, respectively, but had no significant effect on amniotic epithelial cells. Our results suggest that CRH and Ucn may play a role in the mechanisms controlling human parturition and preterm delivery not only by affecting myometrial contractility, but also by increasing local MMP activity in placenta and fetal membranes, thereby contributing to membrane rupture with the onset and progression of human labor.

  3. Oldenlandia diffusa suppresses metastatic potential through inhibiting matrix metalloproteinase-9 and intercellular adhesion molecule-1 expression via p38 and ERK1/2 MAPK pathways and induces apoptosis in human breast cancer MCF-7 cells.

    PubMed

    Chung, Tae-Wook; Choi, Hyunju; Lee, Ji-Min; Ha, Sun-Hyung; Kwak, Choong-Hwan; Abekura, Fukushi; Park, Jun-Young; Chang, Young-Chae; Ha, Ki-Tae; Cho, Seung-Hak; Chang, Hyeun Wook; Lee, Young-Choon; Kim, Cheorl-Ho

    2017-01-04

    Oldenlandia diffusa (OD) has long been known as an apoptotic inducer in breast tumors in ethnomedicine. To scientifically confirm the anti-breast cancer effects of water, methanol (MeOH) and butanol (BuOH) extracts of O. diffusa on cell apoptosis, matrix metalloproteinases (MMPs), intercellular adhesion molecule (ICAM)-1 and intracellular signaling in MCF-7 breast cancer cells. MeOH extracts (MOD) and BuOH extracts (BOD) were prepared and examined for their ability to inhibit phorbol myristate acetate (PMA)-induced matrix metalloproteinase (MMP)-9 and intercellular adhesion molecule (ICAM)-1 expressions in MCF-7 human breast cancer cells. Additionally, transwell migration, invasion and transcriptional activity were assessed. Results of immunofluorescence confocal microscopy for translocation of NF-κB and p-ERK and p-p38 were also checked. Finally, apoptotic signals including processed caspase-8, caspase-7, poly ADP-ribose polymerase, Bax and Bcl-2 were examined. MOD and BOD specifically inhibited PMA-induced MMP-9 expression as well as invasive and migration potential via ICAM-1. The inhibitory activity was also based on the suppressed transcriptional activity in MCF-7 breast cancer cells. Results of immunofluorescence confocal microscopy showed that translocation of NF-κB decreased upon BOD and MOD treatments, with a decreased level of p-ERK and p-p38 phosphorylation. In addition, treatment of MCF-7 cells with MOD and BOD activated apoptosis-linked proteins including enzymatically active forms of processed caspase-8, caspase-7 and poly ADP-ribose polymerase, together with increased expression of mitochondrial apoptotic protein, Bax and decreased expression of Bcl-2. The results indicate that OD as an anti-metastatic agent suppresses the metastatic response by targeting p-ERK, p-38 and NF-κB, thus reducing the invasion capacity of MCF-7 breast cancer cells through inhibition of MMP-9 and ICAM-1 expression and plays an important role in the regulation of breast

  4. Differences in both matrix metalloproteinase 9 concentration and zymographic profile between plasma and serum with clot activators are due to the presence of amorphous silica or silicate salts in blood collection devices.

    PubMed

    Mannello, Ferdinando; Tanus-Santos, Jose E; Meschiari, Cesar A; Tonti, Gaetana A

    2008-03-01

    Matrix metalloproteinases (MMPs) are promising diagnostic tools, and blood sampling/handling alters MMP concentrations between plasma and serum and between serum with and without clot activators. To explain the higher MMP-9 expression in serum collected with clot accelerators relative to serum with no additives and to plasma, we analyzed the effects of increasing amounts of silica and silicates (components of clot activators) in citrate plasma, serum, and buffy coats collected in both plastic and glass tubes from 50 healthy donors, and we analyzed the effects of silica and silicate on cultured leukemia cells. The levels of MMP-2 did not show significant changes between glass and plastic tubes, between serum and plasma, between serum with and without clot accelerators, or between silica and silicate treatments. No modification of MMP-9 expression was obtained by the addition of silica or silicate to previously separated plasma and serum. Increasing the amounts of nonsoluble silica and soluble silicate added to citrate and empty tubes prior to blood collection resulted in increasing levels of MMP-9 relative to citrate plasma and serum. Silica and silicate added to buffy coats and leukemia cells significantly induced MMP-9 release/secretion, demonstrating that both silica and silicate induce the release of pro- and complexed MMP-9 forms. We recommend limiting the misuse of serum and avoiding the interfering effects of clot activators.

  5. Rapid, Automated, and Specific Immunoassay to Directly Measure Matrix Metalloproteinase-9–Tissue Inhibitor of Metalloproteinase-1 Interactions in Human Plasma Using AlphaLISA Technology: A New Alternative to Classical ELISA

    PubMed Central

    Pulido-Olmo, Helena; Rodríguez-Sánchez, Elena; Navarro-García, José Alberto; Barderas, María G.; Álvarez-Llamas, Gloria; Segura, Julián; Fernández-Alfonso, Marisol; Ruilope, Luis M.; Ruiz-Hurtado, Gema

    2017-01-01

    The protocol describes a novel, rapid, and no-wash one-step immunoassay for highly sensitive and direct detection of the complexes between matrix metalloproteinases (MMPs) and their tissue inhibitor of metalloproteinases (TIMPs) based on AlphaLISA® technology. We describe two procedures: (i) one approach is used to analyze MMP-9–TIMP-1 interactions using recombinant human MMP-9 with its corresponding recombinant human TIMP-1 inhibitor and (ii) the second approach is used to analyze native or endogenous MMP-9–TIMP-1 protein interactions in samples of human plasma. Evaluating native MMP-9–TIMP-1 complexes using this approach avoids the use of indirect calculations of the MMP-9/TIMP-1 ratio for which independent MMP-9 and TIMP-1 quantifications by two conventional ELISAs are needed. The MMP-9–TIMP-1 AlphaLISA® assay is quick, highly simplified, and cost-effective and can be completed in less than 3 h. Moreover, the assay has great potential for use in basic and preclinical research as it allows direct determination of native MMP-9–TIMP-1 complexes in circulating blood as biofluid. PMID:28791014

  6. Rheumatoid Factor Positivity Is Associated with Increased Joint Destruction and Upregulation of Matrix Metalloproteinase 9 and Cathepsin K Gene Expression in the Peripheral Blood in Rheumatoid Arthritic Patients Treated with Methotrexate

    PubMed Central

    Tchetina, Elena V.; Demidova, Natalia V.; Karateev, Dmitry E.; Nasonov, Eugeny L.

    2013-01-01

    We evaluated changes in gene expression of mTOR, p21, caspase-3, ULK1, TNFα, matrix metalloproteinase (MMP)-9, and cathepsin K in the whole blood of rheumatoid arthritic (RA) patients treated with methotrexate (MTX) in relation to their rheumatoid factor status, clinical, immunological, and radiological parameters, and therapeutic response after a 24-month follow-up. The study group consisted of 35 control subjects and 33 RA patients without previous history of MTX treatment. Gene expression was measured using real-time RT-PCR. Decreased disease activity in patients at the end of the study was associated with significant downregulation of TNFα expression. Downregulation of mTOR was observed in seronegative patients, while no significant changes in the expression of p21, ULK1, or caspase-3 were noted in any RA patients at the end of the study. The increase in erosion numbers observed in the seropositive patients at the end of the follow-up was accompanied by upregulation of MMP-9 and cathepsin K, while seronegative patients demonstrated an absence of significant changes in MMP-9 and cathepsin K expression and no increase in the erosion score. Our results suggest that increased expression of MMP-9 and cathepsin K genes in the peripheral blood might indicate higher bone tissue destruction activity in RA patients treated with methotrexate. The clinical study registration number is 0120.0810610. PMID:24348567

  7. A Lindera obtusiloba Extract Blocks Calcium-/Phosphate-Induced Transdifferentiation and Calcification of Vascular Smooth Muscle Cells and Interferes with Matrix Metalloproteinase-2 and Metalloproteinase-9 and NF-κB

    PubMed Central

    Freise, Christian; Kim, Ki Young; Querfeld, Uwe

    2015-01-01

    Vascular calcifications bear the risk for cardiovascular complications and have a high prevalence among patients with chronic kidney disease. Central mediators of vascular calcifications are vascular smooth muscle cells (VSMC). They transdifferentiate into a synthetic/osteoblast-like phenotype, which is induced, for example, by elevated levels of calcium and phosphate (Ca/P) due to a disturbed mineral balance. An aqueous extract from Lindera obtusiloba (LOE) is known to exert antifibrotic and antitumor effects or to interfere with the differentiation of preadipocytes. Using murine and rat VSMC cell lines, we here investigated whether LOE also protects VSMC from Ca/P-induced calcification. Indeed, LOE effectively blocked Ca/P-induced calcification of VSMC as shown by decreased VSMC mineralization and secretion of alkaline phosphatase. In parallel, mRNA expression of the calcification markers osterix and osteocalcin was reduced. Vice versa, the Ca/P-induced loss of the VSMC differentiation markers alpha smooth muscle actin and smooth muscle protein 22-alpha was rescued by LOE. Further, LOE blocked Ca/P-induced mRNA expressions and secretions of matrix metalloproteinases-2/-9 and activation of NF-κB, which are known contributors to vascular calcification. In conclusion, LOE interferes with the Ca/P-induced transdifferentiation/calcification of VSMC. Thus, LOE should be further analysed regarding a potential complementary treatment option for cardiovascular diseases including vascular calcifications. PMID:26294927

  8. Elevated expression levels of matrix metalloproteinase-9 in placental villi and tissue inhibitor of metalloproteinase-2 in decidua are associated with prolonged bleeding after mifepristone-misoprostol medical abortion.

    PubMed

    Zhuang, Yaling; Qian, Zhida; Huang, Lili

    2014-01-01

    To determine whether the expression levels of matrix metalloproteinases 2 and 9 (MMP-2 and -9) and tissue inhibitors of metalloproteinases 1 and 2 (TIMP-1 and -2) in the villi and the decidua are associated with prolonged bleeding after medical abortion. Case-controlled study. University hospital. Mifepristone-misoprostol medical abortion patients were divided into two groups (20 women each) based on the length of time (>14 or ≤14 days) of bleeding after the abortion. Discharged villi and deciduas were collected. The expression levels of MMP-2 and -9 and TIMP-1 and -2 in the villi and deciduas were assessed with semiquantitative immunohistochemistry. The median semiquantitative immunohistochemistry staining index (SI) scores for MMP-9 expression in the villi were elevated in the bleeding group compared with the control group (median SI scores 0.31 and 0.03, respectively). TIMP-2 expression was elevated in the decidua in the bleeding group compared with the control group (median SI scores 1.00 and 0.20, respectively). No significant differences were observed between the two groups in the expression levels of MMP-2 in the villi or of MMP-2, MMP-9, or TIMP-1 or of the ratios of MMP-9/TIMP-1 or MMP-2/TIMP-2 in the decidua. Elevated expression levels of MMP-9 in the villi and of TIMP-2 in the decidua were associated with prolonged bleeding after medical abortion. Copyright © 2014. Published by Elsevier Inc.

  9. Japanese encephalitis virus induces matrix metalloproteinase-9 expression via a ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent AP-1 pathway in rat brain astrocytes

    PubMed Central

    2012-01-01

    Background Japanese encephalitis virus (JEV) infection is a major cause of acute encephalopathy in children, which destroys central nervous system (CNS) cells, including astrocytes and neurons. Matrix metalloproteinase (MMP)-9 has been shown to degrade components of the basal lamina, leading to disruption of the blood-brain barrier (BBB) and to contribute to neuroinflammatory responses in many neurological diseases. However, the detailed mechanisms of JEV-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) are largely unclear. Methods In this study, the effect of JEV on expression of MMP-9 was determined by gelatin zymography, western blot analysis, RT-PCR, and promoter assay. The involvement of AP-1 (c-Jun and c-Fos), c-Src, PDGFR, PI3K/Akt, and MAPKs in these responses were investigated by using the selective pharmacological inhibitors and transfection with siRNAs. Results Here, we demonstrate that JEV induces expression of pro-form MMP-9 via ROS/c-Src/PDGFR/PI3K/Akt/MAPKs-dependent, AP-1 activation in RBA-1 cells. JEV-induced MMP-9 expression and promoter activity were inhibited by pretreatment with inhibitors of AP-1 (tanshinone), c-Src (PP1), PDGFR (AG1296), and PI3K (LY294002), and by transfection with siRNAs of c-Jun, c-Fos, PDGFR, and Akt. Moreover, JEV-stimulated AP-1 activation was inhibited by pretreatment with the inhibitors of c-Src, PDGFR, PI3K, and MAPKs. Conclusion From these results, we conclude that JEV activates the ROS/c-Src/PDGFR/PI3K/Akt/MAPKs pathway, which in turn triggers AP-1 activation and ultimately induces MMP-9 expression in RBA-1 cells. These findings concerning JEV-induced MMP-9 expression in RBA-1 cells imply that JEV might play an important role in CNS inflammation and diseases. PMID:22251375

  10. Simvastatin induces NFκB/p65 down-regulation and JNK1/c-Jun/ATF-2 activation, leading to matrix metalloproteinase-9 (MMP-9) but not MMP-2 down-regulation in human leukemia cells.

    PubMed

    Chen, Ying-Jung; Chang, Long-Sen

    2014-12-15

    The aim of the present study was to explore the signaling pathways associated with the effect of simvastatin on matrix metalloproteinase-2 (MMP-2)/MMP-9 expression in human leukemia K562 cells. In sharp contrast to its insignificant effect on MMP-2, simvastatin down-regulated MMP-9 protein expression and mRNA levels in K562 cells. Simvastatin-induced Pin1 down-regulation evoked NFκB/p65 degradation. Meanwhile, simvastatin induced JNK-mediated c-Jun and ATF-2 activation. Over-expression of Pin1 suppressed simvastatin-induced MMP-9 down-regulation. Treatment with SP600125 (a JNK inhibitor) or knock-down of JNK1 reduced MMP-2 expression in simvastatin-treated cells. Simvastatin enhanced the binding of c-Jun/ATF-2 with the MMP-2 promoter. Down-regulation of c-Jun or ATF-2 by siRNA revealed that c-Jun/ATF-2 activation was crucial for MMP-2 expression. Suppression of p65 activation or knock-down of Pin1 by shRNA reduced MMP-2 and MMP-9 expression in K562 cells. Over-expression of constitutively active JNK1 rescued MMP-2 expression in Pin1 shRNA-transfected cells. Simvastatin treatment also suppressed MMP-9 but not MMP-2 expression in human leukemia U937 and KU812 cells. Taken together, our data indicate that simvastatin-induced p65 instability leads to MMP-9 down-regulation in leukemia cells, while simvastatin-induced JNK1/c-Jun/ATF-2 activation maintains the MMP-2 expression underlying p65 down-regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. All trans-retinoic acid selectively down-regulates matrix metalloproteinase-9 (MMP-9) and up-regulates tissue inhibitor of metalloproteinase-1 (TIMP-1) in human bronchoalveolar lavage cells.

    PubMed Central

    Frankenberger, M.; Hauck, R. W.; Frankenberger, B.; Häussinger, K.; Maier, K. L.; Heyder, J.; Ziegler-Heitbrock, H. W.

    2001-01-01

    BACKGROUND: The balance between proteinases and antiproteinases plays an important role in tissue destruction and remodelling. In chronic obstructive pulmonary disease (COPD) and emphysema, an imbalance between matrix metalloproteinases (MMPs) and inhibitors of tissue metalloproteinase (TIMPs) has been reported. Alveolar macrophages are considered to be the main source of MMPs. We therefore have analyzed the effects of free and liposomal all trans-retinoic acid (ATRA) on the expression of MMP-9 and TIMP-1 in bronchoalveolar lavage (BAL) cells from patients with COPD and patients with other lung diseases. MATERIAL AND METHODS: BAL cells were incubated 1-3 day with either liposomal or free ATRA. Supernatants were tested for MMP-9 and TIMP-1 protein in specific ELISA systems; mRNA analysis was performed by semi-quantitative RT-PCR and by quantitative LightCycler PCR. RESULTS: We demonstrate that either liposomal or free ATRA selectively down-regulates MMP-9 and up-regulates TIMP-1. At the protein level, MMP-9 is decreased 3-fold and TIMP-1 is increased 3.5-fold compared to the base line with empty liposomes or untreated cells. The ratio of MMP-9 and its inhibitor TIMP-1, which may be crucial to the overall proteolytic potential decreased by factor 8. That this countercurrent effect of ATRA is not due to an altered protein stability but to transcriptional regulation could be demonstrated by RT-PCR. Quantitative LightCycler analysis revealed a 2.5-fold decrease of MMP-9 mRNA and a 4.5 fold increase of TIMP- 1 mRNA. CONCLUSIONS: These data suggest that ATRA treatment via its impact on the proteinase/antiproteinase ratio may become a new therapeutic strategy for patients with inflammatory destructive lung diseases. PMID:11471571

  12. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis

    PubMed Central

    Bergers, Gabriele; Brekken, Rolf; McMahon, Gerald; Vu, Thiennu H.; Itoh, Takeshi; Tamaki, Kazuhiko; Tanzawa, Kazuhiko; Thorpe, Philip; Itohara, Shigeyoshi; Werb, Zena; Hanahan, Douglas

    2010-01-01

    During carcinogenesis of pancreatic islets in transgenic mice, an angiogenic switch activates the quiescent vasculature. Paradoxically, vascular endothelial growth factor (VEGF) and its receptors are expressed constitutively. Nevertheless, a synthetic inhibitor (SU5416) of VEGF signalling impairs angiogenic switching and tumour growth. Two metalloproteinases, MMP-2/gelatinase-A and MMP-9/gelatinase-B, are upregulated in angiogenic lesions. MMP-9 can render normal islets angiogenic, releasing VEGF. MMP inhibitors reduce angiogenic switching, and tumour number and growth, as does genetic ablation of MMP-9. Absence of MMP-2 does not impair induction of angiogenesis, but retards tumour growth, whereas lack of urokinase has no effect. Our results show that MMP-9 is a component of the angiogenic switch. PMID:11025665

  13. Plasma matrix metalloproteinase-9 activity in cats with lymphoma.

    PubMed

    Tamamoto, T; Ohno, K; Takahashi, M; Fukushima, K; Kanemoto, H; Fujino, Y; Tsujimoto, H

    2017-03-01

    In this study, plasma MMP-9 activity was evaluated in cats with lymphoma. Plasma samples were obtained from 26 cats with lymphoma before treatment. From 13 of the included 26 cats, plasma samples were obtained 4 weeks after the initiation of treatment. Plasma samples were also obtained from 10 healthy cats as a control. Plasma MMP-9 activity was examined by gelatin zymography and semi-quantitative value (arbitrary unit; a.u.) for each sample was calculated. Relatively high levels of MMP-9 were observed in cats with lymphoma compared with those in healthy control cats. MMP-9 quantification through zymography showed significantly higher activity in cats with lymphoma (median, 0.63 a.u.; range, 0.23-3.24 a.u.) than in healthy controls (0.22 a.u.; 0.12-0.46 a.u.; P < 0.01). MMP-9 activities were significantly different before (0.73 a.u.; 0.30-3.24 a.u.) and after treatment (0.50 a.u.; 0.14-1.32 a.u.; P = 0.017). Measuring plasma MMP-9 activity in cats with lymphoma may become an appropriate monitoring tool for feline lymphoma.

  14. Metalloproteinase-9 contributes to endothelial dysfunction in atherosclerosis via protease activated receptor-1

    PubMed Central

    Florence, Jon M.; Booshehri, Laela M.; Allen, Timothy C.; Kurdowska, Anna K.

    2017-01-01

    The atherosclerotic process begins when vascular endothelial cells undergo pro-inflammatory changes such as aberrant activation to dysfunctional phenotypes and apoptosis, leading to loss of vascular integrity. Our laboratory has demonstrated that exposure of mice to second hand smoke triggers an increase in expression of metalloproteinase-9. Further, metalloproteinase-9 released by second hand smoke—activated leukocytes may propagate pro-atherogenic alterations in endothelial cells. We have shown that levels of metalloproteinase-9 were increased in the plasma from apolipoprotein E deficient (ApoE-/-) mice exposed to second hand smoke relative to non-exposed controls. Moreover, we have collected data from two different, but complementary, treatments of second hand smoke exposed atherosclerotic mice. Animals received either cell specific metalloproteinase-9 directed siRNA to minimize metalloproteinase-9 expression in neutrophils and endothelial cells, or a pharmacological inhibitor of Bruton’s tyrosine kinase which indirectly limits metalloproteinase-9 production in neutrophils. These treatments reduced atherosclerotic changes in mice and improved overall vascular health. We also demonstrated that metalloproteinase-9 could activate endothelial cells and induce their apoptosis via cleavage of protease activated receptor-1. In summary, better understanding of metalloproteinase-9’s pathogenic capabilities as well as novel signaling pathways involved may lead to development of treatments which may provide additional benefits to atherosclerosis patients with a history of second hand smoke exposure. PMID:28166283

  15. Fabrication of peptide stabilized fluorescent gold nanocluster/graphene oxide nanocomplex and its application in turn-on detection of metalloproteinase-9.

    PubMed

    Nguyen, Phuong-Diem; Cong, Vu Thanh; Baek, Changyoon; Min, Junhong

    2017-03-15

    This study introduces the double-ligands stabilizing gold nanoclusters and the fabrication of gold nanocluster/graphene nanocomplex as a "turn-on" fluorescent probe for the detection of cancer-related enzyme matrix metalloproteinase-9. A facile, one-step approach was developed for the synthesis of fluorescent gold nanoclusters using peptides and mercaptoundecanoic acid as co-templating ligands. The peptide was designed to possess a metalloproteinase-9 cleavage site and to act not only as a stabilizer but also as a targeting ligand for the enzyme detection. The prepared gold nanoclusters show an intense red fluorescence with a broad adsorption spectrum. In the presence of the enzyme, due to the excellent quenching properties and the negligible background of graphene oxide, the developed peptide-gold nanocluster/graphene nanocomplex yielded an intense "turn-on" fluorescent response, which strongly correlated with the enzyme concentration. The limit of detection of the nanocomplex was 0.15nM. The sensor was successfully applied for "turn-on" detection of metalloproteinase-9 secreted from human breast adenocarcinoma MCF-7 cells with high sensitivity, selectivity, significant improvement in terms of detection time and simplicity.

  16. Osteoclast derived matrix metalloproteinase-9 directly impacts angiogenesis in the prostate tumor-bone microenvironment

    PubMed Central

    Bruni-Cardoso, Alexandre; Johnson, Lindsay C.; Vessella, Robert L.; Peterson, Todd E.; Lynch, Conor C.

    2010-01-01

    In human prostate to bone metastases and in a novel rodent model that recapitulates prostate tumor induced-osteolytic and osteogenic responses, we found that osteoclasts are a major source of the proteinase, MMP-9. Since MMPs are important mediators of tumor-host communication, we tested the impact of host derived MMP-9 on prostate tumor progression in bone. To this end, immunocompromised mice that were wild type or null for MMP-9 received transplants of osteolytic/osteogenic inducing prostate adenocarcinoma tumor tissue to the calvaria. Surprisingly, we found that that host MMP-9 significantly contributed to prostate tumor growth without impacting prostate tumor induced osteolytic or osteogenic change as determined by μCT, μSPECT and histomorphometry. Subsequent studies aimed at delineating the mechanism of MMP-9 action on tumor growth focused on angiogenesis since MMP-9 and osteoclasts have been implicated in this process. We observed; 1) significantly fewer and smaller blood vessels in the MMP-9 null group by CD-31 immunohistochemistry; 2) MMP-9 null osteoclasts had significantly lower levels of bioavailable VEGF-A164 and; 3) using an aorta sprouting assay, conditioned media derived from wild type osteoclasts was significantly more angiogenic than conditioned media derived from MMP-9 null osteoclasts. In conclusion, these studies demonstrate that osteoclast derived MMP-9 impacts prostate tumor growth in the bone microenvironment by contributing to angiogenesis without altering prostate tumor induced osteolytic or osteogenic changes. PMID:20332212

  17. Downregulation of CD9 in Keratinocyte Contributes to Cell Migration via Upregulation of Matrix Metalloproteinase-9

    PubMed Central

    Jiang, Xu-pin; Zhang, Dong-xia; Teng, Miao; Zhang, Qiong; Zhang, Jia-ping; Huang, Yue-sheng

    2013-01-01

    Tetraspanin CD9 has been implicated in various cellular and physiological processes, including cell migration. In our previous study, we found that wound repair is delayed in CD9-null mice, suggesting that CD9 is critical for cutaneous wound healing. However, many cell types, including immune cells, endothelial cells, keratinocytes and fibroblasts undergo marked changes in gene expression and phenotype, leading to cell proliferation, migration and differentiation during wound repair, whether CD9 regulates kerationcytes migration directly remains unclear. In this study, we showed that the expression of CD9 was downregulated in migrating keratinocytes during wound repair in vivo and in vitro. Recombinant adenovirus vector for CD9 silencing or overexpressing was constructed and used to infect HaCaT cells. Using cell scratch wound assay and cell migration assay, we have also demonstrated that downregulation of CD9 promoted keratinocyte migration in vitro, whereas CD9 overexpression inhibited cell migration. Moreover, CD9 inversely regulated the activity and expression of MMP-9 in keratinocytes, which was involved in CD9-regulated keratinocyte migration. Importantly, CD9 silencing-activated JNK signaling was accompanied by the upregulation of MMP-9 activity and expression. Coincidentally, we found that SP600125, a JNK pathway inhibitor, decreased the activity and expression of MMP-9 of CD9-silenced HaCaT cells. Thus, our results suggest that CD9 is downregulated in migrating keratinocytes in vivo and in vitro, and a low level of CD9 promotes keratinocyte migration in vitro, in which the regulation of MMP-9 through the JNK pathway plays an important role. PMID:24147081

  18. Understanding effects of matrix protease and matrix organization on directional persistence and translational speed in three-dimensional cell migration.

    PubMed

    Zaman, Muhammad H; Matsudaira, Paul; Lauffenburger, Douglas A

    2007-01-01

    Recent studies have shown significant differences in migration mechanisms between two- and three-dimensional environments. While experiments have suggested a strong dependence of in vivo migration on both structure and proteolytic activity, the underlying biophysics of such dependence has not been studied adequately. In addition, the existing models of persistent random walk migration are primarily based on two-dimensional movement and do not account for the effect of proteolysis or matrix inhomogeneity. Using lattice Monte Carlo methods, we present a model to study the role of matrix metallo-proteases (MMPs) on directional persistence and speed. The simulations account for a given cell's ability to deform as well as to digest the matrix as the cell moves in three dimensions. Our results show a bimodal dependence of speed and persistence on matrix pore size and suggest high sensitivity on MMP activity, which is in very good agreement with experimental studies carried out in 3D matrices.

  19. [Effects of cigarette smoke exposure on pulmonary vascular intercellular adhesion molecule-1 and matrix metalloproteinase-9 in rats].

    PubMed

    Hu, Xiao-Yun; Zhang, Hong-Li; Xu, Jian-Ying; Wang, Chen

    2009-09-01

    To understand the effects of cigarette smoke exposure and smoke cessation on the structure, inflammation and remodeling of pulmonary blood vessels in rats. Thirty-two male Wistar rats were randomly divided into a control group, a smoke exposure group 1 (low dose smoke), a smoke exposure group 2 (high dose smoke) and a smoke cessation group, with 8 rats in each group. The ratio of pulmonary vascular wall thickness/vascular external diameter (WT%) and the ratio of pulmonary vascular wall area/total pulmonary vascular area (WA%) were measured by the image analysis system. The expressions of pulmonary vascular ICAM-1 and MMP-9 protein and mRNA were detected respectively by enzyme linked immunosorbent assay (ELISA) and in situ hybridization techniques. WT% and WA% increased significantly in the smoke exposure group 1 [(15.3 +/- 2.1)%, (41 +/- 7)%] and smoke exposure group 2 [(18.0 +/- 2.0)%, (50 +/- 7)%] compared to those of the control group [(10.4 +/- 2.0)%, (30 +/- 4)%] (q = 4.93 - 11.16, P < 0.05, respectively). The WT% and WA% in the smoke cessation group [(11.0 +/- 1.3)%, (35 +/- 5)%] decreased significantly compared to those of the smoke exposure group 2 (q = 6.74 - 10.29, P < 0.05, respectively). The expression of pulmonary vascular ICAM-1 protein and mRNA increased significantly in the smoke cessation group, the smoke exposure group 1 and the smoke exposure group 2 [(7.9 +/- 3.2 and 6.2 +/- 3.0), (12.9 +/- 2.3 and 10.3 +/- 2.2), (19.2 +/- 2.3 and 18.3 +/- 2.4)] compared to those of the control group (4.7 +/- 2.3 and 2.7 +/- 1.7) (q = 3.28 - 15.76, P < 0.05, respectively). However, the expression of ICAM-1 protein and mRNA was lower in the smoke cessation group compared to those of the smoke exposure groups (q = 3.85 - 12.46, P < 0.05, respectively). The expression of MMP-9 protein and mRNA increased significantly in the smoke cessation group, smoke exposure group 1 and smoke exposure group 2 [(12.0 +/- 2.8 and 7.0 +/- 3.4), (16.1 +/- 2.8 and 12.5 +/- 1.8), (22.5 +/- 3.5 and 20.0 +/- 3.1)] compared to those of the control group (7.8 +/- 3.0 and 3.2 +/- 2.8) (q = 3.19 - 14.22, P < 0.05, respectively). But the expression of MMP-9 protein and mRNA was lower in the smoke cessation group compared to those of the smoke exposure groups (q = 3.68 - 11.03, P < 0.05, respectively). Both ICAM-1 and MMP-9 mRNA expression were positively correlated with WT% and WA% (r = 0.619 - 0.703) (P < 0.05, respectively). Cigarette smoke exposure caused pulmonary vascular wall thickening. By up-regulating the expression of ICAM-1 and MMP-9 protein and mRNA in pulmonary vascular wall, cigarette smoke exposure mediated pulmonary vascular inflammation and remodeling, which were associated with pulmonary hypertension. Smoke cessation attenuated the smoke-induced pulmonary vascular impairment.

  20. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    SciTech Connect

    Franco, Gilson C.N.; Nakanishi, Tadashi; Ohta, Kouji; Rosalen, Pedro L.; Groppo, Francisco C.; Bartlett, John D.; Stashenko, Philip; Taubman, Martin A.; Kawai, Toshihisa

    2011-06-10

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  1. Peroxynitrite decomposition catalyst prevents matrix metalloproteinase-9 activation and neurovascular injury after hemoglobin injection into the caudate nucleus of rats.

    PubMed

    Ding, R; Feng, L; He, L; Chen, Y; Wen, P; Fu, Z; Lin, C; Yang, S; Deng, X; Zeng, J; Sun, G

    2015-06-25

    Hemoglobin (Hb) is a major constituent of blood and a potent mediator of oxidative or nitrative stress after intracerebral hemorrhage (ICH). Our previous study demonstrated that Hb could induce abundant peroxynitrite (ONOO(-)) formation in vivo, which may be involved in the blood-brain barrier (BBB) disruption, however, the drug intervention is absent and also the underlying mechanism. Using an experimental stroke model by injecting Hb into the caudate nucleus of male Sprague-Dawley rats, we assessed the role of ONOO(-) decomposition catalyst, 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron(III) [FeTPPS] in the activation of MMP-9 and Hb-induced neurovascular injuries. 3-Nitrotyrosine (3-NT, as an index of ONOO(-) formation) and NF-κB expression was measured by western blot (WB) and immunohistochemistry (IHC)/immunofluorescence (IF). Activity of MMP was evaluated by in situ zymography. Neurovascular injury was assessed using zonula occludens-1 (ZO-1) by WB and IF, fibronectin (FN) and neuron-specific nuclear protein (NeuN) IHC. Perihematomal cell death was determined by TUNEL assay. Behavioral outcome was measured by modified neurological severity score (mNSS) test. At the injured striata, profuse 3-NT was produced and mainly expressed in neutrophils and microglia/macrophages. 3-NT formation significantly colocalized with nuclear factor-κB (NF-κB) expression. In situ zymography showed that gelatinase activity was mostly co-localized with neurons and blood vessel walls and partly with neutrophils and microglia/macrophages. Enhanced 3-NT production, NF-κB induction and MMP-9 activation were obviously reduced after FeTPPS treatment. Hb-induced injury to tight junction protein (ZO-1), basal lamina of FN-immunopositive microvasculature and neural cells was evidently ameliorated by FeTPPS. In addition, apoptotic cell numbers as well as behavioral deficits were also improved. The present study shows that the administration of the ONOO(-) decomposition catalyst FeTPPS protects against Hb-induced neurovascular injuries and improves neurological function, which possibly in part by suppressing MMP-9 activation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Dependency of Experimental Autoimmune Encephalomyelitis Induction on MOG35-55 Properties Modulating Matrix Metalloproteinase-9 and Interleukin-6.

    PubMed

    Seo, Ji-Eun; Hasan, Mahbub; Han, Joon-Seung; Kim, Nak-Kyoon; Lee, Ji Eun; Lee, Kang Mi; Park, Ju-Hyung; Kim, Ho Jun; Son, Junghyun; Lee, Jaeick; Kwon, Oh-Seung

    2016-04-01

    Experimental autoimmune encephalomyelitis (EAE) is commonly induced with myelin oligodendrocyte glycoprotein (MOG)35-55; occasionally, EAE is not well induced despite MOG35-55 immunization. To confirm that EAE induction varies with difference in MOG35-55 properties, we compared three MOG35-55 from different commercial sources, which are MOG-A, MOG-B, and MOG-C. The peptides induced EAE disease with 100, 40, and 20 % incidence, respectively. Compared with others, MOG-A showed higher peptide purity (99.2 %) and content (92.2 %) and presented a sheet shape with additional sodium and chloride chemical elements. In MOG-A-treated group, MMP-9 activity and IL-6 levels were considerably higher than the other groups in CNS tissues, and significantly increased VCAM-1, IFN-γ, and decreased IL-4 were also shown compared to MOG-B- and/or MOG-C-treated group. In conclusion, the immunological and toxicological changes by the difference in MOG35-55 properties modulate EAE induction, and MOG35-55 which affects MMP-9 activity and IL-6 levels may be the most effective EAE-inducing antigen. This study can be potentially applied by researchers using MOG35-55 peptide and manufacturers for MOG35-55 synthesis.

  3. LYR71, a derivative of trimeric resveratrol, inhibits tumorigenesis by blocking STAT3-mediated matrix metalloproteinase 9 expression

    PubMed Central

    Kim, Ja Eun; Kim, Hong Sook; Shin, Yong-Jae; Lee, Chang Seok; Won, Cheolhee; Lee, Sin-Ae; Lee, Jung Weon; Kim, Youngsoo; Kang, Jae-Seung; Chung, Myung-Hee

    2008-01-01

    Tumor migration/invasion is the main cause of tumor progression and STAT3 is needed to enhance tumor migration/invasion by up-regulating MMP-9. Thus, agents that inhibit STAT3 activation may be used as an anticancer drug. We present herein that 6-methyl-2-propylimino-6, 7-dihydro-5H-benzo [1, 3]-oxathiol-4-one (LYR71) , a derivative of trimeric resveratrol, has an anticancer activity through inhibition of STAT3 activation. We found that LYR71 suppressed STAT3 activation and inhibited the expression and activity of MMP-9 in RANTES-stimulated breast cancer cells. In addition, LYR71 reduced RANTES-induced MMP-9 transcripts by blocking STAT3 recruitment, dissociating p300 and deacetylating histone H3 and H4 on the MMP-9 promoter. Furthermore, LYR71 inhibited tumor migration/invasion in RANTES-treated breast cancer cells and consequently blocked tumor progression in tumor-bearing mice. Taken together, the results of this study suggest that LYR71 can be therapeutically useful due to the inhibition effect of STAT3-mediated MMP-9 expression in breast cancer cells. PMID:18985009

  4. Circulating Total and Active Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinases-1 in Patients with Systemic Lupus Erythomatosus

    PubMed Central

    Robak, Ewa; Wierzbowska, Agnieszka; Chmiela, Magdalena; Kulczycka, Liliana; Sysa-Jędrejowska, Anna; Robak, Tadeusz

    2006-01-01

    We investigated the serum concentration of total metalloproteinase-9 (tMPP-9), active MMP-9 (aMMP-9), and tissue inhibitor of metalloproteinase-1 (TIMP-1) in a group of 41 patients with SLE and 20 healthy controls. Serum levels of tMMP-9 and TIMP-1 were assessed by an enzyme-linked immunosorbent assay (ELISA) and aMMP-9 by fluorometric assay. The tMMP-9 level was lower in SLE patients (mean 262 ng/mL) than in healthy volunteers (mean 325 ng/mL) (P = .048). Similarly, aMMP-9 level was lower in SLE patients (mean 121 ng/mL) than in control group (mean 169 ng/mL) (P = .0355) and lower in active SLE (mean 54 ng/mL) than in inactive disease (mean 99 ng/mL) (P = .033). TIMP-1 level was also lower in SLE patients (mean 181 ng/mL) than in control group (mean 233 ng/mL) (P = .004). In SLE patients, a positive correlation was found between tMMP-9 and aMMP-9 (ρ = 0.568; P = .001). We also found a positive correlation of tMMP-9 and TIMP-1 with VEGF concentrations (ρ = 0.450, P = .005 and ρ = 0.387; P = .018, resp). tMMP-9, aMMP-9, and TIMP-1 serum levels are lower in SLE patients than in healthy control group. PMID:16864898

  5. Extracellular matrix pleural tent for persistent air leak and air space in a child after upper lobectomy.

    PubMed

    McConnell, Patrick I

    2015-01-01

    Creation of a pleural tent is effective in reducing persistent air leaks after pulmonary resection. I report a case of a pleural-like tent being created out of extracellular matrix to treat a persistent air leak in child after upper lobectomy for a large congenital pulmonary airway malformation type II. Over the next year, ipsilateral lung expansion and growth occurred with near complete resolution of the apical air space.

  6. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa.

    PubMed

    Harrison, Joe J; Turner, Raymond J; Ceri, Howard

    2005-07-01

    In this study, we examined Pseudomonas aeruginosa ATCC 27853 biofilm and planktonic cell susceptibility to metal cations. The minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC) required to eradicate 100% of the planktonic population (MBC 100), and the minimum biofilm eradication concentration (MBEC) were determined using the MBEC trade mark-high throughput assay. Six metals - Co(2+), Ni(2+), Cu(2+), Zn(2+), Al(3+) and Pb(2+)- were each tested at 2, 4, 6, 8, 10 and 27 h of exposure to biofilm and planktonic cultures grown in rich or minimal media. With 2 or 4 h of exposure, biofilms were approximately 2-25 times more tolerant to killing by metal cations than the corresponding planktonic cultures. However, by 27 h of exposure, biofilm and planktonic bacteria were eradicated at approximately the same concentration in every instance. Viable cell counts evaluated at 2 and 27 h of exposure revealed that at high concentrations, most of the metals assayed had killed greater than 99.9% of biofilm and planktonic cell populations. The surviving cells were propogated in vitro and gave rise to biofilm and planktonic cultures with normal sensitivity to metals. Further, retention of copper by the biofilm matrix was investigated using the chelator sodium diethlydithiocarbamate. Formation of visible brown metal-chelates in biofilms treated with Cu(2+) suggests that the biofilm matrix may coordinate and sequester metal cations from the aqueous surroundings. Overall, our data suggest that both metal sequestration in the biofilm matrix and the presence of a small population of 'persister' cells may be contributing factors in the time-dependent tolerance of both planktonic cells and biofilms to high concentrations of metal cations.

  7. Mixed-matrix membranes incorporated with porous shape-persistent organic cages for gas separation.

    PubMed

    Mao, Hongchao; Zhang, Suobo

    2017-03-15

    There has been much recent interest in the use of porous materials derived from self-assembling, shape-persistent organic cages due to their solubility and easy post-synthetic modification. Herein we report the preparation of novel mixed-matrix membranes (MMMs) employing the porous organic cage Noria and its derivatives Noria-Boc and Noria-CO(t)Bu as the fillers, and a fluorine containing polyimide, 6FDA-DAM, as the polymeric matrix. The physical structures and properties of Noria and its derivatives were measured and investigated. Noria with substituents of Boc (cleaved by thermal treatment during the process of membrane fabrication) and CO(t)Bu groups tend to show much better compatibility with polyimide than Noria itself, resulting in homogeneous dispersion of nanoaggregates and fine adhesion between the two phases in the derived Noria/6FDA-DAM and Noria-CO(t)Bu/6FDA-DAM MMMs. Gas permeation tests revealed that Noria and Noria-CO(t)Bu nanoparticles have different effect on gas separation performance of MMMs. The introduction of Noria into 6FDA-DAM tends to enhance CO2/CH4 selectivity and thus improve its gas separation properties, though a decrease in the observed permeability could be observed. In contrast, the introduction of Noria-CO(t)Bu with higher surface area and larger pores tends to increase the free volume and gas permeability of MMMs. These results show that both the morphology and the gas separation properties of MMMs could be tuned by tailoring the structures of porous organic cages.

  8. Persistence

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    1998-11-01

    Eudora Welty, the famous writer, was once asked what should be done by society or government to encourage young writers. Her response, which surprised the questioner, and me when I heard it, was "Nothing". Welty contended that a person who was really a writer would be persistent enough to overcome whatever obstacles were in the way, needing no interference or support from others.

  9. Immunohistochemical detection of metalloproteinase-9 (MMP-9), anti-oxidant like 1 protein (AOP-1) and synaptosomal-associated protein (SNAP-25) in the cerebella of dogs naturally infected with spontaneous canine distemper.

    PubMed

    Bregano, Lívia C; Agostinho, Sabrina D; Roncatti, Flávio L B T; Pires, Marcília C; Riva, Henrique G; Luvizotto, Maria C R; Cardoso, Tereza C

    2011-01-01

    In most viral infections of the central nervous system (CNS), the integrity of brain extracelluar matrix (ECM), oxidative stress and dysfunction in neuronal transmission may contribute to the observed pathology. The purpose of this study was to investigate the role of these factors in demyelinating canine distemper virus (CDV) infections. Regardless of ECM integrity, the expression of metalloproteinase-9 (MMP-9) was visualized in microglial-like cells, whereas the expression of anti-oxidant like-1 (AOP-1) and synaptosomal associated protein (SNAP-25) was frequently detected in Purkinje cells (r(2) = 0.989; p < 0.05), regardless of whether the lesions were classified as acute or chronic. Increased numbers of immunolabeled microglia-like cells and reactive gliosis were observed in advanced cases of demyelinating CDV, suggesting that the expression of AOP-1 and SNAP-25 is correlated with the ultimate death of affected cells. Our findings bring a new perspective to understanding the role of the AOP-1, MMP-9 and SNAP-25 proteins in mediating chronic leukoencephalitis caused by CDV.

  10. Relative contribution of DNAPL dissolution and matrix diffusion to the long-term persistence of chlorinated solvent source zones

    NASA Astrophysics Data System (ADS)

    Seyedabbasi, Mir Ahmad; Newell, Charles J.; Adamson, David T.; Sale, Thomas C.

    2012-06-01

    The relative contribution of dense non-aqueous phase liquid (DNAPL) dissolution versus matrix diffusion processes to the longevity of chlorinated source zones was investigated. Matrix diffusion is being increasingly recognized as an important non-DNAPL component of source behavior over time, and understanding the persistence of contaminants that have diffused into lower permeability units can impact remedial decision-making. In this study, a hypothetical DNAPL source zone architecture consisting of several different sized pools and fingers originally developed by Anderson et al. (1992) was adapted to include defined low permeability layers. A coupled dissolution-diffusion model was developed to allow diffusion into these layers while in contact with DNAPL, followed by diffusion out of these same layers after complete DNAPL dissolution. This exercise was performed for releases of equivalent masses (675 kg) of three different compounds, including chlorinated solvents with solubilities ranging from low (tetrachloroethene (PCE)), moderate (trichloroethene (TCE)) to high (dichloromethane (DCM)). The results of this simple modeling exercise demonstrate that matrix diffusion can be a critical component of source zone longevity and may represent a longer-term contributor to source longevity (i.e., longer time maintaining concentrations above MCLs) than DNAPL dissolution alone at many sites. For the hypothetical TCE release, the simulation indicated that dissolution of DNAPL would take approximately 38 years, while the back diffusion from low permeability zones could maintain the source for an additional 83 years. This effect was even more dramatic for the higher solubility DCM (97% of longevity due to matrix diffusion), while the lower solubility PCE showed a more equal contribution from DNAPL dissolution vs. matrix diffusion. Several methods were used to describe the resulting source attenuation curves, including a first-order decay model which showed that half-life of

  11. INHALED COMPLEX COMBUSTION EMISSIONS UPREGULATE TRANSCRIPTION AND ACTIVITY OF SYSTEMATIC MATRIX METALLOPROTEINASE-9 (MMP9): EVIDENCE IN MURINE AND HUMAN MODELS

    EPA Science Inventory

    Air pollution is associated with acute and chronic adverse human health effects related to atherosclerotic pathologies. MMP9 has a crucial role in the progression and ultimate degradation of vascular lesions and polymorphisms of MMP9 are highly associated with increased incidenc...

  12. Lack of association between matrix metalloproteinase-9 and endothelial nitric oxide synthase gene polymorphisms and coronary artery disease in Turkish population.

    PubMed

    Alp, Ebru; Menevse, Sevda; Tulmac, Murat; Kan, Derya; Yalcin, Ridvan; Erkan, Aycan F; Cengel, Atiye

    2009-07-01

    Polymorphic variants of genes encoding proteins involved in vascular remodeling may genetically diverge among different populations and play a role in the susceptibility to the coronary artery disease (CAD). MMP-9-1562 C/T (rs3918242), eNOS T-786C (rs2070744), and Glu298Asp (rs1799983) are among the most studied of these polymorphisms. The aim of this study was to determine the relationship between CAD and these polymorphisms in the Turkish population. The analysis included 146 CAD+ and 122 CAD- individuals. Genomic DNA was isolated from whole blood and genotyping was performed by the PCR-RFLP method. No significant associations were found between -1562 C/T (p = 0.557), Glu298Asp (p = 0.432), and -786 T/C (p = 0.055) polymorphisms and CAD. The distribution of each haplotype also did not differ between CAD+ and the CAD- samples (p > 0.05). The present investigation is the first to study an association between -1562 C/T polymorphism and CAD in the Turkish population. In conclusion, no appreciable differences between CAD+ and CAD- samples were found in terms of polymorphisms mentioned above.

  13. HIV-1 Tat protein increases the permeability of brain endothelial cells by both inhibiting occludin expression and cleaving occludin via matrix metalloproteinase-9.

    PubMed

    Xu, Ruifen; Feng, Xuyang; Xie, Xin; Zhang, Jin; Wu, Daocheng; Xu, Lixian

    2012-02-03

    Brain homeostasis is maintained by the blood-brain barrier (BBB), which prevents the entrance of circulating molecules and immune cells into the central nervous system. The BBB is formed by specialized brain endothelial cells that are connected by tight junctions (TJ). Previous studies have proven that the Tat protein of human immunodeficiency virus type 1 (HIV-1) alters TJ protein expression. However, the mechanisms by which the alterations occur have not been characterized in detail. In this study, primary human brain microvascular endothelial cells (HBMEC) were exposed to recombinant HIV-1 Tat protein, and the effects on occludin were observed. Tat treatment decreased occludin mRNA and protein levels. This effect was partially abrogated by addition of the RhoA inhibitor C3 exoenzyme and the p160-Rho-associated coiled kinase (ROCK) inhibitor Y-27632. Meanwhile, Tat also induced MMP-9 expression. RNA interference targeting MMP-9 reduced both the paracellular permeability of Tat-treated HBMEC and the concentration of soluble occludin in supernatants from the cells. Taken together, these results show that the HIV-1 Tat protein disrupts BBB integrity, at least in part by decreasing the production of occludin.

  14. Matrix metalloproteinase-9 expression by Hodgkin-Reed-Sternberg cells is associated with reduced overall survival in young adult patients with classical Hodgkin lymphoma.

    PubMed

    Campos, Antonio Hugo; Vassallo, Jose; Soares, Fernando Augusto

    2013-01-01

    Previous studies have investigated the prognostic relevance of MMP9 in classical Hodgkin lymphoma (cHL), with negative results. However, we have found that MMP9 immunoistochemical expression by Hodgkin-Reed-Sternberg cells is associated with reduced overall survival in a subset of young adult Brazilian patients diagnosed with cHL. Additionally, we have observed that MMP9 expression by neoplastic cells in cHL is associated with EBV positivity. These results may support a rational basis for additional studies on the role of this metalloproteinase as a target for therapy in classical Hodgkin lymphoma.

  15. INHALED COMPLEX COMBUSTION EMISSIONS UPREGULATE TRANSCRIPTION AND ACTIVITY OF SYSTEMATIC MATRIX METALLOPROTEINASE-9 (MMP9): EVIDENCE IN MURINE AND HUMAN MODELS

    EPA Science Inventory

    Air pollution is associated with acute and chronic adverse human health effects related to atherosclerotic pathologies. MMP9 has a crucial role in the progression and ultimate degradation of vascular lesions and polymorphisms of MMP9 are highly associated with increased incidenc...

  16. Gene expression profile induced by arsenic trioxide in chronic lymphocytic leukemia cells reveals a central role for heme oxygenase-1 in apoptosis and regulation of matrix metalloproteinase-9

    PubMed Central

    Aguilera-Montilla, Noemí; García-Marco, José A.; García-Pardo, Angeles

    2016-01-01

    CLL remains an incurable disease in spite of the many new compounds being tested. Arsenic trioxide (ATO) induces apoptosis in all CLL cell types and could constitute an efficient therapy. To further explore this, we have studied the gene expression profile induced by ATO in CLL cells. ATO modulated many genes, largely involved in oxidative stress, being HMOX1 the most upregulated gene, also induced at the protein level. ATO also increased MMP-9, as we previously observed, both at the mRNA and protein level. Using specific inhibitors, qPCR analyses, and gene silencing approaches we demonstrate that upregulation of MMP-9 by ATO involved activation of the p38 MAPK/AP-1 signaling pathway. Moreover, gene silencing HMOX1 or inhibiting HMOX1 activity enhanced p38 MAPK phosphorylation and c-jun expression/activation, resulting in transcriptional upregulation of MMP-9. Overexpression of HMOX1 or enhancement of its activity, had the opposite effect. Cell viability analyses upon modulation of HMOX1 expression or activity demonstrated that HMOX1 had a pro-apoptotic role and enhanced the cytotoxic effect of ATO in CLL cells. We have therefore identified a new mechanism in which HMOX1 plays a central role in the response of CLL cells to ATO and in the regulation of the anti-apoptotic protein MMP-9. Thus, HMOX1 arises as a new therapeutic target in CLL and the combination of HMOX1 modulators with ATO may constitute an efficient therapeutic strategy in CLL. PMID:27829220

  17. An uncommon case of arterial aneurysms association with high plasma levels of Matrix Metalloproteinase-9 and Neutrophil Gelatinase-Associated Lipocalin

    PubMed Central

    De Caridi, Giovanni; Massara, Mafalda; Spinelli, Francesco; Grande, Raffaele; Butrico, Lucia; Rende, Pierandrea; Amato, Maurizio; Compagna, Rita; Amato, Bruno; de Franciscis, Stefano; Serra, Raffaele

    2015-01-01

    The association of an axillary artery aneurysm and an abdominal aortic aneurysm is extremely rare. In this study, we describe this association in a 69 year-old-man. We measured this patient’s metalloproteinases (MMPs) and Neutrophil Gelatinase – Associated Lipocalin (NGAL) levels over a three years period before the abdominal aortic aneurysm rupture. We speculate that high serium levels of MMPs and NGAL may have a prognostic role and may predict aneurysm rupture in patients with an uncommon association of arterial aneurysms. PMID:28352742

  18. Functional Interactions Between Laminin-10, alphaV beta3 Integrin and Matrix Metalloproteinase-9 in Promoting Breast Cancer Metastasis to Bone

    DTIC Science & Technology

    2005-08-01

    Slavin, J., and Anderson, R. L. (1999) Clin Exp Metastasis 17, 163-170 3. Eckhardt, B. L., Parker, B. S., van Laar, R. K., Restall , C. M., Natoli, A. L...Medecine Science, supplement no2 (99) p.36A. Meeting Presentations: 1. Pouliot N., E. Sloan, A.L. Natoli, B. Eckhardt, C.M. Restall , B. Parker, L...Australia. 2. Pouliot N., C.M. Restall , A.L. Natoli, 0. Narayan and R.L. Anderson (2003). The role of MMP-9 and its regulation by tumour/stromal

  19. Transfer matrix approach to the persistent current in quantum rings: Application to hybrid normal-superconducting rings

    NASA Astrophysics Data System (ADS)

    Nava, Andrea; Giuliano, Rosa; Campagnano, Gabriele; Giuliano, Domenico

    2016-11-01

    Using the properties of the transfer matrix of one-dimensional quantum mechanical systems, we derive an exact formula for the persistent current across a quantum mechanical ring pierced by a magnetic flux Φ as a single integral of a known function of the system's parameters. Our approach provides exact results at zero temperature, which can be readily extended to a finite temperature T . We apply our technique to exactly compute the persistent current through p -wave and s -wave superconducting-normal hybrid rings, deriving full plots of the current as a function of the applied flux at various system's scales. Doing so, we recover at once a number of effects such as the crossover in the current periodicity on increasing the size of the ring and the signature of the topological phase transition in the p -wave case. In the limit of a large ring size, resorting to a systematic expansion in inverse powers of the ring length, we derive exact analytic closed-form formulas, applicable to a number of cases of physical interest.

  20. Relationship between plasma metalloproteinase-9 levels and volume and severity of infarct in patients with acute ischemic stroke.

    PubMed

    Demir, Recep; Ulvi, Hızır; Özel, Lütfi; Özdemir, Gökhan; Güzelcik, Metin; Aygül, Recep

    2012-12-01

    Matrix metalloproteinases (MMP) constitute an endopeptidase family involved in various physiological and pathological processes. It was demonstrated that plasma MMP-9 level was increased in patients with acute ischemic stroke. In this study, it was investigated whether there was a relationship between the levels of plasma MMP-9 and the severity of stroke and infarct volume in patients with acute ischemic stroke. A total of 32 patients with acute ischemic stroke, (16 males and 16 females) and 30 healthy controls were included in the study. Plasma MMP-9 levels were measured using ELISA method. Computed tomography was performed at 48th hour and infarct volume was calculated using the Cavalieri method. The National Institute of Health Stroke Scale (NIHSS) was checked at baseline, 12, 24, and 48th hour. Plasma MMP-9 levels of the patient group at baseline, 12, 24, and 48th hour were found significantly higher compared to the control group (p < 0.05). An important correlation between MMP-9 levels and the infarct volume was observed at baseline, 12, 24, and 48th hour (p < 0.001). Furthermore, a positive correlation was recorded between plasma MMP-9 levels and NIHSS scores at baseline, 12, 24, and 48th hour (p < 0.001). Plasma MMP-9 levels of those of suffering medium and heavy damages were found significantly higher when compared to those of having slight damage (p < 0.05). A significant relationship was also observed between infarct volumes and neurological deficits (p < 0.05). Plasma MMP-9 levels of the patients at 48th hour were found to be significantly lower in recovered patients compared to those who did not improved or worsened (p < 0.05). A positive correlation was recorded between the infarct volume and infarct progression (p < 0.05). In conclusion, this study showed that plasma MMP-9 level substantially increased during the acute period of ischemic cerebrovascular disease and correlated with the severity of the disease and infarct volume. The

  1. Persistence of fan-shaped keratocytes is a matrix-rigidity-dependent mechanism that requires α5β1 integrin engagement

    PubMed Central

    Riaz, Maryam; Versaevel, Marie; Mohammed, Danahe; Glinel, Karine; Gabriele, Sylvain

    2016-01-01

    Despite the importance of matrix rigidity on cell functions, many aspects of the mechanosensing process in highly migratory cells remain elusive. Here, we studied the migration of highly motile keratocytes on culture substrates with similar biochemical properties and rigidities spanning the range between soft tissues (~kPa) and stiff culture substrates (~GPa). We show that morphology, polarization and persistence of motile keratocytes are regulated by the matrix stiffness over seven orders of magnitude, without changing the cell spreading area. Increasing the matrix rigidity leads to more F-actin in the lamellipodia and to the formation of mature contractile actomyosin fibers that control the cell rear retraction. Keratocytes remain rounded and form nascent adhesions on compliant substrates, whereas large and uniformly distributed focal adhesions are formed on fan-shaped keratocytes migrating on rigid surfaces. By combining poly-L-lysine, fibronectin and vitronectin coatings with selective blocking of αvβ3 or α5β1 integrins, we show that αVβ3 integrins permit the spreading of keratocytes but are not sufficient for polarization and rigidity sensing that require the engagement of α5β1 integrins. Our study demonstrates a matrix rigidity-dependent regulation of the directional persistence in motile keratocytes and refines the role of αvβ3 and α5β1 integrins in the molecular clutch model. PMID:27678055

  2. Persistence of fan-shaped keratocytes is a matrix-rigidity-dependent mechanism that requires α5β1 integrin engagement.

    PubMed

    Riaz, Maryam; Versaevel, Marie; Mohammed, Danahe; Glinel, Karine; Gabriele, Sylvain

    2016-09-28

    Despite the importance of matrix rigidity on cell functions, many aspects of the mechanosensing process in highly migratory cells remain elusive. Here, we studied the migration of highly motile keratocytes on culture substrates with similar biochemical properties and rigidities spanning the range between soft tissues (~kPa) and stiff culture substrates (~GPa). We show that morphology, polarization and persistence of motile keratocytes are regulated by the matrix stiffness over seven orders of magnitude, without changing the cell spreading area. Increasing the matrix rigidity leads to more F-actin in the lamellipodia and to the formation of mature contractile actomyosin fibers that control the cell rear retraction. Keratocytes remain rounded and form nascent adhesions on compliant substrates, whereas large and uniformly distributed focal adhesions are formed on fan-shaped keratocytes migrating on rigid surfaces. By combining poly-L-lysine, fibronectin and vitronectin coatings with selective blocking of αvβ3 or α5β1 integrins, we show that αVβ3 integrins permit the spreading of keratocytes but are not sufficient for polarization and rigidity sensing that require the engagement of α5β1 integrins. Our study demonstrates a matrix rigidity-dependent regulation of the directional persistence in motile keratocytes and refines the role of αvβ3 and α5β1 integrins in the molecular clutch model.

  3. Persistence of an intact endometrial matrix and vessels structure in women exposed to VA-2914, a selective progesterone receptor modulator.

    PubMed

    Ravet, S; Munaut, C; Blacher, S; Brichant, G; Labied, S; Beliard, A; Chabbert-Buffet, N; Bouchard, P; Foidart, J-M; Pintiaux, A

    2008-11-01

    VA-2914 is a selective progesterone receptor modulator with potential contraceptive activity that induces amenorrhea, whereas progestins cause endometrial spotting and bleeding. This abnormal bleeding due to progestins is a consequence of focal stromal proteolysis by an increase in naked vessel size and density. Our objective was to quantify the effects of VA-2914 on endometrial vascularization, fibrillar matrix, and vascular endothelial growth factor (VEGF)-A expression in endometrial biopsies from 41 women before and after 12 wk daily treatment with a placebo, or 2.5, 5, or 10 mg VA-2914. Collagen fibrillar network was stained by silver impregnation. Vessel area, density, and structure were quantified with a computer-assisted image analysis system after double immunostaining using an anti-von Willebrand factor (endothelial cells) and an anti-alpha smooth muscle actin (vascular smooth muscle cells) marker antibody. VEGF-A mRNAs were quantified by RT-PCR and localized by immunohistochemistry. The endometrial vessels, collagen network, and mRNA levels of VEGF-A were identical during the luteal phase at baseline and in VA-2914 treated women. VEGF-A distribution was unchanged. VA-2914 does not alter the endometrial matrix and cells, and does not modify the endometrial vessel morphology as compared with baseline biopsies.

  4. Persistent Biomechanical Alterations After ACL Reconstruction Are Associated With Early Cartilage Matrix Changes Detected by Quantitative MR

    PubMed Central

    Amano, Keiko; Pedoia, Valentina; Su, Favian; Souza, Richard B.; Li, Xiaojuan; Ma, C. Benjamin

    2016-01-01

    Background: The effectiveness of anterior cruciate ligament (ACL) reconstruction in preventing early osteoarthritis is debated. Restoring the original biomechanics may potentially prevent degeneration, but apparent pathomechanisms have yet to be described. Newer quantitative magnetic resonance (qMR) imaging techniques, specifically T1ρ and T2, offer novel, noninvasive methods of visualizing and quantifying early cartilage degeneration. Purpose: To determine the tibiofemoral biomechanical alterations before and after ACL reconstruction using magnetic resonance imaging (MRI) and to evaluate the association between biomechanics and cartilage degeneration using T1ρ and T2. Study Design: Cohort study; Level of evidence, 2. Methods: Knee MRIs of 51 individuals (mean age, 29.5 ± 8.4 years) with unilateral ACL injuries were obtained prior to surgery; 19 control subjects (mean age, 30.7 ± 5.3 years) were also scanned. Follow-up MRIs were obtained at 6 months and 1 year. Tibial position (TP), internal tibial rotation (ITR), and T1ρ and T2 were calculated using an in-house Matlab program. Student t tests, repeated measures, and regression models were used to compare differences between injured and uninjured sides, observe longitudinal changes, and evaluate correlations between TP, ITR, and T1ρ and T2. Results: TP was significantly more anterior on the injured side at all time points (P < .001). ITR was significantly increased on the injured side prior to surgery (P = .033). At 1 year, a more anterior TP was associated with elevated T1ρ (P = .002) and T2 (P = .026) in the posterolateral tibia and with decreased T2 in the central lateral femur (P = .048); ITR was associated with increased T1ρ in the posteromedial femur (P = .009). ITR at 6 months was associated with increased T1ρ at 1 year in the posteromedial tibia (P = .029). Conclusion: Persistent biomechanical alterations after ACL reconstruction are related to significant changes in cartilage T1ρ and T2 at 1 year

  5. Influence of persistent canine distemper virus infection on expression of RECK, matrix-metalloproteinases and their inhibitors in a canine macrophage/monocytic tumour cell line (DH82).

    PubMed

    Puff, Christina; Krudewig, Christiane; Imbschweiler, Ilka; Baumgärtner, Wolfgang; Alldinger, Susanne

    2009-10-01

    A morbillivirus infection of tumour cells is known to exert oncolytic activity, but the mechanism of this inhibitory action has not been well defined. Matrix metalloproteinases (MMPs) are important enzymes degrading the extracellular matrix and are often upregulated in malignant neoplasms. Recent studies have demonstrated that RECK may potently suppress MMP-2 and -9 activity, thus inhibiting angiogenesis and metastasis. In this study, real time quantitative polymerase chain reaction (RT-qPCR) was used to determine the effect of persistent infection with canine distemper virus (CDV) infection on the expression of MMPs and their inhibitors (TIMPS) in a canine macrophage/monocytic tumour cell line (DH82). The activity of proMMP-2 and proMMP-9 was also verified zymographically. Following CDV infection, MMP-2, TIMP-1 and TIMP-2 were down-regulated, while RECK was upregulated. These findings suggest that CDV infection restores RECK expression in tumour cells and may interfere with the intracellular processing of MMPs and TIMPs, thus possibly influencing tumour cell behaviour beneficially for the host. However, this needs to be verified in in vivo studies.

  6. The levels of trypsinogen isoenzymes in ovarian tumour cyst fluids are associated with promatrix metalloproteinase-9 but not promatrix metalloproteinase-2 activation

    PubMed Central

    Paju, A; Sorsa, T; Tervahartiala, T; Koivunen, E; Haglund, C; Leminen, A; Wahlström, T; Salo, T; Stenman, U-H

    2001-01-01

    Proteolysis mediated by matrix metalloproteinases (MMPs) and serine proteinases is associated with cancer invasion and metastasis. Activation of latent proMMPs, and especially the proforms of the type IV collagen degrading gelatinases A and B (proMMP-2 and proMMP-9), is thought to be a critical step in this process. We have recently found that human tumour-associated trypsin-2 is a potent activator of proMMP-9 and it also activates proMMP-2 in vitro. Trypsinogen, MMP-2, and MMP-9 are expressed in ovarian cancer. To elucidate the function of trypsin in vivo, we studied whether high concentrations of trypsinogen-1, trypsinogen-2, their α1-proteinase inhibitor (API) complexes, and tumour-associated trypsin inhibitor (TATI) are associated with proMMP-2 and proMMP-9 activation in ovarian tumour cyst fluids. Zymography and immunofluorometric analysis of 61 cyst fluids showed a significant association between high trypsin concentrations and the activation of MMP-9 (P= 0.003–0.05). In contrast, the trypsin concentrations were inversely associated with the activation of MMP-2 (P= 0.01–0.02). Immunohistochemical analysis of ovarian tumour tissue demonstrated expression of trypsinogen-2 and TATI in the secretory epithelium. MMP-2 was detected both in stromal and epithelial cells whereas MMP-9 was detected in neutrophils and macrophage-like cells in stromal and epithelial areas. These results suggest that trypsin may play a role in the regulation of the MMP-dependent proteolysis associated with invasion and metastasis of ovarian cancer. © 2001 Cancer Research Campaign www.bjcancer.com PMID:11355948

  7. Occurrence and prenatal exposure to persistent organic pollutants using meconium in Korea: Feasibility of meconium as a non-invasive human matrix.

    PubMed

    Jeong, Yunsun; Lee, Sunggyu; Kim, Sunmi; Choi, Sung-Deuk; Park, Jeongim; Kim, Hai-Joong; Lee, Jeong Jae; Choi, Gyuyeon; Choi, Sooran; Kim, Sungjoo; Kim, Su Young; Kim, Young Don; Cho, Geumjoon; Suh, Eunsook; Kim, Sung Koo; Eun, So-Hee; Eom, Soyong; Kim, Seunghyo; Kim, Gun-Ha; Kim, Sungkyoon; Choi, Kyungho; Moon, Hyo-Bang

    2016-05-01

    Prenatal exposure to persistent organic pollutants (POPs) is of great concern due to the vulnerability of fetus. Nineteen Polychlorinated biphenyls (PCBs), 18 organochlorine pesticides (OCPs) including DDTs, HCHs, chlordanes, and hexachlorobenzene, and 22 polybrominated diphenyl ethers (PBDEs) were measured in meconium samples from 72 newborn infants using high resolution gas chromatography/mass spectrometry. The median concentrations (on wet weight basis) of PCBs, OCPs, and PBDEs were 26.8pg/g, 66.7pg/g, and 2.32pg/g, respectively. Highly significant correlations were observed among the compounds of PCBs and OCPs, suggesting their similar sources and kinetic behaviors. BDE 47 had significant correlations with PCBs and OCPs, whereas BDE 209 was not correlated with any of the contaminants due to different exposure sources. The concentrations of p,p'-DDE, β-HCH, and trans-nonaCHL between paired maternal blood-meconium and cord blood-meconium showed significant correlations, while PCBs and PBDEs were not significantly correlated in the paired samples. Maternal age and gestational age were demographic parameters affecting POP levels in meconium. Multiple regression analysis showed that the levels of several OCPs in cord and maternal serum were contributing factors governing the levels of these contaminants in meconium. Our results indicate that meconium can be utilized as a human matrix for prenatal exposure to several OCPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Assumed non-persistent environmental chemicals in human adipose tissue; matrix stability and correlation with levels measured in urine and serum.

    PubMed

    Artacho-Cordón, F; Arrebola, J P; Nielsen, O; Hernández, P; Skakkebaek, N E; Fernández, M F; Andersson, A M; Olea, N; Frederiksen, H

    2017-03-22

    The aim of this study was to (1) optimize a method for the measurement of parabens and phenols in adipose tissue, (2) evaluate the stability of chemical residues in adipose tissue samples, and (3) study correlations of these compounds in urine, serum, and adipose tissue. Samples were obtained from adults undergoing trauma surgery. Nine phenols and seven parabens were determined by isotope diluted TurboFlow-LC-MS/MS. The analytical method showed good accuracy and precision. Limits of detection (LOD) for parabens and phenols ranged from 0.05 to 1.83ng/g tissue. Good recovery rates were found, even when biological samples remained defrosted up to 24h. Benzophenone-3 (BP-3; range of values: 70% of adipose tissue samples, while bisphenol-A (BPA; 40% of adipose tissue samples. In general, levels were similar between adipose tissue and serum, while a correlation between adipose tissue and urine was only found for BP-3. In conclusion, adipose tissue samples in this study were found to contain environmental chemicals considered to be non-persistent, whose levels were weakly or not at all correlated with the urine burden. Therefore, adipose tissue may potentially provide additional information to that obtained from other biological matrices. Further investigations are warranted to explore whether adipose tissue might be a suitable matrix for assessment of the consequences for human health of mid/long-term exposure to these chemicals.

  9. Persistent Persister Misperceptions

    PubMed Central

    Kim, Jun-Seob; Wood, Thomas K.

    2016-01-01

    Persister cells survive antibiotic treatment due to their lack of metabolism, rather than through genetic change, as shown via four seminal experiments conducted by the discoverers of the phenotype (Hobby et al., 1942; Bigger, 1944). Unfortunately, over seven decades of persister cell research, the literature has been populated by misperceptions that do not withstand scrutiny. This opinion piece examines some of those misunderstandings in the literature with the hope that by shining some light on these inaccuracies, the field may be advanced and subsequent manuscripts may be reviewed more critically. PMID:28082974

  10. Tissue levels of active matrix metalloproteinase-2 and -9 in colorectal cancer

    PubMed Central

    Waas, E T; Lomme, R M L M; DeGroot, J; Wobbes, Th; Hendriks, T

    2002-01-01

    The bioactivity of matrix metalloproteinases was studied in tissues from colorectal cancer patients by means of both quantitative gelatin zymography and a fluorometric activity assay. Next to paired samples of tumour tissue and distant normal mucosa (n=73), transitional tissue was analysed from a limited (n=33) number of patients. Broad-spectrum matrix metalloproteinase activity and both the active and latent forms of the gelatinases matrix metalloproteinase-2 and -9 were higher in tumour than in normal mucosa. The ratio's between active and latent forms of matrix metalloproteinase-2 and -9 were highest in tumour tissue and normal mucosa, respectively. Matrix metalloproteinase-2 levels, both active and latent forms, correlated inversely with stage of disease, the tumours without synchronous distant metastases containing significantly (P=0.005) more active matrix metalloproteinase-2 than the others. At much lower levels of activity, the same trend was observed in distant normal mucosa. The level of latent form of matrix metalloproteinase-9 in tumour depended on tumour location. Neither the active form of matrix metalloproteinase-9 nor broad-spectrum matrix metalloproteinase activity in tumour tissue did correlate with any of the clinicopathological parameters investigated. The results demonstrate explicit differences between the activity of matrix metalloproteinase-2 and -9, indicating different roles for both gelatinases in tumour progression. Such data are necessary in order to develop rational anti-cancer therapies based on inhibition of specific matrix metalloproteinases. British Journal of Cancer (2002) 86, 1876–1883. doi:10.1038/sj.bjc.6600366 www.bjcancer.com © 2002 Cancer Research UK PMID:12085179

  11. Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF-β1.

    PubMed

    Mewhort, Holly E M; Lipon, Brodie D; Svystonyuk, Daniyil A; Teng, Guoqi; Guzzardi, David G; Silva, Claudia; Yong, V Wee; Fedak, Paul W M

    2016-03-15

    Following myocardial infarction (MI), cardiac myofibroblasts remodel the extracellular matrix (ECM), preventing mechanical complications. However, prolonged myofibroblast activity leads to dysregulation of the ECM, maladaptive remodeling, fibrosis, and heart failure (HF). Chronic inflammation is believed to drive persistent myofibroblast activity; however, the mechanisms are unclear. We assessed the influence of peripheral blood monocytes on human cardiac myofibroblast activity in a three-dimensional (3D) ECM microenvironment. Human cardiac myofibroblasts isolated from surgical biopsies of the right atrium and left ventricle were seeded into 3D collagen matrices. Peripheral blood monocytes were isolated from healthy human donors and cocultured with myofibroblasts. Monocytes increased myofibroblast activity measured by collagen gel contraction (baseline: 57.6 ± 5.9% vs. coculture: 65.2 ± 7.1% contraction; P < 0.01) and increased local ECM remodeling quantified by confocal microscopy. Under coculture conditions that allow indirect cellular interaction via paracrine factors but prevent direct cell-cell contact, monocytes had minimal effects on myofibroblast activity (17.9 ± 11.1% vs. 6.4 ± 7.0% increase, respectively; P < 0.01). When cells were cultured under direct contact conditions, multiplex analysis of the coculture media revealed an increase in the paracrine factors TGF-β1 and matrix metalloproteinase 9 compared with baseline (122.9 ± 10.1 pg/ml and 3,496.0 ± 190.4 pg/ml, respectively, vs. 21.5 ± 16.3 pg/ml and 183.3 ± 43.9 pg/ml; P < 0.001). TGF-β blockade abolished the monocyte-induced increase in cardiac myofibroblast activity. These data suggest that direct cell-cell interaction between monocytes and cardiac myofibroblasts stimulates TGF-β-mediated myofibroblast activity and increases remodeling of local matrix. Peripheral blood monocyte interaction with human cardiac myofibroblasts stimulates myofibroblast activity through release of TGF-β1

  12. [Persistent diarrhea

    PubMed

    Andrade, J A; Moreira, C; Fagundes Neto, U

    2000-07-01

    INTRODUCTION: Persistent diarrhea has high impact on infantile morbidity and mortality rates in developing countries. Several studies have shown that 3 to 20% of acute diarrheal episodes in children under 5 years of age become persistent. DEFINITION: Persistent diarrhea is defined as an episode that lasts more than 14 days. ETIOLOGY: The most important agents isolated in persistent diarrhea are: Enteropathogenic E. coli (EPEC), Salmonella, Enteroaggregative E. coli (EAEC), Klebisiella and Cryptosporidium. CLINICAL ASPECTS: In general, the clinical characteristics of patients with persistent diarrhea do not change with the pathogenic agent. Persistent diarrhea seems to represent the final result of a several insults a infant suffers that predisposes to a more severe episode of diarrhea due to a combination of host factors and high rates of enviromental contamination. Therefore, efforts should be made to promptly treat all episodes of diarrhea with apropriate follow-up. THERAPY: The aim of the treatment is to restore hydroelectrolytic deficits and to replace losses until the diarrheal ceases. It is possible in the majority of the cases, using oral rehydration therapy and erly an appropriate type of diet. PREVENTION: It is imperative that management strategies also focus on preventive aspects. The most effective diarrheal prevention strategy in young infants worldwide is promotion of exclusive breast feeding.

  13. Semibiotic Persistence

    NASA Astrophysics Data System (ADS)

    Prothmann, C.; Zauner, K.-P.

    From observation, we find four different strategies to successfully enable structures to persist over extended periods of time. If functionally relevant features are very large compared to the changes that can be effectuated by entropy, the functional structure itself has a high enough probability to erode only slowly over time. If the functionally relevant features are protected from environmental influence by sacrificial layers that absorb the impinging of the environment, deterioration can be avoided or slowed. Loss of functionality can be delayed, even for complex systems, by keeping alternate options for all required components available. Biological systems also apply information processing to actively counter the impact of entropy by mechanisms such as self-repair. The latter strategy increases the overall persistence of living systems and enables them to maintain a highly complex functional organisation during their lifetime and over generations. In contrast to the other strategies, information processing has only low material overhead. While at present engineered technology is far from achieving the self-repair of evolved systems, the semibiotic combination of biological components with conventionally engineered systems may open a path to long-term persistence of functional devices in harsh environments. We review nature's strategies for persistence, and consider early steps taken in the laboratory to import such capabilities into engineered architectures.

  14. Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques

    PubMed Central

    Langley, Sarah R.; Willeit, Karin; Didangelos, Athanasios; Matic, Ljubica Perisic; Skroblin, Philipp; Barallobre-Barreiro, Javier; Lengquist, Mariette; Rungger, Gregor; Kapustin, Alexander; Kedenko, Ludmilla; Molenaar, Chris; Lu, Ruifang; Barwari, Temo; Suna, Gonca; Iglseder, Bernhard; Paulweber, Bernhard; Willeit, Peter; Pasterkamp, Gerard; Davies, Alun H.; Monaco, Claudia; Hedin, Ulf; Shanahan, Catherine M.; Willeit, Johann; Kiechl, Stefan

    2017-01-01

    BACKGROUND. The identification of patients with high-risk atherosclerotic plaques prior to the manifestation of clinical events remains challenging. Recent findings question histology- and imaging-based definitions of the “vulnerable plaque,” necessitating an improved approach for predicting onset of symptoms. METHODS. We performed a proteomics comparison of the vascular extracellular matrix and associated molecules in human carotid endarterectomy specimens from 6 symptomatic versus 6 asymptomatic patients to identify a protein signature for high-risk atherosclerotic plaques. Proteomics data were integrated with gene expression profiling of 121 carotid endarterectomies and an analysis of protein secretion by lipid-loaded human vascular smooth muscle cells. Finally, epidemiological validation of candidate biomarkers was performed in two community-based studies. RESULTS. Proteomics and at least one of the other two approaches identified a molecular signature of plaques from symptomatic patients that comprised matrix metalloproteinase 9, chitinase 3-like-1, S100 calcium binding protein A8 (S100A8), S100A9, cathepsin B, fibronectin, and galectin-3-binding protein. Biomarker candidates measured in 685 subjects in the Bruneck study were associated with progression to advanced atherosclerosis and incidence of cardiovascular disease over a 10-year follow-up period. A 4-biomarker signature (matrix metalloproteinase 9, S100A8/S100A9, cathepsin D, and galectin-3-binding protein) improved risk prediction and was successfully replicated in an independent cohort, the SAPHIR study. CONCLUSION. The identified 4-biomarker signature may improve risk prediction and diagnostics for the management of cardiovascular disease. Further, our study highlights the strength of tissue-based proteomics for biomarker discovery. FUNDING. UK: British Heart Foundation (BHF); King’s BHF Center; and the National Institute for Health Research Biomedical Research Center based at Guy’s and St

  15. FRET study in oligopeptide-linked donor-acceptor system in PVA matrix

    NASA Astrophysics Data System (ADS)

    Shah, Sunil; Mandecki, Wlodek; Li, Ji; Gryczynski, Zygmunt; Borejdo, Julian; Gryczynski, Ignacy; Fudala, Rafal

    2016-12-01

    An oligopeptide: Lys-Gly-Pro-Arg-Ser-Leu-Ser-Gly-Lys-NH2, cleaved specifically by a matrix metalloproteinase 9 (MMP-9) at the Ser-Leu bond, was labeled on the ɛ-NH2 groups of lysine with donor (5, 6 TAMRA) and acceptor (HiLyte647) dye. The donor control was a peptide labeled with 5, 6 TAMRA only on the C-terminal lysine, and the acceptor control was free HiLyte647. Following three products were studied by dissolving in 10% (w/w) poly(vinyl alcohol) and dried on glass slides forming 200 micron films. Absorption spectra of the films show full additivity of donor and acceptor absorptions. A strong Fluorescence Resonance Energy Transfer (FRET) with an efficiency of about 85% was observed in the fluorescence emission and excitation spectra. The lifetime of the donor was shorter and heterogeneous compared with the donor control.

  16. Differential expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in avian tibial dyschondroplasia.

    PubMed

    Shahzad, Muhammad; Liu, Jingying; Gao, Jianfeng; Wang, Zhi; Zhang, Ding; Nabi, Fazul; Li, Kun; Li, Jiakui

    2015-01-01

    Tibial dyschondroplasia (TD) is an avian bone disorder of different aetiologies that may be associated with lameness. The disorder is characterized by focal disruption of endochondral bone formation, with a lack of matrix proteolysis and an accumulation of non-mineralized avascular cartilage. The aim of this study was to determine the expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in normal, thiram-induced TD lesions and in the process of recovery from TD in broiler chickens. An extracellular matrix (ECM) degrading enzyme, matrix metalloproteinase-9 (MMP-9), was selected to investigate the effects of CD147 in the degradation of ECM. Gene expression was analysed by quantitative real-time polymerase chain reaction and protein levels by immunohistochemistry and western blotting. The birds were divided into three groups: thiram fed; recovery; and controls. Genes encoding CD147 and MMP-9 were down-regulated during the development of the disease, and were up-regulated during recovery. Western blotting also showed lower protein levels of CD147 in TD, which increased during the recovery phase associated with ECM degradation and growth plate repair. The findings of this study suggest that ECM has a crucial role in the occurrence of TD and that CD147 appears to play a pivotal role in matrix proteolysis in the chicken, similar to that in other species.

  17. Pro-oxidant status and matrix metalloproteinases in apical lesions and gingival crevicular fluid as potential biomarkers for asymptomatic apical periodontitis and endodontic treatment response.

    PubMed

    Dezerega, Andrea; Madrid, Sonia; Mundi, Verónica; Valenzuela, María A; Garrido, Mauricio; Paredes, Rodolfo; García-Sesnich, Jocelyn; Ortega, Ana V; Gamonal, Jorge; Hernández, Marcela

    2012-03-21

    Oxidative stress and matrix metalloproteinases -9 and -2 are involved in periodontal breakdown, whereas gingival crevicular fluid has been reported to reflect apical status. The aim of this study was to characterize oxidant balance and activity levels of MMP -2 and -9 in apical lesions and healthy periodontal ligament; and second, to determine whether potential changes in oxidant balance were reflected in gingival crevicular fluid from asymptomatic apical periodontitis (AAP)-affected teeth at baseline and after endodontic treatment. Patients with clinical diagnosis of AAP and healthy volunteers having indication of tooth extraction were recruited. Apical lesions and healthy periodontal ligaments, respectively, were homogenized or processed to obtain histological tissue sections. Matrix metalloproteinase -9 and -2 levels and/or activity were analyzed by Immunowestern blot, zymography and consecutive densitometric analysis, and their tissue localization was confirmed by immunohistochemistry. A second group of patients with AAP and indication of endodontic treatment was recruited. Gingival crevicular fluid was extracted from AAP-affected teeth at baseline, after endodontic treatment and healthy contralateral teeth. Total oxidant and antioxidant status were determined in homogenized tissue and GCF samples. Statistical analysis was performed using STATA v10 software with unpaired t test, Mann-Whitney test and Spearman's correlation. Activity of MMP-2 and MMP-9 along with oxidant status were higher in apical lesions (p < 0.05). Total oxidant status correlated positively with matrix metalloproteinase-2 and lesion size (p < 0.05). Gingival crevicular fluid showed significantly lower levels of total antioxidant status in diseased teeth at baseline compared to controls and endodontically-treated groups. Apical lesions display an oxidant imbalance along with increased activity of matrix metalloproteinase-2 and -9 and might contribute to AAP progression. Oxidant imbalance can

  18. Plasma levels of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 correlate with disease stage and survival in colorectal cancer patients.

    PubMed

    Waas, Erwin T; Hendriks, Thijs; Lomme, Roger M L M; Wobbes, Theo

    2005-04-01

    The matrix metalloproteinases and their inhibitors are known to be involved in the process of tumor invasion and progression. Our objective was to investigate the potential diagnostic and prognostic value of plasma matrix metalloproteinase-2 and -9 and tissue inhibitor of metalloproteinase-1 in colorectal cancer. Gelatinase bioactivity and immunoreactivity of pro-matrix metalloproteinase-2 and -9, tissue inhibitor of metalloproteinase-1, and carcinoembryonic antigen were determined simultaneously in preoperative plasma and serum of colorectal cancer patients (n = 94) and in healthy controls (n = 51). Plasma pro-matrix metalloproteinase-2 levels were lower in colorectal cancer patients (P < 0.0001) than in controls, and its gelatinolytic activity revealed an inverse correlation with adverse clinicopathologic parameters, such as lymph node involvement (P = 0.017), stage (0, I, II vs. III, IV; P = 0.012), and the carcinoembryonic antigen level (P = 0.016). Pro-matrix metalloproteinase-9 levels did not differ between patients and controls. Pro-matrix metalloproteinase-2 gelatinolytic activity showed potential value in colorectal cancer diagnosis, identifying patients with 70 percent sensitivity at 95 percent specificity. Pro-matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and carcinoembryonic antigen all showed lower sensitivities. Combining pro-matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 measurements increased the sensitivity significantly to 84 percent. With respect to prognosis, tissue inhibitor of metalloproteinase-1 showed value in predicting disease outcome in our patient group, whereas pro-matrix metalloproteinase-2 and -9 did not. The combination of tissue inhibitor of metalloproteinase-1 and carcinoembryonic antigen was better in predicting three-year survival than tissue inhibitor of metalloproteinase-1 alone, but it remains to be determined if the combination would be a better marker for survival than

  19. Microvesicles shed from fibroblasts act as metalloproteinase carriers in a 3-D collagen matrix.

    PubMed

    Laghezza Masci, Valentina; Taddei, Anna Rita; Gambellini, Gabriella; Giorgi, Franco; Fausto, Anna Maria

    2016-01-01

    This study shows that fibroblasts migrating into a collagen matrix release numerous microvesicles into the surrounding medium. By spreading in regions of the matrix far distant from cells of origin, microvesicles carry metalloproteinase 9 (MMP-9) to act upon the collagen fibrils. As a result, the collagen matrix is gradually transformed from a laminar to a fibrillar type of architecture. As shown by western blots and gelatin zymography, MMP-9 is secreted as a 92 kDa precursor and activated upon release of 82 kDa product into the culture medium. Activation is more efficient under three-dimensional than in two-dimensional culturing conditions. While MMP-9 labeling is associated with intraluminal vesicles clustered inside the microvesicles, the microvesicle's integrin β1 marker is bound to the outer membrane. The intraluminal vesicles are recruited from the cortical cytoplasm and eventually released following uploading inside the microvesicle. Here, we propose that fusion of the intraluminal vesicles with the outer microvesicle's membrane could work as a mechanism controlling the extent to which MMP-9 is first activated and then released extracellularly.

  20. Microvesicles shed from fibroblasts act as metalloproteinase carriers in a 3-D collagen matrix

    PubMed Central

    Taddei, Anna Rita; Gambellini, Gabriella; Giorgi, Franco; Fausto, Anna Maria

    2016-01-01

    This study shows that fibroblasts migrating into a collagen matrix release numerous microvesicles into the surrounding medium. By spreading in regions of the matrix far distant from cells of origin, microvesicles carry metalloproteinase 9 (MMP-9) to act upon the collagen fibrils. As a result, the collagen matrix is gradually transformed from a laminar to a fibrillar type of architecture. As shown by western blots and gelatin zymography, MMP-9 is secreted as a 92 kDa precursor and activated upon release of 82 kDa product into the culture medium. Activation is more efficient under three-dimensional than in two-dimensional culturing conditions. While MMP-9 labeling is associated with intraluminal vesicles clustered inside the microvesicles, the microvesicle’s integrin β1 marker is bound to the outer membrane. The intraluminal vesicles are recruited from the cortical cytoplasm and eventually released following uploading inside the microvesicle. Here, we propose that fusion of the intraluminal vesicles with the outer microvesicle’s membrane could work as a mechanism controlling the extent to which MMP-9 is first activated and then released extracellularly. PMID:28936262

  1. Matrix superpotentials

    NASA Astrophysics Data System (ADS)

    Nikitin, Anatoly G.; Karadzhov, Yuri

    2011-07-01

    We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.

  2. Persistent depressive disorder

    MedlinePlus

    Persistent depressive disorder (PDD) is a chronic (ongoing) type of depression in which a person's moods are regularly low. ... are not as severe as with major depression . Persistent depressive disorder used to be called dysthymia.

  3. Matrix thermalization

    NASA Astrophysics Data System (ADS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  4. Sync Matrix

    SciTech Connect

    Metz, William C.; Metz, W. Chris; Mitrani, Jacques E.; Hewett, Jr., Paul L.; Jones, Christopher A.

    2004-12-31

    Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.

  5. Matrix Algebra.

    DTIC Science & Technology

    1998-06-01

    on courses being taught at NPS. LIST OF REFERENCES [1] Anton , Howard , Elementary Linear Algebra , John Wiley and Sons, New York, New York, 1994...and computational techniques for solving systems of linear equations. The goal is to enhance current matrix algebra textbooks and help the beginning... algebra is the study of algebraic operations on matrices and of their applications, primarily for solving systems of linear equations. Systems of

  6. Downregulation of ERK signaling impairs U2OS osteosarcoma cell migration in collagen matrix by suppressing MMP9 production

    PubMed Central

    POUDEL, BARUN; KIM, DO-KUK; KI, HYEON-HUI; KWON, YOUNG-BAE; LEE, YOUNG-MI; KIM, DAE-KI

    2014-01-01

    The present study investigated the role of extracellular signal-regulated kinase (ERK) activation in the migratory phenotype of human U2OS osteosarcoma (OS) cells in a collagen matrix. The activation of ERK was inhibited by PD98059, a specific inhibitor of ERK kinase. Additionally, no significant differences were observed in the adhesion and proliferation of the cells with or without PD98059 treatment in collagen-coated dishes. The migratory capacity of the U2OS cells was then examined in non-coated and collagen-coated dishes, and the results depicted that collagen I enhanced the migration of the U2OS cells, the effect of which was significantly blocked by the treatment of the cells with PD98059. Furthermore, enhanced gene and protein expression of matrix metalloproteinase 9 (MMP9), but not MMP2, was observed to be involved in the enhanced migratory phenotype of the U20S cells in the collagen-coated plates. This effect was partially abolished by the treatment of the cells in the collagen-coated dishes with ERK inhibitor. Collectively, the data demonstrate that ERK signaling is important for the migration of U2OS cells through the extracellular matrix (ECM), which is comprised mostly of collagen, by enhancing MMP9 production. These results may contribute to the regulation of MMP9 production in metastatic OS. PMID:24348851

  7. Effects of low doses of inhaled fluticasone propionate on inflammation and remodelling in persistent-mild asthma.

    PubMed

    Vignola, A M; Riccobono, L; Profita, M; Foresi, A; Di Giorgi, R; Guerrera, D; Gjomarkaj, M; Di Blasi, P; Paggiaro, P L

    2005-12-01

    In asthma a dysregulation of eosinophil apoptosis and an imbalance of metalloproteinase-9 (MMP-9) and tissue inhibitor metalloproteinase-1 (TIMP-1) play an important role in airway inflammation and remodelling. We evaluated the effects of a low dose of inhaled fluticasone proprionate (FP) (100 microg bid by Diskus) for 4 weeks in 24 steroid naive patients with mild persistent asthma, symptomatic and with a sputum eosinophilia >or=3% on clinical outcomes and inflammatory markers such as the induced sputum eosinophils, the induced sputum apoptotic eosinophils, the levels of MMP-9 and TIMP-1 and their molar ratio in the induced sputum supernatants. After FP treatment forced expiratory volume (FEV1) and FEV1/forced vital capacity values, PEF (L/min), sputum apoptotic eosinophils, and MMP-9/TIMP-1 molar ratio in sputum supernatants of asthmatic subjects were significantly increased in comparison with baseline, while sputum eosinophils significantly decreased. Change (Delta) in FEV1 after treatment with FP negatively correlated with the Delta in sputum eosinophils, while the Delta in MMP-9 values positively correlated with Delta in TIMP-1 values. This study shows that the clinical improvement achieved by the use of low doses of FP in asthmatics is related, at least in part, to the resolution of eosinophilic inflammation and the downregulation of remodelling markers.

  8. Persistent heap Management library

    SciTech Connect

    2012-01-17

    PERM is a C library for persistent heap management and is intended for use with a dynamic-memory allocator (e.g. malloc, free). The PERM memory allocator replaces the standard C dynamic memory allocation functions with compatible versions that provide persistent memory to application programs. Memory allocated with the PERM allocatory will persist between program invocations after a call to a checkpoint function. This function essentially saves the state of the heap and registered global variables to a file which may reside in flash memory or other node local storage. A few other functions are also provided by the library to manage checkpoint files. Global variables in an application can be marked persistent and be included in a checkpoint by using a compiler attribute defined as PERM. The PERM checkpoint methof is not dependent on the programming model ans works with distributed memory or shared memory programs.

  9. Unusually persistent complainants.

    PubMed

    Lester, Grant; Wilson, Beth; Griffin, Lynn; Mullen, Paul E

    2004-04-01

    Querulous paranoia may have disappeared from the psychiatric literature, but is it flourishing in modern complaints organisations and the courts? To investigate the unusually persistent complainants who lay waste to their own lives and place inordinate demands and stress on complaints organisations. Complaints officers completed questionnaires on both unusually persistent complainants and matched controls. Persistent complainants (distinguished by their pursuit of vindication and retribution) consumed time and resources and resorted to both direct and veiled threats. Attempts to distinguish these people from a control group on the basis of the manner in which their claims were initially managed failed. Persistent complainants' pursuit of vindication and retribution fits badly with complaints systems established to deliver reparation and compensation. These complainants damaged the financial and social fabric of their own lives and frightened those dealing with their claims. The study suggests methods of early detection and alternative management strategies.

  10. Glyphosate persistence in seawater.

    PubMed

    Mercurio, Philip; Flores, Florita; Mueller, Jochen F; Carter, Steve; Negri, Andrew P

    2014-08-30

    Glyphosate is one of the most widely applied herbicides globally but its persistence in seawater has not been reported. Here we quantify the biodegradation of glyphosate using standard "simulation" flask tests with native bacterial populations and coastal seawater from the Great Barrier Reef. The half-life for glyphosate at 25 °C in low-light was 47 days, extending to 267 days in the dark at 25 °C and 315 days in the dark at 31 °C, which is the longest persistence reported for this herbicide. AMPA, the microbial transformation product of glyphosate, was detected under all conditions, confirming that degradation was mediated by the native microbial community. This study demonstrates glyphosate is moderately persistent in the marine water under low light conditions and is highly persistent in the dark. Little degradation would be expected during flood plumes in the tropics, which could potentially deliver dissolved and sediment-bound glyphosate far from shore.

  11. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution.

    PubMed

    Barker, Holly E; Chang, Joan; Cox, Thomas R; Lang, Georgina; Bird, Demelza; Nicolau, Monica; Evans, Holly R; Gartland, Alison; Erler, Janine T

    2011-03-01

    More than 90% of cancer patient mortality is attributed to metastasis. In this study, we investigated a role for the lysyl oxidase-related enzyme lysyl oxidase-like 2 (LOXL2) in breast cancer metastasis, in both patient samples and in vivo models. Analysis of a published microarray data set revealed that LOXL2 expression is correlated with metastasis and decreased survival in patients with aggressive breast cancer. In immunocompetent or immunocompromised orthotopic and transgenic breast cancer models we showed that genetic, chemical or antibody-mediated inhibition of LOXL2 resulted in decreased metastasis. Mechanistic investigations revealed that LOXL2 promotes invasion by regulating the expression and activity of the extracellular proteins tissue inhibitor of metalloproteinase-1 (TIMP1) and matrix metalloproteinase-9 (MMP9). We found that LOXL2, TIMP1, and MMP9 are coexpressed during mammary gland involution, suggesting they function together in glandular remodeling after weaning. Finally, we found that LOXL2 is highly expressed in the basal/myoepithelial mammary cell lineage, like many other genes that are upregulated in basal-like breast cancers. Our findings highlight the importance of LOXL2 in breast cancer progression and support the development of anti-LOXL2 therapeutics for the treatment of metastatic breast cancer.

  12. Persistent luminescence nanothermometers

    NASA Astrophysics Data System (ADS)

    Martín Rodríguez, Emma; López-Peña, Gabriel; Montes, Eduardo; Lifante, Ginés; García Solé, José; Jaque, Daniel; Diaz-Torres, Luis Armando; Salas, Pedro

    2017-08-01

    Persistent phosphorescence nanoparticles emitting in the red and near-infrared spectral regions are strongly demanded as contrast nanoprobes for autofluorescence free bioimaging and biosensing. In this work, we have developed Sr4Al14O25:Eu2+, Cr3+, Nd3+ nanopowders that produce persistent red phosphorescence peaking at 694 nm generated by Cr3+ ions. This emission displays temperature sensitivity in the physiological temperature range (20-60 °C), which makes these nanoparticles potentially useful as fluorescence (contactless) nanothermometers operating without requiring optical excitation. Nd3+ ions, which act as shallow electron traps for the red Cr3+ persistent emission, also display infrared emission bands, extending the fluorescence imaging capability to the second biological window. This unique combination of properties makes these nanoparticles multifunctional luminescent probes with great potential applications in nanomedicine.

  13. Visual persistence and cinema?

    PubMed

    Galifret, Yves

    2006-01-01

    In Faraday and Plateau's days, both apparent motion and the fusion of intermittent lights, two phenomena that are hardly connected, were explained by retinal persistence. The works of Exner and of the 'Gestalt' psychologists, as well as the modern works on 'sampled' motion and smooth motion, disregarded retinal persistence. One tried, originally, to measure this persistence using intermittent stimulation, but under the pressure of practical concern, what was established in 1902 was the logarithmic relation between fusion frequency and the intensity of the stimulation. One had to wait until the 1950s for the use of harmonic analysis to finally allow a renewal in which many problems that, for decades, had only given rise to discussions that led nowhere and to groundless assertions, were correctly stated and easily solved.

  14. Metabolic Perspectives on Persistence

    PubMed Central

    Hartman, Travis E.; Wang, Zhe; Jansen, Robert S.; Gardete, Susana; Rhee, Kyu Y.

    2016-01-01

    SUMMARY Accumulating evidence has left little doubt about the importance of persistence or metabolism in the biology and chemotherapy of tuberculosis. However, knowledge of the intersection between these two factors has begun to emerge only recently. Here, we provide a focused review of metabolic characteristics associated with M. tuberculosis persistence. We focus on metabolism because it is the biochemical foundation of all physiologic processes and a distinguishing hallmark of M. tuberculosis’s physiology and pathogenicity. In addition, it serves as the chemical interface between host and pathogen. However, existing knowledge derives largely from physiologic contexts in which replication is the primary biochemical objective. The goal of this review is to reframe existing knowledge of M. tuberculosis metabolism in the context of persistence where quiescence is often a key distinguishing characteristic. Such a perspective may help guide ongoing efforts to develop more efficient cures and inform on novel strategies to break the cycle of transmission sustaining the pandemic. PMID:28155811

  15. Persistence and financial markets

    NASA Astrophysics Data System (ADS)

    Jain, S.

    2007-09-01

    The persistence phenomenon is studied in a financial context by using a novel mapping of the time evolution of the values of shares in a portfolio onto Ising spins. The method is applied to historical data from the London Financial Times Stock Exchange 100 index (FTSE 100) over an arbitrarily chosen period. By following the time dependence of the spins, we find evidence for a power law decay of the proportion of shares that remain either above or below their ‘starting’ values. As a result, we estimate a persistence exponent for the underlying financial market to be ≈0.5. Preliminary results from computer simulations on persistence in the economic dynamics of a toy model appear to reproduce the behaviour observed in real markets.

  16. Degradation of MSCRAMM target macromolecules in VLU slough by Lucilia sericata chymotrypsin 1 (ISP) persists in the presence of tissue gelatinase activity.

    PubMed

    Pritchard, David I; Brown, Alan P

    2015-08-01

    Venous leg ulcer slough is unpleasant to the patient and difficult to manage clinically. It harbours infection, also preventing wound management materials and dressings from supporting the underlying viable tissues. In other words, slough has significant nuisance value in the tissue viability clinic. In this study, we have sought to increase our knowledge of slough by building upon a previous but limited analysis of this necrotic tissue. In particular, slough has been probed using Western blotting for the presence of proteins with the capacity to engage microbial surface components recognising adhesive matrix macromolecules. Although the samples were difficult to resolve, we detected fibrinogen, fibronectin, IgG, collagen, human serum albumin and matrix metalloproteinase-9. Furthermore, the effect of a maggot-derived debridement enzyme, chymotrypsin 1 on macromolecules in slough was confirmed across seven patient samples. The effect of chymotrypsin 1 on slough confirms our thesis that this potential debridement enzyme could be effective in removing slough along with its associated bacteria, given its observed resistance to intrinsic gelatinase activity. In summary, we believe that the data provide scientists and clinicians with further insights into the potential molecular interactions between bacteria, wound tissue and Lucilia sericata in a clinically problematic yet scientifically interesting wound ecosystem. © 2013 The Authors. International Wound Journal © 2013 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  17. Persistence in financial markets

    NASA Astrophysics Data System (ADS)

    Jain, S.; Buckley, P.

    2006-03-01

    Persistence is studied in a financial context by mapping the time evolution of the values of the shares quoted on the London Financial Times Stock Exchange 100 index (FTSE 100) onto Ising spins. By following the time dependence of the spins, we find evidence for power law decay of the proportion of shares that remain either above or below their 'starting' values. As a result, we estimate a persistence exponent for the underlying financial market to be θf˜0.5.

  18. Pro-oxidant status and matrix metalloproteinases in apical lesions and gingival crevicular fluid as potential biomarkers for asymptomatic apical periodontitis and endodontic treatment response

    PubMed Central

    2012-01-01

    Background Oxidative stress and matrix metalloproteinases -9 and -2 are involved in periodontal breakdown, whereas gingival crevicular fluid has been reported to reflect apical status. The aim of this study was to characterize oxidant balance and activity levels of MMP -2 and -9 in apical lesions and healthy periodontal ligament; and second, to determine whether potential changes in oxidant balance were reflected in gingival crevicular fluid from asymptomatic apical periodontitis (AAP)-affected teeth at baseline and after endodontic treatment. Methods Patients with clinical diagnosis of AAP and healthy volunteers having indication of tooth extraction were recruited. Apical lesions and healthy periodontal ligaments, respectively, were homogenized or processed to obtain histological tissue sections. Matrix metalloproteinase -9 and -2 levels and/or activity were analyzed by Immunowestern blot, zymography and consecutive densitometric analysis, and their tissue localization was confirmed by immunohistochemistry. A second group of patients with AAP and indication of endodontic treatment was recruited. Gingival crevicular fluid was extracted from AAP-affected teeth at baseline, after endodontic treatment and healthy contralateral teeth. Total oxidant and antioxidant status were determined in homogenized tissue and GCF samples. Statistical analysis was performed using STATA v10 software with unpaired t test, Mann-Whitney test and Spearman's correlation. Results Activity of MMP-2 and MMP-9 along with oxidant status were higher in apical lesions (p < 0.05). Total oxidant status correlated positively with matrix metalloproteinase-2 and lesion size (p < 0.05). Gingival crevicular fluid showed significantly lower levels of total antioxidant status in diseased teeth at baseline compared to controls and endodontically-treated groups. Conclusions Apical lesions display an oxidant imbalance along with increased activity of matrix metalloproteinase-2 and -9 and might contribute to

  19. DNA methylation of extracellular matrix remodeling genes in children exposed to arsenic.

    PubMed

    Gonzalez-Cortes, Tania; Recio-Vega, Rogelio; Lantz, Robert Clark; Chau, Binh T

    2017-08-15

    Several novel mechanistic findings regarding to arsenic's pathogenesis has been reported and some of them suggest that the etiology of some arsenic induced diseases are due in part to heritable changes to the genome via epigenetic processes such as DNA methylation, histone maintenance, and mRNA expression. Recently, we reported that arsenic exposure during in utero and early life was associated with impairment in the lung function and abnormal receptor for advanced glycation endproducts (RAGE), matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) sputum levels. Based on our results and the reported arsenic impacts on DNA methylation, we designed this study in our cohort of children exposed in utero and early childhood to arsenic with the aim to associate DNA methylation of MMP9, TIMP1 and RAGE genes with its protein sputum levels and with urinary and toenail arsenic levels. The results disclosed hypermethylation in MMP9 promotor region in the most exposed children; and an increase in the RAGE sputum levels among children with the mid methylation level; there were also positive associations between MMP9 DNA methylation with arsenic toenail concentrations; RAGE DNA methylation with iAs, and %DMA; and finally between TIMP1 DNA methylation with the first arsenic methylation. A negative correlation between MMP9 sputum levels with its DNA methylation was registered. In conclusion, arsenic levels were positive associated with the DNA methylation of extracellular matrix remodeling genes;, which in turn could modifies the biological process in which they are involved causing or predisposing to lung diseases. Copyright © 2017. Published by Elsevier Inc.

  20. Retention and Persistence Data.

    ERIC Educational Resources Information Center

    Sanford, Timothy R.

    Two studies are combined with an introductory section: one is "Persistence to Graduation for Freshmen Entering the University of North Carolina at Chapel Hill, 1967-75," by Timothy Sanford, and the second is "Freshman, Transfer, Professional, Masters, and Doctoral Student Retention at the University of North Carolina at Chapel…

  1. A Very Persistent Mistake

    ERIC Educational Resources Information Center

    McClelland, J. A. G.

    2011-01-01

    Articulated bodies with an internal energy source require to be coupled to an external mass in order to accelerate themselves but the typical text book assertion that the net force is provided by the external mass is not correct. Arguments are presented demonstrating that the assertion is incorrect and reasons are suggested for the persistence of…

  2. A Very Persistent Mistake

    ERIC Educational Resources Information Center

    McClelland, J. A. G.

    2011-01-01

    Articulated bodies with an internal energy source require to be coupled to an external mass in order to accelerate themselves but the typical text book assertion that the net force is provided by the external mass is not correct. Arguments are presented demonstrating that the assertion is incorrect and reasons are suggested for the persistence of…

  3. The Persistence of PCBs.

    ERIC Educational Resources Information Center

    Boyle, Robert H.; Highland, Joseph H.

    1979-01-01

    PCB's are one of the most persistent chemicals ever introduced into the environment by man. From very early in their history of manufacture PCB's were suspected of being hazardous to health, but public awareness of the hazard was slow in coming. (RE)

  4. Persistence to Graduate Education.

    ERIC Educational Resources Information Center

    Ethington, Corinna A.; Smart, John C.

    1986-01-01

    A study is reported of the relationship of family education and income, high school grades, academic and social self-confidence, undergraduate institutional selectivity and size, academic and social integration, overall college satisfaction, bachelor's degree attainment, and financial aid on students' persistence to graduate school. (MSE)

  5. RA-XII inhibits tumour growth and metastasis in breast tumour-bearing mice via reducing cell adhesion and invasion and promoting matrix degradation

    PubMed Central

    Leung, Hoi-Wing; Zhao, Si-Meng; Yue, Grace Gar-Lee; Lee, Julia Kin-Ming; Fung, Kwok-Pui; Leung, Ping-Chung; Tan, Ning-Hua; Lau, Clara Bik-San

    2015-01-01

    Cancer cells acquire invasive ability to degrade and adhere to extracellular matrix (ECM) and migrate to adjacent tissues. This ultimately results metastasis. Hence, the present study investigated the in vitro effects of cyclopeptide glycoside, RA-XII on cell adhesion, invasion, proliferation and matrix degradation, and its underlying mechanism in murine breast tumour cells, 4T1. The effect of RA-XII on tumour growth and metastasis in 4T1-bearing mice was also investigated. Our results showed that RA-XII inhibited tumour cell adhesion to collagen, fibronectin and laminin, RA-XII also reduced the expressions of vascular cell adhesion molecule, intracellular adhesion molecule and integrins, and integrin binding. In addition, RA-XII significantly inhibited breast tumour cell migration via interfering cofilin signaling and chemokine receptors. The activities of matrix metalloproteinase-9 and urokinase-type of plasminogen activator, and the expressions of ECM-associated proteinases were attenuated significantly by RA-XII. Furthermore, RA-XII induced G1 phase arrest and inhibited the expressions of cyclins and cyclin-dependent kinases. RA-XII inhibited the expressions of molecules in PI3K/AKT, NF-kappaB, FAK/pSRC, MAPK and EGFR signaling. RA-XII was also shown to have anti-tumour, anti-angiogenic and anti-metastatic activities in metastatic breast tumour-bearing mice. These findings strongly suggested that RA-XII is a potential anti-metastatic agent for breast cancer. PMID:26592552

  6. RA-XII inhibits tumour growth and metastasis in breast tumour-bearing mice via reducing cell adhesion and invasion and promoting matrix degradation.

    PubMed

    Leung, Hoi-Wing; Zhao, Si-Meng; Yue, Grace Gar-Lee; Lee, Julia Kin-Ming; Fung, Kwok-Pui; Leung, Ping-Chung; Tan, Ning-Hua; Lau, Clara Bik-San

    2015-11-23

    Cancer cells acquire invasive ability to degrade and adhere to extracellular matrix (ECM) and migrate to adjacent tissues. This ultimately results metastasis. Hence, the present study investigated the in vitro effects of cyclopeptide glycoside, RA-XII on cell adhesion, invasion, proliferation and matrix degradation, and its underlying mechanism in murine breast tumour cells, 4T1. The effect of RA-XII on tumour growth and metastasis in 4T1-bearing mice was also investigated. Our results showed that RA-XII inhibited tumour cell adhesion to collagen, fibronectin and laminin, RA-XII also reduced the expressions of vascular cell adhesion molecule, intracellular adhesion molecule and integrins, and integrin binding. In addition, RA-XII significantly inhibited breast tumour cell migration via interfering cofilin signaling and chemokine receptors. The activities of matrix metalloproteinase-9 and urokinase-type of plasminogen activator, and the expressions of ECM-associated proteinases were attenuated significantly by RA-XII. Furthermore, RA-XII induced G1 phase arrest and inhibited the expressions of cyclins and cyclin-dependent kinases. RA-XII inhibited the expressions of molecules in PI3K/AKT, NF-kappaB, FAK/pSRC, MAPK and EGFR signaling. RA-XII was also shown to have anti-tumour, anti-angiogenic and anti-metastatic activities in metastatic breast tumour-bearing mice. These findings strongly suggested that RA-XII is a potential anti-metastatic agent for breast cancer.

  7. A Shape-Persistent Polyphenylene Spoked Wheel.

    PubMed

    Liu, Yi; Narita, Akimitsu; Teyssandier, Joan; Wagner, Manfred; De Feyter, Steven; Feng, Xinliang; Müllen, Klaus

    2016-12-07

    A shape-persistent polyphenylene with a "spoked wheel" structure was synthesized as a subunit of an unprecedented two-dimensional polyphenylene that we name graphenylene. The synthesis was carried out through a sixfold intramolecular Yamamoto coupling of a dodecabromo-substituted dendritic polyphenylene precursor, which had a central hexaphenylbenzene unit as a template. Characterizations by NMR spectroscopy and matrix-assisted laser ionization time-of-flight mass spectrometry provided an unambiguous structural proof for the wheel-like molecule with a molar mass of 3815.4 g/mol. Remarkably, scanning tunneling microscopy visualization clearly revealed the defined spoked wheel structure of the molecule with six internal pores.

  8. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  9. Persistent cultural systems.

    PubMed

    Spicer, E H

    1971-11-19

    I have indicated here some features of a kind of entity which I have called a cultural identity system, and I have focused on a variety of this general type-the persistent system. In general terms it is best described as a system of beliefs and sentiments concerning historical events. I suggest using the term "a people" for the human beings who, at any given time, hold beliefs of this kind. These are phenomena with which we have been long familiar, but they have not been systematically studied by any but a few investigators. I have emphasized that a persistent system is a cumulative cultural phenomenon, an open-ended system that defines a course of action for the people believing in it. Such peoples are able to maintain continuity in their experience and their conception of themselves in a wide variety of sociocultural environments. I hold that certain kinds of identifiable conditions give rise to this type of cultural system. These may best be summarized as an oppositional process involving the interactions of individuals in the environment of a state or a similar large-scale organization. The oppositional process frequently produces intense collective consciousness and a high degree of internal solidarity. This is accompanied by a motivation for individuals to continue the kind of experience that is "stored" in the identity system in symbolic form. The persistent identity system is more stable as a cultural structure than are large-scale political organizations. When large-scale states disintegrate, they often appear to decompose into cultural systems of the persistent type. Large-scale organizations also give rise to the kind of environment that can result in the formation of new persistent systems. It is possible that, while being formed, states depend for their impetus on the accumulated energy of persistent peoples. A proposition for consideration is that states tend to dissipate the energy of peoples after transforming that energy into state

  10. Optimization and Persistence

    DTIC Science & Technology

    1997-09-01

    and production costs are amplified by first-time applica- tion of high technology , security, and lim- ited production quantities. Alternate can...stred spendmg levels, average fleet age, average " technological advantage" of the fleet, and so forth. (The persistent features we discuss have all...a precise concept when dealing with nonmonetary units, such as technological advantage, but all elastic penalties are usually adjusted by the same

  11. Persistent interface fluid syndrome.

    PubMed

    Hoffman, Richard S; Fine, I Howard; Packer, Mark

    2008-08-01

    We present an unusual case of persistent interface fluid that would not resolve despite normal intraocular pressure and corneal endothelial replacement with Descemet-stripping endothelial keratoplasty. Dissection, elevation, and repositioning of the laser in situ keratomileusis flap were required to resolve the interface fluid. Circumferential corneal graft-host margin scar formation acting as a mechanical strut may have been the cause of the intractable interface fluid.

  12. Persistent Security, Then Development

    DTIC Science & Technology

    2010-08-01

    already been purchased, quite literally, with blood, sweat , and tears. Persistent security is the sufficient condition for stability operations and, in...outposts. 72 July-August 2010  MILITARY REVIEW to the coalition or drinking three cups of tea with a fence-sitting tribal leader turned his tribe to...largest bases demonstrate that there are still ideologically driven men who are willing to fight to the death. Building retaining walls and drinking cups

  13. Persistent benign pleural effusion.

    PubMed

    Porcel, J M

    In this narrative review we describe the main aetiologies, clinical characteristics and treatment for patients with benign pleural effusion that characteristically persists over time: chylothorax and cholesterol effusions, nonexpansible lung, rheumatoid pleural effusion, tuberculous empyema, benign asbestos pleural effusion and yellow nail syndrome. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  14. Persistent occiput posterior.

    PubMed

    Barth, William H

    2015-03-01

    Persistent occiput posterior (OP) is associated with increased rates of maternal and newborn morbidity. Its diagnosis by physical examination is challenging but is improved with bedside ultrasonography. Occiput posterior discovered in the active phase or early second stage of labor usually resolves spontaneously. When it does not, prophylactic manual rotation may decrease persistent OP and its associated complications. When delivery is indicated for arrest of descent in the setting of persistent OP, a pragmatic approach is suggested. Suspected fetal macrosomia, a biparietal diameter above the pelvic inlet or a maternal pelvis with android features should prompt cesarean delivery. Nonrotational operative vaginal delivery is appropriate when the maternal pelvis has a narrow anterior segment but ample room posteriorly, like with anthropoid features. When all other conditions are met and the fetal head arrests in an OP position in a patient with gynecoid pelvic features and ample room anteriorly, options include cesarean delivery, nonrotational operative vaginal delivery, and rotational procedures, either manual or with the use of rotational forceps. Recent literature suggests that maternal and fetal outcomes with rotational forceps are better than those reported in older series. Although not without significant challenges, a role remains for teaching and practicing selected rotational forceps operations in contemporary obstetrics.

  15. Effects of radioiodine administration on serum concentrations of matrix metalloproteinases, adiponectin and thrombospondin-1

    PubMed Central

    2013-01-01

    Background In order to assess safety of radioactive iodine administration in the treatment of thyrotoxicosis, we measured concentrations of matrix metalloproteinase-2 (MMP-2), its main inhibitor – TIMP-2 (tissue inhibitor of MMP-2), matrix metalloproteinase-9 (MMP-9), its main inhibitor – TIMP-1, adiponectin, as well as pro-inflammatory and procancerogenic thrombospondin-1 (TSP-1). Design and patients The study involved 23 patients treated with radioiodine for thyrotoxicosis. Serum concentrations of TSH, free T4, free T3, MMP-2, MMP-9, TIMP-1, TIMP-2, total adiponectin and TSP-1 were measured by immunoassays just before radioiodine administration (visit 1), and subsequently, after 7 days (visit 2), 3 months (visit 3), 6 to 8 months (visit 4) and 15–18 months after radioiodine administration (visit 5). Results There were no acute changes in serum concentrations of MMP-2, MMP-9, TIMP-1, TIMP-2, adiponectin and TSP-1 (visit 1 vs. 2). Subsequently, there was an increase in MMP-2 (from 393±106 ng/ml to 774±424 ng/ml), TIMP-1 (from 177±76 ng/ml to 296±118 ng/ml), and adiponectin (from 16442±9490 ng/ml to 23518±9840 ng/ml), visit 1 to 5, respectively (p < 0.01). Further analysis revealed no significant change in MMP-2/TIMP-2 ratio, but there was a significant decrease in MMP-9/TIMP-1 ratio (p < 0.05), suggestive of possible decrease in free MMP-9 concentrations. Conclusions Our data reveal a significant and sustained increase in serum adiponectin, as well as possible decrease of free MMP-9 concentration after radioiodine administration. In contrast, there was no significant change of TSP-1. This might indicate overall safety of radioiodine treatment of thyrotoxicosis in terms of the risks of subsequent cardiovascular and neoplastic disease. PMID:23919647

  16. Learning's "Weak" Link to Persistence

    ERIC Educational Resources Information Center

    Wolniak, Gregory C.; Mayhew, Matthew J.; Engberg, Mark E.

    2012-01-01

    This study advances the understanding of college persistence by examining five dimensions of student learning in relation to second-year persistence. Two of the five dimensions of learning were found to be significant predictors of persistence, and each was moderated by social integration. (Contains 5 tables and 1 figure.)

  17. Periostin induces fibroblast proliferation and myofibroblast persistence in hypertrophic scarring.

    PubMed

    Crawford, Justin; Nygard, Karen; Gan, Bing Siang; O'Gorman, David Brian

    2015-02-01

    Hypertrophic scarring is characterized by the excessive development and persistence of myofibroblasts. These cells contract the surrounding extracellular matrix resulting in the increased tissue density characteristic of scar tissue. Periostin is a matricellular protein that is abnormally abundant in fibrotic dermis, however, its roles in hypertrophic scarring are largely unknown. In this report, we assessed the ability of matrix-associated periostin to promote the proliferation and myofibroblast differentiation of dermal fibroblasts isolated from the dermis of hypertrophic scars or healthy skin. Supplementation of a thin type-I collagen cell culture substrate with recombinant periostin induced a significant increase in the proliferation of hypertrophic scar fibroblasts but not normal dermal fibroblasts. Periostin induced significant increases in supermature focal adhesion formation, α smooth muscle actin levels and collagen contraction in fibroblasts cultured from hypertrophic scars under conditions of increased matrix tension in three-dimensional type-I collagen lattices. Inhibition of Rho-associated protein kinase activity significantly attenuated the effects of matrix-associated periostin on hypertrophic scar fibroblasts and myofibroblasts. Depletion of endogenous periostin expression in hypertrophic scar myofibroblasts resulted in a sustained decrease in α smooth muscle actin levels under conditions of reducing matrix tension, while matrix-associated periostin levels caused the cells to retain high levels of a smooth muscle actin under these conditions. These findings indicate that periostin promotes Rho-associated protein kinase-dependent proliferation and myofibroblast persistence of hypertrophic scar fibroblasts and implicate periostin as a potential therapeutic target to enhance the resolution of scars.

  18. Persistence of airline accidents.

    PubMed

    Barros, Carlos Pestana; Faria, Joao Ricardo; Gil-Alana, Luis Alberiko

    2010-10-01

    This paper expands on air travel accident research by examining the relationship between air travel accidents and airline traffic or volume in the period from 1927-2006. The theoretical model is based on a representative airline company that aims to maximise its profits, and it utilises a fractional integration approach in order to determine whether there is a persistent pattern over time with respect to air accidents and air traffic. Furthermore, the paper analyses how airline accidents are related to traffic using a fractional cointegration approach. It finds that airline accidents are persistent and that a (non-stationary) fractional cointegration relationship exists between total airline accidents and airline passengers, airline miles and airline revenues, with shocks that affect the long-run equilibrium disappearing in the very long term. Moreover, this relation is negative, which might be due to the fact that air travel is becoming safer and there is greater competition in the airline industry. Policy implications are derived for countering accident events, based on competition and regulation. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.

  19. Correlation between prenatal urinary matrix metalloproteinase activity and the degree of kidney damage in a large animal model of congenital obstructive uropathy.

    PubMed

    Nicksa, Grace A; O'Neil, Edward; Yu, David C; Curatolo, Adam S; McNeish, Brendan L; Barnewolt, Carol E; Zurakowski, David; Buchmiller, Terry L; Moses, Marsha A; Rosen, Seymour; Fauza, Dario O

    2010-06-01

    We aimed to determine whether the profile of matrix metalloproteinase (MMP) activity in fetal urine correlates with the degree of kidney damage in the setting of congenital obstructive uropathy. Fetal lambs underwent either a sham operation or creation of a complete urinary tract obstruction. Necropsies were performed before term, when urinary MMP profiling was performed by zymography; and kidney damage was assessed histologically by multiple semiquantitative analyses and histomorphometric measurements. There was a significant correlation between inner medullary thickness and MMP-9 (P = .005) and 63-kd MMP-2 (P = .019) activities. In like manner, the only MMPs associated with kidney fibrosis were MMP-9 and 63-kd MMP-2. Matrix metalloproteinase-9 activity was a highly significant independent predictor of the total combined kidney fibrosis score (P < .001) as well as of higher fibrosis grades in each of 6 kidney areas analyzed (all with P < .01). The activity of 63-kd MMP-2 correlated significantly with higher fibrosis in select areas. In a fetal ovine model, urinary MMP activity correlates with the degree of kidney damage. The presence of MMP-9 (in particular) and that of 63-kd MMP-2 are independent predictors of severity. Prenatal urinary MMP profiling may enhance patient stratification and counseling in the setting of congenital obstructive uropathy. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Immunohistochemical response in rats of beta-tricalcium phosphate (TCP) with or without BMP-2 in the production of collagen matrix critical defects.

    PubMed

    Luvizuto, Eloá Rodrigues; de Oliveira, Júlio César Silva; Gomes-Ferreira, Pedro Henrique Silva; Pereira, Cassiano Costa Silva; Faverani, Leonardo Perez; Antoniali, Cristina; Okamoto, Roberta

    2017-04-01

    This study aimed to assess the biological response of BMP-2 (bone morphogenetic protein-2) in supplementation with β-tricalcium phosphate (TCP) as a carrier in the bone healing of surgical defects in rats' calvaria. A critical-size defect (5mm in diameter) was filled with β-TCP alone or added with that plus 5mg of BMP-2 at 5, 15, and 30 postoperative days. Histomorphometric and immunohistochemical (osteocalcin, collagen type I, and metalloproteinase-9) analysis was performed to assess the features of bone healing. Histological behavior and collagen type I labeling showed increased formation of the collagen matrix, leading to a higher percentage of newly formed bone and biomaterial for tissue and more total mineralization of pure TCP when compared to the other groups. The supplementation with BMP-2 promoted faster TCP remodeling; however, there was no statistically significant difference for the bone formed in both groups (P>0.05). Collagen-matrix formation and new bone formation reached maximum levels when the defects were filled with pure TCP, even exceeding the levels from BMP-2 supplementation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Diabetes medication persistence, different medications have different persistence rates.

    PubMed

    Shani, Michal; Lustman, Alex; Vinker, Shlomo

    2017-08-01

    To assess the persistence of diabetic patients to oral medications. The study included all type 2 diabetic patients over 40 years, members of one District of Clalit Health Services Israel, who were diagnosed with diabetes mellitus before 2008 and who filled at least one prescription per year during 2008-2010, for the following medications: metformin, glibenclamide, acarbose, statins, angiotensin converting enzyme inhibitors (ACEI) and angiotensin II receptor antagonists (ARBs). Purchase of at least 9 monthly prescriptions during 2009 was considered "good medication persistence". We compared HbA1c and LDL levels, according to medication persistence, for each medication; and cross persistence rates between medications. 21,357 patients were included. Average age was 67.0±11.0years, 48.9% were men, and 35.8% were from low SES. Good medication persistence rates for ARBs were 78.8%, ACEI 69.0%, statins 66.6%, acarbose 67.8%, metformin 58.6%, and glibenclamide 55.3%. Good persistence to any of the medications tested was associated with a higher rate of good persistence to other medications. Patients who took more medications had better persistence rates. Different oral medications used by diabetic patients have different persistence rates. Good persistence for any one medication is an indicator of good persistence to other medications. Investment in enhancing medication persistence in persons with diabetes may improve persistence to other medications, as well as improve glycemic control. Copyright © 2017 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  2. Histochemical evidence of osteoclastic degradation of extracellular matrix in osteolytic metastasis originating from human lung small carcinoma (SBC-5) cells.

    PubMed

    Li, Minqi; Amizuka, Norio; Takeuchi, Kiichi; Freitas, Paulo H L; Kawano, Yoshiro; Hoshino, Masaaki; Oda, Kimimitsu; Nozawa-Inoue, Kayoko; Maeda, Takeyasu

    2006-02-01

    The aim of this study was to assess the dynamics of osteoclast migration and the degradation of unmineralized extracellular matrix in an osteolytic metastasis by examining a well-standardized lung cancer metastasis model of nude mice. SBC-5 human lung small carcinoma cells were injected into the left cardiac ventricle of 6-week-old BALB/c nu/nu mice under anesthesia. At 25-30 days after injection, the animals were sacrificed and their femora and/or tibiae were removed for histochemical analyses. Metastatic lesions were shown to occupy a considerable area extending from the metaphyses to the bone marrow region. Tartrate resistant acid phosphatase (TRAPase)-positive osteoclasts were found in association with an alkaline phosphatase (ALPase)-positive osteoblastic layer lining the bone surface, but could also be localized in the ALPase-negative stromal tissues that border the tumor nodules. These stromal tissues were markedly positive for osteopontin, and contained a significant number of TRAPase-positive osteoclasts expressing immunoreactivity for CD44. We thus speculated that, mediating its affinity for CD44, osteopontin may serve to facilitate osteoclastic migration after their formation associated with ALPase-positive osteoblasts. We next examined the localization of cathepsin K and matrix metallo-proteinase-9 (MMP-9) in osteoclasts. Osteoclasts adjacent to the bone surfaces were positive for both proteins, whereas those in the stromal tissues in the tumor nests showed only MMP-9 immunoreactivity. Immunoelectron microscopy disclosed the presence of MMP-9 in the Golgi apparatus and in vesicular structures at the baso-lateral cytoplasmic region of the osteoclasts found in the stromal tissue. MMP-9-positive vesicular structures also contained fragmented extracellular materials. Thus, osteoclasts appear to either select an optimized function, namely secreting proteolytic enzymes from ruffled borders during bone resorption, or recognize the surrounding extracellular

  3. Bacterial persistence by RNA endonucleases

    PubMed Central

    Maisonneuve, Etienne; Shakespeare, Lana J.; Jørgensen, Mikkel Girke; Gerdes, Kenn

    2011-01-01

    Bacteria form persisters, individual cells that are highly tolerant to different types of antibiotics. Persister cells are genetically identical to nontolerant kin but have entered a dormant state in which they are recalcitrant to the killing activity of the antibiotics. The molecular mechanisms underlying bacterial persistence are unknown. Here, we show that the ubiquitous Lon (Long Form Filament) protease and mRNA endonucleases (mRNases) encoded by toxin-antitoxin (TA) loci are required for persistence in Escherichia coli. Successive deletion of the 10 mRNase-encoding TA loci of E. coli progressively reduced the level of persisters, showing that persistence is a phenotype common to TA loci. In all cases tested, the antitoxins, which control the activities of the mRNases, are Lon substrates. Consistently, cells lacking lon generated a highly reduced level of persisters. Moreover, Lon overproduction dramatically increased the levels of persisters in wild-type cells but not in cells lacking the 10 mRNases. These results support a simple model according to which mRNases encoded by TA loci are activated in a small fraction of growing cells by Lon-mediated degradation of the antitoxins. Activation of the mRNases, in turn, inhibits global cellular translation, and thereby induces dormancy and persistence. Many pathogenic bacteria known to enter dormant states have a plethora of TA genes. Therefore, in the future, the discoveries described here may lead to a mechanistic understanding of the persistence phenomenon in pathogenic bacteria. PMID:21788497

  4. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome

    PubMed Central

    Rocha, Natalia G.; Sales, Allan R. K.; Penedo, Leticia A.; Pereira, Felipe S.; Silva, Mayra S.; Miranda, Renan L.; Silva, Jemima F. R.; Silva, Bruno M.; Santos, Aline A.; Nobrega, Antonio C. L.

    2015-01-01

    Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs) from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS). We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P ≤ 0.03). After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P < 0.05). Subjects with early MetS presented less CACs (P = 0.02) and higher MMP-9 activity (P ≤ 0.04), while healthy controls presented higher MMP-2 activity after exercise. There was no difference between moments in nonexercise session (P > 0.05). In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise. PMID:26557715

  5. Impaired Circulating Angiogenic Cells Mobilization and Metalloproteinase-9 Activity after Dynamic Exercise in Early Metabolic Syndrome.

    PubMed

    Rocha, Natalia G; Sales, Allan R K; Penedo, Leticia A; Pereira, Felipe S; Silva, Mayra S; Miranda, Renan L; Silva, Jemima F R; Silva, Bruno M; Santos, Aline A; Nobrega, Antonio C L

    2015-01-01

    Increased levels of adhesion molecules or metalloproteinases (MMPs) may indicate endothelial dysfunction. Exercise mobilizes circulating angiogenic cells (CACs) from bone marrow in healthy subjects, improving vascular function. However, it is unclear whether this mechanism is preserved in the early stages of metabolic syndrome (early MetS). We aimed to evaluate the acute effects of exercise on adhesion molecules, angiogenic factors, MMPs, and CACs in early MetS. Fifteen subjects with early MetS and nine healthy controls underwent an exercise session and a nonexercise session, randomly. Adhesion molecules, angiogenic factors, CACs, and MMPs were evaluated before and after exercise or nonexercise sessions. At baseline, levels of sE-selectin, sICAM-1, and MMP-9 were higher in early MetS than in controls (P ≤ 0.03). After exercise, sE-selectin, sICAM-1, and MMP-9 levels were still higher in early MetS (P < 0.05). Subjects with early MetS presented less CACs (P = 0.02) and higher MMP-9 activity (P ≤ 0.04), while healthy controls presented higher MMP-2 activity after exercise. There was no difference between moments in nonexercise session (P > 0.05). In conclusion, subjects with early MetS already presented impaired endothelial function at rest along with a decrease in CACs and an increase in MMP-9 activity in response to exercise.

  6. Caliber-Persistent Artery

    PubMed Central

    Costa, Sabrina Araújo Pinho; Ruiz, Marcelo Martinson; Kaba, Shajadi Pardo; Florezi, Giovanna Piacenza; Lemos Júnior, Celso Augusto; Witzel, Andréa Lusvarghi

    2015-01-01

    Caliber-persistent artery (CPLA) of the lip is a common vascular anomaly in which a main arterial branch extends to the surface of the mucous tissue with no reduction in its diameter. It usually manifests as pulsatile papule, is easily misdiagnosed, and is observed more frequently among older people, suggesting that its development may involve a degenerative process associated with aging; CPLA is also characterized by the loss of tone of the adjacent supporting connective tissue. Although the diagnosis is clinical, high-resolution Doppler ultrasound is a useful noninvasive tool for evaluating the lesion. This report describes the case of a 58-year-old male patient who complained of a lesion of the lower lip with bleeding and recurrent ulceration. The patient was successfully treated in our hospital after a diagnosis of CPLA and is currently undergoing a clinical outpatient follow-up with no complaints. PMID:26448884

  7. New daily persistent headache.

    PubMed

    Tyagi, Alok

    2012-08-01

    New daily persistent headache (NDPH) is a chronic headache developing in a person who does not have a past history of headaches. The headache begins acutely and reaches its peak within 3 days. It is important to exclude secondary causes, particularly headaches due to alterations in cerebrospinal fluid (CSF) pressure and volume. A significant proportion of NDPH sufferers may have intractable headaches that are refractory to treatment. The condition is best viewed as a syndrome rather than a diagnosis. The headache can mimic chronic migraine and chronic tension-type headache, and it is also important to exclude secondary causes, particularly headaches due to alterations in CSF pressure and volume. A large proportion of NDPH sufferers have migrainous features to their headache and should be managed with treatments used for treating migraine. A small group of NDPH sufferers may have intractable headaches that are refractory to treatment.

  8. Persistent Genital Arousal Disorder

    PubMed Central

    Aswath, Manju; Pandit, Lakshmi V.; Kashyap, Karthik; Ramnath, Raguram

    2016-01-01

    Persistent genital arousal disorder (PGAD) is a phenomenon, in which afflicted women experience spontaneous genital arousal, unresolved by orgasms and triggered by sexual or nonsexual stimuli, eliciting stress. The current case is a 40-year-old female who experienced such orgasms for about a month. Physical examination, investigations, and psychological testing were noncontributory. Carbamazepine (600 mg) was discontinued due to a lack of response. She improved significantly with supportive therapy. Various neuropsychological conditions, pelvic pathology, medications, etc., have been associated with this disorder. Pharmacologic strategies have included the use of antidepressants, antipsychotics, mood stabilizers, and analgesics. Validation, psycho-education, identifying triggers, distraction techniques, and pelvic massage have been tried. Living with PGAD is very demanding. There is a lack of understanding of the problem, shame, and hesitation to seek help. The syndrome has been recently described, and understanding is still evolving. PMID:27570347

  9. Persistent Genital Arousal Disorder.

    PubMed

    Aswath, Manju; Pandit, Lakshmi V; Kashyap, Karthik; Ramnath, Raguram

    2016-01-01

    Persistent genital arousal disorder (PGAD) is a phenomenon, in which afflicted women experience spontaneous genital arousal, unresolved by orgasms and triggered by sexual or nonsexual stimuli, eliciting stress. The current case is a 40-year-old female who experienced such orgasms for about a month. Physical examination, investigations, and psychological testing were noncontributory. Carbamazepine (600 mg) was discontinued due to a lack of response. She improved significantly with supportive therapy. Various neuropsychological conditions, pelvic pathology, medications, etc., have been associated with this disorder. Pharmacologic strategies have included the use of antidepressants, antipsychotics, mood stabilizers, and analgesics. Validation, psycho-education, identifying triggers, distraction techniques, and pelvic massage have been tried. Living with PGAD is very demanding. There is a lack of understanding of the problem, shame, and hesitation to seek help. The syndrome has been recently described, and understanding is still evolving.

  10. Persistent Temporal Streams

    NASA Astrophysics Data System (ADS)

    Hilley, David; Ramachandran, Umakishore

    Distributed continuous live stream analysis applications are increasingly common. Video-based surveillance, emergency response, disaster recovery, and critical infrastructure protection are all examples of such applications. They are characterized by a variety of high- and low-bandwidth streams as well as a need for analyzing both live and archived streams. We present a system called Persistent Temporal Streams (PTS) that supports a higher-level, domain-targeted programming abstraction for such applications. PTS provides a simple but expressive stream abstraction encompassing transport, manipulation and storage of streaming data. In this paper, we present a system architecture for implementing PTS. We provide an experimental evaluation which shows the system-level primitives can be implemented in a lightweight and high-performance manner, and an application-based evaluation designed to show that a representative high-bandwidth stream analysis application can be implemented relatively simply and with good performance.

  11. On the usefulness of persistent excitation in ARX adaptive tracking

    NASA Astrophysics Data System (ADS)

    Bercu, Bernard; Vazquez, Victor

    2010-06-01

    The usefulness of persistent excitation is well known in the control community. Using a persistently excited adaptive tracking control, we show that it is possible to avoid the strong controllability assumption recently proposed by the authors for multivariate ARX models. We establish the almost sure convergence for both least squares and weighted least squares estimators of the unknown parameters. A central limit theorem and a law of iterated logarithm are also provided. This asymptotical analysis is related to the Schur complement of a suitable limiting matrix.

  12. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  13. Carbonate fuel cell matrix

    DOEpatents

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  14. Matrix with Prescribed Eigenvectors

    ERIC Educational Resources Information Center

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  15. Matrix with Prescribed Eigenvectors

    ERIC Educational Resources Information Center

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  16. Epigenetic regulation of persistent pain

    PubMed Central

    Bai, Guang; Ren, Ke; Dubner, Ronald

    2014-01-01

    Persistent or chronic pain is tightly associated with various environmental changes and linked to abnormal gene expression within cells processing nociceptive signaling. Epigenetic regulation governs gene expression in response to environmental cues. Recent animal model and clinical studies indicate that epigenetic regulation plays an important role in the development/maintenance of persistent pain and, possibly the transition of acute pain to chronic pain, thus shedding light in a direction for development of new therapeutics for persistent pain. PMID:24948399

  17. Superfund chemical data matrix, 1996

    SciTech Connect

    1996-06-01

    The Superfund Chemical Data Matrix (SCDM) is a source for factor values and benchmark values applied when evaluating potential National Priorities List (NPL) sites using the Hazard Ranking System. The HRS assigns factor values for toxicity, gas migration potential, gas and ground water mobility, surface water persistence, and bioaccumulation potential based on the physical, chemical, and radiological properties of hazardous substances present at a site. Hazardous substances, as defined for HRS purposes, are CERCLA hazardous substances plus CERCLA pollutants and contaminants. The HRS also assigns extra weight to targets with exposure levels to hazardous substances that are at or above benchmarks. These benchmarks include both risk-based screening concentrations and concentrations specified in regulatory limits for the hazardous substances present at a site for a particular migration pathway.

  18. Pseudomonas biofilm matrix composition and niche biology

    PubMed Central

    Mann, Ethan E.; Wozniak, Daniel J.

    2014-01-01

    Biofilms are a predominant form of growth for bacteria in the environment and in the clinic. Critical for biofilm development are adherence, proliferation, and dispersion phases. Each of these stages includes reinforcement by, or modulation of, the extracellular matrix. Pseudomonas aeruginosa has been a model organism for the study of biofilm formation. Additionally, other Pseudomonas species utilize biofilm formation during plant colonization and environmental persistence. Pseudomonads produce several biofilm matrix molecules, including polysaccharides, nucleic acids, and proteins. Accessory matrix components shown to aid biofilm formation and adaptability under varying conditions are also produced by pseudomonads. Adaptation facilitated by biofilm formation allows for selection of genetic variants with unique and distinguishable colony morphology. Examples include rugose small-colony variants and wrinkly spreaders (WS), which over produce Psl/Pel or cellulose, respectively, and mucoid bacteria that over produce alginate. The well-documented emergence of these variants suggests that pseudomonads take advantage of matrix-building subpopulations conferring specific benefits for the entire population. This review will focus on various polysaccharides as well as additional Pseudomonas biofilm matrix components. Discussions will center on structure–function relationships, regulation, and the role of individual matrix molecules in niche biology. PMID:22212072

  19. Learning To Persist-Persisting To Learn. Revised Edition.

    ERIC Educational Resources Information Center

    Howard, Bessie C.

    This guide to improving student persistence is the first part of a four-part series addressing the essential characteristics of effective instruction that have a positive impact on the academic achievement of Black and Hispanic students. Persistence is learned behavior, and lower-class students are more likely than middle-class students to observe…

  20. Understanding the Evolution and Stability of the G-Matrix

    PubMed Central

    Arnold, Stevan J.; Bürger, Reinhard; Hohenlohe, Paul A.; Ajie, Beverley C.; Jones, Adam G.

    2011-01-01

    The G-matrix summarizes the inheritance of multiple, phenotypic traits. The stability and evolution of this matrix are important issues because they affect our ability to predict how the phenotypic traits evolve by selection and drift. Despite the centrality of these issues, comparative, experimental, and analytical approaches to understanding the stability and evolution of the G-matrix have met with limited success. Nevertheless, empirical studies often find that certain structural features of the matrix are remarkably constant, suggesting that persistent selection regimes or other factors promote stability. On the theoretical side, no one has been able to derive equations that would relate stability of the G-matrix to selection regimes, population size, migration, or to the details of genetic architecture. Recent simulation studies of evolving G-matrices offer solutions to some of these problems, as well as a deeper, synthetic understanding of both the G-matrix and adaptive radiations. PMID:18973631

  1. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  2. Management of persistent vaginitis.

    PubMed

    Nyirjesy, Paul

    2014-12-01

    With vaginitis remaining a common condition that leads women to seek care, it is not surprising that some women develop chronic vulvovaginal problems that are difficult to diagnose and treat. With a differential diagnosis that encompasses vulvar disorders and infectious and noninfectious causes of vaginitis, accurate diagnosis is the cornerstone of choosing effective therapy. Evaluation should include a symptom-specific history, careful vulvar and vaginal examination, and office-based tests (vaginal pH, amine test, saline and 10% potassium hydroxide microscopy). Ancillary tests, especially yeast culture with speciation, are frequently crucial to obtaining a correct diagnosis. A heavy but normal physiologic discharge can be determined by excluding other causes. With vulvovaginal candidiasis, differentiating between Candida albicans and non-albicans Candida infection has important treatment ramifications. Most patients with C albicans infections can be successfully treated with maintenance antifungal therapy, usually with fluconazole. Although many non-albicans Candida, particularly Candida glabrata, may at times be innocent bystanders, vaginal boric acid therapy is an effective first choice for many true non-albicans Candida infections. Recurrent bacterial vaginosis, a difficult therapeutic challenge, can often be controlled with maintenance therapy. Multiple options, especially high-dose tinidazole, have been used for metronidazole-resistant trichomoniasis. With the aging of the U.S. population, atrophic vaginitis and desquamative inflammatory vaginitis, both associated with hypoestrogenism, are encountered frequently in women with persistent vaginitis.

  3. Isolated persistent hypermethioninemia.

    PubMed Central

    Mudd, S H; Levy, H L; Tangerman, A; Boujet, C; Buist, N; Davidson-Mundt, A; Hudgins, L; Oyanagi, K; Nagao, M; Wilson, W G

    1995-01-01

    New information has been obtained on 30 patients with isolated persistent hypermethioninemia, most of them previously unreported. Biopsies to confirm the presumptive diagnosis of partially deficient activity of ATP: L-methionine S-adenosyltransferase (MAT; E.C.2.5.1.6) in liver were not performed on most of these patients. However, none showed the clinical findings or the extreme elevations of serum folate previously described in other patients with isolated hypermethioninemia considered not to have hepatic MAT deficiency. Patients ascertained on biochemical grounds had no neurological abnormalities, and 27/30 had IQs or Bayley development-index scores within normal limits or were judged to have normal mental development. Methionine transamination metabolites accumulated abnormally only when plasma methionine concentrations exceeded 300-350 microM and did so more markedly after 0.9 years of age. Data were obtained on urinary organic acids as well as plasma creatinine concentrations. Patterns of inheritance of isolated hypermethioninemia were variable. Considerations as to the optimal management of this group of patients are discussed. PMID:7573050

  4. Giambelli identity in super Chern-Simons matrix model

    NASA Astrophysics Data System (ADS)

    Matsuno, Satsuki; Moriyama, Sanefumi

    2017-03-01

    A classical identity due to Giambelli in representation theory states that the character in any representation is expressed as a determinant whose components are characters in the hook representation constructed from all the combinations of the arm and leg lengths of the original representation. We prove that, in a general fractional-brane background, the identity persists in taking, for each character, the matrix integration of the super Chern-Simons matrix model in the grand canonical ensemble.

  5. Early Change of Extracellular Matrix and Diastolic Parameters in Metabolic Syndrome

    PubMed Central

    Santos, Angela B. S.; Junges, Mauricio; Silvello, Daiane; Macari, Adriana; de Araújo, Bruno S.; Seligman, Beatriz G.; Duncan, Bruce B.; Rohde, Luis Eduardo P.; Clausell, Nadine; Foppa, Murilo

    2013-01-01

    Background Metabolic syndrome (MS) is associated with increased cardiovascular risk. It is not clear whether myocardial changes showed in this syndrome, such as diastolic dysfunction, are due to the systemic effects of the syndrome, or to specific myocardial effects. Objectives Compare diastolic function, biomarkers representing extracellular matrix activity (ECM), inflammation and cardiac hemodynamic stress in patients with the MS and healthy controls. Methods MS patients (n = 76) and healthy controls (n=30) were submitted to a clinical assessment, echocardiographic study, and measurement of plasma levels of metalloproteinase-9 (MMP9), tissue inhibitor of metalloproteinase-1 (TIMP1), ultrasensitive-reactive-C-Protein (us-CRP), insulin resistance (HOMA-IR) and natriuretic peptide (NT-proBNP). Results MS group showed lower E' wave (10.1 ± 3.0 cm/s vs 11.9 ± 2.6 cm/s, p = 0.005), increased A wave (63.4 ± 14.1 cm/s vs. 53.1 ± 8.9 cm/s; p < 0.001), E/E' ratio (8.0 ± 2.2 vs. 6.3 ± 1.2; p < 0.001), MMP9 (502.9 ± 237.1 ng / mL vs. 330.4±162.7 ng/mL; p < 0.001), us-CRP (p = 0.001) and HOMA-IR (p < 0.001), but no difference for TIMP1 or NT-proBNP levels. In a multivariable analysis, only MMP9 was independently associated with MS. Conclusion MS patients showed differences for echocardiographic measures of diastolic function, ECM activity, us-CRP and HOMA-IR when compared to controls. However, only MMP9 was independently associated with the MS. These findings suggest that there are early effects on ECM activity, which cannot be tracked by routine echocardiographic measures of diastolic function. PMID:24008653

  6. Curcumin inhibits paraquat induced lung inflammation and fibrosis by extracellular matrix modifications in mouse model.

    PubMed

    Tyagi, Namitosh; Dash, D; Singh, Rashmi

    2016-12-01

    Paraquat (PQ), a potent herbicide can cause severe toxicity. We report here that fibroproliferation phase of acute lung injury (ALI) is initiated much earlier (within 48 h) after PQ intoxication than previously reported (after 2 weeks) and we aimed to study the protective effects of intranasal curcumin as new therapeutic strategy in mouse model. Mice (Park's strain) were divided into five experimental groups (I) control, received only saline (0.9 % NaCl) (II) PQ, mice intoxicated with PQ (50 mg/kg, i.p., single dose); (III) curcumin, treated with curcumin (5 mg/kg, i.n) an hour before PQ administration; (IV)Veh, DMSO (equal volume to curcumin) given an hour before PQ exposure; (V) DEXA, mice treated with dexamethasone (1 mg/kg, i.p) before an hour of PQ intoxication. After 48 h of the PQ exposure, all mice were sacrificed and samples were analyzed. Pretreatment with intranasal curcumin (5 mg/kg) could modify the PQ-intoxication (50 mg/kg, i.p) induced structural remodeling of lung parenchyma at an early phase of acute lung injury. Significant increase in inflammatory cell count, reactive oxygen species and hydroxyproline levels were decreased after curcumin pretreatment (all p < 0.05). Histological examination and zymography results were also found consistent. Our results show that curcumin pretreatment decreased the expression of alpha smooth muscle actin (α-SMA), matrix metalloproteinases-9 (MMP-9) and changed the expression of tissue inhibitors of metalloproteinase (TIMP-1) after PQ intoxication. Single toxic dose of PQ has initiated fibroproliferation within 48 h and intranasal curcumin may prove as new therapeutic strategy for PQ induced ALI and fibroproliferation.

  7. Multidimensional persistence in biomolecular data.

    PubMed

    Xia, Kelin; Wei, Guo-Wei

    2015-07-30

    Persistent homology has emerged as a popular technique for the topological simplification of big data, including biomolecular data. Multidimensional persistence bears considerable promise to bridge the gap between geometry and topology. However, its practical and robust construction has been a challenge. We introduce two families of multidimensional persistence, namely pseudomultidimensional persistence and multiscale multidimensional persistence. The former is generated via the repeated applications of persistent homology filtration to high-dimensional data, such as results from molecular dynamics or partial differential equations. The latter is constructed via isotropic and anisotropic scales that create new simiplicial complexes and associated topological spaces. The utility, robustness, and efficiency of the proposed topological methods are demonstrated via protein folding, protein flexibility analysis, the topological denoising of cryoelectron microscopy data, and the scale dependence of nanoparticles. Topological transition between partial folded and unfolded proteins has been observed in multidimensional persistence. The separation between noise topological signatures and molecular topological fingerprints is achieved by the Laplace-Beltrami flow. The multiscale multidimensional persistent homology reveals relative local features in Betti-0 invariants and the relatively global characteristics of Betti-1 and Betti-2 invariants. © 2015 Wiley Periodicals, Inc.

  8. Multidimensional persistence in biomolecular data

    PubMed Central

    Xia, Kelin; Wei, Guo-Wei

    2015-01-01

    Persistent homology has emerged as a popular technique for the topological simplification of big data, including biomolecular data. Multidimensional persistence bears considerable promise to bridge the gap between geometry and topology. However, its practical and robust construction has been a challenge. We introduce two families of multidimensional persistence, namely pseudo-multidimensional persistence and multiscale multidimensional persistence. The former is generated via the repeated applications of persistent homology filtration to high dimensional data, such as results from molecular dynamics or partial differential equations. The latter is constructed via isotropic and anisotropic scales that create new simiplicial complexes and associated topological spaces. The utility, robustness and efficiency of the proposed topological methods are demonstrated via protein folding, protein flexibility analysis, the topological denoising of cryo-electron microscopy data, and the scale dependence of nano particles. Topological transition between partial folded and unfolded proteins has been observed in multidimensional persistence. The separation between noise topological signatures and molecular topological fingerprints is achieved by the Laplace-Beltrami flow. The multiscale multidimensional persistent homology reveals relative local features in Betti-0 invariants and the relatively global characteristics of Betti-1 and Betti-2 invariants. PMID:26032339

  9. Radiological Contaminant Persistence and Decontamination ...

    EPA Pesticide Factsheets

    Report The objective of this study was to use the Pipe Decontamination Experimental Design Protocol (PDEDP) to evaluate the persistence of cesium, cobalt, and strontium on concrete and polyvinyl chloride (PVC) and explore possible decontamination approaches. The PDEDP is an approach for evaluating the persistence characteristics of contaminants on drinking water pipe materials and various decontamination approaches.

  10. Metabolic aspects of bacterial persisters

    PubMed Central

    Prax, Marcel; Bertram, Ralph

    2014-01-01

    Persister cells form a multi-drug tolerant subpopulation within an isogenic culture of bacteria that are genetically susceptible to antibiotics. Studies with different Gram negative and Gram positive bacteria have identified a large number of genes associated with the persister state. In contrast, the revelation of persister metabolism has only been addressed recently. We here summarize metabolic aspects of persisters, which includes an overview about the bifunctional role of selected carbohydrates as both triggers for the exit from the drug tolerant state and metabolites which persisters feed on. Also alarmones as indicators for starvation have been shown to influence persister levels via different signaling cascades involving the activation of toxin-antitoxin systems and other regulatory factors. Finally, recent data obtained by 13C-isotopolog profiling demonstrated an active amino acid anabolism in Staphylococcus aureus cultures challenged with high drug concentrations. Understanding the metabolism of persister cells poses challenges but also paves the way for the development of anti-persister compounds. PMID:25374846

  11. Persistence. Snapshot Report, Fall 2011

    ERIC Educational Resources Information Center

    National Student Clearinghouse, 2011

    2011-01-01

    Today's college student is not your '60s drop-out. In 2010, college students tended to stay enrolled (i.e., persist), even if it was in a different school, according to the National Student Clearinghouse Research Center. For a student enrolled in the fall, persistence is defined as either continued enrollment during the next term after the fall or…

  12. Persistent Criminality and Career Length

    ERIC Educational Resources Information Center

    Haapanen, Rudy; Britton, Lee; Croisdale, Tim

    2007-01-01

    This study is an examination of persistent offending and its implications for the understanding and investigation of desistance and career length. Persistence, especially as it is operationalized using official measures, is characterized as fundamentally a measure of resistance to formal social control: continued crime in the face of increasingly…

  13. Extracellular Matrix and Liver Disease

    PubMed Central

    Arriazu, Elena; Ruiz de Galarreta, Marina; Cubero, Francisco Javier; Varela-Rey, Marta; Pérez de Obanos, María Pilar; Leung, Tung Ming; Lopategi, Aritz; Benedicto, Aitor; Abraham-Enachescu, Ioana

    2014-01-01

    Abstract Significance: The extracellular matrix (ECM) is a dynamic microenvironment that undergoes continuous remodeling, particularly during injury and wound healing. Chronic liver injury of many different etiologies such as viral hepatitis, alcohol abuse, drug-induced liver injury, obesity and insulin resistance, metabolic disorders, and autoimmune disease is characterized by excessive deposition of ECM proteins in response to persistent liver damage. Critical Issues: This review describes the main collagenous and noncollagenous components from the ECM that play a significant role in pathological matrix deposition during liver disease. We define how increased myofibroblasts (MF) from different origins are at the forefront of liver fibrosis and how liver cell-specific regulation of the complex scarring process occurs. Recent Advances: Particular attention is paid to the role of cytokines, growth factors, reactive oxygen species, and newly identified matricellular proteins in the regulation of fibrillar type I collagen, a field to which our laboratory has significantly contributed over the years. We compile data from recent literature on the potential mechanisms driving fibrosis resolution such as MF’ apoptosis, senescence, and reversal to quiescence. Future Directions: We conclude with a brief description of how epigenetics, an evolving field, can regulate the behavior of MF and of how new “omics” tools may advance our understanding of the mechanisms by which the fibrogenic response to liver injury occurs. Antioxid. Redox Signal. 21, 1078–1097. PMID:24219114

  14. Automatic switching matrix

    DOEpatents

    Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil

    1982-01-01

    An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.

  15. Persistence, resistance, resonance

    NASA Astrophysics Data System (ADS)

    Tsadka, Maayan

    form of musical consumption and experience. The three pieces draw lines connecting different aspects of persistence, resistance, and resonance.

  16. Energy landscapes and persistent minima

    SciTech Connect

    Carr, Joanne M.; Wales, David J.; Mazauric, Dorian; Cazals, Frédéric

    2016-02-07

    We consider a coarse-graining of high-dimensional potential energy landscapes based upon persistences, which correspond to lowest barrier heights to lower-energy minima. Persistences can be calculated efficiently for local minima in kinetic transition networks that are based on stationary points of the prevailing energy landscape. The networks studied here represent peptides, proteins, nucleic acids, an atomic cluster, and a glassy system. Minima with high persistence values are likely to represent some form of alternative structural morphology, which, if appreciably populated at the prevailing temperature, could compete with the global minimum (defined as infinitely persistent). Threshold values on persistences (and in some cases equilibrium occupation probabilities) have therefore been used in this work to select subsets of minima, which were then analysed to see how well they can represent features of the full network. Simplified disconnectivity graphs showing only the selected minima can convey the funnelling (including any multiple-funnel) characteristics of the corresponding full graphs. The effect of the choice of persistence threshold on the reduced disconnectivity graphs was considered for a system with a hierarchical, glassy landscape. Sets of persistent minima were also found to be useful in comparing networks for the same system sampled under different conditions, using minimum oriented spanning forests.

  17. Metal matrix composite structures

    SciTech Connect

    Krivov, G.A.; Beletsky, V.M.; Gribkov, A.N.

    1993-12-31

    High strength-weight properties, stiffness and fatigue resistance characteristics together with low sensitivity to stress concentration make metal matrix composites (MMC) rather promising for their use in structures. Metal matrix composites consist of a matrix (aluminum, magnesium, titanium and their alloys are the most frequently used) and reinforcers (carbon and boron fibers, high-strength steel wire, silicon carbide whiskers, etc.). This work considers various types of MMC and their applications in structures. The methods of structure production from metal matrix CM of aluminum-boron system with the help of machining, deformation, part joining by welding and riveting are given.

  18. [MOLECULAR ASPECTS OF BRUCELLA PERSISTENCE].

    PubMed

    Kulakov Yu K

    2016-01-01

    Brucellosis is a dangerous zoonotic disease of animals and humans caused by bacteria of the genus Brucella, which are able to survive, multiply, and persist in host cells. The review is devoted to the Brucella species persistence connected to the molecular mechanisms of escape from innate and adaptive immunity of the host and active interaction of effector proteins of the type IV secretion system with the host's signaling pathways. Understanding of the molecular mechanisms used by Brucella for the intracellular persistence in the host organism can allow us to develop new and effective means for the prevention and treatment of chronic brucellosis infection.

  19. Activation of matrix metalloproteinase in dorsal hippocampus drives improvement in spatial working memory after intra-VTA nicotine infusion in rats.

    PubMed

    Shu, Hui; Zheng, Guo-qing; Wang, Xiaona; Sun, Yanyun; Liu, Yushan; Weaver, John Michael; Shen, Xianzhi; Liu, Wenlan; Jin, Xinchun

    2015-10-01

    The hippocampus receives dopaminergic projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences hippocampus-dependent behaviors. Enhancements in working memory performance have been previously reported following acute smoking/nicotine exposure. However, the underlying mechanism remains unclear. This study investigated the effects of nicotine on spatial working memory (SWM) and the mechanisms involved. Delayed alternation T-maze task was used to assess SWM. In situ and gel gelatin zymography were used to detect matrix metalloproteinase-9 (MMP-9) in SWM. Systemic or local (intra-VTA) administration of nicotine significantly improves SWM, which was accompanied by increased MMP-9 activity in dorsal hippocampus (dHPC). Intra-dHPC administration of MMP inhibitor FN-439 abolished the memory enhancement induced by intra-VTA nicotine infusion. FN-439 had no effect on locomotor behavior. Our data suggest that intra-VTA nicotine infusion activates MMP-9 in dHPC to improve SWM in rats.

  20. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines.

    PubMed

    Momeny, Majid; Saunus, Jodi M; Marturana, Flavia; McCart Reed, Amy E; Black, Debra; Sala, Gianluca; Iacobelli, Stefano; Holland, Jane D; Yu, Dihua; Da Silva, Leonard; Simpson, Peter T; Khanna, Kum Kum; Chenevix-Trench, Georgia; Lakhani, Sunil R

    2015-02-28

    HER2-positive breast tumors are associated with a high risk of brain relapse. HER3 is thought to be an indispensible signaling substrate for HER2 (encoded by ERBB2) and is induced in breast cancer-brain metastases, though the molecular mechanisms by which this oncogenic dimer promotes the development of brain metastases are still elusive. We studied the effects of the HER3-HER2 ligand, heregulin (neuregulin-1, broadly expressed in the brain), on luminal breast cancer cell lines in vitro. Treatment of SKBr3 (ERBB2-amplified), MDA-MB-361 (ERBB2-ampli