Science.gov

Sample records for matrix product state

  1. Matrix product state renormalization

    NASA Astrophysics Data System (ADS)

    Bal, M.; Rams, M. M.; Zauner, V.; Haegeman, J.; Verstraete, F.

    2016-11-01

    The truncation or compression of the spectrum of Schmidt values is inherent to the matrix product state (MPS) approximation of one-dimensional quantum ground states. We provide a renormalization group picture by interpreting this compression as an application of Wilson's numerical renormalization group along the imaginary time direction appearing in the path integral representation of the state. The location of the physical index is considered as an impurity in the transfer matrix and static MPS correlation functions are reinterpreted as dynamical impurity correlations. Coarse-graining the transfer matrix is performed using a hybrid variational ansatz based on matrix product operators, combining ideas of MPS and the multiscale entanglement renormalization ansatz. Through numerical comparison with conventional MPS algorithms, we explicitly verify the impurity interpretation of MPS compression, as put forward by V. Zauner et al. [New J. Phys. 17, 053002 (2015), 10.1088/1367-2630/17/5/053002] for the transverse-field Ising model. Additionally, we motivate the conceptual usefulness of endowing MPS with an internal layered structure by studying restricted variational subspaces to describe elementary excitations on top of the ground state, which serves to elucidate a transparent renormalization group structure ingrained in MPS descriptions of ground states.

  2. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms

    NASA Astrophysics Data System (ADS)

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R.

    2016-07-01

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  3. Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.

    PubMed

    Chan, Garnet Kin-Lic; Keselman, Anna; Nakatani, Naoki; Li, Zhendong; White, Steven R

    2016-07-07

    Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In this work, we carefully describe the translation between the two languages in several contexts. First, we describe how to efficiently implement the ab initio DMRG sweep using a matrix product operator based code, and the equivalence to the original renormalized operator implementation. Next we describe how to implement the general matrix product operator/matrix product state algebra within a pure renormalized operator-based DMRG code. Finally, we discuss two improvements of the ab initio DMRG sweep algorithm motivated by matrix product operator language: Hamiltonian compression, and a sum over operators representation that allows for perfect computational parallelism. The connections and correspondences described here serve to link the future developments with the past and are important in the efficient implementation of continuing advances in ab initio DMRG and related algorithms.

  4. Matrix product states for gauge field theories.

    PubMed

    Buyens, Boye; Haegeman, Jutho; Van Acoleyen, Karel; Verschelde, Henri; Verstraete, Frank

    2014-08-29

    The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study (1+1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground-state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field.

  5. Entanglement classification with matrix product states

    NASA Astrophysics Data System (ADS)

    Sanz, M.; Egusquiza, I. L.; di Candia, R.; Saberi, H.; Lamata, L.; Solano, E.

    2016-07-01

    We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by .

  6. Topological field theory and matrix product states

    NASA Astrophysics Data System (ADS)

    Kapustin, Anton; Turzillo, Alex; You, Minyoung

    2017-08-01

    It is believed that most (perhaps all) gapped phases of matter can be described at long distances by topological quantum field theory (TQFT). On the other hand, it has been rigorously established that in 1+1d ground states of gapped Hamiltonians can be approximated by matrix product states (MPS). We show that the state-sum construction of 2d TQFT naturally leads to MPS in their standard form. In the case of systems with a global symmetry G , this leads to a classification of gapped phases in 1+1d in terms of Morita-equivalence classes of G -equivariant algebras. Nonuniqueness of the MPS representation is traced to the freedom of choosing an algebra in a particular Morita class. In the case of short-range entangled phases, we recover the group cohomology classification of SPT phases.

  7. Entanglement classification with matrix product states

    PubMed Central

    Sanz, M.; Egusquiza, I. L.; Di Candia, R.; Saberi, H.; Lamata, L.; Solano, E.

    2016-01-01

    We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by . PMID:27457273

  8. Spin-adapted matrix product states and operators

    NASA Astrophysics Data System (ADS)

    Keller, Sebastian; Reiher, Markus

    2016-04-01

    Matrix product states (MPSs) and matrix product operators (MPOs) allow an alternative formulation of the density matrix renormalization group algorithm introduced by White. Here, we describe how non-abelian spin symmetry can be exploited in MPSs and MPOs by virtue of the Wigner-Eckart theorem at the example of the spin-adapted quantum chemical Hamiltonian operator.

  9. Perturbation Theory for Parent Hamiltonians of Matrix Product States

    NASA Astrophysics Data System (ADS)

    Szehr, Oleg; Wolf, Michael M.

    2015-05-01

    This article investigates the stability of the ground state subspace of a canonical parent Hamiltonian of a Matrix product state against local perturbations. We prove that the spectral gap of such a Hamiltonian remains stable under weak local perturbations even in the thermodynamic limit, where the entire perturbation might not be bounded. Our discussion is based on preceding work by Yarotsky that develops a perturbation theory for relatively bounded quantum perturbations of classical Hamiltonians. We exploit a renormalization procedure, which on large scale transforms the parent Hamiltonian of a Matrix product state into a classical Hamiltonian plus some perturbation. We can thus extend Yarotsky's results to provide a perturbation theory for parent Hamiltonians of Matrix product states and recover some of the findings of the independent contributions (Cirac et al in Phys Rev B 8(11):115108, 2013) and (Michalakis and Pytel in Comm Math Phys 322(2):277-302, 2013).

  10. Sequential generation of matrix-product states in cavity QED

    SciTech Connect

    Schoen, C.; Hammerer, K.; Wolf, M. M.; Cirac, J. I.; Solano, E.

    2007-03-15

    We study the sequential generation of entangled photonic and atomic multiqubit states in the realm of cavity QED. We extend the work of C. Schoen et al. [Phys. Rev. Lett. 95, 110503 (2005)], where it was shown that all states generated in a sequential manner can be classified efficiently in terms of matrix-product states. In particular, we consider two scenarios: photonic multiqubit states sequentially generated at the cavity output of a single-photon source and atomic multiqubit states generated by their sequential interaction with the same cavity mode.

  11. Unifying time evolution and optimization with matrix product states

    NASA Astrophysics Data System (ADS)

    Haegeman, Jutho; Lubich, Christian; Oseledets, Ivan; Vandereycken, Bart; Verstraete, Frank

    2016-10-01

    We show that the time-dependent variational principle provides a unifying framework for time-evolution methods and optimization methods in the context of matrix product states. In particular, we introduce a new integration scheme for studying time evolution, which can cope with arbitrary Hamiltonians, including those with long-range interactions. Rather than a Suzuki-Trotter splitting of the Hamiltonian, which is the idea behind the adaptive time-dependent density matrix renormalization group method or time-evolving block decimation, our method is based on splitting the projector onto the matrix product state tangent space as it appears in the Dirac-Frenkel time-dependent variational principle. We discuss how the resulting algorithm resembles the density matrix renormalization group (DMRG) algorithm for finding ground states so closely that it can be implemented by changing just a few lines of code and it inherits the same stability and efficiency. In particular, our method is compatible with any Hamiltonian for which ground-state DMRG can be implemented efficiently. In fact, DMRG is obtained as a special case of our scheme for imaginary time evolution with infinite time step.

  12. Geometry of matrix product states: Metric, parallel transport, and curvature

    SciTech Connect

    Haegeman, Jutho Verstraete, Frank; Mariën, Michaël; Osborne, Tobias J.

    2014-02-15

    We study the geometric properties of the manifold of states described as (uniform) matrix product states. Due to the parameter redundancy in the matrix product state representation, matrix product states have the mathematical structure of a (principal) fiber bundle. The total space or bundle space corresponds to the parameter space, i.e., the space of tensors associated to every physical site. The base manifold is embedded in Hilbert space and can be given the structure of a Kähler manifold by inducing the Hilbert space metric. Our main interest is in the states living in the tangent space to the base manifold, which have recently been shown to be interesting in relation to time dependence and elementary excitations. By lifting these tangent vectors to the (tangent space) of the bundle space using a well-chosen prescription (a principal bundle connection), we can define and efficiently compute an inverse metric, and introduce differential geometric concepts such as parallel transport (related to the Levi-Civita connection) and the Riemann curvature tensor.

  13. Matrix product states for topological phases with parafermions

    NASA Astrophysics Data System (ADS)

    Xu, Wen-Tao; Zhang, Guang-Ming

    2017-05-01

    In the Fock representation, we propose a framework to construct the generalized matrix product states (MPS) for topological phases with Zp parafermions. Unlike the Z2 Majorana fermions, the Zp parafermions form intrinsically interacting systems. Here we explicitly construct two topologically distinct classes of irreducible Z3 parafermionic MPS wave functions, characterized by one or two parafermionic zero modes at each end of an open chain. Their corresponding parent Hamiltonians are found as the fixed point models of the single Z3 parafermion chain and two-coupled parafermion chains with Z3×Z3 symmetry. Our results thus pave the road to investigate all possible topological phases with Zp parafermions within the matrix product representation in one dimension.

  14. Truncating an exact matrix product state for the XY model: Transfer matrix and its renormalization

    NASA Astrophysics Data System (ADS)

    Rams, Marek M.; Zauner, Valentin; Bal, Matthias; Haegeman, Jutho; Verstraete, Frank

    2015-12-01

    We discuss how to analytically obtain an essentially infinite matrix product state (MPS) representation of the ground state of the XY model. On one hand this allows us to illustrate how the Ornstein-Zernike form of the correlation function emerges in the exact case using standard MPS language. On the other hand we study the consequences of truncating the bond dimension of the exact MPS, which is also part of many tensor network algorithms, and analyze how the truncated MPS transfer matrix is representing the dominant part of the exact quantum transfer matrix. In the gapped phase we observe that the correlation length obtained from a truncated MPS approaches the exact value following a power law in effective bond dimension. In the gapless phase we find a good match between a state obtained numerically from standard MPS techniques with finite bond dimension and a state obtained by effective finite imaginary time evolution in our framework. This provides a direct hint for a geometric interpretation of finite entanglement scaling at the critical point in this case. Finally, by analyzing the spectra of transfer matrices, we support the interpretation put forward by V. Zauner et al. [New J. Phys. 17, 053002 (2015), 10.1088/1367-2630/17/5/053002] that the MPS transfer matrix emerges from the quantum transfer matrix though the application of Wilson's numerical renormalization group along the imaginary-time direction.

  15. Simulations of Shor's algorithm using matrix product states

    NASA Astrophysics Data System (ADS)

    Wang, D. S.; Hill, Charles D.; Hollenberg, L. C. L.

    2017-07-01

    We show that under the matrix product state formalism the states produced in Shor's algorithm can be represented using O(\\max (4lr^2, 2^{2l})) space, where l is the number of bits in the number to factorise and r is the order and the solution to the related order-finding problem. The reduction in space compared to an amplitude formalism approach is significant, allowing simulations as large as 42 qubits to be run on a single processor with 32 GB RAM. This approach is readily adapted to a distributed memory environment, and we have simulated a 45-qubit case using 8 cores with 16 GB RAM in approximately 1 h.

  16. Simulation of braiding anyons using matrix product states

    NASA Astrophysics Data System (ADS)

    Ayeni, Babatunde M.; Singh, Sukhwinder; Pfeifer, Robert N. C.; Brennen, Gavin K.

    2016-04-01

    Anyons exist as pointlike particles in two dimensions and carry braid statistics, which enable interactions that are independent of the distance between the particles. Except for a relatively few number of models, which are analytically tractable, much of the physics of anyons remains still unexplored. In this paper, we show how U(1) symmetry can be combined with the previously proposed anyonic matrix product states to simulate ground states and dynamics of anyonic systems on a lattice at any rational particle number density. We provide proof of principle by studying itinerant anyons on a one-dimensional chain where no natural notion of braiding arises and also on a two-leg ladder where the anyons hop between sites and possibly braid. We compare the result of the ground-state energies of Fibonacci anyons against hardcore bosons and spinless fermions. In addition, we report the entanglement entropies of the ground states of interacting Fibonacci anyons on a fully filled two-leg ladder at different interaction strength, identifying gapped or gapless points in the parameter space. As an outlook, our approach can also prove useful in studying the time dynamics of a finite number of non-Abelian anyons on a finite two-dimensional lattice.

  17. Quasi-degenerate perturbation theory using matrix product states

    SciTech Connect

    Sharma, Sandeep Jeanmairet, Guillaume; Alavi, Ali

    2016-01-21

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

  18. Matrix product states and the non-Abelian rotor model

    NASA Astrophysics Data System (ADS)

    Milsted, Ashley

    2016-04-01

    We use uniform matrix product states to study the (1 +1 )D O (2 ) and O (4 ) rotor models, which are equivalent to the Kogut-Susskind formulation of matter-free non-Abelian lattice gauge theory on a "Hawaiian earring" graph for U (1 ) and S U (2 ), respectively. Applying tangent space methods to obtain ground states and determine the mass gap and the β function, we find excellent agreement with known results, locating the Berezinskii-Kosterlitz-Thouless transition for O (2 ) and successfully entering the asymptotic weak-coupling regime for O (4 ). To obtain a finite local Hilbert space, we truncate in the space of generalized Fourier modes of the gauge group, comparing the effects of different cutoff values. We find that higher modes become important in the crossover and weak-coupling regimes of the non-Abelian theory, where entanglement also suddenly increases. This could have important consequences for tensor network state studies of Yang-Mills on higher-dimensional graphs.

  19. Chebyshev matrix product state approach for time evolution

    NASA Astrophysics Data System (ADS)

    Halimeh, Jad C.; Kolley, Fabian; McCulloch, Ian P.

    2015-09-01

    We present and test a new algorithm for time-evolving quantum many-body systems initially proposed by Holzner et al. [Phys. Rev. B 83, 195115 (2011), 10.1103/PhysRevB.83.195115]. The approach is based on merging the matrix product state (MPS) formalism with the method of expanding the time-evolution operator in Chebyshev polynomials. We calculate time-dependent observables of a system of hardcore bosons quenched under the Bose-Hubbard Hamiltonian on a one-dimensional lattice. We compare the new algorithm to more standard methods using the MPS architecture. We find that the Chebyshev method gives numerically exact results for small times. However, the reachable times are smaller than the ones obtained with the other state-of-the-art methods. We further extend the new method using a spectral-decomposition-based projective scheme that utilizes an effective bandwidth significantly smaller than the full bandwidth, leading to longer evolution times than the nonprojective method and more efficient information storage, data compression, and less computational effort.

  20. Simulating spin-boson models with matrix product states

    NASA Astrophysics Data System (ADS)

    Wall, Michael; Safavi-Naini, Arghavan; Rey, Ana Maria

    2016-05-01

    The global coupling of few-level quantum systems (``spins'') to a discrete set of bosonic modes is a key ingredient for many applications in quantum science, including large-scale entanglement generation, quantum simulation of the dynamics of long-range interacting spin models, and hybrid platforms for force and spin sensing. In many situations, the bosons are integrated out, leading to effective long-range interactions between the spins; however, strong spin-boson coupling invalidates this approach, and spin-boson entanglement degrades the fidelity of quantum simulation of spin models. We present a general numerical method for treating the out-of-equilibrium dynamics of spin-boson systems based on matrix product states. While most efficient for weak coupling or small numbers of boson modes, our method applies for any spatial and operator dependence of the spin-boson coupling. In addition, our approach allows straightforward computation of many quantities of interest, such as the full counting statistics of collective spin measurements and quantum simulation infidelity due to spin-boson entanglement. We apply our method to ongoing trapped ion quantum simulator experiments in analytically intractable regimes. This work is supported by JILA-NSF-PFC-1125844, NSF-PIF- 1211914, ARO, AFOSR, AFOSR-MURI, and the NRC.

  1. Simulating generic spin-boson models with matrix product states

    NASA Astrophysics Data System (ADS)

    Wall, Michael L.; Safavi-Naini, Arghavan; Rey, Ana Maria

    2016-11-01

    The global coupling of few-level quantum systems ("spins") to a discrete set of bosonic modes is a key ingredient for many applications in quantum science, including large-scale entanglement generation, quantum simulation of the dynamics of long-range interacting spin models, and hybrid platforms for force and spin sensing. We present a general numerical framework for treating the out-of-equilibrium dynamics of such models based on matrix product states. Our approach applies for generic spin-boson systems: it treats any spatial and operator dependence of the two-body spin-boson coupling and places no restrictions on relative energy scales. We show that the full counting statistics of collective spin measurements and infidelity of quantum simulation due to spin-boson entanglement, both of which are difficult to obtain by other techniques, are readily calculable in our approach. We benchmark our method using a recently developed exact solution for a particular spin-boson coupling relevant to trapped ion quantum simulators. Finally, we show how decoherence can be incorporated within our framework using the method of quantum trajectories, and study the dynamics of an open-system spin-boson model with spatially nonuniform spin-boson coupling relevant for trapped atomic ion crystals in the presence of molecular ion impurities.

  2. Fermionic matrix product states and one-dimensional topological phases

    NASA Astrophysics Data System (ADS)

    Bultinck, Nick; Williamson, Dominic J.; Haegeman, Jutho; Verstraete, Frank

    2017-02-01

    We develop the formalism of fermionic matrix product states (fMPS) and show how irreducible fMPS fall in two different classes, related to the different types of simple Z2 graded algebras, which are physically distinguished by the absence or presence of Majorana edge modes. The local structure of fMPS with Majorana edge modes also implies that there is always a twofold degeneracy in the entanglement spectrum. Using the fMPS formalism, we make explicit the correspondence between the Z8 classification of time-reversal-invariant spinless superconductors and the modulo 8 periodicity in the representation theory of real Clifford algebras. Studying fMPS with general onsite unitary and antiunitary symmetries allows us to define invariants that label symmetry-protected phases of interacting fermions. The behavior of these invariants under stacking of fMPS is derived, which reveals the group structure of such interacting phases. We also consider spatial symmetries and show how the invariant phase factor in the partition function of reflection-symmetric phases on an unorientable manifold appears in the fMPS framework.

  3. Thouless theorem for matrix product states and subsequent post density matrix renormalization group methods

    NASA Astrophysics Data System (ADS)

    Wouters, Sebastian; Nakatani, Naoki; Van Neck, Dimitri; Chan, Garnet Kin-Lic

    2013-08-01

    The similarities between Hartree-Fock (HF) theory and the density matrix renormalization group (DMRG) are explored. Both methods can be formulated as the variational optimization of a wave-function Ansatz. Linearization of the time-dependent variational principle near a variational minimum allows to derive the random phase approximation (RPA). We show that the nonredundant parameterization of the matrix product state (MPS) tangent space [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.070601 107, 070601 (2011)] leads to the Thouless theorem for MPS, i.e., an explicit nonredundant parameterization of the entire MPS manifold, starting from a specific MPS reference. Excitation operators are identified, which extends the analogy between HF and DMRG to the Tamm-Dancoff approximation (TDA), the configuration interaction (CI) expansion, and coupled cluster theory. For a small one-dimensional Hubbard chain, we use a CI-MPS Ansatz with single and double excitations to improve on the ground state and to calculate low-lying excitation energies. For a symmetry-broken ground state of this model, we show that RPA-MPS allows to retrieve the Goldstone mode. We also discuss calculations of the RPA-MPS correlation energy. With the long-range quantum chemical Pariser-Parr-Pople Hamiltonian, low-lying TDA-MPS and RPA-MPS excitation energies for polyenes are obtained.

  4. Experimental demonstration of efficient quantum state tomography of matrix product states.

    PubMed

    Zhao, Yuan-Yuan; Hou, Zhibo; Xiang, Guo-Yong; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can

    2017-04-17

    Quantum state tomography is a key technology for fully determining a quantum state. Unfortunately, standard quantum state tomography is intractable for general many-body quantum states, because the number of measurements and the post-processing time increase exponentially with the size of the system. However, for the matrix product states (MPSs), there exists an efficient method using linearly scaled local measurements and polynomially scaled post-processing times. In this study, we demonstrate the validity of the method in practice by reconstructing a four-photon MPS from its local two- or three-photon reduced-density matrices with the presence of statistical errors and systematical errors in experiment.

  5. A practical introduction to tensor networks: Matrix product states and projected entangled pair states

    NASA Astrophysics Data System (ADS)

    Orús, Román

    2014-10-01

    This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1d and 2d quantum lattice systems are also discussed.

  6. Necessary and Sufficient Product Criteria for Quantum States via the Rank of Realignment Matrix of Density Matrix

    NASA Astrophysics Data System (ADS)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-09-01

    We present a necessary and sufficient product criterion for bipartite quantum states based on the rank of realignment matrix of density matrix. Then, this approach is generalized to multipartite systems. We first introduce the concept of semiproduct in a similar manner to the semiseparable and prove that semiproduct is equivalent to fully product. Therefore, a quantum state is bipartite product with respect to all possible partitions implies fully product which is different from the case of separability. For pure states, it can easily be seen that several necessary and sufficient separability criteria for multipartite systems are derived as a special case of our results. Several specific examples illustrate that our criteria are convenient and operational.

  7. Qudit quantum computation on matrix product states with global symmetry

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Sheng; Stephen, David T.; Raussendorf, Robert

    2017-03-01

    Resource states that contain nontrivial symmetry-protected topological order are identified for universal single-qudit measurement-based quantum computation. Our resource states fall into two classes: one as the qudit generalizations of the one-dimensional qubit cluster state, and the other as the higher-symmetry generalizations of the spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT) state, namely, with unitary, orthogonal, or symplectic symmetry. The symmetry in cluster states protects information propagation (identity gate), while the higher symmetry in AKLT-type states enables nontrivial gate computation. This work demonstrates a close connection between measurement-based quantum computation and symmetry-protected topological order.

  8. Matrix-Product-State Algorithm for Finite Fractional Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Bhatt, R. N.

    2015-09-01

    Exact diagonalization is a powerful tool to study fractional quantum Hall (FQH) systems. However, its capability is limited by the exponentially increasing computational cost. In order to overcome this difficulty, density-matrix-renormalization-group (DMRG) algorithms were developed for much larger system sizes. Very recently, it was realized that some model FQH states have exact matrix-product-state (MPS) representation. Motivated by this, here we report a MPS code, which is closely related to, but different from traditional DMRG language, for finite FQH systems on the cylinder geometry. By representing the many-body Hamiltonian as a matrix-product-operator (MPO) and using single-site update and density matrix correction, we show that our code can efficiently search the ground state of various FQH systems. We also compare the performance of our code with traditional DMRG. The possible generalization of our code to infinite FQH systems and other physical systems is also discussed.

  9. Full counting statistics and the Edgeworth series for matrix product states

    NASA Astrophysics Data System (ADS)

    Shi, Yifei

    2014-03-01

    We consider full counting statistics of spin in matrix product states. In particular, we study the approach to gaussian distribution for magnetization. We derive the asymptotic corrections to the central limit theorem for magnetization distribution for finite but large blocks in analogy to the Edgeworth series. We also show how central limit theorem like behavior is modified for certain states with topological characteristics such as the AKLT state.

  10. TOPICAL REVIEW: Nonequilibrium steady states of matrix-product form: a solver's guide

    NASA Astrophysics Data System (ADS)

    Blythe, R. A.; Evans, M. R.

    2007-11-01

    We consider the general problem of determining the steady state of stochastic nonequilibrium systems such as those that have been used to model (among other things) biological transport and traffic flow. We begin with a broad overview of this class of driven-diffusive systems—which includes exclusion processes—focusing on interesting physical properties, such as shocks and phase transitions. We then turn our attention specifically to those models for which the exact distribution of microstates in the steady state can be expressed in a matrix-product form. In addition to a gentle introduction to this matrix-product approach, how it works and how it relates to similar constructions that arise in other physical contexts, we present a unified, pedagogical account of the various means by which the statistical mechanical calculations of macroscopic physical quantities are actually performed. We also review a number of more advanced topics, including nonequilibrium free-energy functionals, the classification of exclusion processes involving multiple particle species, existence proofs of a matrix-product state for a given model and more complicated variants of the matrix-product state that allow various types of parallel dynamics to be handled. We conclude with a brief discussion of open problems for future research.

  11. Derivation of matrix product states for the Heisenberg spin chain with open boundary conditions

    NASA Astrophysics Data System (ADS)

    Mei, Zhongtao; Bolech, C. J.

    2017-03-01

    Using the algebraic Bethe Ansatz, we derive a matrix product representation of the exact Bethe-Ansatz states of the six-vertex Heisenberg chain (either X X X or X X Z and spin-1/2 ) with open boundary conditions. In this representation, the components of the Bethe eigenstates are expressed as traces of products of matrices that act on a tensor product of auxiliary spaces. As compared to the matrix product states of the same Heisenberg chain but with periodic boundary conditions, the dimension of the exact auxiliary matrices is enlarged as if the conserved number of spin-flips considered would have been doubled. This result is generic for any non-nested integrable model, as is clear from our derivation, and we further show this by providing an additional example of the same matrix product state construction for a well-known model of a gas of interacting bosons. Counterintuitively, the matrices do not depend on the spatial coordinate despite the open boundaries, and thus they suggest generic ways of exploiting (emergent) translational invariance both for finite size and in the thermodynamic limit.

  12. Continuous matrix product states with periodic boundary conditions and an application to atomtronics

    NASA Astrophysics Data System (ADS)

    Draxler, Damian; Haegeman, Jutho; Verstraete, Frank; Rizzi, Matteo

    2017-01-01

    We introduce a time evolution algorithm for one-dimensional quantum field theories with periodic boundary conditions. This is done by applying the Dirac-Frenkel time-dependent variational principle to the set of translational invariant continuous matrix product states with periodic boundary conditions. Moreover, the ansatz is accompanied with additional boundary degrees of freedom to study quantum impurity problems. The algorithm allows for a cutoff in the spectrum of the transfer matrix and thus has an efficient computational scaling. In particular we study the prototypical example of an atomtronic system—an interacting Bose gas rotating in a ring shaped trap in the presence of a localized barrier potential.

  13. Infinite matrix product states versus infinite projected entangled-pair states on the cylinder: A comparative study

    NASA Astrophysics Data System (ADS)

    Osorio Iregui, Juan; Troyer, Matthias; Corboz, Philippe

    2017-09-01

    In spite of their intrinsic one-dimensional nature, matrix product states have been systematically used to obtain remarkably accurate results for two-dimensional systems. Motivated by basic entropic arguments favoring projected entangled-pair states as the method of choice, we assess the relative performance of infinite matrix product states and infinite projected entangled-pair states on cylindrical geometries. By considering the Heisenberg and half-filled Hubbard models on the square lattice as our benchmark cases, we evaluate their variational energies as a function of both bond dimension and cylinder width. In both examples, we find crossovers at moderate cylinder widths, i.e., for the largest bond dimensions considered, we find an improvement on the variational energies for the Heisenberg model by using projected entangled-pair states at a width of about eleven sites, whereas for the half-filled Hubbard model, this crossover occurs at about seven sites.

  14. Spin-Projected Matrix Product States: Versatile Tool for Strongly Correlated Systems.

    PubMed

    Li, Zhendong; Chan, Garnet Kin-Lic

    2017-06-13

    We present a new wave function ansatz that combines the strengths of spin projection with the language of matrix product states (MPS) and matrix product operators (MPO) as used in the density matrix renormalization group (DMRG). Specifically, spin-projected matrix product states (SP-MPS) are constructed as [Formula: see text], where [Formula: see text] is the spin projector for total spin S and |ΨMPS((N,M))⟩ is an MPS wave function with a given particle number N and spin projection M. This new ansatz possesses several attractive features: (1) It provides a much simpler route to achieve spin adaptation (i.e., to create eigenfunctions of Ŝ(2)) compared to explicitly incorporating the non-Abelian SU(2) symmetry into the MPS. In particular, since the underlying state |ΨMPS((N,M))⟩ in the SP-MPS uses only Abelian symmetries, one does not need the singlet embedding scheme for nonsinglet states, as normally employed in spin-adapted DMRG, to achieve a single consistent variationally optimized state. (2) Due to the use of |ΨMPS((N,M))⟩ as its underlying state, the SP-MPS can be closely connected to broken-symmetry mean-field states. This allows one to straightforwardly generate the large number of broken-symmetry guesses needed to explore complex electronic landscapes in magnetic systems. Further, this connection can be exploited in the future development of quantum embedding theories for open-shell systems. (3) The sum of MPOs representation for the Hamiltonian and spin projector [Formula: see text] naturally leads to an embarrassingly parallel algorithm for computing expectation values and optimizing SP-MPS. (4) Optimizing SP-MPS belongs to the variation-after-projection (VAP) class of spin-projected theories. Unlike usual spin-projected theories based on determinants, the SP-MPS ansatz can be made essentially exact simply by increasing the bond dimensions in |ΨMPS((N,M))⟩. Computing excited states is also simple by imposing orthogonality constraints, which

  15. Quantum quenches in two spatial dimensions using chain array matrix product states

    SciTech Connect

    A. J. A. James; Konik, R.

    2015-10-15

    We describe a method for simulating the real time evolution of extended quantum systems in two dimensions (2D). The method combines the benefits of integrability and matrix product states in one dimension to avoid several issues that hinder other applications of tensor based methods in 2D. In particular, it can be extended to infinitely long cylinders. As an example application we present results for quantum quenches in the 2D quantum [(2+1)-dimensional] Ising model. As a result, in quenches that cross a phase boundary we find that the return probability shows nonanalyticities in time.

  16. Density Induced Phase Transitions in the Schwinger Model: A Study with Matrix Product States

    NASA Astrophysics Data System (ADS)

    Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan

    2017-02-01

    We numerically study the zero temperature phase structure of the multiflavor Schwinger model at nonzero chemical potential. Using matrix product states, we reproduce analytical results for the phase structure for two flavors in the massless case and extend the computation to the massive case, where no analytical predictions are available. Our calculations allow us to locate phase transitions in the mass-chemical potential plane with great precision and provide a concrete example of tensor networks overcoming the sign problem in a lattice gauge theory calculation.

  17. Quantum quenches in two spatial dimensions using chain array matrix product states

    DOE PAGES

    A. J. A. James; Konik, R.

    2015-10-15

    We describe a method for simulating the real time evolution of extended quantum systems in two dimensions (2D). The method combines the benefits of integrability and matrix product states in one dimension to avoid several issues that hinder other applications of tensor based methods in 2D. In particular, it can be extended to infinitely long cylinders. As an example application we present results for quantum quenches in the 2D quantum [(2+1)-dimensional] Ising model. As a result, in quenches that cross a phase boundary we find that the return probability shows nonanalyticities in time.

  18. Finding Matrix Product State Representations of Highly Excited Eigenstates of Many-Body Localized Hamiltonians

    NASA Astrophysics Data System (ADS)

    Yu, Xiongjie; Pekker, David; Clark, Bryan K.

    2017-01-01

    A key property of many-body localized Hamiltonians is the area law entanglement of even highly excited eigenstates. Matrix product states (MPS) can be used to efficiently represent low entanglement (area law) wave functions in one dimension. An important application of MPS is the widely used density matrix renormalization group (DMRG) algorithm for finding ground states of one-dimensional Hamiltonians. Here, we develop two algorithms, the shift-and-invert MPS (SIMPS) and excited state DMRG which find highly excited eigenstates of many-body localized Hamiltonians. Excited state DMRG uses a modified sweeping procedure to identify eigenstates, whereas SIMPS applies the inverse of the shifted Hamiltonian to a MPS multiple times to project out the targeted eigenstate. To demonstrate the power of these methods, we verify the breakdown of the eigenstate thermalization hypothesis in the many-body localized phase of the random field Heisenberg model, show the saturation of entanglement in the many-body localized phase, and generate local excitations.

  19. Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution

    NASA Astrophysics Data System (ADS)

    Binder, Moritz; Barthel, Thomas

    We compare matrix product purifications and minimally entangled typical thermal states (METTS) for the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems. For METTS, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. We assess the computation costs and accuracies of the two methods for critical and gapped spin chains and the Bose-Hubbard model. For the same computation cost, purifications yield more accurate results than METTS except for temperatures well below the system's energy gap.

  20. Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution

    NASA Astrophysics Data System (ADS)

    Binder, Moritz; Barthel, Thomas

    We compare matrix product purifications and minimally entangled typical thermal states (METTS) for the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems. For METTS, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. We assess the computation costs and accuracies of the two methods for critical and gapped spin chains and the Bose-Hubbard model. For the same computation cost, purifications yield more accurate results than METTS except for temperatures well below the system's energy gap. (Phys. Rev. B 92, 125119 (2015)

  1. Random Tensor Theory: Extending Random Matrix Theory to Mixtures of Random Product States

    NASA Astrophysics Data System (ADS)

    Ambainis, Andris; Harrow, Aram W.; Hastings, Matthew B.

    2012-02-01

    We consider a problem in random matrix theory that is inspired by quantum information theory: determining the largest eigenvalue of a sum of p random product states in {(mathbb {C}^d)^{⊗ k}}, where k and p/ d k are fixed while d → ∞. When k = 1, the Marčenko-Pastur law determines (up to small corrections) not only the largest eigenvalue ({(1+sqrt{p/d^k})^2}) but the smallest eigenvalue {(min(0,1-sqrt{p/d^k})^2)} and the spectral density in between. We use the method of moments to show that for k > 1 the largest eigenvalue is still approximately {(1+sqrt{p/d^k})^2} and the spectral density approaches that of the Marčenko-Pastur law, generalizing the random matrix theory result to the random tensor case. Our bound on the largest eigenvalue has implications both for sampling from a particular heavy-tailed distribution and for a recently proposed quantum data-hiding and correlation-locking scheme due to Leung and Winter. Since the matrices we consider have neither independent entries nor unitary invariance, we need to develop new techniques for their analysis. The main contribution of this paper is to give three different methods for analyzing mixtures of random product states: a diagrammatic approach based on Gaussian integrals, a combinatorial method that looks at the cycle decompositions of permutations and a recursive method that uses a variant of the Schwinger-Dyson equations.

  2. Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states

    NASA Astrophysics Data System (ADS)

    Sharma, Sandeep; Alavi, Ali

    2015-09-01

    We propose a multireference linearized coupled cluster theory using matrix product states (MPSs-LCC) which provides remarkably accurate ground-state energies, at a computational cost that has the same scaling as multireference configuration interaction singles and doubles, for a wide variety of electronic Hamiltonians. These range from first-row dimers at equilibrium and stretched geometries to highly multireference systems such as the chromium dimer and lattice models such as periodic two-dimensional 1-band and 3-band Hubbard models. The MPS-LCC theory shows a speed up of several orders of magnitude over the usual Density Matrix Renormalization Group (DMRG) algorithm while delivering energies in excellent agreement with converged DMRG calculations. Also, in all the benchmark calculations presented here, MPS-LCC outperformed the commonly used multi-reference quantum chemistry methods in some cases giving energies in excess of an order of magnitude more accurate. As a size-extensive method that can treat large active spaces, MPS-LCC opens up the use of multireference quantum chemical techniques in strongly correlated ab initio Hamiltonians, including two- and three-dimensional solids.

  3. Multireference linearized coupled cluster theory for strongly correlated systems using matrix product states

    SciTech Connect

    Sharma, Sandeep; Alavi, Ali

    2015-09-14

    We propose a multireference linearized coupled cluster theory using matrix product states (MPSs-LCC) which provides remarkably accurate ground-state energies, at a computational cost that has the same scaling as multireference configuration interaction singles and doubles, for a wide variety of electronic Hamiltonians. These range from first-row dimers at equilibrium and stretched geometries to highly multireference systems such as the chromium dimer and lattice models such as periodic two-dimensional 1-band and 3-band Hubbard models. The MPS-LCC theory shows a speed up of several orders of magnitude over the usual Density Matrix Renormalization Group (DMRG) algorithm while delivering energies in excellent agreement with converged DMRG calculations. Also, in all the benchmark calculations presented here, MPS-LCC outperformed the commonly used multi-reference quantum chemistry methods in some cases giving energies in excess of an order of magnitude more accurate. As a size-extensive method that can treat large active spaces, MPS-LCC opens up the use of multireference quantum chemical techniques in strongly correlated ab initio Hamiltonians, including two- and three-dimensional solids.

  4. Continuous Matrix Product States for Quantum Fields: An Energy Minimization Algorithm

    NASA Astrophysics Data System (ADS)

    Ganahl, Martin; Rincón, Julián; Vidal, Guifre

    2017-06-01

    The generalization of matrix product states (MPS) to continuous systems, as proposed in the breakthrough Letter of Verstraete and Cirac [Phys. Rev. Lett. 104, 190405 (2010)., 10.1103/PhysRevLett.104.190405], provides a powerful variational ansatz for the ground state of strongly interacting quantum field theories in one spatial dimension. A continuous MPS (cMPS) approximation to the ground state can be obtained by simulating a Euclidean time evolution. In this Letter we propose a cMPS optimization algorithm based instead on energy minimization by gradient methods and demonstrate its performance by applying it to the Lieb-Liniger model (an integrable model of an interacting bosonic field) directly in the thermodynamic limit. We observe a very significant computational speed-up, of more than 2 orders of magnitude, with respect to simulating a Euclidean time evolution. As a result, a much larger cMPS bond dimension D can be reached (e.g., D =256 with moderate computational resources), thus helping unlock the full potential of the cMPS representation for ground state studies.

  5. Continuous Matrix Product States for Quantum Fields: An Energy Minimization Algorithm.

    PubMed

    Ganahl, Martin; Rincón, Julián; Vidal, Guifre

    2017-06-02

    The generalization of matrix product states (MPS) to continuous systems, as proposed in the breakthrough Letter of Verstraete and Cirac [Phys. Rev. Lett. 104, 190405 (2010).PRLTAO0031-900710.1103/PhysRevLett.104.190405], provides a powerful variational ansatz for the ground state of strongly interacting quantum field theories in one spatial dimension. A continuous MPS (cMPS) approximation to the ground state can be obtained by simulating a Euclidean time evolution. In this Letter we propose a cMPS optimization algorithm based instead on energy minimization by gradient methods and demonstrate its performance by applying it to the Lieb-Liniger model (an integrable model of an interacting bosonic field) directly in the thermodynamic limit. We observe a very significant computational speed-up, of more than 2 orders of magnitude, with respect to simulating a Euclidean time evolution. As a result, a much larger cMPS bond dimension D can be reached (e.g., D=256 with moderate computational resources), thus helping unlock the full potential of the cMPS representation for ground state studies.

  6. Matrix product states for anyonic systems and efficient simulation of dynamics

    NASA Astrophysics Data System (ADS)

    Singh, Sukhwinder; Pfeifer, Robert N. C.; Vidal, Guifre; Brennen, Gavin K.

    2014-02-01

    Matrix product states (MPS) have proven to be a very successful tool to study lattice systems with local degrees of freedom such as spins or bosons. Topologically ordered systems can support anyonic particles which are labeled by conserved topological charges and collectively carry nonlocal degrees of freedom. In this paper we extend the formalism of MPS to lattice systems of anyons. The anyonic MPS is constructed from tensors that explicitly conserve topological charge. We describe how to adapt the time-evolving block decimation (TEBD) algorithm to the anyonic MPS in order to simulate dynamics under a local and charge-conserving Hamiltonian. To demonstrate the effectiveness of the anyonic TEBD algorithm, we used it to simulate (i) the ground state (using imaginary time evolution) of an infinite one dimensional critical system of (a) Ising anyons and (b) Fibonacci anyons, both of which are well studied, and (ii) the real time dynamics of an anyonic Hubbard-like model of a single Ising anyon hopping on a ladder geometry with an anyonic flux threading each island of the ladder. Our results pertaining to (ii) give insight into the transport properties of anyons. The anyonic MPS formalism can be readily adapted to study systems with conserved symmetry charges, as this is equivalent to a specialization of the more general anyonic case.

  7. Efficient DMFT impurity solver using real-time dynamics with matrix product states

    NASA Astrophysics Data System (ADS)

    Ganahl, Martin; Aichhorn, Markus; Evertz, Hans Gerd; Thunström, Patrik; Held, Karsten; Verstraete, Frank

    2015-10-01

    We propose to calculate spectral functions of quantum impurity models using the time evolving block decimation (TEBD) for matrix product states. The resolution of the spectral function is improved by a so-called linear prediction approach. We apply the method as an impurity solver within the dynamical mean-field theory (DMFT) for the single- and two-band Hubbard model on the Bethe lattice. For the single-band model, we observe sharp features at the inner edges of the Hubbard bands. A finite-size scaling shows that they remain present in the thermodynamic limit. We analyze the real time-dependence of the double occupation after adding a single electron and observe oscillations at the same energy as the sharp feature in the Hubbard band, indicating a long-lived coherent superposition of states that correspond to the Kondo peak and the side peaks. For a two-band Hubbard model, we observe an even richer structure in the Hubbard bands, which cannot be related to a multiplet structure of the impurity, in addition to sharp excitations at the band edges of a type similar to the single-band case.

  8. Matrix-product-state simulation of an extended Brueschweiler bulk-ensemble database search

    SciTech Connect

    SaiToh, Akira; Kitagawa, Masahiro

    2006-06-15

    Brueschweiler's database search in a spin Liouville space can be efficiently simulated on a conventional computer without error as long as the simulation cost of the internal circuit of an oracle function is polynomial, unlike the fact that in true NMR experiments, it suffers from an exponential decrease in the variation of a signal intensity. With the simulation method using the matrix-product-state proposed by Vidal [G. Vidal, Phys. Rev. Lett. 91, 147902 (2003)], we perform such a simulation. We also show the extensions of the algorithm without utilizing the J-coupling or DD-coupling splitting of frequency peaks in observation: searching can be completed with a single query in polynomial postoracle circuit complexities in an extension; multiple solutions of an oracle can be found in another extension whose query complexity is linear in the key length and in the number of solutions (this extension is to find all of marked keys). These extended algorithms are also simulated with the same simulation method.

  9. Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min

    2016-09-01

    We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.

  10. Information transmission in bosonic memory channels using Gaussian matrix-product states as near-optimal symbols

    SciTech Connect

    Schäfer, Joachim; Karpov, Evgueni; Cerf, Nicolas J.

    2014-12-04

    We seek for a realistic implementation of multimode Gaussian entangled states that can realize the optimal encoding for quantum bosonic Gaussian channels with memory. For a Gaussian channel with classical additive Markovian correlated noise and a lossy channel with non-Markovian correlated noise, we demonstrate the usefulness using Gaussian matrix-product states (GMPS). These states can be generated sequentially, and may, in principle, approximate well any Gaussian state. We show that we can achieve up to 99.9% of the classical Gaussian capacity with GMPS requiring squeezing parameters that are reachable with current technology. This may offer a way towards an experimental realization.

  11. Exploring Interacting Quantum Many-Body Systems by Experimentally Creating Continuous Matrix Product States in Superconducting Circuits

    NASA Astrophysics Data System (ADS)

    Eichler, C.; Mlynek, J.; Butscher, J.; Kurpiers, P.; Hammerer, K.; Osborne, T. J.; Wallraff, A.

    2015-10-01

    Improving the understanding of strongly correlated quantum many-body systems such as gases of interacting atoms or electrons is one of the most important challenges in modern condensed matter physics, materials research, and chemistry. Enormous progress has been made in the past decades in developing both classical and quantum approaches to calculate, simulate, and experimentally probe the properties of such systems. In this work, we use a combination of classical and quantum methods to experimentally explore the properties of an interacting quantum gas by creating experimental realizations of continuous matrix product states—a class of states that has proven extremely powerful as a variational ansatz for numerical simulations. By systematically preparing and probing these states using a circuit quantum electrodynamics system, we experimentally determine a good approximation to the ground-state wave function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum system, this approach has the potential to apply to a variety of models including those involving multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring general properties of matrix product states and entanglement theory. The scheme presented here is applicable to a broad range of systems exploiting strong and tunable light-matter interactions.

  12. Light cone matrix product

    SciTech Connect

    Hastings, Matthew B

    2009-01-01

    We show how to combine the light-cone and matrix product algorithms to simulate quantum systems far from equilibrium for long times. For the case of the XXZ spin chain at {Delta} = 0.5, we simulate to a time of {approx} 22.5. While part of the long simulation time is due to the use of the light-cone method, we also describe a modification of the infinite time-evolving bond decimation algorithm with improved numerical stability, and we describe how to incorporate symmetry into this algorithm. While statistical sampling error means that we are not yet able to make a definite statement, the behavior of the simulation at long times indicates the appearance of either 'revivals' in the order parameter as predicted by Hastings and Levitov (e-print arXiv:0806.4283) or of a distinct shoulder in the decay of the order parameter.

  13. Uncovering nonperturbative dynamics of the biased sub-Ohmic spin-boson model with variational matrix product states

    NASA Astrophysics Data System (ADS)

    Gonzalez-Ballestero, C.; Schröder, Florian A. Y. N.; Chin, Alex W.

    2017-09-01

    We study the dynamics of the biased sub-Ohmic spin-boson model by means of a time-dependent variational matrix product state (TDVMPS) algorithm. The evolution of both the system and the environment is obtained in the weak- and the strong-coupling regimes, respectively characterized by damped spin oscillations and by a nonequilibrium process where the spin freezes near its initial state, which are explicitly shown to arise from a variety of reactive environmental quantum dynamics. We also explore the rich phenomenology of the intermediate-coupling case, a nonperturbative regime where the system shows a complex dynamical behavior, combining features of both the weakly and the strongly coupled case in a sequential, time-retarded fashion. Our work demonstrates the potential of TDVMPS methods for exploring otherwise elusive, nonperturbative regimes of complex open quantum systems, and points to the possibilities of exploiting the qualitative, real-time modification of quantum properties induced by nonequilibrium bath dynamics in ultrafast transient processes.

  14. Situating Language Production within the Matrix of Human Cognition: The State of the Art in Language Production Research

    ERIC Educational Resources Information Center

    Goldrick, Matthew; Costa, Albert; Schiller, Niels O.

    2008-01-01

    A summary of recent work in language production is presented, focusing on the "Third International Workshop on Language Production" (Chicago, USA, August 2006). The articles included in this special issue focus on three overlapping themes: language production in dialogue (Arnold; Costa, Pickering, & Sorace); multilingual language…

  15. Situating Language Production within the Matrix of Human Cognition: The State of the Art in Language Production Research

    ERIC Educational Resources Information Center

    Goldrick, Matthew; Costa, Albert; Schiller, Niels O.

    2008-01-01

    A summary of recent work in language production is presented, focusing on the "Third International Workshop on Language Production" (Chicago, USA, August 2006). The articles included in this special issue focus on three overlapping themes: language production in dialogue (Arnold; Costa, Pickering, & Sorace); multilingual language…

  16. Universal Keplerian state transition matrix

    NASA Technical Reports Server (NTRS)

    Shepperd, S. W.

    1985-01-01

    A completely general method for computing the Keplerian state transition matrix in terms of Goodyear's universal variables is presented. This includes a new scheme for solving Kepler's problem which is a necessary first step to computing the transition matrix. The Kepler problem is solved in terms of a new independent variable requiring the evaluation of only one transcendental function. Furthermore, this transcendental function may be conveniently evaluated by means of a Gaussian continued fraction.

  17. Generic construction of efficient matrix product operators

    NASA Astrophysics Data System (ADS)

    Hubig, C.; McCulloch, I. P.; Schollwöck, U.

    2017-01-01

    Matrix product operators (MPOs) are at the heart of the second-generation density matrix renormalization group (DMRG) algorithm formulated in matrix product state language. We first summarize the widely known facts on MPO arithmetic and representations of single-site operators. Second, we introduce three compression methods (rescaled SVD, deparallelization, and delinearization) for MPOs and show that it is possible to construct efficient representations of arbitrary operators using MPO arithmetic and compression. As examples, we construct powers of a short-ranged spin-chain Hamiltonian, a complicated Hamiltonian of a two-dimensional system and, as proof of principle, the long-range four-body Hamiltonian from quantum chemistry.

  18. Anyons and matrix product operator algebras

    NASA Astrophysics Data System (ADS)

    Bultinck, N.; Mariën, M.; Williamson, D. J.; Şahinoğlu, M. B.; Haegeman, J.; Verstraete, F.

    2017-03-01

    Quantum tensor network states and more particularly projected entangled-pair states provide a natural framework for representing ground states of gapped, topologically ordered systems. The defining feature of these representations is that topological order is a consequence of the symmetry of the underlying tensors in terms of matrix product operators. In this paper, we present a systematic study of those matrix product operators, and show how this relates entanglement properties of projected entangled-pair states to the formalism of fusion tensor categories. From the matrix product operators we construct a C∗-algebra and find that topological sectors can be identified with the central idempotents of this algebra. This allows us to construct projected entangled-pair states containing an arbitrary number of anyons. Properties such as topological spin, the S matrix, fusion and braiding relations can readily be extracted from the idempotents. As the matrix product operator symmetries are acting purely on the virtual level of the tensor network, the ensuing Wilson loops are not fattened when perturbing the system, and this opens up the possibility of simulating topological theories away from renormalization group fixed points. We illustrate the general formalism for the special cases of discrete gauge theories and string-net models.

  19. How local is the information in tensor networks of matrix product states or projected entangled pairs states

    NASA Astrophysics Data System (ADS)

    Anshu, Anurag; Arad, Itai; Jain, Aditya

    2016-11-01

    Two-dimensional tensor networks such as projected entangled pairs states (PEPS) are generally hard to contract. This is arguably the main reason why variational tensor network methods in two dimensions are still not as successful as in one dimension. However, this is not necessarily the case if the tensor network represents a gapped ground state of a local Hamiltonian; such states are subject to many constraints and contain much more structure. In this paper, we introduce an approach for approximating the expectation value of a local observable in ground states of local Hamiltonians that are represented by PEPS tensor networks. Instead of contracting the full tensor network, we try to estimate the expectation value using only a local patch of the tensor network around the observable. Surprisingly, we demonstrate that this is often easier to do when the system is frustrated. In such case, the spanning vectors of the local patch are subject to nontrivial constraints that can be utilized via a semidefinite program to calculate rigorous lower and upper bounds on the expectation value. We test our approach in one-dimensional systems, where we show how the expectation value can be calculated up to at least 3 or 4 digits of precision, even when the patch radius is smaller than the correlation length.

  20. Matrix product approximations to conformal field theories

    NASA Astrophysics Data System (ADS)

    König, Robert; Scholz, Volkher B.

    2017-07-01

    We establish rigorous error bounds for approximating correlation functions of conformal field theories (CFTs) by certain finite-dimensional tensor networks. For chiral CFTs, the approximation takes the form of a matrix product state. For full CFTs consisting of a chiral and an anti-chiral part, the approximation is given by a finitely correlated state. We show that the bond dimension scales polynomially in the inverse of the approximation error and sub-exponentially in inverse of the minimal distance between insertion points. We illustrate our findings using Wess-Zumino-Witten models, and show that there is a one-to-one correspondence between group-covariant MPS and our approximation.

  1. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Properties of Parity Non-conserved and Parity Conserved States in Matrix Product Systems

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min

    2010-08-01

    In terms of reflection transformation of a matrix product state (MPS), the parity of the MPS is defined. Based on the reflective parity non-conserved MPS pair we construct the even-parity state |Φerangle and the odd-parity state |Φorangle. It is interesting to find that the parity non-conserved reflective MPS pair have no long-range correlations; instead the even-parity state |Φerangle and the odd-parity state |Φorangle constructed from them have the same long-range correlations for the parity non-conserved block operators. Moreover, the entanglement between a block of n contiguous spins and the rest of the spin chain for the states |Φerangle and |Φorangle is larger than that for the reflective MPS pair except for n = 1, and the difference of them approaches 1 monotonically and asymptotically from 0 as n increases from 1. These characteristics indicate that MPS parity as a conserved physical quantity represents a kind of coherent collective quantum mode, and that the parity conserved MPSs contain more correlation, coherence, and entanglement than the parity non-conserved ones.

  2. Matrix product approach for the asymmetric random average process

    NASA Astrophysics Data System (ADS)

    Zielen, F.; Schadschneider, A.

    2003-04-01

    We consider the asymmetric random average process which is a one-dimensional stochastic lattice model with nearest-neighbour interaction but continuous and unbounded state variables. First, the explicit functional representations, so-called beta densities, of all local interactions leading to steady states of product measure form are rigorously derived. This also completes an outstanding proof given in a previous publication. Then we present an alternative solution for the processes with factorized stationary states by using a matrix product ansatz. Due to continuous state variables we obtain a matrix algebra in the form of a functional equation which can be solved exactly.

  3. Matrix product purifications for canonical ensembles and quantum number distributions

    NASA Astrophysics Data System (ADS)

    Barthel, Thomas

    2016-09-01

    Matrix product purifications (MPPs) are a very efficient tool for the simulation of strongly correlated quantum many-body systems at finite temperatures. When a system features symmetries, these can be used to reduce computation costs substantially. It is straightforward to compute an MPP of a grand-canonical ensemble, also when symmetries are exploited. This paper provides and demonstrates methods for the efficient computation of MPPs of canonical ensembles under utilization of symmetries. Furthermore, we present a scheme for the evaluation of global quantum number distributions using matrix product density operators (MPDOs). We provide exact matrix product representations for canonical infinite-temperature states, and discuss how they can be constructed alternatively by applying matrix product operators to vacuum-type states or by using entangler Hamiltonians. A demonstration of the techniques for Heisenberg spin-1 /2 chains explains why the difference in the energy densities of canonical and grand-canonical ensembles decays as 1 /L .

  4. Critical state of sand matrix soils.

    PubMed

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803-0.998, 0.144-0.248, and 1.727-2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated.

  5. Critical State of Sand Matrix Soils

    PubMed Central

    Marto, Aminaton; Tan, Choy Soon; Makhtar, Ahmad Mahir; Kung Leong, Tiong

    2014-01-01

    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803–0.998, 0.144–0.248, and 1.727–2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated. PMID:24757417

  6. An Empirical State Error Covariance Matrix for Batch State Estimation

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. Consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. It then follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully account for the error in the state estimate. By way of a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm, it is possible to arrive at an appropriate, and formally correct, empirical state error covariance matrix. The first specific step of the method is to use the average form of the weighted measurement residual variance performance index rather than its usual total weighted residual form. Next it is helpful to interpret the solution to the normal equations as the average of a collection of sample vectors drawn from a hypothetical parent population. From here, using a standard statistical analysis approach, it directly follows as to how to determine the standard empirical state error covariance matrix. This matrix will contain the total uncertainty in the

  7. Quantitative monitoring of extracellular matrix production in bone implants by 13C and 31P solid-state nuclear magnetic resonance spectroscopy.

    PubMed

    Schulz, J; Pretzsch, M; Khalaf, I; Deiwick, A; Scheidt, H A; Salis-Soglio, G; Bader, A; Huster, D

    2007-04-01

    We used (31)P and (13)C solid-state nuclear magnetic resonance (NMR) spectroscopy to detect and analyze the major organic and inorganic components (collagen type I and bioapatite) in natural rabbit bone and beta-tricalcium phosphate implants loaded with osteogenically differentiated mesenchymal stem cells. High-resolution solid-state NMR spectra were obtained using the magic-angle spinning (MAS) technique. The (31)P NMR spectra of bone specimens showed a single line characteristic of bone calcium phosphate. (13)C cross-polarization (CP) MAS NMR spectra of bone exhibited the characteristic signatures of collagen type I with good resolution for all major amino acids in collagen. Quantitative measurements of (13)C-(1)H dipolar couplings indicated that the collagen segments are very rigid, undergoing only small amplitude fluctuations with correlation times in the nanosecond range. In contrast, directly polarized (13)C MAS NMR spectra of rabbit bone were dominated by signals of highly mobile triglycerides. These quantitative investigations of natural bone may provide the basis for a quality control of various osteoinductive bone substitutes. We studied the formation of extracellular bone matrix in artificial mesenchymal stem cell-loaded beta-tricalcium phosphate matrices that were implanted into the femoral condyle of rabbits. The NMR spectra of these bone grafts were acquired 3 months after implantation. In the (31)P NMR spectra, beta-tricalcium phosphate and bone calcium phosphate could be distinguished quantitatively, allowing recording of the formation of the natural bone matrix. Further, (13)C CPMAS allowed detection of collagen type I that had been produced in the implants. Comparison with the spectroscopic data from natural bone allowed assessment of the quality of the bone substitute material.

  8. Matrix product density operators: Renormalization fixed points and boundary theories

    NASA Astrophysics Data System (ADS)

    Cirac, J. I.; Pérez-García, D.; Schuch, N.; Verstraete, F.

    2017-03-01

    We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well as to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).

  9. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    SciTech Connect

    Keller, Sebastian Reiher, Markus; Dolfi, Michele Troyer, Matthias

    2015-12-28

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.

  10. An efficient matrix product operator representation of the quantum chemical Hamiltonian.

    PubMed

    Keller, Sebastian; Dolfi, Michele; Troyer, Matthias; Reiher, Markus

    2015-12-28

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction scheme presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries - abelian and non-abelian - and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.

  11. Inference from matrix products: a heuristic spin glass algorithm

    SciTech Connect

    Hastings, Matthew B

    2008-01-01

    We present an algorithm for finding ground states of two-dimensional spin-glass systems based on ideas from matrix product states in quantum information theory. The algorithm works directly at zero temperature and defines an approximation to the energy whose accuracy depends on a parameter k. We test the algorithm against exact methods on random field and random bond Ising models, and we find that accurate results require a k which scales roughly polynomially with the system size. The algorithm also performs well when tested on small systems with arbitrary interactions, where no fast, exact algorithms exist. The time required is significantly less than Monte Carlo schemes.

  12. Time-dependent N-electron valence perturbation theory with matrix product state reference wavefunctions for large active spaces and basis sets: Applications to the chromium dimer and all-trans polyenes

    NASA Astrophysics Data System (ADS)

    Sokolov, Alexander Yu.; Guo, Sheng; Ronca, Enrico; Chan, Garnet Kin-Lic

    2017-06-01

    In earlier work [A. Y. Sokolov and G. K.-L. Chan, J. Chem. Phys. 144, 064102 (2016)], we introduced a time-dependent formulation of the second-order N-electron valence perturbation theory (t-NEVPT2) which (i) had a lower computational scaling than the usual internally contracted perturbation formulation and (ii) yielded the fully uncontracted NEVPT2 energy. Here, we present a combination of t-NEVPT2 with a matrix product state (MPS) reference wavefunction (t-MPS-NEVPT2) that allows us to compute uncontracted dynamic correlation energies for large active spaces and basis sets, using the time-dependent density matrix renormalization group algorithm. In addition, we report a low-scaling MPS-based implementation of strongly contracted NEVPT2 (sc-MPS-NEVPT2) that avoids computation of the four-particle reduced density matrix. We use these new methods to compute the dissociation energy of the chromium dimer and to study the low-lying excited states in all-trans polyenes (C4H6 to C24H26), incorporating dynamic correlation for reference wavefunctions with up to 24 active electrons and orbitals.

  13. Encoding the structure of many-body localization with matrix product operators

    NASA Astrophysics Data System (ADS)

    Pekker, David; Clark, Bryan K.

    2015-03-01

    Anderson insulators are non-interacting disordered systems which have localized single particle eigenstates. The interacting analogue of Anderson insulators are the Many-Body Localized (MBL) phases. The natural language for representing the spectrum of the Anderson insulator is that of product states over the single-particle modes. We show that product states over Matrix Product Operators of small bond dimension is the corresponding natural language for describing the MBL phases. In this language all of the many-body eigenstates are encode by Matrix Product States (i.e. DMRG wave function) consisting of only two sets of low bond-dimension matrices per site: the Gi matrix corresponding to the local ground state on site i and the Ei matrix corresponding to the local excited state. All 2 n eigenstates can be generated from all possible combinations of these matrices.

  14. Matrix product solutions of boundary driven quantum chains

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž

    2015-09-01

    We review recent progress on constructing non-equilibrium steady state density operators of boundary driven locally interacting quantum chains, where driving is implemented via Markovian dissipation channels attached to the chain’s ends. We discuss explicit solutions in three different classes of quantum chains, specifically, the paradigmatic (anisotropic) Heisenberg spin-1/2 chain, the Fermi-Hubbard chain, and the Lai-Sutherland spin-1 chain, and discuss universal concepts which characterize these solutions, such as matrix product ansatz and a more structured walking graph state ansatz. The central theme is the connection between the matrix product form of nonequilibrium states and the integrability structures of the bulk Hamiltonian, such as the Lax operators and the Yang-Baxter equation. However, there is a remarkable distinction with respect to the conventional quantum inverse scattering method, namely addressing nonequilibrium steady state density operators requires non-unitary irreducible representations of Yang-Baxter algebra which are typically of infinite dimensionality. Such constructions result in non-Hermitian, and often also non-diagonalisable families of commuting transfer operators which in turn result in novel conservation laws of the integrable bulk Hamiltonians. For example, in the case of the anisotropic Heisenberg model, quasi-local conserved operators which are odd under spin reversal (or spin flip) can be constructed, whereas the conserved operators stemming from orthodox Hermitian transfer operators (via logarithmic differentiation) are all even under spin reversal.

  15. A Prevalidation of the Product-Process Matrix

    ERIC Educational Resources Information Center

    Ashenbaum, Bryan

    2013-01-01

    A major challenge for instructors of supply chain and operations management (SCOM) courses is to help students who have never seen a production floor visualize concepts, such as the product-process matrix from standard introductory SCOM texts. This article presents a classroom exercise, which "prevalidates" the product-process matrix.…

  16. A Prevalidation of the Product-Process Matrix

    ERIC Educational Resources Information Center

    Ashenbaum, Bryan

    2013-01-01

    A major challenge for instructors of supply chain and operations management (SCOM) courses is to help students who have never seen a production floor visualize concepts, such as the product-process matrix from standard introductory SCOM texts. This article presents a classroom exercise, which "prevalidates" the product-process matrix.…

  17. Utilizing Vocational Education to Improve Productivity. Technology/Program Matrix.

    ERIC Educational Resources Information Center

    Conserva, Inc., Raleigh, NC.

    This technology/program matrix and annotated bibliography were created as a product of the first activity in a project to alert vocational educators to forthcoming technological changes and to promote awareness of vocational education as a mechanism for productivity improvement. The classification matrix identifies, describes, and classifies those…

  18. Matrix product formula for {{U}_{q}}(A_{2}^{(1)}) -zero range process

    NASA Astrophysics Data System (ADS)

    Kuniba, Atsuo; Okado, Masato

    2017-01-01

    The {{U}q}(An(1)) -zero range processes introduced recently by Mangazeev, Maruyama and the authors are integrable discrete and continuous time Markov processes associated with the stochastic R matrix derived from the well-known {{U}q}(An(1)) quantum R matrix. By constructing a representation of the relevant Zamolodchikov-Faddeev algebra, we present, for n  =  2, a matrix product formula for the steady state probabilities in terms of q-boson operators.

  19. Encoding the structure of many-body localization with matrix product operators

    NASA Astrophysics Data System (ADS)

    Pekker, David; Clark, Bryan K.

    2017-01-01

    Anderson insulators are noninteracting disordered systems which have localized single-particle eigenstates. The interacting analog of Anderson insulators are the many-body localized (MBL) phases. The spectrum of the many-body eigenstates of an Anderson insulator is efficiently represented as a set of product states over the single-particle modes. We show that product states over matrix product operators of small bond dimension is the corresponding efficient description of the spectrum of an MBL insulator. In this language all of the many-body eigenstates are encoded by matrix product states (i.e., density matrix renormalization group wave functions) consisting of only two sets of low bond dimension matrices per site: the Gi matrices corresponding to the local ground state on site i and the Ei matrices corresponding to the local excited state. All 2n eigenstates can be generated from all possible combinations of these sets of matrices.

  20. Matrix model for non-Abelian quantum Hall states

    NASA Astrophysics Data System (ADS)

    Dorey, Nick; Tong, David; Turner, Carl

    2016-08-01

    We propose a matrix quantum mechanics for a class of non-Abelian quantum Hall states. The model describes electrons which carry an internal SU(p ) spin. The ground states of the matrix model include spin-singlet generalizations of the Moore-Read and Read-Rezayi states and, in general, lie in a class previously introduced by Blok and Wen. The effective action for these states is a U(p ) Chern-Simons theory. We show how the matrix model can be derived from quantization of the vortices in this Chern-Simons theory and how the matrix model ground states can be reconstructed as correlation functions in the boundary WZW model.

  1. Empirical State Error Covariance Matrix for Batch Estimation

    NASA Technical Reports Server (NTRS)

    Frisbee, Joe

    2015-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the uncertainty in the estimated states. By a reinterpretation of the equations involved in the weighted batch least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. The proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. This empirical error covariance matrix may be calculated as a side computation for each unique batch solution. Results based on the proposed technique will be presented for a simple, two observer and measurement error only problem.

  2. Quantum Phase Transitions in Conventional Matrix Product Systems

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min; Huang, Fei; Chang, Yan

    2017-02-01

    For matrix product states(MPSs) of one-dimensional spin-1/2 chains, we investigate a new kind of conventional quantum phase transition(QPT). We find that the system has two different ferromagnetic phases; on the line of the two ferromagnetic phases coexisting equally, the system in the thermodynamic limit is in an isolated mediate-coupling state described by a paramagnetic state and is in the same state as the renormalization group fixed point state, the expectation values of the physical quantities are discontinuous, and any two spin blocks of the system have the same geometry quantum discord(GQD) within the range of open interval (0,0.25) and the same classical correlation(CC) within the range of open interval (0,0.75) compared to any phase having no any kind of correlation. We not only realize the control of QPTs but also realize the control of quantum correlation of quantum many-body systems on the critical line by adjusting the environment parameters, which may have potential application in quantum information fields and is helpful to comprehensively and deeply understand the quantum correlation, and the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems.

  3. Face recognition using tridiagonal matrix enhanced multivariance products representation

    NASA Astrophysics Data System (ADS)

    Ã-zay, Evrim Korkmaz

    2017-01-01

    This study aims to retrieve face images from a database according to a target face image. For this purpose, Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR) is taken into consideration. TMEMPR is a recursive algorithm based on Enhanced Multivariance Products Representation (EMPR). TMEMPR decomposes a matrix into three components which are a matrix of left support terms, a tridiagonal matrix of weight parameters for each recursion, and a matrix of right support terms, respectively. In this sense, there is an analogy between Singular Value Decomposition (SVD) and TMEMPR. However TMEMPR is a more flexible algorithm since its initial support terms (or vectors) can be chosen as desired. Low computational complexity is another advantage of TMEMPR because the algorithm has been constructed with recursions of certain arithmetic operations without requiring any iteration. The algorithm has been trained and tested with ORL face image database with 400 different grayscale images of 40 different people. TMEMPR's performance has been compared with SVD's performance as a result.

  4. Efficient tree tensor network states (TTNS) for quantum chemistry: generalizations of the density matrix renormalization group algorithm.

    PubMed

    Nakatani, Naoki; Chan, Garnet Kin-Lic

    2013-04-07

    We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.

  5. Excited State Effects in Nucleon Matrix Element Calculations

    SciTech Connect

    Constantia Alexandrou, Martha Constantinou, Simon Dinter, Vincent Drach, Karl Jansen, Theodoros Leontiou, Dru B Renner

    2011-12-01

    We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution x{sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f} = 2+1+1 maximally twisted mass Wilson fermions.

  6. Time evolution and deterministic optimization of correlator product states

    NASA Astrophysics Data System (ADS)

    Stojevic, Vid; Crowley, Philip; Äńurić, Tanja; Grey, Callum; Green, Andrew G.

    2016-10-01

    We study a restricted class of correlator product states (CPS) for a spin-half chain in which each spin is contained in just two overlapping plaquettes. This class is also a restriction upon matrix product states (MPS) with local dimension 2n (n being the size of the overlapping regions of plaquettes) equal to the bond dimension. We investigate the trade-off between gains in efficiency due to this restriction against losses in fidelity. The time-dependent variational principle formulated for these states is numerically very stable. Moreover, it shows significant gains in efficiency compared to the naively related matrix product states—the evolution or optimization scales as 23 n for the correlator product states versus 24 n for the unrestricted matrix product state. However, much of this advantage is offset by a significant reduction in fidelity. Correlator product states break the local Hilbert space symmetry by the explicit selection of a local basis. We investigate this dependence in detail and formulate the broad principles under which correlator product states may be a useful tool. In particular, we find that scaling with overlap/bond order may be more stable with correlator product states allowing a more efficient extraction of critical exponents—we present an example in which the use of correlator product states is several orders of magnitude quicker than matrix product states.

  7. An Empirical State Error Covariance Matrix Orbit Determination Example

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2015-01-01

    State estimation techniques serve effectively to provide mean state estimates. However, the state error covariance matrices provided as part of these techniques suffer from some degree of lack of confidence in their ability to adequately describe the uncertainty in the estimated states. A specific problem with the traditional form of state error covariance matrices is that they represent only a mapping of the assumed observation error characteristics into the state space. Any errors that arise from other sources (environment modeling, precision, etc.) are not directly represented in a traditional, theoretical state error covariance matrix. First, consider that an actual observation contains only measurement error and that an estimated observation contains all other errors, known and unknown. Then it follows that a measurement residual (the difference between expected and observed measurements) contains all errors for that measurement. Therefore, a direct and appropriate inclusion of the actual measurement residuals in the state error covariance matrix of the estimate will result in an empirical state error covariance matrix. This empirical state error covariance matrix will fully include all of the errors in the state estimate. The empirical error covariance matrix is determined from a literal reinterpretation of the equations involved in the weighted least squares estimation algorithm. It is a formally correct, empirical state error covariance matrix obtained through use of the average form of the weighted measurement residual variance performance index rather than the usual total weighted residual form. Based on its formulation, this matrix will contain the total uncertainty in the state estimate, regardless as to the source of the uncertainty and whether the source is anticipated or not. It is expected that the empirical error covariance matrix will give a better, statistical representation of the state error in poorly modeled systems or when sensor performance

  8. Exact matrix product solution for the boundary-driven Lindblad XXZ chain.

    PubMed

    Karevski, D; Popkov, V; Schütz, G M

    2013-01-25

    We demonstrate that the exact nonequilibrium steady state of the one-dimensional Heisenberg XXZ spin chain driven by boundary Lindblad operators can be constructed explicitly with a matrix product ansatz for the nonequilibrium density matrix where the matrices satisfy a quadratic algebra. This algebra turns out to be related to the quantum algebra U(q)[SU(2)]. Coherent state techniques are introduced for the exact solution of the isotropic Heisenberg chain with and without quantum boundary fields and Lindblad terms that correspond to two different completely polarized boundary states. We show that this boundary twist leads to nonvanishing stationary currents of all spin components. Our results suggest that the matrix product ansatz can be extended to more general quantum systems kept far from equilibrium by Lindblad boundary terms.

  9. Exact Matrix Product Solution for the Boundary-Driven Lindblad XXZ Chain

    NASA Astrophysics Data System (ADS)

    Karevski, D.; Popkov, V.; Schütz, G. M.

    2013-01-01

    We demonstrate that the exact nonequilibrium steady state of the one-dimensional Heisenberg XXZ spin chain driven by boundary Lindblad operators can be constructed explicitly with a matrix product ansatz for the nonequilibrium density matrix where the matrices satisfy a quadratic algebra. This algebra turns out to be related to the quantum algebra Uq[SU(2)]. Coherent state techniques are introduced for the exact solution of the isotropic Heisenberg chain with and without quantum boundary fields and Lindblad terms that correspond to two different completely polarized boundary states. We show that this boundary twist leads to nonvanishing stationary currents of all spin components. Our results suggest that the matrix product ansatz can be extended to more general quantum systems kept far from equilibrium by Lindblad boundary terms.

  10. A class of vector coherent states defined over matrix domains

    NASA Astrophysics Data System (ADS)

    Thirulogasanthar, K.; Twareque Ali, S.

    2003-11-01

    A general scheme is proposed for constructing vector coherent states, in analogy with the well-known canonical coherent states, and their deformed versions, when these latter are expressed as infinite series in powers of a complex variable z. In the present scheme, the variable z is replaced by matrix valued functions over appropriate domains. As particular examples, we analyze the quaternionic extensions of the canonical coherent states and the Gilmore-Perelomov and Barut-Girardello coherent states arising from representations of SU(1,1). Possible physical applications are indicated.

  11. Charged- and neutral-pion production in the S-matrix approach

    SciTech Connect

    Malafaia, V.; Pena, M. T.; Elster, Ch.; Adam, J. Jr.

    2006-10-15

    The S-matrix approach is used to calculate both charged- and neutral-pion production in nucleon-nucleon (NN) scattering near threshold. The irreducible pion-rescattering diagram, direct production mechanism, {delta} isobars in intermediate states, and Z diagrams mediated by heavy isoscalar mesons are included in the calculation. For the NN distortions, we considered a realistic interaction, within the Bonn family of potentials, which describes the nucleonic inelasticities above the pion production energy threshold.

  12. Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbo; Seminara, Agnese; Suaris, Melanie; Brenner, Michael P.; Weitz, David A.; Angelini, Thomas E.

    2014-01-01

    Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation.

  13. [Shelf-life estimation of pharmaceutical products by matrixing].

    PubMed

    Yoshioka, S; Aso, Y; Kojima, S

    1996-01-01

    The shelf-life estimates of pharmaceutical products obtained by matrixing are compared with those obtained by ordinary analysis, using stability data generated by the Monte Carlo method. The effect of the variation in stability due to different packaging and formulations on the shelf-life estimates is described. Analysis of variance is proposed for the evaluation of shelf-life estimates obtained by matrixing. The relationship between the power of the test and the significance level is discussed as well as the effect of assay error on the power of test.

  14. Feedback Control for Formation Flying Maintenance Using State Transition Matrix

    NASA Astrophysics Data System (ADS)

    Yan, Hui; Gong, Qi

    2012-06-01

    The Linear Quadratic Regulator (LQR) control design method has been widely used for satellite formation maintenance. In this paper a new feedback control is proposed to solve LQR problems using the state transition matrix. Such a method has the potential to reduce the online computational burden. We apply the control law to formation flying maintenance under J 2 perturbation using the Gim-Alfriend state transition matrix. The numerical simulations demonstrate the STM feedback control via receding horizon scheme works well. The projected circular orbits are maintained very well for the circular and elliptic Chief orbits after 100 day propagation under J 2 influence. Much control effort is needed to track the projected circular orbits if the Chief orbit is elliptic.

  15. R-matrix calculations for few-quark bound states

    NASA Astrophysics Data System (ADS)

    Shalchi, M. A.; Hadizadeh, M. R.

    2016-10-01

    The R-matrix method is implemented to study the heavy charm and bottom diquark, triquark, tetraquark, and pentaquarks in configuration space, as the bound states of quark-antiquark, diquark-quark, diquark-antidiquark, and diquark-antitriquark systems, respectively. The mass spectrum and the size of these systems are calculated for different partial wave channels. The calculated masses are compared with recent theoretical results obtained by other methods in momentum and configuration spaces and also by available experimental data.

  16. The role of muscle cells in regulating cartilage matrix production

    PubMed Central

    Cairns, Dana M.; Lee, Philip G.; Uchimura, Tomoya; Seufert, Christopher R.; Kwon, Heenam; Zeng, Li

    2009-01-01

    Muscle is one of the tissues located in close proximity to cartilage tissue. Although it has been suggested that muscle could influence skeletal development through generating mechanical forces by means of contraction, very little is known regarding whether muscle cells release biochemical signals to regulate cartilage gene expression. We tested the hypothesis that muscle cells directly regulate cartilage matrix production by analyzing chondrocytes co-cultured with muscle cells in 2D or 3D conditions. We found that chondrocytes cultured with C2C12 muscle cells exhibited enhanced alcian blue staining and elevated expression of collagen II and collagen IX proteins. While non-muscle cells do not promote cartilage matrix production, converting them into muscle cells enhanced their pro-chondrogenic activity. Furthermore, muscle cell-conditioned medium led to increased cartilage matrix production, suggesting that muscle cells secrete pro-chondrogenic factors. Taken together, our study suggests that muscle cells may play an important role in regulating cartilage gene expression. This result may ultimately lead to the discovery of novel factors that regulate cartilage formation and homeostasis, and provide insights into improving the strategies for regenerating cartilage. PMID:19813241

  17. LRP4 induces extracellular matrix productions and facilitates chondrocyte differentiation.

    PubMed

    Asai, Nobuyuki; Ohkawara, Bisei; Ito, Mikako; Masuda, Akio; Ishiguro, Naoki; Ohno, Kinji

    2014-08-22

    Endochondral ossification is an essential step for skeletal development, which requires chondrocyte differentiation in growth cartilage. The low-density lipoprotein receptor-related protein 4 (LRP4), a member of LDLR family, is an inhibitor for Wnt signaling, but its roles in chondrocyte differentiation remain to be investigated. Here we found by laser capture microdissection that LRP4 expression was induced during chondrocyte differentiation in growth plate. In order to address the roles, we overexpressed recombinant human LRP4 or knocked down endogenous LRP4 by lentivirus in mouse ATDC5 chondrocyte cells. We found that LRP4 induced gene expressions of extracellular matrix proteins of type II collagen (Col2a1), aggrecan (Acan), and type X collagen (Col10a1), as well as production of total proteoglycans in ATDC5 cells, whereas LRP4 knockdown had opposite effects. Interestingly, LRP4-knockdown reduced mRNA expression of Sox9, a master regulator for chondrogenesis, as well as Dkk1, an extracellular Wnt inhibitor. Analysis of Wnt signaling revealed that LRP4 blocked the Wnt/β-catenin signaling activity in ATDC5 cells. Finally, the reduction of these extracellular matrix productions by LRP4-knockdown was rescued by a β-catenin/TCF inhibitor, suggesting that LRP4 is an important regulator for extracellular matrix productions and chondrocyte differentiation by suppressing Wnt/β-catenin signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Product-State Approximations to Quantum States

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Harrow, Aram W.

    2016-02-01

    We show that for any many-body quantum state there exists an unentangled quantum state such that most of the two-body reduced density matrices are close to those of the original state. This is a statement about the monogamy of entanglement, which cannot be shared without limit in the same way as classical correlation. Our main application is to Hamiltonians that are sums of two-body terms. For such Hamiltonians we show that there exist product states with energy that is close to the ground-state energy whenever the interaction graph of the Hamiltonian has high degree. This proves the validity of mean-field theory and gives an explicitly bounded approximation error. If we allow states that are entangled within small clusters of systems but product across clusters then good approximations exist when the Hamiltonian satisfies one or more of the following properties: (1) high degree, (2) small expansion, or (3) a ground state where the blocks in the partition have sublinear entanglement. Previously this was known only in the case of small expansion or in the regime where the entanglement was close to zero. Our approximations allow an extensive error in energy, which is the scale considered by the quantum PCP (probabilistically checkable proof) and NLTS (no low-energy trivial-state) conjectures. Thus our results put restrictions on the possible Hamiltonians that could be used for a possible proof of the qPCP or NLTS conjectures. By contrast the classical PCP constructions are often based on constraint graphs with high degree. Likewise we show that the parallel repetition that is possible with classical constraint satisfaction problems cannot also be possible for quantum Hamiltonians, unless qPCP is false. The main technical tool behind our results is a collection of new classical and quantum de Finetti theorems which do not make any symmetry assumptions on the underlying states.

  19. Efficient Kriging via Fast Matrix-Vector Products

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; Raykar, Vikas C.; Duraiswami, Ramani; Mount, David M.

    2008-01-01

    Interpolating scattered data points is a problem of wide ranging interest. Ordinary kriging is an optimal scattered data estimator, widely used in geosciences and remote sensing. A generalized version of this technique, called cokriging, can be used for image fusion of remotely sensed data. However, it is computationally very expensive for large data sets. We demonstrate the time efficiency and accuracy of approximating ordinary kriging through the use of fast matrixvector products combined with iterative methods. We used methods based on the fast Multipole methods and nearest neighbor searching techniques for implementations of the fast matrix-vector products.

  20. Maximizing sparse matrix vector product performance in MIMD computers

    SciTech Connect

    McLay, R.T.; Kohli, H.S.; Swift, S.L.; Carey, G.F.

    1994-12-31

    A considerable component of the computational effort involved in conjugate gradient solution of structured sparse matrix systems is expended during the Matrix-Vector Product (MVP), and hence it is the focus of most efforts at improving performance. Such efforts are hindered on MIMD machines due to constraints on memory, cache and speed of memory-cpu data transfer. This paper describes a strategy for maximizing the performance of the local computations associated with the MVP. The method focuses on single stride memory access, and the efficient use of cache by pre-loading it with data that is re-used while bypassing it for other data. The algorithm is designed to behave optimally for varying grid sizes and number of unknowns per gridpoint. Results from an assembly language implementation of the strategy on the iPSC/860 show a significant improvement over the performance using FORTRAN.

  1. State Support of Domestic Production

    SciTech Connect

    Amy Wright

    2007-12-30

    This project was developed in response to a cooperative agreement offering by the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) under the State Support of Domestic Production DE-FC26-04NT15456. The Interstate Oil and Gas Compact Commission (IOGCC) performed efforts in support of State programs related to the security, reliability and growth if our nation's domestic production of oil and natural gas. The project objectives were to improve the States ability to monitor the security of oil and gas operations; to maximize the production of domestic oil and natural gas thereby minimizing the threat to national security posed by interruptions in energy imports; to assist States in developing and maintaining high standards of environmental protection; to assist in addressing issues that limit the capacity of the industry; to promote the deployment of the appropriate application of technology for regulatory efficiency; and to inform the public about emerging energy issues.

  2. Extracellular matrix production in vitro in cartilage tissue engineering.

    PubMed

    Chen, Jie-Lin; Duan, Li; Zhu, Weimin; Xiong, Jianyi; Wang, Daping

    2014-04-05

    Cartilage tissue engineering is arising as a technique for the repair of cartilage lesions in clinical applications. However, fibrocartilage formation weakened the mechanical functions of the articular, which compromises the clinical outcomes. Due to the low proliferation ability, dedifferentiation property and low production of cartilage-specific extracellular matrix (ECM) of the chondrocytes, the cartilage synthesis in vitro has been one of the major limitations for obtaining high-quality engineered cartilage constructs. This review discusses cells, biomaterial scaffolds and stimulating factors that can facilitate the cartilage-specific ECM production and accumulation in the in vitro culture system. Special emphasis has been put on the factors that affect the production of ECM macromolecules such as collagen type II and proteoglycans in the review, aiming at providing new strategies to improve the quality of tissue-engineered cartilage.

  3. Controlling excited-state contamination in nucleon matrix elements

    SciTech Connect

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joo, Balint; Lin, Huey -Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-08

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1-flavor ensemble with lattices of size 323 × 64 generated using the rational hybrid Monte Carlo algorithm at a = 0.081 fm and with Mπ = 312 MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. As a result, a detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep → ∞ estimates is presented.

  4. Controlling excited-state contamination in nucleon matrix elements

    DOE PAGES

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; ...

    2016-06-08

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1-flavor ensemble with lattices of size 323 × 64 generated using the rational hybrid Monte Carlo algorithm at a = 0.081 fm and with Mπ = 312 MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. Wemore » show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. As a result, a detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep → ∞ estimates is presented.« less

  5. Controlling excited-state contamination in nucleon matrix elements

    SciTech Connect

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joo, Balint; Lin, Huey -Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-08

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1-flavor ensemble with lattices of size 323 × 64 generated using the rational hybrid Monte Carlo algorithm at a = 0.081 fm and with Mπ = 312 MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. As a result, a detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep → ∞ estimates is presented.

  6. Controlling excited-state contamination in nucleon matrix elements

    SciTech Connect

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.

  7. Smad4 regulates growth plate matrix production and chondrocyte polarity

    PubMed Central

    Whitaker, Amanda T.; Berthet, Ellora; Cantu, Andrea; Laird, Diana J.

    2017-01-01

    ABSTRACT Smad4 is an intracellular effector of the TGFβ family that has been implicated in Myhre syndrome, a skeletal dysplasia characterized by short stature, brachydactyly and stiff joints. The TGFβ pathway also plays a critical role in the development, organization and proliferation of the growth plate, although the exact mechanisms remain unclear. Skeletal phenotypes in Myhre syndrome overlap with processes regulated by the TGFβ pathway, including organization and proliferation of the growth plate and polarity of the chondrocyte. We used in vitro and in vivo models of Smad4 deficiency in chondrocytes to test the hypothesis that deregulated TGFβ signaling leads to aberrant extracellular matrix production and loss of chondrocyte polarity. Specifically, we evaluated growth plate chondrocyte polarity in tibiae of Col2-Cre+/−;Smad4fl/fl mice and in chondrocyte pellet cultures. In vitro and in vivo, Smad4 deficiency decreased aggrecan expression and increased MMP13 expression. Smad4 deficiency disrupted the balance of cartilage matrix synthesis and degradation, even though the sequential expression of growth plate chondrocyte markers was intact. Chondrocytes in Smad4-deficient growth plates also showed evidence of polarity defects, with impaired proliferation and ability to undergo the characteristic changes in shape, size and orientation as they differentiated from resting to hypertrophic chondrocytes. Therefore, we show that Smad4 controls chondrocyte proliferation, orientation, and hypertrophy and is important in regulating the extracellular matrix composition of the growth plate. PMID:28167493

  8. How Glassy States Affect Brown Carbon Production?

    NASA Astrophysics Data System (ADS)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( < 20% RH) at 293 K. Optical properties and the AMS spectra were measured for toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  9. Final state-selected spectra in unimolecular reactions: A transition-state-based random matrix model for overlapping resonances

    SciTech Connect

    Peskin, U.; Miller, W.H.; Reisler, H.

    1995-06-08

    Final state-selected spectra in unimolecular decomposition are obtained by a random matrix version of Feshbach`s optical model. The number of final states which are independently coupled to the molecular quasibound states is identified with the number of states at the dividing surface of transition state theory (TST). The coupling of the transition state to the molecular complex is modeled via a universal random matrix effective Hamiltonian which is characterized by its resonance eigenstates and provides the correct average unimolecular decay rate. The transition from nonoverlapping resonances which are associated with isolated Lorentzian spectral peaks, to overlapping resonances, associated with more complex spectra, is characterized in terms of deviations from a {chi}{sup 2}-like distribution of the resonance widths and the approach to a random phase-distribution of the resonance scattering amplitudes. The evolution of the system from a tight transition state to reaction products is treated explicitly as a scattering process where specific dynamics can be incorporated. Comparisons with recently measured final state-selected spectra and rotational distributions for the unimolecular reaction of NO{sub 2} show that the present model provides a useful new approach for understanding and interpreting experimental results which are dominated by overlapping resonances.

  10. Matrix product unitaries: structure, symmetries, and topological invariants

    NASA Astrophysics Data System (ADS)

    Cirac, J. Ignacio; Perez-Garcia, David; Schuch, Norbert; Verstraete, Frank

    2017-08-01

    Matrix product vectors form the appropriate framework to study and classify one-dimensional quantum systems. In this work, we develop the structure theory of matrix product unitary operators (MPUs) which appear e.g. in the description of time evolutions of one-dimensional systems. We prove that all MPUs have a strict causal cone, making them quantum cellular automata (QCAs), and derive a canonical form for MPUs which relates different MPU representations of the same unitary through a local gauge. We use this canonical form to prove an index theorem for MPUs which gives the precise conditions under which two MPUs are adiabatically connected, providing an alternative derivation to that of (Gross et al 2012 Commun. Math. Phys. 310 419) for QCAs. We also discuss the effect of symmetries on the MPU classification. In particular, we characterize the tensors corresponding to MPU that are invariant under conjugation, time reversal, or transposition. In the first case, we give a full characterization of all equivalence classes. Finally, we give several examples of MPU possessing different symmetries.

  11. Matrix algorithms for solving (in)homogeneous bound state equations.

    PubMed

    Blank, M; Krassnigg, A

    2011-07-01

    In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe-Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe-Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems.

  12. Matrix algorithms for solving (in)homogeneous bound state equations

    PubMed Central

    Blank, M.; Krassnigg, A.

    2011-01-01

    In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe–Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe–Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems. PMID:21760640

  13. Block product density matrix embedding theory for strongly correlated spin systems

    NASA Astrophysics Data System (ADS)

    Gunst, Klaas; Wouters, Sebastian; De Baerdemacker, Stijn; Van Neck, Dimitri

    2017-05-01

    Density matrix embedding theory (DMET) is a relatively new technique for the calculation of strongly correlated systems. Recently, block product DMET (BPDMET) was introduced for the study of spin systems such as the antiferromagnetic J1-J2 model on the square lattice. In this paper, we extend the variational Ansatz of BPDMET using spin-state optimization, yielding improved results. We apply the same techniques to the Kitaev-Heisenberg model on the honeycomb lattice, comparing the results when using several types of clusters. Energy profiles and correlation functions are investigated. A diagonalization in the tangent space of the variational approach yields information on the excited states and the corresponding spectral functions.

  14. State power plant productivity programs

    SciTech Connect

    Not Available

    1981-02-01

    The findings of a working group formed to review the status of efforts by utilities and utility regulators to increase the availability and reliability of generating units are presented. Representatives from nine state regulatory agencies, NRRI, and DOE, participated on the Working Group. The Federal government has been working cooperatively with utilities, utility organizations, and with regulators to encourage and facilitate improvements in power plant productivity. Cooperative projects undertaken with regulatory and energy commissions in California, Illinois, New York, Ohio, Texas, North Carolina and Mighigan are described. Following initiation of these cooperative projects, DOE funded a survey to determine which states were explicitly addressing power plant productivity through the regulatory process. The Working Group was formed following completion of this survey. The Working Group emphasized the need for those power plant productivity improvements which are cost effective. The cost effectiveness of proposed availability improvement projects should be determined within the context of opportunities for operating and capital improvements available to an entire utility. The Working Group also identified the need for: allowing for plant designs that have a higher construction cost, but are also more reliable; allowing for recovery and reducing recovery lags for productivity-related capital expenditures; identifying and reducing disincentives in the regulatory process; ascertaining that utilities have sufficient money available to undertake timely maintenance; and support of EPRI and NERC to develop a relevant and accurate national data base. The DOE views these as extremely important aspects of any regulatory program to improve power plant productivity.

  15. Production of extracellular polysaccharide matrix by Zoogloea ramigera.

    PubMed

    Parsons, A B; Dugan, P R

    1971-04-01

    Zoogloea ramigera 115 synthesized large amounts of matrix polymer from fructose, galactose, glucose, lactose, mannose, soluble starch, and sucrose when these carbohydrates were used as supplements to a chemically defined medium. All of them supported polymer synthesis to the extent that cultures thickened to a gel. Concentration of carbohydrate nutrients in the range 0.5 to 2.0% was not a critical factor in determining eventual total thickening to a gel, except in relation to the incubation time required. Glucose disappeared from the growth medium rapidly and correlated with increasing cell growth and poly-beta-hydroxybutyrate (PHB) accumulation. PHB concentration decreased as extracellular polymer was synthesized, suggesting a link between PHB and extracellular polymer production.

  16. Production of Extracellular Polysaccharide Matrix by Zoogloea ramigera

    PubMed Central

    Parsons, Alice B.; Dugan, Patrick R.

    1971-01-01

    Zoogloea ramigera 115 synthesized large amounts of matrix polymer from fructose, galactose, glucose, lactose, mannose, soluble starch, and sucrose when these carbohydrates were used as supplements to a chemically defined medium. All of them supported polymer synthesis to the extent that cultures thickened to a gel. Concentration of carbohydrate nutrients in the range 0.5 to 2.0% was not a critical factor in determining eventual total thickening to a gel, except in relation to the incubation time required. Glucose disappeared from the growth medium rapidly and correlated with increasing cell growth and poly-β-hydroxybutyrate (PHB) accumulation. PHB concentration decreased as extracellular polymer was synthesized, suggesting a link between PHB and extracellular polymer production. PMID:5575568

  17. Production of matrix metalloproteinases in response to mycobacterial infection.

    PubMed

    Quiding-Järbrink, M; Smith, D A; Bancroft, G J

    2001-09-01

    Matrix metalloproteinases (MMPs) constitute a large family of enzymes with specificity for the various proteins of the extracellular matrix which are implicated in tissue remodeling processes and chronic inflammatory conditions. To investigate the role of MMPs in immunity to mycobacterial infections, we incubated murine peritoneal macrophages with viable Mycobacterium bovis BCG or Mycobacterium tuberculosis H37Rv and assayed MMP activity in the supernatants by zymography. Resting macrophages secreted only small amounts of MMP-9 (gelatinase B), but secretion increased dramatically in a dose-dependent manner in response to either BCG or M. tuberculosis in vitro. Incubation with mycobacteria also induced increased MMP-2 (gelatinase A) activity. Neutralization of tumor necrosis alpha (TNF-alpha), and to a lesser extent interleukin 18 (IL-18), substantially reduced MMP production in response to mycobacteria. Exogenous addition of TNF-alpha or IL-18 induced macrophages to express MMPs, even in the absence of bacteria. The immunoregulatory cytokines gamma interferon (IFN-gamma), IL-4, and IL-10 all suppressed BCG-induced MMP production, but through different mechanisms. IFN-gamma treatment increased macrophage secretion of TNF-alpha but still reduced their MMP activity. Conversely, IL-4 and IL-10 seemed to act by reducing the amount of TNF-alpha available to the macrophages. Finally, infection of BALB/c or severe combined immunodeficiency (SCID) mice with either BCG or M. tuberculosis induced substantial increases in MMP-9 activity in infected tissues. In conclusion, we show that mycobacterial infection induces MMP-9 activity both in vitro and in vivo and that this is regulated by TNF-alpha, IL-18, and IFN-gamma. These findings indicate a possible contribution of MMPs to tissue remodeling processes that occur in mycobacterial infections.

  18. Uncertainty evaluation for the matrix ``solidified state'' of fissionable elements

    NASA Astrophysics Data System (ADS)

    Iliescu, Elena; Iancso, Georgeta

    2012-09-01

    In case of the analysis of the radioactive liquid samples, no matter the relative physical analysis method used, two impediments act that belong to the behavior in time of the dispersion state of the liquid samples to be analyzed and of the standard used in the analysis. That is, one of them refers to the state of the sample to be analyzed when being sampled, which "alter" during the time elapsed from sampling up to the analysis of the sample. The other impediment is the natural change of the dispersion state of the standard radioactive solutions, due to the occurrence and evolution in time of the radiocolloidal and pseudo-radiocolloidal states. These radiocolloidal states are states of aggregation and they lead to the destruction of the homogeneity of the solutions. Taking into consideration the advantages offered by the relative physical methods of analysis as against the chemical or the radiochemical ones, different ways of eliminating these impediments have been tried. We eliminated these impediments processing the liquid reference materials (the solutions calibrated in radionuclides of interest), immediately after the preparation. This processing changes the liquid physical state of the reference materials in a "solidified state". Through this procedure the dispersion states of the samples, practically, can no longer be essentially modified in time and also ensure the uniform distribution of the radionuclides of interest in the elemental matrix of the samples "state solidified". The homogeneity of the distribution of the atoms of the radionuclides from the samples "solidified state" was checked up through the track micromapping technique of the alpha particles. Through this technique, in the chemically etched track detectors that were put in direct contact with the sample for a determined period of time, the alpha exposure time of the detectors, micromaps of alpha tracks were obtained. These micromaps are retorts through tracks of the distributions atoms of

  19. Uncertainty evaluation for the matrix 'solidified state' of fissionable elements

    SciTech Connect

    Iliescu, Elena; Iancso, Georgeta

    2012-09-06

    In case of the analysis of the radioactive liquid samples, no matter the relative physical analysis method used, two impediments act that belong to the behavior in time of the dispersion state of the liquid samples to be analyzed and of the standard used in the analysis. That is, one of them refers to the state of the sample to be analyzed when being sampled, which 'alter' during the time elapsed from sampling up to the analysis of the sample. The other impediment is the natural change of the dispersion state of the standard radioactive solutions, due to the occurrence and evolution in time of the radiocolloidal and pseudo-radiocolloidal states. These radiocolloidal states are states of aggregation and they lead to the destruction of the homogeneity of the solutions. Taking into consideration the advantages offered by the relative physical methods of analysis as against the chemical or the radiochemical ones, different ways of eliminating these impediments have been tried. We eliminated these impediments processing the liquid reference materials (the solutions calibrated in radionuclides of interest), immediately after the preparation. This processing changes the liquid physical state of the reference materials in a 'solidified state'. Through this procedure the dispersion states of the samples, practically, can no longer be essentially modified in time and also ensure the uniform distribution of the radionuclides of interest in the elemental matrix of the samples 'state solidified'. The homogeneity of the distribution of the atoms of the radionuclides from the samples 'solidified state' was checked up through the track micromapping technique of the alpha particles. Through this technique, in the chemically etched track detectors that were put in direct contact with the sample for a determined period of time, the alpha exposure time of the detectors, micromaps of alpha tracks were obtained. These micromaps are retorts through tracks of the distributions atoms of

  20. Measurement of spin correlations in t-tbar production using the matrix element method in the muon+jets final state in pp collisions at √(s) = 8 TeV

    DOE PAGES

    Khachatryan, Vardan

    2016-05-06

    The consistency of the spin correlation strength in top quark pair production with the standard model (SM) prediction is tested in the muon+jets final state. The events are selected from pp collisions, collected by the CMS detector, at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. We then compare the data with the expectation for the spin correlation predicted by the SM and with the expectation of no correlation. Furthermore, by using a template fit method, the fraction of events that show SM spin correlations is measured to be 0.72 ±0.08 (stat)+0.15 -0.13 (syst),more » representing the most precise measurement of this quantity in the lepton+jets final state to date.« less

  1. Measurement of spin correlations in t t ‾ production using the matrix element method in the muon+jets final state in pp collisions at √{ s} = 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; De Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El Sawy, M.; El-khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.

    2016-07-01

    The consistency of the spin correlation strength in top quark pair production with the standard model (SM) prediction is tested in the muon+jets final state. The events are selected from pp collisions, collected by the CMS detector, at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb-1. The data are compared with the expectation for the spin correlation predicted by the SM and with the expectation of no correlation. Using a template fit method, the fraction of events that show SM spin correlations is measured to be 0.72 ± 0.08(stat)-0.13+0.15 (syst), representing the most precise measurement of this quantity in the muon+jets final state to date.

  2. Vascular Canals in Permanent Hyaline Cartilage: Development, Corrosion of Nonmineralized Cartilage Matrix, and Removal of Matrix Degradation Products.

    PubMed

    Gabner, Simone; Häusler, Gabriele; Böck, Peter

    2016-12-20

    Core areas in voluminous pieces of permanent cartilage are metabolically supplied via vascular canals (VCs). We studied cartilage corrosion and removal of matrix degradation products during the development of VCs in nose and rib cartilage of piglets. Conventional staining methods were used for glycosaminoglycans, immunohistochemistry was performed to demonstrate collagens types I and II, laminin, Ki-67, von Willebrand factor, VEGF, macrophage marker MAC387, S-100 protein, MMPs -2,-9,-13,-14, and their inhibitors TIMP1 and TIMP2. VCs derived from connective tissue buds that bulged into cartilage matrix ("perichondrial papillae", PPs). Matrix was corroded at the tips of PPs or resulting VCs. Connective tissue stromata in PPs and VCs comprised an axial afferent blood vessel, peripherally located wide capillaries, fibroblasts, newly synthesized matrix, and residues of corroded cartilage matrix (collagen type II, acidic proteoglycans). Multinucleated chondroclasts were absent, and monocytes/macrophages were not seen outside the blood vessels. Vanishing acidity characterized areas of extracellular matrix degradation ("preresorptive layers"), from where the dismantled matrix components diffused out. Leached-out material stained in an identical manner to intact cartilage matrix. It was detected in the stroma and inside capillaries and associated downstream veins. We conclude that the delicate VCs are excavated by endothelial sprouts and fibroblasts, whilst chondroclasts are specialized to remove high volumes of mineralized cartilage. VCs leading into permanent cartilage can be formed by corrosion or inclusion, but most VCs comprise segments that have developed in either of these ways. Anat Rec, 2016. © 2016 Wiley Periodicals, Inc.

  3. Matrix membrane big bangs and D-brane production

    SciTech Connect

    Das, Sumit R.; Michelson, Jeremy

    2006-06-15

    We construct matrix membrane theory in pp wave backgrounds that have a null linear dilaton in Type IIB string theory. Such backgrounds can serve as toy models of big bang cosmologies. At late times only Abelian degrees of freedom survive, and if the Kaluza-Klein modes along one of the directions of the membrane decouple, standard perturbative strings emerge. Near the 'big bang', non-Abelian configurations of fuzzy ellipsoids are present, as in the Type IIA theories. A generic configuration of these shrink to zero volume at late times. However, the Kaluza-Klein modes (which can be thought of as states of (p,q) strings in the original IIB theory) can be generically produced in pairs in both pp wave and flat backgrounds in the presence of time dependence. Indeed, if we require that at late times the theory evolves to the perturbative string vacuum, these modes must be prepared in a squeezed state with a thermal distribution at early times.

  4. Matrix product operators for symmetry-protected topological phases: Gauging and edge theories

    NASA Astrophysics Data System (ADS)

    Williamson, Dominic J.; Bultinck, Nick; Mariën, Michael; Şahinoǧlu, Mehmet B.; Haegeman, Jutho; Verstraete, Frank

    2016-11-01

    Projected entangled pair states (PEPS) provide a natural ansatz for the ground states of gapped, local Hamiltonians in which global characteristics of a quantum state are encoded in properties of local tensors. We develop a framework to describe onsite symmetries, as occurring in systems exhibiting symmetry-protected topological (SPT) quantum order, in terms of virtual symmetries of the local tensors expressed as a set of matrix product operators (MPOs) labeled by distinct group elements. These MPOs describe the possibly anomalous symmetry of the edge theory, whose local degrees of freedom are concretely identified in a PEPS. A classification of SPT phases is obtained by studying the obstructions to continuously deforming one set of MPOs into another, recovering the results derived for fixed-point models [Chen et al., Phys. Rev. B 87, 155114 (2013), 10.1103/PhysRevB.87.155114]. Our formalism accommodates perturbations away from fixed-point models, opening the possibility of studying phase transitions between different SPT phases. We also demonstrate that applying the recently developed quantum state gauging procedure to a SPT PEPS yields a PEPS with topological order determined by the initial symmetry MPOs. The MPO framework thus unifies the different approaches to classifying SPT phases, via fixed-point models, boundary anomalies, or gauging the symmetry, into the single problem of classifying inequivalent sets of matrix product operator symmetries that are defined purely in terms of a PEPS.

  5. Coherent state topological cluster state production

    NASA Astrophysics Data System (ADS)

    Myers, C. R.; Ralph, T. C.

    2011-11-01

    We present results illustrating the construction of three-dimensional (3D) topological cluster states with coherent state logic. Such a construction would be ideally suited for wave-guide implementations of optical quantum information processing. We investigate the use of a deterministic controlled-Z gate, showing that given large enough initial cat states, it is possible to build large 3D cluster states. We model X and Z basis measurements by displaced photon number detections and x-quadrature homodyne detections, respectively. We investigate whether teleportation can aid in cluster state construction and whether this introduction of located loss errors fits within the topological cluster state framework.

  6. Chemical state of fission products in irradiated uranium carbide fuel

    NASA Astrophysics Data System (ADS)

    Arai, Yasuo; Iwai, Takashi; Ohmichi, Toshihiko

    1987-12-01

    The chemical state of fission products in irradiated uranium carbide fuel has been estimated by equilibrium calculation using the SOLGASMIX-PV program. Solid state fission products are distributed to the fuel matrix, ternary compounds, carbides of fission products and intermetallic compounds among the condensed phases appearing in the irradiated uranium carbide fuel. The chemical forms are influenced by burnup as well as stoichiometry of the fuel. The results of the present study almost agree with the experimental ones reported for burnup simulated carbides.

  7. Quercetin Attenuates Lactate Production and Extracellular Matrix Secretion in Keratoconus

    PubMed Central

    McKay, T. B.; Lyon, D.; Sarker-Nag, A.; Priyadarsini, S.; Asara, J. M.; Karamichos, D.

    2015-01-01

    Keratoconus(KC) is an ecstatic corneal disease leading to corneal-thinning and the formation of a cone-like cornea. Elevated lactate levels, increased oxidative stress, and myofibroblast formation have all been previously reported. In the current study, we assess the role of Quercetin on collagen secretion and myofibroblast formation in KC in vitro. Human corneal fibroblasts(HCFs) and human keratoconus cells(HKCs) were treated with a stable Vitamin C derivative and cultured for 4 weeks, stimulating formation of a self-assembled extracellular matrix. All samples were analyzed using Western blots and targeted tandem mass spectrometry. Our data showed that Quercetin significantly down regulates myofibroblast differentiation and fibrotic markers, such as α-smooth muscle actin (α-SMA) and Collagen III (Col III), in both HCFs and HKCs. Collagen III secretion was reduced 80% in both HCFs and HKCs following Quercetin treatment. Furthermore, Quercetin reduced lactate production by HKCs to normal HCF levels. Quercetin down regulated TGF-βR2 and TGF-β2 expression in HKCs suggesting a significant link to the TGF-β pathway. These results assert that Quercetin is a key regulator of fibrotic markers and ECM assembly by modulating cellular metabolism and TGF-β signaling. Our study suggests that Quercetin is a potential therapeutic for treatment of corneal dystrophies, such as KC. PMID:25758533

  8. A state interaction spin-orbit coupling density matrix renormalization group method.

    PubMed

    Sayfutyarova, Elvira R; Chan, Garnet Kin-Lic

    2016-06-21

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4](3-), determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.

  9. Quorum Sensing Influences Burkholderia thailandensis Biofilm Development and Matrix Production.

    PubMed

    Tseng, Boo Shan; Majerczyk, Charlotte D; Passos da Silva, Daniel; Chandler, Josephine R; Greenberg, E Peter; Parsek, Matthew R

    2016-10-01

    Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process. B. thailandensis biofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by "dome" structures filled with biofilm matrix material. We showed that this process was dependent on QS. B. thailandensis has three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the three B. thailandensis QS systems, we show that QS-1 is required for proper biofilm development, since a btaR1 mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. The btaR1 mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions. The saprophyte Burkholderia thailandensis is a close relative of the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms, B. thailandensis is an ideal model organism for

  10. Vector and matrix states for Mueller matrices of nondepolarizing optical media.

    PubMed

    Kuntman, Ertan; Ali Kuntman, M; Arteaga, Oriol

    2017-01-01

    Nondepolarizing Mueller matrices contain up to seven independent parameters. However, these seven parameters typically do not appear explicitly among the measured 16 parameters of a Mueller matrix, so that they are not directly accessible for physical interpretation. This work shows that all the information contained in a nondepolarizing Mueller matrix can be conveniently expressed in terms of a four component covariance vector state or a generating 4×4 matrix, which can be understood as a matrix state. The generating matrix, besides being directly related to the nondepolarizing Mueller matrix, mimics all properties of the Jones matrix and provides a powerful mathematical tool for formulating all properties of nondepolarizing systems, including the Mueller symmetries and the anisotropy coefficients.

  11. Linear response theory for the density matrix renormalization group: Efficient algorithms for strongly correlated excited states

    NASA Astrophysics Data System (ADS)

    Nakatani, Naoki; Wouters, Sebastian; Van Neck, Dimitri; Chan, Garnet Kin-Lic

    2014-01-01

    Linear response theory for the density matrix renormalization group (DMRG-LRT) was first presented in terms of the DMRG renormalization projectors [J. J. Dorando, J. Hachmann, and G. K.-L. Chan, J. Chem. Phys. 130, 184111 (2009)]. Later, with an understanding of the manifold structure of the matrix product state (MPS) ansatz, which lies at the basis of the DMRG algorithm, a way was found to construct the linear response space for general choices of the MPS gauge in terms of the tangent space vectors [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011)]. These two developments led to the formulation of the Tamm-Dancoff and random phase approximations (TDA and RPA) for MPS. This work describes how these LRTs may be efficiently implemented through minor modifications of the DMRG sweep algorithm, at a computational cost which scales the same as the ground-state DMRG algorithm. In fact, the mixed canonical MPS form implicit to the DMRG sweep is essential for efficient implementation of the RPA, due to the structure of the second-order tangent space. We present ab initio DMRG-TDA results for excited states of polyenes, the water molecule, and a [2Fe-2S] iron-sulfur cluster.

  12. Linear response theory for the density matrix renormalization group: efficient algorithms for strongly correlated excited states.

    PubMed

    Nakatani, Naoki; Wouters, Sebastian; Van Neck, Dimitri; Chan, Garnet Kin-Lic

    2014-01-14

    Linear response theory for the density matrix renormalization group (DMRG-LRT) was first presented in terms of the DMRG renormalization projectors [J. J. Dorando, J. Hachmann, and G. K.-L. Chan, J. Chem. Phys. 130, 184111 (2009)]. Later, with an understanding of the manifold structure of the matrix product state (MPS) ansatz, which lies at the basis of the DMRG algorithm, a way was found to construct the linear response space for general choices of the MPS gauge in terms of the tangent space vectors [J. Haegeman, J. I. Cirac, T. J. Osborne, I. Pižorn, H. Verschelde, and F. Verstraete, Phys. Rev. Lett. 107, 070601 (2011)]. These two developments led to the formulation of the Tamm-Dancoff and random phase approximations (TDA and RPA) for MPS. This work describes how these LRTs may be efficiently implemented through minor modifications of the DMRG sweep algorithm, at a computational cost which scales the same as the ground-state DMRG algorithm. In fact, the mixed canonical MPS form implicit to the DMRG sweep is essential for efficient implementation of the RPA, due to the structure of the second-order tangent space. We present ab initio DMRG-TDA results for excited states of polyenes, the water molecule, and a [2Fe-2S] iron-sulfur cluster.

  13. Scalar products in models with the GL(3) trigonometric R-matrix: General case

    NASA Astrophysics Data System (ADS)

    Pakuliak, S. Z.; Ragoucy, E.; Slavnov, N. A.

    2014-07-01

    We study quantum integrable models with the GL( 3) trigonometric R-matrix solvable by the nested algebraic Bethe ansatz and obtain an explicit representation for a scalar product of generic Bethe vectors in terms of a sum over partitions of Bethe parameters. This representation generalizes the known formula for scalar products in models with the GL( 3)-invariant R-matrix.

  14. A Criterion for Maximally Six-Qubit Entangled States via Coefficient Matrix

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Zha, Xin Wei; Li, Wei

    2017-03-01

    In a recent paper (J. Phys. A: Math. Theor 45, 075308 (2012)), Li et al. established the coefficient matrix of six-qubit entangled states. With an emphasis on six qubits, we present a new criterion for maximally six-qubit entangled states via those coefficient matrices. By calculating the determinants of coefficient matrix, one use the criterion that characterize these states. Moreover, the criterion via the coefficient matrices gives rise to the combination of maximally multi-qubit entangled state(MMES) and matrix, and we believe that the new criterion can play an important role in quantum information.

  15. An Analytical State Transition Matrix for Orbits Perturbed by an Oblate Spheroid

    NASA Technical Reports Server (NTRS)

    Mueller, A. C.

    1977-01-01

    An analytical state transition matrix and its inverse, which include the short period and secular effects of the second zonal harmonic, were developed from the nonsingular PS satellite theory. The fact that the independent variable in the PS theory is not time is in no respect disadvantageous, since any explicit analytical solution must be expressed in the true or eccentric anomaly. This is shown to be the case for the simple conic matrix. The PS theory allows for a concise, accurate, and algorithmically simple state transition matrix. The improvement over the conic matrix ranges from 2 to 4 digits accuracy.

  16. Recursive bivariate enhanced multivariance products representation to tridiagonalize arrowheaded matrices: Tridiagonal matrix enhanced multivariance products representation (TMEMPR) with weight considerations

    NASA Astrophysics Data System (ADS)

    Okan, Ayla; Demiralp, Metin

    2017-01-01

    In this work, we focus on designing a transformation from arrowheaded to tridiagonal matrices by using a novel method "Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR)". We have quite recently developed "Arrow-headed Enhanced Multivariance Products Representation for A Kernel" decomposition method which produces arrowheaded core matrices. However tridiagonal matrix forms are preferred in most scientific fields. "Arrowheaded Enhanced Multivariance Products Representation for a Kernel (AEMPRK)", decomposing a linear univariate integral operator and its kernel which can be expressed as a finite sum of binary products composed of univariate functions, was developed and improved by M. Demiralp and his research group. In principal, TMEMPR, can tridiagonalize any type matrix, so the arrowheaded ones, by using only identity matrix weights or some other matrix weights. We especially emphasize on weight issues here in this work and show certain very interesting reductive features of TMEMPR.

  17. Derivation of the state matrix for dynamic analysis of linear homogeneous media.

    PubMed

    Parra Martinez, Juan Pablo; Dazel, Olivier; Göransson, Peter; Cuenca, Jacques

    2016-08-01

    A method to obtain the state matrix of an arbitrary linear homogeneous medium excited by a plane wave is proposed. The approach is based on projections on the eigenspace of the governing equations matrix. It is an alternative to manually obtaining a linearly independent set of equations by combining the governing equations. The resulting matrix has been validated against previously published derivations for an anisotropic poroelastic medium.

  18. Mississippi State Biodiesel Production Project

    SciTech Connect

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese

  19. An Empirical State Error Covariance Matrix for the Weighted Least Squares Estimation Method

    NASA Technical Reports Server (NTRS)

    Frisbee, Joseph H., Jr.

    2011-01-01

    State estimation techniques effectively provide mean state estimates. However, the theoretical state error covariance matrices provided as part of these techniques often suffer from a lack of confidence in their ability to describe the un-certainty in the estimated states. By a reinterpretation of the equations involved in the weighted least squares algorithm, it is possible to directly arrive at an empirical state error covariance matrix. This proposed empirical state error covariance matrix will contain the effect of all error sources, known or not. Results based on the proposed technique will be presented for a simple, two observer, measurement error only problem.

  20. Activin A suppresses osteoblast mineralization capacity by altering extracellular matrix (ECM) composition and impairing matrix vesicle (MV) production.

    PubMed

    Alves, Rodrigo D A M; Eijken, Marco; Bezstarosti, Karel; Demmers, Jeroen A A; van Leeuwen, Johannes P T M

    2013-10-01

    During bone formation, osteoblasts deposit an extracellular matrix (ECM) that is mineralized via a process involving production and secretion of highly specialized matrix vesicles (MVs). Activin A, a transforming growth factor-β (TGF-β) superfamily member, was previously shown to have inhibitory effects in human bone formation models through unclear mechanisms. We investigated these mechanisms elicited by activin A during in vitro osteogenic differentiation of human mesenchymal stem cells (hMSC). Activin A inhibition of ECM mineralization coincided with a strong decline in alkaline phosphatase (ALP(1)) activity in extracellular compartments, ECM and matrix vesicles. SILAC-based quantitative proteomics disclosed intricate protein composition alterations in the activin A ECM, including changed expression of collagen XII, osteonectin and several cytoskeleton-binding proteins. Moreover, in activin A osteoblasts matrix vesicle production was deficient containing very low expression of annexin proteins. ECM enhanced human mesenchymal stem cell osteogenic development and mineralization. This osteogenic enhancement was significantly decreased when human mesenchymal stem cells were cultured on ECM produced under activin A treatment. These findings demonstrate that activin A targets the ECM maturation phase of osteoblast differentiation resulting ultimately in the inhibition of mineralization. ECM proteins modulated by activin A are not only determinant for bone mineralization but also possess osteoinductive properties that are relevant for bone tissue regeneration.

  1. Entropy Production and Non-Equilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    2013-01-01

    The long-term issue of entropy production in transport phenomena is solved by separating the symmetry of the non-equilibrium density matrix ρ(t) in the von Neumann equation, as ρ(t) = ρs(t) + ρa(t) with the symmetric part ρs(t) and antisymmetric part ρa(t). The irreversible entropy production (dS/dt)irr is given in M. Suzuki, Physica A 390(2011)1904 by (dS/dt)irr = Tr( {H}(dρ s{(t)/dt))}/T for the Hamiltonian {H} of the relevant system. The general formulation of the extended von Neumann equation with energy supply and heat extraction is reviewed from the author's paper (M. S.,Physica A391(2012)1074). irreversibility; entropy production; transport phenomena; electric conduction; thermal conduction; linear response; Kubo formula; steady state; non-equilibrium density matrix; energy supply; symmetry-separated von Neumann equation; unboundedness.

  2. Scalar products in GL(3)-based models with trigonometric R-matrix. Determinant representation

    NASA Astrophysics Data System (ADS)

    Slavnov, N. A.

    2015-03-01

    We study quantum integrable GL(3)-based models with a trigonometric R-matrix solvable by the nested algebraic Bethe ansatz. We derive a determinant representation for a special case of scalar products of Bethe vectors. This representation allows one to find a determinant formula for the form factor of one of the monodromy matrix entries. We also point out an essential difference between form factors in the models with the trigonometric R-matrix and their analogs in GL(3)-invariant models.

  3. Slow ground state molecules from matrix isolation sublimation

    NASA Astrophysics Data System (ADS)

    Oliveira, A. N.; Sacramento, R. L.; Alves, B. X.; Silva, B. A.; Wolff, W.; Cesar, C. L.

    2014-12-01

    We describe the generation and properties of a cryogenic beam of 7Li2 dimers from sublimation of a neon matrix where lithium atoms have been implanted via laser ablation of solid precursors of metallic lithium or lithium hydride (LiH). Different sublimation regimes lead to pulsed molecular beams with different temperatures, densities and forward velocities. With laser absorption spectroscopy these parameters were measured using the molecular 7Li2 (R) transitions A1Σ u+(v\\prime =4,J\\prime =J\\prime\\prime +1) ≤ftarrow X 1Σ g+(v\\prime\\prime =0,J\\prime\\prime =0,1,3). In a typical regime, sublimating a matrix at 16 K, translational temperatures of 6-8 K with a drift velocity of 130 m s-1 in a free expanding pulsed beam with molecular density of 109 cm-3, averaged along the laser axis, were observed. Rotational temperatures around 5-7 K were obtained. In recent experiments we were able to monitor the atomic Li signal—in the D2 line—concomitantly with the molecular signal in order to compare them as a function of the number of ablation pulses. Based on the data and a simple model, we discuss the possibility that a fraction of these molecules are being formed in the matrix, by mating atoms from different ablation pulses, which would open up the way to formation of other more interesting and difficult molecules to be studied at low temperatures. Such a source of cryogenic molecules have possible applications encompassing fundamental physics tests, quantum information studies, cold collisions, chemistry, and trapping.

  4. S-matrix decomposition, natural reaction channels, and the quantum transition state approach to reactive scattering

    NASA Astrophysics Data System (ADS)

    Manthe, Uwe; Ellerbrock, Roman

    2016-05-01

    A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. In contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH4 → H2 + CH3 reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail.

  5. S-matrix decomposition, natural reaction channels, and the quantum transition state approach to reactive scattering.

    PubMed

    Manthe, Uwe; Ellerbrock, Roman

    2016-05-28

    A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. In contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH4 → H2 + CH3 reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail.

  6. An analysis of fiber-matrix interface failure stresses for a range of ply stress states

    NASA Technical Reports Server (NTRS)

    Crews, J. H.; Naik, R. A.; Lubowinski, S. J.

    1993-01-01

    A graphite/bismaleimide laminate was prepared without the usual fiber treatment and was tested over a wide range of stress states to measure its ply cracking strength. These tests were conducted using off-axis flexure specimens and produced fiber-matrix interface failure data over a correspondingly wide range of interface stress states. The absence of fiber treatment, weakened the fiber-matrix interfaces and allowed these tests to be conducted at load levels that did not yield the matrix. An elastic micromechanics computer code was used to calculate the fiber-matrix interface stresses at failure. Two different fiber-array models (square and diamond) were used in these calculations to analyze the effects of fiber arrangement as well as stress state on the critical interface stresses at failure. This study showed that both fiber-array models were needed to analyze interface stresses over the range of stress states. A linear equation provided a close fit to these critical stress combinations and, thereby, provided a fiber-matrix interface failure criterion. These results suggest that prediction procedures for laminate ply cracking can be based on micromechanics stress analyses and appropriate fiber-matrix interface failure criteria. However, typical structural laminates may require elastoplastic stress analysis procedures that account for matrix yielding, especially for shear-dominated ply stress states.

  7. Product spectrum matrix feature extraction and recognition of radar deception jamming

    NASA Astrophysics Data System (ADS)

    Tian, Xiao; Tang, Bin; Gui, Guan

    2013-12-01

    A deception jamming recognition algorithm is proposed based on product spectrum matrix (SPM). Firstly, the product spectral in the different pulse repetition interval (PRI) is calculated, and the product spectral of frequency-slow time is arranged into a two-dimensional matrix. Secondly, non-negative matrix factorisation (NMF) is used to extract the features, and further the separability of the characteristic parameters is analysed by the F-Ratio. Finally, the best features are selected to recognise the deception jamming. The experimental results show that the average recognition accuracy of the proposed deception jamming algorithm is higher than 90% when SNR is greater than 6dB.

  8. The estimation error covariance matrix for the ideal state reconstructor with measurement noise

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    1988-01-01

    A general expression is derived for the state estimation error covariance matrix for the Ideal State Reconstructor when the input measurements are corrupted by measurement noise. An example is presented which shows that the more measurements used in estimating the state at a given time, the better the estimator.

  9. The local indistinguishability of multipartite product states

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Ling; Li, Mao-Sheng; Zheng, Zhu-Jun; Fei, Shao-Ming

    2017-01-01

    We study the perfectly local indistinguishability of multipartite product states. Firstly, we follow the method of Zhang et al. (Phys Rev A 93:012314, 2016) to give another more concise set of 2n-1 orthogonal product states in {mathbb {C}}^m⊗ {mathbb {C}}^n (4le mle n) which can not be distinguished by local operations and classical communication. Then we use the three-dimensional cubes to present some product states which give us an intuitive view on how to construct locally indistinguishable product states in tripartite quantum systems. At last, we give an explicit construction of locally indistinguishable orthogonal product states for general multipartite systems.

  10. Local cloning of two product states

    SciTech Connect

    Ji Zhengfeng; Feng Yuan; Ying Mingsheng

    2005-09-15

    Local quantum operations and classical communication (LOCC) put considerable constraints on many quantum information processing tasks such as cloning and discrimination. Surprisingly, however, discrimination of any two pure states survives such constraints in some sense. We show that cloning is not that lucky; namely, probabilistic LOCC cloning of two product states is strictly less efficient than global cloning. We prove our result by giving explicitly the efficiency formula of local cloning of any two product states.

  11. Strain-Induced Localized States Within the Matrix Continuum of Self-Assembled Quantum Dots

    SciTech Connect

    Popescu, V.; Bester, G.; Zunger, A.

    2009-07-01

    Quantum dot-based infrared detectors often involve transitions from confined states of the dot to states above the minimum of the conduction band continuum of the matrix. We discuss the existence of two types of resonant states within this continuum in self-assembled dots: (i) virtual bound states, which characterize square wells even without strain and (ii) strain-induced localized states. The latter emerge due to the appearance of 'potential wings' near the dot, related to the curvature of the dots. While states (i) do couple to the continuum, states (ii) are sheltered by the wings, giving rise to sharp absorption peaks.

  12. R-matrix with Pseudo-States (RMPS) method: application to CH+ resonances curves

    NASA Astrophysics Data System (ADS)

    Madden, Dermot; Tennyson, Jonathan; Zhang, Rui

    2011-07-01

    In a series of calculations on both electron and positron collisions with small molecules the R-Matrix with Pseudo-States (RMPS) method has been found to recover polarisation effects neglected in other close-coupling methods including the standard R-matrix procedure. The molecular R-Matrix and RMPS methods is being applied to determine low-lying resonance states of CH+ as a function of internuclear separation. Initial results are presented for both a standard R-matrix close-coupling model and for an RMPS calculation. Eigenphase sums and resonances below the 3Π threshold are presented for 2Π total symmetry. These resonances are classified by their quantum defects and compared to previous results. Prospects for these and other calculations using the RMPS method are discussed.

  13. Matrix effect on in-source decay products of peptides in matrix-assisted laser desorption/ionization.

    PubMed

    Asakawa, Daiki; Sakakura, Motoshi; Takayama, Mitsuo

    2012-01-01

    MALDI-ISD of peptides were studied using several salicylic acid derivatives, 2,5-dihydroxybenzoic acid (2,5-DHB), 5-aminosalicylic acid (5-ASA), 5-formylsalicylic acid (5-FSA), and 5-nitrosalicylic acid (5-NSA) as matrices. The difference in the nature of the functional group at the 5-position in the salicylic acid derivatives can dramatically affect the ISD products. The use of 2,5-DHB and 5-ASA leads to "hydrogen-abundant" peptide radicals and subsequent radical-induced N-Cα bonds cleavage. N-Cα bond cleavage gave a c'/z (·) fragment pair and radical z (·)-series fragments gain a hydrogen radical or react with a matrix radical. In contrast, the use of 5-NSA resulted in the production of a "hydrogen-deficient" peptide radical that contained a radical site on the amide nitrogen in the peptide backbone. Subsequently, the radical site on the amide nitrogen induces Cα-C bond dissociation, leading to a (·)/x fragment pair. The a (·)-series ions undergo further hydrogen abstraction to form a-series ions after Cα-C bond cleavage. Since the Pro residue does not contain a nitrogen-centered radical site, Cα-C bond cleavage does not occur. Alternatively, the specific cleavage of CO-N bonds leads to a b (·)/y fragment pair at Xxx-Pro which occurs via hydrogen abstraction from the Cα-H in the Pro residue. The use of 5-FSA generated both a (·)/x- and c'/z (·)-series fragment pairs. An oxidizing matrix provides useful complementary information in MALDI-ISD compared to a reducing matrix for the analysis of amino acid sequencing and site localization in cases of phosphopeptides. MALDI-ISD, when used in conjunction with both reducing and oxidizing matrices is a potentially useful method for de novo peptide sequencing.

  14. Matrix Effect on In-Source Decay Products of Peptides in Matrix-Assisted Laser Desorption/Ionization

    PubMed Central

    Asakawa, Daiki; Sakakura, Motoshi; Takayama, Mitsuo

    2012-01-01

    MALDI-ISD of peptides were studied using several salicylic acid derivatives, 2,5-dihydroxybenzoic acid (2,5-DHB), 5-aminosalicylic acid (5-ASA), 5-formylsalicylic acid (5-FSA), and 5-nitrosalicylic acid (5-NSA) as matrices. The difference in the nature of the functional group at the 5-position in the salicylic acid derivatives can dramatically affect the ISD products. The use of 2,5-DHB and 5-ASA leads to “hydrogen-abundant” peptide radicals and subsequent radical-induced N–Cα bonds cleavage. N–Cα bond cleavage gave a c′/z· fragment pair and radical z·-series fragments gain a hydrogen radical or react with a matrix radical. In contrast, the use of 5-NSA resulted in the production of a “hydrogen-deficient” peptide radical that contained a radical site on the amide nitrogen in the peptide backbone. Subsequently, the radical site on the amide nitrogen induces Cα–C bond dissociation, leading to a·/x fragment pair. The a·-series ions undergo further hydrogen abstraction to form a-series ions after Cα–C bond cleavage. Since the Pro residue does not contain a nitrogen-centered radical site, Cα–C bond cleavage does not occur. Alternatively, the specific cleavage of CO–N bonds leads to a b·/y fragment pair at Xxx–Pro which occurs via hydrogen abstraction from the Cα–H in the Pro residue. The use of 5-FSA generated both a·/x- and c′/z·-series fragment pairs. An oxidizing matrix provides useful complementary information in MALDI-ISD compared to a reducing matrix for the analysis of amino acid sequencing and site localization in cases of phosphopeptides. MALDI-ISD, when used in conjunction with both reducing and oxidizing matrices is a potentially useful method for de novo peptide sequencing. PMID:24349903

  15. Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production: a correction using glutathione depletion

    PubMed Central

    TREBERG, Jason R.; QUINLAN, Casey L.; BRAND, Martin D.

    2010-01-01

    Summary The production of H2O2 by isolated mitochondria is frequently used as a measure of mitochondrial superoxide formation. Matrix superoxide dismutase quantitatively converts matrix superoxide to H2O2. However, matrix enzymes such as the glutathione peroxidases can consume H2O2 and compete with efflux of H2O2, causing an underestimate of superoxide production. To assess this underestimate we depleted matrix glutathione in rat skeletal muscle mitochondria by more than 90% by pretreatment with 1-chloro-2,4-dintrobenzene (CDNB). The pretreatment protocol strongly diminished the mitochondrial capacity to consume exogenous H2O2, consistent with decreased peroxidase capacity, but avoided direct stimulation of superoxide production from complex I. It elevated the observed rates of H2O2 formation from matrix-directed superoxide up to two-fold from several sites of production, defined by substrates and electron transport inhibitors, over a wide range of control rates, from 0.2 to 2.5 nmol H2O2 • min−1 • mg protein−1. Similar results were obtained when glutathione was depleted using monochlorobimane or when soluble matrix peroxidase activity was removed by preparation of submitochondrial particles. The data indicate that the increased H2O2 efflux observed with CDNB pretreatment was a result of glutathione depletion and compromised peroxidase activity. A hyperbolic correction curve was constructed, making H2O2 efflux a more quantitative measure of matrix superoxide production. For rat muscle mitochondria, the correction equation was: [CDNB pretreated rate = control rate + (1.43*(control rate))/(0.55+control rate)]. These results have significant ramifications for the rates and topology of superoxide production by isolated mitochondria. PMID:20491900

  16. Matrix Production, Pigment Synthesis, and Sporulation in a Marine Isolated Strain of Bacillus pumilus

    PubMed Central

    Di Luccia, Blanda; Riccio, Antonio; Vanacore, Adele; Baccigalupi, Loredana; Molinaro, Antonio; Ricca, Ezio

    2015-01-01

    The ability to produce an extracellular matrix and form multicellular communities is an adaptive behavior shared by many bacteria. In Bacillus subtilis, the model system for spore-forming bacteria, matrix production is one of the possible differentiation pathways that a cell can follow when vegetative growth is no longer feasible. While in B. subtilis the genetic system controlling matrix production has been studied in detail, it is still unclear whether other spore formers utilize similar mechanisms. We report that SF214, a pigmented strain of Bacillus pumilus isolated from the marine environment, can produce an extracellular matrix relying on orthologs of many of the genes known to be important for matrix synthesis in B. subtilis. We also report a characterization of the carbohydrates forming the extracellular matrix of strain SF214. The isolation and characterization of mutants altered in matrix synthesis, pigmentation, and spore formation suggest that in strain SF214 the three processes are strictly interconnected and regulated by a common molecular mechanism. PMID:26506360

  17. Matrix Production, Pigment Synthesis, and Sporulation in a Marine Isolated Strain of Bacillus pumilus.

    PubMed

    Di Luccia, Blanda; Riccio, Antonio; Vanacore, Adele; Baccigalupi, Loredana; Molinaro, Antonio; Ricca, Ezio

    2015-10-21

    The ability to produce an extracellular matrix and form multicellular communities is an adaptive behavior shared by many bacteria. In Bacillus subtilis, the model system for spore-forming bacteria, matrix production is one of the possible differentiation pathways that a cell can follow when vegetative growth is no longer feasible. While in B. subtilis the genetic system controlling matrix production has been studied in detail, it is still unclear whether other spore formers utilize similar mechanisms. We report that SF214, a pigmented strain of Bacillus pumilus isolated from the marine environment, can produce an extracellular matrix relying on orthologs of many of the genes known to be important for matrix synthesis in B. subtilis. We also report a characterization of the carbohydrates forming the extracellular matrix of strain SF214. The isolation and characterization of mutants altered in matrix synthesis, pigmentation, and spore formation suggest that in strain SF214 the three processes are strictly interconnected and regulated by a common molecular mechanism.

  18. Effect of advective flow in fractures and matrix diffusion on natural gas production

    SciTech Connect

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; Painter, Scott L.; Hyman, Jeffrey D.

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of free gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.

  19. Effect of advective flow in fractures and matrix diffusion on natural gas production

    DOE PAGES

    Karra, Satish; Makedonska, Nataliia; Viswanathan, Hari S.; ...

    2015-10-12

    Although hydraulic fracturing has been used for natural gas production for the past couple of decades, there are significant uncertainties about the underlying mechanisms behind the production curves that are seen in the field. A discrete fracture network based reservoir-scale work flow is used to identify the relative effect of flow of gas in fractures and matrix diffusion on the production curve. With realistic three dimensional representations of fracture network geometry and aperture variability, simulated production decline curves qualitatively resemble observed production decline curves. The high initial peak of the production curve is controlled by advective fracture flow of freemore » gas within the network and is sensitive to the fracture aperture variability. Matrix diffusion does not significantly affect the production decline curve in the first few years, but contributes to production after approximately 10 years. These results suggest that the initial flushing of gas-filled background fractures combined with highly heterogeneous flow paths to the production well are sufficient to explain observed initial production decline. Lastly, these results also suggest that matrix diffusion may support reduced production over longer time frames.« less

  20. Entangled electron and nuclear spin states in 15N@C60: Density matrix tomography

    NASA Astrophysics Data System (ADS)

    Scherer, Werner; Mehring, Michael

    2008-02-01

    Procedures of the preparation and detection of entangled electron-nuclear spin states in N15@C60 by combining electron spin resonance and electron nuclear double resonance pulse techniques are presented. A quantitative evaluation of the complete density matrix is obtained by a special density matrix tomography. All four Bell states of a two qubit subsystem were analyzed and experimental decoherence times are presented. In addition, we estimate a quantum critical temperature of Tq=7.76K for this system at an electron spin resonance frequency of 95GHz.

  1. Rich structure in the correlation matrix spectra in non-equilibrium steady states

    NASA Astrophysics Data System (ADS)

    Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H.

    2017-01-01

    It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.

  2. Rich structure in the correlation matrix spectra in non-equilibrium steady states.

    PubMed

    Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H

    2017-01-17

    It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.

  3. Rich structure in the correlation matrix spectra in non-equilibrium steady states

    PubMed Central

    Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H.

    2017-01-01

    It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail. PMID:28094322

  4. State Skill Standards: Digital Video & Broadcast Production

    ERIC Educational Resources Information Center

    Bullard, Susan; Tanner, Robin; Reedy, Brian; Grabavoi, Daphne; Ertman, James; Olson, Mark; Vaughan, Karen; Espinola, Ron

    2007-01-01

    The standards in this document are for digital video and broadcast production programs and are designed to clearly state what the student should know and be able to do upon completion of an advanced high-school program. Digital Video and Broadcast Production is a program that consists of the initial fundamentals and sequential courses that prepare…

  5. Nonequilibrium density-matrix description of steady-state quantum transport.

    PubMed

    Dhar, Abhishek; Saito, Keiji; Hänggi, Peter

    2012-01-01

    With this work we investigate the stationary nonequilibrium density matrix of current carrying nonequilibrium steady states of in-between quantum systems that are connected to reservoirs. We describe the analytical procedure to obtain the explicit result for the reduced density matrix of quantum transport when the system, the connecting reservoirs, and the system-reservoir interactions are described by quadratic Hamiltonians. Our procedure is detailed for both electronic transport described by the tight-binding Hamiltonian and for phonon transport described by harmonic Hamiltonians. For the special case of weak system-reservoir couplings, a more detailed description of the steady-state density matrix is obtained. Several paradigm transport setups for interelectrode electron transport and low-dimensional phonon heat flux are elucidated.

  6. A proteinaceous organic matrix regulates carbonate mineral production in the marine teleost intestine

    NASA Astrophysics Data System (ADS)

    Schauer, Kevin L.; Lemoine, Christophe M. R.; Pelin, Adrian; Corradi, Nicolas; Warren, Wesley C.; Grosell, Martin

    2016-10-01

    Marine teleost fish produce CaCO3 in their intestine as part of their osmoregulatory strategy. This precipitation is critical for rehydration and survival of the largest vertebrate group on earth, yet the molecular mechanisms that regulate this reaction are unknown. Here, we isolate and characterize an organic matrix associated with the intestinal precipitates produced by Gulf toadfish (Opsanus beta). Toadfish precipitates were purified using two different methods, and the associated organic matrix was extracted. Greater than 150 proteins were identified in the isolated matrix by mass spectrometry and subsequent database searching using an O. beta transcriptomic sequence library produced here. Many of the identified proteins were enriched in the matrix compared to the intestinal fluid, and three showed no substantial homology to any previously characterized protein in the NCBI database. To test the functionality of the isolated matrix, a micro-modified in vitro calcification assay was designed, which revealed that low concentrations of isolated matrix substantially promoted CaCO3 production, where high concentrations showed an inhibitory effect. High concentrations of matrix also decreased the incorporation of magnesium into the forming mineral, potentially providing an explanation for the variability in magnesium content observed in precipitates produced by different fish species.

  7. A proteinaceous organic matrix regulates carbonate mineral production in the marine teleost intestine

    PubMed Central

    Schauer, Kevin L.; LeMoine, Christophe M. R.; Pelin, Adrian; Corradi, Nicolas; Warren, Wesley C.; Grosell, Martin

    2016-01-01

    Marine teleost fish produce CaCO3 in their intestine as part of their osmoregulatory strategy. This precipitation is critical for rehydration and survival of the largest vertebrate group on earth, yet the molecular mechanisms that regulate this reaction are unknown. Here, we isolate and characterize an organic matrix associated with the intestinal precipitates produced by Gulf toadfish (Opsanus beta). Toadfish precipitates were purified using two different methods, and the associated organic matrix was extracted. Greater than 150 proteins were identified in the isolated matrix by mass spectrometry and subsequent database searching using an O. beta transcriptomic sequence library produced here. Many of the identified proteins were enriched in the matrix compared to the intestinal fluid, and three showed no substantial homology to any previously characterized protein in the NCBI database. To test the functionality of the isolated matrix, a micro-modified in vitro calcification assay was designed, which revealed that low concentrations of isolated matrix substantially promoted CaCO3 production, where high concentrations showed an inhibitory effect. High concentrations of matrix also decreased the incorporation of magnesium into the forming mineral, potentially providing an explanation for the variability in magnesium content observed in precipitates produced by different fish species. PMID:27694946

  8. Scalar products in models with a GL(3) trigonometric R-matrix: Highest coefficient

    NASA Astrophysics Data System (ADS)

    Pakuliak, S. Z.; Ragoucy, E.; Slavnov, N. A.

    2014-03-01

    We study quantum integrable models with a GL (3) trigonometric R-matrix solvable by the nested algebraic Bethe ansatz. Scalar products of Bethe vectors in such models can be expressed in terms of bilinear combinations of the highest coefficients. We show that there exist two different highest coefficients in the models with a GL (3) trigonometric R-matrix. We obtain various representations for the highest coefficients in terms of sums over partitions. We also prove several important properties of the highest coefficients, which are necessary for evaluating the scalar products.

  9. Regulated Production of Mineralization-competent Matrix Vesicles in Hypertrophic Chondrocytes

    PubMed Central

    Kirsch, Thorsten; Nah, Hyun-Duck; Shapiro, Irving M.; Pacifici, Maurizio

    1997-01-01

    Matrix vesicles have a critical role in the initiation of mineral deposition in skeletal tissues, but the ways in which they exert this key function remain poorly understood. This issue is made even more intriguing by the fact that matrix vesicles are also present in nonmineralizing tissues. Thus, we tested the novel hypothesis that matrix vesicles produced and released by mineralizing cells are structurally and functionally different from those released by nonmineralizing cells. To test this hypothesis, we made use of cultures of chick embryonic hypertrophic chondrocytes in which mineralization was triggered by treatment with vitamin C and phosphate. Ultrastructural analysis revealed that both control nonmineralizing and vitamin C/phosphatetreated mineralizing chondrocytes produced and released matrix vesicles that exhibited similar round shape, smooth contour, and average size. However, unlike control vesicles, those produced by mineralizing chondrocytes had very strong alkaline phosphatase activity and contained annexin V, a membrane-associated protein known to mediate Ca2+ influx into matrix vesicles. Strikingly, these vesicles also formed numerous apatite-like crystals upon incubation with synthetic cartilage lymph, while control vesicles failed to do so. Northern blot and immunohistochemical analyses showed that the production and release of annexin V-rich matrix vesicles by mineralizing chondrocytes were accompanied by a marked increase in annexin V expression and, interestingly, were followed by increased expression of type I collagen. Studies on embryonic cartilages demonstrated a similar sequence of phenotypic changes during the mineralization process in vivo. Thus, chondrocytes located in the hypertrophic zone of chick embryo tibial growth plate were characterized by strong annexin V expression, and those located at the chondro–osseous mineralizing border exhibited expression of both annexin V and type I collagen. These findings reveal that

  10. Iron Oxidation States of Matrix in Carbonaceous Chondrites Acfer 094 and MIL 07687

    NASA Astrophysics Data System (ADS)

    Vaccaro, E.; King, A. J.; Schofield, P. F.; Abyaneh, M. K.; Kaulich, B.; Russell, S. S.

    2016-08-01

    STXM Fe-oxidation state study in Acfer 094 and MIL 07687 matrix revealed high Fe3+/ΣFe ratios likely to be a primordial signature. Terrestrial weathering cannot be ruled out but is unlikely to have a pervasive effect throughout entire meteorites.

  11. A group matrix representation relevant to scales of measurement of clinical disease states via stratified vectors.

    PubMed

    Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun

    2016-02-09

    Previously, we applied basic group theory and related concepts to scales of measurement of clinical disease states and clinical findings (including laboratory data). To gain a more concrete comprehension, we here apply the concept of matrix representation, which was not explicitly exploited in our previous work. Starting with a set of orthonormal vectors, called the basis, an operator Rj (an N-tuple patient disease state at the j-th session) was expressed as a set of stratified vectors representing plural operations on individual components, so as to satisfy the group matrix representation. The stratified vectors containing individual unit operations were combined into one-dimensional square matrices [Rj]s. The [Rj]s meet the matrix representation of a group (ring) as a K-algebra. Using the same-sized matrix of stratified vectors, we can also express changes in the plural set of [Rj]s. The method is demonstrated on simple examples. Despite the incompleteness of our model, the group matrix representation of stratified vectors offers a formal mathematical approach to clinical medicine, aligning it with other branches of natural science.

  12. Matrix Metalloproteinase Inhibitors (MMPIs) from Marine Natural Products: the Current Situation and Future Prospects

    PubMed Central

    Zhang, Chen; Kim, Se-Kwon

    2009-01-01

    Matrix metalloproteinases (MMPs) are a family of more than twenty five secreted and membrane-bound zinc-endopeptidases which can degrade extracellular matrix (ECM) components. They also play important roles in a variety of biological and pathological processes. Matrix metalloproteinase inhibitors (MMPIs) have been identified as potential therapeutic candidates for metastasis, arthritis, chronic inflammation and wrinkle formation. Up to present, more than 20,000 new compounds have been isolated from marine organisms, where considerable numbers of these naturally occurring derivatives are developed as potential candidates for pharmaceutical application. Eventhough the quantity of marine derived MMPIs is less when compare with the MMPIs derived from terrestrial materials, huge potential for bioactivity of these marine derived MMPIs has lead to large number of researches. Saccharoids, flavonoids and polyphones, fatty acids are the most important groups of MMPIs derived from marine natural products. In this review we focus on the progress of MMPIs from marine natural products. PMID:19597572

  13. Product quality of parenteral vancomycin products in the United States.

    PubMed

    Nambiar, S; Madurawe, R D; Zuk, S M; Khan, S R; Ellison, C D; Faustino, P J; Mans, D J; Trehy, M L; Hadwiger, M E; Boyne, M T; Biswas, K; Cox, E M

    2012-06-01

    In response to concerns raised about the quality of parenteral vancomycin products, the U.S. Food and Drug Administration (FDA) is investigating the product quality of all FDA-approved parenteral vancomycin products available in the United States. Product quality was evaluated independently at two FDA Office of Testing and Research (FDA-OTR) sites. In the next phase of the investigation, being done in collaboration with the National Institute of Allergy and Infectious Diseases, the in vivo activity of these products will be evaluated in an appropriate animal model. This paper summarizes results of the FDA investigation completed thus far. One site used a validated ultrahigh-pressure liquid chromatography method (OTR-UPLC), and the second site used the high-performance liquid chromatography (HPLC) method for related substances provided in the British Pharmacopeia (BP) monograph for vancomycin intravenous infusion. Similar results were obtained by the two FDA-OTR laboratories using two different analytical methods. The products tested had 90 to 95% vancomycin B (active component of vancomycin) by the BP-HPLC method and 89 to 94% vancomycin by OTR-UPLC methods. Total impurities were 5 to 10% by BP-HPLC and 6 to 11% by OTR-UPLC methods. No single impurity was >2.0%, and the CDP-1 level was ≤ 2.0% across all products. Some variability in impurity profiles of the various products was observed. No adverse product quality issues were identified with the six U.S. vancomycin parenteral products. The quality parameters of all parenteral vancomycin products tested surpassed the United States Pharmacopeia acceptance criteria. Additional testing will characterize in vivo performance characteristics of these products.

  14. Difficulty of distinguishing product states locally

    NASA Astrophysics Data System (ADS)

    Croke, Sarah; Barnett, Stephen M.

    2017-01-01

    Nonlocality without entanglement is a rather counterintuitive phenomenon in which information may be encoded entirely in product (unentangled) states of composite quantum systems in such a way that local measurement of the subsystems is not enough for optimal decoding. For simple examples of pure product states, the gap in performance is known to be rather small when arbitrary local strategies are allowed. Here we restrict to local strategies readily achievable with current technology: those requiring neither a quantum memory nor joint operations. We show that even for measurements on pure product states, there can be a large gap between such strategies and theoretically optimal performance. Thus, even in the absence of entanglement, physically realizable local strategies can be far from optimal for extracting quantum information.

  15. Biotransformation and adsorption of pharmaceutical and personal care products by activated sludge after correcting matrix effects.

    PubMed

    Deng, Yu; Li, Bing; Yu, Ke; Zhang, Tong

    2016-02-15

    This study reported significant suppressive matrix effects in analyses of six pharmaceutical and personal care products (PPCPs) in activated sludge, sterilized activated sludge and untreated sewage by ultra-performance liquid chromatography-tandem mass spectrometry. Quantitative matrix evaluation on selected PPCPs supplemented the limited quantification data of matrix effects on mass spectrometric determination of PPCPs in complex environment samples. The observed matrix effects were chemical-specific and matrix-dependent, with the most pronounced average effect (-55%) was found on sulfadiazine in sterilized activated sludge. After correcting the matrix effects by post-spiking known amount of PPCPs, the removal mechanisms and biotransformation kinetics of selected PPCPs in activated sludge system were revealed by batch experiment. Experimental data elucidated that the removal of target PPCPs in the activated sludge process was mainly by biotransformation while contributions of adsorption, hydrolysis and volatilization could be neglected. High biotransformation efficiency (52%) was observed on diclofenac while other three compounds (sulfadiazine, sulfamethoxazole and roxithromycin) were partially biotransformed by ~40%. The other two compounds, trimethoprim and carbamazepine, showed recalcitrant to biotransformation of the activated sludge.

  16. Equation of state for detonation product gases

    NASA Astrophysics Data System (ADS)

    Nagayama, K.; Kubota, S.

    2014-05-01

    Based on the empirical linear relationship between detonation velocity and loading density, an approximate description for the Chapman-Jouguet (CJ) state for detonation product gases has been presented. Assuming that the Grüneisen parameter is a function only of volume, we obtained the Grüneisen parameter along CJ states. Thermodynamic identity between the Grüneisen parameter and another non-dimensional material parameter R used in the Rice-Walsh type equation of state introduced by Wu and Jing can be used to derive the enthalpy-pressure-volume equation of state for detonation gases. Behavior of this parameter R as a function of pressure is calculated and revealed that their change with pressure is very gradual and seems to approach a finite value with decreasing pressure. Release isentropes from CJ states of several initial density detonation of PETN is shown.

  17. Chitosan Enriched Three-Dimensional Matrix Reduces Inflammatory and Catabolic Mediators Production by Human Chondrocytes

    PubMed Central

    Oprenyeszk, Frederic; Sanchez, Christelle; Dubuc, Jean-Emile; Maquet, Véronique; Henrist, Catherine; Compère, Philippe; Henrotin, Yves

    2015-01-01

    This in vitro study investigated the metabolism of human osteoarthritic (OA) chondrocytes encapsulated in a spherical matrix enriched of chitosan. Human OA chondrocytes were encapsulated and cultured for 28 days either in chitosan-alginate beads or in alginate beads. The beads were formed by slowly passing dropwise either the chitosan 0.6%–alginate 1.2% or the alginate 1.2% solution through a syringe into a 102 mM CaCl2 solution. Beads were analyzed histologically after 28 days. Interleukin (IL)-6 and -8, prostaglandin (PG) E2, matrix metalloproteinases (MMPs), hyaluronan and aggrecan were quantified directly in the culture supernatant by specific ELISA and nitric oxide (NO) by using a colorimetric method based on the Griess reaction. Hematoxylin and eosin staining showed that chitosan was homogeneously distributed through the matrix and was in direct contact with chondrocytes. The production of IL-6, IL-8 and MMP-3 by chondrocytes significantly decreased in chitosan-alginate beads compared to alginate beads. PGE2 and NO decreased also significantly but only during the first three days of culture. Hyaluronan and aggrecan production tended to increase in chitosan-alginate beads after 28 days of culture. Chitosan-alginate beads reduced the production of inflammatory and catabolic mediators by OA chondrocytes and tended to stimulate the synthesis of cartilage matrix components. These particular effects indicate that chitosan-alginate beads are an interesting scaffold for chondrocytes encapsulation before transplantation to repair cartilage defects. PMID:26020773

  18. Excited-State Geometry Optimization with the Density Matrix Renormalization Group, as Applied to Polyenes.

    PubMed

    Hu, Weifeng; Chan, Garnet Kin-Lic

    2015-07-14

    We describe and extend the formalism of state-specific analytic density matrix renormalization group (DMRG) energy gradients, first used by Liu et al. [J. Chem. Theor. Comput. 2013, 9, 4462]. We introduce a DMRG wave function maximum overlap following technique to facilitate state-specific DMRG excited-state optimization. Using DMRG configuration interaction (DMRG-CI) gradients, we relax the low-lying singlet states of a series of trans-polyenes up to C20H22. Using the relaxed excited-state geometries, as well as correlation functions, we elucidate the exciton, soliton, and bimagnon ("single-fission") character of the excited states, and find evidence for a planar conical intersection.

  19. Comparison of optics and electronics for the calculation of matrix-vector products

    NASA Technical Reports Server (NTRS)

    Gary, C. K.

    1992-01-01

    Optical processors are attractive because of their ability to perform massively parallel operations such as matrix vector products. The inherently analog nature of optical calculations requires that optical processors be based on analog computations. While the speed at which such analog operations can be performed as well as the natural parallelism of optical systems are great advantages of optical processors, the analog representation of values severely limits the achievable accuracy. Furthermore, optical processors are limited by the need to convert information to and from the intensity of light. Digitization can be used to increase the accuracy of optical matrix-vector processors, but causes a severe reduction in speed. This paper compares the throughput and power requirements of optical and electronic processors, showing that optical matrix-vector processors can provide a greater number of operations/Watt than conventional electronics.

  20. Production and characterization of para-hydrogen gas for matrix isolation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Sundararajan, K.; Sankaran, K.; Ramanathan, N.; Gopi, R.

    2016-08-01

    Normal hydrogen (n-H2) has 3:1 ortho/para ratio and the production of enriched para-hydrogen (p-H2) from normal hydrogen is useful for many applications including matrix isolation experiments. In this paper, we describe the design, development and fabrication of the ortho-para converter that is capable of producing enriched p-H2. The p-H2 thus produced was probed using infrared and Raman techniques. Using infrared measurement, the thickness and the purity of the p-H2 matrix were determined. The purity of p-H2 was determined to be >99%. Matrix isolation infrared spectra of trimethylphosphate (TMP) and acetylene (C2H2) were studied in p-H2 and n-H2 matrices and the results were compared with the conventional inert matrices.

  1. Measuring external mycelia production of ectomycorrhizal fungi in the field: the soil matrix matters.

    PubMed

    Hendricks, Joseph J; Mitchell, Robert J; Kuehn, Kevin A; Pecot, Stephen D; Sims, Stephanie E

    2006-01-01

    Assessing mycorrhizal fungi production in field settings has been hindered by the inability to measure external mycelia. Recently, external mycelia production was measured in the field using a novel in-growth core technique with acid-washed sand as the in-growth matrix. Here, we tested the assumption that external mycelia production in acid-washed sand is representative of that in native soil. External mycelia production was estimated as the difference in fungal growth between closed (allowing only saprotrophic fungal production) and open (allowing mycorrhizal and saprotrophic fungal production) cores using a factorial design of soil matrices (acid-washed sand vs native) and fertilization treatments (control vs nitrogen (N)) in a longleaf pine (Pinus palustris) plantation. In native soils, the ectomycorrhizal to saprotrophic fungal biomass signal was strong and consistent facilitating the assessment of external mycelia production, which was 300% higher than corresponding rates in acid-washed sand and inversely correlated with soil N. These results demonstrate the efficacy and importance of using native soil as the in-growth matrix to measure ectomycorrhizal fungi external mycelia production in field settings.

  2. Age-Related Effects of Advanced Glycation End Products (Ages) in Bone Matrix on Osteoclastic Resorption.

    PubMed

    Yang, Xiao; Gandhi, Chintan; Rahman, Md Mizanur; Appleford, Mark; Sun, Lian-Wen; Wang, Xiaodu

    2015-12-01

    Advanced glycation end products (AGEs) accumulate in bone extracellular matrix as people age. Previous studies have shown controversial results regarding the role of in situ AGEs accumulation in osteoclastic resorption. To address this issue, this study cultured human osteoclast cells directly on human cadaveric bone slices from different age groups (young and elderly) to warrant its relevance to in vivo conditions. The cell culture was terminated on the 3rd, 7th, and 10th day, respectively, to assess temporal changes in the number of differentiated osteoclasts, the number and size of osteoclastic resorption pits, the amount of bone resorbed, as well as the amount of matrix AGEs released in the medium by resorption. In addition, the in situ concentration of matrix AGEs at each resorption pit was also estimated based on its AGEs autofluorescent intensity. The results indicated that (1) osteoclastic resorption activities were significantly correlated with the donor age, showing larger but shallower resorption pits on the elderly bone substrates than on the younger ones; (2) osteoclast resorption activities were not significantly dependent on the in situ AGEs concentration in bone matrix, and (3) a correlation was observed between osteoclast activities and the concentration of AGEs released by the resorption. These results suggest that osteoclasts tend to migrate away from initial anchoring sites on elderly bone substrate during resorption compared to younger bone substrates. However, such behavior is not directly related to the in situ concentration of AGEs in bone matrix at the resorption sites.

  3. Hot-melt co-extrusion for the production of fixed-dose combination products with a controlled release ethylcellulose matrix core.

    PubMed

    Vynckier, A-K; Dierickx, L; Saerens, L; Voorspoels, J; Gonnissen, Y; De Beer, T; Vervaet, C; Remon, J P

    2014-04-10

    In this study, hot-melt co-extrusion was evaluated as a technique for the production of fixed-dose combination products, using ethylcellulose as a core matrix former to control the release of metoprolol tartrate and a polyethylene oxide-based coat formulation to obtain immediate release of hydrochlorothiazide. By lowering the concentration of the hydrophilic additive polyethylene oxide in the plasticized ethylcellulose matrix or by lowering the drug load, the in vitro metoprolol tartrate release from the core was substantially sustained. The in vitro release of hydrochlorothiazide from the polyethylene oxide/polyethylene glycol coat was completed within 45 min for all formulations. Tensile testing of the core/coat mini-matrices revealed an adequate adhesion between the two layers. Raman mapping showed no migration of active substances. Solid state characterization indicated that the crystalline state of metoprolol tartrate was not affected by thermal processing via hot-melt extrusion, while hydrochlorothiazide was amorphous in the coat. These solid state characteristics were confirmed during the stability study. Considering the bioavailability of metoprolol tartrate after oral administration to dogs, the different co-extruded formulations offered a range of sustained release characteristics. Moreover, high metoprolol tartrate plasma concentrations were reached in dogs allowing the administered dose to be halved.

  4. Application of Heisenberg's S matrix program to the angular scattering of the state-to-state F + H2 reaction.

    PubMed

    Shan, Xiao; Connor, J N L

    2014-08-21

    This paper makes two applications of Heisenberg's S matrix program (HSMP) to the differential cross section (DCS) of the benchmark reaction F + H2(vi = 0, ji = 0, mi = 0) → FH(vf = 3, jf = 3, mf = 0) + H, at a relative translational energy of 0.119 eV (total energy, 0.3872 eV), where v, j, m are vibrational, rotational, and helicity quantum numbers, respectively, for the initial and final states. (1) The first application employs a "weak" version of HSMP in which no potential energy surface (PES) is employed. It uses four simple S matrix parametrizations, two of which are piecewise continuous, and two are piecewise discontinuous, developed earlier by X. Shan and J. N. L. Connor (J. Phys. Chem. A 2012, 116, 11414-11426) for the state-to-state H + D2 reaction. We find that the small-angle DCS is reproduced for only θR ≲ 10° when compared with the DCS for a numerical S matrix obtained in a large-scale quantum scattering computation using a PES. Here θR is the reactive scattering angle. (2) In our second application, we ask the question "Can simple modifications to the parametrized S matrix be made in order to extend the agreement to larger angles?" To answer this question, we adopt a "hybrid" version of HSMP, as outlined by Shan and Connor (Phys. Chem. Chem. Phys. 2011, 13, 8392-8406), which indirectly uses PES information. We make simple Gaussian-type modifications to both the modulus and argument of the S matrix. We then obtain agreement between the DCSs for the modified and numerical S matrices up to θR ≲ 70°, a significant improvement compared with θR ≲ 10° for the unmodified parametrizations. We find that modifying the argument but not the modulus, or modifying the modulus but not the argument, fails to extend the agreement to larger angles. A semiclassical analysis is used to prove that the enhanced small-angle scattering for the "modified-modulus-modified-argument" parametrized S matrix is an example of a forward glory.

  5. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states

    NASA Astrophysics Data System (ADS)

    Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva

    2016-08-01

    We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been

  6. On the equilibrium state of a small system with random matrix coupling to its environment

    NASA Astrophysics Data System (ADS)

    Lebowitz, J. L.; Pastur, L.

    2015-07-01

    We consider a random matrix model of interaction between a small n-level system, S, and its environment, a N-level heat reservoir, R. The interaction between S and R is modeled by a tensor product of a fixed n× n matrix and a N× N Hermitian random matrix. We show that under certain ‘macroscopicity’ conditions on R, the reduced density matrix of the system {{ρ }S}=T{{r}R}ρ S\\cup R(eq), is given by ρ S(c)˜ exp \\{-β {{H}S}\\}, where HS is the Hamiltonian of the isolated system. This holds for all strengths of the interaction and thus gives some justification for using ρ S(c) to describe some nano-systems, like biopolymers, in equilibrium with their environment (Seifert 2012 Rep. Prog. Phys. 75 126001). Our results extend those obtained previously in (Lebowitz and Pastur 2004 J. Phys. A: Math. Gen. 37 1517-34) (Lebowitz et al 2007 Contemporary Mathematics (Providence RI: American Mathematical Society) pp 199-218) for a special two-level system.

  7. Analysis of the Aspergillus fumigatus Biofilm Extracellular Matrix by Solid-State Nuclear Magnetic Resonance Spectroscopy.

    PubMed

    Reichhardt, Courtney; Ferreira, Jose A G; Joubert, Lydia-Marie; Clemons, Karl V; Stevens, David A; Cegelski, Lynette

    2015-11-01

    Aspergillus fumigatus is commonly responsible for lethal fungal infections among immunosuppressed individuals. A. fumigatus forms biofilm communities that are of increasing biomedical interest due to the association of biofilms with chronic infections and their increased resistance to antifungal agents and host immune factors. Understanding the composition of microbial biofilms and the extracellular matrix is important to understanding function and, ultimately, to developing strategies to inhibit biofilm formation. We implemented a solid-state nuclear magnetic resonance (NMR) approach to define compositional parameters of the A. fumigatus extracellular matrix (ECM) when biofilms are formed in RPMI 1640 nutrient medium. Whole biofilm and isolated matrix networks were also characterized by electron microscopy, and matrix proteins were identified through protein gel analysis. The (13)C NMR results defined and quantified the carbon contributions in the insoluble ECM, including carbonyls, aromatic carbons, polysaccharide carbons (anomeric and nonanomerics), aliphatics, etc. Additional (15)N and (31)P NMR spectra permitted more specific annotation of the carbon pools according to C-N and C-P couplings. Together these data show that the A. fumigatus ECM produced under these growth conditions contains approximately 40% protein, 43% polysaccharide, 3% aromatic-containing components, and up to 14% lipid. These fundamental chemical parameters are needed to consider the relationships between composition and function in the A. fumigatus ECM and will enable future comparisons with other organisms and with A. fumigatus grown under alternate conditions.

  8. Analysis of the Aspergillus fumigatus Biofilm Extracellular Matrix by Solid-State Nuclear Magnetic Resonance Spectroscopy

    PubMed Central

    Reichhardt, Courtney; Ferreira, Jose A. G.; Joubert, Lydia-Marie; Clemons, Karl V.; Stevens, David A.

    2015-01-01

    Aspergillus fumigatus is commonly responsible for lethal fungal infections among immunosuppressed individuals. A. fumigatus forms biofilm communities that are of increasing biomedical interest due to the association of biofilms with chronic infections and their increased resistance to antifungal agents and host immune factors. Understanding the composition of microbial biofilms and the extracellular matrix is important to understanding function and, ultimately, to developing strategies to inhibit biofilm formation. We implemented a solid-state nuclear magnetic resonance (NMR) approach to define compositional parameters of the A. fumigatus extracellular matrix (ECM) when biofilms are formed in RPMI 1640 nutrient medium. Whole biofilm and isolated matrix networks were also characterized by electron microscopy, and matrix proteins were identified through protein gel analysis. The 13C NMR results defined and quantified the carbon contributions in the insoluble ECM, including carbonyls, aromatic carbons, polysaccharide carbons (anomeric and nonanomerics), aliphatics, etc. Additional 15N and 31P NMR spectra permitted more specific annotation of the carbon pools according to C-N and C-P couplings. Together these data show that the A. fumigatus ECM produced under these growth conditions contains approximately 40% protein, 43% polysaccharide, 3% aromatic-containing components, and up to 14% lipid. These fundamental chemical parameters are needed to consider the relationships between composition and function in the A. fumigatus ECM and will enable future comparisons with other organisms and with A. fumigatus grown under alternate conditions. PMID:26163318

  9. Mechanisms of fluid-flow-induced matrix production in bone tissue engineering.

    PubMed

    Morris, H L; Reed, C I; Haycock, J W; Reilly, G C

    2010-12-01

    Matrix production by tissue-engineered bone is enhanced when the growing tissue is subjected to mechanical forces and/or fluid flow in bioreactor culture. Cells deposit collagen and mineral, depending upon the mechanical loading that they receive. However, the molecular mechanisms of flow-induced signal transduction in bone are poorly understood. The hyaluronan (HA) glycocalyx has been proposed as a potential mediator of mechanical forces in bone. Using a parallel-plate flow chamber the effects of removal of HA on flow-induced collagen production and NF-kappaB activation in MLO-A5 osteoid osteocytes were investigated. Short periods of fluid flow significantly increased collagen production and induced translocation of the NF-kappaB subunit p65 to the cell's nuclei in 65 per cent of the cell population. Enzymatic removal of the HA coat and antibody blocking of CD44 (a transmembrane protein that binds to HA) eliminated the fluid-flow-induced increase in collagen production but had no effect on the translocation of p65. HA and CD44 appear to play roles in transducing the flow signals that modulate collagen production over long-term culture but not in the short-term flow-induced activation of NF-kappaB, implying that multiple signalling events are initiated from the commencement of flow. Understanding the mechanotransduction events that enable fluid flow to stimulate bone matrix production will allow the optimization of bioreactor design and flow profiles for bone tissue engineering.

  10. Determination of transition dipole matrix elements for the 266 nm photofragmentation of JKM state-selected CD3I

    NASA Astrophysics Data System (ADS)

    Pipes, Leonard C.; Kim, Dae Young; Brandstater, Nathan; Fuglesang, Christopher D.; Baugh, Delroy

    1995-12-01

    The photofragmentation of rovibrational energy-level and magnetic-state polarized ( overlineX1A 1)CD 3I ∣JKM>≡∣111> was performed at 266 nm. The ∣ NK) rotational energy level distribution and the angular momentum polarization of the vibrationless ( overlineX2A″ 2) CD 3 photofragment were measured by (2+1) REMPI. State-selecting the parent CD 3I allowed the elements of the transition dipole matrix (or T-matrix) to be determined by relating the initial system (CD 3I plus photon) statistical tensors to measured product statistical moments. This is believed to be the first report of the experimental determination of T-matrix elements for a chemical reaction.

  11. A Tensor Product Formulation of Strassen's Matrix Multiplication Algorithm with Memory Reduction

    DOE PAGES

    Kumar, B.; Huang, C. -H.; Sadayappan, P.; ...

    1995-01-01

    In this article, we present a program generation strategy of Strassen's matrix multiplication algorithm using a programming methodology based on tensor product formulas. In this methodology, block recursive programs such as the fast Fourier Transforms and Strassen's matrix multiplication algorithm are expressed as algebraic formulas involving tensor products and other matrix operations. Such formulas can be systematically translated to high-performance parallel/vector codes for various architectures. In this article, we present a nonrecursive implementation of Strassen's algorithm for shared memory vector processors such as the Cray Y-MP. A previous implementation of Strassen's algorithm synthesized from tensor product formulas required workingmore » storage of size O(7 n ) for multiplying 2 n × 2 n matrices. We present a modified formulation in which the working storage requirement is reduced to O(4 n ). The modified formulation exhibits sufficient parallelism for efficient implementation on a shared memory multiprocessor. Performance results on a Cray Y-MP8/64 are presented.« less

  12. LOCC indistinguishable orthogonal product quantum states

    PubMed Central

    Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun

    2016-01-01

    We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of 2k+i ⊗ 2l+j (i, j ∈ {0, 1} and i ≥ j ) and 3k+i ⊗ 3l+j (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of 3k+i ⊗ 3l+j is more generalized than the other construction such as Wang et al.’s construction and Zhang et al.’s construction, because it contains the quantum system of not only 2k ⊗ 2l and 2k+1 ⊗ 2l but also 2k ⊗ 2l+1 and 2k+1 ⊗ 2l+1. We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of 2k ⊗ 2l in Wang et al.’s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement. PMID:27377310

  13. LOCC indistinguishable orthogonal product quantum states

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqian; Tan, Xiaoqing; Weng, Jian; Li, Yongjun

    2016-07-01

    We construct two families of orthogonal product quantum states that cannot be exactly distinguished by local operation and classical communication (LOCC) in the quantum system of 2k+i ⊗ 2l+j (i, j ∈ {0, 1} and i ≥ j ) and 3k+i ⊗ 3l+j (i, j ∈ {0, 1, 2}). And we also give the tiling structure of these two families of quantum product states where the quantum states are unextendible in the first family but are extendible in the second family. Our construction in the quantum system of 3k+i ⊗ 3l+j is more generalized than the other construction such as Wang et al.’s construction and Zhang et al.’s construction, because it contains the quantum system of not only 2k ⊗ 2l and 2k+1 ⊗ 2l but also 2k ⊗ 2l+1 and 2k+1 ⊗ 2l+1. We calculate the non-commutativity to quantify the quantumness of a quantum ensemble for judging the local indistinguishability. We give a general method to judge the indistinguishability of orthogonal product states for our two constructions in this paper. We also extend the dimension of the quantum system of 2k ⊗ 2l in Wang et al.’s paper. Our work is a necessary complement to understand the phenomenon of quantum nonlocality without entanglement.

  14. A novel honeycomb matrix for cell immobilization to enhance lactic acid production by Rhizopus oryzae.

    PubMed

    Wang, Zhen; Wang, Yuanliang; Yang, Shang-Tian; Wang, Runguang; Ren, Huiqing

    2010-07-01

    A new support matrix inspired by honeycomb was developed for cell immobilization to control fungal morphology and enhance mass transfer in bioreactor for lactic acid production by Rhizopus oryzae. The immobilization matrix composed of asterisk-shaped fibrous matrices in a honeycomb configuration provided high surface areas for cell attachment and biofilm growth. More than 90% of inoculated spores were adsorbed onto the matrices within 6-8h and after 10h there was no suspended cell in the fermentation broth, indicating a 100% immobilization efficiency. Compared to free-cell fermentation, lactic acid production increased approximately 70% (49.5 g/L vs. 29.3g/L) and fermentation time reduced 33% (48 h vs. 72 h) in shake-flasks with 80 g/L initial glucose. The immobilized-cell fermentation was evaluated for its long-term performance in a bubble-column bioreactor operated in a repeated batch mode for nine cycles in 36 days. The highest lactic acid production was 68.8 g/L, corresponding to a volumetric productivity of 0.72 g/Lh and 93.4% (w/w) lactic acid yield from consumed glucose. The overall yield and productivity were 77.6% and 0.57 g/Lh, respectively. The fermentation can be improved by increasing aeration and mixing in the bubble-column bioreactor.

  15. Rac1 is Required for Matrix Metalloproteinase-13 Production by Chondrocytes in Response to Fibronectin Fragments

    PubMed Central

    Long, David L.; Willey, Jeffrey S.; Loeser, Richard F.

    2013-01-01

    Summary Objective Matrix fragments, including fibronectin fragments (Fnf), accumulate during the development of osteoarthritis (OA) stimulating chondrocyte matrix metalloproteinase (MMP) production. The objective of this study was to determine the role of the small GTPase Rac1 in chondrocyte signaling stimulated by Fnf that results in MMP-13 production. Methods Normal human cartilage was from tissue donors and OA cartilage from knee arthroplasty specimens. Rac1 activity was modulated with a chemical inhibitor, siRNA knock-down, constitutively active (CA)-Rac or dominant negative (DN)-Rac adenovirus. Cells were treated with Fnf or without known Rac activators, epidermal growth factor (EGF) or transforming growth factorα (TGFα). Rac1 activity was measured with a colorometric activity ELISA, pulldown assay, and immunostaining with a monoclonal antibody against active Rac. Results Chemical inhibition of Rac1, as well as knockdown by siRNA and expression of DN-Rac blocked Fnf stimulated MMP-13 production while expression of CA-Rac increased MMP-13. Inhibition of Rho-associated kinase had no effect. EGF and TGFα, but not Fnf, increased Rac1 activity and promoted the increase in MMP-13 above that stimulated by Fnf alone. Active Rac was detected by immunostaining in OA cartilage. Conclusion Rac1 is required for Fnf induced signaling that results in increased MMP-13 production. EGF receptor ligands, which activate Rac, can promote this effect. The presence of active Rac in OA cartilage and the ability of Rac to stimulate MMP-13 production suggests that it could play a role in the cartilage matrix destruction seen in OA. PMID:23460186

  16. A new integral representation for the scalar products of Bethe states for the XXX spin chain

    NASA Astrophysics Data System (ADS)

    Kazama, Yoichi; Komatsu, Shota; Nishimura, Takuya

    2013-09-01

    Based on the method of separation of variables due to Sklyanin, we construct a new integral representation for the scalar products of the Bethe states for the SU(2) XXX spin 1/2 chain obeying the periodic boundary condition. Due to the compactness of the symmetry group, a twist matrix must be introduced at the boundary in order to extract the separated variables properly. Then by deriving the integration measure and the spectrum of the separated variables, we express the inner product of an on-shell and an off-shell Bethe states in terms of a multiple contour integral involving a product of Baxter wave functions. Its form is reminiscent of the integral over the eigenvalues of a matrix model and is expected to be useful in studying the semi-classical limit of the product.

  17. A matrix product algorithm for stochastic dynamics on locally tree-like graphs

    NASA Astrophysics Data System (ADS)

    Barthel, Thomas; de Bacco, Caterina; Franz, Silvio

    In this talk, I describe a novel algorithm for the efficient simulation of generic stochastic dynamics of classical degrees of freedom defined on the vertices of locally tree-like graphs. Such models correspond for example to spin-glass systems, Boolean networks, neural networks, or other technological, biological, and social networks. Building upon the cavity method and ideas from quantum many-body theory, the algorithm is based on a matrix product approximation of the so-called edge messages - conditional probabilities of vertex variable trajectories. The matrix product edge messages (MPEM) are constructed recursively. Computation costs and accuracy can be tuned by controlling the matrix dimensions of the MPEM in truncations. In contrast to Monte Carlo simulations, the approach has a better error scaling and works for both, single instances as well as the thermodynamic limit. Due to the absence of cancellation effects, observables with small expectation values can be evaluated accurately, allowing for the study of decay processes and temporal correlations with unprecedented accuracy. The method is demonstrated for the prototypical non-equilibrium Glauber dynamics of an Ising spin system. Reference: arXiv:1508.03295.

  18. Simplified LCA and matrix methods in identifying the environmental aspects of a product system.

    PubMed

    Hur, Tak; Lee, Jiyong; Ryu, Jiyeon; Kwon, Eunsun

    2005-05-01

    In order to effectively integrate environmental attributes into the product design and development processes, it is crucial to identify the significant environmental aspects related to a product system within a relatively short period of time. In this study, the usefulness of life cycle assessment (LCA) and a matrix method as tools for identifying the key environmental issues of a product system were examined. For this, a simplified LCA (SLCA) method that can be applied to Electrical and Electronic Equipment (EEE) was developed to efficiently identify their significant environmental aspects for eco-design, since a full scale LCA study is usually very detailed, expensive and time-consuming. The environmentally responsible product assessment (ERPA) method, which is one of the matrix methods, was also analyzed. Then, the usefulness of each method in eco-design processes was evaluated and compared using the case studies of the cellular phone and vacuum cleaner systems. It was found that the SLCA and the ERPA methods provided different information but they complemented each other to some extent. The SLCA method generated more information on the inherent environmental characteristics of a product system so that it might be useful for new design/eco-innovation when developing a completely new product or method where environmental considerations play a major role from the beginning. On the other hand, the ERPA method gave more information on the potential for improving a product so that it could be effectively used in eco-redesign which intends to alleviate environmental impacts of an existing product or process.

  19. ACTH enhances chondrogenesis in multipotential progenitor cells and matrix production in chondrocytes.

    PubMed

    Evans, Jodi F; Niu, Qing-Tian; Canas, J Atilio; Shen, Chwan-L; Aloia, John F; Yeh, James K

    2004-07-01

    The association of melanocortin peptide overproduction with enhanced linear growth prompted the current investigation of adrenocorticotropin hormone (ACTH) effects on multipotential chondroprogenitor populations and committed chondrocytes in culture. Two multipotential progenitor populations, rat bone marrow stromal cells (BMSC) and the clonal multipotential cell line RCJ3.1, and two committed chondrocyte populations, resting chondrocytes (RC) isolated from the rib of young rats and the chondrocyte restricted cell line RCJ3.1C5.18 (C5.18), were cultured in differentiation medium plus or minus ACTH. Alcian blue stain was used to quantitate proteoglycan matrix production in all populations treated with a range of ACTH concentrations. Changes in proliferation due to ACTH treatment of all cell types were measured using 3H-thymidine incorporation. Differences in matrix production of ACTH-treated and -untreated RC and C5.18 cells were determined using 3H-proline incorporation. Relative transcript expression of the chondrocyte matrix proteins collagen type II (COLL II) and aggrecan (AGR) in treated and untreated cells was analyzed by Northern blot. Collagen type X (COLL X), a marker of hypertrophic differentiation, was measured in committed chondrocytic populations. Western analysis was used to detect the melanocortin-3 receptor (MC3-R), which was a suspected mediator of the ACTH signal. Matrix deposition was dose-dependently increased by ACTH in all cell populations as measured by alcian blue stain. ACTH treatment increased proliferation in multipotential progenitor populations (BMSC and RCJ3.1) while proliferation was decreased in committed chondrocyte populations (RC and C5.18). Total protein and total cell-associated collagen production were significantly increased by ACTH treatment in committed populations. Relative COLL II and AGR transcript expressions were significantly increased in both the RC- and C5.18-committed population and very significantly increased in

  20. Platelet-rich plasma induces annulus fibrosus cell proliferation and matrix production.

    PubMed

    Pirvu, T N; Schroeder, J E; Peroglio, M; Verrier, S; Kaplan, L; Richards, R G; Alini, M; Grad, S

    2014-04-01

    Platelet-rich plasma (PRP) contains growth factors and creates a 3D structure upon clotting; PRP or platelet lysate (PL) might be considered for annulus fibrosus (AF) repair. Bovine AF cells were cultured with 25% PRP, 50% PRP, 25% PL, 50% PL, or 10% FBS. After 2 and 4 days, DNA, glycosaminoglycan (GAG), and mRNA levels were analyzed. Histology was performed after injection of PRP into an AF defect in a whole disc ex vivo. By day 4, significant increases in DNA content were observed in all treatment groups. All groups also showed elevated GAG synthesis, with highest amounts at 50% PL. Collagen I and II expression was similar between groups; aggrecan, decorin, and versican expression was highest at 25% PL. Injection of PRP into the AF defect resulted in an increased matrix synthesis. Platelet-rich preparations increased the matrix production and cell number and may therefore be considered to promote AF repair.

  1. Exact matrix product decay modes of a boundary driven cellular automaton

    NASA Astrophysics Data System (ADS)

    Prosen, Tomaž; Buča, Berislav

    2017-09-01

    We study integrability properties of a reversible deterministic cellular automaton (Rule 54 of (Bobenko et al 1993 Commun. Math. Phys. 158 127)) and present a bulk algebraic relation and its inhomogeneous extension which allow for an explicit construction of Liouvillian decay modes for two distinct families of stochastic boundary driving. The spectrum of the many-body stochastic matrix defining the time propagation is found to separate into sets, which we call orbitals, and the eigenvalues in each orbital are found to obey a distinct set of Bethe-like equations. We construct the decay modes in the first orbital (containing the leading decay mode) in terms of an exact inhomogeneous matrix product ansatz, study the thermodynamic properties of the spectrum and the scaling of its gap, and provide a conjecture for the Bethe-like equations for all the orbitals and their degeneracy.

  2. Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models.

    PubMed

    Madsen, Jonas S; Lin, Yu-Cheng; Squyres, Georgia R; Price-Whelan, Alexa; de Santiago Torio, Ana; Song, Angela; Cornell, William C; Sørensen, Søren J; Xavier, Joao B; Dietrich, Lars E P

    2015-12-01

    As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities.

  3. Model Predictive Control of A Matrix-Converter Based Solid State Transformer for Utility Grid Interaction

    SciTech Connect

    Xue, Yaosuo

    2016-01-01

    The matrix converter solid state transformer (MC-SST), formed from the back-to-back connection of two three-to-single-phase matrix converters, is studied for use in the interconnection of two ac grids. The matrix converter topology provides a light weight and low volume single-stage bidirectional ac-ac power conversion without the need for a dc link. Thus, the lifetime limitations of dc-bus storage capacitors are avoided. However, space vector modulation of this type of MC-SST requires to compute vectors for each of the two MCs, which must be carefully coordinated to avoid commutation failure. An additional controller is also required to control power exchange between the two ac grids. In this paper, model predictive control (MPC) is proposed for an MC-SST connecting two different ac power grids. The proposed MPC predicts the circuit variables based on the discrete model of MC-SST system and the cost function is formulated so that the optimal switch vector for the next sample period is selected, thereby generating the required grid currents for the SST. Simulation and experimental studies are carried out to demonstrate the effectiveness and simplicity of the proposed MPC for such MC-SST-based grid interfacing systems.

  4. Integrating matrix solution of the hybrid state vector equations for beam vibration

    NASA Technical Reports Server (NTRS)

    Lehman, L. L.

    1982-01-01

    A simple, versatile, and efficient computational technique has been developed for dynamic analysis of linear elastic beam and rod type of structures. Moreover, the method provides a rather general solution approach for two-point boundary value problems that are described by a single independent spatial variable. For structural problems, the method is implemented by a mixed state vector formulation of the differential equations, combined with an integrating matrix solution procedure. Highly accurate solutions are easily achieved with this approach. Example solutions are given for beam vibration problems including discontinuous stiffness and mass parameters, elastic restraint boundary conditions, concentrated inertia loading, and rigid body modes

  5. Dynamics of extracellular matrix production and turnover in tissue engineered cardiovascular structures.

    PubMed

    Stock, U A; Wiederschain, D; Kilroy, S M; Shum-Tim, D; Khalil, P N; Vacanti, J P; Mayer, J E; Moses, M A

    2001-03-26

    Appropriate matrix formation, turnover and remodeling in tissue-engineered small diameter vascular conduits are crucial requirements for their long-term patency and function. This complex process requires the deposition and accumulation of extracellular matrix molecules as well as the remodeling of this extracellular matrix (ECM) by matrix metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs). In this study, we have investigated the dynamics of ECM production and the activity of MMPs and TIMPs in long-term tissue-engineered vascular conduits using quantitative ECM analysis, substrate gel electrophoresis, radiometric enzyme assays and Western blot analyses. Over a time period of 169 days in vivo, levels of elastin and proteoglycans/glycosaminoglycans in tissue-engineered constructs came to approximate those of their native tissue counter parts. The kinetics of collagen deposition and remodeling, however, apparently require a much longer time period. Through the use of substrate gel electrophoresis, proteolytic bands whose molecular weight was consistent with their identification as the active form of MMP-2 (approximately 64--66 kDa) were detected in all native and tissue-engineered samples. Additional proteolytic bands migrating at approximately 72 kDa representing the latent form of MMP-2 were detected in tissue-engineered samples at time points from 5 throughout 55 days. Radiometric assays of MMP-1 activity demonstrated no significant differences between the native and tissue-engineered samples. This study determines the dynamics of ECM production and turnover in a long-term tissue-engineered vascular tissue and highlights the importance of ECM remodeling in the development of successful tissue-engineered vascular structures.

  6. Permutationally Invariant Part of a Density Matrix and Nonseparability of N-Qubit States

    NASA Astrophysics Data System (ADS)

    Gao, Ting; Yan, Fengli; van Enk, S. J.

    2014-05-01

    We consider the concept of "the permutationally invariant (PI) part of a density matrix," which has proven very useful for both efficient quantum state estimation and entanglement characterization of N-qubit systems. We show here that the concept is, in fact, basis dependent but that this basis dependence makes it an even more powerful concept than has been appreciated so far. By considering the PI part ρPI of a general (mixed) N-qubit state ρ, we obtain (i) strong bounds on quantitative nonseparability measures, (ii) a whole hierarchy of multipartite separability criteria (one of which entails a sufficient criterion for genuine N-partite entanglement) that can be experimentally determined by just 2N +1 measurement settings, (iii) a definition of an efficiently measurable degree of separability, which can be used for quantifying a novel aspect of decoherence of N qubits, and (iv) an explicit example that shows there are, for increasing N, genuinely N-partite entangled states lying closer and closer to the maximally mixed state. Moreover, we show that if the PI part of a state is k nonseparable, then so is the actual state. We further argue to add as requirement on any multipartite entanglement measure E that it satisfy E(ρ)≥E(ρPI), even though the operation that maps ρ→ρPI is not local.

  7. 9 CFR 107.2 - Products under State license.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Products under State license. 107.2 Section 107.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF... establishment and product license, any biological product prepared solely for distribution within the State of...

  8. Biogas production: current state and perspectives.

    PubMed

    Weiland, Peter

    2010-01-01

    Anaerobic digestion of energy crops, residues, and wastes is of increasing interest in order to reduce the greenhouse gas emissions and to facilitate a sustainable development of energy supply. Production of biogas provides a versatile carrier of renewable energy, as methane can be used for replacement of fossil fuels in both heat and power generation and as a vehicle fuel. For biogas production, various process types are applied which can be classified in wet and dry fermentation systems. Most often applied are wet digester systems using vertical stirred tank digester with different stirrer types dependent on the origin of the feedstock. Biogas is mainly utilized in engine-based combined heat and power plants, whereas microgas turbines and fuel cells are expensive alternatives which need further development work for reducing the costs and increasing their reliability. Gas upgrading and utilization as renewable vehicle fuel or injection into the natural gas grid is of increasing interest because the gas can be used in a more efficient way. The digestate from anaerobic fermentation is a valuable fertilizer due to the increased availability of nitrogen and the better short-term fertilization effect. Anaerobic treatment minimizes the survival of pathogens which is important for using the digested residue as fertilizer. This paper reviews the current state and perspectives of biogas production, including the biochemical parameters and feedstocks which influence the efficiency and reliability of the microbial conversion and gas yield.

  9. Isolation and identification of oxidation products of syringol from brines and heated meat matrix.

    PubMed

    Bölicke, Sarah-Maria; Ternes, Waldemar

    2016-08-01

    In this study we developed new extraction and detection methods (using HPLC-UV and LC-MS), making it possible to analyze the smoke phenol syringol and its oxidation products nitrososyringol, nitrosyringol, and the syringol dimer 3,3',5,5'-tetramethoxy-1,1'-biphenyl-4,4'-diol, which were identified in heated meat for the first time. Preliminary brine experiments performed with different concentrations of ascorbic acid showed that high amounts of this antioxidant also resulted in almost complete degradation of syringol and to formation of the oxidation products when the brines were heated at low pH values. Heat treatment (80°C) and subsequent simulated digestion applied to meat samples containing syringol, ascorbic acid and different concentrations of sodium nitrite produced 3,3',5,5'-tetramethoxy-1,1'-biphenyl-4,4'-diol even at a low nitrite level in the meat matrix, while nitroso- and nitrosyringol were isolated only after the digestion experiments. Increasing amounts of oxygen in the meat matrix decreased the syringol concentration and enhanced the formation of the reaction products in comparison to the samples without added oxygen.

  10. Modified Matrix Method for Calculating Steady-State Span Loading on Flexible Wings in Subsonic Flight

    NASA Technical Reports Server (NTRS)

    Gainer, Patrick A.; Aiken, William S., Jr.

    1959-01-01

    A method is presented for shortening the computations required to determine the steady-state span loading on flexible wings in subsonic flight. The method makes use of tables of downwash factors to find the necessary aerodynamic-influence coefficients for the application of lifting-line theory. Explicit matrix equations of equilibrium are converted into a matrix power series with a finite number of terms by utilizing certain characteristic properties of matrices. The number of terms in the series is determined by a trial-and-error process dependent upon the required accuracy of the solution. Spanwise distributions of angle of attack, airload, shear, bending moment, and pitching moment are readily obtained as functions of qm(sub R) where q denotes the dynamic pressure and mR denotes the lift-curve slope of a rigid wing. This method is intended primarily to make it practical to solve steady-state aeroelastic problems on the ordinary manually operated desk calculators, but the method is also readily adaptable to automatic computing equipment.

  11. SAMQUA — Quantum Numbers of Compound Nuclear States for R-Matrix Analyses

    NASA Astrophysics Data System (ADS)

    Bouland, Olivier; Larson, Nancy M.; Babut, Richard

    2005-05-01

    This paper reports the results of a collaborative effort between CEA of France and the DOE of the United States (in particular between le Laboratoire d'Etudes de Physique de Cadarache and the Nuclear Data Group at Oak Ridge National Laboratory): In preparing input for analyses of differential nuclear data using multilevel multi-channel R-matrix theory, a sometimes daunting and often error-prone task is the generation of quantum-number information for all channels for each compound nuclear state (i.e., for each "spin group," defined by quantum numbers Jπ). For many years, the code SAMQUA has been available to users of the R-matrix code SAMMY to assist in preparation of that input; the original SAMQUA code, however, was limited to single-channel spin group information. In this paper, an improved version of the SAMQUA code is described. The new SAMQUA permits inclusion of all open reaction channels in the low-energy interaction between one particle (neutron or charged particle) and a nuclear target, and considerably simplifies the determination of the quantum numbers needed for the definition of the reaction channels. SAMQUA, in addition to its primary function of preparing quantum numbers for the SAMMY input file, also provides the possibility to visualize immediately all open reaction channels. This paper gives two examples of the use of SAMQUA, with emphasis on the notions of reaction channels and penetrability.

  12. Orbit covariance propagation via quadratic-order state transition matrix in curvilinear coordinates

    NASA Astrophysics Data System (ADS)

    Hernando-Ayuso, Javier; Bombardelli, Claudio

    2017-09-01

    In this paper, an analytical second-order state transition matrix (STM) for relative motion in curvilinear coordinates is presented and applied to the problem of orbit uncertainty propagation in nearly circular orbits (eccentricity smaller than 0.1). The matrix is obtained by linearization around a second-order analytical approximation of the relative motion recently proposed by one of the authors and can be seen as a second-order extension of the curvilinear Clohessy-Wiltshire (C-W) solution. The accuracy of the uncertainty propagation is assessed by comparison with numerical results based on Monte Carlo propagation of a high-fidelity model including geopotential and third-body perturbations. Results show that the proposed STM can greatly improve the accuracy of the predicted relative state: the average error is found to be at least one order of magnitude smaller compared to the curvilinear C-W solution. In addition, the effect of environmental perturbations on the uncertainty propagation is shown to be negligible up to several revolutions in the geostationary region and for a few revolutions in low Earth orbit in the worst case.

  13. Measurement of the top quark mass using the matrix element technique in dilepton final states

    SciTech Connect

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, V.; Aushev, Y.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brochmann, M.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stefaniuk, N.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2016-08-18

    Here, we present a measurement of the top quark mass in pp collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to tt events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt = 173.93±1.84 GeV.

  14. Measurement of the top quark mass using the matrix element technique in dilepton final states

    DOE PAGES

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; ...

    2016-08-18

    Here, we present a measurement of the top quark mass in pp collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to tt events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain amore » top quark mass of mt = 173.93±1.84 GeV.« less

  15. Measurement of the top quark mass using the matrix element technique in dilepton final states

    NASA Astrophysics Data System (ADS)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, V.; Aushev, Y.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brochmann, M.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stefaniuk, N.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; D0 Collaboration

    2016-08-01

    We present a measurement of the top quark mass in p p ¯ collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1 . The matrix element technique is applied to t t ¯ events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton +jets final state of t t ¯ decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt=173.93 ±1.84 GeV .

  16. Measurement of the top quark mass using the matrix element technique in dilepton final states

    SciTech Connect

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, V.; Aushev, Y.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brochmann, M.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stefaniuk, N.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2016-08-18

    Here, we present a measurement of the top quark mass in pp collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to tt events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton+jets final state of tt decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt = 173.93±1.84 GeV.

  17. Osteofibrous dysplasia and adamantinoma: correlation of proto-oncogene product and matrix protein expression.

    PubMed

    Maki, Masahiiko; Athanasou, Nicholas

    2004-01-01

    To investigate the relationship between osteofibrous dysplasia (OFD) and adamantinoma, we analyzed the expression of several proto-oncogene products and extracellular matrix proteins by immunohistochemistry and correlated our results with histological and ultrastructural findings. C-fos and c-jun, but not c-Met, were observed in OFD and in the fibrous and epithelial components of differentiated and classical adamantinomas. Staining for collagen IV, laminin and galectin-3, a laminin binding protein was seen in OFD and around cell nests in adamantinoma. E-, P-, and N-cadherin expression was found in all cases of classical adamantinoma, but not in differentiated adamantinoma or OFD. Osteonectin was detected in both the epithelial and fibrous components of adamantinomas, but osteopontin and osteocalcin were not seen in classical adamantinomas. The results show common expression of a number of oncoproteins and bone matrix proteins in adamantinoma and OFD, some of which are associated with mesenchymal-to-epithelial cell transformation. These findings would be in keeping with the hypothesis that OFD represents a precursor lesion of adamantinoma. Differential expression of a number of bone matrix protein in adamantinoma may also be of diagnostic use in distinguishing these 2 lesions immunohistochemically.

  18. Vibrio cholerae VpsT Regulates Matrix Production and Motility by Directly Sensing Cyclic di-GMP

    SciTech Connect

    Krasteva, P.; Fong, J; Shikuma, N; Beyhan, S; Navarro, M; Yildiz, F; Sondermann, H

    2010-01-01

    Microorganisms can switch from a planktonic, free-swimming life-style to a sessile, colonial state, called a biofilm, which confers resistance to environmental stress. Conversion between the motile and biofilm life-styles has been attributed to increased levels of the prokaryotic second messenger cyclic di-guanosine monophosphate (c-di-GMP), yet the signaling mechanisms mediating such a global switch are poorly understood. Here we show that the transcriptional regulator VpsT from Vibrio cholerae directly senses c-di-GMP to inversely control extracellular matrix production and motility, which identifies VpsT as a master regulator for biofilm formation. Rather than being regulated by phosphorylation, VpsT undergoes a change in oligomerization on c-di-GMP binding.

  19. Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa.

    PubMed

    Wang, Shiwei; Yu, Shan; Zhang, Zhenyin; Wei, Qing; Yan, Lu; Ai, Guomin; Liu, Hongsheng; Ma, Luyan Z

    2014-11-01

    Biofilm formation is a complex process in which many factors are involved. Bacterial swarming motility and exopolysaccharides both contribute to biofilm formation, yet it is unclear how bacteria coordinate swarming motility and exopolysaccharide production. Psl and Pel are two key biofilm matrix exopolysaccharides in Pseudomonas aeruginosa. This opportunistic pathogen has three types of motility, swimming, twitching, and swarming. In this study, we found that elevated Psl and/or Pel production reduced the swarming motility of P. aeruginosa but had little effect on swimming and twitching. The reduction was due to decreased rhamnolipid production with no relation to the transcription of rhlAB, two key genes involved in the biosynthesis of rhamnolipids. Rhamnolipid-negative rhlR and rhlAB mutants synthesized more Psl, whereas exopolysaccharide-deficient strains exhibited a hyperswarming phenotype. These results suggest that competition for common sugar precursors catalyzed by AlgC could be a tactic for P. aeruginosa to balance the synthesis of exopolysaccharides and rhamnolipids and to control bacterial motility and biofilm formation inversely because the biosynthesis of rhamnolipids, Psl, and Pel requires AlgC to provide the sugar precursors and an additional algC gene enhances the biosynthesis of Psl and rhamnolipids. In addition, our data indicate that the increase in RhlI/RhlR expression attenuated Psl production. This implied that the quorum-sensing signals could regulate exopolysaccharide biosynthesis indirectly in bacterial communities. In summary, this study represents a mechanism that bacteria utilize to coordinate swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production, which is critical for biofilm formation and bacterial survival in the environment.

  20. Three-dimensional culture of human meniscal cells: Extracellular matrix and proteoglycan production

    PubMed Central

    Gruber, Helen E; Mauerhan, David; Chow, Yin; Ingram, Jane A; Norton, H James; Hanley, Edward N; Sun, Yubo

    2008-01-01

    Background The meniscus is a complex tissue whose cell biology has only recently begun to be explored. Published models rely upon initial culture in the presence of added growth factors. The aim of this study was to test a three-dimensional (3D) collagen sponge microenvironment (without added growth factors) for its ability to provide a microenvironment supportive for meniscal cell extracellular matrix (ECM) production, and to test the responsiveness of cells cultured in this manner to transforming growth factor-β (TGF-β). Methods Experimental studies were approved prospectively by the authors' Human Subjects Institutional Review Board. Human meniscal cells were isolated from surgical specimens, established in monolayer culture, seeded into a 3D scaffold, and cell morphology and extracellular matrix components (ECM) evaluated either under control condition or with addition of TGF-β. Outcome variables were evaluation of cultured cell morphology, quantitative measurement of total sulfated proteoglycan production, and immunohistochemical study of the ECM components chondroitin sulfate, keratan sulfate, and types I and II collagen. Result and Conclusion Meniscal cells attached well within the 3D microenvironment and expanded with culture time. The 3D microenvironment was permissive for production of chondroitin sulfate, types I and II collagen, and to a lesser degree keratan sulfate. This microenvironment was also permissive for growth factor responsiveness, as indicated by a significant increase in proteoglycan production when cells were exposed to TGF-β (2.48 μg/ml ± 1.00, mean ± S.D., vs control levels of 1.58 ± 0.79, p < 0.0001). Knowledge of how culture microenvironments influence meniscal cell ECM production is important; the collagen sponge culture methodology provides a useful in vitro tool for study of meniscal cell biology. PMID:18582376

  1. Pulpwood Production in the Lake States, by County, 1978

    Treesearch

    James E. Blyth; W. Brad Smith

    1979-01-01

    Pulpwood production in the Lake States - Michigan, Minnesota, and Wisconsin - advances from 4.74 million cords in 1977 to 4.91 millions cords in 1978. Pulpwood production is shown by county and species group for these three States

  2. Cedrol Enhances Extracellular Matrix Production in Dermal Fibroblasts in a MAPK-Dependent Manner

    PubMed Central

    Jin, Mu Hyun; Park, Sun Gyoo; Hwang, Yul-Lye; Lee, Min-Ho; Jeong, Nam-Ji; Roh, Seok-Seon; Lee, Young; Kim, Chang Deok

    2012-01-01

    Background The extracellular matrix (ECM) produced by dermal fibroblasts supports skin structure, and degradation and/or reduced production of ECM are the main causes of wrinkle formation. Objective The aim of this study was to identify the active ingredient that enhances ECM production in dermal fibroblasts. Methods Polarity-based fractionation was used to isolate the active ingredient from natural extracts, and the effects of cedrol (isolated from Pterocarpus indicusirginia) on ECM production in cultured human dermal fibroblasts was investigated by reverse transcription-polymerase chain reaction, enzyme linked immunosorbent assay, and Western blot analysis. Results Cedrol accelerated fibroblast growth in a dose-dependent manner and increased the production of type 1 collagen and elastin. Phosphorylation of p42/44 extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and Akt was markedly increased by cedrol, indicating that enhanced ECM production is linked to activation of intracellular signaling cascades. Conclusion These results indicate that cedrol stimulates ECM production, with possible applications to the maintenance of skin texture. PMID:22363150

  3. 9 CFR 107.2 - Products under State license.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTIONS FROM PREPARATION...: (1) The State has the authority to license viruses, serums, toxins, and analogous products and... violations of State law regulating viruses, serums, toxins, and analogous products; and (5) The State...

  4. 9 CFR 107.2 - Products under State license.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTIONS FROM PREPARATION...: (1) The State has the authority to license viruses, serums, toxins, and analogous products and... violations of State law regulating viruses, serums, toxins, and analogous products; and (5) The State...

  5. 19 CFR 145.35 - United States products returned.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false United States products returned. 145.35 Section... OF THE TREASURY (CONTINUED) MAIL IMPORTATIONS Special Classes of Merchandise § 145.35 United States products returned. Products of the United States returned after having been exported, which have not...

  6. 19 CFR 145.35 - United States products returned.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false United States products returned. 145.35 Section... OF THE TREASURY (CONTINUED) MAIL IMPORTATIONS Special Classes of Merchandise § 145.35 United States products returned. Products of the United States returned after having been exported, which have not...

  7. 19 CFR 145.35 - United States products returned.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false United States products returned. 145.35 Section... OF THE TREASURY (CONTINUED) MAIL IMPORTATIONS Special Classes of Merchandise § 145.35 United States products returned. Products of the United States returned after having been exported, which have not...

  8. 19 CFR 145.35 - United States products returned.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false United States products returned. 145.35 Section... OF THE TREASURY (CONTINUED) MAIL IMPORTATIONS Special Classes of Merchandise § 145.35 United States products returned. Products of the United States returned after having been exported, which have not...

  9. 19 CFR 145.35 - United States products returned.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false United States products returned. 145.35 Section... OF THE TREASURY (CONTINUED) MAIL IMPORTATIONS Special Classes of Merchandise § 145.35 United States products returned. Products of the United States returned after having been exported, which have not...

  10. Measurement of single top quark production at D0 using a matrix element method

    SciTech Connect

    Mitrevski, Jovan Pavle

    2007-01-01

    Until now, the top quark has only been observed produced in pairs, by the strong force. According to the standard model, it can also be produced singly, via an electroweak interaction. Top quarks produced this way provide powerful ways to test the charged-current electroweak interactions of the top quark, to measure |Vtb|, and to search for physics beyond the standard model. This thesis describes the application of the matrix element analysis technique to the search for single top quark production with the D0 detector using 0.9 fb-1 of Run II data. From a comparison of the matrix element discriminants between data and the background model, assuming a Standard Model s-channel to t-channel cross section ratio of σst = 0.44, we measure the single top quark production cross section: σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.8$-1.4\\atop{+1.6}$ pb. This result has a p-value of 0.08%, corresponding to a 3.2 standard deviation Gaussian equivalent significance.

  11. The enamel matrix derivative (Emdogain) enhances human tongue carcinoma cells gelatinase production, migration and metastasis formation.

    PubMed

    Laaksonen, Matti; Suojanen, Juho; Nurmenniemi, Sini; Läärä, Esa; Sorsa, Timo; Salo, Tuula

    2008-08-01

    Enamel matrix derivative Emdogain (EMD) is widely used in periodontal treatment to regenerate lost connective tissue and to improve the attachment of the teeth. Gelatinases (MMP-2 and -9) have an essential role in the promotion and progression of oral cancer growth and metastasis formation. We studied the effects of EMD on human tongue squamous cell carcinoma (HSC-3) cells in vitro and in vivo. In vitro, EMD (100 microg/ml and 200 microg/ml) remarkably induced the MMP-2 and -9 production from HSC-3 cells analysed by zymography and enzyme-linked immunosorbent assay. EMD also slightly induced the MMP-2 and -9 production from benign human mucosal keratinocytes (HMK). Furthermore, EMD clearly induced the transmigration of HSC-3 cells but had no effect on the HMK migration in transwell assays. The in vitro wound closure of HSC-3 cells was notably accelerated by EMD, whereas it had only minor effect on the wound closure of HMKs. The migration of both cell lines was inhibited by a selective cyclic anti-gelatinolytic peptide CTT-2. EMD had no effect on HSC-3 cell proliferation or apoptosis and only a limited effect on cell attachment to various extracellular matrix components. The in vivo mice experiment revealed that EMD substantially induced HSC-3 xenograft metastasis formation. Our results suggest that the use of EMD for patients with oral mucosal carcinomas or premalignant lesions should be carefully considered, possibly avoided.

  12. Improving matrix-vector product performance and multi-level preconditioning for the parallel PCG package

    SciTech Connect

    McLay, R.T.; Carey, G.F.

    1996-12-31

    In this study we consider parallel solution of sparse linear systems arising from discretized PDE`s. As part of our continuing work on our parallel PCG Solver package, we have made improvements in two areas. The first is improving the performance of the matrix-vector product. Here on regular finite-difference grids, we are able to use the cache memory more efficiently for smaller domains or where there are multiple degrees of freedom. The second problem of interest in the present work is the construction of preconditioners in the context of the parallel PCG solver we are developing. Here the problem is partitioned over a set of processors subdomains and the matrix-vector product for PCG is carried out in parallel for overlapping grid subblocks. For problems of scaled speedup, the actual rate of convergence of the unpreconditioned system deteriorates as the mesh is refined. Multigrid and subdomain strategies provide a logical approach to resolving the problem. We consider the parallel trade-offs between communication and computation and provide a complexity analysis of a representative algorithm. Some preliminary calculations using the parallel package and comparisons with other preconditioners are provided together with parallel performance results.

  13. Facultative Control of Matrix Production Optimizes Competitive Fitness in Pseudomonas aeruginosa PA14 Biofilm Models

    PubMed Central

    Madsen, Jonas S.; Lin, Yu-Cheng; Squyres, Georgia R.; Price-Whelan, Alexa; de Santiago Torio, Ana; Song, Angela; Cornell, William C.; Sørensen, Søren J.

    2015-01-01

    As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities. PMID:26431965

  14. Survival of Lactobacillus rhamnosus GG as influenced by storage conditions and product matrixes.

    PubMed

    Klu, Yaa Asantewaa Kafui; Williams, Jonathan H; Phillips, Robert D; Chen, Jinru

    2012-12-01

    Mortality resulting from diarrhea especially that occurs in children younger than 5 y of age ranks 3rd among all deaths caused by infectious diseases worldwide. Probiotics such as Lactobacillus rhamnosus GG are clinically shown to effectively reduce the incidence of diarrhea in children. A food substrate is one of the major factors regulating the colonization of microorganisms in human gastrointestinal tracts. Peanut butter is a nutritious, low-moisture food that could be a carrier for probiotics. In this study, we observed the influence of storage conditions and product matrixes on the survival of L. rhamnosus GG. Cells of L. rhamnosus GG were inoculated into full fat or reduced fat peanut butter at 10(7) CFU/g. Inoculated peanut butter was stored at 4, 25, or 37 °C for 48 wk. Samples were drawn periodically to determine the populations of L. rhamnosus GG. Results showed that there was no significant decrease in the viable counts of L. rhamnosus GG in products stored 4 °C. The survivability of L. rhamnosus GG decreased with increasing storage temperature and time. Product matrixes did not significantly affect the survival of L. rhamnosus GG except at 37 °C. Populations of L. rhamnosus GG were preserved at >6 logs in products stored at 4 °C for 48 wk and at 25 °C for 23 to 27 wk. At 37 °C, the 6-log level could not be maintained for even 6 wk. The results suggest that peanut butter stored at 4 and 25 °C could serve as vehicles to deliver probiotics. © 2012 Institute of Food Technologists®

  15. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent products.

    PubMed

    El Ghalbzouri, Abdoelwaheb; Commandeur, Suzan; Rietveld, Marion H; Mulder, Aat A; Willemze, Rein

    2009-01-01

    Reconstructed human skin equivalents (HSEs) are representative models of human skin and widely used for research purposes and clinical applications. Traditional methods to generate HSEs are based on the seeding of human keratinocytes onto three-dimensional human fibroblast-populated non-human collagen matrices. Current HSEs have a limited lifespan of approximately 8 weeks, rendering them unsuitable for long-term studies. Here we present a new generation of HSEs being fully composed of human components and which can be cultured up to 20 weeks. This model is generated on a primary human fibroblast-derived dermal matrix. Pro-collagen type I secretion by human fibroblasts stabilized during long-term culture, providing a continuous and functional human dermal matrix. In contrast to rat-tail collagen-based HSEs, the present fibroblast-derived matrix-based HSEs contain more continuity in the number of viable cell layers in long-term cultures. In addition, these new skin models exhibit normal differentiation and proliferation, based on expression of K10/K15, and K16/K17, respectively. Detection of collagen types IV and VII and laminin 332 was confined to the epidermal-dermal junction, as in native skin. The presence of hemidesmosomes and anchoring fibrils was demonstrated by electron microscopy. Finally, we show that the presented HSE contained a higher concentration of the normal moisturizing factor compared to rat-tail collagen-based skin models, providing a further representation of functional normal human skin in vitro. This study, therefore, demonstrates the role of the dermal microenvironment on epidermal regeneration and lifespan in vitro.

  16. One plus two-body random matrix ensembles with parity: Density of states and parity ratios

    SciTech Connect

    Vyas, Manan; Srivastava, P. C.; Kota, V. K. B.

    2011-06-15

    One plus two-body embedded Gaussian orthogonal ensemble of random matrices with parity [EGOE(1+2)-{pi}] generated by a random two-body interaction (modeled by GOE in two-particle spaces) in the presence of a mean field for spinless identical fermion systems is defined, generalizing the two-body ensemble with parity analyzed by Papenbrock and Weidenmueller [Phys. Rev. C 78, 054305 (2008)], in terms of two mixing parameters and a gap between the positive ({pi}=+) and negative ({pi}=-) parity single-particle (sp) states. Numerical calculations are used to demonstrate, using realistic values of the mixing parameters appropriate for some nuclei, that the EGOE(1+2)-{pi} ensemble generates Gaussian form (with corrections) for fixed parity eigenvalue densities (i.e., state densities). The random matrix model also generates many features in parity ratios of state densities that are similar to those predicted by a method based on the Fermi-gas model for nuclei. We have also obtained, by applying the formulation due to Chang et al. [Ann. Phys. (NY) 66, 137 (1971)], a simple formula for the spectral variances defined over fixed-(m{sub 1},m{sub 2}) spaces, where m{sub 1} is the number of fermions in the positive parity sp states and m{sub 2} is the number of fermions in the negative parity sp states. Similarly, using the binary correlation approximation, in the dilute limit, we have derived expressions for the lowest two-shape parameters. The smoothed densities generated by the sum of fixed-(m{sub 1},m{sub 2}) Gaussians with lowest two-shape corrections describe the numerical results in many situations. The model also generates preponderance of positive parity ground states for small values of the mixing parameters, and this is a feature seen in nuclear shell-model results.

  17. Symmetry-conserving purification of quantum states within the density matrix renormalization group

    DOE PAGES

    Nocera, Alberto; Alvarez, Gonzalo

    2016-01-28

    The density matrix renormalization group (DMRG) algorithm was originally designed to efficiently compute the zero-temperature or ground-state properties of one-dimensional strongly correlated quantum systems. The development of the algorithm at finite temperature has been a topic of much interest, because of the usefulness of thermodynamics quantities in understanding the physics of condensed matter systems, and because of the increased complexity associated with efficiently computing temperature-dependent properties. The ancilla method is a DMRG technique that enables the computation of these thermodynamic quantities. In this paper, we review the ancilla method, and improve its performance by working on reduced Hilbert spaces andmore » using canonical approaches. Furthermore we explore its applicability beyond spins systems to t-J and Hubbard models.« less

  18. Matrix Metalloproteinase Inhibition by Heterotrimeric Triple-Helical Peptide Transition State Analogs

    PubMed Central

    Bhowmick, Manishabrata; Stawikowska, Roma; Tokmina-Roszyk, Dorota; Fields, Gregg B.

    2015-01-01

    Matrix metalloproteinases (MMPs) have been implicated in numerous pathologies. An overall lack of selectivity has rendered active site targeted MMP inhibitors problematic. The present study describes MMP inhibitors that function by binding both secondary binding sites (exosites) and the active site. Heterotrimeric triple-helical peptide transition-state analog inhibitors (THPIs) were assembled utilizing click chemistry. Three different heterotrimers were constructed, allowing for the inhibitory phosphinate moiety to be present uniquely in the leading, middle, or trailing strand of the triple-helix. All heterotrimeric constructs had sufficient thermally stability to warrant analysis as inhibitors. The heterotrimeric THPIs were effective against MMP-13 and MT1-MMP, with Ki spanning 100–400 nM. Unlike homotrimeric THPIs, the heterotrimeric THPIs offered complete selectivity between MT1-MMP and MMP-1. Exosite-based approaches are providing inhibitors with desired MMP selectivities. PMID:25766890

  19. S -matrix element of two R-R and one NS states

    NASA Astrophysics Data System (ADS)

    Mohammadzadeh, Mojtaba; Garousi, Mohammad R.

    2017-09-01

    We explicitly calculate the disk-level S -matrix element of two closed string R-R and one open string NS vertex operators in RNS formalism. We show that the amplitude satisfies various duality Ward identities. In particular, when one of the R-R is zero form, the other one is two form, and the NS state is a gauge boson, the amplitude transforms under an S-duality Ward identity to the amplitude of one dilaton, one B-field, and one gauge boson, which has recently been calculated explicitly. We have also proposed a soft theorem for the disk-level scattering amplitude of an ar bitrary number of hard closed strings and one soft open string at the leading order of soft momentum, and we have shown that the above amplitude satisfies the soft theorem.

  20. Excited-state dynamics and nonlinear optical response of Ge nanocrystals embedded in silica matrix

    NASA Astrophysics Data System (ADS)

    Razzari, Luca; Gnoli, Andrea; Righini, Marcofabio; Dâna, Aykutlu; Aydinli, Atilla

    2006-05-01

    We use a dedicated Z-scan setup, arranged to account for cumulative effects, to study the nonlinear optical response of Ge nanocrystals embedded in silica matrix. Samples are prepared with plasma-enchanced chemical-vapor deposition and post-thermal annealing. We measure a third-order nonlinear refraction coefficient of γ =1×10-16m2/W. The nonlinear absorption shows an intensity-independent coefficient of β =4×10-10m/W related to fast processes. In addition, we measure a second β component around 10-9m /W with a relaxation time of 300μs that rises linearly with the laser intensity. We associate its origin to the absorption of excited carriers from a surface-defect state with a long depopulation time.

  1. Symmetry-conserving purification of quantum states within the density matrix renormalization group

    SciTech Connect

    Nocera, Alberto; Alvarez, Gonzalo

    2016-01-28

    The density matrix renormalization group (DMRG) algorithm was originally designed to efficiently compute the zero-temperature or ground-state properties of one-dimensional strongly correlated quantum systems. The development of the algorithm at finite temperature has been a topic of much interest, because of the usefulness of thermodynamics quantities in understanding the physics of condensed matter systems, and because of the increased complexity associated with efficiently computing temperature-dependent properties. The ancilla method is a DMRG technique that enables the computation of these thermodynamic quantities. In this paper, we review the ancilla method, and improve its performance by working on reduced Hilbert spaces and using canonical approaches. Furthermore we explore its applicability beyond spins systems to t-J and Hubbard models.

  2. Ultra-thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix.

    PubMed

    Whiteley, Justin M; Taynton, Philip; Zhang, Wei; Lee, Se-Hee

    2015-11-18

    Thin solid membranes are formed by a new strategy, whereby an in situ derived self-healing polymer matrix that penetrates the void space of an inorganic solid is created. The concept is applied as a separator in an all-solid-state battery with an FeS2 -based cathode and achieves tremendous performance for over 200 cycles. Processing in dry conditions represents a paradigm shift for incorporating high active-material mass loadings into mixed-matrix membranes.

  3. Differential effects of fluticasone on extracellular matrix production by airway and parenchymal fibroblasts in severe COPD.

    PubMed

    Brandsma, Corry-Anke; Timens, Wim; Jonker, Marnix R; Rutgers, Bea; Noordhoek, Jacobien A; Postma, Dirkje S

    2013-10-15

    Chronic obstructive pulmonary disease (COPD) is characterized by abnormal repair in the lung resulting in airway obstruction associated with emphysema and peripheral airway fibrosis. Because the presence and degree of airways disease and emphysema varies between COPD patients, this may explain the heterogeneity in the response to treatment. It is currently unknown whether and to what extent inhaled steroids can affect the abnormal repair process in the airways and lung parenchyma in COPD. We investigated the effects of fluticasone on transforming growth factor (TGF)-β- and cigarette smoke-induced changes in mothers against decapentaplegic homolog (Smad) signaling and extracellular matrix (ECM) production in airway and parenchymal lung fibroblasts from patients with severe COPD. We showed that TGF-β-induced ECM production by pulmonary fibroblasts, but not activation of the Smad pathway, was sensitive to the effects of fluticasone. Fluticasone induced decorin production by airway fibroblasts and partly reversed the negative effects of TGF-β treatment. Fluticasone inhibited biglycan production in both airway and parenchymal fibroblasts and procollagen 1 production only in parenchymal fibroblasts, thereby restoring the basal difference in procollagen 1 production between airway and parenchymal fibroblasts. Our findings suggest that the effects of steroids on the airway compartment may be beneficial for patients with severe COPD, i.e., restoration of decorin loss around the airways, whereas the effects of steroids on the parenchyma may be detrimental, since the tissue repair response, i.e., biglycan and procollagen production, is inhibited. More research is needed to further disentangle these differential effects of steroid treatment on the different lung compartments and its impact on tissue repair and remodeling in COPD.

  4. Effects of the implantation of Sn ions on W matrix's chemical state, crystal structure and hardness

    NASA Astrophysics Data System (ADS)

    Mu, Z. X.; Sun, J. Z.; Wang, H.; Wang, Y. M.

    2017-09-01

    Prior to the practical application of liquid metals as facing material for fusion reactor, the nature of the interaction layer between liquid metal and tungsten substrate should be studied deeply. In the present work, by means of ion implantation technique using a metal vapor vacuum arc source (MEVVA), Sn ions were injected into a W matrix and a W-Sn modified layer was prepared. The chemical state, crystal structure and nano-indentation hardness of the modified layer were investigated and characterized with the use of X-ray photoelectron spectroscopy (XPS), an X-ray diffractometer (XRD) and a nano-indentor. The results indicate that, after the injection of Sn ions into the W matrix, Sn atoms interacted intensively with W, leading to the generation of a large number of point defects (such as vacancies and self-interstitial atoms) and the decrease of average grain size from 16.7 to 11.9 nm. Additionally, chemical shifts appeared, i.e., the binding energy values of W 4f7/2, W 4f5/2, W 5p3/2 and W 4p1/2 in the modified layer was reduced by 0.3 eV, 0.3 eV, 0.4 eV, 1-1.4 eV, respectively. The binding energy values of Sn 3d5/2 and Sn 3d3/2 decreased, with a chemical shift of 0.6-0.7 eV and 0.1-0.3 eV, respectively. The nano-indentation hardness of the modified layer was enhanced; specifically, when the indentation depth was 26.3 nm, the hardness reached a peak value of 13.8 GPa. In the modified layer, the surface chemical states are quite complex, mainly including SnO, WO3, SnO2 and WC.

  5. Measurement of the top quark mass in the dilepton final state using the matrix element method

    SciTech Connect

    Grohsjean, Alexander

    2008-12-15

    The top quark, discovered in 1995 by the CDF and D0 experiments at the Fermilab Tevatron Collider, is the heaviest known fundamental particle. The precise knowledge of its mass yields important constraints on the mass of the yet-unobserved Higgs boson and allows to probe for physics beyond the Standard Model. The first measurement of the top quark mass in the dilepton channel with the Matrix Element method at the D0 experiment is presented. After a short description of the experimental environment and the reconstruction chain from hits in the detector to physical objects, a detailed review of the Matrix Element method is given. The Matrix Element method is based on the likelihood to observe a given event under the assumption of the quantity to be measured, e.g. the mass of the top quark. The method has undergone significant modifications and improvements compared to previous measurements in the lepton+jets channel: the two undetected neutrinos require a new reconstruction scheme for the four-momenta of the final state particles, the small event sample demands the modeling of additional jets in the signal likelihood, and a new likelihood is designed to account for the main source of background containing tauonic Z decay. The Matrix Element method is validated on Monte Carlo simulated events at the generator level. For the measurement, calibration curves are derived from events that are run through the full D0 detector simulation. The analysis makes use of the Run II data set recorded between April 2002 and May 2008 corresponding to an integrated luminosity of 2.8 fb-1. A total of 107 t$\\bar{t}$ candidate events with one electron and one muon in the final state are selected. Applying the Matrix Element method to this data set, the top quark mass is measured to be mtopRun IIa = 170.6 ± 6.1(stat.)-1.5+2.1(syst.)GeV; mtopRun IIb = 174.1 ± 4.4(stat.)-1.8+2.5(syst.)GeV; m

  6. Baicalin Down-Regulates IL-1β-Stimulated Extracellular Matrix Production in Nasal Fibroblasts

    PubMed Central

    Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2016-01-01

    Purpose Baicalin, a Chinese herbal medicine, has anti-fibrotic and anti-inflammatory effects. The aims of present study were to investigate the effects of baicalin on the myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction of interleukin (IL)-1β-stimulated nasal fibroblasts and to determine the molecular mechanism of baicalin in nasal fibroblasts. Methods Nasal fibroblasts were isolated from the inferior turbinate of patients. Baicalin was used to treat IL-1β-stimulated nasal fibroblasts. To evaluate cytotoxicity, a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay was used. The expression levels of α-smooth muscle actin (SMA), fibronectin, phospho-mitogen-activated protein kinase (p-MAPK), p-Akt, p-p50, p-p65, and p-IκBα were measured by western blotting, reverse transcription-polymerase chain reaction (RT—PCR),or immunofluorescence staining. Fibroblast migration was analyzed with scratch assays and transwell migration assays. Total collagen was evaluated with the Sircol collagen assay. Contractile activity was measured with a collagen gel contraction assay. Results Baicalin (0–50 μM) had no significant cytotoxic effects in nasal fibroblasts. The expression of α–SMA and fibronectin were significantly down-regulated in baicalin-treated nasal fibroblasts. Migration, collagen production, and contraction of IL-1β-stimulated nasal fibroblasts were significantly inhibited by baicalin treatment. Baicalin also significantly down-regulated p-MAPK, p-Akt, p-p50, p-p65, and p-IκBα in IL-1β-stimulated nasal fibroblasts. Conclusions We showed that baicalin down-regulated myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction via the MAPK and Akt/ NF-κB pathways in IL-1β-stimulated nasal fibroblasts. PMID:28002421

  7. Baicalin Down-Regulates IL-1β-Stimulated Extracellular Matrix Production in Nasal Fibroblasts.

    PubMed

    Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2016-01-01

    Baicalin, a Chinese herbal medicine, has anti-fibrotic and anti-inflammatory effects. The aims of present study were to investigate the effects of baicalin on the myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction of interleukin (IL)-1β-stimulated nasal fibroblasts and to determine the molecular mechanism of baicalin in nasal fibroblasts. Nasal fibroblasts were isolated from the inferior turbinate of patients. Baicalin was used to treat IL-1β-stimulated nasal fibroblasts. To evaluate cytotoxicity, a 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay was used. The expression levels of α-smooth muscle actin (SMA), fibronectin, phospho-mitogen-activated protein kinase (p-MAPK), p-Akt, p-p50, p-p65, and p-IκBα were measured by western blotting, reverse transcription-polymerase chain reaction (RT-PCR),or immunofluorescence staining. Fibroblast migration was analyzed with scratch assays and transwell migration assays. Total collagen was evaluated with the Sircol collagen assay. Contractile activity was measured with a collagen gel contraction assay. Baicalin (0-50 μM) had no significant cytotoxic effects in nasal fibroblasts. The expression of α-SMA and fibronectin were significantly down-regulated in baicalin-treated nasal fibroblasts. Migration, collagen production, and contraction of IL-1β-stimulated nasal fibroblasts were significantly inhibited by baicalin treatment. Baicalin also significantly down-regulated p-MAPK, p-Akt, p-p50, p-p65, and p-IκBα in IL-1β-stimulated nasal fibroblasts. We showed that baicalin down-regulated myofibroblast differentiation, extracellular matrix production, migration, and collagen contraction via the MAPK and Akt/ NF-κB pathways in IL-1β-stimulated nasal fibroblasts.

  8. Interaction between monocytes and vascular smooth muscle cells enhances matrix metalloproteinase-1 production.

    PubMed

    Zhu, Y; Hojo, Y; Ikeda, U; Takahashi, M; Shimada, K

    2000-08-01

    Matrix metalloproteinase-1 (MMP-1) plays an important role in atherosclerotic plaque rupture. The purpose of this study was to investigate the expression of MMP-1 by cell-to-cell interactions between monocytes and vascular smooth muscle cells (VSMCs). Human VSMCs and THP-1 cells (human monocytoid cells) were cocultured. MMP-1 levels were measured by enzyme-linked immunosorbent assay. Collagenolytic activity was determined by fluorescent labeled-collagen digestion. Immunohistochemistry was performed to determine which types of cells produce MMP-1. Adding THP-1 cells to VSMCs markedly increased the MMP-1 levels and activity of the culture media. MMP-1 levels were maximal when the cellular ratio of THP-1 cells/VSMCs was 1.0. Immunohistochemistry revealed that both types of cells in the coculture produced MMP-1. Separated coculture experiments showed that both direct contact and a soluble factor(s) contributed to MMP-1 production. Neutralizing anti-interleukin (IL)-6 and tumor necrosis factor-alpha antibodies inhibited coculture conditioned medium-induced MMP-1 production by VSMCs and THP-1 cells. Protein kinase C inhibitors, tyrosine kinase inhibitors, and a mitogen-activated protein kinase inhibitor significantly inhibited MMP-1 production by cocultures. Direct cell-to-cell interaction between THP-1 cells and VSMCs enhanced MMP-1 synthesis in both types of cells. Increased local MMP-1 production and activity induced by monocyte-VSMC interaction play an important pathogenic role in atherosclerotic plaque rupture.

  9. Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro

    PubMed Central

    Helman, Yael; Natale, Frank; Sherrell, Robert M.; LaVigne, Michèle; Starovoytov, Valentin; Gorbunov, Maxim Y.; Falkowski, Paul G.

    2008-01-01

    The evolution of multicellularity in animals required the production of extracellular matrices that serve to spatially organize cells according to function. In corals, three matrices are involved in spatial organization: (i) an organic ECM, which facilitates cell–cell and cell–substrate adhesion; (ii) a skeletal organic matrix (SOM), which facilitates controlled deposition of a calcium carbonate skeleton; and (iii) the calcium carbonate skeleton itself, which provides the structural support for the 3D organization of coral colonies. In this report, we examine the production of these three matrices by using an in vitro culturing system for coral cells. In this system, which significantly facilitates studies of coral cell physiology, we demonstrate in vitro excretion of ECM by primary (nondividing) tissue cultures of both soft (Xenia elongata) and hard (Montipora digitata) corals. There are structural differences between the ECM produced by X. elongata cell cultures and that of M. digitata, and ascorbic acid, a critical cofactor for proline hydroxylation, significantly increased the production of collagen in the ECM of the latter species. We further demonstrate in vitro production of SOM and extracellular mineralized particles in cell cultures of M. digitata. Inductively coupled plasma mass spectrometry analysis of Sr/Ca ratios revealed the particles to be aragonite. De novo calcification was confirmed by following the incorporation of 45Ca into acid labile macromolecules. Our results demonstrate the ability of isolated, differentiated coral cells to undergo fundamental processes required for multicellular organization. PMID:18162537

  10. Development of stable cell lines for production or regulated expression using matrix attachment regions.

    PubMed

    Zahn-Zabal, M; Kobr, M; Girod, P A; Imhof, M; Chatellard, P; de Jesus, M; Wurm, F; Mermod, N

    2001-04-27

    One of the major hurdles of isolating stable, inducible or constitutive high-level producer cell lines is the time-consuming selection procedure. Given the variation in the expression levels of the same construct in individual clones, hundreds of clones must be isolated and tested to identify one or more with the desired characteristics. Various boundary elements (BEs), matrix attachment regions, and locus control regions (LCRs) were screened for their ability to augment the expression of heterologous genes in Chinese hamster ovary (CHO) cells. Of the chromatin elements assayed, the chicken lysozyme matrix-attachment region (MAR) was the only element to significantly increase stable reporter expression. We found that the use of the MAR increases the proportion of high-producing clones, thus reducing the number of clones that need to be screened. These benefits are observed both for constructs with MARs flanking the transgene expression cassette, as well as when constructs are co-transfected with the MAR on a separate plasmid. Moreover, the MAR was co-transfected with a multicomponent regulatable beta-galactosidase expression system in C2C12 cells and several clones exhibiting regulated expression were identified. Hence, MARs are useful in the development of stable cell lines for production or regulated expression.

  11. Production of metal matrix composite mirrors for tank fire control systems

    NASA Astrophysics Data System (ADS)

    Geiger, Alan L.; Ulph, Eric, Sr.

    1992-09-01

    The first production lot of 50 units of metal matrix composite mirrors for the Leopard I tank fire control system was recently completed by Optical Corporation of America (OCA), Garden Grove, California. The mirror substrates were finish machined from forgings of Optical Grade SXATM metal matrix composite manufactured by Advanced Composite Materials Corporation (ACMC), Greer, South Carolina. Use of forgings rather than hot pressed billet yields more efficient use of material and reduces machining time, resulting in lower cost. The mirrors were fabricated by a process sequence of machining, thermal stabilization, electroless nickel plating, polishing, and coating with a high efficiency, laser damage-resistant optical coating. The mirrors are used in the fire control system for a day channel (direct view) and near infrared (CCD), a muzzle reference system laser transceiver, a laser range finder, and an infrared thermal imaging system. SXA composite was chosen over competitive mirror materials (glass and beryllium) because of its high specific strength and stiffness, good stability, and moderate machining cost. The mirrors exhibit excellent stability and optical performance. Field trials of prototype mirrors in fire control systems have proven successful.

  12. 75 FR 13345 - Pricing for Certain United States Mint Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... United States Mint Pricing for Certain United States Mint Products AGENCY: United States Mint, Department of the Treasury. ACTION: Notice. SUMMARY: The United States Mint is announcing the price of First... United States Mint Web site. FOR FURTHER INFORMATION CONTACT: B.B. Craig, Associate Director for...

  13. Strategies for vectorizing the sparse matrix vector product on the CRAY XMP, CRAY 2, and CYBER 205

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry

    1987-01-01

    Large, randomly sparse matrix vector products are important in a number of applications in computational chemistry, such as matrix diagonalization and the solution of simultaneous equations. Vectorization of this process is considered for the CRAY XMP, CRAY 2, and CYBER 205, using a matrix of dimension of 20,000 with from 1 percent to 6 percent nonzeros. Efficient scatter/gather capabilities add coding flexibility and yield significant improvements in performance. For the CYBER 205, it is shown that minor changes in the IO can reduce the CPU time by a factor of 50. Similar changes in the CRAY codes make a far smaller improvement.

  14. Strategies for vectorizing the sparse matrix vector product on the CRAY XMP, CRAY 2, and CYBER 205

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry

    1987-01-01

    Large, randomly sparse matrix vector products are important in a number of applications in computational chemistry, such as matrix diagonalization and the solution of simultaneous equations. Vectorization of this process is considered for the CRAY XMP, CRAY 2, and CYBER 205, using a matrix of dimension of 20,000 with from 1 percent to 6 percent nonzeros. Efficient scatter/gather capabilities add coding flexibility and yield significant improvements in performance. For the CYBER 205, it is shown that minor changes in the IO can reduce the CPU time by a factor of 50. Similar changes in the CRAY codes make a far smaller improvement.

  15. Matrix of small-radius radio-frequency discharges as a volume-production based source of negative hydrogen ions

    SciTech Connect

    Lishev, St.; Paunska, Ts.; Shivarova, A.; Tarnev, Kh.

    2012-02-15

    Based on experience from a work - both theoretical and experimental one - on negative hydrogen ion beam sources studied regarding fusion applications, a novel design of a rf source with volume production of the ions is proposed. The suggestion is for a source constructed as a matrix of small-radius tandem discharges (with magnetic filters largely extended over the discharge length), inductively driven (by a single coil, for the whole matrix) and with a single aperture extraction from each of them.

  16. The Lymphocytic Choriomeningitis Virus Matrix Protein PPXY Late Domain Drives the Production of Defective Interfering Particles

    PubMed Central

    Ziegler, Christopher M.; Eisenhauer, Philip; Bruce, Emily A.; Weir, Marion E.; King, Benjamin R.; Klaus, Joseph P.; Krementsov, Dimitry N.; Shirley, David J.; Ballif, Bryan A.; Botten, Jason

    2016-01-01

    Arenaviruses cause severe diseases in humans but establish asymptomatic, lifelong infections in rodent reservoirs. Persistently-infected rodents harbor high levels of defective interfering (DI) particles, which are thought to be important for establishing persistence and mitigating virus-induced cytopathic effect. Little is known about what drives the production of DI particles. We show that neither the PPXY late domain encoded within the lymphocytic choriomeningitis virus (LCMV) matrix protein nor a functional endosomal sorting complex transport (ESCRT) pathway is absolutely required for the generation of standard infectious virus particles. In contrast, DI particle release critically requires the PPXY late domain and is ESCRT-dependent. Additionally, the terminal tyrosine in the PPXY motif is reversibly phosphorylated and our findings indicate that this posttranslational modification may regulate DI particle formation. Thus we have uncovered a new role for the PPXY late domain and a possible mechanism for its regulation. PMID:27010636

  17. NG2 proteoglycan increases mesangial cell proliferation and extracellular matrix production

    SciTech Connect

    Xiong Jing; Wang Yang; Zhu, Zhonghua; Liu Jianshe; Wang Yumei; Zhang Chun; Hammes, Hans-Peter; Lang, Florian; Feng Yuxi

    2007-10-05

    As a membrane-spanning protein, NG2 chondroitin sulfate proteoglycan interacts with molecules on both sides of plasma membrane. The present study explored the role of NG2 in the pathogenesis of diabetic nephropathy. In the normal kidneys, NG2 was observed predominantly in glomerular mesangium, Bowman's capsule and interstitial vessels. Both mRNA and protein expression in kidneys was significantly higher in strepozotocin-induced diabetic rats than that in normal rats. In the cultured rat mesangial cell line HBZY-1, overexpression of NG2 promoted mesangial cell proliferation and extracellular matrix (ECM) production, such as type VI collagen and laminin. Furthermore, target knockdown of NG2 resulted in decreased cell proliferation and ECM formation. The observations suggest that NG2 is up-regulated in diabetic nephropathy. It actively participates in the development and progression of glomerulosclerosis by stimulating proliferation of mesangial cells and deposition of ECM.

  18. Matrix-assisted cocrystallization (MAC) simultaneous production and formulation of pharmaceutical cocrystals by hot-melt extrusion.

    PubMed

    Boksa, Kevin; Otte, Andrew; Pinal, Rodolfo

    2014-09-01

    A novel method for the simultaneous production and formulation of pharmaceutical cocrystals, matrix-assisted cocrystallization (MAC), is presented. Hot-melt extrusion (HME) is used to create cocrystals by coprocessing the drug and coformer in the presence of a matrix material. Carbamazepine (CBZ), nicotinamide (NCT), and Soluplus were used as a model drug, coformer, and matrix, respectively. The MAC product containing 80:20 (w/w) cocrystal:matrix was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, and powder X-ray diffraction. A partial least squares (PLS) regression model was developed for quantifying the efficiency of cocrystal formation. The MAC product was estimated to be 78% (w/w) cocrystal (theoretical 80%), with approximately 0.3% mixture of free (unreacted) CBZ and NCT, and 21.6% Soluplus (theoretical 20%) with the PLS model. A physical mixture (PM) of a reference cocrystal (RCC), prepared by precipitation from solution, and Soluplus resulted in faster dissolution relative to the pure RCC. However, the MAC product with the exact same composition resulted in considerably faster dissolution and higher maximum concentration (∼five-fold) than those of the PM. The MAC product consists of high-quality cocrystals embedded in a matrix. The processing aspect of MAC plays a major role on the faster dissolution observed. The MAC approach offers a scalable process, suitable for the continuous manufacturing and formulation of pharmaceutical cocrystals.

  19. Matrix engineering, state filling, and charge transport in PbSe quantum dot solids

    NASA Astrophysics Data System (ADS)

    Law, Matt

    Colloidal semiconductor quantum dots (QDs) are attractive building blocks for solar photovoltaics (PV). In this talk, I will highlight our recent progress in designing PbX (X = S, Se, Te) QD thin film absorbers for next-generation PV. Basic requirements for QD absorber layers include efficient light absorption, charge separation, charge transport, and long-term stability. I begin by discussing QD film fabrication, charge transport physics, insights from theory, and evidence that the carrier diffusion length is short and limited by electronic states in the QD band gap. Studies of carrier mobility as a function of basic film parameters such as inter-QD spacing, QD size, and QD size distribution have led to a better understanding of charge transport within highly disordered QD films. Efforts to improve carrier mobility by enhancing inter-dot electronic coupling, passivating surface states, and implementing surface doping will be highlighted. Engineering the inter-QD matrix to produce QD/inorganic or QD/organic nanocomposites is presented as a powerful way to optimize coupling, remove surface states, eliminate hysteretic charge trapping and ion motion, and achieve long-term environmental stability for high-performance, robust QD films that feature good carrier multiplication efficiency. New results on the use of atomic layer deposition infilling of QD films to yield all-inorganic QD transistors free of the bias-stress effect will be presented, and the likely role of ion transport in QD optoelectronics discussed. The use of infrared transmission spectroscopy to understand state filling and study charge transport in QD thin film transistors will be presented.

  20. Continuous propionic acid production with Propionibacterium acidipropionici immobilized in a novel xylan hydrogel matrix.

    PubMed

    Wallenius, Janne; Pahimanolis, Nikolaos; Zoppe, Justin; Kilpeläinen, Petri; Master, Emma; Ilvesniemi, Hannu; Seppälä, Jukka; Eerikäinen, Tero; Ojamo, Heikki

    2015-12-01

    The cell immobilization potential of a novel xylan based disulfide-crosslinked hydrogel matrix reinforced with cellulose nanocrystals was studied with continuous cultivation of Propionibacterium acidipropionici using various dilution rates. The cells were immobilized to hydrogel beads suspended freely in the fermentation broth or else packed into a column connected to a stirred tank reactor. The maximum propionic acid productivity for the combined stirred tank and column was 0.88gL(-1)h(-1) and the maximum productivity for the column was determined to be 1.39gL(-1)h(-1). The maximum propionic acid titer for the combined system was 13.9gL(-1) with a dilution rate of 0.06h(-1). Dry cell density of 99.7gL(-1) was obtained within the column packed with hydrogel beads and productivity of 1.02gL(-1)h(-1) was maintained in the column even with the high circulation rate of 3.37h(-1).

  1. Bottom-up and top-down solid-state NMR approaches for bacterial biofilm matrix composition

    NASA Astrophysics Data System (ADS)

    Cegelski, Lynette

    2015-04-01

    The genomics and proteomics revolutions have been enormously successful in providing crucial "parts lists" for biological systems. Yet, formidable challenges exist in generating complete descriptions of how the parts function and assemble into macromolecular complexes and whole-cell assemblies. Bacterial biofilms are complex multicellular bacterial communities protected by a slime-like extracellular matrix that confers protection to environmental stress and enhances resistance to antibiotics and host defenses. As a non-crystalline, insoluble, heterogeneous assembly, the biofilm extracellular matrix poses a challenge to compositional analysis by conventional methods. In this perspective, bottom-up and top-down solid-state NMR approaches are described for defining chemical composition in complex macrosystems. The "sum-of-the-parts" bottom-up approach was introduced to examine the amyloid-integrated biofilms formed by Escherichia coli and permitted the first determination of the composition of the intact extracellular matrix from a bacterial biofilm. An alternative top-down approach was developed to define composition in Vibrio cholerae biofilms and relied on an extensive panel of NMR measurements to tease out specific carbon pools from a single sample of the intact extracellular matrix. These two approaches are widely applicable to other heterogeneous assemblies. For bacterial biofilms, quantitative parameters of matrix composition are needed to understand how biofilms are assembled, to improve the development of biofilm inhibitors, and to dissect inhibitor modes of action. Solid-state NMR approaches will also be invaluable in obtaining parameters of matrix architecture.

  2. Matrix elements in the coupled-cluster approach - With application to low-lying states in Li

    NASA Technical Reports Server (NTRS)

    Martensson-Pendrill, Ann-Marie; Ynnerman, Anders

    1990-01-01

    A procedure is suggested for evaluating matrix elements of an operator between wavefunctions in the coupled-cluster form. The use of the exponential ansatz leads to compact exponential expressions also for matrix elements. Algorithms are developed for summing all effects of one-particle clusters and certain chains of two-particle clusters (containing the well-known random-phase approximation as a subset). The treatment of one-particle perturbations in single valence states is investigated in detail. As examples the oscillator strength for the 2s-2p transition in Li as well as the hyperfine structure for the two states are studied and compared to earlier work.

  3. Sustaining aspen productivity in the Lake States

    Treesearch

    Douglas M. Stone

    2001-01-01

    Sustaining forest productivity requires maintaining soil productivity. Management activities that decrease soil porosity and remove organic matter can reduce productivity. We determined effects of three levels of organic matter removal (OMR) and soil compaction on aspen regeneration and growth following winter harvest of aspen-dominated stands in northern Minnesota,...

  4. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    SciTech Connect

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol

  5. Potato production in the United States

    USDA-ARS?s Scientific Manuscript database

    Potatoes have been a staple in the American diet for almost 250 years. The United States is the world's fifth biggest producer, behind China, India, the Russian Federation, and the Ukraine. Potatoes in the United States are grown in nearly every state. Idaho produces approximately 1/3 of all potatoe...

  6. LIM mineralization protein-1 suppresses TNF-α induced intervertebral disc degeneration by maintaining nucleus pulposus extracellular matrix production and inhibiting matrix metalloproteinases expression.

    PubMed

    Liu, Hui; Pan, Hehai; Yang, Hao; Wang, Jianru; Zhang, Kuibo; Li, Xiang; Wang, Hua; Ding, Wenbin; Li, Bingxue; Zheng, Zhaomin

    2015-03-01

    Imbalanced metabolism of Nucleus pulposus (NP) extracellular matrix (ECM) is closely correlated to Intervertebral Disc Degenerative Disease. LIM mineralization protein-1 (LMP-1) has been proven to induce sulfated glycosaminoglycan (sGAG) production in NP and have an anti-inflammatory effect in pre-osteoclast. However, whether it has any effect on the NP ECM production and degradation under inflammatory stimulation has not been studied. In the current study, a TNF-α induced cell model was established in vitro. Lentivirus encoding LMP-1 (LV-LMP-1) and short heparin LMP-1 (LV-shLMP-1) were constructed to overexpress and knockdown LMP-1 expression in NP cells. LMP-1 mRNA level was regulated in a dose-dependent manner after transfection. LV-LMP-1 increased whereas LV-shLMP-1 decreased collagen II, aggrecan, versican expression, and sGAG production. LV-LMP-1 abolished while LV-shLMP-1 aggravated TNF-α mediated down-regulation of the above matrix genes via ERK1/2 activation. Moreover, LV-LMP-1 abrogated TNF-α induced MMP-3 and MMP-13 expression via inhibiting p65 translocation and MMP-3 and MMP-13 promoter activity. These results indicated that LMP-1 had an ECM production maintenance effect under inflammatory stimulation. This effect was via up-regulation of matrix genes expression at least partially through ERK1/2 activation, and down-regulation of MMPs expression through NF-κB inhibition.

  7. Tracking of proton flow during transition from anaerobiosis to steady state. 1. Response of matrix pH indicators.

    PubMed

    Luvisetto, S; Schmehl, I; Cola, C; Azzone, G F

    1991-11-15

    1. The kinetics of acidification and realkalinization of the matrix after addition of nigericin to respiring and non-respiring mitochondria, recorded by intramitochondrial pH indicators such as neutral red and 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF), is complementary to that recorded by extramitochondrial pH indicators. The extent of acidification decreases with the logarithm of the KCl concentration and is inhibited by Pi and ammonium ions. 2. Proton translocation during respiration has been compared with proton extraction from matrix bulk water. During oxygen pulses to EGTA-untreated mitochondria, BCECF records an extraction of protons from matrix bulk water of about 2-3 nmol H+/mg, reduced to 1-2 nmol H+/mg in EGTA-treated mitochondria. Since the amount of proton translocation required to achieve steady state is of the order of 6-7 nmol H+/mg, it appears that 75-90% of the protons are not extracted from matrix bulk water. Only a slight response is recorded by neutral red. 3. The effect of permeant cations and of uncouplers on the distribution of proton extraction between membrane and matrix bulk water has been studied in presteady state. During Sr2+ uptake, proton extrusion into cytosolic bulk water, as well as proton extraction from matrix bulk water, corresponds almost to 100% of the protons translocated by the redox proton pumps. In the absence of Sr2+, parallel to the disappearance of the proton extrusion in cytosolic bulk water, the proton extraction from matrix bulk water diminishes to about 20% of the proton translocation. 4. The mechanism by which divalent cation uptake and protonophoric uncouplers affect the distribution of proton extraction between matrix bulk water and membrane domains and the nature of the membrane domains are discussed.

  8. GGA+U study of uranium mononitride: A comparison of the U-ramping and occupation matrix schemes and incorporation energies of fission products

    NASA Astrophysics Data System (ADS)

    Claisse, Antoine; Klipfel, Marco; Lindbom, Niclas; Freyss, Michel; Olsson, Pär

    2016-09-01

    Uranium mononitride is studied in the DFT + U framework. Its ground state is investigated and a study of the incorporation of diverse fission products in the crystal is conducted. The U-ramping and occupation matrix control (OMC) schemes are used to eliminate metastable states. Beyond a certain amount of introduced correlation, the OMC scheme starts to find a lower total energy. The OMC scheme is chosen for the second part of this study. Furthermore, the influence of the magnetic ordering is studied using the U-ramping method, showing that antiferromagnetic order is the most stable one when the U parameter is larger than 1.75 eV. The effect on the density of states is investigated and elastic constants are provided for comparison with other methods and experiments. The incorporation energies of fission products in different defect configurations are calculated and these energies are corrected to take into account the limited size of the supercell.

  9. An adaptive method with weight matrix as a function of the state to design the rotatory flexible system control law

    NASA Astrophysics Data System (ADS)

    Souza, Luiz C. G.; Bigot, P.

    2016-10-01

    One of the most well-known techniques of optimal control is the theory of Linear Quadratic Regulator (LQR). This method was originally applied only to linear systems but has been generalized for non-linear systems: the State Dependent Riccati Equation (SDRE) technique. One of the advantages of SDRE is that the weight matrix selection is the same as in LQR. The difference is that weights are not necessarily constant: they can be state dependent. Then, it gives an additional flexibility to design the control law. Many are applications of SDRE for simulation or real time control but generally SDRE weights are chosen constant so no advantage of this flexibility is taken. This work serves to show through simulation that state dependent weights matrix can improve SDRE control performance. The system is a non-linear flexible rotatory beam. In a brief first part SDRE theory will be explained and the non-linear model detailed. Then, influence of SDRE weight matrix associated with the state Q will be analyzed to get some insight in order to assume a state dependent law. Finally, these laws are tested and compared to constant weight matrix Q. Based on simulation results; one concludes showing the benefits of using an adaptive weight Q rather than a constant one.

  10. Using R-matrix ideas to describe one-nucleon transfers to resonance states

    NASA Astrophysics Data System (ADS)

    Escher, J. E.; Thompson, I. J.; Arbanas, G.; Elster, Ch.; Eremenko, V.; Hlophe, L.; Nunes, F.; Torus Collaboration

    2014-09-01

    (d,p) transfer reactions have long been used to investigate nuclear structure. Carried out in inverse kinematics, they are expected to play a central role in the study of weakly-bound systems at modern RIB facilities. While the theoretical framework and its computational implementation for describing (d,p) reactions have seen much progress, open questions remain. Resonances in the low-energy spectra of weakly-bound nuclei, e.g., are of interest for astrophysical applications and can in principle be studied with transfer reactions. Applying standard transfer reaction theories is problematic, both practically in terms of achieving converged solutions and conceptually in terms of interpreting the results. Recently, a new formalism that utilizes concepts known from the successful and popular R-matrix theory was proposed for the description of (d,p) reactions [Mukhamedzhanov, PRC 2011]. The formalism covers transfers to bound and resonance states and is general enough to include deuteron breakup. We present tests of the proposed formalism, compare calculations to measured cross sections, and discuss implications [Escher et al. PRC 2014]. (d,p) transfer reactions have long been used to investigate nuclear structure. Carried out in inverse kinematics, they are expected to play a central role in the study of weakly-bound systems at modern RIB facilities. While the theoretical framework and its computational implementation for describing (d,p) reactions have seen much progress, open questions remain. Resonances in the low-energy spectra of weakly-bound nuclei, e.g., are of interest for astrophysical applications and can in principle be studied with transfer reactions. Applying standard transfer reaction theories is problematic, both practically in terms of achieving converged solutions and conceptually in terms of interpreting the results. Recently, a new formalism that utilizes concepts known from the successful and popular R-matrix theory was proposed for the description

  11. Effects of nicotine on proliferation and extracellular matrix production of human gingival fibroblasts in vitro.

    PubMed

    Tipton, D A; Dabbous, M K

    1995-12-01

    Normal function of gingival fibroblasts is essential for maintenance of the gingival extracellular matrix (ECM), but under inflammatory conditions in gingival tissue which may occur with tobacco use, they can also act in its destruction. The purpose of this study was to determine the effects of nicotine, a major component of tobacco, on gingival fibroblast proliferation, the production of fibronectin (FN), and the production and breakdown of type I collagen to elucidate its role in periodontal destruction associated with its use. A human gingival fibroblast strain derived from a healthy individual with non-inflamed gingiva was used in this study. Nicotine at concentrations > 0.075% caused cell death, and at 0.075% and 0.05% it caused transient vacuolization of the fibroblasts. At concentrations of 0.001% to 0.075%, nicotine significantly inhibited proliferation (P < or = 0.03), measured by the incorporation of [3H]-thymidine into DNA. The production of FN and type I collagen was significantly inhibited by nicotine at > or = 0.05% (P < or = 0.001), measured using specific ELISAs. On the other hand, nicotine at > or = 0.025% significantly increased collagenase activity (P < or = 0.008), using [3H]-gly and [14C]-pro-labeled type I collagen gels as substrate. The results show that, in vitro, nicotine inhibits the growth of gingival fibroblasts and their production of FN and collagen, while also promoting collagen breakdown. This suggests that nicotine itself may augment the destruction of the gingival ECM occurring during periodontal inflammation associated with smokeless tobacco use.

  12. Effect of extracellular matrix on testosterone production during in vitro culture of bovine testicular cells.

    PubMed

    Akbarinejad, Vahid; Tajik, Parviz; Movahedin, Mansoureh; Youssefi, Reza

    2017-01-01

    Testosterone is believed to play a significant role in spermatogenesis, but its contribution to the process of spermatogenesis is not completely understood. Given that extracellular matrix (ECM) facilitates differentiation of spermatogonial stem cells (SSCs) during culture, the present study was conducted to elucidate whether testosterone contribute to the permissive effect of ECM on SSCs differentiation. In experiment 1, testosterone production was measured in testicular cells cultured for 12 days on ECM or plastic (control). In experiment 2, testosterone production was assessed in testicular cells cultured on ECM or plastic (control) and exposed to different concentrations of hCG. In experiment 3, the gene expression of factors involved in testosterone production was analyzed. Testosterone concentration was lower in ECM than in the control group in experiment 1 (p < 0.05). In experiment 2, testosterone concentration was increased in response to hCG in both groups but cells cultured on ECM were more responsive to hCG than those cultured on plastic (p < 0.05). In the experiment 3, qRT-PCR revealed the inhibitory effect of ECM on the gene expression of steroidogenic acute regulatory protein (StAR) (p < 0.05). Nevertheless, the expression of LH receptor was greater in ECM-exposed than in unexposed cells (p < 0.05). In conclusion, the present study showed that inhibiting the expression of StAR, ECM could lower testosterone production by Leydig cells during in vitro culture. In addition, the results indicated that ECM could augment the responsiveness of Leydig cells to hCG through stimulating the expression of LH receptor.

  13. Pulpwood Production in the Lake States by County, 1973

    Treesearch

    James E. Blyth; Jerold T. Hahn

    1974-01-01

    This 28th annual report shows 1973 pulpwood production by county and species group in Michigan, Minnesota, and Wisconsin. Lake States pulpwood production rose to 4.7 million cords in 1973 from 4.3 million cords in 1972.

  14. Development of performance matrix for generic product equivalence of acyclovir topical creams.

    PubMed

    Krishnaiah, Yellela S R; Xu, Xiaoming; Rahman, Ziyaur; Yang, Yang; Katragadda, Usha; Lionberger, Robert; Peters, John R; Uhl, Kathleen; Khan, Mansoor A

    2014-11-20

    The effect of process variability on physicochemical characteristics and in vitro performance of qualitatively (Q1) and quantitatively (Q2) equivalent generic acyclovir topical dermatological creams was investigated to develop a matrix of standards for determining their in vitro bioequivalence with reference listed drug (RLD) product (Zovirax®). A fractional factorial design of experiment (DOE) with triplicate center point was used to create 11 acyclovir cream formulations with manufacturing variables such as pH of aqueous phase, emulsification time, homogenization speed, and emulsification temperature. Three more formulations (F-12-F-14) with drug particle size representing RLD were also prepared where the pH of the final product was adjusted. The formulations were subjected to physicochemical characterization (drug particle size, spreadability, viscosity, pH, and drug concentration in aqueous phase) and in vitro drug release studies against RLD. The results demonstrated that DOE formulations were structurally and functionally (e.g., drug release) similar (Q3) to RLD. Moreover, in vitro drug permeation studies showed that extent of drug bioavailability/retention in human epidermis from F-12-F-14 were similar to RLD, although differed in rate of permeation. The results suggested generic acyclovir creams can be manufactured to obtain identical performance as that of RLD with Q1/Q2/Q3.

  15. Isolation and identification of oxidation products of guaiacol from brines and heated meat matrix.

    PubMed

    Bölicke, Sarah-Maria; Ternes, Waldemar

    2016-07-01

    In this study we investigated the formation of the oxidation products of guaiacol in brines and heated meat matrix: 6-nitrosoguaiacol, 4-nitroguaiacol and 6-nitroguaiacol. For this purpose we applied a newly developed HPLC-UV and LC-MS method. For the first time, 6-nitrosoguaiacol was determined in brine and meat (containing guaiacol and sodium nitrite), which had been heated to 80°C and subsequently subjected to simulated digestion. Application of 500mg/L ascorbic acid to the brines reduced guaiacol degradation at pH3 and simultaneously inhibited the formation of 6-nitrosoguaiacol compared to brines containing only 100mg/L of ASC. The oxidation products were isolated with a new extraction method from meat samples containing 400mg/kg sodium nitrite at pH3.6 following simulated digestion. When oxygen was added, 6-nitrosoguaiacol was determined even at legally allowed levels (150mg/kg) of the curing agent. Finally, we developed a new LC-MS method for the separation and qualitative determination of the four main smoke methoxyphenols.

  16. Pioglitazone inhibits TGFβ induced keratocyte transformation to myofibroblast and extracellular matrix production.

    PubMed

    Pan, Hong-Wei; Xu, Jin-Tang; Chen, Jian-Su

    2011-10-01

    Phenotype transformation of corneal keratocyte to myofibroblast plays an important role in the wound healing process of cornea and TGFβ is considered to be the most important mediator to induce myofibroblast trans-differentiation. Peroxisome proliferator-activated receptors-γ (PPAR-γ) activation has been proved to exert anti-fibrotic effect in many tissues. In this study, we investigated the effect of PPAR-γ agonist, pioglitazone, on myofibroblast transformation, extracellular matrix production and cell proliferation. The results showed pioglitazone inhibited the TGFβ-driven myofibroblast differentiation, as determined by F-actin fluorescence staining, α-smooth muscle actin-specific immunocytochemistry and western blot analysis. Pioglitazone also potently attenuated TGFβ induced type I collagen and fibronectin mRNA and protein production. Moreover, pioglitazone showed inhibitory effect on TGFβ induced cell proliferation. The irreversible PPAR-γ antagonist GW9662, partially reversed the inhibition of collagen I and fibronectin expression but not myofibroblast transformation, suggesting both PPAR-γ dependent and PPAR-γ independent mechanisms were involved in the action of pioglitazone. Therefore, our study indicates pioglitazone has a potential application in therapy of corneal fibrosis and PPAR-γ might be a promising therapy target.

  17. 9 CFR 107.2 - Products under State license.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Products under State license. 107.2 Section 107.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTIONS FROM...

  18. 9 CFR 107.2 - Products under State license.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Products under State license. 107.2 Section 107.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTIONS FROM...

  19. Products of dentin matrix protein-1 degradation by interleukin-1β-induced matrix metalloproteinase-3 promote proliferation of odontoblastic cells.

    PubMed

    Hase, Naoko; Ozeki, Nobuaki; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2015-08-01

    We have previously reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation in mouse embryonic stem cell (ESC)-derived odontoblast-like cells, suggesting that MMP-3 plays a potentially unique physiological role in regeneration by odontoblast-like cells. MMPs are able to process virtually any component of the extracellular matrix, including collagen, laminin and bioactive molecules. Because odontoblasts produce dentin matrix protein-1 (DMP-1), we examined whether the degraded products of DMP-1 by MMP-3 contribute to enhanced proliferation in odontoblast-like cells. IL-1β increased mRNA and protein levels of odontoblastic marker proteins, including DMP-1, but not osteoblastic marker proteins, such as osteocalcin and osteopontin. The recombinant active form of MMP-3 could degrade DMP-1 protein but not osteocalcin and osteopontin in vitro. The exogenous degraded products of DMP-1 by MMP-3 resulted in increased proliferation of odontoblast-like cells in a dose-dependent manner. Treatment with a polyclonal antibody against DMP-1 suppressed IL-1β-induced cell proliferation to a basal level, but identical treatment had no effect on the IL-1β-induced increase in MMP-3 expression and activity. Treatment with siRNA against MMP-3 potently suppressed the IL-1β-induced increase in DMP-1 expression and suppressed cell proliferation (p < 0.05). Similarly, treatment with siRNAs against Wnt5a and Wnt5b suppressed the IL-1β-induced increase in DMP-1 expression and suppressed cell proliferation (p < 0.05). Rat KN-3 cells, representative of authentic odontoblasts, showed similar responses to the odontoblast-like cells. Taken together, our current study demonstrates the sequential involvement of Wnt5, MMP-3, DMP-1 expression, and DMP-1 degradation products by MMP-3, in effecting IL-1β-induced proliferation of ESC-derived odontoblast-like cells.

  20. Effects of reclaimed water matrix on fate of pharmaceuticals and personal care products in soil.

    PubMed

    Dodgen, L K; Zheng, W

    2016-08-01

    Reclaimed water is increasingly used to supplement water resources. However, reclaimed water has a complex matrix, which includes emerging chemical contaminants, that is introduced to the soil when this water is used for irrigation. The effects of microbial activity, dissolved matter, nutrients, and particulate matter in reclaimed water on half-life of 11 pharmaceutical and personal care products (PPCPs) in soil were investigated with 7 treatment waters, namely swine lagoon effluent (either unaltered, sterilized, or filtered and sterilized) and nanopure water (either unaltered or with added nitrogen, phosphorus, or potassium). The extractable residues of the parent PPCPs were measured over 35 d. Lagoon microbial activity was significantly (p ≤ 0.05) related to increased half-life of 4 PPCPs (carbamazepine, fluoxetine, ibuprofen, sulfamethoxazole) by 14-74%, and to decreased half-life of 3 others (caffeine, gemfibrozil, naproxen) by 13-25%. The presence of lagoon dissolved matter was significantly correlated with a 20-110% increase in half-life for 6 PPCPs (caffeine, estrone, gemfibrozil, ibuprofen, naproxen, triclocarban). However, lagoon particulate matter was significantly correlated with 9-52% decrease in half-life for these same compounds, as well as trimethoprim. The levels of nitrogen, phosphorous, and potassium in the lagoon effluent were not significantly related to half-life for most PPCPs, except caffeine. Overall, specific components of reclaimed water matrix had different effects on the soil half-lives of PPCPs, suggesting that the composition of reclaimed water needs to be considered when evaluating PPCP fate after land application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Increasing the power density when using inert matrix fuels to reduce production of transuranics

    SciTech Connect

    Recktenwald, G.D.; Deinert, M.R.

    2013-07-01

    Reducing the production of transuranics is a goal of most advanced nuclear fuel cycles. One way to do this is to recycle the transuranics into the same reactors that are currently producing them using an inert matrix fuel. In previous work we have modeled such a reactor where 72%, of the core is comprised of standard enriched uranium fuel pins, with the remaining 28% fuel made from Yttria stabilized zirconium, in which transuranics are loaded. A key feature of this core is that all of the transuranics produced by the uranium fuel assemblies are later burned in inert matrix fuel assemblies. It has been shown that this system can achieve reductions in transuranic waste of more than 86%. The disadvantage of such a system is that the core power rating must be significantly lower than a standard pressurized water reactor. One reason for the lower power is that high burnup of the uranium fuel precludes a critical level of reactivity at the end of the campaign. Increasing the uranium enrichment and changing the pin pitch are two ways to increase burnup while maintaining criticality. In this paper we use MCNPX and a linear reactivity model to quantify the effect of these two parameters on the end of campaign reactivity. Importantly, we show that in the region of our proposed reactor, enrichment increases core reactivity by 0.02 per percent uranium 235 and pin pitch increases reactivity by 0.02 per mm. Reactivity is lost at a rate of 0.005 per MWd/kgIHM uranium burnup. (authors)

  2. Changes in muscle fiber contractility and extracellular matrix production during skeletal muscle hypertrophy.

    PubMed

    Mendias, Christopher L; Schwartz, Andrew J; Grekin, Jeremy A; Gumucio, Jonathan P; Sugg, Kristoffer B

    2017-03-01

    Skeletal muscle can adapt to increased mechanical loads by undergoing hypertrophy. Transient reductions in whole muscle force production have been reported during the onset of hypertrophy, but contractile changes in individual muscle fibers have not been previously studied. Additionally, the extracellular matrix (ECM) stores and transmits forces from muscle fibers to tendons and bones, and determining how the ECM changes during hypertrophy is important in understanding the adaptation of muscle tissue to mechanical loading. Using the synergist ablation model, we sought to measure changes in muscle fiber contractility, collagen content, and cross-linking, and in the expression of several genes and activation of signaling proteins that regulate critical components of myogenesis and ECM synthesis and remodeling during muscle hypertrophy. Tissues were harvested 3, 7, and 28 days after induction of hypertrophy, and nonoverloaded rats served as controls. Muscle fiber specific force (sFo), which is the maximum isometric force normalized to cross-sectional area, was reduced 3 and 7 days after the onset of mechanical overload, but returned to control levels by 28 days. Collagen abundance displayed a similar pattern of change. Nearly a quarter of the transcriptome changed over the course of overload, as well as the activation of signaling pathways related to hypertrophy and atrophy. Overall, this study provides insight into fundamental mechanisms of muscle and ECM growth, and indicates that although muscle fibers appear to have completed remodeling and regeneration 1 mo after synergist ablation, the ECM continues to be actively remodeling at this time point.NEW & NOTEWORTHY This study utilized a rat synergist ablation model to integrate changes in single muscle fiber contractility, extracellular matrix composition, activation of important signaling pathways in muscle adaption, and corresponding changes in the muscle transcriptome to provide novel insight into the basic

  3. Study of color-octet matrix elements through J/ψ production in e+e- annihilation

    NASA Astrophysics Data System (ADS)

    Li, Yi-Jie; Xu, Guang-Zhi; Zhang, Pan-Pan; Zhang, Yu-Jie; Liu, Kui-Yong

    2017-09-01

    In this paper, the color-octet long distance matrix elements are studied through the inclusive J/ψ production in e+e- annihilation within the framework of non-relativistic QCD factorization. The calculations are up-to next-to-leading order with the radiative and relativistic corrections in the energy region of the B-factory and the near-threshold region of 4.6{-}5.6 GeV. A constraint of the long distance matrix elements (< ^1S_08> , < ^3P_08> ) is obtained. Through our estimation, the P-wave color-octet matrix element (< 0|^3P^8_0|0> ) should be of the order of 0.008m_c^2 GeV^3 or less. The constrained region is not compatible with the values of the long distance matrix elements fitted at hadron colliders.

  4. Numerical Computation of a Continuous-thrust State Transition Matrix Incorporating Accurate Hardware and Ephemeris Models

    NASA Technical Reports Server (NTRS)

    Ellison, Donald; Conway, Bruce; Englander, Jacob

    2015-01-01

    A significant body of work exists showing that providing a nonlinear programming (NLP) solver with expressions for the problem constraint gradient substantially increases the speed of program execution and can also improve the robustness of convergence, especially for local optimizers. Calculation of these derivatives is often accomplished through the computation of spacecraft's state transition matrix (STM). If the two-body gravitational model is employed as is often done in the context of preliminary design, closed form expressions for these derivatives may be provided. If a high fidelity dynamics model, that might include perturbing forces such as the gravitational effect from multiple third bodies and solar radiation pressure is used then these STM's must be computed numerically. We present a method for the power hardward model and a full ephemeris model. An adaptive-step embedded eight order Dormand-Prince numerical integrator is discussed and a method for the computation of the time of flight derivatives in this framework is presented. The use of these numerically calculated derivatieves offer a substantial improvement over finite differencing in the context of a global optimizer. Specifically the inclusion of these STM's into the low thrust missiondesign tool chain in use at NASA Goddard Spaceflight Center allows for an increased preliminary mission design cadence.

  5. Matrix of Key Federal Statutes and Federal and State Court Decisions Reflecting the Core Concepts of Disability Policy

    ERIC Educational Resources Information Center

    Turnbull, H. Rutherford, III; Stowe, Matt; Klein, Samara; Riffel, Brandon

    2012-01-01

    This matrix displays the decisions of the United States Supreme Court and the federal statutes most relevant to individuals with disabilities and their families. It is organized according to the core concepts of disability policy as identified by Rud Turnbull and his colleagues at the Beach Center on Disability, the University of Kansas, Lawrence,…

  6. Measurement of the electroweak top quark production cross section and the CKM matrix element Vtb with the D0 experiment

    SciTech Connect

    Kirsch, Matthias

    2009-06-29

    At particle accelerators the Standard Model has been tested and will be tested further to a great precision. The data analyzed in this thesis have been collected at the world's highest energetic-collider, the Tevatron, located at the Fermi National Accelerator Laboratory (FNAL) in the vicinity of Chicago, IL, USA. There, protons and antiprotons are collided at a center-of-mass energy of {radical}s = 1.96 TeV. The discovery of the top quark was one of the remarkable results not only for the CDF and D0 experiments at the Tevatron collider, but also for the Standard Model, which had predicted the existence of the top quark because of symmetry arguments long before already. Still, the Tevatron is the only facility able to produce top quarks. The predominant production mechanism of top quarks is the production of a top-antitop quark pair via the strong force. However, the Standard Model also allows the production of single top quarks via the electroweak interaction. This process features the unique opportunity to measure the |Vtb| matrix element of the Cabbibo-Kobayashi-Maskawa (CKM) matrix directly, without assuming unitarity of the matrix or assuming that the number of quark generations is three. Hence, the measurement of the cross section of electroweak top quark production is more than the technical challenge to extract a physics process that only occurs one out of ten billion collisions. It is also an important test of the V-A structure of the electroweak interaction and a potential window to physics beyond the Standard Model in the case where the measurement of |V{sub tb}| would result in a value significantly different from 1, the value predicted by the Standard Model. At the Tevatron two production processes contribute significantly to the production of single top quarks: the production via the t-channel, also called W-gluon fusion, and the production via the s-channel, known as well as W* process. This analysis searches for the combined s+t channel

  7. Transitional states of acrosomal exocytosis and proteolytic processing of the acrosomal matrix in guinea pig sperm.

    PubMed

    Kim, Kye-Seong; Foster, James A; Kvasnicka, Kevin W; Gerton, George L

    2011-12-01

    In this study, we adapted a FluoSphere bead-binding assay to study the exposure and release of guinea pig sperm acrosomal components during the course of capacitation and acrosomal exocytosis. Prior to capacitation or the initiation of exocytosis, acrosomal proteins were not accessible to FluoSpheres coated with antibodies against two acrosomal matrix (AM) proteins, AM67 and AM50; during the course of capacitation and ionophore-induced acrosomal exocytosis, however, we detected the transient exposure of the solid-phase AM proteins on the surface of guinea pig sperm using the antibody-coated fluorescent beads. Several different transitional stages leading to complete acrosomal exocytosis were classified, and we propose these represent true, functional intermediates since some of the AM proteins are orthologues of mouse proteins that bind the zona pellucida (ZP) of unfertilized eggs. In addition, we present evidence that implicates acrosin in the proteolytic processing of AM50 during AM disassembly. Thus, we propose that the transitional states of acrosomal exocytosis involve early binding of AM proteins to the ZP (by what visually appear to be "acrosome-intact" sperm), maintenance of ZP binding that coincides with the progressive exposure of AM proteins, and gradual proteolytic disassembly of the AM to allow sperm movement through the ZP. We feel this "transitional states" model provides a more refined view of acrosomal function that supports a move away from the widely held, overly simplistic, and binary "acrosome-reaction" model, and embraces a more dynamic view of acrosomal exocytosis that involves intermediate stages of the secretory process in ZP binding and penetration.

  8. Nonlocality of orthogonal product-basis quantum states

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Ling; Li, Mao-Sheng; Zheng, Zhu-Jun; Fei, Shao-Ming

    2015-09-01

    We study the local indistinguishability of mutually orthogonal product basis quantum states in the high-dimensional quantum system. In the quantum system of Cd⊗Cd , where d is odd, Zhang et al. [Z.-C. Zhang et al., Phys. Rev. A 90, 022313 (2014), 10.1103/PhysRevA.90.022313] have constructed d2 orthogonal product basis quantum states that are locally indistinguishable. We find a subset that contains 6 d -9 orthogonal product states that are still locally indistinguishable. We generalize our method to an arbitrary bipartite quantum system Cm⊗Cn . We present a small set with only 3 (m +n )-9 orthogonal product states and prove that these states are local operations and classical communication (LOCC) indistinguishable. Even though these 3 (m +n )-9 product states are LOCC indistinguishable, they can be distinguished by separable measurements. This shows that separable operations are strictly stronger than the local operations and classical communication.

  9. Steady state compact toroidal plasma production

    DOEpatents

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  10. Production of heavy quark states at CDF

    SciTech Connect

    Papadimitriou, V.

    1995-07-01

    In this paper the author presents results on quarkonia production, B-meson production and b{bar b} correlations in p{bar p} collisions at {radical}s = 1.8 TeV. These results were obtained from data taken with the CDF detector at Fermilab. The author covers recently completed analyses of the 1992-95 collider run. Prospects for the near and more distant future are also discussed.

  11. The open XXX spin chain in the SoV framework: scalar product of separate states

    NASA Astrophysics Data System (ADS)

    Kitanine, N.; Maillet, J. M.; Niccoli, G.; Terras, V.

    2017-06-01

    We consider the XXX open spin-1/2 chain with the most general non-diagonal boundary terms, that we solve by means of the quantum separation of variables (SoV) approach. We compute the scalar products of separate states, a class of states which notably contains all the eigenstates of the model. As usual for models solved by SoV, these scalar products can be expressed as some determinants with a non-trivial dependance in terms of the inhomogeneity parameters that have to be introduced for the method to be applicable. We show that these determinants can be transformed into alternative ones in which the homogeneous limit can easily be taken. These new representations can be considered as generalizations of the well-known determinant representation for the scalar products of the Bethe states of the periodic chain. In the particular case where a constraint is applied on the boundary parameters, such that the transfer matrix spectrum and eigenstates can be characterized in terms of polynomial solutions of a usual T-Q equation, the scalar product that we compute here corresponds to the scalar product between two off-shell Bethe-type states. If in addition one of the states is an eigenstate, the determinant representation can be simplified, hence leading in this boundary case to direct analogues of algebraic Bethe ansatz determinant representations of the scalar products for the periodic chain.

  12. Galilean Invariance and Pion Production with Excitation of Giant Dipole States.

    NASA Astrophysics Data System (ADS)

    Ho, Hing Wah

    1982-03-01

    The role of Galilean invariance in a nonrelativistic theory of pion production is examined. A nonrelativistic pion-nuclear interaction H(,(pi)N)('eff) is one which in perturbation theory gives the same matrix element for a physical reaction as the limit of small nuclear velocities of the relativistic matrix element. The latter matric elements are always Galilean invariant, but this does not require that H(,(pi)N)('eff) be Galilean invariant. If a pion is emitted or absorbed by a nucleon moving in a potential, then the Galilean correction term can be shown to be ambiguously of order v/c or of order v('2)/c('2). It is shown that H(,(pi)N)('eff) cannot always reproduce the nonrelativistic limit of a relativistic matrix. It is suggested that pion production by nucleons on nuclei with excitation of giant dipole and quadrapole states may be particularly sensitive to the presence of a Galilean correction term in the production matrix. A DWBA two nucleon mode (TNM) s-wave pion production model is developed to investigate the sensitivity of the Galilean correction term. The TNM pion production process includes pion production by one nucleon, using the Galilean invariant pion production interaction, with the pion rescattered by the second nucleon. The TNM model employs a finite range approximation. The finite range approximation assumes that the contribution to the matrix element is small when the distance between the two involved nucleons is large. The pion production reaction ('12)C(p,(pi)('+))('13C)(,g.d.), with excitation of the giant dipole state, thought to be a good candidate for an experimental investigation of the sensitivity of the Galilean correction term, is investigated. The calculated cross sections are 0.4 nb/sr and 0.13 nb/sr, respectively, at the forward angle with and without the contribution from the Galilean correction term. The smallness of these values is primarily due to the vanishing of the contribution from a diagram having a large coupling

  13. Off-loading of cyclic hydrostatic pressure promotes production of extracellular matrix by chondrocytes.

    PubMed

    Tatsumura, Masaki; Sakane, Masataka; Ochiai, Naoyuki; Mizuno, Shuichi

    2013-01-01

    The addition of cyclic hydrostatic pressure (cHP) to cell culture medium has been used to promote extracellular matrix (ECM) production by articular chondrocytes. Though a combination of cHP followed by atmospheric pressure (AP) has been examined previously, the rationale of such a combination was unclear. We compared the effects of loading once versus twice (combinations of cHP followed by AP) regarding both gene expression and biochemical and histological phenotypes of chondrocytes. Isolated bovine articular chondrocytes were embedded in a collagen gel and incubated for 14 days under conditions combining cHP and AP. The gene expression of aggrecan core protein and collagen type II were upregulated in response to cHP, and those levels were maintained for at least 4 days after cHP treatment. Accumulation of cartilage-specific sulfated glycosaminoglycans following cHP for 7 days and subsequent AP for 7 days was significantly greater than that of the AP control (p < 0.05). Therefore, incubation at AP after loading with cHP was found to beneficially affect ECM accumulation. Manipulating algorithms of cHP combined with AP will be useful in producing autologous chondrocyte-based cell constructs for implantation. © 2014 S. Karger AG, Basel.

  14. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif

    2016-02-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.

  15. PHA production from the organic fraction of municipal solid waste (OFMSW): Overcoming the inhibitory matrix.

    PubMed

    Korkakaki, Emmanouela; Mulders, Michel; Veeken, Adrie; Rozendal, Rene; van Loosdrecht, Mark C M; Kleerebezem, Robbert

    2016-06-01

    Leachate from the source separated organic fraction of municipal solid waste (OFMSW) was evaluated as a substrate for polyhydroxyalkanoates (PHA) production. Initially, the enrichment step was conducted directly on leachate in a feast-famine regime. Maximization of the cellular PHA content of the enriched biomass yielded to low PHA content (29 wt%), suggesting that the selection for PHA-producers was unsuccessful. When the substrate for the enrichment was switched to a synthetic volatile fatty acid (VFA) mixture -resembling the VFA carbon composition of the leachate-the PHA-producers gained the competitive advantage and dominated. Subsequent accumulation with leachate in nutrient excess conditions resulted in a maximum PHA content of 78 wt%. Based on the experimental results, enriching a PHA-producing community in a "clean" VFA stream, and then accumulating PHA from a stream that does not allow for enrichment but does enable a high cellular PHA content, such as OFMSW leachate, makes the overall process much more economically attractive. The estimated overall process yield can be increased four-fold, in comparison to direct use of the complex matrix for both enrichment and accumulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Novel application of high pressure processing for the production of shellfish toxin matrix reference materials.

    PubMed

    Turner, Andrew D; Powell, Andy L; Burrell, Stephen

    2014-11-01

    The production of homogeneous and stable matrix reference materials for marine biotoxins is important for the validation and implementation of instrumental methods of analysis. High pressure processing was investigated to ascertain potential advantages this technique may have in stabilising paralytic shellfish poisoning toxins in shellfish tissues compared to untreated materials. Oyster tissues were subjected to a range of different temperatures and pressures, with results showing a significant reduction in biological activity in comparison to control samples, without significantly altering toxin profiles. Tissue subjected to pressures >600 MPa at 50 °C was assessed for homogeneity and stability. The sample homogeneity was determined using a pre-column oxidation LC-FLD method and shown to be within accepted levels of within batch repeatability. Short and long-term stability studies were conducted over a range of temperatures, with analysis by pre and post column oxidation LC-FLD demonstrating improved stability of toxins compared to the untreated materials and with epimerisation of toxins also notably reduced in treated materials. This study confirmed the technique of high pressure processing to improve the stability of PSP toxins compared to untreated wet tissues and highlighted its applicability in reference material preparation where removal of biological activity is of importance. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  17. Omega-3 fatty acid supplementation decreases matrix metalloproteinase-9 production in relapsing-remitting multiple sclerosis.

    PubMed

    Shinto, L; Marracci, G; Baldauf-Wagner, S; Strehlow, A; Yadav, V; Stuber, L; Bourdette, D

    2009-01-01

    The primary objective was to evaluate the effect of omega-3 fatty acids (omega-3 FA) on matrix metalloproteinase-9 (MMP-9) production by immune cells in multiple sclerosis (MS). Quality of life, fatty acid levels, and safety were also evaluated. Ten participants with relapsing-remitting MS (RRMS) received omega-3 FA supplementation (9.6g/day fish oil) in an open-label study. Participants were evaluated at four time points, baseline, after 1 month of omega-3 FA supplementation, after 3 months of omega-3 FA supplementation, and after a 3-month wash out. Immune cell secretion of MMP-9 decreased by 58% after 3 months of omega-3 FA supplementation when compared with baseline levels (p<0.01). This effect was coupled with a significant increase in omega-3 FA levels in red blood cell membranes. Omega-3 FA significantly decreased MMP-9 levels in RRMS and may act as an immune-modulator that has potential therapeutic benefit in MS patients.

  18. Modeling State-Space Aeroelastic Systems Using a Simple Matrix Polynomial Approach for the Unsteady Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2008-01-01

    A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.

  19. Production of an Extracellular Matrix as an Isotropic Growth Phase of Penicillium rubens on Gypsum

    PubMed Central

    Bekker, M.; Adan, O. C. G.; Samson, R. A.; Wyatt, T.; Dijksterhuis, J.

    2012-01-01

    Indoor mold represents an important environmental concern, but a fundamental knowledge of fungal growth stages is needed to limit indoor fungal proliferation on finishing materials used in buildings. The present study focused on the succession of germination stages of the common indoor fungus Penicillium rubens on a gypsum substrate. This substrate is used as a model system representing porous materials that are widely used in indoor environments. Imaging with cryo-scanning electron microscopy showed that the formation of an extracellular matrix (ECM) is a phase of the isotropic growth of P. rubens that is uniquely related to germinating conidia. Furthermore, the ECM is observed only when a dry-state inoculation of the surface is applied, i.e., applying conidia directly from a 7-day-old colony, mimicking airborne contamination of the surface. When inoculation is done by spraying an aqueous conidial suspension, no ECM is observed. Moreover, it is concluded that the formation of an ECM requires active processes in the fungal cell. The porosity of the substrate proved that the ECM substance has high-viscosity characteristics. The present results stress that studies of indoor fungal growth should consider the method of inoculation, knowing that the common aqueous suspension may obscure specific stages in the initial phases of germination. PMID:22843536

  20. Early state research on antifungal natural products.

    PubMed

    Negri, Melyssa; Salci, Tânia P; Shinobu-Mesquita, Cristiane S; Capoci, Isis R G; Svidzinski, Terezinha I E; Kioshima, Erika Seki

    2014-03-07

    Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been conducted to evaluate the characteristics of natural drug products, including their sustainability, affordability, and antimicrobial activity. A considerable number of studies of medicinal plants and alternative compounds, such as secondary metabolites, phenolic compounds, essential oils and extracts, have been performed. Thus, this review discusses the history of the antifungal arsenal, surveys natural products with potential antifungal activity, discusses strategies to develop derivatives of natural products, and presents perspectives on the development of novel antifungal drug candidates.

  1. Efficient implementation and the product state representation of numbers.

    SciTech Connect

    Benioff, P.; Physics

    2001-10-12

    The relation between the requirement of efficient implementability and the product-state representation of numbers is examined. Numbers are defined to be any model of the axioms of number theory or arithmetic. Efficient implementability (EI) means that the basic arithmetic operations are physically implementable and the space-time and thermodynamic resources needed to carry out the implementations are polynomial in the range of numbers considered. Different models of numbers are described to show the independence of both EI and the product-state representation from the axioms. The relation between EI and the product-state representation is examined. It is seen that the condition of a product-state representation does not imply EI. Arguments used to refute the converse implication, EI implies a product-state representation, seem reasonable; but they are not conclusive. Thus this implication remains an open question.

  2. Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases.

    PubMed

    Takino, Takahisa; Koshikawa, Naohiko; Miyamori, Hisashi; Tanaka, Motohiro; Sasaki, Takuma; Okada, Yasunori; Seiki, Motoharu; Sato, Hiroshi

    2003-07-24

    A human placenta cDNA library was screened by the expression cloning method for gene products that interact with matrix metalloproteinases (MMPs), and we isolated a cDNA whose product formed a stable complex with pro-MMP-2 and pro-MMP-9. The cDNA encoded the metastasis suppressor gene KiSS-1. KiSS-1 protein was shown to form a complex with pro-MMP. KiSS-1 protein is known to be processed to peptide ligand of a G-protein-coupled receptor (hOT7T175) named metastin, and suppresses metastasis of tumors expressing the receptor. Active MMP-2, MMP-9, MT1-MMP, MT3-MMP and MT5-MMP cleaved the Gly118-Leu119 peptide bond of not only full-length KiSS-1 protein but also metastin decapeptide. Metastin decapeptide induced formation of focal adhesion and actin stress fibers in cells expressing the receptor, and digestion of metastin decapeptide by MMP abolished its ligand activity. Migration of HT1080 cells expressing hOT7T175 that harbor a high-level MMP activity was only slightly suppressed by either metastin decapeptide or MMP inhibitor BB-94 alone, but the combination of metastin decapeptide and BB-94 showed a synergistic effect in blocking cell migration. We propose that metastin could be used as an antimetastatic agent in combination with MMP inhibitor, or MMP-resistant forms of metastin could be developed and may also be efficacious.

  3. Ethanol Demand in United States Gasoline Production

    SciTech Connect

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  4. Matrix elements of the electromagnetic operator between kaon and pion states

    SciTech Connect

    Baum, I.; Lubicz, V.; Martinelli, G.; Orifici, L.; Simula, S.

    2011-10-01

    We compute the matrix elements of the electromagnetic operator sF{sub {mu}{nu}}{sigma}{sup {mu}{nu}}d between kaon and pion states, using lattice QCD with maximally twisted-mass fermions and two flavors of dynamical quarks (N{sub f}=2). The operator is renormalized nonperturbatively in the RI'/MOM scheme and our simulations cover pion masses as light as 270 MeV and three values of the lattice spacing from {approx_equal}0.07 up to {approx_equal}0.1 fm. At the physical point our result for the corresponding tensor form factor at zero-momentum transfer is f{sub T}{sup K{pi}}(0)=0.417(14{sub stat})(5{sub syst}), where the systematic error does not include the effect of quenching the strange and charm quarks. Our result differs significantly from the old quenched result f{sub T}{sup K{pi}}(0)=0.78(6) obtained by the SPQ{sub cd}R Collaboration with pion masses above 500 MeV. We investigate the source of this difference and conclude that it is mainly related to the chiral extrapolation. We also study the tensor charge of the pion and obtain the value f{sub T}{sup {pi}{pi}}(0)=0.195(8{sub stat})(6{sub syst}) in good agreement with, but more accurate than the result f{sub T}{sup {pi}{pi}}(0)=0.216(34) obtained by the QCDSF Collaboration using higher pion masses.

  5. Transitional States of Acrosomal Exocytosis and Proteolytic Processing of the Acrosomal Matrix in Guinea Pig Sperm

    PubMed Central

    Kim, Kye-Seong; Foster, James A.; Kvasnicka, Kevin W.; Gerton, George L.

    2011-01-01

    In this study, we adapted a FluoSphere bead-binding assay to study the exposure and release of guinea pig sperm acrosomal components during the course of capacitation and acrosomal exocytosis. Prior to capacitation or the initiation of exocytosis, acrosomal proteins were not accessible to FluoSpheres coated with antibodies against two acrosomal matrix (AM) proteins, AM67 and AM50; during the course of capacitation and ionophore-induced acrosomal exocytosis, however, we detected the transient exposure of the solid-phase AM proteins on the surface of guinea pig sperm using the antibody-coated fluorescent beads. Several different transitional stages leading to complete acrosomal exocytosis were classified, and we propose these represent true, functional intermediates since some of the AM proteins are orthologues of mouse proteins that bind the zona pellucida of unfertilized eggs. In addition, we present evidence that implicates acrosin in the proteolytic processing of AM50 during AM disassembly. Thus, we propose that the transitional states of acrosomal exocytosis involve early binding of AM proteins to the zona pellucida (by what visually appear to be “acrosome-intact” sperm), maintenance of zona pellucida binding that coincides with the progressive exposure of AM proteins, and gradual proteolytic disassembly of the AM to allow sperm movement through the zona pellucida. We feel this “transitional states” model provides a more refined view of acrosomal function that supports a move away from the widely-held, overly simplistic, and binary “acrosome-reaction” model, and embraces a more dynamic view of acrosomal exocytosis that involves intermediate stages of the secretory process in zona pellucida binding and penetration. PMID:21919109

  6. Pulpwood Chip Productions and Markets in the Lake States

    Treesearch

    Eugene W. Fobes

    1966-01-01

    As a major pulp and paper production area, the Lake States is a potential market for pulpwood chips. As a producer of solid wood products, it has a considerable potential for the production of pulpwood chips from coarse sawmill residues (slabs, edgings, and trim) and other sources. Only a small amount of the available residues, however, is now being utilized. In...

  7. Simulation of coherence selection by pulsed field gradients in liquid-state NMR using an auxiliary matrix formalism

    NASA Astrophysics Data System (ADS)

    Edwards, Luke J.

    2014-03-01

    An algorithm for simulating coherence selection due to a pulse sequence element consisting of two pulsed field gradients separated by a short collection of pulses and delays is introduced. This algorithm involves computation of the matrix exponential of an auxiliary matrix twice the size of the system Liouvillian, a dimensional increase smaller than is required with other known computational methods. Approximations valid for most simulations of liquid-state NMR spectra are involved in the derivation. Diffusion is omitted, but could be treated in an approximate way as a damping over the pulse sequence element. Several NMR pulse sequences using gradients for coherence selection have been implemented, making use of the functionality of Spinach (http://spindynamics.org/Spinach.php). Example simulations testing these implementations are presented, and the extent to which the formal dimensional reduction can lead to a speedup in simulation time discussed. It is found that the previously known methods can be made competitive with the auxiliary matrix method by making use of their embarrassingly parallel nature. Cases where the relative dimensional reduction of the auxiliary matrix method is very large, or where efficient parallelization of the simulation independent of the nature of the algorithm used exists, are found to lead to situations beneficial for the auxiliary matrix algorithm in this comparison.

  8. The Chemical Production of Excited State Moleculea.

    DTIC Science & Technology

    2014-09-26

    reverse side It necessary and identify by block number) dioxetanes chemilumuniscence amino peroxides ’jto Most of e search deals with the effect of...n, state (vs carbonyl formation and attempts to trap the proposed 1,4-dioxybiradica intermediate from thermolysis of dioxetanes. Some amino peroxides ...ring peroxide in order to distinguish between concerted vs stepwise decomposition routes. This study was pertinent to the mechanism of dioxetane (a

  9. Speech production as state feedback control.

    PubMed

    Houde, John F; Nagarajan, Srikantan S

    2011-01-01

    Spoken language exists because of a remarkable neural process. Inside a speaker's brain, an intended message gives rise to neural signals activating the muscles of the vocal tract. The process is remarkable because these muscles are activated in just the right way that the vocal tract produces sounds a listener understands as the intended message. What is the best approach to understanding the neural substrate of this crucial motor control process? One of the key recent modeling developments in neuroscience has been the use of state feedback control (SFC) theory to explain the role of the CNS in motor control. SFC postulates that the CNS controls motor output by (1) estimating the current dynamic state of the thing (e.g., arm) being controlled, and (2) generating controls based on this estimated state. SFC has successfully predicted a great range of non-speech motor phenomena, but as yet has not received attention in the speech motor control community. Here, we review some of the key characteristics of speech motor control and what they say about the role of the CNS in the process. We then discuss prior efforts to model the role of CNS in speech motor control, and argue that these models have inherent limitations - limitations that are overcome by an SFC model of speech motor control which we describe. We conclude by discussing a plausible neural substrate of our model.

  10. Connective tissue growth factor increases matrix metalloproteinase-2 and suppresses tissue inhibitor of matrix metalloproteinase-2 production by cultured renal interstitial fibroblasts.

    PubMed

    Yang, Min; Huang, Haichang; Li, Jingzi; Huang, Wen; Wang, Haiyan

    2007-01-01

    The involvement of gelatinase (matrix metalloproteinase-2 [MMP-2] and MMP-9) in the matrix remodeling and development of tubulointerstitial fibrosis has been studied recently, but relatively little is known about the regulators and the mechanisms controlling the activation and expression of gelatinase in renal fibroblasts. In these studies, the production and underlying signaling pathway for gelatinase by exogenous connective tissue growth factor (CTGF) treatment were investigated. Here, we show that CTGF acts as a potent promoter of the activation and expression of MMP-2, but not MMP-9 in normal rat kidney fibroblasts cell line (NRK-49F). We found that CTGF significantly increased the activity of MMP-2, as well as MMP-2 protein in conditioned medium and MMP-2 mRNA levels in cells. In studies to address the mechanisms involved in the regulation of MMP-2 activity, we found that the tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), the inhibitor of MMP-2, decreased significantly when cells were treated with CTGF. Further studies showed that extracellular signal-regulated kinase (ERK) signaling is responsible for most of the CTGF-induced MMP-2 expression and TIMP-2 suppression. When NRK-49F fibroblasts were incubated with CTGF, activation of ERK1/2 signaling was observed. Suppression of ERK1/2 activation with nontoxic concentrations of PD98059, a specific inhibitor of ERK activation, was associated with a reduction of CTGF-stimulated MMP-2 activity and protein expression. In addition, the CTGF-mediated reduction of TIMP-2 activity and protein expression was prevented when ERK1/2 activation was inhibited by PD98059. These results provide evidence that CTGF augments activation of MMP-2 through an effect on MMP-2 protein expression and TIMP-2 suppression, and that these effects are dependent on the activation of the ERK1/2 pathway.

  11. Low-lying excited states in armchair polyacene within Pariser-Parr-Pople model: A density matrix renormalization group study

    SciTech Connect

    Das, Mousumi

    2014-03-28

    We studied the nature of the ground state and low-lying excited states of armchair polyacene oligomers (Polyphenanthrene) within long-range Pariser-Parr-Pople model Hamiltonian with up to 14 monomers using symmetrized density matrix renormalization group technique. The ground state of all armchair polyacenes studied is found to be singlet. The results show that lowest singlet dipole allowed excited state has higher energy for armchair polyacenes as compared to linear fused polyacenes. Moreover, unlike linear fused polyacenes, the lowest singlet excited state of these oligomers is always found to lie below the lowest dipole forbidden two-photon state indicating that these armchair polyacene oligomers strongly fluoresce. The calculations of low-lying excitations on singly and triply electron doped armchair polyacene oligomers show a low energy band with strong transition dipole moment that coupled to charge conductivity. This implies armchair polyacene posses novel field-effect transistor properties.

  12. Multistate Complete-Active-Space Second-Order Perturbation Theory Based on Density Matrix Renormalization Group Reference States.

    PubMed

    Yanai, Takeshi; Saitow, Masaaki; Xiong, Xiao-Gen; Chalupský, Jakub; Kurashige, Yuki; Guo, Sheng; Sharma, Sandeep

    2017-10-10

    We present the development of the multistate multireference second-order perturbation theory (CASPT2) with multiroot references, which are described using the density matrix renormalization group (DMRG) method to handle a large active space. The multistate first-order wave functions are expanded into the internally contracted (IC) basis of the single-state single-reference (SS-SR) scheme, which is shown to be the most feasible variant to use DMRG references. The feasibility of the SS-SR scheme comes from two factors: first, it formally does not require the fourth-order transition reduced density matrix (TRDM) and second, the computational complexity scales linearly with the number of the reference states. The extended multistate (XMS) treatment is further incorporated, giving suited treatment of the zeroth-order Hamiltonian despite the fact that the SS-SR based IC basis is not invariant with respect to the XMS rotation. In addition, the state-specific fourth-order reduced density matrix (RDM) is eliminated in an approximate fashion using the cumulant reconstruction formula, as also done in the previous state-specific DMRG-cu(4)-CASPT2 approach. The resultant method, referred to as DMRG-cu(4)-XMS-CASPT2, uses the RDMs and TRDMs of up to third-order provided by the DMRG calculation. The multistate potential energy curves of the photoisomerization of diarylethene derivatives with CAS(26e,24o) are presented to illustrate the applicability of our theoretical approach.

  13. Two-mode Gaussian product states in a lossy interferometer

    NASA Astrophysics Data System (ADS)

    Jaseem, Noufal; Shaji, Anil

    2017-09-01

    The quantum Fisher information for a two-mode, Gaussian product state in an interferometer subject to photon loss is studied. We obtain the quantum Cramer-Rao bound on the achievable precision in phase estimation using such states. The scaling of the measurement precision with the mean photon number is compared to the shot noise-limited scaling for dual squeezed vacuum states and dual squeezed, displaced vacuum states.

  14. The exit strategy: Pharmacological modulation of extracellular matrix production and deposition for better aqueous humor drainage.

    PubMed

    Pattabiraman, Padmanabhan P; Toris, Carol B

    2016-09-15

    Primary open angle glaucoma (POAG) is an optic neuropathy and an irreversible blinding disease. The etiology of glaucoma is not known but numerous risk factors are associated with this disease including aging, elevated intraocular pressure (IOP), race, myopia, family history and use of steroids. In POAG, the resistance to the aqueous humor drainage is increased leading to elevated IOP. Lowering the resistance and ultimately the IOP has been the only way to slow disease progression and prevent vision loss. The primary drainage pathway comprising of the trabecular meshwork (TM) is made up of relatively large porous beams surrounded by extracellular matrix (ECM). Its juxtacanalicular tissue (JCT) or the cribriform meshwork is made up of cells embedded in dense ECM. The JCT is considered to offer the major resistance to the aqueous humor outflow. This layer is adjacent to the endothelial cells forming Schlemm's canal, which provides approximately 10% of the outflow resistance. The ECM in the TM and the JCT undergoes continual remodeling to maintain normal resistance to aqueous humor outflow. It is believed that the TM is a major contributor of ECM proteins and evidence points towards increased ECM deposition in the outflow pathway in POAG. It is not clear how and from where the ECM components emerge to hinder the normal aqueous humor drainage. This review focuses on the involvement of the ECM in ocular hypertension and glaucoma and the mechanisms by which various ocular hypotensive drugs, both current and emerging, target ECM production, remodeling, and deposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Effects of ranibizumab on the extracellular matrix production by human Tenon's fibroblast.

    PubMed

    Md Noh, Siti Munirah; Sheikh Abdul Kadir, Siti H; Bannur, Zakaria M; Froemming, Gabriele Anisah; Abdul Hamid Hasani, Narimah; Mohd Nawawi, Hapizah; Crowston, Jonathan G; Vasudevan, Sushil

    2014-10-01

    Anti-Vascular Endothelial Growth Factors (Anti-VEGF) agents have received recent interest as potential anti-fibrotic agents for their concurrent use with trabeculectomy. Preliminary cohort studies have revealed improved bleb morphology following trabeculectomy augmented with ranibizumab. The effects of this humanized monoclonal antibody on human Tenon's fibroblast (HTF), the key player of post trabeculectomy scar formation, are not fully understood. This study was conducted to understand the effects of ranibizumab on extracellular matrix production by HTF. The effect of ranibizumab on HTF proliferation and cell viability was determined using MTT assay (3-(4,5-dimethylthiazone-2-yl)-2,5-diphenyl tetrazolium). Ranibizumab at concentrations ranging from 0.01 to 0.5 mg/mL were administered for 24, 48 and 72 h in serum and serum free conditions. Supernatants and cell lysates from samples were assessed for collagen type 1 alpha 1 and fibronectin mRNA and protein level using quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). After 48-h, ranibizumab at 0.5 mg/mL, significantly induced cell death under serum-free culture conditions (p < 0.05). Ranibizumab caused significant reduction of collagen type 1 alpha 1 (COL1A1) mRNA, but not for fibronectin (FN). Meanwhile, COL1A1 and FN protein levels were found upregulated in treated monolayers compared to control monolayers. Ranibizumab at 0.5 mg/mL significantly reduced cell viability in cultured HTF. From this study, we found that single application of ranibizumab is inadequate to induce the anti-fibrotic effects on HTF, suggesting the importance of adjunctive therapy. Further studies are underway to understand mechanism of actions of ranibizumab on HTF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Calreticulin Regulates Transforming Growth Factor-β-stimulated Extracellular Matrix Production*

    PubMed Central

    Zimmerman, Kurt A.; Graham, Lauren V.; Pallero, Manuel A.; Murphy-Ullrich, Joanne E.

    2013-01-01

    Endoplasmic reticulum (ER) stress is an emerging factor in fibrotic disease, although precise mechanisms are not clear. Calreticulin (CRT) is an ER chaperone and regulator of Ca2+ signaling up-regulated by ER stress and in fibrotic tissues. Previously, we showed that ER CRT regulates type I collagen transcript, trafficking, secretion, and processing into the extracellular matrix (ECM). To determine the role of CRT in ECM regulation under fibrotic conditions, we asked whether CRT modified cellular responses to the pro-fibrotic cytokine, TGF-β. These studies show that CRT−/− mouse embryonic fibroblasts (MEFs) and rat and human idiopathic pulmonary fibrosis lung fibroblasts with siRNA CRT knockdown had impaired TGF-β stimulation of type I collagen and fibronectin. In contrast, fibroblasts with increased CRT expression had enhanced responses to TGF-β. The lack of CRT does not impact canonical TGF-β signaling as TGF-β was able to stimulate Smad reporter activity in CRT−/− MEFs. CRT regulation of TGF-β-stimulated Ca2+ signaling is important for induction of ECM. CRT−/− MEFs failed to increase intracellular Ca2+ levels in response to TGF-β. NFAT activity is required for ECM stimulation by TGF-β. In CRT−/− MEFs, TGF-β stimulation of NFAT nuclear translocation and reporter activity is impaired. Importantly, CRT is required for TGF-β stimulation of ECM under conditions of ER stress, as tunicamycin-induced ER stress was insufficient to induce ECM production in TGF-β stimulated CRT−/− MEFs. Together, these data identify CRT-regulated Ca2+-dependent pathways as a critical molecular link between ER stress and TGF-β fibrotic signaling. PMID:23564462

  17. Disassemblability modeling technology of configurable product based on disassembly constraint relation weighted design structure matrix(DSM)

    NASA Astrophysics Data System (ADS)

    Qiu, Lemiao; Liu, Xiaojian; Zhang, Shuyou; Sun, Liangfeng

    2014-05-01

    The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.

  18. Cost effective production techniques for continuous fiber reinforced ceramic matrix composites

    SciTech Connect

    Vogel, W.D.; Spelz, U.

    1995-09-01

    Cost effective techniques for fabrication of continuous fibre reinforced ceramic matrix composites like filament winding, prepreg technique and resin transfer moulding are reported. The advantages and disadvantages of the three different manufacture routes are given and examples are shown.

  19. Solid state production of ethanol from sorghum

    SciTech Connect

    Henk, L.L.; Linden, J.C.

    1995-12-01

    Ethanol, produced from renewable resources, such as corn, sugar cane and sweet sorghum, is used as an oxygenate in reformulated gasoline. For biofuels to become economical, means of lowering production costs must be found. Our research focuses on using a modified method of ensiling to produce ethanol from sorghum. Formic acid, +/- cellulase, and yeast were applied to fresh field-chopped sorghum and then packed tightly into five-gallon plastic silos. Counter-current extraction methods were used as a means of biofuel separation. Sorghum receiving 5 IU/grain dry weight cellulase produced 37.7 liters of ethanol per metric ton on a wet weight basis. Sorghum not receiving cellulose additives produced 23.4 liters of ethanol per metric ton. An ethanol plant of intermediate size (565,272 liters of anhydrous ethanol/year) can operate using sorghum grown on less than 1400 acres.

  20. Identification of transformation products during advanced oxidation of diatrizoate: Effect of water matrix and oxidation process.

    PubMed

    Azerrad, Sara P; Lütke Eversloh, Christian; Gilboa, Maayan; Schulz, Manoj; Ternes, Thomas; Dosoretz, Carlos G

    2016-10-15

    Removal of micropollutants from reverse osmosis (RO) brines of wastewater desalination by oxidation processes is influenced by the scavenging capacity of brines components, resulting in the accumulation of transformation products (TPs) rather than complete mineralization. In this work the iodinated contrast media diatrizoate (DTZ) was used as model compound due to its relative resistance to oxidation. Identification of TPs was performed in ultrapure water (UPW) and RO brines applying nonthermal plasma (NTP) and UVA-TiO2 as oxidation techniques. The influence of main RO brines components in the formation and accumulation of TPs, such as chloride, bicarbonate alkalinity and humic acid, was also studied during UVA-TiO2. DTZ oxidation pattern in UPW resulted similar in both UVA-TiO2 and NTP achieving 66 and 61% transformation, respectively. However, DTZ transformation in RO brines was markedly lower in UVA-TiO2 (9%) than in NTP (27%). These differences can be attributed to the synergic effect of RO brines components during NTP. Moreover, reactive species other than hydroxyl radical contributed to DTZ transformation, i.e., direct photolysis in UVA-TiO2 and direct photolysis + O3 in NTP accounted for 16 and 23%, respectively. DTZ transformation led to iodide formation in both oxidation techniques but it further oxidized to iodate by ozone in NTP. In total 14 transformation products were identified in UPW of which 3 were present only in UVA-TiO2 and 2 were present exclusively in NTP; 5 of the 14 TPs were absent in RO brines. Five of them were new and were denoted as TP-474A/B, TP-522, TP-586, TP-602, TP-628. TP-522 (mono-chlorinated) was elucidated only in presence of high chloride titer-synthetic water matrix in NTP, most probably formed by active chlorine species generated in situ. TPs accumulation in RO brines was markedly different in comparison to UPW. This denotes the influence of RO brines components in the formation of reactive species that could further attack

  1. Production of ceramic nanoparticles through self-propagating high-temperature synthesis (SHS) and their introduction into a metallic matrix to form metal matrix composites (MMC)

    NASA Astrophysics Data System (ADS)

    Nuechterlein, Jacob

    Self-propagating high-temperature synthesis (SHS) is a self-sustaining combustion reaction of reactant powders typically in the form of compacted pellets to form a desired product species. The reactants are ignited in one or more locations by several different techniques. After ignition the reaction travels as a wave through the pellet exothermically converting the reactants into products as it propagates. In this case the products are formed as discrete ceramic particles of TiC, Al2O3 and SiC. The goal of this research was to reduce the size of the particles formed by this technique from a diameter of 1-5μm to less than 100nm with the goal of then incorporating these nanoparticles as reinforcements in Al metal matrix composites. To accomplish this, many different SHS principles were studied and their associated variables were changed to reduce the combustion temperature of each reacting system. Several of these systems were investigated and discarded for a number of reasons such as: low ignition or high combustion temperatures, dangerous reaction conditions, or undesirable product densities and morphologies. The systems chosen exhibited low material costs, low combustion temperatures, and a wide range of stabilities when lowering the reaction temperature. The reacting systems pursued were based around the aluminothermic reduction of TiO2 in the presence of carbon to form TiC and Al2O 3. The combustion temperature of this reaction was reduced from 2053ºC to less than 1100ºC, which had a corresponding effect on the particle size of the products, reducing the average diameter of the particles to less than 100nm. This was accomplished by providing high heating rates, controlling the green density and adding diluents to the reaction such as Al, TiC, SiC or Al2O3. Cooling experiments were also investigated, but the cooling rate was found to have no effect on the particle size.

  2. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation

    NASA Technical Reports Server (NTRS)

    Harter, L. V.; Hruska, K. A.; Duncan, R. L.

    1995-01-01

    Exposure of osteosarcoma cell lines to chronic intermittent strain increases the activity of mechano-sensitive cation (SA-cat) channels. The impact of mechano-transduction on osteoblast function has not been well studied. We analyzed the expression and production of bone matrix proteins in human osteoblast-like osteosarcoma cells, OHS-4, in response to chronic intermittent mechanical strain. The OHS-4 cells exhibit type I collagen production, 1,25-Dihydroxyvitamin D-inducible osteocalcin, and mineralization of the extracellular matrix. The matrix protein message level was determined from total RNA isolated from cells exposed to 1-4 days of chronic intermittent strain. Northern analysis for type I collagen indicated that strain increased collagen message after 48 h. Immunofluorescent labeling of type I collagen demonstrated that secretion was also enhanced with mechanical strain. Osteopontin message levels were increased several-fold by the application of mechanical load in the absence of vitamin D, and the two stimuli together produced an additive effect. Osteocalcin secretion was also increased with cyclic strain. Osteocalcin levels were not detectable in vitamin D-untreated control cells. However, after 4 days of induced load, significant levels of osteocalcin were observed in the medium. With vitamin D present, osteocalcin levels were 4 times higher in the medium of strained cells compared to nonstrained controls. We conclude that mechanical strain of osteoblast-like cells is sufficient to increase the transcription and secretion of matrix proteins via mechano-transduction without hormonal induction.

  3. Human osteoblast-like cells respond to mechanical strain with increased bone matrix protein production independent of hormonal regulation

    NASA Technical Reports Server (NTRS)

    Harter, L. V.; Hruska, K. A.; Duncan, R. L.

    1995-01-01

    Exposure of osteosarcoma cell lines to chronic intermittent strain increases the activity of mechano-sensitive cation (SA-cat) channels. The impact of mechano-transduction on osteoblast function has not been well studied. We analyzed the expression and production of bone matrix proteins in human osteoblast-like osteosarcoma cells, OHS-4, in response to chronic intermittent mechanical strain. The OHS-4 cells exhibit type I collagen production, 1,25-Dihydroxyvitamin D-inducible osteocalcin, and mineralization of the extracellular matrix. The matrix protein message level was determined from total RNA isolated from cells exposed to 1-4 days of chronic intermittent strain. Northern analysis for type I collagen indicated that strain increased collagen message after 48 h. Immunofluorescent labeling of type I collagen demonstrated that secretion was also enhanced with mechanical strain. Osteopontin message levels were increased several-fold by the application of mechanical load in the absence of vitamin D, and the two stimuli together produced an additive effect. Osteocalcin secretion was also increased with cyclic strain. Osteocalcin levels were not detectable in vitamin D-untreated control cells. However, after 4 days of induced load, significant levels of osteocalcin were observed in the medium. With vitamin D present, osteocalcin levels were 4 times higher in the medium of strained cells compared to nonstrained controls. We conclude that mechanical strain of osteoblast-like cells is sufficient to increase the transcription and secretion of matrix proteins via mechano-transduction without hormonal induction.

  4. InGaAs quantum dot superlattice with vertically coupled states in InGaP matrix

    NASA Astrophysics Data System (ADS)

    Sugaya, Takeyoshi; Oshima, Ryuji; Matsubara, Koji; Niki, Shigeru

    2013-07-01

    We report the formation of vertically coupled states in a 20-stack InGaAs quantum dot (QD) superlattice with GaAs spacer layers in an InGaP matrix. The InGaAs QD superlattices in the InGaP matrix have good optical properties even though the interdot spacing is reduced to 4.5 nm. We confirmed the vertically coupled states from the excitation power dependence in photoluminescence (PL) measurements. The PL peak of a QD superlattice shifts to a shorter wavelength as the excitation power is increased. The blue-shifted energy of the PL peak is 10 meV for a QD superlattice with an interdot spacing of 4.5 nm, whereas the blue shift is not observed for a multistacked QD structure with an interdot spacing of 17 nm. The vertically coupled states induce a blue shift in the PL peak wavelength as the excitation power density is increased. The vertical energy transfer between InGaAs QDs in an InGaP matrix is very attractive for use in solar cell devices.

  5. Iron Oxidation States and Distribution in the 4Bi2O3. PbO Glass Matrix

    NASA Astrophysics Data System (ADS)

    Simon, V.; Pop, R.; Neumann, M.; Chiuzbaian, S. G.; Coldea, M.; Simon, S.

    Magnetic susceptibility and XPS results on xFe2O3 . (100-x) [4Bi2O3 . PbO] where 0states and the distribution of iron ions in the lead-bismuthate matrix. The valence state of iron ions changes from Fe3+ to Fe2+ as the Fe2O3 content increases from 1 to 20 mol%. The XPS data indicate the migration of metallic elements in the inner part of the bulk investigated samples.

  6. Computer programs for calculation of matrix stability and frequency response from a state-space system description

    NASA Technical Reports Server (NTRS)

    Seidel, R. C.

    1974-01-01

    FORTRAN computer subroutines stemming from requirements to process state variable system equations for systems of high order are presented. They find the characteristic equation of a matrix using the method of Danilevsky, the number of roots with positive real parts using the Routh-Horwitz alternate formulation, convert a state variable system description to a Laplace transfer function using the method of Bollinger, and evaluate that transfer function and obtain its frequency response. A sample problem is presented to demonstrate use of the subroutines.

  7. Production of extracellular matrix proteins by human pulp fibroblasts in contact with papacárie and carisolv.

    PubMed

    Bussadori, Sandra Kalil; Amancio, Olga Maria; Martins, Manoela Domingues; Guedes, Carolina Cardoso; Alfaya, Thays Almeida; Santos, Elaine Marcílio; França, Cristiane Miranda

    2014-01-01

    To evaluate the effect of two products for the chemomecanical removal of carious tissue (Papacárie and Carisolv) on human dental pulp fibroblasts and the synthesis of extracellular matrix proteins. Fibroblasts were divided into three groups: group 1 (control), group 2 (Papacárie) and group 3 (Carisolv). Collagen I, III , fibronectin and osteonectin were analysed by immunofluorescence and compared among the groups. The groups exhibited similar immunolabeling for vimentin, type I collagen and fibronectin, but were negative for type III collagen. Osteonectin staining was strongly positive in the cells treated with Papacárie and Carisolv and weakly positive in the control group. The findings of the present study showed that Papacárie and Carisolv are not cytotoxic to pulp fibroblast cells. Moreover, these products stimulate fibroblasts to produce osteonectin, likely leading to the formation of dentin matrix. These findings confirm the safe, beneficial use of both gels in minimally invasive techniques.

  8. Computational complexity of exterior products and multiparticle amplitudes of noninteracting fermions in entangled states

    NASA Astrophysics Data System (ADS)

    Ivanov, Dmitri A.

    2017-07-01

    Noninteracting bosons were proposed to be used for a demonstration of quantum-computing supremacy in a boson-sampling setup. A similar demonstration with fermions would require that the fermions are initially prepared in an entangled state. I suggest that pairwise entanglement of fermions would be sufficient for this purpose. Namely, it is shown that computing multiparticle scattering amplitudes for fermions entangled pairwise in groups of four single-particle states is #P-hard. In linear algebra, such amplitudes are expressed as exterior products of two-forms of rank 2. In particular, a permanent of a N ×N matrix may be expressed as an exterior product of N2 two forms of rank 2 in dimension 2 N2 , which establishes the #P-hardness of the latter.

  9. The Impact of Teachers Unions on State-Level Productivity

    ERIC Educational Resources Information Center

    Pantuosco, Louis J.; Ullrich, Laura D.

    2010-01-01

    Using a reduced form version of a theoretical expansion of Hoxby's (1996) education production model, we investigate whether bargaining teachers unions are a boon or a bust to the economy of the state. We anticipate teachers, being in the public sector veiled from competition, are less likely to be efficient. Yet, their product, education,…

  10. Pulpwood Production in the Lake States by County, 1977

    Treesearch

    James E. Blyth; W. Brad Smith

    1978-01-01

    This 32nd annual report shows 1977 pulpwood production by county and species group in Michigan, Minnesota, and Wisconsin. Production in these three Lake States inched ahead to 4.74 million cords from 4.69 million cords in 1976

  11. Production of Textbooks and Instructional Materials in the United States.

    ERIC Educational Resources Information Center

    Wall, Robert S.; Corn, Anne L.

    2002-01-01

    A survey found a wide range of capabilities regarding the production of textbooks and instructional materials for students with visual impairments in 42 states. Shortages of qualified Braille transcribers and inadequate funding were cited as barriers to developing better services. The most effective model was a centralized production center.…

  12. Pulpwood Production in the Lake States by County, 1974

    Treesearch

    James E. Blyth; Jerold T. Hahn

    1975-01-01

    This 29th annual report shows 1974 pulpwood production by county and species group in Michigan, Minnesota, and Wisconsin. Production in these three Lake States climbed to 5.5 million cords in 1974 from 4.7 million cords in 1973.

  13. Quantum correlation exists in any non-product state

    PubMed Central

    Guo, Yu; Wu, Shengjun

    2014-01-01

    Simultaneous existence of correlation in complementary bases is a fundamental feature of quantum correlation, and we show that this characteristic is present in any non-product bipartite state. We propose a measure via mutually unbiased bases to study this feature of quantum correlation, and compare it with other measures of quantum correlation for several families of bipartite states. PMID:25434458

  14. Production of an osteoinductive demineralised bone matrix powder without the use of organic solvents.

    PubMed

    Eagle, M J; Rooney, P; Kearney, J N

    2015-09-01

    Demineralised bone matrix (DBM) is produced by grinding cortical bone into a powder, sieving the powder to obtain a desired size range and then demineralising the powder using acid. Protocols for the production of DBM powder have been published since 1965 and the powder can be used in lyophilised form or it can be mixed with a carrier to produce a paste or putty. The powder is generally produced from cortical bone which has been processed to remove blood, bone marrow and bone marrow components, including fat. Removal of fat is accomplished by incorporating incubation in an organic solvent, often chloroform, chloroform/methanol or acetone. The use of organic solvents in a clean room environment in a human tissue bank is problematic and involves operator exposure and the potential for the solvent to be trapped in air filters or recirculated throughout the clean room suite. Consequently, in this study, we have developed a cortical bone washing step which removes fat/lipid without the use of an organic solvent. Bone was prepared from six femoral shafts from three donors by dissecting soft tissue and bisecting the shaft, the shafts were then cut into ~9-10 cm lengths. These struts were then taken through a series of hot water washes at 56-59 °C, centrifugation and decontamination steps. Washed cortical struts were then lyophilised before being ground with a compressed air milling machine. The ground bone was sieved, demineralised, freeze-dried and terminally sterilised with a target dose of 25 kGy gamma irradiation. The DBM powder was evaluated for residual calcium content, in vitro cytotoxicity and osteoinductivity by implantation into the muscle of an athymic mouse. Data indicated that in addition to removing in excess of 97% DNA and extractable soluble protein, the washing protocol reduced lipid 10,000-fold. The processed bone was easily ground without clogging the grinder; the sterilised DBM powder was not cytotoxic but was osteoinductive in the animal model

  15. Production and consumption of major wood products in the Lake States: perspectives and trends.

    Treesearch

    Gerald J. Gray; Paul V. Ellefson; David C. Lothner

    1986-01-01

    Estimates are developed of primary and secondary wood products production and consumption in the Lake States (Michigan, Wisconsin, and Minnesota) between 1960 and 1980. Consumption estimates are derived through application of the use-factor approach. Increased cooperation among forestry agencies in the three states appears to hold significant regional benefits.

  16. Aberrant production of extracellular matrix proteins and dysfunction in kidney endothelial cells with a short duration of diabetes

    PubMed Central

    Grutzmacher, Cathy; Park, SunYoung; Zhao, Yun; Morrison, Margaret E.; Sheibani, Nader

    2013-01-01

    Diabetic nephropathy is the most common cause of end-stage renal disease and is a major risk factor for cardiovascular disease. In the United States, microvascular complications during diabetic nephropathy contribute to high morbidity and mortality rates. However, the cell-autonomous impact of diabetes on kidney endothelial cell function requires further investigation. Male Akita/+ [autosomal dominant mutation in the insulin II gene (Ins2)] mice reproducibly develop diabetes by 4 wk of age. Here, we examined the impact a short duration of diabetes had on kidney endothelial cell function. Kidney endothelial cells were prepared from nondiabetic and diabetic mice (4 wk of diabetes) to delineate the early changes in endothelial cell function. Kidney endothelial cells from Akita/+ mice following 4 wk of diabetes demonstrated aberrant expression of extracellular matrix proteins including decreased osteopontin and increased fibronectin expression which correlated with increased α5-integrin expression. These changes were associated with the attenuation of migration and capillary morphogenesis. Kidney endothelial cells from Akita/+ mice had decreased VEGF levels but increased levels of endothelial nitric oxide synthase(eNOS) and NO, suggesting uncoupling of VEGF-mediated NO production. Knocking down eNOS expression in Akita/+ kidney endothelial cells increased VEGF expression, endothelial cell migration, and capillary morphogenesis. Furthermore, attenuation of sprouting angiogenesis of aortas from Akita/+ mice with 8 wk of diabetes was restored in the presence of the antioxidant N-acetylcysteine. These studies demonstrate that aberrant endothelial cell function with a short duration of diabetes may set the stage for vascular dysfunction and rarefaction at later stages of diabetes. PMID:23077100

  17. One-particle density matrix occupation spectrum of many-body localized states after a global quench

    NASA Astrophysics Data System (ADS)

    Lezama, Talía L. M.; Bera, Soumya; Schomerus, Henning; Heidrich-Meisner, Fabian; Bardarson, Jens H.

    2017-08-01

    The emergent integrability of the many-body localized phase is naturally understood in terms of localized quasiparticles. As a result, the occupations of the one-particle density matrix in eigenstates show a Fermi-liquid-like discontinuity. Here, we show that in the steady state reached at long times after a global quench from a perfect density-wave state, this occupation discontinuity is absent, reminiscent of a Fermi liquid at a finite temperature, while the full occupation function remains strongly nonthermal. We discuss how one can understand this as a consequence of the local structure of the density-wave state and the resulting partial occupation of quasiparticles. This partial occupation can be controlled by tuning the initial state and can be described by an effective temperature.

  18. Pro-inflammatory stimulation of meniscus cells increases production of matrix metalloproteinases and additional catabolic factors involved in osteoarthritis pathogenesis

    PubMed Central

    Stone, Austin V.; Loeser, Richard F.; Vanderman, Kadie S.; Long, David L.; Clark, Stephanie C.; Ferguson, Cristin M.

    2014-01-01

    Objective Meniscus injury increases the risk of osteoarthritis; however, the biologic mechanism remains unknown. We hypothesized that pro-inflammatory stimulation of meniscus would increase production of matrix-degrading enzymes, cytokines and chemokines which cause joint tissue destruction and could contribute to osteoarthritis development. Design Meniscus and cartilage tissue from healthy tissue donors and total knee arthroplasties was cultured. Primary cell cultures were stimulated with pro-inflammatory factors [IL-1β, IL-6, or fibronectin fragments (FnF)] and cellular responses were analyzed by real-time PCR, protein arrays and immunoblots. To determine if NF-κB was required for MMP production, meniscus cultures were treated with inflammatory factors with and without the NF-κB inhibitor, hypoestoxide. Results Normal and osteoarthritic meniscus cells increased their MMP secretion in response to stimulation, but specific patterns emerged that were unique to each stimulus with the greatest number of MMPs expressed in response to FnF. Meniscus collagen and connective tissue growth factor gene expression was reduced. Expression of cytokines (IL-1α, IL-1β, IL-6), chemokines (IL-8, CXCL1, CXCL2, CSF1) and components of the NF-κB and tumor necrosis factor (TNF) family were significantly increased. Cytokine and chemokine protein production was also increased by stimulation. When primary cell cultures were treated with hypoestoxide in conjunction with pro-inflammatory stimulation, p65 activation was reduced as were MMP-1 and MMP-3 production. Conclusions Pro-inflammatory stimulation of meniscus cells increased matrix metalloproteinase production and catabolic gene expression. The meniscus could have an active biologic role in osteoarthritis development following joint injury through increased production of cytokines, chemokines, and matrix-degrading enzymes. PMID:24315792

  19. R-matrix calculations of triplet gerade states of molecular hydrogen and their use for high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Oueslati, H.; Argoubi, F.; Bezzaouia, S.; Telmini, M.; Jungen, Ch.

    2014-03-01

    A variational R-matrix approach combined with multichannel quantum defect theory is used for a computational study of triplet gerade states of H2. Electron-ion reaction (quantum defect) matrices are calculated as functions of internuclear distance and energy for the bound and continuum ranges including singly and doubly excited configurations built on the 1σg (X+2Σg+) and 1σu (A+2Σu+) core states of the H2+ ion. It is shown how these matrices can be reduced to effective quantum defect functions adapted to the analysis of high-resolution spectra in the bound range. These R-matrix effective quantum defects are finally adjusted to the available experimental data [Sprecher et al., J. Phys. Chem. A 117, 9462 (2013), 10.1021/jp311793t], producing agreement with experiment to within 0.5 cm-1, nearly as good as obtained by Sprecher et al. In addition, the R-matrix calculations predict the evolution of the quantum defects for higher energies, in a range extending far into the electronic continuum.

  20. State regulation and power plant productivity: background and recommendations

    SciTech Connect

    Not Available

    1980-09-01

    This report was prepared by representatives of several state regulatory agencies. It is a guide to some of the activities currently under way in state agencies to promote increased availability of electrical generating power plants. Standard measures of plant performance are defined and the nature of data bases that report such measures is discussed. It includes reviews of current state, federal, and industry programs to enhance power plant productivity and provides detailed outlines of programs in effect in California, Illinois, Michigan, New York, North Carolina, Ohio, and Texas. A number of actions are presented that could be adopted by state regulatory agencies, depending on local conditions. They include: develop a commission position or policy statement to encourage productivity improvements by utilities; coordinate state efforts with ongoing industry and government programs to improve the acquisition of power plant performance data and the maintenance of quality information systems; acquire the capability to perform independent analyses of power plant productivity; direct the establishment of productivity improvement programs, including explicit performance objectives for both existing and planned power plants, and a performance program; establish a program of incentives to motivate productivity improvement activities; and participate in ongoing efforts at all levels and initiate new actions to promote productivity improvements.

  1. Silicate-matrix active media for tunable solid-state lasers

    SciTech Connect

    Kuznetsova, Rimma T; Mayer, G V; Manekina, Yu A; Tel'minov, E N; Arabei, S M; Pavich, T A; Solovyov, Konstantin N

    2007-08-31

    The lasing characteristics of solid active media based on laser dyes (rhodamines, coumarin 2, paraterphenyl) doped into silicate bulk matrices and thin films of different compositions are studied upon optical excitation. The lasing efficiency, photostability, and spectral parameters of laser media are investigated as functions of the excitation wavelength and intensity. Variations in these parameters due to the interaction of organic luminophores with a silicate matrix and radiation are discussed. (active media. lasers)

  2. Matrix elements for the ground-state to ground-state 2{nu}{beta}{sup -}{beta}{sup -} decay of Te isotopes in a hybrid model

    SciTech Connect

    Bes, D. R.; Civitarese, O.

    2010-01-15

    Theoretical matrix elements, for the ground-state to ground-state two-neutrino double-{beta}-decay mode (2{nu}{beta}{sup -}{beta}{sup -}gs->gs) of {sup 128,130}Te isotopes, are calculated within a formalism that describes interactions between neutrons in a superfluid phase and protons in a normal phase. The elementary degrees of freedom of the model are proton-pair modes and pairs of protons and quasineutrons. The calculation is basically a parameter-free one, because all relevant parameters are fixed from the phenomenology. A comparison with the available experimental data is presented.

  3. 25 years of New York State gas production and development

    SciTech Connect

    Shyer, E.B.

    1995-09-01

    The New York State Development of Environmental Conservation`s Division of Mineral Resources is responsible for regulating the oil and gas industry and receiving operator`s annual well production reports. Production year 1970 and 627 active gas wells with reported production of 3 billion cubic feet by New York State operators. Ten years later in 1980, production had more than tripled to 15.5 billion cubic feet and reported active gas wells increased to 1,966. During 1990, reported gas production was 25 billion cubic feet from 5,536 active gas wells. The average production per gas well in 1970 was 4,773 thousand cubic feet. Average gas production per well peaked in 1978 with a reported production of 14 billion cubic feet by 1,431 active gas wells which averaged 9,821 thousand cubic feet per well. By 1994 the average production per well had decreased to 3,800 thousand cubic feet, a decrease of approximately 60%. The decrease in average well production is more a reflection of the majority of older wells reaching the lower end of their decline curve than a decrease in overall per well production. The number of completed gas wells increased following the rising price of gas. In 1970 gas was $0.30 per thousand cubic feet. By 1984 the price per thousand cubic feet had peaked at $4. After 1984 the price of gas started to decline while the number of active gas wells continued to increase. Sharp increases in gas production for certain counties such as Steuben in 1972 and 1973 and Chautauqua in 1980-83 reflects the discoveries of new fields such as Adrian Reef and Bass Island, respectively. The Stagecoach Field discovered in 1989 in Tioga County is the newest high producing field in New York State.

  4. Downregulation of ERK signaling impairs U2OS osteosarcoma cell migration in collagen matrix by suppressing MMP9 production

    PubMed Central

    POUDEL, BARUN; KIM, DO-KUK; KI, HYEON-HUI; KWON, YOUNG-BAE; LEE, YOUNG-MI; KIM, DAE-KI

    2014-01-01

    The present study investigated the role of extracellular signal-regulated kinase (ERK) activation in the migratory phenotype of human U2OS osteosarcoma (OS) cells in a collagen matrix. The activation of ERK was inhibited by PD98059, a specific inhibitor of ERK kinase. Additionally, no significant differences were observed in the adhesion and proliferation of the cells with or without PD98059 treatment in collagen-coated dishes. The migratory capacity of the U2OS cells was then examined in non-coated and collagen-coated dishes, and the results depicted that collagen I enhanced the migration of the U2OS cells, the effect of which was significantly blocked by the treatment of the cells with PD98059. Furthermore, enhanced gene and protein expression of matrix metalloproteinase 9 (MMP9), but not MMP2, was observed to be involved in the enhanced migratory phenotype of the U20S cells in the collagen-coated plates. This effect was partially abolished by the treatment of the cells in the collagen-coated dishes with ERK inhibitor. Collectively, the data demonstrate that ERK signaling is important for the migration of U2OS cells through the extracellular matrix (ECM), which is comprised mostly of collagen, by enhancing MMP9 production. These results may contribute to the regulation of MMP9 production in metastatic OS. PMID:24348851

  5. Vertical stratification of matrix production is essential for physical integrity and architecture of macrocolony biofilms of E scherichia coli

    PubMed Central

    Serra, Diego O.; Klauck, Gisela

    2015-01-01

    Summary Bacterial macrocolony biofilms grow into intricate three‐dimensional structures that depend on self‐produced extracellular polymers conferring protection, cohesion and elasticity to the biofilm. In E scherichia coli, synthesis of this matrix – consisting of amyloid curli fibres and cellulose – requires CsgD, a transcription factor regulated by the stationary phase sigma factor RpoS, and occurs in the nutrient‐deprived cells of the upper layer of macrocolonies. Is this asymmetric matrix distribution functionally important or is it just a fortuitous by‐product of an unavoidable nutrient gradient? In order to address this question, the RpoS‐dependent csgD promoter was replaced by a vegetative promoter. This re‐wiring of csgD led to CsgD and matrix production in both strata of macrocolonies, with the lower layer transforming into a rigid ‘base plate’ of growing yet curli‐connected cells. As a result, the two strata broke apart followed by desiccation and exfoliation of the top layer. By contrast, matrix‐free cells at the bottom of wild‐type macrocolonies maintain colony contact with the humid agar support by flexibly filling the space that opens up under buckling areas of the macrocolony. Precisely regulated stratification in matrix‐free and matrix‐producing cell layers is thus essential for the physical integrity and architecture of E . coli macrocolony biofilms. PMID:26234179

  6. Combination of platelet-rich plasma within periodontal ligament stem cell sheets enhances cell differentiation and matrix production.

    PubMed

    Xu, Qiu; Li, Bei; Yuan, Lin; Dong, Zhiwei; Zhang, Hao; Wang, Han; Sun, Jin; Ge, Song; Jin, Yan

    2017-03-01

    The longstanding goal of periodontal therapy is to regenerate periodontal tissues. Although platelet-rich plasma (PRP) has been gaining increasing popularity for use in the orofacial region, whether PRP is useful for periodontal regeneration is still unknown. The purpose of this study was to determine whether a mixture of periodontal ligament stem cell (PDLSC) sheets and PRP promoted bone regeneration, one of the most important measurement indices of periodontal tissue regenerative capability in vitro and in vivo. In this study, we evaluated the effects of different doses of PRP on the differentiation of human PDLSCs. Then cell sheet formation, extracellular matrix deposition and osteogenic gene expression in response to different doses of PRP treatment during sheet grafting was investigated. Furthermore, we implanted PDLSC sheets treated with 1% PRP subcutaneously into immunocompromised mice to evaluate their bone-regenerative capability. The results revealed that 1% PRP significantly enhanced the osteogenic differentiation of PDLSCs. Based on the production of extracellular matrix proteins, the results of scanning electron microscopy and the expression of the osteogenic genes ALP, Runx2, Col-1 and OCN, the provision of 1% PRP for PDLSC sheets was the most effective PRP administration mode for cell sheet formation. The results of in vivo transplantation showed that 1% PRP-mediated PDLSC sheets exhibited better periodontal tissue regenerative capability than those obtained without PRP intervention. These data suggest that a suitable concentration of PRP stimulation may enhance extracellular matrix production and positively affect cell behaviour in PDLSC sheets. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Characterization of the Natural History of Extracellular Matrix Production in Tissue-Engineered Vascular Grafts during Neovessel Formation

    PubMed Central

    Naito, Yuji; Williams-Fritze, Misty; Duncan, Daniel R.; Church, Spencer N.; Hibino, Narutoshi; Madri, Joseph A.; Humphrey, Jay D.; Shinoka, Toshiharu; Breuer, Christopher K.

    2011-01-01

    Background The extracellular matrix (ECM) is a critical determinant of neovessel integrity. Materials and Methods: Thirty-six (polyglycolic acid + polycaprolactone and poly lactic acid) tissue-engineered vascular grafts seeded with syngeneic bone marrow mononuclear cells were implanted as inferior vena cava interposition grafts in C57BL/6 mice. Specimens were characterized using immunohistochemical staining and qPCR for representative ECM components in addition to matrix metalloproteinases (MMPs). Total collagen, elastin, and glycosaminoglycan (GAG) contents were determined. MMP activity was measured using zymography. Results Collagen production on histology demonstrated an initial increase in type III at 1 week followed by type I production at 2 weeks and type IV at 4 weeks. Gene expression of both type I and type III peaked at 2 weeks, whereas type IV continued to increase over the 4-week period. Histology demonstrated fibrillin-1 deposition at 1 week followed by elastin production at 4 weeks. Elastin gene expression significantly increased at 4 weeks, whereas fibrillin-1 decreased at 4 weeks. GAG demonstrated abundant production at each time point on histology. Gene expression of decorin significantly increased at 4 weeks, whereas versican decreased over time. Biochemical analysis showed that total collagen production was greatest at 2 weeks, and there was a significant increase in elastin and GAG production at 4 weeks. Histological characterization of MMPs showed abundant production of MMP-2 at each time point, while MMP-9 decreased over the 4-week period. Gene expression of MMP-2 significantly increased at 4 weeks, whereas MMP-9 significantly decreased at 4 weeks. Conclusions ECM production during neovessel formation is characterized by early ECM deposition followed by extensive remodeling. PMID:21996715

  8. Conformal affine Toda model of two-dimensional black holes: The end-point state and the [ital S] matrix

    SciTech Connect

    Belgiorno, F.; Cattaneo, A.S. ); Fucito, F. ); Martellini, M. )

    1993-09-15

    In this paper we investigate a dilaton-gravity theory, which can be viewed as an SL(2) conformal affine Toda (CAT) theory. This new model is inspired by some previous work by Bilal, Callan, and de Alwis. The main results obtained in our approach are (i) a field redefinition of the CAT basis in terms of which it is possible to get the black hole solutions already known in the literature, and (ii) an investigation of the scattering matrix problem for the quantum black hole states. Given the validity of our assumptions, there is a range of values of the [ital N] free-falling shock matter fields forming the black hole solution, for which the end-point state of the black hole evaporation is a zero temperature regular remnant geometry. The quantum evolution to this final state seems to be nonunitary, in agreement with Hawking's scenario for black hole evaporation.

  9. Obtaining Hartree-Fock and density functional theory doubly excited states with Car-Parrinello density matrix search

    NASA Astrophysics Data System (ADS)

    Liang, Wenkel; Isborn, Christine M.; Li, Xiaosong

    2009-11-01

    The calculation of doubly excited states is one of the major problems plaguing the modern day excited state workhorse methodology of linear response time dependent Hartree-Fock (TDHF) and density function theory (TDDFT). We have previously shown that the use of a resonantly tuned field within real-time TDHF and TDDFT is able to simultaneously excite both the α and β electrons to achieve the two-electron excited states of minimal basis H2 and HeH+ [C. M. Isborn and X. Li, J. Chem. Phys. 129, 204107 (2008)]. We now extend this method to many electron systems with the use of our Car-Parrinello density matrix search (CP-DMS) with a first-principles fictitious mass method for wave function optimization [X. Li, C. L. Moss, W. Liang, and Y. Feng, J. Chem. Phys. 130, 234115 (2009)]. Real-time TDHF/TDDFT is used during the application of the laser field perturbation, driving the electron density toward the doubly excited state. The CP-DMS method then converges the density to the nearest stationary state. We present these stationary state doubly excited state energies and properties at the HF and DFT levels for H2, HeH+, lithium hydride, ethylene, and butadiene.

  10. Rydberg and continuum states of the HeH+ molecular ion: Variational R -matrix and multichannel quantum defect theory calculations

    NASA Astrophysics Data System (ADS)

    Bouhali, I.; Bezzaouia, S.; Telmini, M.; Jungen, Ch.

    2016-08-01

    Variational ab initio R -matrix theory combined with generalized multichannel quantum defect theory is used to calculate singly excited Rydberg states of the hydrohelium molecular ion, HeH+, for Σ,3+1,Π,31,Δ,31,Φ,31, and Γ,31 symmetry. Bound levels are calculated for n values up to n ≈10 , and continuum states up to ≈3 eV above the HeH2 + threshold. The calculations span the range of internuclear distances R from 1 to 5 bohrs. The present work follows a preliminary study on the Δ,31 states of HeH+ [Bouhali, Bezzaouia, Telmini, and Jungen, EPJ Web Conf. 84, 04004 (2015), 10.1051/epjconf/20158404004] which was also based on R -matrix theory. Further—although limited to rather small R values—the present work extends the recent ab initio computations of Jungen and Jungen [Mol. Phys. 113, 2333 (2015), 10.1080/00268976.2015.1040094] to higher excitation energies which are not accessible to standard quantum-chemical methods. Where a comparison with the calculations of Jungen and Jungen and other older results can be made, namely for n ≤5 , very good agreement with previous ab initio results is obtained.

  11. Production and mechanical properties of Al-SiC metal matrix composites

    NASA Astrophysics Data System (ADS)

    Karvanis, K.; Fasnakis, D.; Maropoulos, A.; Papanikolaou, S.

    2016-11-01

    The usage of Al-SiC Metal Matrix Composites is constantly increasing in the last years due to their unique properties such as light weight, high strength, high specific modulus, high fatigue strength, high hardness and low density. Al-SiC composites of various carbide compositions were produced using a centrifugal casting machine. The mechanical properties, tensile and compression strength, hardness and drop-weight impact strength were studied in order to determine the optimum carbide % in the metal matrix composites. Scanning electron microscopy was used to study the microstructure-property correlation. It was observed that the tensile and the compressive strength of the composites increased as the proportion of silicon carbide became higher in the composites. Also with increasing proportion of silicon carbide in the composite, the material became harder and appeared to have smaller values for total displacement and total energy during impact testing.

  12. Macromolecularly crowded in vitro microenvironments accelerate the production of extracellular matrix-rich supramolecular assemblies

    PubMed Central

    Kumar, Pramod; Satyam, Abhigyan; Fan, Xingliang; Collin, Estelle; Rochev, Yury; Rodriguez, Brian J.; Gorelov, Alexander; Dillon, Simon; Joshi, Lokesh; Raghunath, Michael; Pandit, Abhay; Zeugolis, Dimitrios I.

    2015-01-01

    Therapeutic strategies based on the principles of tissue engineering by self-assembly put forward the notion that functional regeneration can be achieved by utilising the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, in dilute ex vivo microenvironments, prolonged culture time is required to develop an extracellular matrix-rich implantable device. Herein, we assessed the influence of macromolecular crowding, a biophysical phenomenon that regulates intra- and extra-cellular activities in multicellular organisms, in human corneal fibroblast culture. In the presence of macromolecules, abundant extracellular matrix deposition was evidenced as fast as 48 h in culture, even at low serum concentration. Temperature responsive copolymers allowed the detachment of dense and cohesive supramolecularly assembled living substitutes within 6 days in culture. Morphological, histological, gene and protein analysis assays demonstrated maintenance of tissue-specific function. Macromolecular crowding opens new avenues for a more rational design in engineering of clinically relevant tissue modules in vitro. PMID:25736020

  13. Effects of radiation and fission product incorporation in a yttria-stabilized zirconia based inert matrix fuel

    NASA Astrophysics Data System (ADS)

    Zhu, Sha

    This work has investigated the irradiation and incorporation effects of fission products in a yttria-stabilized zirconia (YSZ) based inert matrix fuel (IMF). The concept of inert matrix fuel is based on a new strategy for disposition of plutonium generated from the reprocessing of commercial nuclear fuel and the dismantling of nuclear weapons, i.e. using uranium-free oxides to "burn" plutonium and other actinides (Np, Cm, and Am) in reactors. This approach allows direct disposal, without reprocessing, after once-through burn-up. YSZ and MgAl2O4-YSZ composites are among the potential ceramics for IMF due to their high chemical durability and radiation resistance. The research involved investigating the production, nature, and accumulation of irradiation-induced defects, the behavior of the fission products in the ceramics, the structural stability and amorphization resistance of the YSZ during implantation. Ion implantations were conducted with 200--400 keV Cs+, Sr+, I+, Xe+ and Ti+ up to fluences of 1 x 1017/cm 2 at both room temperature and temperatures of 600--700°C. Thermal annealing was subsequently completed after room temperature ion implantations. In situ and ex situ transmission electron microscopy (TEM), optical absorption spectroscopy, photo-luminescence spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy were employed to characterize the irradiation induced defect evolution and analyze the defect structures. Various irradiation effects were observed and determined in the experiments, such as point defects (F type and V type color centers), defect clusters (dislocation loops), cavities (voids and bubbles), the crystalline-to-amorphous transition, and the phase transformation from fluorite to pyrochlore structure. The ion irradiation-induced amorphization mechanism, the retention ability of the fission products, and structural stability of YSZ are discussed in terms of ion incorporation effects, implanted ion radii, and the solubility

  14. The experimental production of matrix lumps within chondrules: Evidence of post-formational processes

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Hewins, Roger H.

    1993-01-01

    The processes that acted upon chondrules after their formation are as important clues to the nature of the early solar nebula as are the exact processes that formed the chondrules. Recent experiments have studied the rim forming processes and the effects the processes have on chondrules. We present below information on how matrix inclusions found within chondrules may have been formed and the potential usefulness of this information.

  15. The experimental production of matrix lumps within chondrules: Evidence of post-formational processes

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Hewins, Roger H.

    1993-01-01

    The processes that acted upon chondrules after their formation are as important clues to the nature of the early solar nebula as are the exact processes that formed the chondrules. Recent experiments have studied the rim forming processes and the effects the processes have on chondrules. We present below information on how matrix inclusions found within chondrules may have been formed and the potential usefulness of this information.

  16. Production and the welfare state: the political context of reforms.

    PubMed

    Navarro, V

    1991-01-01

    This article is an analysis of the political context of reforms in the production process and in the welfare state. The theories of legitimation and Fordism are criticized for considering the capitalist class the main force behind the reforms. The working class and the process of class struggle are primarily responsible for changes in production and for the establishment of the welfare state. The author then shows that the changes in production and in the state that occurred after World War II were a response to political events triggered by labor's rebellions and capital's need to respond to those rebellions. Post-Fordism and the political practice that derives from it are criticized for their hasty dismissal of class and class practices by the dominated forces in society. The article ends by offering an alternative strategy for change.

  17. A Time Integration Algorithm Based on the State Transition Matrix for Structures with Time Varying and Nonlinear Properties

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2003-01-01

    A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.

  18. A Numerical Scheme for Ordinary Differential Equations Having Time Varying and Nonlinear Coefficients Based on the State Transition Matrix

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2002-01-01

    A variable order method of integrating initial value ordinary differential equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. While it is more complex than most other methods, it produces exact solutions at arbitrary time step size when the time variation of the system can be modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with an exact solution and with solutions obtained by established methods.

  19. Diabatic Population Matrix Formalism for Performing Molecular Mechanics Style Simulations with Multiple Electronic States.

    PubMed

    Park, Jae Woo; Rhee, Young Min

    2014-12-09

    An accurate description of nonbonded interactions is important in investigating dynamics of molecular systems. In many situations, fixed point charge models are successfully applied to explaining various chemical phenomena. However, these models with conventional formulations will not be appropriate in elucidating the detailed dynamics during nonadiabatic events. This is mainly because the chemical properties of any molecule, especially its electronic populations, significantly change with respect to molecular distortions in the vicinity of the surface crossing. To overcome this issue in molecular simulations yet within the framework of the fixed point charge model, we define a diabatic electronic population matrix and substitute it for the conventional adiabatic partial charges. We show that this matrix can be readily utilized toward attaining more reliable descriptions of Coulombic interactions, in combination with the interpolation formalism for obtaining the intramolecular interaction potential. We demonstrate how the mixed formalism with the diabatic charges and the interpolation can be applied to molecular simulations by conducting adiabatic and nonadiabatic molecular dynamics trajectory calculations of the green fluorescent protein chromophore anion in aqueous environment.

  20. United States trade in wood products, 1978?2005.

    Treesearch

    Jean M. Daniels

    2008-01-01

    Tables summarize volume and values of United States trade in wood products from 1978 to 2005. Import and export data are shown for 21 commodities aggregated from over 1,700 wood products. Data were obtained from an earlier report by Chmelik and others and the U.S. Department of Commerce, Bureau of the Census. Trade in each commodity is delineated by trading partner and...

  1. Roadmap for Bioenergy and Biobased Products in the United States

    DTIC Science & Technology

    2007-10-01

    arise. Wild Rose manure digester facility in Wisconsin, Dairyland Power Cooperative Roadmap for Bioenergy and Biobased Products in the United States...all stages of biomass tech- nology, this Roadmap update discusses policy measures and related efforts to assist with market penetration of biofuels...barriers be overcome in all stages of the life cycle of developing biomass feedstocks and converting them to biobased fuels, power, and products

  2. Pulpwood Production in the Lake States Counties 1963

    Treesearch

    Arthur G. Horn

    1964-01-01

    This is the fifth annual report on the pulpwood harvest in the Lakes States counties. Another record in pulpwood production was established in 1963 when the Lake States cut amounted to 3,662,300 cords--10 percent larger than the previous high of 3,342,400 cords in 1962. Pulpwood from roundwood accounted for 96 percent of the total cut; the remaining 4 percent came...

  3. Pulpwood Production in the Lake States Counties 1964

    Treesearch

    Arthur G. Horn

    1965-01-01

    This is the sixth annual report on the pulpwood harvest in the Lakes States counties. The 1964 harvest of pulpwood in the Lakes States amounted to approximately 3.628,000 cords, 1 percent less than the all-time high in 1963. Ninety-six percent of the pulpwood production was roundwood, while the remaining 4 percent was wood residue supplied by local primary wood-using...

  4. Resonance Regge poles and the state-to-state F + H2 reaction: QP decomposition, parametrized S matrix, and semiclassical complex angular momentum analysis of the angular scattering.

    PubMed

    Connor, J N L

    2013-03-28

    Three new contributions to the complex angular momentum (CAM) theory of differential cross sections (DCSs) for chemical reactions are reported. They exploit recent advances in the Padé reconstruction of a scattering (S) matrix in a region surrounding the ReJ axis, where J is the total angular momentum quantum variable, starting from the discrete values, J = 0, 1, 2, .... In particular, use is made of Padé continuations obtained by Sokolovski, Castillo, and Tully [Chem. Phys. Lett. 313, 225 (1999)] for the S matrix of the benchmark F + H2(v(i) = 0, j(i) = 0, m(i) = 0) → FH(v(f) = 3, j(f) = 3, m(f) = 0) + H reaction. Here v(i), j(i), m(i) and v(f), j(f), m(f) are the initial and final vibrational, rotational, and helicity quantum numbers, respectively. The three contributions are: (1) A new exact decomposition of the partial wave (PW) S matrix is introduced, which is called the QP decomposition. The P part contains information on the Regge poles. The Q part is then constructed exactly by subtracting a rapidly oscillating phase and the PW P matrix from the input PW S matrix. After a simple modification, it is found that the corresponding scattering subamplitudes provide insight into the angular-scattering dynamics using simple partial wave series (PWS) computations. It is shown that the leading n = 0 Regge pole contributes to the small-angle scattering in the centre-of-mass frame. (2) The Q matrix part of the QP decomposition has simpler properties than the input S matrix. This fact is exploited to deduce a parametrized (analytic) formula for the PW S matrix in which all terms have a direct physical interpretation. This is a long sort-after goal in reaction dynamics, and in particular for the state-to-state F + H2 reaction. (3) The first definitive test is reported for the accuracy of a uniform semiclassical (asymptotic) CAM theory for a DCS based on the Watson transformation. The parametrized S matrix obtained in contribution (2) is used in both the PW and

  5. Resonance Regge poles and the state-to-state F + H2 reaction: QP decomposition, parametrized S matrix, and semiclassical complex angular momentum analysis of the angular scattering

    NASA Astrophysics Data System (ADS)

    Connor, J. N. L.

    2013-03-01

    Three new contributions to the complex angular momentum (CAM) theory of differential cross sections (DCSs) for chemical reactions are reported. They exploit recent advances in the Padé reconstruction of a scattering (S) matrix in a region surrounding the {Renolimits} J axis, where J is the total angular momentum quantum variable, starting from the discrete values, J = 0, 1, 2, …. In particular, use is made of Padé continuations obtained by Sokolovski, Castillo, and Tully [Chem. Phys. Lett. 313, 225 (1999), 10.1016/S0009-2614(99)01016-7] for the S matrix of the benchmark F + H2(vi = 0, ji = 0, mi = 0) → FH(vf = 3, jf = 3, mf = 0) + H reaction. Here vi, ji, mi and vf, jf, mf are the initial and final vibrational, rotational, and helicity quantum numbers, respectively. The three contributions are: (1) A new exact decomposition of the partial wave (PW) S matrix is introduced, which is called the QP decomposition. The P part contains information on the Regge poles. The Q part is then constructed exactly by subtracting a rapidly oscillating phase and the PW P matrix from the input PW S matrix. After a simple modification, it is found that the corresponding scattering subamplitudes provide insight into the angular-scattering dynamics using simple partial wave series (PWS) computations. It is shown that the leading n = 0 Regge pole contributes to the small-angle scattering in the centre-of-mass frame. (2) The Q matrix part of the QP decomposition has simpler properties than the input S matrix. This fact is exploited to deduce a parametrized (analytic) formula for the PW S matrix in which all terms have a direct physical interpretation. This is a long sort-after goal in reaction dynamics, and in particular for the state-to-state F + H2 reaction. (3) The first definitive test is reported for the accuracy of a uniform semiclassical (asymptotic) CAM theory for a DCS based on the Watson transformation. The parametrized S matrix obtained in contribution (2) is used in both

  6. Consumers' Kansei Needs Clustering Method for Product Emotional Design Based on Numerical Design Structure Matrix and Genetic Algorithms

    PubMed Central

    Chen, Deng-kai; Gu, Rong; Gu, Yu-feng; Yu, Sui-huai

    2016-01-01

    Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design. PMID:27630709

  7. Consumers' Kansei Needs Clustering Method for Product Emotional Design Based on Numerical Design Structure Matrix and Genetic Algorithms.

    PubMed

    Yang, Yan-Pu; Chen, Deng-Kai; Gu, Rong; Gu, Yu-Feng; Yu, Sui-Huai

    2016-01-01

    Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.

  8. Analysis of steady-state shallow cell solidification in metal matrix composites

    SciTech Connect

    Michaud, V.J.; Mortensen, A.

    1996-11-01

    The influence of capillarity on the near-plane front solidification of metal matrix composites is examined by analysis of the one-sided solidification of a binary alloy in a planar interstice of constant width in the limit of low Peclet number. The authors assume that in this limit, solute isoconcentrates in the liquid are everywhere orthogonal to the growth direction. Capillary causes the alloy to solidify in a cellular mode, even in the absence of constitutional supercooling. Two solution branches are derived for this solidification mode, one for shallow symmetric cells, the other for asymmetric cells. Restricting attention to the former solution branch, as the growth velocity increases, or the temperature gradient decreases, the cell amplitude increases gradually, to reach a critical point which depends strongly on the contact angle along the reinforcement/solidification front triple line.

  9. Saliva as an analytical matrix: state of the art and application for biomonitoring.

    PubMed

    Caporossi, Lidia; Santoro, Alessia; Papaleo, Bruno

    2010-09-01

    Analytical tests to measure chemicals in saliva can be employed for numerous analytes, endogenous compounds or xenobiotics. The objective was to determine which chemicals can be analysed with this matrix, which analytical methods are applicable, and what application is possible for biomonitoring. We reviewed the literature using three databases, MEDLINE, PubMed and Scopus, collecting articles on different kinds of analysis in saliva. Studies were principally about molecules of clinical interest, xenobiotics, especially drugs of abuse, and chemicals used at workplaces; some substances show no relevant correlation with exposure data while others seems to be of particular interest for systematic use for biomonitoring. Currently, saliva is used far less than other biological fluids but its use for biomonitoring of exposure to chemicals might open up new areas for research and would certainly simplify the collection of biological samples.

  10. Thermal decomposition of matrix metalloproteinase inhibitors: evidence of solid state dimerization.

    PubMed

    Rabel Riley, Shelley R; Vickery, Rodney D; Nemeth, Gregory A; Haas, Michael J; Kasprzak, Daniel J; Maurin, Michael B

    2011-01-25

    The thermal properties of three matrix metalloproteinase (MMP) inhibitors were investigated using a variety of instrumental methods. Differential scanning calorimetry revealed highly exothermic processes for all compounds above 200°C, and thermogravimetric analysis resulted in significant step-wise weight losses at the temperatures corresponding to the exothermic transitions. Hot stage microscopy observations for several compounds showed evolution of gas bubbles from crystals at temperatures that correlated with the exotherms. Thermal decomposition involving the hydroxamic acid functional group was suspected and further evaluated using various analytical techniques including reversed-phase HPLC, LC-MS-MS, TGA-FTIR and NMR. The mechanism proposed in the thermal decomposition involves a Lossen Rearrangement to form a dimeric species containing a urea linkage. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Development of a sensor and control system for the production of titanium matrix composites

    SciTech Connect

    Berzins, L.V.; McClelland, M.A.; Anklam, T.M.

    1995-03-01

    Titanium matrix composites promise to dramatically increase the thrust-to-weight ratio of gas turbine engines. Electron Beam Physical Vapor Deposition (EB-PVD) is ideal for coating fibers if issues with composition control can be worked out. LLNL is developing a control system based on Diode Laser Absorption Spectroscopy (DLAS) for the deposition of titanium orthorhombic alloys. In this paper, the important features and components of a DLAS control system are reviewed and a methodology for selecting the appropriate atomic transitions is described. Data characterizing the diagnostic performance as well as information on potential control strategies is presented. Finally, applications of this diagnostic to other alloy systems are discussed.

  12. Wave-function vortex attachment via matrix products: Application to atomic Fermi gases in flat spin-orbit bands

    NASA Astrophysics Data System (ADS)

    Scarola, V. W.

    2014-03-01

    Variational wave functions that introduce zeros (vortices) to screen repulsive interactions are typically difficult to verify in unbiased microscopic calculations. An approach is constructed to insert vortices into ansatz wave functions using a matrix-product representation. This approach opens the door to validation of a broad class of Jastrow-based wave functions. The formalism is applied to a model motivated by experiments on ultracold atomic gases in the presence of synthetic spin-orbit coupling. Validated wave functions show that vortices in atomic Fermi gases with flat Rashba spin-orbit bands cluster near the system center and should therefore be directly visible in time-of-flight imaging.

  13. Two-dimensional mass defect matrix plots for mapping genealogical links in mixtures of lignin depolymerisation products.

    PubMed

    Qi, Yulin; Hempelmann, Rolf; Volmer, Dietrich A

    2016-07-01

    Lignin is the second most abundant natural biopolymer, and lignin wastes are therefore potentially significant sources for renewable chemicals such as fuel compounds, as alternatives to fossil fuels. Waste valorisation of lignin is currently limited to a few applications such as in the pulp industry, however, because of the lack of effective extraction and characterisation methods for the chemically highly complex mixtures after decomposition. Here, we have implemented high resolution mass spectrometry and developed two-dimensional mass defect matrix plots as a data visualisation tool, similar to the Kendrick mass defect plots implemented in fields such as petroleomics. These 2D matrix plots greatly simplified the highly convoluted lignin mass spectral data acquired from Fourier transform ion cyclotron resonance (FTICR)-mass spectrometry, and the derived metrics provided confident peak assignments and strongly improved structural mapping of lignin decomposition product series from the various linkages within the lignin polymer after electrochemical decomposition. Graphical Abstract 2D mass defect matrix plot for a lignin sample after decomposition.

  14. Tannase Production by Solid State Fermentation of Cashew Apple Bagasse

    NASA Astrophysics Data System (ADS)

    Podrigues, Tigressa H. S.; Dantas, Maria Alcilene A.; Pinto, Gustavo A. S.; Gonçalves, Luciana R. B.

    The ability of Aspergillus oryzae for the production of tannase by solid state fermentation was investigated using cashew apple bagasse (CAB) as substrate. The effect of initial water content was studied and maximum enzyme production was obtained when 60 mL of water was added to 100.0 g of CAB. The fungal strain was able to grow on CAB without any supplementation but a low enzyme activity was obtained, 0.576 U/g of dry substrate (gds). Optimization of process parameters such as supplementation with tannic acid, phosphorous, and different organic and inorganic nitrogen sources was studied. The addition of tannic acid affected the enzyme production and maximum tannase activity (2.40 U/gds) was obtained with 2.5% (w/w) supplementation. Supplementation with ammonium nitrate, peptone, and yeast extract exerted no influence on tannase production. Ammonium sulphate improved the enzyme production in 3.75-fold compared with control. Based on the experimental results, CAB is a promising substrate for solid state fermentation, enabling A. oryzae growth and the production of tannase, with a maximum activity of 3.42 U/gds and enzyme productivity of 128.5×10-3 U·gds -1·h-1.

  15. Energy shifts of Si oxidation states in the system of Si nanocrystals embedded in SiO2 matrix.

    PubMed

    Chen, T P; Liu, Y; Sun, C Q; Tseng, Ampere A; Fung, S

    2007-07-01

    Energy shifts in the Si 2p levels of the five Si oxidation states Sin+ (n = 0, 1, 2, 3, 4) in the system of Si nanocrystals embedded in SiO2 matrix have been determined. The thermal annealing effect on the energy shifts has been studied. The result suggests that the Si nanocrystals and the SiO2 are thermally stable but the annealing can cause some structural deformations such as changes in the bond lengths and bond angles for the suboxides Si2O and SiO. The energy shifts generally show a linear dependence on the oxidation state n, suggesting that the energy shifts could be mainly determined by the nearest-neighbor oxygen atoms. It is shown that the chemical structures of the system are similar to those of the conventional SiO2/Si system in terms of the energy shifts.

  16. Solute distribution in the ferromagnetic matrix of an M50 high-speed steel in annealed and quenched states

    NASA Astrophysics Data System (ADS)

    Djega-Mariadassou, C.; Decaudin, B.; Bessais, L.; Cizeron, G.

    1997-06-01

    A method of analysing by Mössbauer spectroscopy a steel ferromagnetic matrix has been developed. It provides the fractions of atomic elements in substitutional or interstitial sites in the Fe lattice, from the comparison between the experimental hyperfine-field distribution 0953-8984/9/23/017/img7 and the calculated one 0953-8984/9/23/017/img8. This method, applied to an M50 steel, in the simple case of ferrite (the annealed state), and extended to the most complex situation of martensites quenched from various temperatures, describes the initial state of the steel before any further tempering treatment. The atomic fractions of Cr, Mo, V, and C in the Fe lattice have been specified.

  17. Youth tobacco product use in the United States.

    PubMed

    Lee, Youn Ok; Hebert, Christine J; Nonnemaker, James M; Kim, Annice E

    2015-03-01

    Noncigarette tobacco products are increasingly popular among youth, especially cigarette smokers. Understanding multiple tobacco product use is necessary to assess the effects of tobacco products on population health. This study examines multiple tobacco product use and associated risk factors among US youth. Estimates of current use were calculated for cigarettes, cigars, smokeless tobacco, hookah, e-cigarettes, pipes, bidis, kreteks, snus, and dissolvable tobacco by using data from the 2012 National Youth Tobacco Survey (n = 24 658), a nationally representative sample of US middle and high school students. Associations between use patterns and demographic characteristics were examined by using multinomial logistic regression. Among youth, 14.7% currently use 1 or more tobacco products. Of these, 2.8% use cigarettes exclusively, and 4% use 1 noncigarette product exclusively; 2.7% use cigarettes with another product (dual use), and 4.3% use 3 or more products (polytobacco use). Twice as many youth use e-cigarettes alone than dual use with cigarettes. Among smokers, polytobacco use was significantly associated with male gender (adjusted relative risk ratio [aRRR] = 3.71), by using flavored products (aRRR = 6.09), nicotine dependence (aRRR = 1.91), tobacco marketing receptivity (aRRR = 2.52), and perceived prevalence of peer use of tobacco products (aRRR = 3.61, 5.73). More than twice as many youth in the United States currently use 2 or more tobacco products than cigarettes alone. Continued monitoring of tobacco use patterns is warranted, especially for e-cigarettes. Youth rates of multiple product use involving combustible products underscore needs for research assessing potential harms associated with these patterns. Copyright © 2015 by the American Academy of Pediatrics.

  18. Floquet topological systems in the vicinity of band crossings: Reservoir-induced coherence and steady-state entropy production

    NASA Astrophysics Data System (ADS)

    Dehghani, Hossein; Mitra, Aditi

    2016-06-01

    Results are presented for an open Floquet topological system represented by Dirac fermions coupled to a circularly polarized laser and an external reservoir. It is shown that when the separation between quasienergy bands becomes small, and comparable to the coupling strength to the reservoir, the reduced density matrix in the Floquet basis, even at steady state, has nonzero off-diagonal elements, with the magnitude of the off-diagonal elements increasing with the strength of the coupling to the reservoir. In contrast, the coupling to the reservoir only weakly affects the diagonal elements, hence inducing an effective coherence. The steady-state reduced density matrix synchronizes with the periodic drive, and a Fourier analysis allows the extraction of the occupation probabilities of the Floquet quasienergy levels. The lack of detailed balance at steady state is quantified in terms of an entropy-production rate, and it is shown that this equals the heat current flowing out of the system and into the reservoir. It is also shown that the entropy-production rate mainly depends on the off-diagonal components of the Floquet density matrix. Thus, a stronger coupling to the reservoir leads to an enhanced entropy-production rate, implying a more efficient removal of heat from the system, which in turn helps the system maintain coherence. Analytic expressions in the vicinity of the Dirac point are derived which highlights these results, and also indicates how the reservoir may be engineered to enhance the coherence of the system.

  19. Recycling of wood and paper products in the United States

    Treesearch

    Peter J. Ince

    1996-01-01

    This report describes the current status of wood and paper recycling in the United States and predicts the production and market consequences of increased recycling. The results suggest that the rate of paper recycling will rapidly rise in the 1990s, mainly as a result of the competitive evolution of fiber markets and papermaking technologies. The consumption and...

  20. Oxygen production by urban trees in the United States

    Treesearch

    David J. Nowak; Robert Hoehn; Daniel E. Crane

    2007-01-01

    Urban forests in the coterminous United States are estimated to produce ≈61 million metric tons (67 million tons) of oxygen annually, enough oxygen to offset the annual oxygen consumption of approximately two-thirds of the U.S. opulation. Although oxygen production is often cited as a significant benefit of trees, this benefit is relatively insignificant and...

  1. United States trade in forest products, 1978 To 1987.

    Treesearch

    John T. Chmelik; David J. Brooks; Richard W. Haynes

    1989-01-01

    Tables summarize volume and unit value of United States trade in forest products. Import and export data are shown for 18 groups of commodities aggregated from 800 individual commodity items; original data were collected and reported by the U.S. Department of Commerce. Data given for each commodity group include detail on trading partners and information on shipments...

  2. Lake States Pulpwood Production Drops Seven Percent, 1967

    Treesearch

    James E. Blyth

    1968-01-01

    This twenty-second annual report shows the Lake States pulpwood harvest decreased to about 4 million cords from a record high of 4 1/2 million cords in 1966. Pulpwood receipts remained high in Wisconsin but decreased in Michigan and Minnesota. Minnesota shipped 106,000 cords more to Wisconsin than in 1966. As a result, only Minnesota's 1967 pulpwood production...

  3. Cotton production in the united states: production expenses and crop diversity

    USDA-ARS?s Scientific Manuscript database

    In the United States (U.S) cotton (Gossypium hirsutum) production expenses, as well as the diversity of crops grown on cotton operations, have changed over time. Census of Agriculture data from 1997, 2002, 2007, and 2012 and cost of production estimates from USDA’s Economic Research Service (ERS) we...

  4. Excited-state proton-transfer dynamics of 1-methyl-6-hydroxyquinolinium embedded in a solid matrix of poly(2-hydroxyethyl methacrylate).

    PubMed

    Park, Sun-Young; Lee, Young-Shin; Jang, Du-Jeon

    2008-11-28

    The excited-state intrinsic proton transfer and its geminate recombination, as well as the ground-state equilibria, of 1-methyl-6-hydroxyquinolinium embedded in a solid matrix of poly(2-hydroxyethyl methacrylate) have been studied by measuring time-resolved and steady-state fluorescence spectra along with absorption and excitation spectra. Proton transfer takes place within 3.3 ns to form ion pairs while its back-reaction occurs on the time scale of 3.7 ns. The ion pairs in the rigid alcoholic matrix go through neither diffusion to form free ions nor subsequent electronic rearrangement to form the keto species within their excited-state lifetimes.

  5. RF Plasma Torch System for Metal Matrix Composite Production in Nuclear Fuel Cladding

    NASA Astrophysics Data System (ADS)

    Holik, Eddie, III

    2007-10-01

    For the first time in 30 years, plans are afoot to build new fission power plants in the US. It is timely to develop technology that could improve the safety and efficiency of new reactors. A program of development for advanced fuel cycles and Generation IV reactors is underway. The path to greater efficiency is to increase the core operating temperature. That places particular challenges to the cladding tubes that contain the fission fuel. A promising material for this purpose is a metal matrix composite (MMC) in which ceramic fibers are bonded within a high-strength steel matrix, much like fiberglass. Current MMC technology lacks the ability to effectively bond traditional high-temperature alloys to ceramic strands. The purpose of this project is to design an rf plasma torch system to use titanium as a buffer between the ceramic fibers and the refractory outer material. The design and methods of using an rf plasma torch to produce a non-equilibrium phase reaction to bond together the MMC will be discussed. The effects of having a long lived fuel cladding in the design of future reactors will also be discussed.

  6. In Situ Production of Hard Metal Matrix Composite Coating on Engineered Surfaces Using Laser Cladding Technique

    NASA Astrophysics Data System (ADS)

    Raza, Mohammad Shahid; Hussain, Manowar; Kumar, Vikash; Das, Alok Kumar

    2016-11-01

    The growing need for high wear-resistant surface with enhanced physical properties has led to extensive researches in the field of surface engineering. Laser cladding emerged to be a promising method to achieve these objectives in a cost-effective way. The present paper studies the viability of cladding of tungsten disulfide (WS2) powder by using 400 W continuous-wave fiber laser. WS2 was used as a coating material, which was decomposed at higher temperature and underwent several chemical reactions. By this process, in situ formation of metal matrix composites and hard face coating on the substrate surface were attained. The characterization of laser cladded surface was done to study its morphological, microstructural, mechanical and tribological properties. It was observed that cladding of WS2 powder on 304 SS resulted in the formation of Cr-W-C-Fe metal matrix composite having improved mechanical and tribological properties. The value of microhardness of the coated surface was found to increase three to four times in comparison with the parent material surface. Wear test results indicated a decrease in wear by 1/9th (maximum) as compared to the parent 304 SS surface. The volume fractions of tungsten particles on the cladded surface were also investigated through EDS analysis.

  7. Buckling Reduces eNOS Production and Stimulates Extracellular Matrix Remodeling in Arteries in Organ Culture.

    PubMed

    Xiao, Yangming; Liu, Qin; Han, Hai-Chao

    2016-09-01

    Artery buckling alters the fluid shear stress and wall stress in the artery but its temporal effect on vascular wall remodeling is poorly understood. The purpose of this study was to investigate the early effect of artery buckling on endothelial nitric oxide synthase (eNOS) expression and extracellular matrix remodeling. Bilateral porcine carotid arteries were maintained in an ex vivo organ culture system with and without buckling while under the same physiological pressure and flow rate for 3-7 days. Matrix metalloproteinase-2 (MMP-2), MMP-9, fibronectin, elastin, collagen I, III and IV, tissue inhibitor of metalloproteinase-2 (TIMP-2), and eNOS were determined using Western blotting and immunohistochemistry. Our results showed that MMP-2 expression level was significantly higher in buckled arteries than in the controls and higher at the inner curve than at the outer curve of buckled arteries, while collagen IV content showed an opposite trend, suggesting that artery buckling increased MMP-2 expression and collagen IV degradation in a site-specific fashion. However, no differences for MMP-9, fibronectin, elastin, collagen I, III, and TIMP-2 were observed among the outer and inner curve sides of buckled arteries and straight controls. Additionally, eNOS expression was significantly decreased in buckled arteries. These results suggest that artery buckling triggers uneven wall remodeling that could lead to development of tortuous arteries.

  8. In Situ Production of Hard Metal Matrix Composite Coating on Engineered Surfaces Using Laser Cladding Technique

    NASA Astrophysics Data System (ADS)

    Raza, Mohammad Shahid; Hussain, Manowar; Kumar, Vikash; Das, Alok Kumar

    2017-01-01

    The growing need for high wear-resistant surface with enhanced physical properties has led to extensive researches in the field of surface engineering. Laser cladding emerged to be a promising method to achieve these objectives in a cost-effective way. The present paper studies the viability of cladding of tungsten disulfide (WS2) powder by using 400 W continuous-wave fiber laser. WS2 was used as a coating material, which was decomposed at higher temperature and underwent several chemical reactions. By this process, in situ formation of metal matrix composites and hard face coating on the substrate surface were attained. The characterization of laser cladded surface was done to study its morphological, microstructural, mechanical and tribological properties. It was observed that cladding of WS2 powder on 304 SS resulted in the formation of Cr-W-C-Fe metal matrix composite having improved mechanical and tribological properties. The value of microhardness of the coated surface was found to increase three to four times in comparison with the parent material surface. Wear test results indicated a decrease in wear by 1/9th (maximum) as compared to the parent 304 SS surface. The volume fractions of tungsten particles on the cladded surface were also investigated through EDS analysis.

  9. Production of an acellular matrix from amniotic membrane for the synthesis of a human skin equivalent.

    PubMed

    Sanluis-Verdes, Anahí; Yebra-Pimentel Vilar, Maria Teresa; García-Barreiro, Juan Javier; García-Camba, Marta; Ibáñez, Jacinto Sánchez; Doménech, Nieves; Rendal-Vázquez, Maria Esther

    2015-09-01

    Human amniotic membrane (HAM) has useful properties as a dermal matrix substitute. The objective of our work was to obtain, using different enzymatic or chemical treatments to eliminate cells, a scaffold of acellular HAM for later use as a support for the development of a skin equivalent. The HAM was separated from the chorion, incubated and cryopreserved. The membrane underwent different enzymatic and chemical treatments to eliminate the cells. Fibroblasts and keratinocytes were separately obtained from skin biopsies of patients following a sequential double digestion with first collagenase and then trypsin-EDTA (T/E). A skin equivalent was then constructed by seeding keratinocytes on the epithelial side and fibroblasts on the chorionic side of the decellularizated HAM. Histological, immunohistochemical, inmunofluorescent and molecular biology studies were performed. Treatment with 1% T/E at 37 °C for 30 min totally removed epithelial and mesenchymal cells. The HAM thus treated proved to be a good matrix to support adherence of cells and allowed the achievement of an integral and intact scaffold for development of a skin equivalent, which could be useful as a skin substitute for clinical use.

  10. Entanglement as a resource to distinguish orthogonal product states

    PubMed Central

    Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan

    2016-01-01

    It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality. PMID:27458034

  11. Entanglement as a resource to distinguish orthogonal product states.

    PubMed

    Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan

    2016-07-26

    It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality.

  12. Entanglement as a resource to distinguish orthogonal product states

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan

    2016-07-01

    It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality.

  13. Fostering Creativity in Design Education: Using the Creative Product Analysis Matrix with Chinese Undergraduates in Macau

    ERIC Educational Resources Information Center

    Tsai, Kuan Chen

    2016-01-01

    The purpose of the present study is to explore to what extent the use of a more structured mode of assessing creative products--specifically, the CPAM--could beneficially influence design students' product creativity and creative processes. For this qualitative inquiry, following our CPAM-based intervention, students wrote reflective papers in…

  14. Highly resolved proton matrix ENDOR of oriented photosystem II membranes in the S2 state.

    PubMed

    Nagashima, Hiroki; Mino, Hiroyuki

    2013-10-01

    Proton matrix ENDOR was performed to investigate the protons close to the manganese cluster in oriented samples of photosystem II (PS II). Eight pairs of ENDOR signals were detected in oriented PS II membranes. At an angle of θ=0° between the membrane normal vector n and the external field H0, five pairs of ENDOR signals were exchangeable in D2O medium and three pairs were not exchangeable in D2O medium. The hyperfine splitting of 3.60MHz at θ=0° increased to 3.80MHz at θ=90°. The non-exchangeable signals with 1.73MHz hyperfine splitting at θ=0°, which were assigned to a proton in an amino acid residue, were not detected at θ=90° in oriented PS II or in non-oriented PS II. Highly resolved spectra show that only limited numbers of protons were detected by CW-ENDOR spectra, although many protons were located near the CaMn4O5 cluster. The detected exchangeable protons were proposed to arise from the protons belonging to the water molecules, labeled W1-W4 in the 1.9Å crystal structure, directly ligated to the CaMn4O5 cluster, and nearby amino-acid residue.

  15. Hot-Press Molded Poly(Methyl Methacrylate) Matrix for Solid-State Dye Lasers

    NASA Astrophysics Data System (ADS)

    Yee, Kwong-Cheong; Tou, Teck-Yong; Ng, Seik-Weng

    1998-09-01

    A hot-press molding method was used to fabricate dye-doped poly(methyl methacrylate) (PMMA) slabs. Three rhodamine dyes, Rh640 (ClO 4 ), Rh6G(ClO 4 ), and Rh6G (Cl), were impregnated into the PMMA matrix first by dissolving the dye and granular PMMA in a solvent mixture of chloroform and methanol and then heating the mixture in vacuo at 175 C to obtain a spongy preform. The powdered preform was molded into slabs at 175 C and at 1 mbar, to eliminate the formation of bubbles in the slabs. We annealed the slabs for several hours to improve its optical homogeneity and hence its lasing efficiency. When pumped by a 1.5-mJ nitrogen laser, we obtained peak lasing efficiencies of 8% and 7.8%, respectively, for Rh6G (ClO 4 ) and Rh640 (ClO 4 ) in PMMA matrices. The lasing efficiency of Rh6G (ClO 4 )-doped PMMA suffered a reduction rate of 0.012% shot compared with 0.15% shot for Rh640 (ClO 4 )-doped PMMA. In contrast, Rh6G (Cl) in a hot-press molded PMMA slab suffered thermal bleaching that resulted in a low lasing efficiency of 1%; this can be explained by its absorption and fluorescence characteristics.

  16. The quality performance matrix: New York State's model for targeting quality improvement in managed care plans.

    PubMed

    Roohan, Patrick J; Gesten, Foster; Pasley, Beverly; Schettine, Anne M

    2002-01-01

    This article describes a methodology developed by the New York State Department of Health to analyze health plan performance data using two benchmarks: comparison to peers and comparison to historic results. It explains how that analysis is used to target quality improvement. Through this process the department effectively partners with health plans to foster improvement by identifying problems and barriers, encouraging health plans to set performance goals, and then working with health plans to design action plans to address the barriers. This model can be replicated for use by other states or other entities charged with monitoring quality improvement in managed care.

  17. Path to Collagenolysis: COLLAGEN V TRIPLE-HELIX MODEL BOUND PRODUCTIVELY AND IN ENCOUNTERS BY MATRIX METALLOPROTEINASE-12.

    PubMed

    Prior, Stephen H; Byrne, Todd S; Tokmina-Roszyk, Dorota; Fields, Gregg B; Van Doren, Steven R

    2016-04-08

    Collagenolysis is essential in extracellular matrix homeostasis, but its structural basis has long been shrouded in mystery. We have developed a novel docking strategy guided by paramagnetic NMR that positions a triple-helical collagen V mimic (synthesized with nitroxide spin labels) in the active site of the catalytic domain of matrix metalloproteinase-12 (MMP-12 or macrophage metalloelastase) primed for catalysis. The collagenolytically productive complex forms by utilizing seven distinct subsites that traverse the entire length of the active site. These subsites bury ∼1,080 Å(2)of surface area, over half of which is contributed by the trailing strand of the synthetic collagen V mimic, which also appears to ligate the catalytic zinc through the glycine carbonyl oxygen of its scissile G∼VV triplet. Notably, the middle strand also occupies the full length of the active site where it contributes extensive interfacial contacts with five subsites. This work identifies, for the first time, the productive and specific interactions of a collagen triple helix with an MMP catalytic site. The results uniquely demonstrate that the active site of the MMPs is wide enough to accommodate two strands from collagen triple helices. Paramagnetic relaxation enhancements also reveal an extensive array of encounter complexes that form over a large part of the catalytic domain. These transient complexes could possibly facilitate the formation of collagenolytically active complexes via directional Brownian tumbling.

  18. Influence of locational states of submicron fibers added into matrix on mechanical properties of plain-woven Carbon Fiber Composite

    NASA Astrophysics Data System (ADS)

    Kumamoto, Soichiro; Okubo, Kazuya; Fujii, Toru

    2016-01-01

    The aim of this study was to show the influence of locational states of submicron fibers added into epoxy matrix on mechanical properties of modified plane-woven carbon fiber reinforced plastic (CFRP). To change the locational states of submicron fibers, two kinds of fabrication processes were applied in preparing specimen by hand lay-up method. Submicron fibers were simply added into epoxy resin with ethanol after they were stirred by a dispersion process using homogenizer to be located far from the interface between reinforcement and matrix. In contrast, submicron fibers were attached onto the carbon fibers by injecting from a spray nozzle accompanying with ethanol to be located near the interface, after they were tentatively contained in ethanol. The plain-woven CFRP plates were fabricated by hand lay-up method and cured at 80 degree-C for 1 hour and then at 150 degree-C for 3 hours. After curing, the plain-woven CFRP plates were cut into the dimension of specimen. Tensile shear strength and Mode-II fracture toughness of CFRP were determined by tensile lap-shear test and End-notched flexure(ENF) test, respectively. When submicron fibers were located far from the interface between carbon fibers and epoxy resin, tensile shear strength and Mode-II fracture toughness of CFRP were improved 30% and 18% compared with those of unmodified case. The improvement ratio in modified case was rather low (about few percentages) in the case where submicron fibers were located near the interface. The result suggested that crack propagation should be prevented when submicron fibers were existed far from the interface due to the effective stress state around the crack tip.

  19. Bound states in the transfer matrix spectrum for general lattice ferromagnetic spin systems at high temperature

    PubMed

    Schor; O'Carroll

    2000-08-01

    We obtain different properties of general d dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region (beta<1). Each model is characterized by a single site a priori spin distribution, taken to be even. We state our results in terms of the parameter alpha=-3(2) where denotes the kth moment of the a priori distribution. Associated with the model is a lattice quantum field theory that is known to contain particles. We show that for alpha>0, beta small, there exists a bound state with mass below the two-particle threshold. For alpha<0, bound states do not exist. The existence of the bound state has implications on the decay of correlations, i.e., the four-point function decays at a slower rate than twice that of the two-point function. These results are obtained using a lattice version of the Bethe-Salpeter equation in the ladder approximation. The existence and nonexistence results generalize to N-component models with rotationally invariant a priori spin distributions.

  20. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Wright, D. L.; Koch, D.; Lewis, E. R.; McGraw, R.; Chang, L.-S.; Schwartz, S. E.; Ruedy, R.

    2008-10-01

    A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) are described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations. A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment. This is more likely due to

  1. Unhealthy product sponsorship of Australian national and state sports organisations.

    PubMed

    Macniven, Rona; Kelly, Bridget; King, Lesley

    2015-04-01

    Marketing of products harmful to the health of children has been found to be prolific, and occurs across multiple media platforms and in several settings, including organised sport, thus potentially undermining the health benefits inherent in sports participation. Through website audits, this study investigated the nature and extent of unhealthy food, beverage, alcohol and gambling sponsorship across peak Australian sporting organisations. A structured survey tool identified and assessed sponsoring companies and products displayed on the websites of the 53 national and state/territory sport governing bodies in Australia receiving government funding. Identified products were categorised as healthy or unhealthy, based on criteria developed by health experts. There was a total of 413 websites operated by the 53 sports, with 1975 company or product sponsors identified. Overall, 39 sports had at least one unhealthy sponsor, and 10% of all sponsors were rated as unhealthy. Cricket had the highest percent of unhealthy sponsors (27%) and the highest number of unhealthy food and beverage sponsors (n=19). Rugby Union (n=16) and Australian Football (n=4) had the highest numbers of alcohol and gambling sponsors respectively. Sponsorship of Australian sport governing bodies by companies promoting unhealthy food and beverage, alcohol and gambling products is prevalent at the state/territory and national level. SO WHAT?: Regulatory guidelines should be established to limit such sponsorship and ensure that it is not translated into promotions that may reach and influence children.

  2. Coupled bending-torsion steady-state response of pretwisted, nonuniform rotating beams using a transfer-matrix method

    NASA Technical Reports Server (NTRS)

    Gray, Carl E., Jr.

    1988-01-01

    Using the Newtonian method, the equations of motion are developed for the coupled bending-torsion steady-state response of beams rotating at constant angular velocity in a fixed plane. The resulting equations are valid to first order strain-displacement relationships for a long beam with all other nonlinear terms retained. In addition, the equations are valid for beams with the mass centroidal axis offset (eccentric) from the elastic axis, nonuniform mass and section properties, and variable twist. The solution of these coupled, nonlinear, nonhomogeneous, differential equations is obtained by modifying a Hunter linear second-order transfer-matrix solution procedure to solve the nonlinear differential equations and programming the solution for a desk-top personal computer. The modified transfer-matrix method was verified by comparing the solution for a rotating beam with a geometric, nonlinear, finite-element computer code solution; and for a simple rotating beam problem, the modified method demonstrated a significant advantage over the finite-element solution in accuracy, ease of solution, and actual computer processing time required to effect a solution.

  3. Exotic hadron bound state production at hadron colliders

    NASA Astrophysics Data System (ADS)

    Jin, Yi; Li, Shi-Yuan; Liu, Yan-Rui; Meng, Lu; Si, Zong-Guo; Zhang, Xiao-Feng

    2017-08-01

    The non-relativistic wave function framework is applied to study the production and decay of exotic hadrons, which can be effectively described as bound states of other hadrons. Employing the factorized formulation, with the help of event generators, we investigate the production of exotic hadrons in multiproduction processes at high energy hadron colliders. This study provides crucial information for the measurements of the relevant exotic hadrons. Supported by Natural Science Foundation of Shandong Province (ZR2014AM016, ZR2016AM16) and National Natural Science Foundation of China (11275115, 11325525, 11635009)

  4. The equation of state of predominant detonation products

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph; Crowhurst, Jonathan; Bastea, Sorin; Fried, Laurence

    2009-06-01

    The equation of state of detonation products, when incorporated into an experimentally grounded thermochemical reaction algorithm can be used to predict the performance of explosives. Here we report laser based Impulsive Stimulated Light Scattering measurements of the speed of sound from a variety of polar and nonpolar detonation product supercritical fluids and mixtures. The speed of sound data are used to improve the exponential-six potentials employed within the Cheetah thermochemical code. We will discuss the improvements made to Cheetah in terms of predictions vs. measured performance data for common polymer blended explosives. Accurately computing the chemistry that occurs from reacted binder materials is one important step forward in our efforts.

  5. Ion production from solid state laser ion sources

    SciTech Connect

    Gottwald, T.; Mattolat, C.; Raeder, S.; Wendt, K.; Havener, C.; Liu, Y.; Lassen, J.; Rothe, S.

    2010-02-15

    Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.

  6. Ion production from solid state laser ion sources

    SciTech Connect

    Gottwald, T.; Havener, Charles C; Lassen, J.; Liu, Yuan; Mattolat, C.; Raeder, S.; Rothe, S.; Wendt, K.

    2010-01-01

    Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.

  7. Fuzzy sphere: Star product induced from generalized squeezed states

    SciTech Connect

    Lubo, Musongela

    2005-02-15

    A family of states built from the uncertainty principle on the fuzzy sphere has been shown to reproduce the stereographic projection in the large j limit. These generalized squeezed states are used to construct an associative star product which involves a finite number of derivatives on its primary functional space. It is written in terms of a variable on the complex plane. We show that it actually coincides with the one found by Gross and Presnajder in the simplest cases, endowing the later with a supplementary physical interpretation. We also show how the spherical harmonics emerge in this setting.

  8. Optimization of antioxidant exopolysaccharidess production by Bacillus licheniformis in solid state fermentation.

    PubMed

    Fang, Yaowei; Ahmed, Sibtain; Liu, Shu; Wang, Shujun; Lu, Mingsheng; Jiao, Yuliang

    2013-11-06

    Response surface methodology was applied to optimize physical and nutritional variables for the production of antioxidant exopolysaccharidess (EPSs) by Bacillus licheniformis UD061 in solid state fermentation with squid processing byproduct and maize cob meal used as a carbon and nitrogen source and solid matrix. The factors noted with Plackett-Burman design for optimization of EPSs production were NaCl, MgSO4·7H2O, and moisture level. These factors were further optimized using Box-Behnken design and response surface methodology. Using this methodology, the quadratic regression model of EPSs production was built. Maximum EPSs production was obtained under the optimal conditions of 4.08 g L(-1) NaCl, 0.71 g L(-1) MgSO4·7H2O, and 60.49% moisture level. A production of 14.68 mg gds(-1), which was well in agreement with the predicted value, was achieved by this optimized procedure.

  9. The active metabolite of leflunomide, A77 1726, inhibits the production of prostaglandin E(2), matrix metalloproteinase 1 and interleukin 6 in human fibroblast-like synoviocytes.

    PubMed

    Burger, D; Begué-Pastor, N; Benavent, S; Gruaz, L; Kaufmann, M-T; Chicheportiche, R; Dayer, J-M

    2003-01-01

    To investigate the effects of the active metabolite of leflunomide, A77 1726, on fibroblast-like synoviocytes. In rheumatoid arthritis (RA) synoviocytes participate in tissue destruction by producing metalloproteinases (MMP), prostaglandin E(2) (PGE(2)) and interleukin (IL) 6, which are involved in extracellular matrix degradation, resorption of the mineral phase and osteoclast-mediated bone resorption. Human synoviocytes were stimulated with IL-1alpha or tumour necrosis factor alpha (TNF-alpha) in the presence of A77 1726. Culture supernatants were analysed for production of interstitial collagenase (MMP-1), tissue-inhibitor of metalloproteinases 1 (TIMP-1), PGE(2) and IL-6. Total RNA was isolated and analysed for steady-state levels of MMP-1, cyclooxygenase-2 (COX-2) and IL-6 mRNA. A77 1726 inhibited the production of PGE(2) in synoviocytes activated by TNF-alpha and IL-1alpha with median inhibitory concentrations (IC(50)) of 7 and 3 microM respectively. In contrast, MMP-1 and IL-6 production was inhibited at high A77 1726 concentrations (> 10 microM), whereas TIMP-1 was not affected. The inhibition of MMP-1 and IL-6 production was due to the known inhibitory effect of A77 1726 on pyrimidine synthesis, as it was reversed by the addition of uridine. This did not apply to PGE(2) production, which was inhibited via direct action of A77 1726 on COX-2, as shown by the increasing amount of substrate (arachidonic acid) in the culture medium. This study shows that some of the beneficial effect of leflunomide in RA patients may be due to the inhibition of PGE(2), IL-6 and MMP-1 production in synoviocytes. This effect, coupled with its multiple inhibitory effects on T lymphocyte functions, might account for the significant reduction in the rate of disease progression in RA patients treated with leflunomide.

  10. Liquid hydrogen production and commercial demand in the United States

    NASA Technical Reports Server (NTRS)

    Heydorn, Barbara

    1990-01-01

    Kennedy Space Center, the single largest purchaser of liquid hydrogen (LH2) in the United States, evaluated current and anticipated hydrogen production and consumption in the government and commercial sectors. Specific objectives of the study are as follows: (1) identify LH2 producers in the United States and Canada during 1980-1989 period; (2) compile information in expected changes in LH2 production capabilities over the 1990-2000 period; (3) describe how hydrogen is used in each consuming industry and estimate U.S. LH2 consumption for the chemicals, metals, electronics, fats and oil, and glass industries, and report data on a regional basis; (4) estimate historical and future consumption; and (5) assess the influence of international demands on U.S. plants.

  11. Stochastic method for calculating the ground-state one-body density matrix of trapped Bose particles in one dimension

    NASA Astrophysics Data System (ADS)

    Buchman, Omri; Baer, Roi

    2017-09-01

    The one-body density matrix (OBDM) is a fundamental contraction of the Bose-Einstein condensate wave function, encapsulating its one-body properties. It serves as a major analysis tool with which the condensed component of the density can be identified. Despite its cardinal importance, calculating the ground-state OBDM of trapped interacting bosons is a challenge and to date OBDM calculations have been published only for homogeneous systems or for trapped weakly interacting bosons. In this paper we discuss an approach for computing the OBDM based on a double-walker diffusion Monte Carlo random walk coupled with a stochastic permanent calculation. We here describe the method and study some of its statistical convergence and properties applying it to some model systems.

  12. Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy.

    PubMed

    Fry, Christopher S; Kirby, Tyler J; Kosmac, Kate; McCarthy, John J; Peterson, Charlotte A

    2017-01-05

    Satellite cells, the predominant stem cell population in adult skeletal muscle, are activated in response to hypertrophic stimuli and give rise to myogenic progenitor cells (MPCs) within the extracellular matrix (ECM) that surrounds myofibers. This ECM is composed largely of collagens secreted by interstitial fibrogenic cells, which influence satellite cell activity and muscle repair during hypertrophy and aging. Here we show that MPCs interact with interstitial fibrogenic cells to ensure proper ECM deposition and optimal muscle remodeling in response to hypertrophic stimuli. MPC-dependent ECM remodeling during the first week of a growth stimulus is sufficient to ensure long-term myofiber hypertrophy. MPCs secrete exosomes containing miR-206, which represses Rrbp1, a master regulator of collagen biosynthesis, in fibrogenic cells to prevent excessive ECM deposition. These findings provide insights into how skeletal stem and progenitor cells interact with other cell types to actively regulate their extracellular environments for tissue maintenance and adaptation. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Sandwiched confinement of quantum dots in graphene matrix for efficient electron transfer and photocurrent production

    NASA Astrophysics Data System (ADS)

    Zhu, Nan; Zheng, Kaibo; Karki, Khadga J.; Abdellah, Mohamed; Zhu, Qiushi; Carlson, Stefan; Haase, Dörthe; Žídek, Karel; Ulstrup, Jens; Canton, Sophie E.; Pullerits, Tõnu; Chi, Qijin

    2015-05-01

    Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets interlink QDs and significantly improve electronic coupling, resulting in fast electron transfer from photoexcited QDs to graphene with a rate constant of 1.3 × 109 s-1. Efficient electron transfer dramatically enhances photocurrent generation in a liquid-junction QD-sensitized solar cell where the hybrid nanofilm acts as a photoanode. We thereby demonstrate a cost-effective method to construct large-area QD-graphene hybrid nanofilms with straightforward scale-up potential for optoelectronic applications.

  14. Sandwiched confinement of quantum dots in graphene matrix for efficient electron transfer and photocurrent production

    PubMed Central

    Zhu, Nan; Zheng, Kaibo; Karki, Khadga J.; Abdellah, Mohamed; Zhu, Qiushi; Carlson, Stefan; Haase, Dörthe; Žídek, Karel; Ulstrup, Jens; Canton, Sophie E.; Pullerits, Tõnu; Chi, Qijin

    2015-01-01

    Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets interlink QDs and significantly improve electronic coupling, resulting in fast electron transfer from photoexcited QDs to graphene with a rate constant of 1.3 × 109 s−1. Efficient electron transfer dramatically enhances photocurrent generation in a liquid-junction QD-sensitized solar cell where the hybrid nanofilm acts as a photoanode. We thereby demonstrate a cost-effective method to construct large-area QD-graphene hybrid nanofilms with straightforward scale-up potential for optoelectronic applications. PMID:25996307

  15. Fluorescent Labeling of Collagen Production by Cells for Noninvasive Imaging of Extracellular Matrix Deposition.

    PubMed

    Bardsley, Katie; Yang, Ying; El Haj, Alicia J

    2017-04-01

    Extracellular matrix (ECM) is an essential component of tissues and provides both integrity and biological cues for cells. Collagen is one of the major proteins found within the ECM and therefore is an essential component of all engineered tissues. Therefore, in this article, we present a method for the online real-time monitoring of collagen deposition in three-dimensional engineered constructs. This method revolves around modification of collagen through the addition of azide-L-proline to cell culture media. The incorporation of azide-L-proline into the neocollagen produced by cells can then be detected by reaction with 10 mM of a Click-IT Alexa Fluor 488 DIBO Alkyne. The reaction was shown as being specific to the collagen as little background staining was observed in cultures, which did not contain the modified proline, and the staining was also depleted after treatment with collagenase and colocalization of collagen type I staining by immunochemistry assay. Real-time online staining of collagen deposition was observed under different culture conditions without affecting proliferation. Collagen deposition was observed to be increased under mechanical stimulation; however, the localization varied across stimulation regimes. This is a new technique for real-time monitoring of cell-produced collagen and will be a valuable addition to the tissue engineering field.

  16. 48 CFR 470.103 - United States origin of agricultural products.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FOOD ASSISTANCE PROGRAMS COMMODITY ACQUISITIONS 470.103 United States origin of agricultural products... programs shall be products of United States origin. A product shall not be considered to be a product of... ingredient is: (1) Produced in the United States; and (2) Commercially available in the United States at...

  17. 48 CFR 470.103 - United States origin of agricultural products.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOOD ASSISTANCE PROGRAMS COMMODITY ACQUISITIONS 470.103 United States origin of agricultural products... programs shall be products of United States origin. A product shall not be considered to be a product of... ingredient is: (1) Produced in the United States; and (2) Commercially available in the United States at...

  18. 48 CFR 470.103 - United States origin of agricultural products.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FOOD ASSISTANCE PROGRAMS COMMODITY ACQUISITIONS 470.103 United States origin of agricultural products... programs shall be products of United States origin. A product shall not be considered to be a product of... ingredient is: (1) Produced in the United States; and (2) Commercially available in the United States at...

  19. 48 CFR 470.103 - United States origin of agricultural products.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FOOD ASSISTANCE PROGRAMS COMMODITY ACQUISITIONS 470.103 United States origin of agricultural products... programs shall be products of United States origin. A product shall not be considered to be a product of... ingredient is: (1) Produced in the United States; and (2) Commercially available in the United States at...

  20. Very fast dissolving acid carboxymethylcellulose-rifampicin matrix: Development and solid-state characterization.

    PubMed

    Luciani-Giacobbe, Laura C; Ramírez-Rigo, María V; Garro-Linck, Yamila; Monti, Gustavo A; Manzo, Ruben H; Olivera, María E

    2017-01-01

    One of the main obstacles to the successful treatment of tuberculosis is the poor and variable oral bioavailability of rifampicin (RIF), which is mainly due to its low hydrophilicity and dissolution rate. The aim of this work was to obtain a hydrophilic new material that allows a very fast dissolution rate of RIF and therefore is potentially useful in the development of oral solid dosage forms. The acid form of carboxymethylcellulose (CMC) was co-processed with RIF by solvent impregnation to obtain CMC-RIF powder, which was characterized by polarized optical microscopy, powder x-ray diffraction, DSC-TGA, hot stage microscopy, (13)C and (15)N solid-state NMR and FT-IR spectroscopy. In addition, the CMC-RIF matrices were subjected to water uptake and dissolution studies to assess hydrophilicity and release kinetics. CMC-RIF is a crystalline solid dispersion. Solid-state characterization indicated that no ionic interaction occurred between the components, but RIF crystallized as a zwitterion over the surface of CMC, which drastically increased the hydrophilicity of the solid. The CMC-RIF matrices significantly improved the water uptake of RIF and disintegrated in a very short period immediately releasing RIF. As CMC improves the hydrophilicity and delivery properties of RIF, CMC-RIF is very useful in the design of oral solid dosage forms with very fast dissolution of RIF, either alone or in combination with other antitubercular drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Simulating Potential Switchgrass Production in the United States

    SciTech Connect

    Thomson, Allison M.; Izaurralde, Roberto C.; West, T. O.; Parrish, David J.; Tyler, Donald D.; Williams, Jimmy R.

    2009-12-31

    Using results from field trials of switchgrass (Panicum virgatum L.) in the United States, the EPIC (Environmental Policy Integrated Climate) process-level agroecosystem model was calibrated, validated, and applied to simulate potential productivity of switchgrass for use as a biofuel feedstock. The model was calibrated with a regional study of 10-yr switchgrass field trials and subsequently tested against a separate compiled dataset of field trials from across the eastern half of the country. An application of the model in a national database using 8-digit watersheds as the primary modeling unit produces 30-yr average switchgrass yield estimates that can be aggregated to 18 major watersheds. The model projects average annual switchgrass productivity of greater than 7 Mg ha-1 in the Upper Mississippi, Lower Mississippi, and Ohio watersheds. The major factors limiting simulated production vary by region; low precipitation is the primary limiting factor across the western half of the country, while moderately acidic soils limit yields on lands east of the Mississippi River. Average projected switchgrass production on all crop land in the continental US is 5.6 Mg ha-1. At this level of productivity, 28.6 million hectares of crop land would be required to produce the 16 billion gallons of cellulosic ethanol called for by 2022 in the 2007 Energy Independence and Security Act. The model described here can be applied as a tool to inform the land-use and environmental consequences of switchgrass production.

  2. Fingerprint of Herb Product by Matrix-assisted Laser Desorption Ionization Mass Spectrometry

    USDA-ARS?s Scientific Manuscript database

    Product authentication, quality assurance, and identification of adulterants/contamination are major issues facing the dietary supplement industry. Scutellaria lateriflora is an herb widely used as a remedy for many ailments ranging from rabies to epilepsy. It could be easily contaminated by similar...

  3. Microbial production of hyaluronic acid: current state, challenges, and perspectives

    PubMed Central

    2011-01-01

    Hyaluronic acid (HA) is a natural and linear polymer composed of repeating disaccharide units of β-1, 3-N-acetyl glucosamine and β-1, 4-glucuronic acid with a molecular weight up to 6 million Daltons. With excellent viscoelasticity, high moisture retention capacity, and high biocompatibility, HA finds a wide-range of applications in medicine, cosmetics, and nutraceuticals. Traditionally HA was extracted from rooster combs, and now it is mainly produced via streptococcal fermentation. Recently the production of HA via recombinant systems has received increasing interest due to the avoidance of potential toxins. This work summarizes the research history and current commercial market of HA, and then deeply analyzes the current state of microbial production of HA by Streptococcus zooepidemicus and recombinant systems, and finally discusses the challenges facing microbial HA production and proposes several research outlines to meet the challenges. PMID:22088095

  4. Equations of state for explosive detonation products: The PANDA model

    SciTech Connect

    Kerley, G.I.

    1994-05-01

    This paper discusses a thermochemical model for calculating equations of state (EOS) for the detonation products of explosives. This model, which was first presented at the Eighth Detonation Symposium, is available in the PANDA code and is referred to here as ``the Panda model``. The basic features of the PANDA model are as follows. (1) Statistical-mechanical theories are used to construct EOS tables for each of the chemical species that are to be allowed in the detonation products. (2) The ideal mixing model is used to compute the thermodynamic functions for a mixture of these species, and the composition of the system is determined from assumption of chemical equilibrium. (3) For hydrocode calculations, the detonation product EOS are used in tabular form, together with a reactive burn model that allows description of shock-induced initiation and growth or failure as well as ideal detonation wave propagation. This model has been implemented in the three-dimensional Eulerian code, CTH.

  5. New Measurements of Hyperon Production from Charmonium States

    NASA Astrophysics Data System (ADS)

    Dobbs, Sean

    Hyperon production in e+e- annihilation provides a clean laboratory for the production of baryons and strangeness in hadronization, and can provide insight into the structure of different hyperons by comparing their production rates. Using 52, 805, and 586 pb-1 of e+e- annihilation data taken at the ψ(2S), ψ(3770), and ψ(4160) resonances, respectively, with the CLEO-c detector, we measure for the first time the inclusive decays of these charmonium states to the Λ0, Σ+, Σ0, Ξ-, Ξ0, Ω- hyperons, and discuss the status of their interpretation. We also discuss the measurements of the isospin-violating decay ψ(2S) → Λ0Σ0 and the Λ0Σ0 form factor.

  6. Methamphetamine and HIV-1 gp120 effects on lipopolysaccharide stimulated matrix metalloproteinase-9 production by human monocyte-derived macrophages.

    PubMed

    Reynolds, Jessica L; Mahajan, Supriya D; Aalinkeel, Ravikumar; Nair, Bindukumar; Sykes, Donald E; Schwartz, Stanley A

    2011-01-01

    Monocytes/macrophages are a primary source of human immunodeficiency virus (HIV-1) in the central nervous system (CNS). Macrophages infected with HIV-1 produce a plethora of factors, including matrix metalloproteinase-9 (MMP-9) that may contribute to the development of HIV-1-associated neurocognitive disorders (HAND). MMP-9 plays a pivotal role in the turnover of the extracellular matrix (ECM) and functions to remodel cellular architecture. We have investigated the role of methamphetamine and HIV-1 gp120 in the regulation of lipopolysaccaride (LPS) induced-MMP-9 production in monocyte-derived macrophages (MDM). Here, we show that LPS-induced MMP-9 gene expression and protein secretion are potentiated by incubation with methamphetamine alone and gp120 alone. Further, concomitant incubation with gp120 and methamphetamine potentiated LPS-induced MMP-9 expression and biological activity in MDM. Collectively methamphetamine and gp120 effects on MMPs may modulate remodeling of the extracellular environment enhancing migration of monocytes/macrophages to the CNS.

  7. Methamphetamine and HIV-1 gp120 Effects on Lipopolysaccharide Stimulated Matrix Metalloproteinase-9 Production by Human Monocyte-Derived Macrophages

    PubMed Central

    Reynolds, Jessica L.; Mahajan, Supriya D.; Aalinkeel, Ravikumar; Nair, Bindukumar; Sykes, Donald E.; Schwartz, Stanley A.

    2011-01-01

    Monocytes/macrophages are a primary source of human immunodeficiency virus (HIV-1) in the central nervous system (CNS). Macrophages infected with HIV-1 produce a plethora of factors, including matrix metalloproteinase-9 (MMP-9) that may contribute to the development of HIV-1-associated neurocognitive disorders (HAND). MMP-9 plays a pivotal role in the turnover of the extracellular matrix (ECM) and functions to remodel cellular architecture. We have investigated the role of methamphetamine and HIV-1 gp120 in the regulation of lipopolysaccaride (LPS) induced-MMP-9 production in monocyte-derived macrophages (MDM). Here, we show that LPS-induced MMP-9 gene expression and protein secretion are potentiated by incubation with methamphetamine alone and gp120 alone. Further, concomitant incubation with gp120 and methamphetamine potentiated LPS-induced MMP-9 expression and biological activity in MDM. Collectively methamphetamine and gp120 effects on MMPs may modulate remodeling of the extracellular environment enhancing migration of monocytes/macrophages to the CNS. PMID:21425912

  8. Steady state creep behavior of particulate-reinforced titanium matrix composites

    SciTech Connect

    Ranganath, S.; Mishra, R.S.

    1996-03-01

    The steady state creep behavior of unreinforced Ti, Ti-Ti{sub 2}C and Ti-TiB-Ti{sub 2}C composites has been examined in the temperature range 823--923 K. It is shown that the creep deformation of unreinforced Ti is governed by climb-controlled creep mechanism for which the stress exponent is between 4.1 and 4.3 and the activation energy is 236 kJ mol{sup {minus}1}. For composites, the stress exponents are between 6 and 7 at 823 K but are similar to unreinforced Ti at 923 K. The measured steady state creep rate of composites is found to be 2--3 orders of magnitude lower than unreinforced Ti in the investigated temperature range. It is then established that the origin of creep strengthening at 823--923 K is due to the combined effects of increased modulus of composites and the refined microstructure. It is further shown that the change of stress exponent of composites at 823 K is because of the change in creep mechanism from lattice-diffusion controlled dislocation climb to pipe-diffusion controlled dislocation climb. By analyzing the creep data, a modification in the dimensionless constant, A = 3.2 {times} 10{sup 5} exp({minus}24.2V{sub r}) for lattice-diffusion regime and A = 9.4 {times} 10{sup 5} exp({minus}28.1V{sub r}) for pipe-diffusion regime, where V{sub r} is the volume fraction of reinforcements, is suggested to account for the influence of reinforcements on creep kinetics.

  9. Tobacco Product Use Among Adults - United States, 2013-2014.

    PubMed

    Hu, S Sean; Neff, Linda; Agaku, Israel T; Cox, Shanna; Day, Hannah R; Holder-Hayes, Enver; King, Brian A

    2016-07-15

    While significant declines in cigarette smoking have occurred among U.S. adults during the past 5 decades, the use of emerging tobacco products* has increased in recent years (1-3). To estimate tobacco use among U.S. adults aged ≥18 years, CDC and the Food and Drug Administration (FDA) analyzed data from the 2013-2014 National Adult Tobacco Survey (NATS). During 2013-2014, 21.3% of U.S. adults used a tobacco product every day or some days, and 25.5% of U.S. adults used a tobacco product every day, some days, or rarely. Despite progress in reducing cigarette smoking, during 2013-2014, cigarettes remained the most commonly used tobacco product among adults. Young adults aged 18-24 years reported the highest prevalence of use of emerging tobacco products, including water pipes/hookahs and electronic cigarettes (e-cigarettes). Furthermore, racial/ethnic and sociodemographic differences in the use of any tobacco product were observed, with higher use reported among males; non-Hispanic whites, non-Hispanic blacks, and non-Hispanics of other races(†); persons aged <45 years; persons living in the Midwest or South; persons with a General Educational Development (GED) certificate; persons who were single/never married/not living with a partner or divorced/separated/widowed; persons with annual household income <$20,000; and persons who were lesbian, gay, or bisexual (LGB). Population-level interventions that focus on all forms of tobacco product use, including tobacco price increases, high-impact anti-tobacco mass media campaigns, comprehensive smoke-free laws, and enhanced access to help quitting tobacco use, in conjunction with FDA regulation of tobacco products, are critical to reducing tobacco-related diseases and deaths in the United States.(§).

  10. Natural products as a gold mine for selective matrix metalloproteinases inhibitors.

    PubMed

    Wang, Liyan; Li, Xi; Zhang, Shoude; Lu, Weiqiang; Liao, Sha; Liu, Xiaofeng; Shan, Lei; Shen, Xu; Jiang, Hualiang; Zhang, Weidong; Huang, Jin; Li, Honglin

    2012-07-01

    Nineteen natural compounds with diverse structures are identified as potential MMPIs using structure-based virtual screening from 4000 natural products. Hydroxycinnamic acid or analogs of natural products are important for potent inhibitory and selectivity against MMPs, and the solvent effect in the S1' pocket can affect the hydrophobic interactions and hydrogen bonds between MMPIs and MMPS, making MMPIs exhibit certain selectivity for a specific MMP isoenzyme. Furthermore, compound 5 can reduce the expression of both MMP-2 and active-MMP-9, and suppress the migration of MDA-MB-231 tumor cell in a wound healing assay, which may be further developed as an anticancer agent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Classification of general n-qubit states under stochastic local operations and classical communication in terms of the rank of coefficient matrix.

    PubMed

    Li, Xiangrong; Li, Dafa

    2012-05-04

    We solve the entanglement classification under stochastic local operations and classical communication (SLOCC) for general n-qubit states. For two arbitrary pure n-qubit states connected via local operations, we establish an equation between the two coefficient matrices associated with the states. The rank of the coefficient matrix is preserved under SLOCC and gives rise to a simple way of partitioning all the pure states of n qubits into different families of entanglement classes, as exemplified here. When applied to the symmetric states, this approach reveals that all the Dicke states |ℓ,n> with ℓ=1,…,[n/2] are inequivalent under SLOCC.

  12. Porous Alumina Silicate Matrix Gubka for Solidification of {sup 137}Cs Strip Product

    SciTech Connect

    Aloy, Albert; Strelnikov, Alexander; Essimantovskiy, Vyacheslav

    2007-07-01

    Separated liquid high-level radioactive waste (HLW) fractions, in particular, about 100 liters of a {sup 137}Cs strip product with activity up to {approx} 100 Ci/l (3.7 TBq/l) have been produced during the development and testing of partitioning technology and temporarily stored at V.G. Khlopin Radium Institute (KRI) (Saint-Petersburg, Russia). The bench-scale experimental unit designed for operation in the hot cell was developed for {sup 137}Cs strip product solidification using an alumina silicate porous inorganic material (PIM) called Gubka. Conditions of saturation, drying, and calcinations of the salts into Gubka pores were optimized, and the operations under a remote control regime were executed during tests using a simulated strip product doped with {sup 137}Cs. The volume reduction coefficients were equal by a factor of 3.2-3.9 and a {sup 137}Cs discharge into an off-gas system was not detected. {sup 137}Cs leach rates from Gubka blocks after calcination at 800 deg. C were 1.0-1.5.10{sup -3} g/m{sup 2}.per day. (authors)

  13. Photochemistry of Bisphenol-A-Based Polycarbonate: The Effect of the Matrix and Early Detection of Photo-Fries Product Formation

    DTIC Science & Technology

    1991-05-31

    OFFICE OF NAVAL RESEARCH AD-A236 150 Contract N00014-89-J-1028 Technical Report No. 11 Photochemistry of Bisphenol-A-Based Polycarbonate: The Effect...Include Security Classification) Photochemistry of Bisphenol-A-Based Polycarbonate: The Effect of the Matrix and Early Detection of Photo-Fries Product...All othor editions are obsolete. Photochemistry of Bisphenol-A Based Polycarbonate: The Effect of the Matrix and Early Detection of Photo-Fries

  14. Toward the Use of Rydberg States for State-Selective Production of Molecular Ions

    NASA Astrophysics Data System (ADS)

    Grimes, David; Barnum, Timothy J.; Coy, Stephen; Field, Robert W.

    2014-06-01

    The usual simplified view of Rydberg states of molecules as consisting of a single Rydberg electron loosely bound to a molecular ion core in a well-defined rotation-vibration state suggests an attractive possibility for state-selective production of molecular ions. A Rydberg electron excited above the energy of the ground state of the ion core will spontaneously autoionize, leaving behind a molecular ion. The autoionizing states are of strongly mixed character due to the ubiquitous nonadiabatic interactions between Rydberg series associated with different states of the ion core. Using our complete Multichannel Quantum Defect Theory (MQDT) fit model for CaF, we have predicted the locations and strengths of special autoionizing resonances that decay into a single rotation-vibration state of a molecular ion. Few molecules are as well characterized as CaF, nor as elegantly simple. We additionally describe the use of core nonpenetrating states as a general method to produce an ensemble of molecular ions in a single, selectable quantum state.

  15. Progressive lung cell reactions and extracellular matrix production after a brief exposure to asbestos.

    PubMed

    Chang, L Y; Overby, L H; Brody, A R; Crapo, J D

    1988-04-01

    Inhaled chrysotile asbestos fibers have been shown to deposit initially on the first alveolar duct bifurcations. In brief accidental exposure to asbestos, this would be the most likely site of a significant cellular or fibrotic reaction. The characteristics and progression of tissue reactions occurring at first alveolar duct bifurcations after a single brief asbestos exposure was defined using morphometric techniques. Seven-week-old rats were exposed, nose only, for 1 hour to chrysotile asbestos fibers. After the exposure, the animals were kept in air for 2 days or 1 month, and then their lungs were fixed by vascular perfusion or by intratracheal instillation of 2% glutaraldehyde. The first bifurcations of seven alveolar ducts in each animal were isolated from plastic-embedded tissue and thin-sectioned for electron-microscopic analysis. Two days after exposure, the volume of epithelium and interstitium in the duct bifurcations had increased by 78% and 28%, respectively (P less than 0.05). The total number and volume of alveolar macrophages on the bifurcations increased about 10 times (P less than 0.05), whereas the number and volume of interstitial macrophages increased threefold (P less than 0.05). Statistically significant increases in the numbers of Type I (82%) and Type II (29%) epithelial cells also occurred. One month after the 1-hour exposure, the volume of epithelium and the number of Type I and Type II cells were still greater than control values, but these differences no longer achieved statistical significance. The volume of the interstitium, on the other hand, increased 67% (P less than 0.05), and this was accompanied by a persistently high number of interstitial macrophages, accumulation of myofibroblasts/smooth muscle cells, and an increased volume of interstitial matrix. These results demonstrate that a brief exposure to chrysotile asbestos causes a rapid response that involves an influx of macrophages to the first alveolar duct bifurcations and

  16. Progressive lung cell reactions and extracellular matrix production after a brief exposure to asbestos.

    PubMed Central

    Chang, L. Y.; Overby, L. H.; Brody, A. R.; Crapo, J. D.

    1988-01-01

    Inhaled chrysotile asbestos fibers have been shown to deposit initially on the first alveolar duct bifurcations. In brief accidental exposure to asbestos, this would be the most likely site of a significant cellular or fibrotic reaction. The characteristics and progression of tissue reactions occurring at first alveolar duct bifurcations after a single brief asbestos exposure was defined using morphometric techniques. Seven-week-old rats were exposed, nose only, for 1 hour to chrysotile asbestos fibers. After the exposure, the animals were kept in air for 2 days or 1 month, and then their lungs were fixed by vascular perfusion or by intratracheal instillation of 2% glutaraldehyde. The first bifurcations of seven alveolar ducts in each animal were isolated from plastic-embedded tissue and thin-sectioned for electron-microscopic analysis. Two days after exposure, the volume of epithelium and interstitium in the duct bifurcations had increased by 78% and 28%, respectively (P less than 0.05). The total number and volume of alveolar macrophages on the bifurcations increased about 10 times (P less than 0.05), whereas the number and volume of interstitial macrophages increased threefold (P less than 0.05). Statistically significant increases in the numbers of Type I (82%) and Type II (29%) epithelial cells also occurred. One month after the 1-hour exposure, the volume of epithelium and the number of Type I and Type II cells were still greater than control values, but these differences no longer achieved statistical significance. The volume of the interstitium, on the other hand, increased 67% (P less than 0.05), and this was accompanied by a persistently high number of interstitial macrophages, accumulation of myofibroblasts/smooth muscle cells, and an increased volume of interstitial matrix. These results demonstrate that a brief exposure to chrysotile asbestos causes a rapid response that involves an influx of macrophages to the first alveolar duct bifurcations and

  17. Durability of polymer matrix composites for automotive structural applications: A state-of-the-art review

    SciTech Connect

    Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.; Talreja, R.; Weitsman, Y.J.

    1995-07-01

    A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role that nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.

  18. Roles of mitogen activated protein kinases and EGF receptor in arsenite-stimulated matrix metalloproteinase-9 production

    SciTech Connect

    Cooper, Karen L.; Myers, Terrance Alix; Rosenberg, Martina; Chavez, Miquella; Hudson, Laurie G. . E-mail: lghudson@unm.edu

    2004-11-01

    The dermatotoxicity of arsenic is well established and epidemiological studies identify an increased incidence of keratinocytic tumors (basal cell and squamous cell carcinoma) associated with arsenic exposure. Little is known about the underlying mechanisms of arsenic-mediated skin carcinogenesis, but activation of mitogen-activated protein (MAP) kinases and subsequent regulation of downstream target genes may contribute to tumor promotion and progression. In this study, we investigated activation of the extracellular signal regulated kinase (ERK) and the stress-associated kinase p38 by arsenite in HaCat cells, a spontaneously immortalized human keratinocyte cell line. Arsenite concentrations {>=}100 {mu}M stimulate rapid activation of p38 and ERK MAP kinases. However, upon extended exposure (24 h), persistent stimulation of p38 and ERK MAP kinases was detected at low micromolar concentrations of arsenite. Although ERK and p38 were activated with similar time and concentration dependence, the mechanism of activation differed for these two MAP kinases. ERK activation by arsenite was fully dependent on the catalytic activity of the epidermal growth factor (EGF) receptor and partially dependent on Src-family kinase activity. In contrast, p38 activation was independent of EGF receptor or Src-family kinase activity. Arsenite-stimulated MAP kinase signal transduction resulted in increased production of matrix metalloproteinase (MMP)-9, an AP-1 regulated gene product. MMP-9 induction by arsenite was prevented when EGF receptor or MAP kinase signaling was inhibited. These studies indicate that EGF receptor activation is a component of arsenite-mediated signal transduction and gene expression in keratinocytes and that low micromolar concentrations of arsenite stimulate key signaling pathways upon extended exposure. Stimulation of MAP kinase cascades by arsenic and subsequent regulation of genes including c-fos, c-jun, and the matrix degrading proteases may play an important

  19. Boswellia frereana (frankincense) suppresses cytokine-induced matrix metalloproteinase expression and production of pro-inflammatory molecules in articular cartilage.

    PubMed

    Blain, Emma J; Ali, Ahmed Y; Duance, Victor C

    2010-06-01

    The aim of this study was to assess the anti-inflammatory efficacy of Boswellia frereana extracts in an in vitro model of cartilage degeneration and determine its potential as a therapy for treating osteoarthritis. Cartilage degradation was induced in vitro by treating explants with 5 ng/ml interleukin1alpha (IL-1alpha) and 10 ng/ml oncostatin M (OSM) over a 28-day period, in the presence or absence of 100 microg/ml B. frereana. Treatment of IL-1alpha/OSM stimulated cartilage explants with B. frereana inhibited the breakdown of the collagenous matrix. B. frereana reduced MMP9 and MMP13 mRNA levels, inhibited MMP9 expression and activation, and significantly reduced the production of nitrite (stable end product of nitric oxide), prostaglandin E2 and cycloxygenase-2. Epi-lupeol was identified as the principal constituent of B. frereana. This is the first report on the novel anti-inflammatory properties of Boswellia frereana in an in vitro model of cartilage degradation. We have demonstrated that B. frereana prevents collagen degradation, and inhibits the production of pro-inflammatory mediators and MMPs. Due to its efficacy we propose that B. frereana should be examined further as a potential therapeutic agent for treating inflammatory symptoms associated with arthritis.

  20. Production and reactions of triplet CS: Matrix infrared and ultraviolet spectra of C{sub 2}S{sub 2}

    SciTech Connect

    Bohn, R.B.; Hannachi, Y.; Andrews, L.

    1992-07-29

    Matrix infrared and visible-ultraviolet absorption spectroscopy and ab initio electronic structure calculations have been used to characterize the reaction products from a Tesla coil Ar/CS{sub 2} discharge. The discharge is an excellent source of CS, which reacts with other molecules to form the major C{sub 3}S{sub 2} product and the transient C{sub 2}S{sub 2} species. The spectra of discharged mixed isotopic samples Ar/{sup 12}CS{sub 2}/{sub 13}CS{sub 2} and Ar/C{sup 32}S{sub 2} exhibit triplet patterns in the CS antisymmetric stretching region, which unambiguously identifies the new C{sub 2}S{sub 2} molecule with two equivalent CS subgroups. The magnitudes of the {sup 12,13}C and {sup 32,34}S isotopic shifts further characterize the diatomic CS subgroup nature of C{sub 2}S{sub 2}. Another product contains two equivalent CS subgroups interacting with inequivalent S atom(s). The formation of C{sub 2}S{sub 2}({sup 3}{Sigma}) from the simple CS{sub 2} discharge requires triplet CS. Evidence was also obtained for other transient cumulene species. 32 refs., 8 figs., 7 tabs.

  1. Analysis of malachite green in aquatic products by carbon nanotube-based molecularly imprinted - matrix solid phase dispersion.

    PubMed

    Wang, Yu; Chen, Ligang

    2015-10-01

    A simple method based on matrix solid phase dispersion (MSPD) using molecularly imprinted polymers (MIPs) as sorbents for selective extraction of malachite green (MG) from aquatic products was developed. The MIPs were prepared by using carbon nanotube as support, MG as template, methacrylic acid as functional monomer, ethyleneglycol dimethacrylate as crosslinker and methylene chloride as solvent. The MIPs were characterized by Fourier transform infrared spectrometry and transmission electron microscopy. The isothermal adsorption, kinetics absorption and selective adsorption experiments were carried out. We optimized the extraction conditions as follows: the ratio of MIPs to sample was 2:3, the dispersion time was 15min, washing solvent was 4mL 50% aqueous methanol and elution solvent was 3mL methanol-acetic acid (98: 2, v/v). Once the MSPD process was completed, the MG extracted from aquatic products was determined by high performance liquid chromatography. The detection limit of MG was 0.7μgkg(-1). The relative standard deviations of intra-day and inter-day were obtained in the range of 0.9%-4.7% and 3.4%-9.8%, respectively. In order to evaluate the applicability and reliability of the proposed method, it was applied to determine MG in different aquatic products samples including fish, shrimp, squid and crabs. The satisfied recoveries were in the range of 89.2%-104.6%. The results showed that this method is faster, simpler and makes extraction and purification in the same system.

  2. Complete experimental characterization of the quantum state of a light mode via the Wigner function and the density matrix: application to quantum phase distributions of vacuum and squeezed-vacuum states

    NASA Astrophysics Data System (ADS)

    Smithey, D. T.; Beck, M.; Cooper, J.; Raymer, M. G.; Faridani, A.

    1993-01-01

    We have used the recently demonstrated method of optical homodyne tomography (OHT) to measure the Wigner quasiprobability distribution (Wigner function) and the density matrix for both a squeezed-vacuum and a vacuum state of a single spatial-temporal mode of the electromagnetic field. This method consists of measuring a set of probability distributions for many different Hilbert-space representations of the field-quadrature amplitude, using balanced homodyne detection, and then using tomography to obtain the Wigner function. Once the Wigner function is obtained, one can acquire the density matrix, including its complex phase. In the case of a pure state, this technique yields an experimentally determined complex wavefunction, as demonstrated here for the vacuum. The density matrix represents a complete quantum mechanical characterization of the state. From the measured density matrix we have obtained the Pegg-Barnett optical phase distribution, and from the Wigner function, the Wigner optical phase distribution.

  3. Osmoprotectants suppress the production and activity of matrix metalloproteinases induced by hyperosmolarity in primary human corneal epithelial cells

    PubMed Central

    Deng, Ruzhi; Su, Zhitao; Hua, Xia; Zhang, Zongduan; Li, De-Quan

    2014-01-01

    Purpose Hyperosmolarity has been recognized as a proinflammatory stress in the pathogenesis of dry eye disease. This study investigated the suppressive effect of osmoprotectants (L-carnitine, erythritol, and betaine) on the production and activity of matrix metalloproteinases (MMPs) in primary human corneal epithelial cells (HCECs) exposed to hyperosmotic stress. Methods Primary HCECs were established from fresh donor limbal tissue explants. The cultures in iso-osmolar medium (312 mOsM) were switched to hyperosmotic media with or without prior incubation with different concentrations of L-carnitine, erythritol, or betaine (2, 10, or 20 mM). The mRNA expression of the MMPs was determined with reverse transcription and quantitative real-time PCR (RT-qPCR). Protein production and activity were evaluated with immunofluorescent staining and gelatin zymography. Results Hyperosmotic media (400, 450, or 500 mOsM) significantly stimulated mRNA expression of collagenase MMP-13, gelatinases MMP-9 and MMP-2, stromelysin MMP-3, and matrilysin MMP-7, mostly in an osmolarity-dependent fashion. The stimulated mRNA expression and protein production of these MMPs were significantly but differentially suppressed by L-carnitine, erythritol, or betaine, as evaluated with RT-qPCR and immunofluorescent staining. Interestingly, these osmoprotectants not only suppressed production but also inhibited activation of MMP-9 and MMP-2, as evaluated with gelatin zymography. Conclusions Our findings for the first time demonstrate that osmoprotectants, L-carnitine, erythritol, and betaine, suppress the gene expression, protein production, and enzymatic activity of MMPs in HCECs exposed to hyperosmotic stress. L-carnitine appears to have the broadest and strongest suppressive effect on these MMPs. These osmoprotectants may have potential effects in protecting ocular surface epithelia from MMP-mediated disorders in dry eye disease. PMID:25352733

  4. Optimization of an absolute sensitivity in a glassy matrix during DNP-enhanced multidimensional solid-state NMR experiments.

    PubMed

    Takahashi, Hiroki; Fernández-de-Alba, Carlos; Lee, Daniel; Maurel, Vincent; Gambarelli, Serge; Bardet, Michel; Hediger, Sabine; Barra, Anne-Laure; De Paëpe, Gaël

    2014-02-01

    Thanks to instrumental and theoretical development, notably the access to high-power and high-frequency microwave sources, high-field dynamic nuclear polarization (DNP) on solid-state NMR currently appears as a promising solution to enhance nuclear magnetization in many different types of systems. In magic-angle-spinning DNP experiments, systems of interest are usually dissolved or suspended in glass-forming matrices doped with polarizing agents and measured at low temperature (down to ∼100K). In this work, we discuss the influence of sample conditions (radical concentration, sample temperature, etc.) on DNP enhancements and various nuclear relaxation times which affect the absolute sensitivity of DNP spectra, especially in multidimensional experiments. Furthermore, DNP-enhanced solid-state NMR experiments performed at 9.4 T are complemented by high-field CW EPR measurements performed at the same magnetic field. Microwave absorption by the DNP glassy matrix is observed even below the glass transition temperature caused by softening of the glass. Shortening of electron relaxation times due to glass softening and its impact in terms of DNP sensitivity is discussed. Copyright © 2014. Published by Elsevier Inc.

  5. Detection of Osteogenic Differentiation by Differential Mineralized Matrix Production in Mesenchymal Stromal Cells by Raman Spectroscopy

    PubMed Central

    Chen, He-Guei; Chiang, Hui-Hua Kenny; Lee, Oscar Kuang-Sheng

    2013-01-01

    Mesenchymal stromal cells (MSCs) hold great potential in skeletal tissue engineering and regenerative medicine. However, conventional methods that are used in molecular biology to evaluate osteogenic differentiation of MSCs require a relatively large amount of cells. Cell lysis and cell fixation are also required and all these steps are time-consuming. Therefore, it is imperative to develop a facile technique which can provide real-time information with high sensitivity and selectivity to detect the osteogenic maturation of MSCs. In this study, we use Raman spectroscopy as a biosensor to monitor the production of mineralized matrices during osteogenic induction of MSCs. In summary, Raman spectroscopy is an excellent biosensor to detect the extent of maturation level during MSCs-osteoblast differentiation with a non-disruptive, real-time and label free manner. We expect that this study will promote further investigation of stem cell research and clinical applications. PMID:23734254

  6. Study of Metastable N2 Production Using an N2 Matrix Detector

    NASA Astrophysics Data System (ADS)

    McConkey, William; Kedzierski, Wladek; Cerkauskas, Cyrus

    2015-05-01

    Metastable N2 molecules produced in the interaction of electrons of carefully controlled energy with a thermal beam of N2 in a crossed beam set-up have been studied in the energy range from threshold to 400 eV. The e-beam is pulsed and the metastables produced drift to a solid nitrogen target held at 10 K. Here they form excimers which immediately radiate. The resultant photons are detected using a photomultiplier-filter combination. Time-of-flight techniques are used to separate these photons from prompt photons produced in the initial electron-N2 collision. The excimer emission is strongest in the green but still significant in the red spectral region. Excitation functions will be presented together with threshold measurements. These help to identify the metastable states being observed and the excitation mechanisms which are responsible. The authors thank NSERC and CFI, (Canada), for financial support.

  7. Chemical state of fission products in irradiated UO 2

    NASA Astrophysics Data System (ADS)

    Imoto, S.

    1986-08-01

    The chemical state of fission products in irradiated UO 2 fuel has been estimated for FBR as well as LWR on the basis of equilibrium calculation with the SOLGASMIX-PV code. The system considered for the calculation is composed of a gas phase, a CaF 2 type oxide phase, three grey phases, a noble metal alloy, a mixed telluride phase and several other phases each consisting of single compound. The distribution of elements into these phases and the amount of chemical species in each phase at different temperatures are obtained as a function of oxygen potential for LWR and FBR. Changes of the chemical potential of the fuel-fission products system during burnup are also evaluated with particular attention to the difference between LWR and FBR. Some informations obtained by the calculation are compared with the results of post irradiation examination of UO 2 fuels.

  8. Williamsburg equation of state for detonation product fluid

    NASA Astrophysics Data System (ADS)

    Brown, W. Byers; Braithwaite, M.

    1994-07-01

    A simple analytical equation of state has been developed for the internal energy E as a function of volume V and entropy S which is valid from the low densities of perfect gases up to the high densities and temperatures of detonation product fluids. The parameters can all be computed by linear least squares from results along a single adiabat. For use in a hydrocode, the ESO can be witten in the convenient form E=PV/(g-1) where g is a function of volume and entropy related to the adiabatic gamma coefficient.

  9. Solid-state fermentation with Trichoderma reesei for cellulase production

    SciTech Connect

    Chahal, D.S.

    1985-01-01

    Cellulase yields of 250 to 430 IU/g of cellulose were recorded in a new approach to solid-state fermentation of wheat straw with Trichoderma reesei QMY-1. This is an increase of ca. 72% compared with the yields (160 to 250 IU/g of cellulose) in liquid-state fermentation reported in the literature. High cellulase activity (16 to 17 IU/ml) per unit volume of enzyme broth and high yields of cellulases were attributed to the growth of Trichoderma reesei on a hemicellulose fraction during its first phase and then on a cellulose fraction of wheat straw during its later phase for cellulase production, as well as to the close contact of hyphae with the substrate in solid-state fermentation. The cellulase system obtained by the solid-state fermentation of wheat straw contained cellulases (17.2 IU/ml), ..beta..-glucosidase (21.2 IU/ml), and xylanases (540 IU/ml). This cellulase system was capable of hydrolyzing 78 to 90% of delignified wheat straw (10% concentration) in 96 h, without the addition of complementary enzymes, ..beta..-glucosidase, and xylanases. 29 references.

  10. A nationwide production analysis of state park attendance in the United States.

    PubMed

    Siderelis, Christos; Moore, Roger L; Leung, Yu-Fai; Smith, Jordan W

    2012-05-30

    This study examined the production of U.S. states' park visits from 1984 to 2010 by state. In specifying the production equation in terms of the influences of the states' parklands, labor, and capital investments on the annual attendances, we found that state governments will experience an ongoing need for more labor to maintain their parklands if attendance is to increase in the future. Results also indicated that more capital expenditures are not likely to increase park utilization rates. Post-estimation procedures involved the application of the response residuals to identify the capacity utilization rates of the states' park systems over the past 27 years. Past utilization rates revealed operators met or exceeded capacity utilization expectations from 1984 through 1990. However, beginning in 1991, the annual mean utilization rate for the nation's supply of states' parks signaled a trend toward excess capacity. Our forecast revealed the mean utilizations over the next three years will vary between 90% and 95%. Post-estimation procedures also examined the relationship between state park management orientations (towards either public-lands preservation or recreational development) and projected annual capacity utilization rates. Results indicate that the quantity of added facilities to broaden their appeal to the public (i.e., a recreation orientation) was not important in explaining utilization capacities. However, an orientation toward public-lands preservation related significantly to greater utilization rates. In our view, the public will continue to accept current cost structures for continued operations of the states' parks on the compelling need for access to outdoor recreation to contribute to the visitor well-being. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. A matrix-exponential decomposition based time-domain method for calculating the defect states of scalar waves in two-dimensional periodic structures

    NASA Astrophysics Data System (ADS)

    Su, Xiao-Xing; Wang, Yue-Sheng; Zhang, Chuanzeng

    2017-05-01

    A time-domain method for calculating the defect states of scalar waves in two-dimensional (2D) periodic structures is proposed. In the time-stepping process of the proposed method, the column vector containing the spatially sampled field values is updated by multiplying it with an iteration matrix, which is written in a matrix-exponential form. The matrix-exponential is first computed by using the Suzuki's decomposition based technique of the fourth order, in which the Floquet-Bloch boundary conditions are incorporated. The obtained iteration matrix is then squared to enlarge the time-step that can be used in the time-stepping process (namely, the squaring technique), and the small nonzero elements in the iteration matrix is finally pruned to improve the sparse structure of the matrix (namely, the pruning technique). The numerical examples of the super-cell calculations for 2D defect-containing phononic crystal structures show that, the fourth order decomposition based technique for the matrix-exponential computation is much more efficient than the frequently used precise integration technique (PIT) if the PIT is of an order greater than 2. Although it is not unconditionally stable, the proposed time-domain method is particularly efficient for the super-cell calculations of the defect states in a 2D periodic structure containing a defect with a wave speed much higher than those of the background materials. For this kind of defect-containing structures, the time-stepping process can run stably for a sufficiently large number of the time-steps with a time-step much larger than the Courant-Friedrichs-Lewy (CFL) upper limit, and consequently the overall efficiency of the proposed time-domain method can be significantly higher than that of the conventional finite-difference time-domain (FDTD) method. Some physical interpretations on the properties of the band structures and the defect states of the calculated periodic structures are also presented.

  12. Photo-Fenton-like treatment of BPA: effect of UV light source and water matrix on toxicity and transformation products.

    PubMed

    Molkenthin, Merle; Olmez-Hanci, Tugba; Jekel, Martin R; Arslan-Alaton, Idil

    2013-09-15

    UV-A (near-UV), UV-C (short-UV) and visible-light assisted Fenton-like treatment of Bisphenol A (BPA) was investigated in pure water and raw freshwater samples spiked with BPA. Treatment performances were evaluated in terms of BPA degradation, dissolved organic carbon (DOC) removal and H2O2 consumption rates. Complete BPA degradation accompanied with significant DOC removal was achieved for all studied processes. Increasing the initial solution pH only exhibited a negative effect on treatment efficiencies when bicarbonate alkalinity was used for pH adjustment, whereas the raw freshwater matrix and irradiation type also influenced oxidation rates appreciably. Acute toxicity analysis employing Vibrio fischeri revealed that the inhibitory effect of BPA decreased significantly during the course of Photo-Fenton-like treatment. Several transformation products could be identified via HPLC and GC-MS analyses including hydroxylated phenolic compounds (hydroquinone; 2-methoxy, 1-4-benzenediol; 4-isopropenylphenol; 4'-hydroxy-acetophenone; 1-(4-cyclohexylphenyl) ethanone; 4-isopropylenecatechol; 4-4'-dihydroxybenzophenone; 4-ethyl,1,3-benzenediol), as well as the ring opening products hexanoic acid methyl ester, fumaric, succinic and oxalic acids. A reaction pathway featuring hydroxylation, dimerization and ring opening steps is proposed.

  13. Phytolacca americana inhibits the high glucose-induced mesangial proliferation via suppressing extracellular matrix accumulation and TGF-beta production.

    PubMed

    Jeong, Seung Il; Kim, Kang Ju; Choo, Yong Kug; Keum, Kyung Soo; Choi, Bong Kyu; Jung, Kyu Yong

    2004-02-01

    This study describes a potential of Phytolaccaceae (Phytolacca americana var.) as an inhibitor of high glucose-stimulated production of extracellular matrix (ECM) proteins and TGF-beta in cultured glomerular mesangial cells (GMCs). Raising the ambient glucose concentration for 24 hrs caused a dose-dependent increase in [3H]thymidine incorporation of GMCs, and the maximal response was achieved at 20 mM. Phytolaccaceae extracts (2.5-20 microg/ml) inhibited the high glucose-induced [3H]thymidine incorporation in a dose-dependent manner, and the concentrations tested here did not affect to the cell viability. Exposure of the GMCs to 20 mM glucose caused both ECM (collagen and fibronectin) accumulation and TGF-beta secretion, and these changes were significantly diminished by treatment of GMCs with Phytolaccaceae (10 microg/ml). Taken together, these results indicate that Phytolaccaceae inhibits the high glucose-induced GMCs proliferation partially through suppressing accumulation of ECM components and TGF-beta production, suggesting that Phytolaccaceae may be a promising agent for treating the development and progression of diabetic glomerulopathy.

  14. Large strain stimulation promotes extracellular matrix production and stiffness in an elastomeric scaffold model.

    PubMed

    D׳Amore, Antonio; Soares, Joao S; Stella, John A; Zhang, Will; Amoroso, Nicholas J; Mayer, John E; Wagner, William R; Sacks, Michael S

    2016-09-01

    Mechanical conditioning of engineered tissue constructs is widely recognized as one of the most relevant methods to enhance tissue accretion and microstructure, leading to improved mechanical behaviors. The understanding of the underlying mechanisms remains rather limited, restricting the development of in silico models of these phenomena, and the translation of engineered tissues into clinical application. In the present study, we examined the role of large strip-biaxial strains (up to 50%) on ECM synthesis by vascular smooth muscle cells (VSMCs) micro-integrated into electrospun polyester urethane urea (PEUU) constructs over the course of 3 weeks. Experimental results indicated that VSMC biosynthetic behavior was quite sensitive to tissue strain maximum level, and that collagen was the primary ECM component synthesized. Moreover, we found that while a 30% peak strain level achieved maximum ECM synthesis rate, further increases in strain level lead to a reduction in ECM biosynthesis. Subsequent mechanical analysis of the formed collagen fiber network was performed by removing the scaffold mechanical responses using a strain-energy based approach, showing that the denovo collagen also demonstrated mechanical behaviors substantially better than previously obtained with small strain training and comparable to mature collagenous tissues. We conclude that the application of large deformations can play a critical role not only in the quantity of ECM synthesis (i.e. the rate of mass production), but also on the modulation of the stiffness of the newly formed ECM constituents. The improved understanding of the process of growth and development of ECM in these mechano-sensitive cell-scaffold systems will lead to more rational design and manufacturing of engineered tissues operating under highly demanding mechanical environments.

  15. LARGE STRAIN STIMULATION PROMOTES EXTRACELLULAR MATRIX PRODUCTION AND STIFFNESS IN AN ELASTOMERIC SCAFFOLD MODEL

    PubMed Central

    D’more, Antonio; Soares, Joao; Stella, John A.; Zhang, Will; Amoroso, Nicholas J.; Mayer, John E.; Wagner, William R.; Sacks, Michael S.

    2016-01-01

    Mechanical conditioning of engineered tissue constructs is widely recognized as one of the most relevant methods to enhance tissue accretion and microstructure, leading to improved mechanical behaviors. The understanding of the underlying mechanisms remains rather limited, restricting the development of in silico models of these phenomena, and the translation of engineered tissues into clinical application. In the present study, we examined the role of large strip-biaxial strains (up to 50%) on ECM synthesis by vascular smooth muscle cells (VSMCs) micro-integrated into electrospun polyester urethane urea (PEUU) constructs over the course of 3 weeks. Experimental results indicated that VSMC biosynthetic behavior was quite sensitive to tissue strain maximum level, and that collagen was the primary ECM component synthesized. Moreover, we found that while a 30% peak strain level achieved maximum ECM synthesis rate, further increases in strain level lead to a reduction in ECM biosynthesis. Subsequent mechanical analysis of the formed collagen fiber network was performed by removing the scaffold mechanical responses using a strain-energy based approach, showing that the de-novo collagen also demonstrated mechanical behaviors substantially better than previously obtained with small strain training and comparable to mature collagenous tissues. We conclude that the application of large deformations can play a critical role not only in the quantity of ECM synthesis (i.e. the rate of mass production), but also on the modulation of the stiffness of the newly formed ECM constituents. The improved understanding of the process of growth and development of ECM in these mechano-sensitive cell-scaffold systems will lead to more rational design and manufacturing of engineered tissues operating under highly demanding mechanical environments. PMID:27344402

  16. Impact of endothelial cells and mechanical conditioning on smooth muscle cell extracellular matrix production and differentiation.

    PubMed

    Bulick, Allen S; Muñoz-Pinto, Dany J; Qu, Xin; Mani, Mousami; Cristancho, Deissy; Urban, Matthew; Hahn, Mariah S

    2009-04-01

    The aim of the current study was to explore the separate and coupled effects of endothelial cell (EC) presence and mechanical conditioning on smooth muscle cell (SMC) responses by combining bilayered poly(ethylene glycol) diacrylate (PEGDA) hydrogels with a pulsatile flow bioreactor. Each construct was composed of an outer PEGDA layer containing SMC and an inner PEGDA layer, either with or without EC. After an initial 3 days of static culture, EC(+) and EC(-) constructs were each further divided into two subgroups, half of which received mechanical conditioning mimetic of late gestation (mean pressures of approximately 50 mmHg and peak-to-trough pressure differentials of approximately 20 mmHg at approximately 140-180 beats/min) and half of which were cultured statically. After 18 additional days of culture, the SMC-containing layer of each construct was harvested, and western blots and quantitative histology were conducted to compare collagen type I, collagen type III, and elastin levels among treatment groups. SMC differentiation was evaluated by focusing on SMC marker calponin h1 and direct regulators of its gene expression-the transcription factor serum response factor (SRF) and two of its binding partners, myocardin and Elk-1. Combined EC and pulsatile flow conditioning increased elastin production, but decreased collagen type I deposition. Further, combined EC presence and mechanical stimulation increased SRF levels and the ratio of myocardin to active, phosphorylated Elk-1. This modulation of SRF and its binding partners appeared to result in a net increase in SMC differentiation, as evidenced by an associated increase in calponin h1 levels.

  17. Equations of state of detonation products: ammonia and methane

    NASA Astrophysics Data System (ADS)

    Lang, John; Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Coe, Joshua; Leiding, Jeffery; Gibson, Lloyd; Bartram, Brian

    2015-06-01

    Ammonia (NH3) and methane (CH4) are two principal product gases resulting from explosives detonation, and the decomposition of other organic materials under shockwave loading (such as foams). Accurate thermodynamic descriptions of these gases are important for understanding the detonation performance of high explosives. However, shock compression data often do not exist for molecular species in the dense gas phase, and are limited in the fluid phase. Here, we present equation of state measurements of elevated initial density ammonia and methane gases dynamically compressed in gas-gun driven plate impact experiments. Pressure and density of the shocked gases on the principal Hugoniot were determined from direct particle velocity and shock wave velocity measurements recorded using optical velocimetry (Photonic Doppler velocimetry (PDV) and VISAR (velocity interferometer system for any reflector)). Streak spectroscopy and 5-color pyrometry were further used to measure the emission from the shocked gases, from which the temperatures of the shocked gases were estimated. Up to 0.07 GPa, ammonia was not observed to ionize, with temperature remaining below 7000 K. These results provide quantitative measurements of the Hugoniot locus for improving equations of state models of detonation products.

  18. Increase in growth, productivity and nutritional status of wheat (Triticum aestivum L. cv. WH-711) and enrichment in soil fertility applied with organic matrix entrapped urea.

    PubMed

    Kumar, Manoj; Bauddh, Kuldeep; Kumar, Sanjeev; Sainger, Manish; Sainger, Poonam A; Singh, Rana P

    2013-01-01

    Field experiments were conducted during two consequent years in semi-arid, subtropical climate of Rohtak district situated in North-West Indian state Haryana to evaluate the effects of eco-friendly organic matrix entrapped urea (OMEU) on wheat (Triticum aestivum L. cv. WH-711). The OMEU prepared in granular form contained cow dung, rice bran (grain cover of Oryza sativa), neem (Azadirachta indica) leaves and clay soil (diameter of particles < 0.002 mm) in 1:1:1:1 ratios and saresh (plant gum of Acacia sp.) as binder entrapping half of the recommended dose of urea. A basal application of organic matrix entrapped urea showed increase in plant growth in terms of fresh and dry weights, root length, root number, leaf number, tillers, plant height earlet number, earlet length and productivity in terms of grain yield and straw yield over free form of urea (FU) and no fertilizer (NF) application. The OMEU increased total soluble proteins, organic N and free ammonium content in the leaves at 45 and 60 days. The nutritional status of wheat grains in OMEU applied plants was almost similar to that observed for FU applied plants. An increase in organic carbon and available phosphorus (P) was observed in OMEU applied plots on harvest whereas pH was slightly decreased over FU applied plots. The microbial population and activity in terms of fungal and bacterial colony count and activities soil dehydrogenase and alkaline phosphatase were significantly higher in OMEU applied plots as compared to the FU applied plots. Our data indicate that OMEU which are low cost, biodegradable and non-toxic can be used to replace the expensive chemical fertilizers for wheat cultivation in semi-arid, subtropical climate.

  19. Entropy production in ZND detonation with realistic equations of state for explosives and products

    NASA Astrophysics Data System (ADS)

    Byers Brown, W.; Braithwaite, M.

    1996-05-01

    The recently developed Williamsburg equation of state (EOS) for detonation products and the new Parsafar-Mason-Vinet EOS for the unreacted explosive phase are used in the one-dimensional ZND model for the reaction zone of a condensed explosive. This is the first time realistic EOSs, capable of describing entropy and temperature changes accurately, have been incorporated into the ZND model. Using an ANFO as an example, results for the two extreme inter-phase assumptions regarding the thermal interaction of the reactant and product phases are described, and the associated entropy changes calculated and discussed.

  20. Topical photodynamic therapy following excisional wounding of human skin increases production of transforming growth factor-β3 and matrix metalloproteinases 1 and 9, with associated improvement in dermal matrix organization.

    PubMed

    Mills, S J; Farrar, M D; Ashcroft, G S; Griffiths, C E M; Hardman, M J; Rhodes, L E

    2014-07-01

    Animal studies report photodynamic therapy (PDT) to improve healing of excisional wounds; the mechanism is uncertain and equivalent human studies are lacking. To explore the impact of methyl aminolaevulinate (MAL)-PDT on clinical and microscopic parameters of human cutaneous excisional wound healing, examining potential modulation through production of transforming growth factor (TGF)-β isoforms. In 27 healthy older men (60-77 years), a 4-mm punch biopsy wound was created in skin of the upper inner arm and treated with MAL-PDT three times over 5 days. An identical control wound to the contralateral arm was untreated and both wounds left to heal by secondary intention. Wounds were re-excised during the inflammatory phase (7 days, n = 10), matrix remodelling (3 weeks, n = 8) and cosmetic outcome/dermal structure (9 months, n = 9). Production of TGF-β1, TGF-β3 and matrix metalloproteinases (MMPs) was assessed by immunohistochemistry alongside microscopic measurement of wound size/area and clinical assessment of wound appearance. MAL-PDT delayed re-epithelialization at 7 days, associated with increased inflammation. However, 3 weeks postwounding, treated wounds were smaller with higher production of MMP-1 (P = 0·01), MMP-9 (P = 0·04) and TGF-β3 (P = 0·03). TGF-β1 was lower than control at 7 days and higher at 3 weeks (both P = 0·03). At 9 months, MAL-PDT-treated wounds showed greater, more ordered deposition of collagen I, collagen III and elastin (all P < 0·05). MAL-PDT increases MMP-1, MMP-9 and TGF-β3 production during matrix remodelling, ultimately producing scars with improved dermal matrix architecture. © 2014 British Association of Dermatologists.

  1. MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Wright, D.; Koch, D.; Lewis, E. R.; McGraw, R.; Chang, L.-S.; Schwartz, S. E.; Ruedy, R.

    2008-05-01

    A new aerosol microphysical module MATRIX, the Multiconfiguation Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) is described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol mode, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble modes. A detailed model description and results of box-model simulations of various mode configurations are presented. The number concentration of aerosol particles activated to cloud drops depends on the mode configuration. Simulations on the global scale with the GISS climate model are evaluated against aircraft and station measurements of aerosol mass and number concentration and particle size. The model accurately captures the observed size distributions in the aitken and accumulation modes up to particle diameter 1 μm, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment.

  2. Electric dipole moment function of the X1 Sigma/+/ state of CO - Vibration-rotation matrix elements for transitions of gas laser and astrophysical interest

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.

    1976-01-01

    The electric dipole moment function of the ground electronic state of carbon monoxide has been determined by combining numerical solutions of the radial Schrodinger equation with absolute intensity data of vibration-rotation bands. The derived dipole moment function is used to calculate matrix elements of interest to stellar astronomy and of importance in the carbon monoxide laser.

  3. Production and Decay of Atomic K-Shell Vacancy States

    NASA Astrophysics Data System (ADS)

    Gorczyca, Tom; Hasoglu, M. F.; Nikolic, D.; McLaughlin, B. M.; Chen, M. H.; Manson, S. T.; Badnell, N. R.

    2008-05-01

    K-shell photoabsorption calculations are important for a variety of astrophysical processes, in particular, determining the elemental abundances of the interstellar medium from observed X-ray absorption spectra. Previously, we performed reliable K-shell photoabsorption calculations for oxygen and neon ions that were used to determine elemental abundances from observed X-ray binary emissions. Here, we have executed detailed R-matrix calculations for carbon ions, where we have included both Auger broadening and relaxation effects by using an optical potential and pseudoorbitals with the necessary pseudoresonance elimination respectively. Also of astrophysical importance, especially for determining the charge-state distribution following K-shell excitation and/or ionization, is the competition between fluorescence (ejection of a photon, no charge change) and Auger decay (ejection of an electron, ionic charge change of +1). Our recent investigations on the accuracy of the existing 1s-vacancy fluorescence and Auger data base have revealed numerous deficiencies in that compilation. Those data were determined from configuration average, non-relativistic, singly-charged atomic physics calculations and were then scaled up through Z=30 for all isoelectronic sequences through the iron peak elements. We demonstrate the significance of including properly such physical effects as correct configuration averaging, semi-relativistic (i.e., spin-orbit) effects, and configuration interaction. Most recently, we have performed calculations that revealed anomalous behavior of the radiative and Auger rates, and the associated fluorescence yields, of the six electron K-shell vacancy isoelectronic sequence, exhibited as non-monotonic behavior as a function of Z. This behavior is explained in terms of an accidental degeneracy, an avoided-crossing of two nearly-degenerate spin-orbit coupled states. Consequently, we have demonstrated that, in general, even interpolation of rates and yields

  4. A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow

    NASA Astrophysics Data System (ADS)

    Nœtinger, B.

    2015-02-01

    Modeling natural Discrete Fracture Networks (DFN) receives more and more attention in applied geosciences, from oil and gas industry, to geothermal recovery and aquifer management. The fractures may be either natural, or artificial in case of well stimulation. Accounting for the flow inside the fracture network, and accounting for the transfers between the matrix and the fractures, with the same level of accuracy is an important issue for calibrating the well architecture and for setting up optimal resources recovery strategies. Recently, we proposed an original method allowing to model transient pressure diffusion in the fracture network only [1]. The matrix was assumed to be impervious. A systematic approximation scheme was built, allowing to model the initial DFN by a set of N unknowns located at each identified intersection between fractures. The higher N, the higher the accuracy of the model. The main assumption was using a quasi steady state hypothesis, that states that the characteristic diffusion time over one single fracture is negligible compared with the characteristic time of the macroscopic problem, e.g. change of boundary conditions. In that context, the lowest order approximation N = 1 has the form of solving a transient problem in a resistor/capacitor network, a so-called pipe network. Its topology is the same as the network of geometrical intersections between fractures. In this paper, we generalize this approach in order to account for fluxes from matrix to fractures. The quasi steady state hypothesis at the fracture level is still kept. Then, we show that in the case of well separated time scales between matrix and fractures, the preceding model needs only to be slightly modified in order to incorporate these fluxes. The additional knowledge of the so-called matrix to fracture transfer function allows to modify the mass matrix that becomes a time convolution operator. This is reminiscent of existing space averaged transient dual porosity models.

  5. Effect of tiger-nut (Cyperus esculentus) milk co-product on the surface and diffusional properties of a wheat-based matrix.

    PubMed

    Verdú, Samuel; Barat, José M; Alava, Cecibel; Grau, Raúl

    2017-06-01

    The food processing industry generates huge volumes of waste and co-products which still contain valuable compounds. Tiger-nut milk production generates large amounts of a co-product with a high insoluble fibre content, which is interesting as a bioactive component from a nutritional viewpoint. This co-product is formed by two different tissues in composition, particle size and colour terms, so two different flours were obtained from them. Both flours were included in a wheat-based matrix at different substitution levels: 5%, 10% and 20% (d.b). The surface tension of matrices, and the wettability and diffusion of water and oil, were studied. The results showed the matrix's reduced capacity to interact with solvents, principally from the 10% substitution level, with diminished surface tension, and a longer time was needed for both water and oil to wet and diffuse.

  6. Production of the Y (4260) state in B meson decay

    NASA Astrophysics Data System (ADS)

    Albuquerque, R. M.; Nielsen, M.; Zanetti, C. M.

    2015-07-01

    We calculate the branching ratio for the production of the meson Y (4260) in the decay B- → Y (4260)K-. We use QCD sum rules approach and we consider the Y (4260) to be a mixture between charmonium and exotic tetraquark, [ c bar q bar ] [ qc ], states with JPC =1--. Using the value of the mixing angle determined previously as: θ =(53.0 ± 0.5) ∘, we get the branching ratio B (B → Y (4260) K) = (1.34 ± 0.47) ×10-6, which allows us to estimate an interval on the branching fraction 3.0 ×10-8

  7. United States Food and Drug Administration Product Label Changes.

    PubMed

    Kircik, Leon; Sung, Julie C; Stein-Gold, Linda; Goldenberg, Gary

    2017-02-01

    Once a drug has been approved by the United States Food and Drug Administration and is on the market, the Food and Drug Administration communicates new safety information through product label changes. Most of these label changes occur after a spontaneous report to either the drug manufacturing companies or the Food and Drug Administration MedWatch program. As a result, 400 to 500 label changes occur every year. Actinic keratosis treatments exemplify the commonality of label changes throughout the postmarket course of a drug. Diclofenac gel, 5-fluorouracil cream, imiquimod, and ingenol mebutate are examples of actinic keratosis treatments that have all undergone at least one label revision. With the current system of spontaneous reports leading to numerous label changes, each occurrence does not necessarily signify a radical change in the safety of a drug.

  8. United States Food and Drug Administration Product Label Changes.

    PubMed

    Kircik, Leon; Sung, Julie C; Stein-Gold, Linda; Goldenberg, Gary

    2016-01-01

    Once a drug has been approved by the United States Food and Drug Administration and is on the market, the Food and Drug Administration communicates new safety information through product label changes. Most of these label changes occur after a spontaneous report to either the drug manufacturing companies or the Food and Drug Administration MedWatch program. As a result, 400 to 500 label changes occur every year. Actinic keratosis treatments exemplify the commonality of label changes throughout the postmarket course of a drug. Diclofenac gel, 5-fluorouracil cream, imiquimod, and ingenol mebutate are examples of actinic keratosis treatments that have all undergone at least one label revision. With the current system of spontaneous reports leading to numerous label changes, each occurrence does not necessarily signify a radical change in the safety of a drug.

  9. Production of the Y (4260) State in B Meson Decay

    NASA Astrophysics Data System (ADS)

    Albuquerque, R. M.; Nielsen, M.; Zanetti, C. M.

    2016-04-01

    We calculate the branching ratio for the production of the meson Y(4260) in the decay B- → Y(4260)K- . We use QCD sum rules approach and we consider the Y(4260) to be a mixture between charmonium and exotic tetraquark, [c¯q¯][qc], states with JPC = 1--. Using the value of the mixing angle determined previously as: θ = (53.0 ± 0.5)°, we get the branching ratio B(B → Y(4260)K) = (1.34 ± 0.47) x 10-6, which allows us to estimate an interval on the branching fraction 3.0 x 10-8 < B Y < 1.8 x 10-6 in agreement with the experimental upper limit reported by Babar Collaboration.

  10. United States Food and Drug Administration Product Label Changes

    PubMed Central

    Sung, Julie C.; Stein-Gold, Linda; Goldenberg, Gary

    2016-01-01

    Once a drug has been approved by the United States Food and Drug Administration and is on the market, the Food and Drug Administration communicates new safety information through product label changes. Most of these label changes occur after a spontaneous report to either the drug manufacturing companies or the Food and Drug Administration MedWatch program. As a result, 400 to 500 label changes occur every year. Actinic keratosis treatments exemplify the commonality of label changes throughout the postmarket course of a drug. Diclofenac gel, 5-fluorouracil cream, imiquimod, and ingenol mebutate are examples of actinic keratosis treatments that have all undergone at least one label revision. With the current system of spontaneous reports leading to numerous label changes, each occurrence does not necessarily signify a radical change in the safety of a drug. PMID:26962391

  11. United States Food and Drug Administration Product Label Changes

    PubMed Central

    Sung, Julie C.; Stein-Gold, Linda; Goldenberg, Gary

    2017-01-01

    Once a drug has been approved by the United States Food and Drug Administration and is on the market, the Food and Drug Administration communicates new safety information through product label changes. Most of these label changes occur after a spontaneous report to either the drug manufacturing companies or the Food and Drug Administration MedWatch program. As a result, 400 to 500 label changes occur every year. Actinic keratosis treatments exemplify the commonality of label changes throughout the postmarket course of a drug. Diclofenac gel, 5-fluorouracil cream, imiquimod, and ingenol mebutate are examples of actinic keratosis treatments that have all undergone at least one label revision. With the current system of spontaneous reports leading to numerous label changes, each occurrence does not necessarily signify a radical change in the safety of a drug. PMID:28367259

  12. Indistinguishability of pure orthogonal product states by LOCC

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqian; Weng, Jian; Tan, Xiaoqing; Luo, Weiqi

    2017-07-01

    We construct two sets of incomplete and extendible quantum pure orthogonal product states (POPS) in general bipartite high-dimensional quantum systems, which are all indistinguishable by local operations and classical communication. The first set of POPS is composed of two parts which are C^m⊗ C^{n_1} with 5≤ m≤ n_1 and C^m⊗ C^{n_2} with 5≤ m ≤ n_2, where n_1 is odd and n_2 is even. The second one is in C^m⊗ C^n (m, n≥ 4). Some subsets of these two sets can be extended into complete sets that local indistinguishability can be decided by noncommutativity which quantifies the quantumness of a quantum ensemble. Our study shows quantum nonlocality without entanglement.

  13. Secondary Waste Form Screening Test Results—THOR® Fluidized Bed Steam Reforming Product in a Geopolymer Matrix

    SciTech Connect

    Pires, Richard P.; Westsik, Joseph H.; Serne, R. Jeffrey; Mattigod, Shas V.; Golovich, Elizabeth C.; Valenta, Michelle M.; Parker, Kent E.

    2011-07-14

    Screening tests are being conducted to evaluate waste forms for immobilizing secondary liquid wastes from the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Plans are underway to add a stabilization treatment unit to the Effluent Treatment Facility to provide the needed capacity for treating these wastes from WTP. The current baseline is to use a Cast Stone cementitious waste form to solidify the wastes. Through a literature survey, DuraLith alkali-aluminosilicate geopolymer, fluidized-bed steam reformation (FBSR) granular product encapsulated in a geopolymer matrix, and a Ceramicrete phosphate-bonded ceramic were identified both as candidate waste forms and alternatives to the baseline. These waste forms have been shown to meet waste disposal acceptance criteria, including compressive strength and universal treatment standards for Resource Conservation and Recovery Act (RCRA) metals (as measured by the toxicity characteristic leaching procedure [TCLP]). Thus, these non-cementitious waste forms should also be acceptable for land disposal. Information is needed on all four waste forms with respect to their capability to minimize the release of technetium. Technetium is a radionuclide predicted to be in the secondary liquid wastes in small quantities, but the Integrated Disposal Facility (IDF) risk assessment analyses show that technetium, even at low mass, produces the largest contribution to the estimated IDF disposal impacts to groundwater.

  14. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair

    NASA Astrophysics Data System (ADS)

    Kisiday, J.; Jin, M.; Kurz, B.; Hung, H.; Semino, C.; Zhang, S.; Grodzinsky, A. J.

    2002-07-01

    Emerging medical technologies for effective and lasting repair of articular cartilage include delivery of cells or cell-seeded scaffolds to a defect site to initiate de novo tissue regeneration. Biocompatible scaffolds assist in providing a template for cell distribution and extracellular matrix (ECM) accumulation in a three-dimensional geometry. A major challenge in choosing an appropriate scaffold for cartilage repair is the identification of a material that can simultaneously stimulate high rates of cell division and high rates of cell synthesis of phenotypically specific ECM macromolecules until repair evolves into steady-state tissue maintenance. We have devised a self-assembling peptide hydrogel scaffold for cartilage repair and developed a method to encapsulate chondrocytes within the peptide hydrogel. During 4 weeks of culture in vitro, chondrocytes seeded within the peptide hydrogel retained their morphology and developed a cartilage-like ECM rich in proteoglycans and type II collagen, indicative of a stable chondrocyte phenotype. Time-dependent accumulation of this ECM was paralleled by increases in material stiffness, indicative of deposition of mechanically functional neo-tissue. Taken together, these results demonstrate the potential of a self-assembling peptide hydrogel as a scaffold for the synthesis and accumulation of a true cartilage-like ECM within a three-dimensional cell culture for cartilage tissue repair.

  15. Vegetation Productivity Consequences of Sprawl in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Brown, D. G.; Fang, H.; Liu, T.; Zhang, T.

    2009-12-01

    Urban, suburban, and exurban areas expanded rapidly in the United States during the 1990s, replacing the rural land that lay outside existing metropolitan areas, cities, and towns. The conversion of rural landscapes to urban infrastructures and land uses has significant consequences for the regional vegetation productivity, but these consequences are not yet fully understood. A previous study in the Detroit-Ann Arbor-Flint Consolidated Metropolitan Statistical Areas (CMSA) in Michigan showed that exurbanization and suburbanization, i.e., development at relatively low densities, occupied four times the area of urbanization (development at the highest densities). While urbanization was associated with a net carbon source from the landscape in this CMSA, exurban development from the previous rural areas enhanced the uptake of carbon on land measured by gross primary production (GPP). In this study, similar research approaches were extended to all areas east of the Mississippi River in the United States. Two research questions were of particular interest: 1) Are patterns of sprawl consistent throughout the various regions that make up the Eastern US? and 2) Are relationships between types of sprawl and changes in GPP retain consistent over a large geographic extent? In this study, development was quantitatively evaluated based on Census housing-unit data collected in 1990 and 2000. Changes in GPP over the same time period were estimated based on satellite-derived land cover and vegetation greenness, climate data, and empirical light-use-efficiency parameters for various land-cover types. Results indicated that patterns of sprawl are regionally distinctive; and that relationships between sprawl and changes in GPP are relatively consistent, except for the effects of exurbanization on GPP, which tend to vary by ecoregion.

  16. Fourier transform infrared matrix-isolation analysis of acetaldehyde fragmentation products after charge exchange with Ar•+ under varied ionization density conditions.

    PubMed

    Thompson, Matthew G K; White, Matthew R; Linford, Bryan D; King, Kaitlynn A; Robinson, Mark M; Parnis, J Mark

    2011-10-01

    The products of the Ar(•+) charge exchange ionization of acetaldehyde have been isolated and compared with related photoionization results and computational work. Acetaldehyde has been used to assess the effect of varied ion density in the ionization region of the electron bombardment matrix isolation apparatus. The amount of acetaldehyde destruction has been measured for constant gas-sample composition and constant ionization current for two anode geometries: a pin anode and a plate anode. For the same ionization current, a pin-shaped anode demonstrates higher precursor molecule destruction efficiency (85%) than the plate-shaped anode (30%), resulting in substantial effect on the yield and quantity of isolated products. When the plate anode is used, the observed infrared products correspond to matrix-isolated carbon monoxide (CO), methane (CH(4)), ketene (CH(2)CO), ethynyloxy radical (HCCO), formyl radical (HCO(•)), acetyl radical (CH(3)CO(•)), vinyl alcohol (H(2)C = CH-OH), and cationic proton-bound dimer, Ar(2)H(+). When the pin anode is used, the same products are observed with different relative proportions and new absorption features corresponding to dicarbon monoxide (CCO) and methyl radical (CH(3)(•)) are observed. The surprising observation of infrared absorptions corresponding to vinyl alcohol along with low yield of products anticipated through the analysis of photoelectron-photoionization coincidence measurements suggests that the initially formed fragmentation products are able to further react within the matrix-isolation environment to influence observed product yields. Related experiments, using the isotopomer CD(3)CHO, suggest that the observed products are formed via radical-radical reactions that occur under the high pressure conditions of the matrix isolation environment. Copyright © 2011 John Wiley & Sons, Ltd.

  17. Modulation of the pro-inflammatory cytokines and matrix metalloproteinases production in co-cultivated human keratinocytes and melanocytes.

    PubMed

    Decean, H; Perde-Schrepler, M; Tatomir, C; Fischer-Fodor, E; Brie, I; Virag, P

    2013-10-01

    The human epidermis exerts immunoregulatory functions through the variety of cytokines and other molecules elaborated by keratinocytes and melanocytes. Their constitutive production is very low; however, considerably increased upon stimulation. In vivo, keratinocytes and melanocytes have a typical exposure in the skin, referred as melanocyte epidermal unit. In the present study we co-cultivated these cells in vitro proposing to elucidate some communication links in close cell-to-cell association. We assessed the amounts of IL-6, IL-8, and matrix metalloproteinases (MMP-2 and MMP-9) in individually and co-cultured cells, exposed or not to UVB radiation. Normal human epidermal keratinocytes and melanocytes were grown in specific media and supplements. Cells were exposed to UVB radiation (100 mJ/cm(2)) to create comparable stress to the environmental one. Cytokines were determined with ELISA and confirmed with Western blot and metalloproteinases with gel zimography. Pure cultures of keratinocytes and melanocytes released low amounts of cytokines and metalloproteinases, these secretions being enhanced by UVB irradiation. In co-cultures, the cell-to-cell proximity triggered signals which markedly augmented the cytokines' secretions, whereas metalloproteinases were down-regulated. UVB irradiation did not influence either of these secretions in co-cultures. Concurrently with the highest levels of the pro-inflammatory cytokines, MMP-9 was up-regulated creating pro-inflammatory conditions and premises for changes in cellular survival, differentiation and phenotype. A complex network of interactions occurred between keratinocytes and melanocytes in co-cultures, resulting in modulated pro-inflammatory cytokines and metalloproteinases productions. Therefore, any disturbances in the microenvironmental signaling system and its molecular constituents may result in inflammation or even tumorigenesis in the epidermis.

  18. Extracellular matrix production by nucleus pulposus and bone marrow stem cells in response to altered oxygen and glucose microenvironments.

    PubMed

    Naqvi, Syeda M; Buckley, Conor T

    2015-12-01

    Bone marrow (BM) stem cells may be an ideal source of cells for intervertebral disc (IVD) regeneration. However, the harsh biochemical microenvironment of the IVD may significantly influence the biological and metabolic vitality of injected stem cells and impair their repair potential. This study investigated the viability and production of key matrix proteins by nucleus pulposus (NP) and BM stem cells cultured in the typical biochemical microenvironment of the IVD consisting of altered oxygen and glucose concentrations. Culture-expanded NP cells and BM stem cells were encapsulated in 1.5% alginate and ionically crosslinked to form cylindrical hydrogel constructs. Hydrogel constructs were maintained under different glucose concentrations (1, 5 and 25 mM) and external oxygen concentrations (5 and 20%). Cell viability was measured using the Live/Dead® assay and the production of sulphated glycosaminoglycans (sGAG), and collagen was quantified biochemically and histologically. For BM stem cells, IVD-like micro-environmental conditions (5 mM glucose and 5% oxygen) increased the accumulation of sGAG and collagen. In contrast, low glucose conditions (1 mM glucose) combined with 5% external oxygen concentration promoted cell death, inhibiting proliferation and the accumulation of sGAG and collagen. NP-encapsulated alginate constructs were relatively insensitive to oxygen concentration or glucose condition in that they accumulated similar amounts of sGAG under all conditions. Under IVD-like microenvironmental conditions, NP cells were found to have a lower glucose consumption rate compared with BM cells and may in fact be more suitable to adapt and sustain the harsh microenvironmental conditions. Considering the highly specialised microenvironment of the central NP, these results indicate that IVD-like concentrations of low glucose and low oxygen are critical and influential for the survival and biological behaviour of stem cells. Such findings may promote and accelerate

  19. Expression of CD147 (EMMPRIN) on neutrophils in rheumatoid arthritis enhances chemotaxis, matrix metalloproteinase production and invasiveness of synoviocytes

    PubMed Central

    Wang, Cong-Hua; Dai, Jing-Yao; Wang, Li; Jia, Jun-Feng; Zheng, Zhao-Hui; Ding, Jin; Chen, Zhi-Nan; Zhu, Ping

    2011-01-01

    Abstract The occurrence of neutrophils at the pannus-cartilage border is an important phenomenon for understanding the pathogenesis of rheumatoid arthritis (RA). Matrix metalloproteinases (MMPs) are predominant enzymes responsible for the cartilage degradation. The present article studied the expression of CD147 on neutrophils and its potential role in neutrophil chemotaxis, MMPs production and the invasiveness of fibroblast-like synoviocytes (FLS). The results of flow cytometry revealed that the mean fluorescence intensity of CD147 expression on neutrophils of peripheral blood from RA patients was higher than that in healthy individual. The potential role of CD147 in cyclophilin A (CyPA)-mediated cell migration was studied using chemotaxis assay and it was found that the addition of anti-CD147 antibody significantly decreased the chemotactic index of the neutrophils. Significantly elevated release and activation of MMPs were seen in the co-culture of neutrophil and FLS compared with cultures of the cells alone. An increased number of cells invading through the filters in the invasion assays were also observed in the co-cultured cells. The addition of anti-CD147 antibody had some inhibitory effect, not only on MMP production but also on cell invasion in the co-culture model. Our study demonstrates that the increased expression of CD147 on neutrophils in RA may be responsible for CyPA-mediated neutrophil migration into the joints, elevated MMPs secretion and cell invasion of synoviocytes, all of which may contribute to the cartilage invasion and bone destruction of RA. Better knowledge of these findings will hopefully provide a new insight into the pathogenesis of RA. PMID:20455995

  20. Expression of CD147 (EMMPRIN) on neutrophils in rheumatoid arthritis enhances chemotaxis, matrix metalloproteinase production and invasiveness of synoviocytes.

    PubMed

    Wang, Cong-Hua; Dai, Jing-Yao; Wang, Li; Jia, Jun-Feng; Zheng, Zhao-Hui; Ding, Jin; Chen, Zhi-Nan; Zhu, Ping

    2011-04-01

    The occurrence of neutrophils at the pannus-cartilage border is an important phenomenon for understanding the pathogenesis of rheumatoid arthritis (RA). Matrix metalloproteinases (MMPs) are predominant enzymes responsible for the cartilage degradation. The present article studied the expression of CD147 on neutrophils and its potential role in neutrophil chemotaxis, MMPs production and the invasiveness of fibroblast-like synoviocytes (FLS). The results of flow cytometry revealed that the mean fluorescence intensity of CD147 expression on neutrophils of peripheral blood from RA patients was higher than that in healthy individual. The potential role of CD147 in cyclophilin A (CyPA)-mediated cell migration was studied using chemotaxis assay and it was found that the addition of anti-CD147 antibody significantly decreased the chemotactic index of the neutrophils. Significantly elevated release and activation of MMPs were seen in the co-culture of neutrophil and FLS compared with cultures of the cells alone. An increased number of cells invading through the filters in the invasion assays were also observed in the co-cultured cells. The addition of anti-CD147 antibody had some inhibitory effect, not only on MMP production but also on cell invasion in the co-culture model. Our study demonstrates that the increased expression of CD147 on neutrophils in RA may be responsible for CyPA-mediated neutrophil migration into the joints, elevated MMPs secretion and cell invasion of synoviocytes, all of which may contribute to the cartilage invasion and bone destruction of RA. Better knowledge of these findings will hopefully provide a new insight into the pathogenesis of RA. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  1. Matrix Shrinkage and Swelling Effects on Economics of Enhanced Coalbed Methane Production and CO2 Sequestration in Coal

    SciTech Connect

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.; Sams, W.N.; Ertekin, T.; Smith, D.H.

    2005-09-01

    Increases in CO2 levels in the atmosphere and their contributions to global climate change have been a major concern. It has been shown that CO2 injection can enhance the methane recovery from coal. Accordingly, sequestration costs can be partially offset by the value added product. Indeed, coal seam sequestration may be profitable, particularly with the introduction of incentives for CO2 sequestration. Hence, carbon dioxide sequestration in unmineable coals is a very attractive option, not only for environmental reasons, but also for possible economic benefits. Darcy flow through cleats is an important transport mechanism in coal. Cleat compression and permeability changes due to gas sorption desorption, changes of effective stress, and matrix swelling and shrinkage introduce a high level of complexity into the feasibility of a coal sequestration project. The economic effects of carbon dioxide-induced swelling on permeabilities and injectivities has received little (if any) detailed attention. Carbon dioxide and methane have different swelling effects on coal. In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was re-written to also account for coal swelling caused by carbon dioxide sorption. The generalized model was added to PSU-COALCOMP, a dual porosity reservoir simulator for primary and enhanced coalbed methane production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals were used.[1] Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young’s modulus, Poisson’s ratio, the cleat porosity, and the injection pressure. The economic variables included CH4 price, CO2 cost, CO2 credit, water disposal cost, and interest rate. Net present value analyses

  2. North Carolina's forest products industry: performance and contribution to the state's economy, 1970 to 1980.

    Treesearch

    Con H. Schallau; Wilbur R. Maki; Bennett B. Foster; Clair H. Redmond

    1985-01-01

    Employment and earnings in North Carolina's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. The forest products industry accounted for a larger share of the State's economic base in 1980 than in 1970. North Carolina had more forest products industry employment than any other State in the South. Moreover...

  3. Georgia's forest products industry: performance and contribution to the state's economy, 1970 to 1980.

    Treesearch

    Wilbur R. Maki; Con H. Schallau; Bennett B. Foster; Clair H. Redmond

    1985-01-01

    Employment and earnings in Georgia's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. The forest products industry accounted for nearly the same share of the State's economic base in 1980 as in 1970. Moreover, during this period, the State increased its share of the Nation's forest products industry...

  4. South Carolina's forest products industry: performance and contribution to the state's economy, 1970 to 1980.

    Treesearch

    Wilbur R. Maki; Con H. Schallau; Bennett B. Foster; Clair H. Redmond

    1986-01-01

    Employment and earnings in South Carolina's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. The forest products industry accounted for a larger share of the State's economic base in 1980 than in 1970. Moreover, during this period, the State increased its share of the Nation's forest products...

  5. Alabama's forest products industry: performance and contribution to the State's economy, 1970 to 1980.

    Treesearch

    Wilbur R. Maki; Con H Schallau; Bennett B. Foster; Clair H. Redmond

    1986-01-01

    Employment and earnings in Alabama's forest products industry, like those of most Southern States, grew significantly between 1970 and 1980. The forest products industry accounted for a larger share of the State's economic base. in 1980 than in 1970. Of the 13 Southern States, only 5 had more forest products industry employment than Alabama. Moreover, during...

  6. The chemical state of fission products in oxide fuels at different stages of the nuclear fuel cycle

    SciTech Connect

    Kleykamp, H.

    1988-03-01

    A survey of work at the Kernforschungszentrum Karlsruhe is presented on the chemical state of selected fission products that are relevant in the fuel cycle of light water reactor (LWR) and fast breeder reactor fuels. The influence of fuel type and irradiation progress on the composition of the Mo-Tc-Ru-Rh-Pd fission product alloys precipitated in the oxide matrix is examined using the respective multicomponent phase diagrams. The kinetics of dissolution of these phases in nitric acid at the reprocessing stage is discussed. Composition and structure of the residues, and the reprecipitation phenomena from highly active waste (HAW), are elucidated. A second metamorphosis of the fission products is recognized during the vitrification process. The formation of Ru(Rh) oxide and Pd(Rh, U, Te) alloys in simulated vitrified HAW concentrate and in HAW concentrate from the reprocessing of irradiated LWR fuels in interpreted on the basis of heterogeneous equilibria.

  7. Determination of the reduced matrix elements using accurate ab initio wavefunctions: Formalism and its application to the vibrational ground state (000) of H216O

    NASA Astrophysics Data System (ADS)

    Lamouroux, J.; Gamache, R. R.; Schwenke, D. W.

    2014-11-01

    The calculations of the reduced matrix elements for 441 rotational collisional transitions for rotational quantum numbers of the lower state up to J″=20 in the vibrational ground state of H216O are presented using effective and ab initio wavefunctions. Effective wavefunctions are derived from a Watson A-reduced Hamiltonian with the effective parameters determined by Matsushima et al. [Matsushima et al., J Mol Struct 1995;352-353:371]. The ab initio wavefunctions used in this study are from the work of Partridge and Schwenke [Partridge, H, Schwenke, DW. J Chem Phys 1997;106:4618]. The comparison of the reduced matrix elements obtained by both methods is described. It is demonstrated that, even for the rotational band, the effective wavefunctions show problems for some states.

  8. Palm oil tocotrienol rich fraction reduces extracellular matrix production by inhibiting transforming growth factor-β1 in human intestinal fibroblasts.

    PubMed

    Luna, Jeroni; Masamunt, Maria Carme; Llach, Josep; Delgado, Salvadora; Sans, Miquel

    2011-12-01

    Extracellular matrix deposition is key event for the development of bowel stenosis in Crohn's disease patients. Transforming growth factor-β plays a key role in this process. We aimed at characterizing the effects of tocotrienol rich fraction on ECM proteins production and molecules that regulate the synthesis and degradation of extracellular matrix, matrix metalloproteinase-3 and tissue inhibitor of metalloproteinases-1, in human intestinal fibroblasts, and at elucidating whether the effects of tocotrienol rich fraction (TRF) are mediated through inhibition of TGF-β1. HIF were isolated from colonic or ileal tissue from Crohn's disease patients and control subjects, and were treated with TRF from palm oil either alone or in combination with TGF-β1. Procollagen 1, procollagen 3, TIMP-1 and MMP-3 production, and Smad3 phosphorylation were analyzed by Western-blotting. TRF significantly diminished procollagen 1 and 3 synthesis in HIF. Treatment of HIF with TRF increased MMP-3 production but did not modify TIMP-1. TGF-β1 induced Smad3 phosphorylation and enhanced procollagen 1 and 3 and TIMP-1 production. Pre-treatment of HIF with TRF prevented Smad3 phosphorylation and minimized the increase in collagen 1 and 3 production caused by TGF-β1. TRF has anti-fibrogenic effects on HIF, decreasing ECM production and increasing its degradation. This effect is mediated, at least in part, by inhibition of TGF-β1. 2011 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  9. 75 FR 13345 - Pricing for Certain 2010 United States Mint Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... United States Mint Pricing for Certain 2010 United States Mint Products AGENCY: United States Mint, Department of the Treasury. ACTION: Notice. SUMMARY: The United States Mint is announcing the price of the 2010 United States Mint Presidential $1 Coin and First Spouse Medal Sets\\TM\\, 2010 United States...

  10. Louisiana's forest products industry: performance and contribution to the State's economy, 1970 to 1980.

    Treesearch

    Wilbur R. Maki; Con H Schallau; Bennett B. Foster; Clair H. Redmond

    1986-01-01

    Employment in Louisiana's forest products industry, unlike employment in the other 12 Southern States, decreased significantly between 1970 and 1980. Despite this decrease, the value added by the industry increased. The productivity of Louisiana's forest products industry ranked second among the 13 States in the South. In 1980, lumber and wood products...

  11. Modified profile of matrix metalloproteinase-2 and -9 production by human Fallopian tube epithelial cells following infection in vitro with Neisseria gonorrhoeae.

    PubMed

    Rodas, Paula I; Pérez, Doris; Jaffret, Claudia; González, Yaquelin; Carreño, Carolina; Tapia, Cecilia V; Osorio, Eduardo; Velasquez, Luis A; Christodoulides, Myron

    2016-12-08

    Epithelial shedding and scarring of Fallopian tube mucosa are the main consequences of sexually transmitted Neisseria gonorrhoeae infection and likely involves an imbalance of host extracellular matrix components (ECM) and their regulators such as matrix metalloproteinases (MMPs). In this brief report, primary human Fallopian tube epithelial cells were infected with N. gonorrhoeae and MMP patterns examined. Gonococcal infection induced a significant increase in secreted MMP-9 and an accumulation of cytoplasmic MMP-2 over time, but no significant MMP-3 or MMP-8 production was observed. Thus, MMP-9 in particular could play a role in tubal scarring in response to gonococcal infection.

  12. Recombinant production of a shell matrix protein in Escherichia coli and its application to the biomimetic synthesis of spherulitic calcite crystals.

    PubMed

    Song, Wooho; Bahn, So Yeong; Cha, Hyung Joon; Pack, Seung Pil; Choi, Yoo Seong

    2016-05-01

    To overcome the limited production capability of shell matrix proteins and efficiently conduct in vitro CaCO3 biomineralization studies, a putative recombinant shell matrix protein was prepared and characterized. A glycine-rich protein (GRP_BA) was found in Pinctada fucata as a putative shell matrix protein (NCBI reference sequence; BAA20465). It was genetically redesigned for the production in Escherichia coli. The recombinant protein was obtained in a 400 ml shake-flask culture at approx. 30 mg l(-1) with a purity of >95 %. It efficiently formed a complex with Ca(2+). Ca(2+)-induced agglomeration was like other calcification-related proteins. Spherulitic calcite micro-particles, 20-30 µm diam. with rosette- and sphere-like structures were synthesized in the presence of the recombinant shell protein, which could be formed by stacking and/or aggregation of calcite nanograins and the bound protein. Recombinant production of a shell matrix protein could overcome potential difficulties associated with the limited amount of protein available for biomineralization studies and provide opportunities to fabricate biominerals in practical aspects.

  13. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation.

    PubMed

    Castilho, Leda R; Mitchell, David A; Freire, Denise M G

    2009-12-01

    Polyhydroxyalkanoates are biodegradable polymers produced by prokaryotic organisms from renewable resources. The production of PHAs by submerged fermentation processes has been intensively studied over the last 30 years. In recent years, alternative strategies have been proposed, such as the use of solid-state fermentation or the production of PHAs in transgenic plants. This paper gives an overview of submerged and solid-state fermentation processes used to produce PHAs from waste materials and by-products. The use of these low-cost raw materials has the potential to reduce PHA production costs, because the raw material costs contribute a significant part of production costs in traditional PHA production processes.

  14. Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM.

    PubMed

    Levi-Kalisman, Y; Falini, G; Addadi, L; Weiner, S

    2001-07-01

    During mollusk shell formation, the mineral phase forms within an organic matrix composed of beta-chitin, silk-like proteins, and acidic glycoproteins rich in aspartic acid. The matrix is widely assumed to play an important role in controlling mineralization. Thus, understanding its structure is of prime importance. Cryo-transmission electron microscopy (Cryo-TEM) studies of the matrix of the bivalve Atrina embedded in vitrified ice show that the interlamellar sheets are composed mainly of highly ordered and aligned beta-chitin fibrils. The silk, which is quantitatively an important component of the matrix, could not be imaged within the sheets. Organic material was, however, observed between sheets. We infer that this is the location of the silk. As this material reveals no regular structure, we suggest that at least prior to mineralization the silk is in the form of a hydrated gel. This is supported by cryo-TEM structural observations of an artificial assembly of beta-chitin with and without silk. This view of the nacreous organic matrix significantly changes previous models of the matrix structure and hence hypotheses pertaining to the mechanisms by which mineral formation occurs.

  15. Glucoamylase production by solid-state fermentation using rice flake manufacturing waste products as substrate.

    PubMed

    Anto, Hema; Trivedi, U B; Patel, K C

    2006-07-01

    Glucoamylase production has been investigated by solid-state fermentation of agro-industrial wastes generated during the processing of paddy to rice flakes (categorized as coarse, medium and fine waste), along with wheat bran and rice powder by a local soil isolate Aspergillus sp. HA-2. Highest enzyme production was obtained with wheat bran (264 +/- 0.64 U/gds) followed by coarse waste (211.5 +/- 1.44 U/gds) and medium waste (192.1 +/- 1.15 U/gds) using 10(6) spores/ml as inoculum at 28 +/- 2 degrees C, pH 5. A combination of wheat bran and coarse waste (1:1) gave enzyme yield as compared to wheat bran alone. Media supplementation with carbon source (0.04 g/gds) as sucrose in wheat bran and glucose in coarse and medium waste increased enzyme production to 271.2 +/- 0.92, 220.2 +/- 0.75 and 208.2 +/- 1.99 U/gds respectively. Organic nitrogen supplementation (yeast extract and peptone, 0.02 g/gds) showed a higher enzyme production compared to inorganic source. Optimum enzyme activity was observed at 55 degrees C, pH 5. Enzyme activity was enhanced in the presence of calcium whereas presence of EDTA gave reverse effect.

  16. Scaling net ecosystem production and net biome production over a heterogeneous region in the Western United States

    Treesearch

    D.P. Turner; W.D. Ritts; B.E. Law; W.B. Cohen; Z. Yan; T. Hudiburg; J.L. Campbell; M. Duane

    2007-01-01

    Bottom-up scaling of net ecosystem production (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5x105 km2 ) in the Western United States. Landsat resolution (30 m) remote sensing provided the basis for mapping land cover and disturbance history...

  17. Regulatory function of a malleable protein matrix as a novel fermented whey product on features defining the metabolic syndrome.

    PubMed

    Beaulieu, J; Millette, E; Trottier, E; Précourt, L-P; Dupont, C; Lemieux, P

    2010-06-01

    Previously, we reported that a malleable protein matrix (MPM), composed of whey fermented by a proprietary Lactobacillus kefiranofaciens strain, has immunomodulatory and anti-inflammatory properties. MPM consumption leads to a considerable reduction in the cytokine and chemokine production (tumor necrosis factor-alpha, interleukin-1beta, and interleukin-6), thus lowering chronic inflammation or metaflammation. Inhibition of metaflammation should provide positive impact, particularly in the context of dyslipidemia, insulin resistance, and hypertension. In this study, we investigated whether short-term MPM supplementation ameliorates those features of metabolic syndrome (MetS). The ability of MPM to potentially regulate triglyceride level, cholesterol level, blood glucose level, and hypertension was evaluated in different animal models. MPM lowers triglyceride level by 37% (P < .05) in a poloxamer 407 dyslipidemia-induced rat model. It also reduces total cholesterol by 18% (P < .05) and low-density lipoprotein-cholesterol level by 32% (P < .05) and raises high-density lipoprotein-cholesterol level by 17% (P < .01) in Syrian Golden hamsters fed a high fat/high cholesterol diet for 2 weeks. MPM reestablishes the fasting glucose insulin ratio index to normal levels (P = .07) in this latter model and lowers the plasma glucose level area under the curve (-10%, P = .09) in fructose-fed rats after 2 weeks of treatment. In spontaneously hypertensive rats, MPM-treated animals showed a reduction of SBP by at least 13% (P < .05) for 4 weeks. Results from this study suggest that MPM is a functional ingredient with beneficial effects on lipid metabolism, blood glucose control, and hypertension that might contribute to the management of MetS and thus reducing the risk of cardiovascular diseases.

  18. Advanced Glycation End Products in Extracellular Matrix Proteins Contribute to the Failure of Sensory Nerve Regeneration in Diabetes

    PubMed Central

    Duran-Jimenez, Beatriz; Dobler, Darin; Moffatt, Sarah; Rabbani, Naila; Streuli, Charles H.; Thornalley, Paul J.; Tomlinson, David R.; Gardiner, Natalie J.

    2009-01-01

    OBJECTIVE The goal of this study was to characterize glycation adducts formed in both in vivo extracellular matrix (ECM) proteins of endoneurium from streptozotocin (STZ)-induced diabetic rats and in vitro by glycation of laminin and fibronectin with methylglyoxal and glucose. We also investigated the impact of advanced glycation end product (AGE) residue content of ECM on neurite outgrowth from sensory neurons. RESEARCH DESIGN AND METHODS Glycation, oxidation, and nitration adducts of ECM proteins extracted from the endoneurium of control and STZ-induced diabetic rat sciatic nerve (3–24 weeks post-STZ) and of laminin and fibronectin that had been glycated using glucose or methylglyoxal were examined by liquid chromatography with tandem mass spectrometry. Methylglyoxal-glycated or unmodified ECM proteins were used as substrata for dissociated rat sensory neurons as in vitro models of regeneration. RESULTS STZ-induced diabetes produced a significant increase in early glycation Nε-fructosyl-lysine and AGE residue contents of endoneurial ECM. Glycation of laminin and fibronectin by methylglyoxal and glucose increased glycation adduct residue contents with methylglyoxal-derived hydroimidazolone and Nε-fructosyl-lysine, respectively, of greatest quantitative importance. Glycation of laminin caused a significant decrease in both neurotrophin-stimulated and preconditioned sensory neurite outgrowth. This decrease was prevented by aminoguanidine. Glycation of fibronectin also decreased preconditioned neurite outgrowth, which was prevented by aminoguanidine and nerve growth factor. CONCLUSIONS Early glycation and AGE residue content of endoneurial ECM proteins increase markedly in STZ-induced diabetes. Glycation of laminin and fibronectin causes a reduction in neurotrophin-stimulated neurite outgrowth and preconditioned neurite outgrowth. This may provide a mechanism for the failure of collateral sprouting and axonal regeneration in diabetic neuropathy. PMID:19720799

  19. Degradable quantum channels using pure-state to product-of-pure-state isometries

    NASA Astrophysics Data System (ADS)

    Siddhu, Vikesh; Griffiths, Robert B.

    2016-11-01

    We consider a family of quantum channels characterized by the fact that certain (in general nonorthogonal) pure states at the channel entrance are mapped to (tensor) products of pure states (PPP; hence "pcubed") at the complementary outputs (the main output and the "environment") of the channel. The pcubed construction, a reformulation of the twisted-diagonal procedure by M. M. Wolf and D. Pérez-García [Phys. Rev. A 75, 012303 (2007)], 10.1103/PhysRevA.75.012303, can be used to produce a large class of degradable quantum channels; degradable channels are of interest because their quantum capacities are easy to calculate. Several known types of degradable channels are either pcubed channels, or subchannels (employing a subspace of the channel entrance), or continuous limits of pcubed channels. The pcubed construction also yields channels which are neither degradable nor antidegradable (i.e., the complement of a degradable channel); a particular example of a qutrit channel of this type is studied in some detail. Determining whether a pcubed channel is degradable or antidegradable or neither is quite straightforward given the pure input and output states that characterize the channel. Conjugate degradable pcubed channels are always degradable.

  20. Industrial wood productivity in the United States, 1900-1998

    Treesearch

    Peter J. Ince

    2000-01-01

    The productivity of U.S. wood and paper product output in terms of wood input is computed and displayed in graphs. Background tables provide supporting data. The productivity trend parallels trends in the recovered paper utilization rate. Recycling and wood residue use are key factors in productivity gains.