Science.gov

Sample records for matrix protein pxel

  1. Making recombinant extracellular matrix proteins.

    PubMed

    Ruggiero, Florence; Koch, Manuel

    2008-05-01

    A variety of approaches to understand extracellular matrix protein structure and function require production of recombinant proteins. Moreover, the expression of heterologous extracellular matrix proteins, in particular collagens, using the recombinant technology is of major interest to the biomedical industry. Although extracellular matrix proteins are large, modular and often multimeric, most of them have been successfully produced in various expression systems. This review provides important factors, including the design of the construct, the cloning strategies, the expression vectors, the transfection method and the host cell systems, to consider in choosing a reliable and cost-effective way to make recombinant extracellular matrix proteins. Advantages and drawbacks of each system have been appraised. Protocols that may ease efficient recombinant production of extracellular matrix are described. Emphasis is placed on the recombinant collagen production. Members of the collagen superfamily exhibit specific structural features and generally require complex post-translational modifications to retain full biological activity that make more arduous their recombinant production.

  2. Extracellular matrix proteins of dentine.

    PubMed

    Butler, W T; Ritchie, H H; Bronckers, A L

    1997-01-01

    Bone and dentine extracellular matrix proteins are similar, consisting primarily of type I collagen, acidic proteins and proteoglycans. Although collagen forms the lattice for deposition of calcium and phosphate for formation of carbonate apatite, the non-collagenous proteins are believed to control initiation and growth of the crystals. Despite this similarity, dentine contains three unique proteins apparently absent from bone and other tissue: dentine phosphophoryn (DPP), dentine matrix protein 1 (DMP1) and dentine sialoprotein (DSP). DPP and DMP1 are acidic phosphoproteins probably involved in the control of mineralization processes. DPP may localize in gap regions of collagen and initiate apatite crystal formation by binding large quantities of calcium in a conformation that promotes this process. Extensive studies have been conducted in our laboratory on the nature, biosynthesis, localization and gene structure of DSP. Immunolocalization studies showed that rat DSP, a 53 kDa sialic acid-rich glycoprotein, was synthesized by young and mature odontoblasts, and by dental pulp cells and pre-ameloblasts, but not by ameloblasts, osteoblasts, chondrocytes or other cell types. The cDNA sequence indicated that DSP was a 366-residue protein with several potential N-glycosylation sites, as well as phosphorylation sites, but that the amino acid sequence was dissimilar to that of other known proteins. Northern blot analysis detected several mRNA species near 4.6 and 1.5 kb, indicative of alternative splicing events. Evidence for two DSP genes was obtained, further complicating this picture. Recent in situ hybridization studies utilizing rat and mouse molars and incisors indicated that DSP mRNA was expressed by young odontoblasts and odontoblasts in animals of all ages. Transcripts were also observed in pre-ameloblasts. The expression of DSP mRNA ceased when these cells matured to become secretory ameloblasts. DSP transcripts were not detected in osteoblasts or other cell

  3. Nuclear Matrix Proteins in Human Colon Cancer

    NASA Astrophysics Data System (ADS)

    Keesee, Susan K.; Meneghini, Marc D.; Szaro, Robert P.; Wu, Ying-Jye

    1994-03-01

    The nuclear matrix is the nonchromatin scaffolding of the nucleus. This structure confers nuclear shape, organizes chromatin, and appears to contain important regulatory proteins. Tissue specific nuclear matrix proteins have been found in the rat, mouse, and human. In this study we compared high-resolution two-dimensional gel electropherograms of nuclear matrix protein patterns found in human colon tumors with those from normal colon epithelia. Tumors were obtained from 18 patients undergoing partial colectomy for adenocarcinoma of the colon and compared with tissue from 10 normal colons. We have identified at least six proteins which were present in 18 of 18 colon tumors and 0 of 10 normal tissues, as well as four proteins present in 0 of 18 tumors and in 10 of 10 normal tissues. These data, which corroborate similar findings of cancer-specific nuclear matrix proteins in prostate and breast, suggest that nuclear matrix proteins may serve as important markers for at least some types of cancer.

  4. Matrix Gla protein in tumoral pathology.

    PubMed

    Gheorghe, Simona Roxana; Crăciun, Alexandra Mărioara

    2016-01-01

    Matrix Gla protein is a vitamin K-dependent protein secreted by chondrocytes and vascular smooth muscle cells. The presence of matrix Gla protein was reported in arterial and venous walls, lungs, kidney, uterus, heart, tooth cementum and eyes. Several studies identified matrix Gla protein in tumoral pathology. Until recently, it was thought to only have an inhibitory role of physiological and ectopic calcification. New studies demonstrated that it also has a role in physiological and pathological angiogenesis, as well as in tumorigenesis. The aim of this review is to report the latest findings related to the expression and clinical implications of matrix Gla protein in different types of cancer with an emphasis on cerebral tumors.

  5. Dentin Matrix Proteins in Bone Tissue Engineering.

    PubMed

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dentin and bone are mineralized tissue matrices comprised of collagen fibrils and reinforced with oriented crystalline hydroxyapatite. Although both tissues perform different functionalities, they are assembled and orchestrated by mesenchymal cells that synthesize both collagenous and noncollagenous proteins albeit in different proportions. The dentin matrix proteins (DMPs) have been studied in great detail in recent years due to its inherent calcium binding properties in the extracellular matrix resulting in tissue calcification. Recent studies have shown that these proteins can serve both as intracellular signaling proteins leading to induction of stem cell differentiation and also function as nucleating proteins in the extracellular matrix. These properties make the DMPs attractive candidates for bone and dentin tissue regeneration. This chapter will provide an overview of the DMPs, their functionality and their proven and possible applications with respect to bone tissue engineering.

  6. Dentin Matrix Proteins in Bone Tissue Engineering

    PubMed Central

    Ravindran, Sriram

    2016-01-01

    Dentin and bone are mineralized tissue matrices comprised of collagen fibrils and reinforced with oriented crystalline hydroxyapatite. Although both tissues perform different functionalities, they are assembled and orchestrated by mesenchymal cells that synthesize both collagenous and noncollagenous proteins albeit in different proportions. The dentin matrix proteins (DMPs) have been studied in great detail in recent years due to its inherent calcium binding properties in the extracellular matrix resulting in tissue calcification. Recent studies have shown that these proteins can serve both as intracellular signaling proteins leading to induction of stem cell differentiation and also function as nucleating proteins in the extracellular matrix. These properties make the DMPs attractive candidates for bone and dentin tissue regeneration. This chapter will provide an overview of the DMPs, their functionality and their proven and possible applications with respect to bone tissue engineering. PMID:26545748

  7. Nuclear matrix proteins in human colon cancer.

    PubMed Central

    Keesee, S K; Meneghini, M D; Szaro, R P; Wu, Y J

    1994-01-01

    The nuclear matrix is the nonchromatin scaffolding of the nucleus. This structure confers nuclear shape, organizes chromatin, and appears to contain important regulatory proteins. Tissue specific nuclear matrix proteins have been found in the rat, mouse, and human. In this study we compared high-resolution two-dimensional gel electropherograms of nuclear matrix protein patterns found in human colon tumors with those from normal colon epithelia. Tumors were obtained from 18 patients undergoing partial colectomy for adenocarcinoma of the colon and compared with tissue from 10 normal colons. We have identified at least six proteins which were present in 18 of 18 colon tumors and 0 of 10 normal tissues, as well as four proteins present in 0 of 18 tumors and in 10 of 10 normal tissues. These data, which corroborate similar findings of cancer-specific nuclear matrix proteins in prostate and breast, suggest that nuclear matrix proteins may serve as important markers for at least some types of cancer. Images PMID:8127905

  8. Ubiquitination of specific mitochondrial matrix proteins

    SciTech Connect

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G.; Ciechanover, Aaron

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  9. Localization of peroxisomal matrix proteins by photobleaching

    SciTech Connect

    Buch, Charlotta; Hunt, Mary C.; Alexson, Stefan E.H.; Hallberg, Einar

    2009-10-16

    The distribution of some enzymes between peroxisomes and cytosol, or a dual localization in both these compartments, can be difficult to reconcile. We have used photobleaching in live cells expressing green fluorescent protein (GFP)-fusion proteins to show that imported bona fide peroxisomal matrix proteins are retained in the peroxisome. The high mobility of the GFP-fusion proteins in the cytosol and absence of peroxisomal escape makes it possible to eliminate the cytosolic fluorescence by photobleaching, to distinguish between exclusively cytosolic proteins and proteins that are also present at low levels in peroxisomes. Using this technique we found that GFP tagged bile acid-CoA:amino acid N-acyltransferase (BAAT) was exclusively localized in the cytosol in HeLa cells. We conclude that the cytosolic localization was due to its carboxyterminal non-consensus peroxisomal targeting signal (-SQL) since mutation of the -SQL to -SKL resulted in BAAT being efficiently imported into peroxisomes.

  10. Host interactions of Chandipura virus matrix protein.

    PubMed

    Rajasekharan, Sreejith; Kumar, Kapila; Rana, Jyoti; Gupta, Amita; Chaudhary, Vijay K; Gupta, Sanjay

    2015-09-01

    The rhabdovirus matrix (M) protein is a multifunctional virion protein that plays major role in virus assembly and budding, virus-induced inhibition of host gene expression and cytopathic effects observed in infected cells. The myriad roles played by this protein in the virus biology make it a critical player in viral pathogenesis. Therefore, discerning the interactions of this protein with host can greatly facilitate our understanding of virus infections, ultimately leading to both improved therapeutics and insight into cellular processes. Chandipura virus (CHPV; Family Rhabdoviridae, Genus Vesiculovirus) is an emerging rhabdovirus responsible for several outbreaks of fatal encephalitis among children in India. The present study aims to screen the human fetal brain cDNA library for interactors of CHPV M protein using yeast two-hybrid system. Ten host protein interactors were identified, three of which were further validated by affinity pull down and protein interaction ELISA. The study identified novel human host interactors for CHPV which concurred with previously described associations in other human viruses.

  11. Structure and assembly of a paramyxovirus matrix protein.

    PubMed

    Battisti, Anthony J; Meng, Geng; Winkler, Dennis C; McGinnes, Lori W; Plevka, Pavel; Steven, Alasdair C; Morrison, Trudy G; Rossmann, Michael G

    2012-08-28

    Many pleomorphic, lipid-enveloped viruses encode matrix proteins that direct their assembly and budding, but the mechanism of this process is unclear. We have combined X-ray crystallography and cryoelectron tomography to show that the matrix protein of Newcastle disease virus, a paramyxovirus and relative of measles virus, forms dimers that assemble into pseudotetrameric arrays that generate the membrane curvature necessary for virus budding. We show that the glycoproteins are anchored in the gaps between the matrix proteins and that the helical nucleocapsids are associated in register with the matrix arrays. About 90% of virions lack matrix arrays, suggesting that, in agreement with previous biological observations, the matrix protein needs to dissociate from the viral membrane during maturation, as is required for fusion and release of the nucleocapsid into the host's cytoplasm. Structure and sequence conservation imply that other paramyxovirus matrix proteins function similarly.

  12. Protein conformation as a regulator of cell-matrix adhesion.

    PubMed

    Hytönen, Vesa P; Wehrle-Haller, Bernhard

    2014-04-14

    The dynamic regulation of cell-matrix adhesion is essential for tissue homeostasis and architecture, and thus numerous pathologies are linked to altered cell-extracellular matrix (ECM) interaction and ECM scaffold. The molecular machinery involved in cell-matrix adhesion is complex and involves both sensory and matrix-remodelling functions. In this review, we focus on how protein conformation controls the organization and dynamics of cell-matrix adhesion. The conformational changes in various adhesion machinery components are described, including examples from ECM as well as cytoplasmic proteins. The discussed mechanisms involved in the regulation of protein conformation include mechanical stress, post-translational modifications and allosteric ligand-binding. We emphasize the potential role of intrinsically disordered protein regions in these processes and discuss the role of protein networks and co-operative protein interactions in the formation and consolidation of cell-matrix adhesion and extracellular scaffolds.

  13. Vascular wall extracellular matrix proteins and vascular diseases

    PubMed Central

    Xu, Junyan; Shi, Guo-Ping

    2014-01-01

    Extracellular matrix proteins form the basic structure of blood vessels. Along with providing basic structural support to blood vessels, matrix proteins interact with different sets of vascular cells via cell surface integrin or non-integrin receptors. Such interactions induce vascular cell de novo synthesis of new matrix proteins during blood vessel development or remodeling. Under pathological conditions, vascular matrix proteins undergo proteolytic processing, yielding bioactive fragments to influence vascular wall matrix remodeling. Vascular cells also produce alternatively spliced variants that induce vascular cell production of different matrix proteins to interrupt matrix homeostasis, leading to increased blood vessel stiffness; vascular cell migration, proliferation, or death; or vascular wall leakage and rupture. Destruction of vascular matrix proteins leads to vascular cell or blood-borne leukocyte accumulation, proliferation, and neointima formation within the vascular wall; blood vessels prone to uncontrolled enlargement during blood flow diastole; tortuous vein development; and neovascularization from existing pathological tissue microvessels. Here we summarize discoveries related to blood vessel matrix proteins within the past decade from basic and clinical studies in humans and animals — from expression to cross-linking, assembly, and degradation under physiological and vascular pathological conditions, including atherosclerosis, aortic aneurysms, varicose veins, and hypertension. PMID:25045854

  14. A strategy to quantitate global phosphorylation of bone matrix proteins.

    PubMed

    Sroga, Grażyna E; Vashishth, Deepak

    2016-04-15

    Current studies of protein phosphorylation focus primarily on the importance of specific phosphoproteins and their landscapes of phosphorylation in the regulation of different cellular functions. However, global changes in phosphorylation of extracellular matrix phosphoproteins measured "in bulk" are equally important. For example, correct global phosphorylation of different bone matrix proteins is critical to healthy tissue biomineralization. To study changes of bone matrix global phosphorylation, we developed a strategy that combines a procedure for in vitro phosphorylation/dephosphorylation of fully mineralized bone in addition to quantitation of the global phosphorylation levels of bone matrix proteins. For the first time, we show that it is possible to enzymatically phosphorylate/dephosphorylate fully mineralized bone originating from either cadaveric human donors or laboratory animals (mice). Using our strategy, we detected the difference in the global phosphorylation levels of matrix proteins isolated from wild-type and osteopontin knockout mice. We also observed that the global phosphorylation levels of matrix proteins isolated from human cortical bone were lower than those isolated from trabecular bone. The developed strategy has the potential to open new avenues for studies on the global phosphorylation of bone matrix proteins and their role in biomineralization as well for other tissues/cells and protein-based materials.

  15. Gene evolution and functions of extracellular matrix proteins in teeth

    PubMed Central

    Yoshizaki, Keigo; Yamada, Yoshihiko

    2013-01-01

    The extracellular matrix (ECM) not only provides physical support for tissues, but it is also critical for tissue development, homeostasis and disease. Over 300 ECM molecules have been defined as comprising the “core matrisome” in mammals through the analysis of whole genome sequences. During tooth development, the structure and functions of the ECM dynamically change. In the early stages, basement membranes (BMs) separate two cell layers of the dental epithelium and the mesenchyme. Later in the differentiation stages, the BM layer is replaced with the enamel matrix and the dentin matrix, which are secreted by ameloblasts and odontoblasts, respectively. The enamel matrix genes and the dentin matrix genes are each clustered in two closed regions located on human chromosome 4 (mouse chromosome 5), except for the gene coded for amelogenin, the major enamel matrix protein, which is located on the sex chromosomes. These genes for enamel and dentin matrix proteins are derived from a common ancestral gene, but as a result of evolution, they diverged in terms of their specific functions. These matrix proteins play important roles in cell adhesion, polarity, and differentiation and mineralization of enamel and dentin matrices. Mutations of these genes cause diseases such as odontogenesis imperfect (OI) and amelogenesis imperfect (AI). In this review, we discuss the recently defined terms matrisome and matrixome for ECMs, as well as focus on genes and functions of enamel and dentin matrix proteins. PMID:23539364

  16. Polyether sulfone/hydroxyapatite mixed matrix membranes for protein purification

    NASA Astrophysics Data System (ADS)

    Sun, Junfen; Wu, Lishun

    2014-07-01

    This work proposes a novel approach for protein purification from solution using mixed matrix membranes (MMMs) comprising of hydroxyapatite (HAP) inside polyether sulfone (PES) matrix. The influence of HAP particle loading on membrane morphology is studied. The MMMs are further characterized concerning permeability and adsorption capacity. The MMMs show purification of protein via both diffusion as well as adsorption, and show the potential of using MMMs for improvements in protein purification techniques. The bovine serum albumin (BSA) was used as a model protein. The properties and structures of MMMs prepared by immersion phase separation process were characterized by pure water flux, BSA adsorption and scanning electron microscopy (SEM).

  17. Protein structure estimation from NMR data by matrix completion.

    PubMed

    Li, Zhicheng; Li, Yang; Lei, Qiang; Zhao, Qing

    2017-09-01

    Knowledge of protein structures is very important to understand their corresponding physical and chemical properties. Nuclear Magnetic Resonance (NMR) spectroscopy is one of the main methods to measure protein structure. In this paper, we propose a two-stage approach to calculate the structure of a protein from a highly incomplete distance matrix, where most data are obtained from NMR. We first randomly "guess" a small part of unobservable distances by utilizing the triangle inequality, which is crucial for the second stage. Then we use matrix completion to calculate the protein structure from the obtained incomplete distance matrix. We apply the accelerated proximal gradient algorithm to solve the corresponding optimization problem. Furthermore, the recovery error of our method is analyzed, and its efficiency is demonstrated by several practical examples.

  18. Cardiac mitochondrial matrix and respiratory complex protein phosphorylation

    PubMed Central

    Covian, Raul

    2012-01-01

    It has become appreciated over the last several years that protein phosphorylation within the cardiac mitochondrial matrix and respiratory complexes is extensive. Given the importance of oxidative phosphorylation and the balance of energy metabolism in the heart, the potential regulatory effect of these classical signaling events on mitochondrial function is of interest. However, the functional impact of protein phosphorylation and the kinase/phosphatase system responsible for it are relatively unknown. Exceptions include the well-characterized pyruvate dehydrogenase and branched chain α-ketoacid dehydrogenase regulatory system. The first task of this review is to update the current status of protein phosphorylation detection primarily in the matrix and evaluate evidence linking these events with enzymatic function or protein processing. To manage the scope of this effort, we have focused on the pathways involved in energy metabolism. The high sensitivity of modern methods of detecting protein phosphorylation and the low specificity of many kinases suggests that detection of protein phosphorylation sites without information on the mole fraction of phosphorylation is difficult to interpret, especially in metabolic enzymes, and is likely irrelevant to function. However, several systems including protein translocation, adenine nucleotide translocase, cytochrome c, and complex IV protein phosphorylation have been well correlated with enzymatic function along with the classical dehydrogenase systems. The second task is to review the current understanding of the kinase/phosphatase system within the matrix. Though it is clear that protein phosphorylation occurs within the matrix, based on 32P incorporation and quantitative mass spectrometry measures, the kinase/phosphatase system responsible for this process is ill-defined. An argument is presented that remnants of the much more labile bacterial protein phosphoryl transfer system may be present in the matrix and that the

  19. Defects in extracellular matrix structural proteins in the osteochondrodysplasias.

    PubMed

    Cohn, D H

    2001-01-01

    Mutations in the genes that encode structural proteins of the extracellular matrix affect one or more steps in the diverse set of coordinated events necessary for ordered skeletal development. Depending on the role of the gene product and the severity of the defect, disruption of endochondral ossification and linear growth, the structural integrity and stability of articular cartilage, and/or mineralization can occur. Several themes have emerged from the molecular dissection of these disorders; most of the osteochondrodysplasias that result from defects in structural proteins are inherited in an autosomal dominant fashion; a spectrum of related clinical phenotypes can be produced by distinct mutations in the same gene; haploinsufficiency for the gene product usually produces a milder clinical phenotype than do mutations resulting in synthesis of structurally abnormal proteins. For structural defects, a dominant-negative effect resulting from presence of the abnormal protein in the matrix appears to be the primary determinant of phenotype. Secondary effects on extracellular matrix protein structure can result from defects in post-translational maturation, including hydroxylation, sulfation and proteolytic cleavage, and produce distinct osteochondrodysplasias. Overall, the inherited disorders of skeletogenesis have revealed the exquisite sensitivity of the architecture of the extracellular matrix to the quantity and quality of matrix molecules.

  20. Dielectric relaxation in a protein matrix

    SciTech Connect

    Pierce, D.W.; Boxer, S.G.

    1992-06-25

    The dielectric relaxation of a sperm whale ApoMb-DANCA complex is measured by the fluorescence dynamic Stokes shift method. Emission energy increases with decreasing temperature, suggesting that the relaxation activation energies of the rate-limiting motions either depend on the conformational substrate or different types of protein motions with different frequencies participate in the reaction. Experimental data suggest that there may be relaxations on a scale of <100 ps. 61 refs., 7 figs., 2 tabs.

  1. Spectral properties of contact matrix: application to proteins.

    PubMed

    Sadoc, J F

    2005-11-01

    A protein can be modelled by a set of points representing its amino acids. Topologically, this set of points is entirely defined by its contact matrix (adjacency matrix in graph theory). The contact matrix characterizing the relation between neighboring amino acids is deduced from Voronoi or Laguerre decomposition. This method allows contact matrices to be defined without any arbitrary cut-off that could induce arbitrary effects. Eigenvalues of these matrices are related with elementary excitations in proteins. We present some spectral properties of these matrices that reflect global properties of proteins. The eigenvectors indicate participation of each amino acids to the excitation modes of the proteins. It is interesting to compare the protein modelled as a close packing of amino acids, with a random close packing of spheres. The main features of the protein are those of a packing, a result that confirms the importance of the dense packing model for proteins. Nevertheless there are some properties, specific to the hierarchical organization of the protein: the primary chain order, the secondary structures and the domain structures.

  2. Multiple vesiculoviral matrix proteins inhibit both nuclear export and import

    PubMed Central

    Petersen, Jeannine M.; Her, Lu-Shiun; Dahlberg, James E.

    2001-01-01

    The matrix (M) protein of vesicular stomatitis virus inhibits both nuclear import and export. Here, we demonstrate that this inhibitory property is conserved between the M proteins from two other vesiculoviruses, chandipura virus and spring viremia carp virus. All three M proteins completely block nuclear transport of spliced mRNA, small nuclear RNAs, and small nuclear ribonucleoproteins and slow the nuclear transport of many other cargoes. In all cases where transport was merely slowed by the M proteins, the chandipura virus M protein had the strongest inhibitory activity. When expressed in transfected HeLa cells, active M proteins displayed prominent association with the nuclear rim. Moreover, mutation of a conserved methionine abolished both the inhibitory activity and efficient targeting of the M proteins to the nuclear rim. We propose that all of the vesiculoviral M proteins associate with the same nuclear target, which is likely to be a component of the nuclear pore complex. PMID:11447272

  3. Enhancing interacting residue prediction with integrated contact matrix prediction in protein-protein interaction.

    PubMed

    Du, Tianchuan; Liao, Li; Wu, Cathy H

    2016-12-01

    Identifying the residues in a protein that are involved in protein-protein interaction and identifying the contact matrix for a pair of interacting proteins are two computational tasks at different levels of an in-depth analysis of protein-protein interaction. Various methods for solving these two problems have been reported in the literature. However, the interacting residue prediction and contact matrix prediction were handled by and large independently in those existing methods, though intuitively good prediction of interacting residues will help with predicting the contact matrix. In this work, we developed a novel protein interacting residue prediction system, contact matrix-interaction profile hidden Markov model (CM-ipHMM), with the integration of contact matrix prediction and the ipHMM interaction residue prediction. We propose to leverage what is learned from the contact matrix prediction and utilize the predicted contact matrix as "feedback" to enhance the interaction residue prediction. The CM-ipHMM model showed significant improvement over the previous method that uses the ipHMM for predicting interaction residues only. It indicates that the downstream contact matrix prediction could help the interaction site prediction.

  4. Conformal Nanopatterning of Extracellular Matrix Proteins onto Topographically Complex Surfaces

    PubMed Central

    Sun, Yan; Jallerat, Quentin; Szymanski, John M.

    2015-01-01

    We report a method for conformal nanopatterning of extracellular matrix proteins onto engineered surfaces independent of underlying microtopography. This enables fibronectin, laminin, and other proteins to be applied to biomaterial surfaces in complex geometries inaccessible using traditional soft lithography techniques. Engineering combinatorial surfaces that integrate topographical and biochemical micropatterns enhances control of the biotic-abiotic interface, used here to understand cardiomyocyte response to competing physical and chemical cues in the microenvironment. PMID:25506720

  5. Zinc deprivation inhibits extracellular matrix calcification through decreased synthesis of matrix proteins in osteoblasts.

    PubMed

    Alcantara, Ethel H; Lomeda, Ria-Ann R; Feldmann, Joerg; Nixon, Graeme F; Beattie, John H; Kwun, In-Sook

    2011-10-01

    Zinc is implicated as an activator for bone formation, however, its influence on bone calcification has not been reported. This study examined how zinc regulates the bone matrix calcification in osteoblasts. Two osteoblastic MC3T3-E1 cell subclones (SC 4 and SC 24 as high and low osteogenic differentiation, respectively) were cultured in normal osteogenic (OSM), Zinc deficient (Zn-, 1 μM), or adequate (Zn+, 15 μM) media up to 20 days. Cells (SC 4) were also supplemented with (50 μg/mL) or no ascorbic acid (AA) in combination with Zinc treatment. Zn- decreased collagen synthesis and matrix accumulation. Although AA is essential for collagen formation, its supplementation could not compensate for Zinc deficiency-induced detrimental effects on extracellular matrix mineralization. Zn- also decreased the medium and cell layer alkaline phosphatase ALP activity. This decreased ALP activity might cause the decrease of Pi accumulation in response to Zn-, as measured by von Kossa staining. Ca deposition in cell layers, measured by Alizarin red S staining, was also decreased by Zn(-) . Our findings suggest that zinc deprivation inhibits extracellular matrix calcification in osteoblasts by decreasing the synthesis and activity of matrix proteins, type I collagen and ALP, and decreasing Ca and Pi accumulation. Therefore zinc deficiency can be considered as risk factor for poor extracellular matrix calcification. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Matrix Gla Protein polymorphisms are associated with coronary artery calcification

    USDA-ARS?s Scientific Manuscript database

    Matrix Gla Protein (MGP) is a key regulator of vascular calcification. Genetic variation at the MGP locus could modulate the development of coronary artery calcification (CAC). We examined the cross-sectional association between MGP SNPs [rs1800802 (T-138C), rs1800801 (G-7A),and rs4236 (Ala102Thr)...

  7. Enamel matrix proteins; old molecules for new applications.

    PubMed

    Lyngstadaas, S P; Wohlfahrt, J C; Brookes, S J; Paine, M L; Snead, M L; Reseland, J E

    2009-08-01

    Emdogain (enamel matrix derivative, EMD) is well recognized in periodontology, where it is used as a local adjunct to periodontal surgery to stimulate regeneration of periodontal tissues lost to periodontal disease. The biological effect of EMD is through stimulation of local growth factor secretion and cytokine expression in the treated tissues, inducing a regenerative process that mimics odontogenesis. The major (>95%) component of EMD is Amelogenins (Amel). No other active components have so far been isolated from EMD, and several studies have shown that purified amelogenins can induce the same effect as the complete EMD. Amelogenins comprise a family of highly conserved extracellular matrix proteins derived from one gene. Amelogenin structure and function is evolutionary well conserved, suggesting a profound role in biomineralization and hard tissue formation. A special feature of amelogenins is that under physiological conditions the proteins self-assembles into nanospheres that constitute an extracellular matrix. In the body, this matrix is slowly digested by specific extracellular proteolytic enzymes (matrix metalloproteinase) in a controlled process, releasing bioactive peptides to the surrounding tissues for weeks after application. Based on clinical and experimental observations in periodontology indicating that amelogenins can have a significant positive influence on wound healing, bone formation and root resorption, several new applications for amelogenins have been suggested. New experiments now confirm that amelogenins have potential for being used also in the fields of endodontics, bone regeneration, implantology, traumatology, and wound care.

  8. Novel identification of matrix proteins involved in calcitic biomineralization.

    PubMed

    Rose-Martel, Megan; Smiley, Sandy; Hincke, Maxwell T

    2015-02-26

    Calcitic biomineralization is essential for otoconia formation in vertebrates. This process is characterized by protein-crystal interactions that modulate crystal growth on an extracellular matrix. An excellent model for the study of calcitic biomineralization is the avian eggshell, the fastest known biomineralization process. The objective of this study is to identify and characterize matrix proteins associated with the eggshell mammillary cones, which are hypothesized to regulate the earliest stage of eggshell calcification. Mammillary cones were isolated from 2 models, fertilized and unfertilized, and the released proteins were identified by RP-nanoLC and ES-MS/MS proteomics. Proteomics analysis identified 49 proteins associated with the eggshell membrane fibers and, importantly, 18 mammillary cone-specific proteins with an additional 18 proteins identified as enriched in the mammillary cones. Among the most promising candidates for modulating protein-crystal interactions were extracellular matrix proteins, including ABI family member 3 (NESH) binding protein (ABI3BP), tiarin-like, hyaluronan and proteoglycan link protein 3 (HAPLN3), collagen alpha-1(X), collagen alpha-1(II) and fibronectin, in addition to the calcium binding proteins calumenin, EGF-like repeats and discoidin 1-like domains 3 (EDIL3), nucleobindin-2 and SPARC. In conclusion, we identified several cone-resident proteins that are candidates to regulate initiation of eggshell calcification. Further study of these proteins will determine their roles in modulating calcitic biomineralization and lead to insight into the process of otoconia formation/regeneration. Biomineralization is essential for the development of hard tissues in vertebrates, which includes both calcium phosphate and calcium carbonate structures. Calcitic mineralization by calcium carbonate is an important process in the formation of otoconia, which are gravity receptor organs located in the inner ear and are responsible for balance

  9. Expression, purification and crystallization of a lyssavirus matrix (M) protein

    SciTech Connect

    Assenberg, René; Delmas, Olivier; Graham, Stephen C.; Verma, Anil; Berrow, Nick; Stuart, David I.; Owens, Raymond J.; Bourhy, Hervé; Grimes, Jonathan M.

    2008-04-01

    The expression, purification and crystallization of the full-length matrix protein from three lyssaviruses is described. The matrix (M) proteins of lyssaviruses (family Rhabdoviridae) are crucial to viral morphogenesis as well as in modulating replication and transcription of the viral genome. To date, no high-resolution structural information has been obtained for full-length rhabdovirus M. Here, the cloning, expression and purification of the matrix proteins from three lyssaviruses, Lagos bat virus (LAG), Mokola virus and Thailand dog virus, are described. Crystals have been obtained for the full-length M protein from Lagos bat virus (LAG M). Successful crystallization depended on a number of factors, in particular the addition of an N-terminal SUMO fusion tag to increase protein solubility. Diffraction data have been recorded from crystals of native and selenomethionine-labelled LAG M to 2.75 and 3.0 Å resolution, respectively. Preliminary analysis indicates that these crystals belong to space group P6{sub 1}22 or P6{sub 5}22, with unit-cell parameters a = b = 56.9–57.2, c = 187.9–188.6 Å, consistent with the presence of one molecule per asymmetric unit, and structure determination is currently in progress.

  10. Glycosylation of Dentin Matrix Protein 1 is critical for osteogenesis.

    PubMed

    Sun, Yao; Weng, Yuteng; Zhang, Chenyang; Liu, Yi; Kang, Chen; Liu, Zhongshuang; Jing, Bo; Zhang, Qi; Wang, Zuolin

    2015-12-04

    Proteoglycans play important roles in regulating osteogenesis. Dentin matrix protein 1 (DMP1) is a highly expressed bone extracellular matrix protein that regulates both bone development and phosphate metabolism. After glycosylation, an N-terminal fragment of DMP1 protein was identified as a new proteoglycan (DMP1-PG) in bone matrix. In vitro investigations showed that Ser(89) is the key glycosylation site in mouse DMP1. However, the specific role of DMP1 glycosylation is still not understood. In this study, a mutant DMP1 mouse model was developed in which the glycosylation site S(89) was substituted with G(89) (S89G-DMP1). The glycosylation level of DMP1 was down-regulated in the bone matrix of S89G-DMP1 mice. Compared with wild type mice, the long bones of S89G-DMP1 mice showed developmental changes, including the speed of bone remodeling and mineralization, the morphology and activities of osteocytes, and activities of both osteoblasts and osteoclasts. These findings indicate that glycosylation of DMP1 is a key posttranslational modification process during development and that DMP1-PG functions as an indispensable proteoglycan in osteogenesis.

  11. Glycosylation of Dentin Matrix Protein 1 is critical for osteogenesis

    PubMed Central

    Sun, Yao; Weng, Yuteng; Zhang, Chenyang; Liu, Yi; Kang, Chen; Liu, Zhongshuang; Jing, Bo; Zhang, Qi; Wang, Zuolin

    2015-01-01

    Proteoglycans play important roles in regulating osteogenesis. Dentin matrix protein 1 (DMP1) is a highly expressed bone extracellular matrix protein that regulates both bone development and phosphate metabolism. After glycosylation, an N-terminal fragment of DMP1 protein was identified as a new proteoglycan (DMP1-PG) in bone matrix. In vitro investigations showed that Ser89 is the key glycosylation site in mouse DMP1. However, the specific role of DMP1 glycosylation is still not understood. In this study, a mutant DMP1 mouse model was developed in which the glycosylation site S89 was substituted with G89 (S89G-DMP1). The glycosylation level of DMP1 was down-regulated in the bone matrix of S89G-DMP1 mice. Compared with wild type mice, the long bones of S89G-DMP1 mice showed developmental changes, including the speed of bone remodeling and mineralization, the morphology and activities of osteocytes, and activities of both osteoblasts and osteoclasts. These findings indicate that glycosylation of DMP1 is a key posttranslational modification process during development and that DMP1-PG functions as an indispensable proteoglycan in osteogenesis. PMID:26634432

  12. Domain organizations of modular extracellular matrix proteins and their evolution.

    PubMed

    Engel, J

    1996-11-01

    Multidomain proteins which are composed of modular units are a rather recent invention of evolution. Domains are defined as autonomously folding regions of a protein, and many of them are similar in sequence and structure, indicating common ancestry. Their modular nature is emphasized by frequent repetitions in identical or in different proteins and by a large number of different combinations with other domains. The extracellular matrix is perhaps the largest biological system composed of modular mosaic proteins, and its astonishing complexity and diversity are based on them. A cluster of minireviews on modular proteins is being published in Matrix Biology. These deal with the evolution of modular proteins, the three-dimensional structure of domains and the ways in which these interact in a multidomain protein. They discuss structure-function relationships in calcium binding domains, collagen helices, alpha-helical coiled-coil domains and C-lectins. The present minireview is focused on some general aspects and serves as an introduction to the cluster.

  13. Proteomic characterization of oyster shell organic matrix proteins (OMP).

    PubMed

    Upadhyay, Abhishek; Thiyagarajan, Vengatesen; Tong, Ying

    2016-01-01

    Oysters are economically and ecologically important bivalves, with its calcareous shell and delicious meat. The shell composition is a blend of inorganic crystals and shell proteins that form an organic matrix which protects the soft inner tissue of the oyster. The objective of the study was to compare the composition of organic matrix proteins (OMP) of two phylogenetically related species: the Hong Kong oyster (Crassostrea hongkongensis) and the Portuguese oyster (Crassostrea angulata) which differ in their shell hardness and mechanical properties. C. hongkongensis shells are comparatively stronger than C. angulata. Modern shotgun proteomics has been used to understand the nature of the OMP and the variations observed in the mechanical properties of these two species of oyster shells. After visualizing proteins on the one (1DE) and two-dimensional electrophoresis (2DE) gels, the protein spots and their intensities were compared using PDQuest software and 14 proteins of C. hongkongensis were found to be significantly different (student׳s t-test; p<0.05) when compared to the C. angulata. Furthermore, shell OMP separated on 1DE gels were processed using Triple TOF5600 mass spectrometry and 42 proteins of C. hongkongensis and 37 of C. angulata identified. A Circos based comparative analysis of the shell proteins of both oyster species were prepared against the shell proteome of other shell forming gastropods and molluscs to study the evolutionary conservation of OMP and their function. This comparative proteomics expanded our understating of the molecular mechanism behind the shells having different hardness and mechanical properties.

  14. Proteins of insoluble matrix of avian (gallus gallus) eggshell.

    PubMed

    Miksík, Ivan; Eckhardt, Adam; Sedláková, Pavla; Mikulikova, Katerina

    2007-01-01

    The protein composition of the insoluble avian eggshell matrix was studied. The determination of these proteins insoluble in water (EDTA-insoluble) was carried out using enzymatic cleavage followed by a high-performance liquid chromatography-mass spectrometry method. The influence of various enzymes on the protein splitting also was studied. The distribution of proteins depends on the type of layer (localization within the eggshell): ovocalyxin-32 was found mainly in the outer layer (the cuticle); ovocleidin-116 and 17 and ovocalyxin-36 were found throughout the whole eggshell, whereas ovalbumin was only found in the inner layer, the mammillary. The pigment (protoporphyrin IX) was mainly found in the cuticle and is incorporated into the protein network.

  15. Domain structure and organisation in extracellular matrix proteins.

    PubMed

    Hohenester, Erhard; Engel, Jürgen

    2002-03-01

    Extracellular matrix (ECM) proteins are large modular molecules built up from a limited set of modules, or domains. The basic folds of many domains have now been determined by crystallography or NMR spectroscopy. Recent structures of domain pairs and larger tandem arrays, as well as of oligomerisation domains, have begun to reveal the principles underlying the higher order architecture of ECM proteins. Structural information, coupled with site-directed mutagenesis, has been instrumental in showing how adjacent domains can co-operate in ligand binding. Very recently, the first heterotypic ECM protein complexes have become available. Here, we review the advances of the last 5 years in understanding ECM protein structure, with special emphasis on those structures that have given insight into the biological functions of ECM proteins.

  16. Hyperunstable matrix proteins in the byssus of Mytilus galloprovincialis.

    PubMed

    Sagert, Jason; Waite, J Herbert

    2009-07-01

    The marine mussel Mytilus galloprovincialis is tethered to rocks in the intertidal zone by a holdfast known as the byssus. Functioning as a shock absorber, the byssus is composed of threads, the primary molecular components of which are collagen-containing proteins (preCOLs) that largely dictate the higher order self-assembly and mechanical properties of byssal threads. The threads contain additional matrix components that separate and perhaps lubricate the collagenous microfibrils during deformation in tension. In this study, the thread matrix proteins (TMPs), a glycine-, tyrosine- and asparagine-rich protein family, were shown to possess unique repeated sequence motifs, significant transcriptional heterogeneity and were distributed throughout the byssal thread. Deamidation was shown to occur at a significant rate in a recombinant TMP and in the byssal thread as a function of time. Furthermore, charge heterogeneity presumably due to deamidation was observed in TMPs extracted from threads. The TMPs were localized to the preCOL-containing secretory granules in the collagen gland of the foot and are assumed to provide a viscoelastic matrix around the collagenous fibers in byssal threads.

  17. Biofilm-specific extracellular matrix proteins of nontypeable Haemophilus influenzae.

    PubMed

    Wu, Siva; Baum, Marc M; Kerwin, James; Guerrero, Debbie; Webster, Simon; Schaudinn, Christoph; VanderVelde, David; Webster, Paul

    2014-12-01

    Nontypeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen, can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24- and 96-h NTHi biofilms contained polysaccharides and proteinaceous components as detected by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24-h biofilms, two were found only in 96-h biofilms, and fifteen were present in the ECM of both 24- and 96-h NTHi biofilms. All proteins identified were either associated with bacterial membranes or cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation.

  18. Matrix Gla protein and osteocalcin: from gene duplication to neofunctionalization.

    PubMed

    Cancela, M Leonor; Laizé, Vincent; Conceição, Natércia

    2014-11-01

    Osteocalcin (OC or bone Gla protein, BGP) and matrix Gla protein (MGP) are two members of the growing family of vitamin K-dependent (VKD) proteins. They were the first VKD proteins found not to be involved in coagulation and synthesized outside the liver. Both proteins were isolated from bone although it is now known that only OC is synthesized by bone cells under normal physiological conditions, but since both proteins can bind calcium and hydroxyapatite, they can also accumulate in bone. Both OC and MGP share similar structural features, both in terms of protein domains and gene organization. OC gene is likely to have appeared from MGP through a tandem gene duplication that occurred concomitantly with the appearance of the bony vertebrates. Despite their relatively close relationship and the fact that both can bind calcium and affect mineralization, their functions are not redundant and they also have other unrelated functions. Interestingly, these two proteins appear to have followed quite different evolutionary strategies in order to acquire novel functionalities, with OC following a gene duplication strategy while MGP variability was obtained mostly by the use of multiple promoters and alternative splicing, leading to proteins with additional functional characteristics and alternative gene regulatory pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Multitask Matrix Completion for Learning Protein Interactions Across Diseases.

    PubMed

    Kshirsagar, Meghana; Murugesan, Keerthiram; Carbonell, Jaime G; Klein-Seetharaman, Judith

    2017-01-27

    Disease-causing pathogens such as viruses introduce their proteins into the host cells in which they interact with the host's proteins, enabling the virus to replicate inside the host. These interactions between pathogen and host proteins are key to understanding infectious diseases. Often multiple diseases involve phylogenetically related or biologically similar pathogens. Here we present a multitask learning method to jointly model interactions between human proteins and three different but related viruses: Hepatitis C, Ebola virus, and Influenza A. Our multitask matrix completion-based model uses a shared low-rank structure in addition to a task-specific sparse structure to incorporate the various interactions. We obtain between 7 and 39 percentage points improvement in predictive performance over prior state-of-the-art models. We show how our model's parameters can be interpreted to reveal both general and specific interaction-relevant characteristics of the viruses. Our code is available online.()

  20. Molecular events in matrix protein metabolism in the aging kidney.

    PubMed

    Sataranatarajan, Kavithalakshmi; Feliers, Denis; Mariappan, Meenalakshmi M; Lee, Hak Joo; Lee, Myung Ja; Day, Robert T; Yalamanchili, Hima Bindu; Choudhury, Goutam G; Barnes, Jeffrey L; Van Remmen, Holly; Richardson, Arlan; Kasinath, Balakuntalam S

    2012-12-01

    We explored molecular events associated with aging-induced matrix changes in the kidney. C57BL6 mice were studied in youth, middle age, and old age. Albuminuria and serum cystatin C level (an index of glomerular filtration) increased with aging. Renal hypertrophy was evident in middle-aged and old mice and was associated with glomerulomegaly and increase in mesangial fraction occupied by extracellular matrix. Content of collagen types I and III and fibronectin was increased with aging; increment in their mRNA varied with the phase of aging. The content of ZEB1 and ZEB2, collagen type I transcription inhibitors, and their binding to the collagen type Iα2 promoter by ChIP assay also showed age-phase-specific changes. Lack of increase in mRNA and data from polysome assay suggested decreased degradation as a potential mechanism for kidney collagen type I accumulation in the middle-aged mice. These changes occurred with increment in TGFβ mRNA and protein and activation of its SMAD3 pathway; SMAD3 binding to the collagen type Iα2 promoter was also increased. TGFβ-regulated microRNAs (miRs) exhibited selective regulation. The renal cortical content of miR-21 and miR-200c, but not miR-192, miR-200a, or miR-200b, was increased with aging. Increased miR-21 and miR-200c contents were associated with reduced expression of their targets, Sprouty-1 and ZEB2, respectively. These data show that aging is associated with complex molecular events in the kidney that are already evident in the middle age and progress to old age. Age-phase-specific regulation of matrix protein synthesis occurs and involves matrix protein-specific transcriptional and post-transcriptional mechanisms. © 2012 The Authors Aging Cell © 2012 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  1. Proteomic characterization of oyster shell organic matrix proteins (OMP)

    PubMed Central

    Upadhyay, Abhishek; Thiyagarajan, Vengatesen; Tong, Ying

    2016-01-01

    Oysters are economically and ecologically important bivalves, with its calcareous shell and delicious meat. The shell composition is a blend of inorganic crystals and shell proteins that form an organic matrix which protects the soft inner tissue of the oyster. The objective of the study was to compare the composition of organic matrix proteins (OMP) of two phylogenetically related species: the Hong Kong oyster (Crassostrea hongkongensis) and the Portuguese oyster (Crassostrea angulata) which differ in their shell hardness and mechanical properties. C. hongkongensis shells are comparatively stronger than C. angulata. Modern shotgun proteomics has been used to understand the nature of the OMP and the variations observed in the mechanical properties of these two species of oyster shells. After visualizing proteins on the one (1DE) and two-dimensional electrophoresis (2DE) gels, the protein spots and their intensities were compared using PDQuest software and 14 proteins of C. hongkongensis were found to be significantly different (student׳s t-test; p<0.05) when compared to the C. angulata. Furthermore, shell OMP separated on 1DE gels were processed using Triple TOF5600 mass spectrometry and 42 proteins of C. hongkongensis and 37 of C. angulata identified. A Circos based comparative analysis of the shell proteins of both oyster species were prepared against the shell proteome of other shell forming gastropods and molluscs to study the evolutionary conservation of OMP and their function. This comparative proteomics expanded our understating of the molecular mechanism behind the shells having different hardness and mechanical properties. PMID:28246460

  2. Distance matrix-based approach to protein structure prediction.

    PubMed

    Kloczkowski, Andrzej; Jernigan, Robert L; Wu, Zhijun; Song, Guang; Yang, Lei; Kolinski, Andrzej; Pokarowski, Piotr

    2009-03-01

    Much structural information is encoded in the internal distances; a distance matrix-based approach can be used to predict protein structure and dynamics, and for structural refinement. Our approach is based on the square distance matrix D = [r(ij)(2)] containing all square distances between residues in proteins. This distance matrix contains more information than the contact matrix C, that has elements of either 0 or 1 depending on whether the distance r (ij) is greater or less than a cutoff value r (cutoff). We have performed spectral decomposition of the distance matrices D = sigma lambda(k)V(k)V(kT), in terms of eigenvalues lambda kappa and the corresponding eigenvectors v kappa and found that it contains at most five nonzero terms. A dominant eigenvector is proportional to r (2)--the square distance of points from the center of mass, with the next three being the principal components of the system of points. By predicting r (2) from the sequence we can approximate a distance matrix of a protein with an expected RMSD value of about 7.3 A, and by combining it with the prediction of the first principal component we can improve this approximation to 4.0 A. We can also explain the role of hydrophobic interactions for the protein structure, because r is highly correlated with the hydrophobic profile of the sequence. Moreover, r is highly correlated with several sequence profiles which are useful in protein structure prediction, such as contact number, the residue-wise contact order (RWCO) or mean square fluctuations (i.e. crystallographic temperature factors). We have also shown that the next three components are related to spatial directionality of the secondary structure elements, and they may be also predicted from the sequence, improving overall structure prediction. We have also shown that the large number of available HIV-1 protease structures provides a remarkable sampling of conformations, which can be viewed as direct structural information about the

  3. Sturgeon Osteocalcin Shares Structural Features with Matrix Gla Protein

    PubMed Central

    Viegas, Carla S. B.; Simes, Dina C.; Williamson, Matthew K.; Cavaco, Sofia; Laizé, Vincent; Price, Paul A.; Cancela, M. Leonor

    2013-01-01

    Osteocalcin (OC) and matrix Gla protein (MGP) are considered evolutionarily related because they share key structural features, although they have been described to exert different functions. In this work, we report the identification and characterization of both OC and MGP from the Adriatic sturgeon, a ray-finned fish characterized by a slow evolution and the retention of many ancestral features. Sturgeon MGP shows a primary structure, post-translation modifications, and patterns of mRNA/protein distribution and accumulation typical of known MGPs, and it contains seven possible Gla residues that would make the sturgeon protein the most γ-carboxylated among known MGPs. In contrast, sturgeon OC was found to present a hybrid structure. Indeed, although exhibiting protein domains typical of known OCs, it also contains structural features usually found in MGPs (e.g. a putative phosphorylated propeptide). Moreover, patterns of OC gene expression and protein accumulation overlap with those reported for MGP; OC was detected in bone cells and mineralized structures but also in soft and cartilaginous tissues. We propose that, in a context of a reduced rate of evolution, sturgeon OC has retained structural features of the ancestral protein that emerged millions of years ago from the duplication of an ancient MGP gene and may exhibit intermediate functional features. PMID:23884418

  4. J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix

    PubMed Central

    D'Silva, Patrick D.; Schilke, Brenda; Walter, William; Andrew, Amy; Craig, Elizabeth A.

    2003-01-01

    The major Hsp70 of the mitochondrial matrix (Ssc1 in yeast) is critically important for the translocation of proteins from the cytosol, across the mitochondrial inner membrane, and into the matrix. Tim44, a peripheral inner membrane protein with limited sequence similarity to the J domain of J-type cochaperones, tethers Ssc1 to the import channel. Here we report that, unlike a J protein, Tim44 does not stimulate the ATPase activity of Ssc1, nor does it affect the stimulation by either a known mitochondrial J protein or a peptide substrate. Thus, we conclude that Tim44 does not function as a J protein cochaperone of Ssc1; rather, it tethers Ssc1 to the import channel through interactions independent of those critical for J protein function. However, a previously unstudied essential gene, PAM18, encodes an 18-kDa protein that contains a J domain and is localized to the mitochondrial inner membrane. Pam18 stimulates the ATPase activity of Ssc1; depletion of Pam18 in vivo disrupts import of proteins into the mitochondrial matrix. We propose that Pam18 is the J protein partner for Ssc1 at the import channel and is critical for Ssc1's function in protein import. PMID:14605210

  5. J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix.

    PubMed

    D'Silva, Patrick D; Schilke, Brenda; Walter, William; Andrew, Amy; Craig, Elizabeth A

    2003-11-25

    The major Hsp70 of the mitochondrial matrix (Ssc1 in yeast) is critically important for the translocation of proteins from the cytosol, across the mitochondrial inner membrane, and into the matrix. Tim44, a peripheral inner membrane protein with limited sequence similarity to the J domain of J-type cochaperones, tethers Ssc1 to the import channel. Here we report that, unlike a J protein, Tim44 does not stimulate the ATPase activity of Ssc1, nor does it affect the stimulation by either a known mitochondrial J protein or a peptide substrate. Thus, we conclude that Tim44 does not function as a J protein cochaperone of Ssc1; rather, it tethers Ssc1 to the import channel through interactions independent of those critical for J protein function. However, a previously unstudied essential gene, PAM18, encodes an 18-kDa protein that contains a J domain and is localized to the mitochondrial inner membrane. Pam18 stimulates the ATPase activity of Ssc1; depletion of Pam18 in vivo disrupts import of proteins into the mitochondrial matrix. We propose that Pam18 is the J protein partner for Ssc1 at the import channel and is critical for Ssc1's function in protein import.

  6. Thermodynamics of protein folding: a random matrix formulation.

    PubMed

    Shukla, Pragya

    2010-10-20

    The process of protein folding from an unfolded state to a biologically active, folded conformation is governed by many parameters, e.g. the sequence of amino acids, intermolecular interactions, the solvent, temperature and chaperon molecules. Our study, based on random matrix modeling of the interactions, shows, however, that the evolution of the statistical measures, e.g. Gibbs free energy, heat capacity, and entropy, is single parametric. The information can explain the selection of specific folding pathways from an infinite number of possible ways as well as other folding characteristics observed in computer simulation studies.

  7. Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut.

    PubMed

    Agrawal, Sinu; Kelkenberg, Marco; Begum, Khurshida; Steinfeld, Lea; Williams, Clay E; Kramer, Karl J; Beeman, Richard W; Park, Yoonseong; Muthukrishnan, Subbaratnam; Merzendorfer, Hans

    2014-06-01

    The peritrophic matrix (PM) in the midgut of insects consists primarily of chitin and proteins and is thought to support digestion and provide protection from abrasive food particles and enteric pathogens. We examined the physiological roles of 11 putative peritrophic matrix protein (PMP) genes of the red flour beetle, Tribolium castaneum (TcPMPs). TcPMP genes are differentially expressed along the length of the midgut epithelium of feeding larvae. RNAi of individual PMP genes revealed no abnormal developmental phenotypes for 9 of the 11 TcPMPs. However, RNAi for two PMP genes, TcPMP3 and TcPMP5-B, resulted in depletion of the fat body, growth arrest, molting defects and mortality. In situ permeability assays after oral administration of different-sized FITC-dextran beads demonstrated that the exclusion size of the larval peritrophic matrix (PM) decreases progressively from >2 MDa to <4 kDa from the anterior to the most posterior regions of the midgut. In the median midguts of control larvae, 2 MDa dextrans were completely retained within the PM lumen, whereas after RNAi for TcPMP3 and TcPMP5-B, these dextrans penetrated the epithelium of the median midgut, indicating loss of structural integrity and barrier function of the larval PM. In contrast, RNAi for TcPMP5-B, but not RNAi for TcPMP3, resulted in breakdown of impermeability to 4 and 40 kDa dextrans in the PM of the posterior midgut. These results suggest that specific PMPs are involved in the regulation of PM permeability, and that a gradient of barrier function is essential for survival and fat body maintenance.

  8. Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization.

    PubMed

    Wang, Hua; Huang, Heng; Ding, Chris; Nie, Feiping

    2013-04-01

    Protein interactions are central to all the biological processes and structural scaffolds in living organisms, because they orchestrate a number of cellular processes such as metabolic pathways and immunological recognition. Several high-throughput methods, for example, yeast two-hybrid system and mass spectrometry method, can help determine protein interactions, which, however, suffer from high false-positive rates. Moreover, many protein interactions predicted by one method are not supported by another. Therefore, computational methods are necessary and crucial to complete the interactome expeditiously. In this work, we formulate the problem of predicting protein interactions from a new mathematical perspective--sparse matrix completion, and propose a novel nonnegative matrix factorization (NMF)-based matrix completion approach to predict new protein interactions from existing protein interaction networks. Through using manifold regularization, we further develop our method to integrate different biological data sources, such as protein sequences, gene expressions, protein structure information, etc. Extensive experimental results on four species, Saccharomyces cerevisiae, Drosophila melanogaster, Homo sapiens, and Caenorhabditis elegans, have shown that our new methods outperform related state-of-the-art protein interaction prediction methods.

  9. An innovative protocol for schwann cells extracellular matrix proteins extraction.

    PubMed

    Parisi, L; Zomer Volpato, F; Cagol, N; Siciliano, M; Migliaresi, C; Motta, A; Sala, R

    2016-12-01

    The evidence that extracellular matrix (ECM) components could represent new targets for drugs designed to approach degenerative disease, requires their analysis. Before the analysis, proteins should be extracted from ECM and solubilized. Currently, few protocols for ECM proteins extraction and solubilization are available in literature, and most of them are based mainly on the use of proteolytic enzymes, such as trypsin, which often lead to proteins damage. Moreover, no methods have been so far proposed to solubilize Schwann Cell ECM, which may represent an important target for the therapy of neurodegenerative disorders. In our study, we propose to solubilize SC ECM through the use of surfactants and urea. We compared our method of solubilization, with one of that proposed in literature for a general ECM, mainly based on the use of enzymes. We want to highlight the benefit of solubilizing SC ECM, avoiding the use of proteolytic enzymes. To compare the amount of proteins extracted with both methods, MicroBCA assay was used, while the quality of the proteins extracted was observed through the SDS-PAGE. The results obtained confirm a better solubilization of SC ECM proteins with the proposed protocol, both quantitatively and qualitatively, showing a higher concentration of proteins extracted and a better enrichment of protein fractions, if compared to the enzyme-based protocol. Our results show that SC ECM could be efficiently solubilized through the use of surfactant and urea, avoiding the use of enzyme-base methods. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3175-3180, 2016.

  10. Analysis of protein dynamics in the pericellular matrix

    NASA Astrophysics Data System (ADS)

    Scrimgeour, Jan; Young, Dylan

    2015-03-01

    The pericellular matrix (PCM) is a low density, hydrated polymer coating that extends into the extracellular space from the surface of many living cells. The PCM controls access to cell and tissue surfaces, regulating a diverse set of processes from cell adhesion to protein transport and storage. The cell coat consists of a malleable backbone - the large polysaccharide hyaluronan (HA) - with its structure, its material properties, and its bio-functionality tuned by a diverse set of HA binding proteins. These proteins add charge, cross-links and growth factor-like ligands into the brush. Dynamic interactions between the HA and its binding proteins can be observed using single particle tracking in a fluorescence microscope. The resulting single molecule trajectories can contain evidence of site hoping, with the proteins dynamically moving between different states of motion as they bind and unbind from the HA. Here, we present an evaluation of hidden Markov models for the analysis of such multi-mobility trajectories. Simulated trajectories are used to probe the limits of this approach for molecular trajectories of limited length and the results are used to inform the design of particle tracking experiments.

  11. Designing an extracellular matrix protein with enhanced mechanical stability

    PubMed Central

    Ng, Sean P.; Billings, Kate S.; Ohashi, Tomoo; Allen, Mark D.; Best, Robert B.; Randles, Lucy G.; Erickson, Harold P.; Clarke, Jane

    2007-01-01

    The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain from human tenascin (TNfn3) reduce the unfolding force of that domain significantly: The composition of the core is apparently crucial to the mechanical stability of these proteins. Based on these results, we have used rational redesign to increase the mechanical stability of the 10th fnIII domain of human fibronectin, FNfn10, which is directly involved in integrin binding. The hydrophobic core of FNfn10 was replaced with that of the homologous, mechanically stronger TNfn3 domain. Despite the extensive substitution, FNoTNc retains both the three-dimensional structure and the cell adhesion activity of FNfn10. Atomic force microscopy experiments reveal that the unfolding forces of the engineered protein FNoTNc increase by ≈20% to match those of TNfn3. Thus, we have specifically designed a protein with increased mechanical stability. Our results demonstrate that core engineering can be used to change the mechanical strength of proteins while retaining functional surface interactions. PMID:17535921

  12. Extracellular matrix protein expression is brain region dependent.

    PubMed

    Dauth, Stephanie; Grevesse, Thomas; Pantazopoulos, Harry; Campbell, Patrick H; Maoz, Ben M; Berretta, Sabina; Parker, Kevin Kit

    2016-05-01

    In the brain, extracellular matrix (ECM) components form networks that contribute to structural and functional diversity. Maladaptive remodeling of ECM networks has been reported in neurodegenerative and psychiatric disorders, suggesting that the brain microenvironment is a dynamic structure. A lack of quantitative information about ECM distribution in the brain hinders an understanding of region-specific ECM functions and the role of ECM in health and disease. We hypothesized that each ECM protein as well as specific ECM structures, such as perineuronal nets (PNNs) and interstitial matrix, are differentially distributed throughout the brain, contributing to the unique structure and function in the various regions of the brain. To test our hypothesis, we quantitatively analyzed the distribution, colocalization, and protein expression of aggrecan, brevican, and tenascin-R throughout the rat brain utilizing immunohistochemistry and mass spectrometry analysis and assessed the effect of aggrecan, brevican, and/or tenascin-R on neurite outgrowth in vitro. We focused on aggrecan, brevican, and tenascin-R as they are especially expressed in the mature brain, and have established roles in brain development, plasticity, and neurite outgrowth. The results revealed a differentiated distribution of all three proteins throughout the brain and indicated that their presence significantly reduces neurite outgrowth in a 3D in vitro environment. These results underline the importance of a unique and complex ECM distribution for brain physiology and suggest that encoding the distribution of distinct ECM proteins throughout the brain will aid in understanding their function in physiology and in turn assist in identifying their role in disease. J. Comp. Neurol. 524:1309-1336, 2016. © 2016 Wiley Periodicals, Inc.

  13. Altered cell-matrix associated ADAM proteins in Alzheimer disease.

    PubMed

    Gerst, J L; Raina, A K; Pirim, I; McShea, A; Harris, P L; Siedlak, S L; Takeda, A; Petersen, R B; Smith, M A

    2000-03-01

    Alterations in cell-matrix 'contact' are often related to a disruption of cell cycle regulation and, as such, occur variously in neoplasia. Given the recent findings showing cell cycle alterations in Alzheimer disease, we undertook a study of ADAM-1 and 2 (A Disintegrin And Metalloprotease), developmentally-regulated, integrin-binding, membrane-bound metalloproteases. Our results show that whereas ADAM-1 and 2 are found in susceptible hippocampal neurons in Alzheimer disease, these proteins were not generally increased in similar neuronal populations in younger or age-matched controls except in association with age-related neurofibrillary alterations. This increase in both ADAM-1 and 2 in cases of Alzheimer disease was verified by immunoblot analysis (P < 0.05). An ADAM-induced loss of matrix integration would effectively "reset" the mitotic clock and thereby stimulate re-entry into the cell cycle in neurons in Alzheimer disease. Furthermore, given the importance of integrins in maintaining short-term memory, alterations in ADAM proteins or their proteolytic activity could also play a proximal role in the clinico-pathological manifestations of Alzheimer disease. Copyright 2000 Wiley-Liss, Inc.

  14. Cartilage Oligomeric Matrix Protein Increases in Photodamaged Skin.

    PubMed

    Kobayashi, Masaki; Kawabata, Keigo; Kusaka-Kikushima, Ayumi; Sugiyama, Yoshinori; Mabuchi, Tomotaka; Takekoshi, Susumu; Miyasaka, Muneo; Ozawa, Akira; Sakai, Shingo

    2016-06-01

    Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage. Recent studies have described COMP as a pathogenic factor that promotes collagen deposition in fibrotic skin disorders such as scleroderma and keloid skin. Although collagen, a major dermis component, is thought to decrease in photoaged skin, recent reports have demonstrated the presence of tightly packed collagen fibrils with a structural resemblance to fibrosis in the papillary dermis of photoaged skin. Here we examined how photoaging damage relates to COMP expression and localization in photoaged skin. In situ hybridization revealed an increase in COMP-mRNA-positive cells with the progress of photoaging in preauricular skin (sun-exposed skin). The signal intensity of immunostaining for COMP increased with photoaging in not only the papillary dermis but also the reticular dermis affected by advancing solar elastosis. Immunoelectron microscopy detected the colocalization of COMP with both elastotic materials and collagen fibrils in photoaged skin. Ultraviolet light A irradiation of human dermal fibroblasts induced COMP expression at both the mRNA and protein levels. Ultraviolet light A-induced COMP expression was inhibited by an anti-transforming growth factor-β antibody or SB431542, an activin receptor-like kinase 5 inhibitor. These results suggest that the transforming growth factor-β-mediated upregulation of COMP expression may contribute to the modulation of dermal extracellular matrix in the photoaging process.

  15. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis.

    PubMed

    Watson, Steve P

    2009-01-01

    The prevention of excessive blood loss to avoid fatal haemorrhage is a pivotal process for all organisms possessing a circulatory system. Increased circulating blood volume and pressure, as required in larger animals, make this process all the more important and challenging. It is essential to have a powerful and rapid system to detect damage and generate an effective seal, and which is also exquisitely regulated to prevent unwanted, excessive or systemic activation so as to avoid blockage of vessels. Thus, a highly specialised and efficient haemostatic system has evolved that consists of cellular (platelets) and protein (coagulation factors) components. Importantly, this is able to support haemostasis in both the low shear environment of the venous system and the high shear environment of the arterial system. Endothelial cells, lining the entire circulation system, play a crucial role in the delicate balance between activation and inhibition of the haemostatic system. An intact and healthy endothelium supports blood flow by preventing attachment of cells and proteins which is required for initiation of coagulation and platelet activation. Endothelial cells produce and release the two powerful soluble inhibitors of platelet activation, nitric oxide and prostacyclin, and express high levels of CD39 which rapidly metabolises the major platelet feedback agonist, ADP. This antithrombotic environment however can rapidly change following activation or removal of endothelial cells through injury or rupture of atherosclerotic plaques. Loss of endothelial cells exposes the subendothelial extracellular matrix which creates strong signals for activation of the haemostatic system including powerful platelet adhesion and activation. Quantitative and qualitative changes in the composition of the subendothelial extracellular matrix influence these prothrombotic characteristics with life threatening thrombotic and bleeding complications, as illustrated by formation of

  16. Matrix Gla Protein expression pattern in the early avian embryo.

    PubMed

    Correia, Elizabeth; Conceição, Natércia; Cancela, M Leonor; Belo, José A

    2016-01-01

    MGP (Matrix Gla Protein) is an extracellular matrix vitamin K dependent protein previously identified as a physiological inhibitor of calcification and shown to be well conserved among vertebrates during evolution. MGP is involved in other mechanisms such as TGF-β and BMP activity, and a proposed modulator of cell-matrix interactions. MGP is expressed early in vertebrate development although its role has not been clarified. Previous work in the chicken embryo found MGP localization predominantly in the aorta and aortic valve base, but no data is available earlier in development. Here we examined MGP expression pattern using whole-mount in situ hybridization and histological sectioning during the initial stages of chick development. MGP was first detected at HH10 in the head and in the forming dorsal aorta. At the moment of the onset of blood circulation, MGP was expressed additionally in the venous plexus which will remodel into the vitelline arteries. By E2.25, it is clear that the vitelline arteries are MGP positive. MGP expression progresses centrifugally throughout the area vasculosa of the yolk sac. Between stages HH17 and HH19 MGP is seen in the dorsal aorta, heart, notochord, nephric duct, roof plate, vitelline arteries and in the yolk sac, beneath main arterial branches and in the vicinity of several vessels and venules. MGP expression persists in these areas at least until E4.5. These data suggest that MGP expression could be associated with cell migration and differentiation and to the onset of angiogenesis in the developing chick embryo. This data has biomedical relevance by pointing to the potential use of chick embryo explants to study molecules involved in artery calcification.

  17. Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules

    NASA Technical Reports Server (NTRS)

    Killian, C. E.; Wilt, F. H.

    1996-01-01

    In the present study, we enumerate and characterize the proteins that comprise the integral spicule matrix of the Strongylocentrotus purpuratus embryo. Two-dimensional gel electrophoresis of [35S]methionine radiolabeled spicule matrix proteins reveals that there are 12 strongly radiolabeled spicule matrix proteins and approximately three dozen less strongly radiolabeled spicule matrix proteins. The majority of the proteins have acidic isoelectric points; however, there are several spicule matrix proteins that have more alkaline isoelectric points. Western blotting analysis indicates that SM50 is the spicule matrix protein with the most alkaline isoelectric point. In addition, two distinct SM30 proteins are identified in embryonic spicules, and they have apparent molecular masses of approximately 43 and 46 kDa. Comparisons between embryonic spicule matrix proteins and adult spine integral matrix proteins suggest that the embryonic 43-kDa SM30 protein is an embryonic isoform of SM30. An adult 49-kDa spine matrix protein is also identified as a possible adult isoform of SM30. Analysis of the SM30 amino acid sequences indicates that a portion of SM30 proteins is very similar to the carbohydrate recognition domain of C-type lectin proteins.

  18. Characterization of the proteins comprising the integral matrix of Strongylocentrotus purpuratus embryonic spicules

    NASA Technical Reports Server (NTRS)

    Killian, C. E.; Wilt, F. H.

    1996-01-01

    In the present study, we enumerate and characterize the proteins that comprise the integral spicule matrix of the Strongylocentrotus purpuratus embryo. Two-dimensional gel electrophoresis of [35S]methionine radiolabeled spicule matrix proteins reveals that there are 12 strongly radiolabeled spicule matrix proteins and approximately three dozen less strongly radiolabeled spicule matrix proteins. The majority of the proteins have acidic isoelectric points; however, there are several spicule matrix proteins that have more alkaline isoelectric points. Western blotting analysis indicates that SM50 is the spicule matrix protein with the most alkaline isoelectric point. In addition, two distinct SM30 proteins are identified in embryonic spicules, and they have apparent molecular masses of approximately 43 and 46 kDa. Comparisons between embryonic spicule matrix proteins and adult spine integral matrix proteins suggest that the embryonic 43-kDa SM30 protein is an embryonic isoform of SM30. An adult 49-kDa spine matrix protein is also identified as a possible adult isoform of SM30. Analysis of the SM30 amino acid sequences indicates that a portion of SM30 proteins is very similar to the carbohydrate recognition domain of C-type lectin proteins.

  19. NMR structure of the myristylated feline immunodeficiency virus matrix protein.

    PubMed

    Brown, Lola A; Cox, Cassiah; Baptiste, Janae; Summers, Holly; Button, Ryan; Bahlow, Kennedy; Spurrier, Vaughn; Kyser, Jenna; Luttge, Benjamin G; Kuo, Lillian; Freed, Eric O; Summers, Michael F

    2015-04-30

    Membrane targeting by the Gag proteins of the human immunodeficiency viruses (HIV types-1 and -2) is mediated by Gag's N-terminally myristylated matrix (MA) domain and is dependent on cellular phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. To determine if other lentiviruses employ a similar membrane targeting mechanism, we initiated studies of the feline immunodeficiency virus (FIV), a widespread feline pathogen with potential utility for development of human therapeutics. Bacterial co-translational myristylation was facilitated by mutation of two amino acids near the amino-terminus of the protein (Q5A/G6S; myrMAQ5A/G6S). These substitutions did not affect virus assembly or release from transfected cells. NMR studies revealed that the myristyl group is buried within a hydrophobic pocket in a manner that is structurally similar to that observed for the myristylated HIV-1 protein. Comparisons with a recent crystal structure of the unmyristylated FIV protein [myr(-)MA] indicate that only small changes in helix orientation are required to accommodate the sequestered myr group. Depletion of PI(4,5)P2 from the plasma membrane of FIV-infected CRFK cells inhibited production of FIV particles, indicating that, like HIV, FIV hijacks the PI(4,5)P2 cellular signaling system to direct intracellular Gag trafficking during virus assembly.

  20. Regulation of Ebola virus VP40 matrix protein by SUMO

    PubMed Central

    Baz-Martínez, Maite; El Motiam, Ahmed; Ruibal, Paula; Condezo, Gabriela N.; de la Cruz-Herrera, Carlos F.; Lang, Valerie; Collado, Manuel; San Martín, Carmen; Rodríguez, Manuel S.; Muñoz-Fontela, Cesar; Rivas, Carmen

    2016-01-01

    The matrix protein of Ebola virus (EBOV) VP40 regulates viral budding, nucleocapsid recruitment, virus structure and stability, viral genome replication and transcription, and has an intrinsic ability to form virus-like particles. The elucidation of the regulation of VP40 functions is essential to identify mechanisms to inhibit viral replication and spread. Post-translational modifications of proteins with ubiquitin-like family members are common mechanisms for the regulation of host and virus multifunctional proteins. Thus far, no SUMOylation of VP40 has been described. Here we demonstrate that VP40 is modified by SUMO and that SUMO is included into the viral like particles (VLPs). We demonstrate that lysine residue 326 in VP40 is involved in SUMOylation, and by analyzing a mutant in this residue we show that SUMO conjugation regulates the stability of VP40 and the incorporation of SUMO into the VLPs. Our study indicates for the first time, to the best of our knowledge, that EBOV hijacks the cellular SUMOylation system in order to modify its own proteins. Modulation of the VP40-SUMO interaction may represent a novel target for the therapy of Ebola virus infection. PMID:27849047

  1. NMR Structure of the Myristylated Feline Immunodeficiency Virus Matrix Protein

    PubMed Central

    Brown, Lola A.; Cox, Cassiah; Baptiste, Janae; Summers, Holly; Button, Ryan; Bahlow, Kennedy; Spurrier, Vaughn; Kyser, Jenna; Luttge, Benjamin G.; Kuo, Lillian; Freed, Eric O.; Summers, Michael F.

    2015-01-01

    Membrane targeting by the Gag proteins of the human immunodeficiency viruses (HIV types-1 and -2) is mediated by Gag’s N-terminally myristylated matrix (MA) domain and is dependent on cellular phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. To determine if other lentiviruses employ a similar membrane targeting mechanism, we initiated studies of the feline immunodeficiency virus (FIV), a widespread feline pathogen with potential utility for development of human therapeutics. Bacterial co-translational myristylation was facilitated by mutation of two amino acids near the amino-terminus of the protein (Q5A/G6S; myrMAQ5A/G6S). These substitutions did not affect virus assembly or release from transfected cells. NMR studies revealed that the myristyl group is buried within a hydrophobic pocket in a manner that is structurally similar to that observed for the myristylated HIV-1 protein. Comparisons with a recent crystal structure of the unmyristylated FIV protein [myr(-)MA] indicate that only small changes in helix orientation are required to accommodate the sequestered myr group. Depletion of PI(4,5)P2 from the plasma membrane of FIV-infected CRFK cells inhibited production of FIV particles, indicating that, like HIV, FIV hijacks the PI(4,5)P2 cellular signaling system to direct intracellular Gag trafficking during virus assembly. PMID:25941825

  2. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development

    PubMed Central

    Zhang, Weipeng; Sun, Jin; Ding, Wei; Lin, Jinshui; Tian, Renmao; Lu, Liang; Liu, Xiaofen; Shen, Xihui; Qian, Pei-Yuan

    2015-01-01

    Though the essential role of extracellular matrix in biofilm development has been extensively documented, the function of matrix-associated proteins is elusive. Determining the dynamics of matrix-associated proteins would be a useful way to reveal their functions in biofilm development. Therefore, we applied iTRAQ-based quantitative proteomics to evaluate matrix-associated proteins isolated from different phases of Pseudomonas aeruginosa ATCC27853 biofilms. Among the identified 389 proteins, 54 changed their abundance significantly. The increased abundance of stress resistance and nutrient metabolism-related proteins over the period of biofilm development was consistent with the hypothesis that biofilm matrix forms micro-environments in which cells are optimally organized to resist stress and use available nutrients. Secreted proteins, including novel putative effectors of the type III secretion system were identified, suggesting that the dynamics of pathogenesis-related proteins in the matrix are associated with biofilm development. Interestingly, there was a good correlation between the abundance changes of matrix-associated proteins and their expression. Further analysis revealed complex interactions among these modulated proteins, and the mutation of selected proteins attenuated biofilm development. Collectively, this work presents the first dynamic picture of matrix-associated proteins during biofilm development, and provides evidences that the matrix-associated proteins may form an integral and well regulated system that contributes to stress resistance, nutrient acquisition, pathogenesis and the stability of the biofilm. PMID:26029669

  3. Expression of 16 Nitrogenase Proteins within the Plant Mitochondrial Matrix

    PubMed Central

    Allen, Robert S.; Tilbrook, Kimberley; Warden, Andrew C.; Campbell, Peter C.; Rolland, Vivien; Singh, Surinder P.; Wood, Craig C.

    2017-01-01

    The industrial production and use of nitrogenous fertilizer involves significant environmental and economic costs. Strategies to reduce fertilizer dependency are required to address the world's increasing demand for sustainable food, fibers, and biofuels. Biological nitrogen fixation, a process unique to diazatrophic bacteria, is catalyzed by the nitrogenase complex, and reconstituting this function in plant cells is an ambitious biotechnological strategy to reduce fertilizer use. Here we establish that the full array of biosynthetic and catalytic nitrogenase (Nif) proteins from the diazotroph Klebsiella pneumoniae can be individually expressed as mitochondrial targeting peptide (MTP)-Nif fusions in Nicotiana benthamiana. We show that these are correctly targeted to the plant mitochondrial matrix, a subcellular location with biochemical and genetic characteristics potentially supportive of nitrogenase function. Although Nif proteins B, D, E, F, H, J, K, M, N, Q, S, U, V, X, Y, and Z were all detectable by Western blot analysis, the NifD catalytic component was the least abundant. To address this problem, a translational fusion between NifD and NifK was designed based on the crystal structure of the nitrogenase MoFe protein heterodimer. This fusion protein enabled equimolar NifD:NifK stoichiometry and improved NifD expression levels in plants. Finally, four MTP-Nif fusion proteins (B, S, H, Y) were successfully co-expressed, demonstrating that multiple components of nitrogenase can be targeted to plant mitochondria. These results establish the feasibility of reconstituting the complete componentry for nitrogenase in plant cells, within an intracellular environment that could support the conversion of nitrogen gas into ammonia. PMID:28316608

  4. Expression of 16 Nitrogenase Proteins within the Plant Mitochondrial Matrix.

    PubMed

    Allen, Robert S; Tilbrook, Kimberley; Warden, Andrew C; Campbell, Peter C; Rolland, Vivien; Singh, Surinder P; Wood, Craig C

    2017-01-01

    The industrial production and use of nitrogenous fertilizer involves significant environmental and economic costs. Strategies to reduce fertilizer dependency are required to address the world's increasing demand for sustainable food, fibers, and biofuels. Biological nitrogen fixation, a process unique to diazatrophic bacteria, is catalyzed by the nitrogenase complex, and reconstituting this function in plant cells is an ambitious biotechnological strategy to reduce fertilizer use. Here we establish that the full array of biosynthetic and catalytic nitrogenase (Nif) proteins from the diazotroph Klebsiella pneumoniae can be individually expressed as mitochondrial targeting peptide (MTP)-Nif fusions in Nicotiana benthamiana. We show that these are correctly targeted to the plant mitochondrial matrix, a subcellular location with biochemical and genetic characteristics potentially supportive of nitrogenase function. Although Nif proteins B, D, E, F, H, J, K, M, N, Q, S, U, V, X, Y, and Z were all detectable by Western blot analysis, the NifD catalytic component was the least abundant. To address this problem, a translational fusion between NifD and NifK was designed based on the crystal structure of the nitrogenase MoFe protein heterodimer. This fusion protein enabled equimolar NifD:NifK stoichiometry and improved NifD expression levels in plants. Finally, four MTP-Nif fusion proteins (B, S, H, Y) were successfully co-expressed, demonstrating that multiple components of nitrogenase can be targeted to plant mitochondria. These results establish the feasibility of reconstituting the complete componentry for nitrogenase in plant cells, within an intracellular environment that could support the conversion of nitrogen gas into ammonia.

  5. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.

    PubMed

    Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  6. Preparation of Extracellular Matrix Protein Fibers for Brillouin Spectroscopy.

    PubMed

    Edginton, Ryan S; Mattana, Sara; Caponi, Silvia; Fioretto, Daniele; Green, Ellen; Winlove, C Peter; Palombo, Francesca

    2016-09-15

    Brillouin spectroscopy is an emerging technique in the biomedical field. It probes the mechanical properties of a sample through the interaction of visible light with thermally induced acoustic waves or phonons propagating at a speed of a few km/sec. Information on the elasticity and structure of the material is obtained in a nondestructive contactless manner, hence opening the way to in vivo applications and potential diagnosis of pathology. This work describes the application of Brillouin spectroscopy to the study of biomechanics in elastin and trypsin-digested type I collagen fibers of the extracellular matrix. Fibrous proteins of the extracellular matrix are the building blocks of biological tissues and investigating their mechanical and physical behavior is key to establishing structure-function relationships in normal tissues and the changes which occur in disease. The procedures of sample preparation followed by measurement of Brillouin spectra using a reflective substrate are presented together with details of the optical system and methods of spectral data analysis.

  7. Preparation of Extracellular Matrix Protein Fibers for Brillouin Spectroscopy

    PubMed Central

    Edginton, Ryan S.; Mattana, Sara; Caponi, Silvia; Fioretto, Daniele; Green, Ellen; Winlove, C. Peter; Palombo, Francesca

    2016-01-01

    Brillouin spectroscopy is an emerging technique in the biomedical field. It probes the mechanical properties of a sample through the interaction of visible light with thermally induced acoustic waves or phonons propagating at a speed of a few km/sec. Information on the elasticity and structure of the material is obtained in a nondestructive contactless manner, hence opening the way to in vivo applications and potential diagnosis of pathology. This work describes the application of Brillouin spectroscopy to the study of biomechanics in elastin and trypsin-digested type I collagen fibers of the extracellular matrix. Fibrous proteins of the extracellular matrix are the building blocks of biological tissues and investigating their mechanical and physical behavior is key to establishing structure-function relationships in normal tissues and the changes which occur in disease. The procedures of sample preparation followed by measurement of Brillouin spectra using a reflective substrate are presented together with details of the optical system and methods of spectral data analysis. PMID:27684584

  8. In vivo human Cartilage oligomeric matrix protein (COMP) promoter activity.

    PubMed

    Posey, Karen L; Davies, Sherri; Bales, Elise S; Haynes, Richard; Sandell, Linda J; Hecht, Jacqueline T

    2005-12-01

    Cartilage oligomeric matrix protein (COMP) is a large extracellular matrix protein whose function is unknown. Mutations in COMP cause pseudoachondroplasia and multiple epiphyseal dysplasia, two skeletal dysplasias which are associated with intracellular retention of COMP in chondrocytes. In contrast, COMP null mice are normal suggesting gene redundancy or that the detrimental effect is associated with mutant COMP rather than the absence of functional COMP. To define the elements that regulate COMP transcription and tissue-specificity, we have evaluated the human COMP promoter driving fusion gene expression in vitro and in vivo. COMP promoter activity is higher in rat chondrosarcoma cells (RCS) than in a fibroblast cell line. In RCS cells, expression of a reporter gene containing 1.7 kb of the human COMP promoter was three-fold higher than all shorter COMP promoter constructs. In transgenic mice, 1.7 kb of the human COMP promoter is active early in development in the limbs, spine, and eye. As development progresses, promoter activity diminishes in the eye and migrates from the center to the ends of the long bones. On the other hand, while 375 bp of the human COMP promoter is sufficient for proper tissue-specific expression, levels are less than those found with the 1.7-COMP promoter. The expression pattern of both promoters recapitulates endogenous cartilage COMP expression in mice. Our findings indicate that the elements required for chondrocyte-specific expression lie within 375 bp of the translational start site, while DNA enhancer elements are located between 1.0 to 1.7 kb.

  9. Protein thermal denaturation and matrix glass transition in different protein-trehalose-water systems.

    PubMed

    Bellavia, Giuseppe; Giuffrida, Sergio; Cottone, Grazia; Cupane, Antonio; Cordone, Lorenzo

    2011-05-19

    Biopreservation by saccharides is a widely studied issue due to its scientific and technological importance; in particular, ternary amorphous protein-saccharide-water systems are extensively exploited to model the characteristics of the in vivo biopreservation process. We present here a differential scanning calorimetry (DSC) study on amorphous trehalose-water systems with embedded different proteins (myoglobin, lysozyme, BSA, hemoglobin), which differ for charge, surface, and volume properties. In our study, the protein/trehalose molar ratio is kept constant at 1/40, while the water/sugar molar ratio is varied between 2 and 300; results are compared with those obtained for binary trehalose-water systems. DSC upscans offer the possibility of investigating, in the same measurement, the thermodynamic properties of the matrix (glass transition, T(g)) and the functional properties of the encapsulated protein (thermal denaturation, T(den)). At high-to-intermediate hydration, the presence of the proteins increases the glass transition temperature of the encapsulating matrix. The effect mainly depends on size properties, and it can be ascribed to confinement exerted by the protein on the trehalose-water solvent. Conversely, at low hydration, lower T(g) values are measured in the presence of proteins: the lack of water promotes sugar-protein interactions, thus weakening the confinement effect and softening the matrix with respect to the binary system. A parallel T(den) increase is also observed; remarkably, this stabilization can reach ∼70 K at low hydration, a finding potentially of high biotechnological relevance. A linear relationship between T(g) and T(den) is also observed, in line with previous results; this finding suggests that collective water-trehalose interactions, responsible for the glass transition, also influence the protein denaturation. © 2011 American Chemical Society

  10. The diversity of shell matrix proteins: genome-wide investigation of the pearl oyster, Pinctada fucata.

    PubMed

    Miyamoto, Hiroshi; Endo, Hirotoshi; Hashimoto, Naoki; Limura, Kurin; Isowa, Yukinobu; Kinoshita, Shigeharu; Kotaki, Tomohiro; Masaoka, Tetsuji; Miki, Takumi; Nakayama, Seiji; Nogawa, Chihiro; Notazawa, Atsuto; Ohmori, Fumito; Sarashina, Isao; Suzuki, Michio; Takagi, Ryousuke; Takahashi, Jun; Takeuchi, Takeshi; Yokoo, Naoki; Satoh, Nori; Toyohara, Haruhiko; Miyashita, Tomoyuki; Wada, Hiroshi; Samata, Tetsuro; Endo, Kazuyoshi; Nagasawa, Hiromichi; Asakawa, Shuichi; Watabe, Shugo

    2013-10-01

    In molluscs, shell matrix proteins are associated with biomineralization, a biologically controlled process that involves nucleation and growth of calcium carbonate crystals. Identification and characterization of shell matrix proteins are important for better understanding of the adaptive radiation of a large variety of molluscs. We searched the draft genome sequence of the pearl oyster Pinctada fucata and annotated 30 different kinds of shell matrix proteins. Of these, we could identified Perlucin, ependymin-related protein and SPARC as common genes shared by bivalves and gastropods; however, most gastropod shell matrix proteins were not found in the P. fucata genome. Glycinerich proteins were conserved in the genus Pinctada. Another important finding with regard to these annotated genes was that numerous shell matrix proteins are encoded by more than one gene; e.g., three ACCBP-like proteins, three CaLPs, five chitin synthase-like proteins, two N16 proteins (pearlins), 10 N19 proteins, two nacreins, four Pifs, nine shematrins, two prismalin-14 proteins, and 21 tyrosinases. This diversity of shell matrix proteins may be implicated in the morphological diversity of mollusc shells. The annotated genes reported here can be searched in P. fucata gene models version 1.1 and genome assembly version 1.0 ( http://marinegenomics.oist.jp/pinctada_fucata ). These genes should provide a useful resource for studies of the genetic basis of biomineralization and evaluation of the role of shell matrix proteins as an evolutionary toolkit among the molluscs.

  11. Matrix Gla protein regulates calcification of the aortic valve.

    PubMed

    Venardos, Neil; Bennett, Daine; Weyant, Michael J; Reece, Thomas Brett; Meng, Xianzhong; Fullerton, David A

    2015-11-01

    The aortic valve interstitial cell (AVIC) has been implicated in the pathogenesis of aortic stenosis. In response to proinflammatory stimulation, the AVIC undergoes a phenotypic change from that of a myofibroblast phenotype to that of osteoblast-like cell. Matrix Gla-protein (MGP) has been identified as an important inhibitor of vascular calcification. We therefore hypothesized that MGP expression is reduced in diseased AVICs, and loss of this protective protein contributes to calcification of the aortic valve. Our purpose was to compare MGP expression in normal versus diseased AVICs. Human AVICs were isolated from normal aortic valves from explanted hearts (n = 6) at the time of heart transplantation. AVICs were also isolated from calcified, diseased valves of patients (n = 6) undergoing aortic valve replacement. AVICs were grown in culture until they reached passages 2-6 before experimentation. Immunofluorescent staining, reverse transcriptase-polymerase chain reaction, immunoblotting, and enzyme-linked immunosorbent assay were used to compare levels of MGP in normal and diseased AVICs. Statistics were performed using the Mann-Whitney U test (P < 0.05). MGP expression was significantly decreased in diseased AVICs relative to normal AVICs by immunofluorescent staining, reverse transcriptase-polymerase chain reaction, immunoblotting, and enzyme-linked immunosorbent assay. An important anti-calcification defense mechanism is deficient in calcified aortic valves. MGP expression is significantly lower in diseased relative to normal AVICs. Lack of this important "anti-calcification" protein may contribute to calcification of the aortic valve. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Circulating Nonphosphorylated Carboxylated Matrix Gla Protein Predicts Survival in ESRD

    PubMed Central

    Westenfeld, Ralf; Krüger, Thilo; Cranenburg, Ellen C.; Magdeleyns, Elke J.; Brandenburg, Vincent M.; Djuric, Zivka; Damjanovic, Tatjana; Ketteler, Markus; Vermeer, Cees; Dimkovic, Nada; Floege, Jürgen; Schurgers, Leon J.

    2011-01-01

    The mechanisms for vascular calcification and its associated cardiovascular mortality in patients with ESRD are not completely understood. Dialysis patients exhibit profound vitamin K deficiency, which may impair carboxylation of the calcification inhibitor matrix gla protein (MGP). Here, we tested whether distinct circulating inactive vitamin K–dependent proteins associate with all-cause or cardiovascular mortality. We observed higher levels of both desphospho-uncarboxylated MGP (dp-ucMGP) and desphospho-carboxylated MGP (dp-cMGP) among 188 hemodialysis patients compared with 98 age-matched subjects with normal renal function. Levels of dp-ucMGP correlated with those of protein induced by vitamin K absence II (PIVKA-II; r = 0.62, P < 0.0001). We found increased PIVKA-II levels in 121 (64%) dialysis patients, indicating pronounced vitamin K deficiency. Kaplan-Meier analysis showed that patients with low levels of dp-cMGP had an increased risk for all-cause and cardiovascular mortality. Multivariable Cox regression confirmed that low levels of dp-cMGP increase mortality risk (all-cause: HR, 2.2; 95% CI, 1.1 to 4.3; cardiovascular: HR, 2.7; 95% CI, 1.2 to 6.2). Furthermore, patients with higher vascular calcification scores showed lower levels of dp-cMGP. In 17 hemodialysis patients, daily supplementation with vitamin K2 for 6 weeks reduced dp-ucMGP levels by 27% (P = 0.003) but did not affect dp-cMGP levels. In conclusion, the majority of dialysis patients exhibit pronounced vitamin K deficiency. Lower levels of circulating dp-cMGP may serve as a predictor of mortality in dialysis patients. Whether vitamin K supplementation improves outcomes requires further study. PMID:21289218

  13. Podocan-like protein: a novel small leucine-rich repeat matrix protein in bone.

    PubMed

    Mochida, Yoshiyuki; Kaku, Masaru; Yoshida, Keiko; Katafuchi, Michitsuna; Atsawasuwan, Phimon; Yamauchi, Mitsuo

    2011-07-01

    Recently, significant attention has been drawn to the biology of small leucine-rich repeat proteoglycans (SLRPs) due to their multiple functionalities in various cell types and tissues. Here, we characterize a novel SLRP member, "Podocan-like (Podnl) protein" identified by a bioinformatics approach. The Podnl protein has a signal peptide, a unique cysteine-rich N-terminal cluster, 21 leucine-rich repeat (LRR) motifs, and one putative N-glycosylation site. This protein is structurally similar to podocan in SLRPs. The gene was highly expressed in mineralized tissues and in osteoblastic cells and the high expression level was observed at and after matrix mineralization in vitro. Podnl was enriched in newly formed bones based on immunohistochemical analysis. When Podnl was transfected into osteoblastic cells, the protein with N-glycosylation was detected mainly in the cultured medium, indicating that Podnl is a secreted N-glycosylated protein. The endogenous Podnl protein was also present in bone matrix. These data provide a new insight into our understanding of the emerging SLRP functions in bone formation.

  14. Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: interaction, regulation and role in chondrogenesis.

    PubMed

    Acharya, Chitrangada; Yik, Jasper H N; Kishore, Ashleen; Van Dinh, Victoria; Di Cesare, Paul E; Haudenschild, Dominik R

    2014-07-01

    Thrombospondins (TSPs) are widely known as a family of five calcium-binding matricellular proteins. While these proteins belong to the same family, they are encoded by different genes, regulate different cellular functions and are localized to specific regions of the body. TSP-5 or Cartilage Oligomeric Matrix Protein (COMP) is the only TSP that has been associated with skeletal disorders in humans, including pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). The pentameric structure of COMP, the evidence that it interacts with multiple cellular proteins, and the recent reports of COMP acting as a 'lattice' to present growth factors to cells, inspired this review of COMP and its interacting partners. In our review, we have compiled the interactions of COMP with other proteins in the cartilage extracellular matrix and summarized their importance in maintaining the structural integrity of cartilage as well as in regulating cellular functions.

  15. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix.

    PubMed

    Toyofuku, Masanori; Roschitzki, Bernd; Riedel, Katharina; Eberl, Leo

    2012-10-05

    Biofilms are surface-associated bacteria that are embedded in a matrix of self-produced polymeric substances (EPSs). The EPS is composed of nucleic acids, polysaccharides, lipids, and proteins. While polysaccharide components have been well studied, the protein content of the matrix is largely unknown. Here we conducted a comprehensive proteomic study to identify proteins associated with the biofilm matrix of Pseudomonas aeruginosa PAO1 (the matrix proteome). This analysis revealed that approximately 30% of the identified matrix proteins were outer membrane proteins, which are also typically found in outer membrane vesicles (OMVs). Electron microscopic inspection confirmed the presence of large amounts of OMVs within the biofilm matrix, supporting previous notions that OMVs are abundant constituents of P. aeruginosa biofilms. Our results demonstrate that while some proteins associated with the P. aeruginosa matrix are derived from secreted proteins and lysed cells, the large majority of the matrix proteins originate from OMVs. Furthermore, we demonstrate that the protein content of planktonic and biofilm OMVs is surprisingly different and may reflect the different physiological states of planktonic and sessile cells.

  16. HIV-1 Matrix Protein p17 and its Receptors.

    PubMed

    Caccuri, Francesca; Marsico, Stefania; Fiorentini, Simona; Caruso, Arnaldo; Giagulli, Cinzia

    2016-01-01

    The HIV-1 matrix protein p17 (p17) plays a crucial role in the virus life cycle. It is released in the extracellular space from HIV-1-infected cells and accumulates in the tissues of patients, even in those successfully treated with highly active antiretroviral therapy. Extracellular p17 deregulates the biological functions of many different cells that are directly or indirectly implicated in AIDS pathogenesis. All p17 actions depend on interaction between its functional epitope (AT20), located at the protein N-terminal region, and different receptors expressed on target cells. This finding corroborates the importance of impeding p17/p17 receptors interaction as a contribution to block AIDS. In this article we review the interaction of p17 with heparan sulfate proteoglycans (HSPGs) and with the chemokine (C-X-C motif) receptor 1 (CXCR1) and 2 (CXCR2). We provide details on how p17 interacts with its receptors and how these interactions are central to the p17 biological activities. Moreover, we highlight the existence of a p17 variant, named S75X, which displays opposite effects on B-cell proliferation as compared to p17. A two-site model for p17 interaction with G-coupled receptors provides a possible explanation on how mutations naturally occurring within the primary amino acid structure can lead S75X to activate the Akt signaling pathway and to promote B-cell growth and transformation. Identification of p17 interaction with HSPGs, CXCR1 and CXCR2 as a fundamental event in supporting its activity could help to find new treatment approaches aimed at blocking all p17/p17 receptors interactions and, consequently, p17 detrimental activities.

  17. Extracellular matrix protein CCN1 limits oncolytic efficacy in glioma.

    PubMed

    Haseley, Amy; Boone, Sean; Wojton, Jeffrey; Yu, Lianbo; Yoo, Ji Young; Yu, Jianhua; Kurozumi, Kazuhiko; Glorioso, Joseph C; Caligiuri, Michael A; Kaur, Balveen

    2012-03-15

    Oncolytic viral therapy has been explored widely as an option for glioma treatment but its effectiveness has remained limited. Cysteine rich 61 (CCN1) is an extracellular matrix (ECM) protein elevated in cancer cells that modulates their adhesion and migration by binding cell surface receptors. In this study, we examined a hypothesized role for CCN1 in limiting the efficacy of oncolytic viral therapy for glioma, based on evidence of CCN1 induction that occurs in this setting. Strikingly, we found that exogenous CCN1 in glioma ECM orchestrated a cellular antiviral response that reduced viral replication and limited cytolytic efficacy. Gene expression profiling and real-time PCR analysis revealed a significant induction of type-I interferon responsive genes in response to CCN1 exposure. This induction was accompanied by activation of the Jak/Stat signaling pathway, consistent with induction of an innate antiviral cellular response. Both effects were mediated by the binding of CCN1 to the cell surface integrin α6β1, activating its signaling and leading to rapid secretion of interferon-α, which was essential for the innate antiviral effect. Together, our findings reveal how an integrin signaling pathway mediates activation of a type-I antiviral interferon response that can limit the efficacy of oncolytic viral therapy. Furthermore, they suggest therapeutic interventions to inhibit CCN1-integrin α6 interactions to sensitize gliomas to viral oncolysis.

  18. Differential regulation of dentin matrix protein 1 expression during odontogenesis.

    PubMed

    Lu, Yongbo; Zhang, Shubin; Xie, Yixia; Pi, Yuli; Feng, Jian Q

    2005-01-01

    Dentin matrix protein 1 (DMP1) is highly expressed in mineralized tooth and bone. Both in vitro and in vivo data show that DMP1 is critical for mineralization and tooth morphogenesis (growth and development). In this study, we studied Dmp1 gene regulation. The in vitro transient transfection assay identified two important DNA fragments, the 2.4- and 9.6-kb promoter regions. We next generated and analyzed transgenic mice bearing the beta-galactosidase (lacZ) reporter gene driven by the 2.4- or 9.6-kb promoter with the complete 4-kb intron 1. The 9.6-kb Dmp1-lacZ mice conferred a DMP1 expression pattern in odontoblasts identical to that in the endogenous Dmp1 gene. This is reflected by lacZ expression in Dmp1-lacZ knock-in mice during all stages of odontogenesis. In contrast, the 2.4-kb Dmp1-lacZ mice display activity in odontoblast cells only at the early stage of odontogenesis. Thus, we propose that different transcription factors regulate early or later cis-regulatory domains of the Dmp1 promoter, which gives rise to the unique spatial and temporal expression pattern of Dmp1 gene at different stages of tooth development. 2005 S. Karger AG, Basel

  19. Evidence for direct association of Vpr and matrix protein p17 within the HIV-1 virion.

    PubMed

    Sato, A; Yoshimoto, J; Isaka, Y; Miki, S; Suyama, A; Adachi, A; Hayami, M; Fujiwara, T; Yoshie, O

    1996-06-01

    Vpr is one of the auxiliary proteins of HIV-1 and is selectively incorporated into the virion by a process involving the C-terminal p6 portion of the Gag precursor Pr55. Vpr and the matrix protein p17 are the components of the viral preintegration complex and appear to play important roles in the nuclear transport of proviral DNA in nondividing cells. In the present study, we have demonstrated by coimmunoprecipitation experiments that Vpr associates with matrix protein p17 but not with capsid protein p24 within the HIV-1 virion. Experiments employing the yeast two-hybrid GAL4 assay for protein-protein interactions also demonstrated a direct association between Vpr and the C-terminal region of matrix protein p17. Association of Vpr and the matrix protein p17 within the mature virion is consistent with their collaborative role in the nuclear transportation of the viral preintegration complex in nondividing cells such as macrophages.

  20. Clotting protein - An extracellular matrix (ECM) protein involved in crustacean hematopoiesis.

    PubMed

    Junkunlo, Kingkamon; Söderhäll, Kenneth; Söderhäll, Irene

    2017-09-21

    Hematopoietic progenitor cells in crustaceans are organized in lobule-like structures surrounded by different types of cells and extracellular matrix (ECM) protein in a Hematopoietic tissue (HPT). Here we show that the clotting protein (CP) is part of the ECM in HPT and is secreted during HPT cell culture. The formation of a filamentous network of CP was observed in HPT cell culture. A high amount of CP protein was detected at the surfaces of undifferentiated cells (round-shaped) compared with migrating cells (spindle shaped). Co-localization of the CP protein and TGase activity was observed on the cell surface and filamentous network between cells. A role for CP together with collagen was revealed in a 3D culture in which a collagen-I matrix was immobilized with CP or supplemented with CP. The results showed possible functions of CP, collagen, TGase and cytokine Ast1 in the regulation of HPT progenitor cell behavior. This is the first study to provide insight into the role of CP, which probably not only participates in clot formation but also functions as an ECM component protein controlling hematopoietic stem cell behavior. Copyright © 2017. Published by Elsevier Ltd.

  1. Purification of Capping Protein Using the Capping Protein Binding Site of CARMIL as an Affinity Matrix

    PubMed Central

    Remmert, Kirsten; Uruno, Takehito; Hammer, John A.

    2009-01-01

    Capping Protein (CP) is a ubiquitously expressed, heterodimeric actin binding protein that is essential for normal actin dynamics in cells. The existing methods for purifying native CP from tissues and recombinant CP from bacteria are time-consuming processes that involve numerous conventional chromatographic steps and functional assays to achieve a homogeneous preparation of the protein. Here we report the rapid purification of Acanthamoeba CP from amoeba extracts and recombinant mouse CP from E. coli extracts using as an affinity matrix GST fusion proteins containing the CP binding site from Acanthamoeba CARMIL and mouse CARMIL-1, respectively. This improved method for CP purification should facilitate the in vitro analysis of CP structure, function and regulation. PMID:19427903

  2. Purification of capping protein using the capping protein binding site of CARMIL as an affinity matrix.

    PubMed

    Remmert, Kirsten; Uruno, Takehito; Hammer, John A

    2009-10-01

    Capping protein (CP) is a ubiquitously expressed, heterodimeric actin binding protein that is essential for normal actin dynamics in cells. The existing methods for purifying native CP from tissues and recombinant CP from bacteria are time-consuming processes that involve numerous conventional chromatographic steps and functional assays to achieve a homogeneous preparation of the protein. Here, we report the rapid purification of Acanthamoeba CP from amoeba extracts and recombinant mouse CP from E. coli extracts using as an affinity matrix GST-fusion proteins containing the CP binding site from Acanthamoeba CARMIL and mouse CARMIL-1, respectively. This improved method for CP purification should facilitate the in vitro analysis of CP structure, function, and regulation.

  3. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation.

    PubMed

    Münch, Christian; Harper, J Wade

    2016-06-30

    The mitochondrial matrix is unique in that it must integrate the folding and assembly of proteins derived from the nuclear and mitochondrial genomes. In Caenorhabditis elegans, the mitochondrial unfolded protein response (UPRmt) senses matrix protein misfolding and induces a program of nuclear gene expression, including mitochondrial chaperonins, to promote mitochondrial proteostasis. While misfolded mitochondrial-matrix-localized ornithine transcarbamylase induces chaperonin expression, our understanding of mammalian UPRmt is rudimentary, reflecting a lack of acute triggers for UPRmt activation. This limitation has prevented analysis of the cellular responses to matrix protein misfolding and the effects of UPRmt on mitochondrial translation to control protein folding loads. Here we combine pharmacological inhibitors of matrix-localized HSP90/TRAP1 (ref. 8) or LON protease, which promote chaperonin expression, with global transcriptional and proteomic analysis to reveal an extensive and acute response of human cells to UPRmt. This response encompasses widespread induction of nuclear genes, including matrix-localized proteins involved in folding, pre-RNA processing and translation. Functional studies revealed rapid but reversible translation inhibition in mitochondria occurring concurrently with defects in pre-RNA processing caused by transcriptional repression and LON-dependent turnover of the mitochondrial pre-RNA processing nuclease MRPP3 (ref. 10). This study reveals that acute mitochondrial protein folding stress activates both increased chaperone availability within the matrix and reduced matrix-localized protein synthesis through translational inhibition, and provides a framework for further dissection of mammalian UPRmt.

  4. Photolytic Cross-Linking to Probe Protein-Protein and Protein-Matrix Interactions in Lyophilized Powders.

    PubMed

    Iyer, Lavanya K; Moorthy, Balakrishnan S; Topp, Elizabeth M

    2015-09-08

    Protein structure and local environment in lyophilized formulations were probed using high-resolution solid-state photolytic cross-linking with mass spectrometric analysis (ssPC-MS). In order to characterize structure and microenvironment, protein-protein, protein-excipient, and protein-water interactions in lyophilized powders were identified. Myoglobin (Mb) was derivatized in solution with the heterobifunctional probe succinimidyl 4,4'-azipentanoate (SDA) and the structural integrity of the labeled protein (Mb-SDA) confirmed using CD spectroscopy and liquid chromatography/mass spectrometry (LC-MS). Mb-SDA was then formulated with and without excipients (raffinose, guanidine hydrochloride (Gdn HCl)) and lyophilized. The freeze-dried powder was irradiated with ultraviolet light at 365 nm for 30 min to produce cross-linked adducts that were analyzed at the intact protein level and after trypsin digestion. SDA-labeling produced Mb carrying up to five labels, as detected by LC-MS. Following lyophilization and irradiation, cross-linked peptide-peptide, peptide-water, and peptide-raffinose adducts were detected. The exposure of Mb side chains to the matrix was quantified based on the number of different peptide-peptide, peptide-water, and peptide-excipient adducts detected. In the absence of excipients, peptide-peptide adducts involving the CD, DE, and EF loops and helix H were common. In the raffinose formulation, peptide-peptide adducts were more distributed throughout the molecule. The Gdn HCl formulation showed more protein-protein and protein-water adducts than the other formulations, consistent with protein unfolding and increased matrix interactions. The results demonstrate that ssPC-MS can be used to distinguish excipient effects and characterize the local protein environment in lyophilized formulations with high resolution.

  5. [The study on the enamel remineralization by enamel matrix proteins' inducing].

    PubMed

    Wang, Zhi-wei; Zhao, Yue-ping; Zhou, Chang-ren; Li, Hong

    2008-07-01

    To find the enamel matrix proteins on the impact of enamel mineralization through experiments. A combination of protein and beneficial carboxyl groups was grafted on the surface of enamel defects of rats through UV radiation then put into the enamel matrix proteins of calcium phosphate agar acetate solution systems, through scanning enamel surface with the electron microscopy to observe the morphological changes of enamel then analyse the regulation that enamel matrix proteins have done to the white hydroxyapatite crystals on the composition and morphology. In the enamel matrix protein added gel system, we can see the growth of hydroxyapatite crystals, and crystal showed a good degree of crystallinity and contained a small amount of CO3(2-) substituted hydroxyapatite crystals. The temperature at 37 degrees C water bath, after adding the enamel matrix proteins to gel system, the new hydroxyapatite crystals were numerous which proved that enamel matrix proteins played an important role in nucleation and growth of hydroxyapatite crystal, so it could be indicated that enamel matrix proteins could induce the enamel remineralization.

  6. Renal handling of matrix Gla-protein in humans with moderate to severe hypertension.

    PubMed

    Rennenberg, Roger J M W; Schurgers, Leon J; Vermeer, Cees; Scholte, Jan B J; Houben, Alphons J H M; de Leeuw, Peter W; Kroon, Abraham A

    2008-09-01

    Vascular calcifications are common among patients with hypertension. The vitamin K-dependent protein matrix Gla-protein plays an important role in preventing arterial calcification. Since a decrease in renal clearance is a prevalent clinical problem in patients with hypertension, we aimed to study the renal clearance of matrix Gla-protein from the circulation in these patients having a wide range of creatinine clearances. Ninety moderate to severe hypertensive patients who were scheduled for renal angiography were enrolled in the study. In these patients, renal arterial and renal venous blood was sampled prior to the administration of contrast material in order to determine the total renal and single kidney clearance of matrix Gla-protein. The average renal fractional extraction of matrix Gla-protein was 12.8%. There was no significant correlation between creatinine clearance (range 26-154) and renal fractional extraction of matrix Gla-protein in this population. The extraction of matrix Gla-protein was not influenced by the presence of a renal artery stenosis. In conclusion, we demonstrate that the kidney is able to extract matrix Gla-protein from the plasma at a constant level of 12.8%, independent of renal function in hypertensive subjects.

  7. A matrix protein silences transposons and repeats through interaction with retinoblastoma-associated proteins.

    PubMed

    Xu, Yifeng; Wang, Yizhong; Stroud, Hume; Gu, Xiaofeng; Sun, Bo; Gan, Eng-Seng; Ng, Kian-Hong; Jacobsen, Steven E; He, Yuehui; Ito, Toshiro

    2013-02-18

    Epigenetic regulation helps to maintain genomic integrity by suppressing transposable elements (TEs) and also controls key developmental processes, such as flowering time. To prevent TEs from causing rearrangements and mutations, TE and TE-like repetitive DNA sequences are usually methylated, whereas histones are hypoacetylated and methylated on specific residues (e.g., H3 lysine 9 dimethylation [H3K9me2]). TEs and repeats can also attenuate gene expression. However, how various histone modifiers are recruited to target loci is not well understood. Here we show that knockdown of the nuclear matrix protein with AT-hook DNA binding motifs TRANSPOSABLE ELEMENT SILENCING VIA AT-HOOK (TEK) in Arabidopsis Landsberg erecta results in robust activation of various TEs, the TE-like repeat-containing floral repressor genes FLOWERING LOCUS C (FLC) and FWA. This derepression is associated with chromatin conformational changes, increased histone acetylation, reduced H3K9me2, and even TE transposition. TEK directly binds to an FLC-repressive regulatory region and the silencing repeats of FWA and associates with Arabidopsis homologs of the Retinoblastoma-associated protein 46/48, FVE and MSI5, which mediate histone deacetylation. We propose that the nuclear matrix protein TEK acts in the maintenance of genome integrity by silencing TE and repeat-containing genes.

  8. Purification and Partial Characterization of a Paracoccidioides brasiliensis Protein with Capacity To Bind to Extracellular Matrix Proteins

    PubMed Central

    González, Angel; Gómez, Beatriz L.; Diez, Soraya; Hernández, Orville; Restrepo, Angela; Hamilton, Andrew J.; Cano, Luz E.

    2005-01-01

    Microorganisms adhere to extracellular matrix proteins by means of their own surface molecules. Paracoccidioides brasiliensis conidia have been shown to be capable of interacting with extracellular matrix proteins. We aimed at determining the presence of fungal proteins that could interact with extracellular matrix protein and, if found, attempt their purification and characterization. Various extracts were prepared from P. brasiliensis mycelial and yeast cultures (total homogenates, β-mercaptoethanol, and sodium dodecyl sulfate [SDS] extracts) and analyzed by ligand affinity assays with fibronectin, fibrinogen and laminin. Two polypeptides were detected in both fungal forms. SDS extracts that interacted with all the extracellular matrix protein were tested; their molecular masses were 19 and 32 kDa. Analysis of the N-terminal amino acid sequence of the purified 32-kDa mycelial protein showed substantial homology with P. brasiliensis, Histoplasma capsulatum, and Neurospora crassa hypothetical proteins. Additionally, a monoclonal antibody (MAb) produced against this protein recognized the 32-kDa protein in the SDS extracts of both fungal forms for immunoblot. Immunofluorescence analysis revealed that this MAb reacted not only with mycelia and yeast cells, but also with conidia, indicating that this protein was shared by the three fungal propagules. By immunoelectron microscopy, this protein was detected in the cell walls and in the cytoplasm. Both the 32-kDa purified protein and MAb inhibited the adherence of conidia to the three extracellular matrix proteins in a dose-dependent manner. These findings demonstrate the presence of two polypeptides capable of interacting with extracellular matrix proteins on the surface of P. brasiliensis propagules, indicating that there may be common receptors for laminin, fibronectin, and fibrinogen. These proteins would be crucial for initial conidial adherence and perhaps also in dissemination of paracoccidioidomycosis. PMID

  9. Inferring homologous protein-protein interactions through pair position specific scoring matrix

    PubMed Central

    2013-01-01

    Background The protein-protein interaction (PPI) is one of the most important features to understand biological processes. For a PPI, the physical domain-domain interaction (DDI) plays the key role for biology functions. In the post-genomic era, to rapidly identify homologous PPIs for analyzing the contact residue pairs of their interfaces within DDIs on a genomic scale is essential to determine PPI networks and the PPI interface evolution across multiple species. Results In this study, we proposed "pair Position Specific Scoring Matrix (pairPSSM)" to identify homologous PPIs. The pairPSSM can successfully distinguish the true protein complexes from unreasonable protein pairs with about 90% accuracy. For the test set including 1,122 representative heterodimers and 2,708,746 non-interacting protein pairs, the mean average precision and mean false positive rate of pairPSSM were 0.42 and 0.31, respectively. Moreover, we applied pairPSSM to identify ~450,000 homologous PPIs with their interacting domains and residues in seven common organisms (e.g. Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Escherichia coli). Conclusions Our pairPSSM is able to provide statistical significance of residue pairs using evolutionary profiles and a scoring system for inferring homologous PPIs. According to our best knowledge, the pairPSSM is the first method for searching homologous PPIs across multiple species using pair position specific scoring matrix and a 3D dimer as the template to map interacting domain pairs of these PPIs. We believe that pairPSSM is able to provide valuable insights for the PPI evolution and networks across multiple species. PMID:23367879

  10. Quantitative sandwich ELISA for determination of traces of hazelnut (Corylus avellana) protein in complex food matrixes.

    PubMed

    Holzhauser, T; Vieths, S

    1999-10-01

    A hazelnut-specific sandwich-type ELISA based on polyclonal antisera was developed for detection of hidden hazelnut protein residues in complex food matrixes. In the absence of a food matrix, extractable protein from different native and toasted hazelnuts was detected at rates of 94 +/- 13 and 96 +/- 7% applying standards prepared from native and toasted hazelnuts, respectively. From complex food matrixes, 0.001-10% of hazelnut was recovered between 67 and 132%, in average by 106 +/- 17%. Depending on the food matrix, hazelnut protein could be detected down to the ppb (ng/g) level. Intraassay precision was <6% for hazelnut >/= 0.001% and interassay precision was <15% for hazelnut >/= 0.01%. In 12 of 28 commercial food products without labeling or declaration of hazelnut components, between 2 and 421 ppm of hazelnut protein was detected, demonstrating a remarkable presence of potentially allergenic hazelnut protein "hidden" in commercial food products.

  11. Genetic dissection of peroxisome-associated matrix protein degradation in Arabidopsis thaliana.

    PubMed

    Burkhart, Sarah E; Lingard, Matthew J; Bartel, Bonnie

    2013-01-01

    Peroxisomes are organelles that sequester certain metabolic pathways; many of these pathways generate H(2)O(2), which can damage proteins. However, little is known about how damaged or obsolete peroxisomal proteins are degraded. We exploit developmentally timed peroxisomal content remodeling in Arabidopsis thaliana to elucidate peroxisome-associated protein degradation. Isocitrate lyase (ICL) is a peroxisomal glyoxylate cycle enzyme necessary for early seedling development. A few days after germination, photosynthesis begins and ICL is degraded. We previously found that ICL is stabilized when a peroxisome-associated ubiquitin-conjugating enzyme and its membrane anchor are both mutated, suggesting that matrix proteins might exit the peroxisome for ubiquitin-dependent cytosolic degradation. To identify additional components needed for peroxisome-associated matrix protein degradation, we mutagenized a line expressing GFP-ICL, which is degraded similarly to endogenous ICL, and identified persistent GFP-ICL fluorescence (pfl) mutants. We found three pfl mutants that were defective in PEROXIN14 (PEX14/At5g62810), which encodes a peroxisomal membrane protein that assists in importing proteins into the peroxisome matrix, indicating that proteins must enter the peroxisome for efficient degradation. One pfl mutant was missing the peroxisomal 3-ketoacyl-CoA thiolase encoded by the PEROXISOME DEFECTIVE1 (PED1/At2g33150) gene, suggesting that peroxisomal metabolism influences the rate of matrix protein degradation. Finally, one pfl mutant that displayed normal matrix protein import carried a novel lesion in PEROXIN6 (PEX6/At1g03000), which encodes a peroxisome-tethered ATPase that is involved in recycling matrix protein receptors back to the cytosol. The isolation of pex6-2 as a pfl mutant supports the hypothesis that matrix proteins can exit the peroxisome for cytosolic degradation.

  12. PathwayMatrix: visualizing binary relationships between proteins in biological pathways

    PubMed Central

    2015-01-01

    Background Molecular activation pathways are inherently complex, and understanding relations across many biochemical reactions and reaction types is difficult. Visualizing and analyzing a pathway is a challenge due to the network size and the diversity of relations between proteins and molecules. Results In this paper, we introduce PathwayMatrix, a visualization tool that presents the binary relations between proteins in the pathway via the use of an interactive adjacency matrix. We provide filtering, lensing, clustering, and brushing and linking capabilities in order to present relevant details about proteins within a pathway. Conclusions We evaluated PathwayMatrix by conducting a series of in-depth interviews with domain experts who provided positive feedback, leading us to believe that our visualization technique could be helpful for the larger community of researchers utilizing pathway visualizations. PathwayMatrix is freely available at https://github.com/CreativeCodingLab/PathwayMatrix. PMID:26361499

  13. Guaifenesin stone matrix proteomics: a protocol for identifying proteins critical to stone formation.

    PubMed

    Kolbach-Mandel, A M; Mandel, N S; Cohen, S R; Kleinman, J G; Ahmed, F; Mandel, I C; Wesson, J A

    2017-04-01

    Drug-related kidney stones are a diagnostic problem, since they contain a large matrix (protein) fraction and are frequently incorrectly identified as matrix stones. A urine proteomics study patient produced a guaifenesin stone during her participation, allowing us to both correctly diagnose her disease and identify proteins critical to this drug stone-forming process. The patient provided three random midday urine samples for proteomics studies; one of which contained stone-like sediment with two distinct fractions. These solids were characterized with optical microscopy and Fourier transform infrared spectroscopy. Immunoblotting and quantitative mass spectrometry were used to quantitatively identify the proteins in urine and stone matrix. Infrared spectroscopy showed that the sediment was 60 % protein and 40 % guaifenesin and its metabolite guaiacol. Of the 156 distinct proteins identified in the proteomic studies, 49 were identified in the two stone-components with approximately 50 % of those proteins also found in this patient's urine. Many proteins observed in this drug-related stone have also been reported in proteomic matrix studies of uric acid and calcium containing stones. More importantly, nine proteins were highly enriched and highly abundant in the stone matrix and 8 were reciprocally depleted in urine, suggesting a critical role for these proteins in guaifenesin stone formation. Accurate stone analysis is critical to proper diagnosis and treatment of kidney stones. Many matrix proteins were common to all stone types, but likely not related to disease mechanism. This protocol defined a small set of proteins that were likely critical to guaifenesin stone formation based on their high enrichment and high abundance in stone matrix, and it should be applied to all stone types.

  14. Inherited complex I deficiency is associated with faster protein diffusion in the matrix of moving mitochondria.

    PubMed

    Koopman, Werner J H; Distelmaier, Felix; Hink, Mark A; Verkaart, Sjoerd; Wijers, Mietske; Fransen, Jack; Smeitink, Jan A M; Willems, Peter H G M

    2008-05-01

    Mitochondria continuously change shape, position, and matrix configuration for optimal metabolite exchange. It is well established that changes in mitochondrial metabolism influence mitochondrial shape and matrix configuration. We demonstrated previously that inhibition of mitochondrial complex I (CI or NADH:ubiquinone oxidoreductase) by rotenone accelerated matrix protein diffusion and decreased the fraction and velocity of moving mitochondria. In the present study, we investigated the relationship between inherited CI deficiency, mitochondrial shape, mobility, and matrix protein diffusion. To this end, we analyzed fibroblasts of two children that represented opposite extremes in a cohort of 16 patients, with respect to their residual CI activity and mitochondrial shape. Fluorescence correlation spectroscopy (FCS) revealed no relationship between residual CI activity, mitochondrial shape, the fraction of moving mitochondria, their velocity, and the rate of matrix-targeted enhanced yellow fluorescent protein (mitoEYFP) diffusion. However, mitochondrial velocity and matrix protein diffusion in moving mitochondria were two to three times higher in patient cells than in control cells. Nocodazole inhibited mitochondrial movement without altering matrix EYFP diffusion, suggesting that both activities are mutually independent. Unexpectedly, electron microscopy analysis revealed no differences in mitochondrial ultrastructure between control and patient cells. It is discussed that the matrix of a moving mitochondrion in the CI-deficient state becomes less dense, allowing faster metabolite diffusion, and that fibroblasts of CI-deficient patients become more glycolytic, allowing a higher mitochondrial velocity.

  15. The role of nuclear matrix proteins binding to matrix attachment regions (Mars) in prostate cancer cell differentiation.

    PubMed

    Barboro, Paola; Repaci, Erica; D'Arrigo, Cristina; Balbi, Cecilia

    2012-01-01

    In tumor progression definite alterations in nuclear matrix (NM) protein composition as well as in chromatin structure occur. The NM interacts with chromatin via specialized DNA sequences called matrix attachment regions (MARs). In the present study, using a proteomic approach along with a two-dimensional Southwestern assay and confocal laser microscopy, we show that the differentiation of stabilized human prostate carcinoma cells is marked out by modifications both NM protein composition and bond between NM proteins and MARs. Well-differentiated androgen-responsive and slowly growing LNCaP cells are characterized by a less complex pattern and by a major number of proteins binding MAR sequences in comparison to 22Rv1 cells expressing androgen receptor but androgen-independent. Finally, in the poorly differentiated and strongly aggressive androgen-independent PC3 cells the complexity of NM pattern further increases and a minor number of proteins bind the MARs. Furthermore, in this cell line with respect to LNCaP cells, these changes are synchronous with modifications in both the nuclear distribution of the MAR sequences and in the average loop dimensions that significantly increase. Although the expression of many NM proteins changes during dedifferentiation, only a very limited group of MAR-binding proteins seem to play a key role in this process. Variations in the expression of poly (ADP-ribose) polymerase (PARP) and special AT-rich sequence-binding protein-1 (SATB1) along with an increase in the phosphorylation of lamin B represent changes that might trigger passage towards a more aggressive phenotype. These results suggest that elucidating the MAR-binding proteins that are involved in the differentiation of prostate cancer cells could be an important tool to improve our understanding of this carcinogenesis process, and they could also be novel targets for prostate cancer therapy.

  16. Altered protein levels in the isolated extracellular matrix of failing human hearts with dilated cardiomyopathy.

    PubMed

    DeAguero, Joshua L; McKown, Elizabeth N; Zhang, Liwen; Keirsey, Jeremy; Fischer, Edgar G; Samedi, Von G; Canan, Benjamin D; Kilic, Ahmet; Janssen, Paul M L; Delfín, Dawn A

    Dilated cardiomyopathy (DCM) is associated with extensive pathological cardiac remodeling and involves numerous changes in the protein expression profile of the extracellular matrix of the heart. We obtained seven human, end-stage, failing hearts with DCM (DCM-failing) and nine human, nonfailing donor hearts and compared their extracellular matrix protein profiles. We first showed that the DCM-failing hearts had indeed undergone extensive remodeling of the left ventricle myocardium relative to nonfailing hearts. We then isolated the extracellular matrix from a subset of these hearts and performed a proteomic analysis on the isolated matrices. We found that the levels of 26 structural proteins were altered in the DCM-failing isolated cardiac extracellular matrix compared to nonfailing isolated cardiac extracellular matrix. Overall, most of the extracellular matrix proteins showed reduced levels in the DCM-failing hearts, while all of the contractile proteins showed increased levels. There was a mixture of increased and decreased levels of cytoskeletal and nuclear transport proteins. Using immunoprobing, we verified that collagen IV (α2 and α6 isoforms), zyxin, and myomesin protein levels were reduced in the DCM-failing hearts. We expect that these data will add to the understanding of the pathology associated with heart failure with DCM.

  17. Matrix proteins are inefficiently imported into Arabidopsis peroxisomes lacking the receptor-docking peroxin PEX14

    PubMed Central

    Monroe-Augustus, Melanie; Ramón, Naxhiely Martínez; Ratzel, Sarah E.; Lingard, Matthew J.; Christensen, Sarah E.; Murali, Chaya

    2012-01-01

    Mutations in peroxisome biogenesis proteins (peroxins) can lead to developmental deficiencies in various eukaryotes. PEX14 and PEX13 are peroxins involved in docking cargo-receptor complexes at the peroxisomal membrane, thus aiding in the transport of the cargo into the peroxisomal matrix. Genetic screens have revealed numerous Arabidopsis thaliana peroxins acting in peroxisomal matrix protein import; the viable alleles isolated through these screens are generally partial loss-of-function alleles, whereas null mutations that disrupt delivery of matrix proteins to peroxisomes can confer embryonic lethality. In this study, we used forward and reverse genetics in Arabidopsis to isolate four pex14 alleles. We found that all four alleles conferred reduced PEX14 mRNA levels and displayed physiological and molecular defects suggesting reduced but not abolished peroxisomal matrix protein import. The least severe pex14 allele, pex14-3, accumulated low levels of a C-terminally truncated PEX14 product that retained partial function. Surprisingly, even the severe pex14-2 allele, which lacked detectable PEX14 mRNA and PEX14 protein, was viable, fertile, and displayed residual peroxisome matrix protein import. As pex14 plants matured, import improved. Together, our data indicate that PEX14 facilitates, but is not essential for peroxisomal matrix protein import in plants. PMID:21553312

  18. Matrix proteins are inefficiently imported into Arabidopsis peroxisomes lacking the receptor-docking peroxin PEX14.

    PubMed

    Monroe-Augustus, Melanie; Ramón, Naxhiely Martínez; Ratzel, Sarah E; Lingard, Matthew J; Christensen, Sarah E; Murali, Chaya; Bartel, Bonnie

    2011-09-01

    Mutations in peroxisome biogenesis proteins (peroxins) can lead to developmental deficiencies in various eukaryotes. PEX14 and PEX13 are peroxins involved in docking cargo-receptor complexes at the peroxisomal membrane, thus aiding in the transport of the cargo into the peroxisomal matrix. Genetic screens have revealed numerous Arabidopsis thaliana peroxins acting in peroxisomal matrix protein import; the viable alleles isolated through these screens are generally partial loss-of-function alleles, whereas null mutations that disrupt delivery of matrix proteins to peroxisomes can confer embryonic lethality. In this study, we used forward and reverse genetics in Arabidopsis to isolate four pex14 alleles. We found that all four alleles conferred reduced PEX14 mRNA levels and displayed physiological and molecular defects suggesting reduced but not abolished peroxisomal matrix protein import. The least severe pex14 allele, pex14-3, accumulated low levels of a C-terminally truncated PEX14 product that retained partial function. Surprisingly, even the severe pex14-2 allele, which lacked detectable PEX14 mRNA and PEX14 protein, was viable, fertile, and displayed residual peroxisome matrix protein import. As pex14 plants matured, import improved. Together, our data indicate that PEX14 facilitates, but is not essential for peroxisomal matrix protein import in plants.

  19. Matrix Gla Protein polymorphism, but not concentrations, is associated with radiographic hand osteoarthritis

    USDA-ARS?s Scientific Manuscript database

    Objective. Factors associated with mineralization and osteophyte formation in osteoarthritis (OA) are incompletely understood. Genetic polymorphisms of matrix Gla protein (MGP), a mineralization inhibitor, have been associated clinically with conditions of abnormal calcification. We therefore evalua...

  20. Interplay of matrix stiffness and protein tethering in stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Wen, Jessica H.; Vincent, Ludovic G.; Fuhrmann, Alexander; Choi, Yu Suk; Hribar, Kolin C.; Taylor-Weiner, Hermes; Chen, Shaochen; Engler, Adam J.

    2014-10-01

    Stem cells regulate their fate by binding to, and contracting against, the extracellular matrix. Recently, it has been proposed that in addition to matrix stiffness and ligand type, the degree of coupling of fibrous protein to the surface of the underlying substrate, that is, tethering and matrix porosity, also regulates stem cell differentiation. By modulating substrate porosity without altering stiffness in polyacrylamide gels, we show that varying substrate porosity did not significantly change protein tethering, substrate deformations, or the osteogenic and adipogenic differentiation of human adipose-derived stromal cells and marrow-derived mesenchymal stromal cells. Varying protein-substrate linker density up to 50-fold changed tethering, but did not affect osteogenesis, adipogenesis, surface-protein unfolding or underlying substrate deformations. Differentiation was also unaffected by the absence of protein tethering. Our findings imply that the stiffness of planar matrices regulates stem cell differentiation independently of protein tethering and porosity.

  1. Structural and functional features of a collagen-binding matrix protein from the mussel byssus.

    PubMed

    Suhre, Michael H; Gertz, Melanie; Steegborn, Clemens; Scheibel, Thomas

    2014-02-26

    Blue mussels adhere to surfaces by the byssus, a holdfast structure composed of individual threads representing a collagen fibre reinforced composite. Here, we present the crystal structure and function of one of its matrix proteins, the proximal thread matrix protein 1, which is present in the proximal section of the byssus. The structure reveals two von Willebrand factor type A domains linked by a two-β-stranded linker yielding a novel structural arrangement. In vitro, the protein binds heterologous collagens with high affinity and affects collagen assembly, morphology and arrangement of its fibrils. By providing charged surface clusters as well as insufficiently coordinated metal ions, the proximal thread matrix protein 1 might interconnect other byssal proteins and thereby contribute to the integrity of the byssal threads in vivo. Moreover, the protein could be used for adjusting the mechanical properties of collagen materials, a function likely important in the natural byssus.

  2. MFP1, a novel plant filament-like protein with affinity for matrix attachment region DNA.

    PubMed Central

    Meier, I; Phelan, T; Gruissem, W; Spiker, S; Schneider, D

    1996-01-01

    The interaction of chromatin with the nuclear matrix via matrix attachment regions (MARs) on the DNA is considered to be of fundamental importance for higher order chromatin organization and regulation of gene expression. Here, we report a novel nuclear matrix-localized MAR DNA binding protein, designated MAR binding filament-like protein 1 (MFP1), from tomato. In contrast to the few animal MAR DNA binding proteins thus far identified, MFP1 contains a predicted N-terminal transmembrane domain and a long filament-like alpha-helical domain that is similar to diverse nuclear and cytoplasmic filament proteins from animals and yeast. DNA binding assays established that MFP1 can discriminate between animal and plant MAR DNAs and non-MAR DNA fragments of similar size and AT content. Deletion mutants of MFP1 revealed a novel, discrete DNA binding domain near the C terminus of the protein. MFP1 is an in vitro substrate for casein kinase II, a nuclear matrix-associated protein kinase. Its structure, MAR DNA binding activity, and nuclear matrix localization suggest that MFP1 is likely to participate in nuclear architecture by connecting chromatin with the nuclear matrix and potentially with the nuclear envelope. PMID:8953774

  3. [Electron transfer between globular proteins. Evaluation of a matrix element].

    PubMed

    Lakhno, V D; Chuev, G N; Ustinin, M N

    1998-01-01

    The dependence of the matrix element of the probability of interprotein electron transfer on the mutual orientation of the donor and acceptor centers and the distance between them was calculated. The calculations were made under the assumption that electron transfer proceeds mainly by a collective excitation of polaron nature, like a solvated electron state. The results obtained are consistent with experimental data and indicate the nonexponential behavior of this dependence in the case when the distance transfer is less than 20 A.

  4. Dentin Sialophosphoprotein and Dentin Matrix Protein-1: Two Highly Phosphorylated Proteins in Mineralized Tissues

    PubMed Central

    Suzuki, Shigeki; Haruyama, Naoto; Nishimura, Fusanori; Kulkarni, Ashok B.

    2012-01-01

    Dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) are highly phosphorylated proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs), and are essential for proper development of hard tissues such as teeth and bones. In order to understand how they contribute to tissue organization, DSPP and DMP-1 have been analyzed for over a decade using both in vivo and in vitro techniques. Among the five SIBLINGs, the DSPP and DMP-1 genes are located next to each other and their gene and protein structures are most similar. In this review we examine the phenotypes of the genetically engineered mouse models of DSPP and DMP-1 and also introduce complementary in vitro studies into the molecular mechanisms underlying these phenotypes. DSPP affects the mineralization of dentin more profoundly than DMP-1. In contrast, DMP-1 significantly affects bone mineralization and importantly controls serum phosphate levels by regulating serum FGF-23 levels, whereas DSPP does not show any systemic effects. DMP-1 activates integrin signaling and is endocytosed into the cytoplasm whereupon it is translocated to the nucleus. In contrast, DSPP only activates integrin-dependent signaling. Thus it is now clear that both DSPP and DMP-1 contribute to hard tissue mineralization and the tissues affected by each are different presumably as a result of their different expression levels. In fact, in comparison with DMP-1, the functional analysis of cell signaling by DSPP remains relatively unexplored. PMID:22534175

  5. Targeting the extracellular matrix: matricellular proteins regulate cell-extracellular matrix communication within distinct niches of the intervertebral disc.

    PubMed

    Bedore, Jake; Leask, Andrew; Séguin, Cheryle A

    2014-07-01

    The so-called "matricellular" proteins have recently emerged as important regulators of cell-extracellular matrix (ECM) interactions. These proteins modulate a variety of cell functions through a range of interactions with cell-surface receptors, hormones, proteases and structural components of the ECM. As such, matricellular proteins are crucial regulators of cell phenotype, and consequently tissue function. The distinct cell types and microenvironments that together form the IVD provide an excellent paradigm to study how matricellular proteins mediate communication within and between adjacent tissue types. In recent years, the role of several matricellular proteins in the intervertebral disc has been explored in vivo using mutant mouse models in which the expression of target matricellular proteins was deleted from either one or all compartments of the intervertebral disc. The current review outlines what is presently known about the roles of the matricellular proteins belonging to the CCN family, SPARC (Secreted Protein, Acidic, and Rich in Cysteine), and thrombospondin (TSP) 2 in regulating intervertebral disc cell-ECM interactions, ECM synthesis and disc tissue homeostasis using genetically modified mouse models. Furthermore, we provide a brief overview of recent preliminary studies of other matricellular proteins including, periostin (POSTN) and tenascin (TN). Each specific tissue type of the IVD contains a different matricellular protein signature, which varies based on the specific stage of development, maturity or disease. A growing body of direct genetic evidence links IVD development, maintenance and repair to the coordinate interaction of matricellular proteins within their respective niches and suggests that several of these signaling modulators hold promise in the development of diagnostics and/or therapeutics targeting intervertebral disc aging and/or degeneration.

  6. Endoplasmic Reticulum Chaperone Protein GRP-78 Mediates Endocytosis of Dentin Matrix Protein 1*S⃞

    PubMed Central

    Ravindran, Sriram; Narayanan, Karthikeyan; Eapen, Asha Sarah; Hao, Jianjun; Ramachandran, Amsaveni; Blond, Sylvie; George, Anne

    2008-01-01

    Dentin matrix protein 1 (DMP1), a phosphorylated protein present in the mineral phase of both vertebrates and invertebrates, is a key regulatory protein during biogenic formation of mineral deposits. Previously we showed that DMP1 is localized in the nuclear compartment of preosteoblasts and preodontoblasts. In the nucleus DMP1 might play an important role in the regulation of genes that control osteoblast or odontoblast differentiation. Here, we show that cellular uptake of DMP1 occurs through endocytosis. Interestingly, this process is initiated by DMP1 binding to the glucose-regulated protein-78 (GRP-78) localized on the plasma membrane of preodontoblast cells. Binding of DMP1 to GRP-78 receptor was determined to be specific and saturable with a binding dissociation constant KD = 85 nm. We further depict a road map for the endocytosed DMP1 and demonstrate that the internalization is mediated primarily by caveolae and that the vesicles containing DMP1 are routed to the nucleus along microtubules. Immunohistochemical analysis and binding studies performed with biotin-labeled DMP1 confirm spatial co-localization of DMP1 and GRP-78 in the preodontoblasts of a developing mouse molar. Co-localization of DMP1 with GRP-78 was also observed in T4-4 preodontoblast cells, dental pulp stem cells, and primary preodontoblasts. By small interfering RNA techniques, we demonstrate that the receptor for DMP1 is GRP-78. Therefore, binding of DMP1 with GRP-78 receptor might be an important mechanism by which DMP1 is internalized and transported to the nucleus during bone and tooth development. PMID:18757373

  7. Expression of nuclear matrix proteins binding matrix attachment regions in prostate cancer. PARP-1: New player in tumor progression.

    PubMed

    Barboro, Paola; Ferrari, Nicoletta; Capaia, Matteo; Petretto, Andrea; Salvi, Sandra; Boccardo, Simona; Balbi, Cecilia

    2015-10-01

    Prostate cancer (PCa) displays infrequent point mutations, whereas genomic rearrangements are highly prevalent. In eukaryotes, the genome is compartmentalized into chromatin loop domains by the attachment to the nuclear matrix (NM), and it has been demonstrated that several recombination hot spots are situated at the base of loops. Here, we have characterized the binding between NM proteins and matrix attachment regions (MARs) in PCa. Nontumor and 44 PCa tissues were analyzed. More aggressive tumors were characterized by an increase in the complexity of the NM protein patterns that was synchronous with a decrease in the number of proteins binding the MAR sequences. PARP-1 was the protein that showed the most evident changes. The expression of the PARP-1 associated with NM increased and it was dependent on tumor aggressiveness. Immunohistochemical analysis showed that the protein was significantly overexpressed in tumor cells. To explore the role of PARP-1 in PCa progression, PCa cells were treated with the PARP inhibitor, ABT-888. In androgen-independent PC3 cells, PARP inhibition significantly decreased cell viability, migration, invasion, chromatin loop dimensions and histone acetylation. Collectively, our study provides evidence that MAR-binding proteins are involved in the development and progression of PCa. PARP could play a key role in the compartmentalization of chromatin and in the development of the more aggressive phenotype. Thus, PARP can no longer be viewed only as an enzyme involved in DNA repair, but that its role in chromatin modulation could provide the basis for a new therapeutic approach to the treatment of PCa.

  8. Association of Ebola Virus Matrix Protein VP40 with Microtubules

    DTIC Science & Technology

    2005-04-01

    dynein has been reported for African swine fever virus protein 54 (1) as well as VP26 of herpes simplex virus (12), and binding to members of the plus...associated motor pro- teins for movement of viral particles to the site of budding has been proposed for African swine fever virus and vaccinia virus (22...Fernandez-Zapatero, L. Soto, C. Canto, I. Rodriguez-Crespo, L. Dixon, and J. M. Escribano. 2001. African swine fever virus protein p54 interacts with

  9. Conjugation of extracellular matrix proteins to basal lamina analogs enhances keratinocyte attachment.

    PubMed

    Bush, Katie A; Downing, Brett R; Walsh, Sarah E; Pins, George D

    2007-02-01

    The dermal-epidermal junction of skin contains extracellular matrix proteins that are involved in initiating and controlling keratinocyte signaling events such as attachment, proliferation, and terminal differentiation. To characterize the relationship between extracellular matrix proteins and keratinocyte attachment, a biomimetic design approach was used to precisely tailor the surface of basal lamina analogs with biochemistries that emulate the native biochemical composition found at the dermal-epidermal junction. A high-throughput screening device was developed by our laboratory that allows for the simultaneous investigation of the conjugation of individual extracellular matrix proteins (e.g. collagen type I, collagen type IV, laminin, or fibronectin) as well as their effect on keratinocyte attachment, on the surface of an implantable collagen membrane. Fluorescence microscopy coupled with quantitative digital image analyses indicated that the extracellular matrix proteins adsorbed to the collagen-GAG membranes in a dose-dependent manner. To determine the relationship between extracellular matrix protein signaling cues and keratinocyte attachment, cells were seeded on protein-conjugated collagen-GAG membranes and a tetrazolium-based colorimetric assay was used to quantify viable keratinocyte attachment. Our results indicate that keratinocyte attachment was significantly enhanced on the surfaces of collagen membranes that were conjugated with fibronectin and type IV collagen. These findings define a set of design parameters that will enhance keratinocyte binding efficiency on the surface of collagen membranes and ultimately improve the rate of epithelialization for dermal equivalents.

  10. Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure.

    PubMed

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-06-29

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone.

  11. Collagen XII and XIV, New Partners of Cartilage Oligomeric Matrix Protein in the Skin Extracellular Matrix Suprastructure*

    PubMed Central

    Agarwal, Pallavi; Zwolanek, Daniela; Keene, Douglas R.; Schulz, Jan-Niklas; Blumbach, Katrin; Heinegård, Dick; Zaucke, Frank; Paulsson, Mats; Krieg, Thomas; Koch, Manuel; Eckes, Beate

    2012-01-01

    The tensile and scaffolding properties of skin rely on the complex extracellular matrix (ECM) that surrounds cells, vasculature, nerves, and adnexus structures and supports the epidermis. In the skin, collagen I fibrils are the major structural component of the dermal ECM, decorated by proteoglycans and by fibril-associated collagens with interrupted triple helices such as collagens XII and XIV. Here we show that the cartilage oligomeric matrix protein (COMP), an abundant component of cartilage ECM, is expressed in healthy human skin. COMP expression is detected in the dermal compartment of skin and in cultured fibroblasts, whereas epidermis and HaCaT cells are negative. In addition to binding collagen I, COMP binds to collagens XII and XIV via their C-terminal collagenous domains. All three proteins codistribute in a characteristic narrow zone in the superficial papillary dermis of healthy human skin. Ultrastructural analysis by immunogold labeling confirmed colocalization and further revealed the presence of COMP along with collagens XII and XIV in anchoring plaques. On the basis of these observations, we postulate that COMP functions as an adapter protein in human skin, similar to its function in cartilage ECM, by organizing collagen I fibrils into a suprastructure, mainly in the vicinity of anchoring plaques that stabilize the cohesion between the upper dermis and the basement membrane zone. PMID:22573329

  12. Inflammatory and fibrotic proteins proteomically identified as key protein constituents in urine and stone matrix of patients with kidney calculi.

    PubMed

    Boonla, Chanchai; Tosukhowong, Piyaratana; Spittau, Björn; Schlosser, Andreas; Pimratana, Chaowat; Krieglstein, Kerstin

    2014-02-15

    To uncover whether urinary proteins are incorporated into stones, the proteomic profiles of kidney stones and urine collected from the same patients have to be explored. We employed 1D-PAGE and nanoHPLC-ESI-MS/MS to analyze the proteomes of kidney stone matrix (n=16), nephrolithiatic urine (n=14) and healthy urine (n=3). We identified 62, 66 and 22 proteins in stone matrix, nephrolithiatic urine and healthy urine, respectively. Inflammation- and fibrosis-associated proteins were frequently detected in the stone matrix and nephrolithiatic urine. Eighteen proteins were exclusively found in the stone matrix and nephrolithiatic urine, considered as candidate biomarkers for kidney stone formation. S100A8 and fibronectin, representatives of inflammation and fibrosis, respectively, were up-regulated in nephrolithiasis renal tissues. S100A8 was strongly expressed in infiltrated leukocytes. Fibronectin was over-expressed in renal tubular cells. S100A8 and fibronectin were immunologically confirmed to exist in nephrolithiatic urine and stone matrix, but in healthy urine they were undetectable. Conclusion, both kidney stones and urine obtained from the same patients greatly contained inflammatory and fibrotic proteins. S100A8 and fibronectin were up-regulated in stone-baring kidneys and nephrolithiatic urine. Therefore, inflammation and fibrosis are suggested to be involved in the formation of kidney calculi.

  13. Towards a matrix mechanics framework for dynamic protein network

    PubMed Central

    2010-01-01

    Protein–protein interaction networks are currently visualized by software generated interaction webs based upon static experimental data. Current state is limited to static, mostly non-compartmental network and non time resolved protein interactions. A satisfactory mathematical foundation for particle interactions within a viscous liquid state (situation within the cytoplasm) does not exist nor do current computer programs enable building dynamic interaction networks for time resolved interactions. Building mathematical foundation for intracellular protein interactions can be achieved in two increments (a) trigger and capture the dynamic molecular changes for a select subset of proteins using several model systems and high throughput time resolved proteomics and, (b) use this information to build the mathematical foundation and computational algorithm for a compartmentalized and dynamic protein interaction network. Such a foundation is expected to provide benefit in at least two spheres: (a) understanding physiology enabling explanation of phenomenon such as incomplete penetrance in genetic disorders and (b) enabling several fold increase in biopharmaceutical production using impure starting materials. PMID:20805933

  14. Kinetic Analysis of Protein Crystal Nucleation in Gel Matrix

    PubMed Central

    Wang, Lei; Liu, Xiang-Yang

    2008-01-01

    The effect of agarose on nucleation of hen egg white lysozyme crystal was examined quantitatively using a temperature-jumping technique. For the first time, to our knowledge, the inhibition of agarose during the nucleation of lysozyme was quantified in two respects: a), the effect of increasing interfacial nucleation barrier, described by the so-called interfacial correlation parameter f(m); and b), the ratio of diffusion to interfacial kinetics obtained from dynamic surface tension measurements. It follows from a dynamic surface tension analysis that the agarose network inhibits the nucleation of lysozyme by means of an enhancement of the repulsion and interfacial structure mismatch between foreign bodies and lysozyme crystals, slowing down the diffusion process of the protein molecules and clusters toward the crystal-fluid interface and inhibiting the rearrangement of protein molecules at the interface. Our results, based on ultraviolet-visible spectroscopy, also show no evidence of the supersaturation enhancement effect in protein agarose gels. The effects of nucleation suppression and transport limitation in gels result in bigger, fewer, and perhaps better quality protein crystals. The understandings obtained in this study will improve our knowledge in controlling the crystallization of proteins and other biomolecules. PMID:18835910

  15. Yeast pex1 cells contain peroxisomal ghosts that import matrix proteins upon reintroduction of Pex1

    PubMed Central

    Knoops, Kèvin; de Boer, Rinse; Kram, Anita

    2015-01-01

    Pex1 and Pex6 are two AAA-ATPases that play a crucial role in peroxisome biogenesis. We have characterized the ultrastructure of the Saccharomyces cerevisiae peroxisome-deficient mutants pex1 and pex6 by various high-resolution electron microscopy techniques. We observed that the cells contained peroxisomal membrane remnants, which in ultrathin cross sections generally appeared as double membrane rings. Electron tomography revealed that these structures consisted of one continuous membrane, representing an empty, flattened vesicle, which folds into a cup shape. Immunocytochemistry revealed that these structures lack peroxisomal matrix proteins but are the sole sites of the major peroxisomal membrane proteins Pex2, Pex10, Pex11, Pex13, and Pex14. Upon reintroduction of Pex1 in Pex1-deficient cells, these peroxisomal membrane remnants (ghosts) rapidly incorporated peroxisomal matrix proteins and developed into peroxisomes. Our data support earlier views that Pex1 and Pex6 play a role in peroxisomal matrix protein import. PMID:26644511

  16. Predicting protein-ligand affinity with a random matrix framework.

    PubMed

    Lee, Alpha A; Brenner, Michael P; Colwell, Lucy J

    2016-11-29

    Rapid determination of whether a candidate compound will bind to a particular target receptor remains a stumbling block in drug discovery. We use an approach inspired by random matrix theory to decompose the known ligand set of a target in terms of orthogonal "signals" of salient chemical features, and distinguish these from the much larger set of ligand chemical features that are not relevant for binding to that particular target receptor. After removing the noise caused by finite sampling, we show that the similarity of an unknown ligand to the remaining, cleaned chemical features is a robust predictor of ligand-target affinity, performing as well or better than any algorithm in the published literature. We interpret our algorithm as deriving a model for the binding energy between a target receptor and the set of known ligands, where the underlying binding energy model is related to the classic Ising model in statistical physics.

  17. Differential label-free quantitative proteomic analysis of avian eggshell matrix and uterine fluid proteins associated with eggshell mechanical property.

    PubMed

    Sun, Congjiao; Xu, Guiyun; Yang, Ning

    2013-12-01

    Eggshell strength is a crucial economic trait for table egg production. During the process of eggshell formation, uncalcified eggs are bathed in uterine fluid that plays regulatory roles in eggshell calcification. In this study, a label-free MS-based protein quantification technology was used to detect differences in protein abundance between eggshell matrix from strong and weak eggs (shell matrix protein from strong eggshells and shell matrix protein from weak eggshells) and between the corresponding uterine fluids bathing strong and weak eggs (uterine fluid bathing strong eggs and uterine fluid bathing weak eggs) in a chicken population. Here, we reported the first global proteomic analysis of uterine fluid. A total of 577 and 466 proteins were identified in uterine fluid and eggshell matrix, respectively. Of 447 identified proteins in uterine fluid bathing strong eggs, up to 357 (80%) proteins were in common with proteins in uterine fluid bathing weak eggs. Similarly, up to 83% (328/396) of the proteins in shell matrix protein from strong eggshells were in common with the proteins in shell matrix protein from weak eggshells. The large amount of common proteins indicated that the difference in protein abundance should play essential roles in influencing eggshell strength. Ultimately, 15 proteins mainly relating to eggshell matrix specific proteins, calcium binding and transportation, protein folding and sorting, bone development or diseases, and thyroid hormone activity were considered to have closer association with the formation of strong eggshell.

  18. Intrinsic fluorescence excitation-emission matrix spectral features of cottonseed protein fractions and the effects of denaturants

    USDA-ARS?s Scientific Manuscript database

    To better understand the functional and physicochemical properties of cottonseed protein, we investigated the intrinsic fluorescence excitation-emission matrix (EEM) spectral features of cottonseed protein isolate (CSPI) and sequentially extracted water (CSPw) and alkali (CSPa) protein fractions, an...

  19. Moderate cyclic tensile strain alters the assembly of cartilage extracellular matrix proteins in vitro.

    PubMed

    Bleuel, Judith; Zaucke, Frank; Brüggemann, Gert-Peter; Heilig, Juliane; Wolter, Marie-Louise; Hamann, Nina; Firner, Sara; Niehoff, Anja

    2015-06-01

    Mechanical loading influences the structural and mechanical properties of articular cartilage. The cartilage matrix protein collagen II essentially determines the tensile properties of the tissue and is adapted in response to loading. The collagen II network is stabilized by the collagen II-binding cartilage oligomeric matrix protein (COMP), collagen IX, and matrilin-3. However, the effect of mechanical loading on these extracellular matrix proteins is not yet understood. Therefore, the aim of this study was to investigate if and how chondrocytes assemble the extracellular matrix proteins collagen II, COMP, collagen IX, and matrilin-3 in response to mechanical loading. Primary murine chondrocytes were applied to cyclic tensile strain (6%, 0.5 Hz, 30 min per day at three consecutive days). The localization of collagen II, COMP, collagen IX, and matrilin-3 in loaded and unloaded cells was determined by immunofluorescence staining. The messenger ribo nucleic acid (mRNA) expression levels and synthesis of the proteins were analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and western blots. Immunofluorescence staining demonstrated that the pattern of collagen II distribution was altered by loading. In loaded chondrocytes, collagen II containing fibrils appeared thicker and strongly co-stained for COMP and collagen IX, whereas the collagen network from unloaded cells was more diffuse and showed minor costaining. Further, the applied load led to a higher amount of COMP in the matrix, determined by western blot analysis. Our results show that moderate cyclic tensile strain altered the assembly of the extracellular collagen network. However, changes in protein amount were only observed for COMP, but not for collagen II, collagen IX, or matrilin-3. The data suggest that the adaptation to mechanical loading is not always the result of changes in RNA and/or protein expression but might also be the result of changes in matrix assembly and structure.

  20. Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells.

    PubMed

    Li, Xingxiang; Zhang, Dianzhong; Lynch-Holm, Valerie J; Okita, Thomas W; Franceschi, Vincent R

    2003-10-01

    The formation of calcium (Ca) oxalate crystals is considered to be a high-capacity mechanism for regulating Ca in many plants. Ca oxalate precipitation is not a stochastic process, suggesting the involvement of specific biochemical and cellular mechanisms. Microautoradiography of water lettuce (Pistia stratiotes) tissue exposed to 3H-glutamate showed incorporation into developing crystals, indicating potential acidic proteins associated with the crystals. Dissolution of crystals leaves behind a crystal-shaped matrix "ghost" that is capable of precipitation of Ca oxalate in the original crystal morphology. To assess whether this matrix has a protein component, purified crystals were isolated and analyzed for internal protein. Polyacrylamide gel electrophoresis revealed the presence of one major polypeptide of about 55 kD and two minor species of 60 and 63 kD. Amino acid analysis indicates the matrix protein is relatively high in acidic amino acids, a feature consistent with its solubility in formic acid but not at neutral pH. 45Ca-binding assays demonstrated the matrix protein has a strong affinity for Ca. Immunocytochemical localization using antibody raised to the isolated protein showed that the matrix protein is specific to crystal-forming cells. Within the vacuole, the surface and internal structures of two morphologically distinct Ca oxalate crystals, raphide and druse, were labeled by the antimatrix protein serum, as were the surfaces of isolated crystals. These results demonstrate that a specific Ca-binding protein exists as an integral component of Ca oxalate crystals, which holds important implications with respect to regulation of crystal formation.

  1. The microtubule motor protein KIF13A is involved in intracellular trafficking of the Lassa virus matrix protein Z.

    PubMed

    Fehling, Sarah Katharina; Noda, Takeshi; Maisner, Andrea; Lamp, Boris; Conzelmann, Karl-Klaus; Kawaoka, Yoshihiro; Klenk, Hans-Dieter; Garten, Wolfgang; Strecker, Thomas

    2013-02-01

    The small matrix protein Z of arenaviruses has been identified as the main driving force to promote viral particle production at the plasma membrane. Although multiple functions of Z in the arenaviral life cycle have been uncovered, the mechanism of intracellular transport of Z to the site of virus budding is poorly understood and cellular motor proteins that mediate Z trafficking remain to be identified. In the present study, we report that the Z protein of the Old World arenavirus Lassa virus (LASV) interacts with the kinesin family member 13A (KIF13A), a plus-end-directed microtubule-dependent motor protein. Plasmid-driven overexpression of KIF13A results in relocalization of Z to the cell periphery, while functional blockage of endogenous KIF13A by overexpression of a dominant-negative mutant or KIF13A-specific siRNA causes a perinuclearaccumulation and decreased production of both Z-induced virus-like particles and infectious LASV. The interaction of KIF13A with Z proteins from both Old and New World arenaviruses suggests a conserved intracellular transport mechanism. In contrast, the intracellular distribution of the matrix proteins of prototypic members of the paramyxo- and rhabdovirus family is independent of KIF13A. In summary, our studies identify for the first time a molecular motor protein as a critical mediator for intracellular microtubule-dependent transport of arenavirus matrix proteins.

  2. Serum protein fractionation using supported molecular matrix electrophoresis.

    PubMed

    Dong, Weijie; Matsuno, Yu-ki; Kameyama, Akihiko

    2013-08-01

    Supported molecular matrix electrophoresis (SMME), in which a hydrophilic polymer such as PVA serves as a support within a porous PVDF membrane, was recently developed. This method is similar to cellulose acetate membrane electrophoresis but differs in the compatibility to glycan analysis of the separated bands. In this report, we describe the first instance of the application of SMME to human serum fractionation, and demonstrate the differences with serum fractionation by cellulose acetate membrane electrophoresis. The SMME membrane exhibited almost no EOF during electrophoresis, unlike the cellulose acetate membrane, but afforded comparative results for serum fractionation. The visualization of each fraction was achieved by conventional staining with dye such as Direct Blue-71, and objective quantification was obtained by densitometry after inducing membrane transparency with 1-nonene. Immunostaining was also achieved. Moreover, mass spectrometric analysis of both N-linked and O-linked glycans from the separated bands was demonstrated. Serum fractionation and glycan profiling of each fraction using SMME will enable novel insights into the relationships between various glycosylation profiles and disease states.

  3. Human keratinocytes synthesize and secrete the extracellular matrix protein, thrombospondin.

    PubMed

    Wikner, N E; Dixit, V M; Frazier, W A; Clark, R A

    1987-02-01

    Thrombospondin (TSP) a glycoprotein originally identified as the endogenous lectin of platelets, is also synthesized by fibroblasts, endothelial cells, pneumocytes, smooth muscle cells, and macrophages. Thrombospondin is subdivided into functional domains which bind specifically to heparin, fibronectin, collagen, and to specific cellular receptors. It is found within the basement membranes of kidney, lung, smooth muscle, and skin. Thus TSP may serve as an important link between cells and matrices. Thrombospondin also has been reported at the epidermal-dermal junction. We wished to determine whether human keratinocytes synthesize and secrete TSP. Pure human keratinocytes were grown in defined medium without fibroblast feeder layers. Immunofluorescent staining with either rabbit polyclonal or mouse monoclonal antibodies to human platelet TSP yielded specific granular staining within the cytoplasm of keratinocytes. Culture media and cellular lysates were harvested from cultures metabolically labeled with [35S]methionine. Trichloroacetic acid precipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and autoradiography revealed a major labeled band comigrating with purified platelet TSP in both the media and the cellular lysates. Immunoprecipitation with either the polyclonal or the monoclonal anti-TSP antibodies followed by SDS-PAGE and autoradiography identified this band as TSP. Thus keratinocytes in culture synthesize and secrete TSP. Thrombospondin may play an important role in epidermal interactions with extracellular matrix.

  4. Osteoblast fibronectin mRNA, protein synthesis, and matrix are unchanged after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Gilbertson, V.

    1999-01-01

    The well-defined osteoblast line, MC3T3-E1 was used to examine fibronectin (FN) mRNA levels, protein synthesis, and extracellular FN matrix accumulation after growth activation in spaceflight. These osteoblasts produce FN extracellular matrix (ECM) known to regulate adhesion, differentiation, and function in adherent cells. Changes in bone ECM and osteoblast cell shape occur in spaceflight. To determine whether altered FN matrix is a factor in causing these changes in spaceflight, quiescent osteoblasts were launched into microgravity and were then sera activated with and without a 1-gravity field. Synthesis of FN mRNA, protein, and matrix were measured after activation in microgravity. FN mRNA synthesis is significantly reduced in microgravity (0-G) when compared to ground (GR) osteoblasts flown in a centrifuge simulating earth's gravity (1-G) field 2.5 h after activation. However, 27.5 h after activation there were no significant differences in mRNA synthesis. A small but significant reduction of FN protein was found in the 0-G samples 2.5 h after activation. Total FN protein 27.5 h after activation showed no significant difference between any of the gravity conditions, however, there was a fourfold increase in absolute amount of protein synthesized during the incubation. Using immunofluorescence, we found no significant differences in the amount or in the orientation of the FN matrix after 27.5 h in microgravity. These results demonstrate that FN is made by sera-activated osteoblasts even during exposure to microgravity. These data also suggest that after a total period of 43 h of spaceflight FN transcription, translation, or altered matrix assembly is not responsible for the altered cell shape or altered matrix formation of osteoblasts.

  5. Osteoblast fibronectin mRNA, protein synthesis, and matrix are unchanged after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Gilbertson, V.

    1999-01-01

    The well-defined osteoblast line, MC3T3-E1 was used to examine fibronectin (FN) mRNA levels, protein synthesis, and extracellular FN matrix accumulation after growth activation in spaceflight. These osteoblasts produce FN extracellular matrix (ECM) known to regulate adhesion, differentiation, and function in adherent cells. Changes in bone ECM and osteoblast cell shape occur in spaceflight. To determine whether altered FN matrix is a factor in causing these changes in spaceflight, quiescent osteoblasts were launched into microgravity and were then sera activated with and without a 1-gravity field. Synthesis of FN mRNA, protein, and matrix were measured after activation in microgravity. FN mRNA synthesis is significantly reduced in microgravity (0-G) when compared to ground (GR) osteoblasts flown in a centrifuge simulating earth's gravity (1-G) field 2.5 h after activation. However, 27.5 h after activation there were no significant differences in mRNA synthesis. A small but significant reduction of FN protein was found in the 0-G samples 2.5 h after activation. Total FN protein 27.5 h after activation showed no significant difference between any of the gravity conditions, however, there was a fourfold increase in absolute amount of protein synthesized during the incubation. Using immunofluorescence, we found no significant differences in the amount or in the orientation of the FN matrix after 27.5 h in microgravity. These results demonstrate that FN is made by sera-activated osteoblasts even during exposure to microgravity. These data also suggest that after a total period of 43 h of spaceflight FN transcription, translation, or altered matrix assembly is not responsible for the altered cell shape or altered matrix formation of osteoblasts.

  6. Fractionation of the Gulf Toadfish Intestinal Precipitate Organic Matrix Reveals Potential Functions of Individual Proteins.

    PubMed

    Schauer, Kevin L; Grosell, Martin

    2017-03-15

    The regulatory mechanisms behind the production of CaCO3 in the marine teleost intestine are poorly studied despite being essential for osmoregulation and responsible for a conservatively estimated 3-15% of annual oceanic CaCO3 production. It has recently been reported that the intestinally derived precipitates produced by fish as a byproduct of their osmoregulatory strategy form in conjunction with a proteinaceous matrix containing nearly 150 unique proteins. The individual functions of these proteins have not been the subject of investigation until now. Here, organic matrix was extracted from precipitates produced by Gulf toadfish (Opsanus beta) and the matrix proteins were fractionated by their charge using strong anion exchange chromatography. The precipitation regulatory abilities of the individual fractions were then analyzed using a recently developed in vitro calcification assay, and the protein constituents of each fraction were determined by mass spectrometry. The different fractions were found to have differing effects on both the rate of carbonate mineral production, as well as the morphology of the crystals that form. Using data collected from the calcification assay as well as the mass spectrometry experiments, individual calcification promotional indices were calculated for each protein, giving the first insight into the functions each of these matrix proteins may play in regulating precipitation.

  7. Novel proteins identified in the insoluble byssal matrix of the freshwater zebra mussel.

    PubMed

    Gantayet, Arpita; Rees, David J; Sone, Eli D

    2014-04-01

    The freshwater zebra mussel, Dreissena polymorpha, is an invasive, biofouling species that adheres to a variety of substrates underwater, using a proteinaceous anchor called the byssus. The byssus consists of a number of threads with adhesive plaques at the tips. It contains the unusual amino acid 3, 4-dihydroxyphenylalanine (DOPA), which is believed to play an important role in adhesion, in addition to providing structural integrity to the byssus through cross-linking. Extensive DOPA cross-linking, however, renders the zebra mussel byssus highly resistant to protein extraction, and therefore limits byssal protein identification. We report here on the identification of seven novel byssal proteins in the insoluble byssal matrix following protein extraction from induced, freshly secreted byssal threads with minimal cross-linking. These proteins were identified by LC-MS/MS analysis of tryptic digests of the matrix proteins by spectrum matching against a zebra mussel cDNA library of genes unique to the mussel foot, the organ that secretes the byssus. All seven proteins were present in both the plaque and thread. Comparisons of the protein sequences revealed common features of zebra mussel byssal proteins, and several recurring sequence motifs. Although their sequences are unique, many of the proteins display similarities to marine mussel byssal proteins, as well as to adhesive and structural proteins from other species. The large expansion of the byssal proteome reported here represents an important step towards understanding zebra mussel adhesion.

  8. Expression Patterns of Extracellular Matrix Proteins during Posterior Commissure Development

    PubMed Central

    Stanic, Karen; Saldivia, Natalia; Förstera, Benjamín; Torrejón, Marcela; Montecinos, Hernán; Caprile, Teresa

    2016-01-01

    Extracellular matrix (ECM) molecules are pivotal for central nervous system (CNS) development, facilitating cell migration, axonal growth, myelination, dendritic spine formation, and synaptic plasticity, among other processes. During axon guidance, the ECM not only acts as a permissive or non-permissive substrate for navigating axons, but also modulates the effects of classical guidance cues, such as netrin or Eph/ephrin family members. Despite being highly important, little is known about the expression of ECM molecules during CNS development. Therefore, this study assessed the molecular expression patterns of tenascin, HNK-1, laminin, fibronectin, perlecan, decorin, and osteopontin along chick embryo prosomere 1 during posterior commissure development. The posterior commissure is the first transversal axonal tract of the embryonic vertebrate brain. Located in the dorso-caudal portion of prosomere 1, posterior commissure axons primarily arise from the neurons of basal pretectal nuclei that run dorsally to the roof plate midline, where some turn toward the ipsilateral side. Expressional analysis of ECM molecules in this area these revealed to be highly arranged, and molecule interactions with axon fascicles suggested involvement in processes other than structural support. In particular, tenascin and the HNK-1 epitope extended in ventro-dorsal columns and enclosed axons during navigation to the roof plate. Laminin and osteopontin were expressed in the midline, very close to axons that at this point must decide between extending to the contralateral side or turning to the ipsilateral side. Finally, fibronectin, decorin, and perlecan appeared unrelated to axonal pathfinding in this region and were instead restricted to the external limiting membrane. In summary, the present report provides evidence for an intricate expression of different extracellular molecules that may cooperate in guiding posterior commissure axons. PMID:27733818

  9. Role of oligomerization domains in thrombospondins and other extracellular matrix proteins.

    PubMed

    Engel, Jürgen

    2004-06-01

    Coiled coils, collagen triple helices and globular oligomerization domains mediate the subunit assembly of many proteins in vertebrates and invertebrates. Oligomerization offers functional advantages including multivalency, increased binding strength and the combined function of different domains. These features are seen in natural proteins and may be introduced by protein engineering. The special focus of this review is on oligomerization domain of extracellular matrix proteins. For thrombospondins, initial interesting results on the functional role of oligomerization have been published. Other features remain to be explored. For example, it is not clear why thrombospondin-1 and thrombospondin-2 are trimers whereas thrombospondins-3 to -5 are pentamers. To stimulate this type of research, this review makes a survey of oligomerization domains and their functional role in extracellular matrix proteins.

  10. The incorporation of extracellular matrix proteins in protein polymer hydrogels to improve encapsulated beta-cell function.

    PubMed

    Beenken-Rothkopf, Liese N; Karfeld-Sulzer, Lindsay S; Davis, Nicolynn E; Forster, Ryan; Barron, Annelise E; Fontaine, Magali J

    2013-01-01

    Biomaterial encapsulation of islets has been proposed to improve the long-term success of islet transplantation by recreating a suitable microenvironment and enhancing cell-matrix interactions that affect cellular function. Protein polymer hydrogels previously showed promise as a biocompatible scaffold by maintaining high cell viability. Here, enzymatically-crosslinked protein polymers were used to investigate the effects of varying scaffold properties and of introducing ECM proteins on the viability and function of encapsulated MIN6 β-cells. Chemical and mechanical properties of the hydrogel were modified by altering the protein concentrations while collagen IV, fibronectin, and laminin were incorporated to reestablish cell-matrix interactions lost during cell isolation. Rheology indicated all hydrogels formed quickly, resulting in robust, elastic hydrogels with Young's moduli similar to soft tissue. All hydrogels tested supported both high MIN6 β-cell viability and function and have the potential to serve as an encapsulation platform for islet cell delivery in vivo.

  11. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques.

    PubMed

    Dhore, C R; Cleutjens, J P; Lutgens, E; Cleutjens, K B; Geusens, P P; Kitslaar, P J; Tordoir, J H; Spronk, H M; Vermeer, C; Daemen, M J

    2001-12-01

    In the present study, we examined the expression of regulators of bone formation and osteoclastogenesis in human atherosclerosis because accumulating evidence suggests that atherosclerotic calcification shares features with bone calcification. The most striking finding of this study was the constitutive immunoreactivity of matrix Gla protein, osteocalcin, and bone sialoprotein in nondiseased aortas and the absence of bone morphogenetic protein (BMP)-2, BMP-4, osteopontin, and osteonectin in nondiseased aortas and early atherosclerotic lesions. When atherosclerotic plaques demonstrated calcification or bone formation, BMP-2, BMP-4, osteopontin, and osteonectin were upregulated. Interestingly, this upregulation was associated with a sustained immunoreactivity of matrix Gla protein, osteocalcin, and bone sialoprotein. The 2 modulators of osteoclastogenesis (osteoprotegerin [OPG] and its ligand, OPGL) were present in the nondiseased vessel wall and in early atherosclerotic lesions. In advanced calcified lesions, OPG was present in bone structures, whereas OPGL was only present in the extracellular matrix surrounding calcium deposits. The observed expression patterns suggest a tight regulation of the expression of bone matrix regulatory proteins during human atherogenesis. The expression pattern of both OPG and OPGL during atherogenesis might suggest a regulatory role of these proteins not only in osteoclastogenesis but also in atherosclerotic calcification.

  12. Store-Operated Ca2+ Channels in Mesangial Cells Inhibit Matrix Protein Expression.

    PubMed

    Wu, Peiwen; Wang, Yanxia; Davis, Mark E; Zuckerman, Jonathan E; Chaudhari, Sarika; Begg, Malcolm; Ma, Rong

    2015-11-01

    Accumulation of extracellular matrix derived from glomerular mesangial cells is an early feature of diabetic nephropathy. Ca(2+) signals mediated by store-operated Ca(2+) channels regulate protein production in a variety of cell types. The aim of this study was to determine the effect of store-operated Ca(2+) channels in mesangial cells on extracellular matrix protein expression. In cultured human mesangial cells, activation of store-operated Ca(2+) channels by thapsigargin significantly decreased fibronectin protein expression and collagen IV mRNA expression in a dose-dependent manner. Conversely, inhibition of the channels by 2-aminoethyl diphenylborinate significantly increased the expression of fibronectin and collagen IV. Similarly, overexpression of stromal interacting molecule 1 reduced, but knockdown of calcium release-activated calcium channel protein 1 (Orai1) increased fibronectin protein expression. Furthermore, 2-aminoethyl diphenylborinate significantly augmented angiotensin II-induced fibronectin protein expression, whereas thapsigargin abrogated high glucose- and TGF-β1-stimulated matrix protein expression. In vivo knockdown of Orai1 in mesangial cells of mice using a targeted nanoparticle siRNA delivery system resulted in increased expression of glomerular fibronectin and collagen IV, and mice showed significant mesangial expansion compared with controls. Similarly, in vivo knockdown of stromal interacting molecule 1 in mesangial cells by recombinant adeno-associated virus-encoded shRNA markedly increased collagen IV protein expression in renal cortex and caused mesangial expansion in rats. These results suggest that store-operated Ca(2+) channels in mesangial cells negatively regulate extracellular matrix protein expression in the kidney, which may serve as an endogenous renoprotective mechanism in diabetes.

  13. Extracellular matrix mineralization in periodontal tissues: Noncollagenous matrix proteins, enzymes, and relationship to hypophosphatasia and X-linked hypophosphatemia

    PubMed Central

    McKee, Marc D.; Hoac, Betty; Addison, William N.; Barros, Nilana M.T.; Millán, José Luis; Chaussain, Catherine

    2013-01-01

    As broadly demonstrated for the formation of a functional skeleton, proper mineralization of periodontal alveolar bone and teeth – where calcium phosphate crystals are deposited and grow within an extracellular matrix – is essential to dental function. Mineralization defects in tooth dentin and cementum of the periodontium invariably lead to a weak (soft or brittle) dentition such that teeth become loose and prone to infection and are lost prematurely. Mineralization of the extremities of periodontal ligament fibres (Sharpey's fibres) where they insert into tooth cementum and alveolar bone is also essential for the function of the tooth suspensory apparatus in occlusion and mastication. Molecular determinants of mineralization in these tissues include mineral ion concentrations (phosphate and calcium), pyrophosphate, small integrin-binding ligand N-linked glycoproteins (SIBLINGs), and matrix vesicles. Amongst the enzymes important in regulating these mineralization determinants, two are discussed at length here with clinical examples given, namely tissue-nonspecific alkaline phosphatase (TNAP) and phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX). Inactivating mutations in these enzymes in humans and in mouse models lead to the soft bones and teeth characteristic of hypophosphatasia (HPP) and X-linked hypophosphatemia (XLH), respectively, where levels of local and systemic circulating mineralization determinants are perturbed. In XLH, in addition to renal phosphate wasting causing low circulating phosphate levels, phosphorylated mineralization-regulating SIBLING proteins such as matrix extracellular phosphoglycoprotein (MEPE) and osteopontin (OPN), and the phosphorylated peptides proteolytically released from them such as the acidic serine- and aspartate-rich motif (ASARM) peptide, may accumulate locally to impair mineralization in this disease. PMID:23931057

  14. A protein involved in the assembly of an extracellular calcium storage matrix.

    PubMed

    Glazer, Lilah; Shechter, Assaf; Tom, Moshe; Yudkovski, Yana; Weil, Simy; Aflalo, Eliahu David; Pamuru, Ramachandra Reddy; Khalaila, Isam; Bentov, Shmuel; Berman, Amir; Sagi, Amir

    2010-04-23

    Gastroliths, the calcium storage organs of crustaceans, consist of chitin-protein-mineral complexes in which the mineral component is stabilized amorphous calcium carbonate. To date, only three proteins, GAP 65, gastrolith matrix protein (GAMP), and orchestin, have been identified in gastroliths. Here, we report a novel protein, GAP 10, isolated from the gastrolith of the crayfish Cherax quadricarinatus and specifically expressed in its gastrolith disc. The encoding gene was cloned by partial sequencing of the protein extracted from the gastrolith matrix. Based on an assembled microarray cDNA chip, GAP 10 transcripts were found to be highly (12-fold) up-regulated in premolt gastrolith disc and significantly down-regulated in the hypodermis at the same molt stage. The deduced protein sequence of GAP 10 lacks chitin-binding domains and does not show homology to known proteins in the GenBank data base. It does, however, have an amino acid composition that has similarity to proteins extracted from invertebrate and ascidian-calcified extracellular matrices. The GAP 10 sequence contains a predicted signal peptide and predicted phosphorylation sites. In addition, the protein is phosphorylated and exhibits calcium-binding ability. Repeated daily injections of GAP 10 double strand RNA to premolt C. quadricarinatus resulted in a prolonged premolt stage and in the development of gastroliths with irregularly rough surfaces. These findings suggest that GAP 10 may be involved in the assembly of the gastrolith chitin-protein-mineral complex, particularly in the deposition of amorphous calcium carbonate.

  15. An Overview of the Medical Applications of Marine Skeletal Matrix Proteins.

    PubMed

    Rahman, M Azizur

    2016-09-12

    In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP). Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices) from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery.

  16. An Overview of the Medical Applications of Marine Skeletal Matrix Proteins

    PubMed Central

    Rahman, M. Azizur

    2016-01-01

    In recent years, the medicinal potential of marine organisms has attracted increasing attention. This is due to their immense diversity and adaptation to unique ecological niches that has led to vast physiological and biochemical diversification. Among these organisms, marine calcifiers are an abundant source of novel proteins and chemical entities that can be used for drug discovery. Studies of the skeletal organic matrix proteins of marine calcifiers have focused on biomedical applications such as the identification of growth inducing proteins that can be used for bone regeneration, for example, 2/4 bone morphogenic proteins (BMP). Although a few reports on the functions of proteins derived from marine calcifiers can be found in the literature, marine calcifiers themselves remain an untapped source of proteins for the development of innovative pharmaceuticals. Following an overview of the current knowledge of skeletal organic matrix proteins from marine calcifiers, this review will focus on various aspects of marine skeletal protein research including sources, biosynthesis, structures, and possible strategies for chemical or physical modification. Special attention will be given to potential medical applications and recent discoveries of skeletal proteins and polysaccharides with biologically appealing characteristics. In addition, I will introduce an effective protocol for sample preparation and protein purification that includes isolation technology for biopolymers (of both soluble and insoluble organic matrices) from coralline algae. These algae are a widespread but poorly studied group of shallow marine calcifiers that have great potential for marine drug discovery. PMID:27626432

  17. A composite agarose-polyacrylamide matrix as two-dimensional hard support for solid-phase protein assays.

    PubMed

    Krajewski, Wladyslaw A

    2016-03-15

    The solid-phase protein assays using blotting membranes as hard support do not allow achieving the low background and sensitivity of protein staining in clear gels. The membrane opacity complicates imaging of results on standard lab documentation systems. We describe a low-cost transparent matrix that can be used as an alternative to polymeric membranes for solid-phase assays. Protein samples are spotted onto a dry film of composite agarose-polyacrylamide matrix covering standard glass microscopic slides. After rehydration in protein-fixing solution, matrix with protein samples can be detached from glass support and stained as conventional protein polyacrylamide gels.

  18. Versatile Photocrosslinked Protein Hydrogel Matrix for Magnetic-Nanoparticle-Doping and Biomineralization.

    PubMed

    Ji, Fengying; Li, Shanpeng; Yang, Hai; Wang, Zhirui; Li, Aiwu

    2016-02-01

    A versatile template biomaterial was facilely obtained by ultraviolet (UV) photocrosslinking approach using protein molecules as building blocks. As-formed photocrosslinked protein hydrogel matrix (PPHM) was proved to be composed of covalently bound and dense packing protein molecules. Therefore, the PPHM was endowed with highly smooth topograghy with an average roughness of approximately 5 nm, and was self-supporting and flexible. The PPHM could be easily functionalized by doping Fe3O4 magnetic nanoparticles inside the protein hydrogel. Further, PPHM was experimentally demonstrated to be used as a applicable template for biomineralization.

  19. LRPPRC is a mitochondrial matrix protein that is conserved in metazoans

    SciTech Connect

    Sterky, Fredrik H.; Ruzzenente, Benedetta; Gustafsson, Claes M.; Samuelsson, Tore; Larsson, Nils-Goeran

    2010-08-06

    Research highlights: {yields} LRPPRC orthologs are restricted to metazoans. {yields} LRPPRC is imported to the mitochondrial matrix. {yields} No evidence of nuclear isoform. -- Abstract: LRPPRC (also called LRP130) is an RNA-binding pentatricopeptide repeat protein. LRPPRC has been recognized as a mitochondrial protein, but has also been shown to regulate nuclear gene transcription and to bind specific RNA molecules in both the nucleus and the cytoplasm. We here present a bioinformatic analysis of the LRPPRC primary sequence, which reveals that orthologs to the LRPPRC gene are restricted to metazoan cells and that all of the corresponding proteins contain mitochondrial targeting signals. To address the subcellular localization further, we have carefully analyzed LRPPRC in mammalian cells and identified a single isoform that is exclusively localized to mitochondria. The LRPPRC protein is imported to the mitochondrial matrix and its mitochondrial targeting sequence is cleaved upon entry.

  20. Silkmapin of Hyriopsis cumingii, a novel silk-like shell matrix protein involved in nacre formation.

    PubMed

    Liu, Xiaojun; Dong, Shaojian; Jin, Can; Bai, Zhiyi; Wang, Guiling; Li, Jiale

    2015-01-25

    Understanding the role of matrix proteins in nacre formation and biomineralization in mollusks is important for the pearl industry. In this study, the gene encoding the novel Hyriopsis cumingii shell matrix protein silkmapin was characterized. The gene encodes a protein of 30.89kDa in which Gly accounts for 34.41% of the amino acid content, and the C-terminal region binds Ca(2+). Secondary structure prediction indicated a predominantly β-fold and a structure typical of filamentous proteins. Real-time quantitative PCR and in situ hybridization showed that silkmapin was expressed in epithelial cells at the edge and pallial of mantle tissue, indicated that silkmapin play roles in the shell nacreous and prismatic layer formation. Further real-time PCR results indicated an involvement in pearl formation via nucleation of calcium carbonate prior to formation of the nacre.

  1. Diversity of bone matrix adhesion proteins modulates osteoblast attachment and organization of actin cytoskeleton.

    PubMed

    Demais, V; Audrain, C; Mabilleau, G; Chappard, D; Baslé, M F

    2014-06-01

    Interaction of cells with extracellular matrix is an essential event for differentiation, proliferation and activity of osteoblasts. In bone, binding of osteoblasts to bone matrix is required to determine specific activities of the cells and to synthesize matrix bone proteins. Integrins are the major cell receptors involved in the cell linkage to matrix proteins such as fibronectin, type I collagen and vitronectin, via the RGD-sequences. In this study, cultures of osteoblast-like cells (Saos-2) were done on coated glass coverslips in various culture conditions: DMEM alone or DMEM supplemented with poly-L-lysine (PL), fetal calf serum (FCS), fibronectin (FN), vitronectin (VN) and type I collagen (Col-I). The aim of the study was to determine the specific effect of these bone matrix proteins on cell adherence and morphology and on the cytoskeleton status. Morphological characteristics of cultured cells were studied using scanning electron microscopy and image analysis. The heterogeneity of cytoskeleton was studied using fractal analysis (skyscrapers and blanket algorithms) after specific preparation of cells to expose the cytoskeleton. FAK and MAPK signaling pathways were studied by western blotting in these various culture conditions. Results demonstrated that cell adhesion was reduced with PL and VN after 240 min. After 60 min of adhesion, cytoskeleton organization was enhanced with FN, VN and Col-I. No difference in FAK phosphorylation was observed but MAPK phosphorylation was modulated by specific adhesion on extracellular proteins. These results indicate that culture conditions modulate cell adhesion, cytoskeleton organization and intracellular protein pathways according to extracellular proteins present for adhesion.

  2. Mitochondrial Matrix Ca2+ Accumulation Regulates Cytosolic NAD+/NADH Metabolism, Protein Acetylation, and Sirtuin Expression

    PubMed Central

    Marcu, Raluca; Wiczer, Brian M.; Neeley, Christopher K.

    2014-01-01

    Mitochondrial calcium uptake stimulates bioenergetics and drives energy production in metabolic tissue. It is unknown how a calcium-mediated acceleration in matrix bioenergetics would influence cellular metabolism in glycolytic cells that do not require mitochondria for ATP production. Using primary human endothelial cells (ECs), we discovered that repetitive cytosolic calcium signals (oscillations) chronically loaded into the mitochondrial matrix. Mitochondrial calcium loading in turn stimulated bioenergetics and a persistent elevation in NADH. Rather than serving as an impetus for mitochondrial ATP generation, matrix NADH rapidly transmitted to the cytosol to influence the activity and expression of cytosolic sirtuins, resulting in global changes in protein acetylation. In endothelial cells, the mitochondrion-driven reduction in both the cytosolic and mitochondrial NAD+/NADH ratio stimulated a compensatory increase in SIRT1 protein levels that had an anti-inflammatory effect. Our studies reveal the physiologic importance of mitochondrial bioenergetics in the metabolic regulation of sirtuins and cytosolic signaling cascades. PMID:24865966

  3. Vitamin K-dependent carboxylation of matrix gla protein influences the risk of calciphylaxis

    USDA-ARS?s Scientific Manuscript database

    Matrix Gla protein (MGP) is a potent inhibitor of vascular calcification. The ability of MGP to inhibit calcification requires the activity of a vitamin K-dependent enzyme, which mediates MGP carboxylation. We investigated how MGP carboxylation influences the risk of calciphylaxis in adult patients ...

  4. Conservation of Transit Peptide-Independent Protein Import into the Mitochondrial and Hydrogenosomal Matrix

    PubMed Central

    Garg, Sriram; Stölting, Jan; Zimorski, Verena; Rada, Petr; Tachezy, Jan; Martin, William F.; Gould, Sven B.

    2015-01-01

    The origin of protein import was a key step in the endosymbiotic acquisition of mitochondria. Though the main translocon of the mitochondrial outer membrane, TOM40, is ubiquitous among organelles of mitochondrial ancestry, the transit peptides, or N-terminal targeting sequences (NTSs), recognised by the TOM complex, are not. To better understand the nature of evolutionary conservation in mitochondrial protein import, we investigated the targeting behavior of Trichomonas vaginalis hydrogenosomal proteins in Saccharomyces cerevisiae and vice versa. Hydrogenosomes import yeast mitochondrial proteins even in the absence of their native NTSs, but do not import yeast cytosolic proteins. Conversely, yeast mitochondria import hydrogenosomal proteins with and without their short NTSs. Conservation of an NTS-independent mitochondrial import route from excavates to opisthokonts indicates its presence in the eukaryote common ancestor. Mitochondrial protein import is known to entail electrophoresis of positively charged NTSs across the electrochemical gradient of the inner mitochondrial membrane. Our present findings indicate that mitochondrial transit peptides, which readily arise from random sequences, were initially selected as a signal for charge-dependent protein targeting specifically to the mitochondrial matrix. Evolutionary loss of the electron transport chain in hydrogenosomes and mitosomes lifted the selective constraints that maintain positive charge in NTSs, allowing first the NTS charge, and subsequently the NTS itself, to be lost. This resulted in NTS-independent matrix targeting, which is conserved across the evolutionary divide separating trichomonads and yeast, and which we propose is the ancestral state of mitochondrial protein import. PMID:26338186

  5. Controlled protein delivery from electrospun non-wovens: novel combination of protein crystals and a biodegradable release matrix.

    PubMed

    Puhl, Sebastian; Li, Linhao; Meinel, Lorenz; Germershaus, Oliver

    2014-07-07

    Poly-ε-caprolactone (PCL) is an excellent polymer for electrospinning and matrix-controlled drug delivery combining optimal processability and good biocompatibility. Electrospinning of proteins has been shown to be challenging via the use of organic solvents, frequently resulting in protein unfolding or aggregation. Encapsulation of protein crystals represents an attractive but largely unexplored alternative to established protein encapsulation techniques because of increased thermodynamic stability and improved solvent resistance of the crystalline state. We herein explore the electrospinning of protein crystal suspensions and establish basic design principles for this novel type of protein delivery system. PCL was deployed as a matrix, and lysozyme was used as a crystallizing model protein. By rational combination of lysozyme crystals 0.7 or 2.1 μm in diameter and a PCL fiber diameter between 1.6 and 10 μm, release within the first 24 h could be varied between approximately 10 and 100%. Lysozyme loading of PCL microfibers between 0.5 and 5% was achieved without affecting processability. While relative release was unaffected by loading percentage, the amount of lysozyme released could be tailored. PCL was blended with poly(ethylene glycol) and poly(lactic-co-glycolic acid) to further modify the release rate. Under optimized conditions, an almost constant lysozyme release over 11 weeks was achieved.

  6. Immunolocalization of skeletal matrix proteins in tissue and mineral of the coral Stylophora pistillata

    PubMed Central

    Mass, Tali; Drake, Jeana L.; Peters, Esther C.; Jiang, Wenge; Falkowski, Paul G.

    2014-01-01

    The precipitation and assembly of calcium carbonate skeletons by stony corals is a precisely controlled process regulated by the secretion of an ECM. Recently, it has been reported that the proteome of the skeletal organic matrix (SOM) contains a group of coral acid-rich proteins as well as an assemblage of adhesion and structural proteins, which together, create a framework for the precipitation of aragonite. To date, we are aware of no report that has investigated the localization of individual SOM proteins in the skeleton. In particular, no data are available on the ultrastructural mapping of these proteins in the calcification site or the skeleton. This information is crucial to assessing the role of these proteins in biomineralization. Immunological techniques represent a valuable approach to localize a single component within a calcified skeleton. By using immunogold labeling and immunohistochemical assays, here we show the spatial arrangement of key matrix proteins in tissue and skeleton of the common zooxanthellate coral, Stylophora pistillata. To our knowledge, our results reveal for the first time that, at the nanoscale, skeletal proteins are embedded within the aragonite crystals in a highly ordered arrangement consistent with a diel calcification pattern. In the tissue, these proteins are not restricted to the calcifying epithelium, suggesting that they also play other roles in the coral’s metabolic pathways. PMID:25139990

  7. Matrix Sublimation/Recrystallization for Imaging Proteins by Mass Spectrometry at High Spatial Resolution

    PubMed Central

    Yang, Junhai; Caprioli, Richard M.

    2011-01-01

    We have employed matrix deposition by sublimation for protein image analysis on tissue sections using a hydration/recrystallization process that produces high quality MALDI mass spectra and high spatial resolution ion images. We systematically investigated different washing protocols, the effect of tissue section thickness, the amount of sublimated matrix per unit area and different recrystallization conditions. The results show that an organic solvent rinse followed by ethanol/water rinses substantially increased sensitivity for the detection of proteins. Both the thickness of tissue section and amount of sinapinic acid sublimated per unit area have optimal ranges for maximal protein signal intensity. Ion images of mouse and rat brain sections at 50, 20 and 10 µm spatial resolution are presented and are correlated with H&E stained optical images. For targeted analysis, histology directed imaging can be performed using this protocol where MS analysis and H&E staining are performed on the same section. PMID:21639088

  8. Adhesion properties of Lactobacillus rhamnosus mucus-binding factor to mucin and extracellular matrix proteins.

    PubMed

    Nishiyama, Keita; Nakamata, Koichi; Ueno, Shintaro; Terao, Akari; Aryantini, Ni Putu Desy; Sujaya, I Nengah; Fukuda, Kenji; Urashima, Tadasu; Yamamoto, Yuji; Mukai, Takao

    2015-01-01

    We previously described potential probiotic Lactobacillus rhamnosus strains, isolated from fermented mare milk produced in Sumbawa Island, Indonesia, which showed high adhesion to porcine colonic mucin (PCM) and extracellular matrix (ECM) proteins. Recently, mucus-binding factor (MBF) was found in the GG strain of L. rhamnosus as a mucin-binding protein. In this study, we assessed the ability of recombinant MBF protein from the FSMM22 strain, one of the isolates of L. rhamnosus from fermented Sumbawa mare milk, to adhere to PCM and ECM proteins by overlay dot blot and Biacore assays. MBF bound to PCM, laminin, collagen IV, and fibronectin with submicromolar dissociation constants. Adhesion of the FSMM22 mbf mutant strain to PCM and ECM proteins was significantly less than that of the wild-type strain. Collectively, these results suggested that MBF contribute to L. rhamnosus host colonization via mucin and ECM protein binding.

  9. Extracellular matrix interacts with interferon {alpha} protein: Retention and display of cytotoxicity

    SciTech Connect

    Yoshida, Kimiko; Kondoh, Atsushi; Narumi, Kenta; Yoshida, Teruhiko; Aoki, Kazunori

    2008-11-14

    We have been investigating the efficacy of an intratumoral interferon (IFN)-{alpha} gene transfer against solid cancers, and found that when the gene is transduced into the subcutaneous tumors, IFN-{alpha} concentration is markedly increased in the injected tumor but not in the serum. To explain this effective confinement of IFN-{alpha} to target tissues, we hypothesized that the extracellular matrix in the tumors interacts with IFN-{alpha}. In this study, a solid-phase-binding assay and immunoprecipitation demonstrated that the IFN-{alpha} binds directly to matrix proteins. Immunohistochemical staining showed a co-localization of IFN-{alpha} with pericellular fibronectin. In addition, matrix-bound IFN-{alpha} protein transduced intracellular signaling and potentiated its cytotoxic activity, suggesting that the retention of IFN-{alpha} protein on extracellular matrix is likely to play a role in its in vivo biological activity. The data suggest a therapeutic advantage of the intratumoral IFN-{alpha} gene transfer over the conventional parenteral therapy both in the safety and efficacy.

  10. Matrix Gla Protein Binds to Fibronectin and Enhances Cell Attachment and Spreading on Fibronectin

    PubMed Central

    Nishimoto, Satoru Ken; Nishimoto, Miyako

    2014-01-01

    Background. Matrix Gla protein (MGP) is a vitamin K-dependent, extracellular matrix protein. MGP is a calcification inhibitor of arteries and cartilage. However MGP is synthesized in many tissues and is especially enriched in embryonic tissues and in cancer cells. The presence of MGP in those instances does not correlate well with the calcification inhibitory role. This study explores a potential mechanism for MGP to bind to matrix proteins and alter cell matrix interactions. Methods. To determine whether MGP influences cell behavior through interaction with fibronectin, we studied MGP binding to fibronectin, the effect of MGP on fibronectin mediated cell attachment and spreading and immunolocalized MGP and fibronectin. Results. First, MGP binds to fibronectin. The binding site for MGP is in a specific fibronectin fragment, called III1-C or anastellin. The binding site for fibronectin is in a MGP C-terminal peptide comprising amino acids 61–77. Second, MGP enhances cell attachment and cell spreading on fibronectin. MGP alone does not promote cell adhesion. Third, MGP is present in fibronectin-rich regions of tissue sections. Conclusions. MGP binds to fibronectin. The presence of MGP increased cell-fibronectin interactions. PMID:25210519

  11. Changes in eggshell mechanical properties, crystallographic texture and in matrix proteins induced by moult in hens.

    PubMed

    Ahmed, A M H; Rodriguez-Navarro, A B; Vidal, M L; Gautron, J; García-Ruiz, J M; Nys, Y

    2005-06-01

    The effect of moult on eggshell mechanical properties, on composition and concentrations of organic matrix components and on eggshell microstructure was investigated. The observed changes were studied to understand the role of organic matrix and eggshell microstructure in eggshell strength. Moult was induced by zinc oxide (20 g zinc/kg diet) in 53 ISA Brown laying hens at 78 weeks of age. No difference was observed for egg or eggshell weights after moult. In contrast, moult improved the shell breaking strength (28.09 vs 33.71 N). After moult, there was a decrease in the average size of calcite crystals composing the eggshell and in their heterogeneity, whereas crystal orientation remained basically the same. After moulting, the total protein concentration in eggshell increased slightly. The comparisons of SDS-PAGE profiles of the organic matrix constituents extracted before and after moulting showed changes in staining intensity of certain bands. After moult, bands associated with main proteins specific to eggshell formation (OC-116 and OC-17) showed higher staining intensity, while the intensity of the egg white proteins (ovotransferrin, ovalbumin and lysozyme) decreased. ELISA confirmed the decrease in ovotransferrin after moult. Its concentration was inversely correlated with breaking strength before moult. These observations suggest that changes in eggshell crystal size could be due to changes in organic matrix composition. These changes may provide a mechanism for the improvement in shell solidity after moulting.

  12. TGF beta receptor II interacting protein-1, an intracellular protein has an extracellular role as a modulator of matrix mineralization

    PubMed Central

    Ramachandran, Amsaveni; Ravindran, Sriram; Huang, Chun-Chieh; George, Anne

    2016-01-01

    Transforming growth factor beta receptor II interacting protein 1 (TRIP-1), a predominantly intracellular protein is localized in the ECM of bone. TRIP-1 lacks a signal peptide, therefore, in this study, we provide evidence that intracellular TRIP-1 can be packaged and exported to the ECM via exosomes. Overexpression of TRIP-1 in MC3T3-E1 cells resulted in increased matrix mineralization during differentiation and knockdown resulted in reduced effects. In vivo function of TRIP-1 was studied by an implantation assay performed using TRIP-1 overexpressing and knockdown cells cultured in a 3-dimmensional scaffold. After 4 weeks, the subcutaneous tissues from TRIP-1 overexpressing cells showed higher calcium and phosphate deposits, arranged collagen fibrils and increased expression of Runx2 and alkaline phosphatase. Nucleation studies on demineralized and deproteinized dentin wafer is a powerful tool to determine the functional role of noncollagenous proteins in matrix mineralization. Using this system, we provide evidence that TRIP-1 binds to Type-I collagen and can promote mineralization. Surface plasmon resonance analysis demonstrated that TRIP-1 binds to collagen with KD = 48 μM. SEM and TEM analysis showed that TRIP-1 promoted the nucleation and growth of calcium phosphate mineral aggregates. Taken together, we provide mechanistic insights of this intracellular protein in matrix mineralization. PMID:27883077

  13. Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import.

    PubMed

    Lingard, Matthew J; Bartel, Bonnie

    2009-11-01

    Relatively little is known about the small subset of peroxisomal proteins with predicted protease activity. Here, we report that the peroxisomal LON2 (At5g47040) protease facilitates matrix protein import into Arabidopsis (Arabidopsis thaliana) peroxisomes. We identified T-DNA insertion alleles disrupted in five of the nine confirmed or predicted peroxisomal proteases and found only two-lon2 and deg15, a mutant defective in the previously described PTS2-processing protease (DEG15/At1g28320)-with phenotypes suggestive of peroxisome metabolism defects. Both lon2 and deg15 mutants were mildly resistant to the inhibitory effects of indole-3-butyric acid (IBA) on root elongation, but only lon2 mutants were resistant to the stimulatory effects of IBA on lateral root production or displayed Suc dependence during seedling growth. lon2 mutants displayed defects in removing the type 2 peroxisome targeting signal (PTS2) from peroxisomal malate dehydrogenase and reduced accumulation of 3-ketoacyl-CoA thiolase, another PTS2-containing protein; both defects were not apparent upon germination but appeared in 5- to 8-d-old seedlings. In lon2 cotyledon cells, matrix proteins were localized to peroxisomes in 4-d-old seedlings but mislocalized to the cytosol in 8-d-old seedlings. Moreover, a PTS2-GFP reporter sorted to peroxisomes in lon2 root tip cells but was largely cytosolic in more mature root cells. Our results indicate that LON2 is needed for sustained matrix protein import into peroxisomes. The delayed onset of matrix protein sorting defects may account for the relatively weak Suc dependence following germination, moderate IBA-resistant primary root elongation, and severe defects in IBA-induced lateral root formation observed in lon2 mutants.

  14. Spatiotemporal segregation of endothelial cell integrin and nonintegrin extracellular matrix-binding proteins during adhesion events

    PubMed Central

    1990-01-01

    Bovine aortic endothelial cell (BAEC) attachments to laminin, fibronectin, and fibrinogen are inhibited by soluble arginine-glycine- aspartate (RGD)-containing peptides, and YGRGDSP activity is responsive to titration of either soluble peptide or matrix protein. To assess the presence of RGD-dependent receptors, immunoprecipitation and immunoblotting studies were conducted and demonstrated integrin beta 1, beta 3, and associated alpha subunits as well as a beta 1 precursor. Immunofluorescence of BAECs plated on laminin, fibronectin, and fibrinogen reveals different matrix-binding specificities of each of these integrin subclasses. By 1 h after plating, organization of beta 1 integrin into fibrillar streaks is influenced by laminin and fibronectin, whereas beta 3 integrin punctate organization is influenced by fibrinogen and the integrin spatial distribution changes with time in culture. In contrast, the nonintegrin laminin-binding protein LB69 only organizes after cell-substrate contact is well established several hours after plating. Migration of BAECs is also mediated by both integrin and nonintegrin matrix-binding proteins. Specifically, BAEC migration on laminin is remarkably sensitive to RGD peptide inhibition, and, in its presence, beta 1 integrin organization dissipates and reorganizes into perinuclear vesicles. However, RGD peptides do not alter LB69 linear organization during migration. Similarly, agents that block LB69--e.g., antibodies to LB69 as well as YIGSR-NH2 peptide--do not inhibit attachment of nonmotile BAECs to laminin. However, both anti-LB69 and YIGSR-NH2 inhibit late adhesive events such as spreading. Accordingly, we propose that integrin and nonintegrin extracellular matrix-binding protein organizations in BAECs are both temporally and spatially segregated during attachment processes. High affinity nonintegrin interaction with matrix may create necessary stable contacts for longterm attachment, while lower affinity integrins may be important

  15. Nipah Virus Matrix Protein Influences Fusogenicity and Is Essential for Particle Infectivity and Stability

    PubMed Central

    Dietzel, Erik; Kolesnikova, Larissa; Sawatsky, Bevan; Heiner, Anja; Weis, Michael; Kobinger, Gary P.; Becker, Stephan; von Messling, Veronika

    2015-01-01

    ABSTRACT Nipah virus (NiV) causes fatal encephalitic infections in humans. To characterize the role of the matrix (M) protein in the viral life cycle, we generated a reverse genetics system based on NiV strain Malaysia. Using an enhanced green fluorescent protein (eGFP)-expressing M protein-deleted NiV, we observed a slightly increased cell-cell fusion, slow replication kinetics, and significantly reduced peak titers compared to the parental virus. While increased amounts of viral proteins were found in the supernatant of cells infected with M-deleted NiV, the infectivity-to-particle ratio was more than 100-fold reduced, and the particles were less thermostable and of more irregular morphology. Taken together, our data demonstrate that the M protein is not absolutely required for the production of cell-free NiV but is necessary for proper assembly and release of stable infectious NiV particles. IMPORTANCE Henipaviruses cause a severe disease with high mortality in human patients. Therefore, these viruses can be studied only in biosafety level 4 (BSL-4) laboratories, making it more challenging to characterize their life cycle. Here we investigated the role of the Nipah virus matrix protein in virus-mediated cell-cell fusion and in the formation and release of newly produced particles. We found that even though low levels of infectious viruses are produced in the absence of the matrix protein, it is required for the release of highly infectious and stable particles. Fusogenicity of matrixless viruses was slightly enhanced, further demonstrating the critical role of this protein in different steps of Nipah virus spread. PMID:26676785

  16. Influence of lipids on the interfacial disposition of respiratory syncytical virus matrix protein.

    PubMed

    McPhee, Helen K; Carlisle, Jennifer L; Beeby, Andrew; Money, Victoria A; Watson, Scott M D; Yeo, R Paul; Sanderson, John M

    2011-01-04

    The propensity of a matrix protein from an enveloped virus of the Mononegavirales family to associate with lipids representative of the viral envelope has been determined using label-free methods, including tensiometry and Brewster angle microscopy on lipid films at the air-water interface and atomic force microscopy on monolayers transferred to OTS-treated silicon wafers. This has enabled factors that influence the disposition of the protein with respect to the lipid interface to be characterized. In the absence of sphingomyelin, respiratory syncytial virus matrix protein penetrates monolayers composed of mixtures of phosphocholines with phosphoethanolamines or cholesterol at the air-water interface. In ternary mixtures composed of sphingomyelin, 1,2-dioleoyl-sn-glycero-3-phosphocholine, and cholesterol, the protein exhibits two separate behaviors: (1) peripheral association with the surface of sphingomyelin-rich domains and (2) penetration of sphingomyelin-poor domains. Prolonged incubation of the protein with mixtures of phosphocholines and phosphoethanolamines leads to the formation of helical protein assemblies of uniform diameter that demonstrate an inherent propensity of the protein to assemble into a filamentous form.

  17. Identification of Protein-Protein Interactions via a Novel Matrix-Based Sequence Representation Model with Amino Acid Contact Information.

    PubMed

    Ding, Yijie; Tang, Jijun; Guo, Fei

    2016-09-24

    Identification of protein-protein interactions (PPIs) is a difficult and important problem in biology. Since experimental methods for predicting PPIs are both expensive and time-consuming, many computational methods have been developed to predict PPIs and interaction networks, which can be used to complement experimental approaches. However, these methods have limitations to overcome. They need a large number of homology proteins or literature to be applied in their method. In this paper, we propose a novel matrix-based protein sequence representation approach to predict PPIs, using an ensemble learning method for classification. We construct the matrix of Amino Acid Contact (AAC), based on the statistical analysis of residue-pairing frequencies in a database of 6323 protein-protein complexes. We first represent the protein sequence as a Substitution Matrix Representation (SMR) matrix. Then, the feature vector is extracted by applying algorithms of Histogram of Oriented Gradient (HOG) and Singular Value Decomposition (SVD) on the SMR matrix. Finally, we feed the feature vector into a Random Forest (RF) for judging interaction pairs and non-interaction pairs. Our method is applied to several PPI datasets to evaluate its performance. On the S . c e r e v i s i a e dataset, our method achieves 94 . 83 % accuracy and 92 . 40 % sensitivity. Compared with existing methods, and the accuracy of our method is increased by 0 . 11 percentage points. On the H . p y l o r i dataset, our method achieves 89 . 06 % accuracy and 88 . 15 % sensitivity, the accuracy of our method is increased by 0 . 76 % . On the H u m a n PPI dataset, our method achieves 97 . 60 % accuracy and 96 . 37 % sensitivity, and the accuracy of our method is increased by 1 . 30 % . In addition, we test our method on a very important PPI network, and it achieves 92 . 71 % accuracy. In the Wnt-related network, the accuracy of our method is increased by 16 . 67 % . The source code and all datasets are available

  18. Osteofibrous dysplasia and adamantinoma: correlation of proto-oncogene product and matrix protein expression.

    PubMed

    Maki, Masahiiko; Athanasou, Nicholas

    2004-01-01

    To investigate the relationship between osteofibrous dysplasia (OFD) and adamantinoma, we analyzed the expression of several proto-oncogene products and extracellular matrix proteins by immunohistochemistry and correlated our results with histological and ultrastructural findings. C-fos and c-jun, but not c-Met, were observed in OFD and in the fibrous and epithelial components of differentiated and classical adamantinomas. Staining for collagen IV, laminin and galectin-3, a laminin binding protein was seen in OFD and around cell nests in adamantinoma. E-, P-, and N-cadherin expression was found in all cases of classical adamantinoma, but not in differentiated adamantinoma or OFD. Osteonectin was detected in both the epithelial and fibrous components of adamantinomas, but osteopontin and osteocalcin were not seen in classical adamantinomas. The results show common expression of a number of oncoproteins and bone matrix proteins in adamantinoma and OFD, some of which are associated with mesenchymal-to-epithelial cell transformation. These findings would be in keeping with the hypothesis that OFD represents a precursor lesion of adamantinoma. Differential expression of a number of bone matrix protein in adamantinoma may also be of diagnostic use in distinguishing these 2 lesions immunohistochemically.

  19. In-depth proteomic analysis of shell matrix proteins of Pinctada fucata

    PubMed Central

    Liu, Chuang; Li, Shiguo; Kong, Jingjing; Liu, Yangjia; Wang, Tianpeng; Xie, Liping; Zhang, Rongqing

    2015-01-01

    The shells of pearl oysters, Pinctada fucata, are composed of calcite and aragonite and possess remarkable mechanical properties. These shells are formed under the regulation of macromolecules, especially shell matrix proteins (SMPs). Identification of diverse SMPs will lay a foundation for understanding biomineralization process. Here, we identified 72 unique SMPs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of proteins extracted from the shells of P. fucata combined with a draft genome. Of 72 SMPs, 17 SMPs are related to both the prismatic and nacreous layers. Moreover, according to the diverse domains found in the SMPs, we hypothesize that in addition to controlling CaCO3 crystallization and crystal organization, these proteins may potentially regulate the extracellular microenvironment and communicate between cells and the extracellular matrix (ECM). Immunohistological localization techniques identify the SMPs in the mantle, shells and synthetic calcite. Together, these proteomic data increase the repertoires of the shell matrix proteins in P. fucata and suggest that shell formation in P. fucata may involve tight regulation of cellular activities and the extracellular microenvironment. PMID:26608573

  20. Fetuin, Matrix-Gla Protein and Osteopontin in Calcification of Renal Allografts

    PubMed Central

    Lorenzen, Johan M.; Martino, Filippo; Scheffner, Irina; Bröcker, Verena; Leitolf, Holger; Haller, Hermann; Gwinner, Wilfried

    2012-01-01

    Background Calcification of renal allografts is common in the first year after transplantation and is related to hyperparathyroidism. It is associated with an impaired long-term function of the graft (Am J Transplant 5∶1934-41, 2005). Aim of this study is to examine the role of the anti-calcifying/calcifying factors in the pathophysiology of renal allograft calcification. Methods We analyzed protocol allograft biopsies, blood and urine samples of 31 patients with and 27 patients without allograft calcification taken at 6 weeks, 3 and 6 months after transplantation. Patient demographical data, cold ischemia time, initial graft function and donor characteristics were comparable between the two groups. Biopsies were stained for osteopontin, fetuin, and matrix-gla-protein. Serum and urine electrolytes, matrix-gla-protein, fetuin, Vitamin D and intact parathyroid hormone in serum and osteopontin (OPN) in urine were examined. Results Serum levels of fetuin and matrix-Gla protein as well as urinary levels of OPN showed specific time dependent changes (6 weeks vs. 3 months vs. 6 months; all p<0.0001). In patients with calcifications, urinary levels of OPN were decreased by 55% at 6 weeks and increased thereafter, showing 54% higher levels at 6 months compared to patients without calcification (6 weeks: p<0.01, 6 months: p<0.05). Local protein expression of fetuin-A, matrix-Gla protein and OPN in the graft was specifically increased around calcified plaques, without differences in the mRNA tissue expression. Conclusion Anticalcifying factors show significant changes in the early phase after renal transplantation, which may be important for the prevention of allograft calcification. The differences in OPN indicate an involvement of this factor in the regulation of calcification. PMID:23284864

  1. Fetuin, matrix-Gla protein and osteopontin in calcification of renal allografts.

    PubMed

    Lorenzen, Johan M; Martino, Filippo; Scheffner, Irina; Bröcker, Verena; Leitolf, Holger; Haller, Hermann; Gwinner, Wilfried

    2012-01-01

    Calcification of renal allografts is common in the first year after transplantation and is related to hyperparathyroidism. It is associated with an impaired long-term function of the graft (Am J Transplant 5∶1934-41, 2005). Aim of this study is to examine the role of the anti-calcifying/calcifying factors in the pathophysiology of renal allograft calcification. We analyzed protocol allograft biopsies, blood and urine samples of 31 patients with and 27 patients without allograft calcification taken at 6 weeks, 3 and 6 months after transplantation. Patient demographical data, cold ischemia time, initial graft function and donor characteristics were comparable between the two groups. Biopsies were stained for osteopontin, fetuin, and matrix-gla-protein. Serum and urine electrolytes, matrix-gla-protein, fetuin, Vitamin D and intact parathyroid hormone in serum and osteopontin (OPN) in urine were examined. Serum levels of fetuin and matrix-Gla protein as well as urinary levels of OPN showed specific time dependent changes (6 weeks vs. 3 months vs. 6 months; all p<0.0001). In patients with calcifications, urinary levels of OPN were decreased by 55% at 6 weeks and increased thereafter, showing 54% higher levels at 6 months compared to patients without calcification (6 weeks: p<0.01, 6 months: p<0.05). Local protein expression of fetuin-A, matrix-Gla protein and OPN in the graft was specifically increased around calcified plaques, without differences in the mRNA tissue expression. Anticalcifying factors show significant changes in the early phase after renal transplantation, which may be important for the prevention of allograft calcification. The differences in OPN indicate an involvement of this factor in the regulation of calcification.

  2. Insider trading: Extracellular matrix proteins and their non-canonical intracellular roles.

    PubMed

    Hellewell, Andrew L; Adams, Josephine C

    2016-01-01

    In metazoans, the extracellular matrix (ECM) provides a dynamic, heterogeneous microenvironment that has important supportive and instructive roles. Although the primary site of action of ECM proteins is extracellular, evidence is emerging for non-canonical intracellular roles. Examples include osteopontin, thrombospondins, IGF-binding protein 3 and biglycan, and relate to roles in transcription, cell-stress responses, autophagy and cancer. These findings pose conceptual problems on how proteins signalled for secretion can be routed to the cytosol or nucleus, or can function in environments with diverse redox, pH and ionic conditions. We review evidence for intracellular locations and functions of ECM proteins, and current knowledge of the mechanisms by which they may enter intracellular compartments. We evaluate the experimental methods that are appropriate to obtain rigorous evidence for intracellular localisation and function. Better insight into this under-researched topic is needed to decipher the complete spectrum of physiological and pathological roles of ECM proteins.

  3. Regulation of Extracellular Matrix Remodeling Proteins by Osteoblasts in Titanium Nanoparticle-Induced Aseptic Loosening Model.

    PubMed

    Xie, Jing; Hou, Yanhua; Fu, Na; Cai, Xiaoxiao; Li, Guo; Peng, Qiang; Lin, Yunfeng

    2015-10-01

    Titanium (Ti)-wear particles, formed at the bone-implant interface, are responsible for aseptic loosening, which is a main cause of total joint replacement failure. There have been many studies on Ti particle-induced function changes in mono-cultured osteoblasts and synovial cells. However, little is known on extracellular matrix remodeling displayed by osteoblasts when in coexistence with Synovial cells. To further mimic the bone-implant interface environment, we firstly established a nanoscaled-Ti particle-induced aseptic loosening system by co-culturing osteoblasts and Synovial cells. We then explored the impact of the Synovial cells on Ti particle-engulfed osteoblasts in the mimicked flamed niche. The matrix metalloproteinases and lysyl oxidases expression levels, two protein families which are critical in osseointegration, were examined under induction by tumor necrosis factor-alpha. It was found that the co-culture between the osteoblasts and Synovial cells markedly increased the migration and proliferation of the osteoblasts, even in the Ti-particle engulfed osteoblasts. Importantly, the Ti-particle engulfed osteoblasts, induced by TNF-alpha after the co-culture, enhanced the release of the matrix metalloproteinases and reduced the expressions of lysyl oxidases. The regulation of extracellular matrix remodeling at the protein level was further assessed by investigations on gene expression of the matrix metalloproteinases and lysyl oxidases, which also suggested that the regulation started at the genetic level. Our research work has therefore revealed the critical role of multi cell-type interactions in the extracellular matrix remodeling within the peri-prosthetic tissues, which provides new insights on aseptic loosening and brings new clues about incomplete osseointegration between the implantation materials and their surrounding bones.

  4. Detection of Endogenous Nuclear Proteins in Plant Cells: Localizing Nuclear Matrix Constituent Proteins (NMCPs), the Plant Analogs of Lamins.

    PubMed

    Ciska, Malgorzata; de la Espina, Susana Moreno Díaz

    2017-01-01

    At present, two complementary approaches are used for in situ protein visualization in plant nuclei. Imaging of transformed fluorescent proteins is the election tool for the analysis of protein movement and interaction. However, this methodology presents several drawbacks for the identification/localization of endogenous nuclear factors, such as over-expression or mislocalization of transformed proteins. In contrast, immunocytochemistry with specific antibodies represents a powerful tool for the localization of endogenous nuclear proteins at their "native" nuclear sub-compartments. In plant cells, the cell wall hampers antibody accessibility during immunocytochemical analysis thereby reducing the effectivity of the technique, particularly in the case of lowly expressed proteins. To overcome this problem in nuclear protein immunodetection, we developed a method based on the in vitro incubation of isolated nuclei with specific antibodies followed by imaging by confocal fluorescence or electron microscopy. Here we describe the application of this methodology to the localization of Nuclear Matrix Constituent Proteins (NMCP), the plant analogs of lamins, of the monocot Allium cepa, using antibodies raised against highly conserved regions of the proteins.

  5. Identification of Biofilm Matrix-Associated Proteins from an Acid Mine Drainage Microbial Community

    SciTech Connect

    Jiao, Yongqin; D'Haeseleer, Patrik M; Dill, Brian; Shah, Manesh B; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Banfield, Jillian F.; Thelen, Michael P.

    2011-01-01

    In microbial communities, extracellular polymeric substances (EPS), also called the extracellular matrix, provide the spatial organization and structural stability during biofilm development. One of the major components of EPS is protein, but it is not clear what specific functions these proteins contribute to the extracellular matrix or to microbial physiology. To investigate this in biofilms from an extremely acidic environment, we used shotgun proteomics analyses to identify proteins associated with EPS in biofilms at two developmental stages, designated DS1 and DS2. The proteome composition of the EPS was significantly different from that of the cell fraction, with more than 80% of the cellular proteins underrepresented or undetectable in EPS. In contrast, predicted periplasmic, outer membrane, and extracellular proteins were overrepresented by 3- to 7-fold in EPS. Also, EPS proteins were more basic by 2 pH units on average and about half the length. When categorized by predicted function, proteins involved in motility, defense, cell envelope, and unknown functions were enriched in EPS. Chaperones, such as histone-like DNA binding protein and cold shock protein, were overrepresented in EPS. Enzymes, such as protein peptidases, disulfide-isomerases, and those associated with cell wall and polysaccharide metabolism, were also detected. Two of these enzymes, identified as -N-acetylhexosaminidase and cellulase, were confirmed in the EPS fraction by enzymatic activity assays. Compared to the differences between EPS and cellular fractions, the relative differences in the EPS proteomes between DS1 and DS2 were smaller and consistent with expected physiological changes during biofilm development.

  6. Bioprocess monitoring: minimizing sample matrix effects for total protein quantification with bicinchoninic acid assay.

    PubMed

    Reichelt, Wieland N; Waldschitz, Daniel; Herwig, Christoph; Neutsch, Lukas

    2016-09-01

    Determining total protein content is a routine operation in many laboratories. Despite substantial work on assay optimization interferences, the widely used bicinchoninic acid (BCA) assay remains widely recognized for its robustness. Especially in the field of bioprocess engineering the inaccuracy caused by interfering substances remains hardly predictable and not well understood. Since the introduction of the assay, sample pre-treatment by trichloroacetic acid (TCA) precipitation has been indicated as necessary and sufficient to minimize interferences. However, the sample matrix in cultivation media is not only highly complex but also dynamically changing over process time in terms of qualitative and quantitative composition. A significant misestimation of the total protein concentration of bioprocess samples is often observed when following standard work-up schemes such as TCA precipitation, indicating that this step alone is not an adequate means to avoid measurement bias. Here, we propose a modification of the BCA assay, which is less influenced by sample complexity. The dynamically changing sample matrix composition of bioprocessing samples impairs the conventional approach of compensating for interfering substances via a static offset. Hence, we evaluated the use of a correction factor based on an internal spike measurement for the respective samples. Using protein spikes, the accuracy of the BCA protein quantification could be improved fivefold, taking the BCA protein quantification to a level of accuracy comparable to other, more expensive methods. This will allow reducing expensive iterations in bioprocess development to due inaccurate total protein analytics.

  7. V-myc- and c-myc-encoded proteins are associated with the nuclear matrix.

    PubMed Central

    Eisenman, R N; Tachibana, C Y; Abrams, H D; Hann, S R

    1985-01-01

    A series of extraction procedures were applied to avian nuclei which allowed us to define three types of association of v-myc- and c-myc-encoded proteins with nuclei: (i) a major fraction (60 to 90%) which is retained in DNA- and RNA-depleted nuclei after low- and high-salt extraction, (ii) a small fraction (1%) released during nuclease digestion of DNA in intact nuclei in the presence of low-salt buffer, and (iii) a fraction of myc protein (less than 10%) extractable with salt or detergents and found to have affinity for both single- and double-stranded DNA. Immunofluorescence analysis with anti-myc peptide sera on cells extracted sequentially with nucleases and salts confirmed the idea that myc proteins were associated with a complex residual nuclear structure (matrix-lamin fraction) which also contained avian nuclear lamin protein. Dispersal of myc proteins into the cytoplasm was found to occur during mitosis. Both c-myc and v-myc proteins were associated with the matrix-lamin, suggesting that the function of myc may relate to nuclear structural organization. Images PMID:3872410

  8. Adjuvant effect of the human metapneumovirus (HMPV) matrix protein in HMPV subunit vaccines.

    PubMed

    Aerts, Laetitia; Rhéaume, Chantal; Carbonneau, Julie; Lavigne, Sophie; Couture, Christian; Hamelin, Marie-Ève; Boivin, Guy

    2015-04-01

    The human metapneumovirus (HMPV) fusion (F) protein is the most immunodominant protein, yet subunit vaccines containing only this protein do not confer complete protection. The HMPV matrix (M) protein induces the maturation of antigen-presenting cells in vitro. The inclusion of the M protein into an F protein subunit vaccine might therefore provide an adjuvant effect. We administered the F protein twice intramuscularly, adjuvanted with alum, the M protein or both, to BALB/c mice at 3 week intervals. Three weeks after the boost, mice were infected with HMPV and monitored for 14 days. At day 5 post-challenge, pulmonary viral titres, histopathology and cytokine levels were analysed. Mice immunized with F+alum and F+M+alum generated significantly more neutralizing antibodies than mice immunized with F only [titres of 47 ± 7 (P<0.01) and 147 ± 13 (P<0.001) versus 17 ± 2]. Unlike F only [1.6 ± 0.5 × 10(3) TCID50 (g lung)(-1)], pulmonary viral titres in mice immunized with F+M and F+M+alum were undetectable. Mice immunized with F+M presented the most important reduction in pulmonary inflammation and the lowest T-helper Th2/Th1 cytokine ratio. In conclusion, addition of the HMPV-M protein to an F protein-based vaccine modulated both humoral and cellular immune responses to subsequent infection, thereby increasing the protection conferred by the vaccine.

  9. Induction of Extracellular Matrix-Remodeling Genes by the Senescence-Associated Protein APA-1

    PubMed Central

    Benanti, Jennifer A.; Williams, Dawnnica K.; Robinson, Kristin L.; Ozer, Harvey L.; Galloway, Denise A.

    2002-01-01

    Human fibroblasts undergo cellular senescence after a finite number of divisions, in response to the erosion of telomeres. In addition to being terminally arrested in the cell cycle, senescent fibroblasts express genes that are normally induced upon wounding, including genes that remodel the extracellular matrix. We have identified the novel zinc finger protein APA-1, whose expression increased in senescent human fibroblasts independent of telomere shortening. Extended passage, telomerase-immortalized fibroblasts had increased levels of APA-1 as well as the cyclin-dependent kinase inhibitor p16. In fibroblasts, APA-1 was modified by the ubiquitin-like protein SUMO-1, which increased APA-1 half-life, possibly by blocking ubiquitin-mediated degradation. Overexpression of APA-1 did not cause cell cycle arrest; but, it induced transcription of the extracellular matrix-remodeling genes MMP1 and PAI2, which are associated with fibroblast senescence. MMP1 and PAI2 transcript levels also increased in telomerase-immortalized fibroblasts that had high levels of APA-1, demonstrating that the matrix-remodeling phenotype of senescent fibroblasts was not induced by telomere attrition alone. APA-1 was able to transactivate and bind to the MMP1 promoter, suggesting that APA-1 is a transcription factor that regulates expression of matrix-remodeling genes during fibroblast senescence. PMID:12370286

  10. Tissue specificity of the hormonal response in sex accessory tissues is associated with nuclear matrix protein patterns.

    PubMed

    Getzenberg, R H; Coffey, D S

    1990-09-01

    The DNA of interphase nuclei have very specific three-dimensional organizations that are different in different cell types, and it is possible that this varying DNA organization is responsible for the tissue specificity of gene expression. The nuclear matrix organizes the three-dimensional structure of the DNA and is believed to be involved in the control of gene expression. This study compares the nuclear structural proteins between two sex accessory tissues in the same animal responding to the same androgen stimulation by the differential expression of major tissue-specific secretory proteins. We demonstrate here that the nuclear matrix is tissue specific in the rat ventral prostate and seminal vesicle, and undergoes characteristic alterations in its protein composition upon androgen withdrawal. Three types of nuclear matrix proteins were observed: 1) nuclear matrix proteins that are different and tissue specific in the rat ventral prostate and seminal vesicle, 2) a set of nuclear matrix proteins that either appear or disappear upon androgen withdrawal, and 3) a set of proteins that are common to both the ventral prostate and seminal vesicle and do not change with the hormonal state of the animal. Since the nuclear matrix is known to bind androgen receptors in a tissue- and steroid-specific manner, we propose that the tissue specificity of the nuclear matrix arranges the DNA in a unique conformation, which may be involved in the specific interaction of transcription factors with DNA sequences, resulting in tissue-specific patterns of secretory protein expression.

  11. Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy

    NASA Astrophysics Data System (ADS)

    Abeliovich, Hagai; Zarei, Mostafa; Rigbolt, Kristoffer T. G.; Youle, Richard J.; Dengjel, Joern

    2013-11-01

    Mitophagy, the autophagic degradation of mitochondria, is an important housekeeping function in eukaryotic cells, and defects in mitophagy correlate with ageing phenomena and with several neurodegenerative disorders. A central mechanistic question regarding mitophagy is whether mitochondria are consumed en masse, or whether an active process segregates defective molecules from functional ones within the mitochondrial network, thus allowing a more efficient culling mechanism. Here we combine a proteomic study with a molecular genetics and cell biology approach to determine whether such a segregation process occurs in yeast mitochondria. We find that different mitochondrial matrix proteins undergo mitophagic degradation at distinctly different rates, supporting the active segregation hypothesis. These differential degradation rates depend on mitochondrial dynamics, suggesting a mechanism coupling weak physical segregation with mitochondrial dynamics to achieve a distillation-like effect. In agreement, the rates of mitophagic degradation strongly correlate with the degree of physical segregation of specific matrix proteins.

  12. High-throughput virtual screening and docking studies of matrix protein vp40 of ebola virus.

    PubMed

    Tamilvanan, Thangaraju; Hopper, Waheeta

    2013-01-01

    Ebolavirus, a member of the Filoviridae family of negative-sense RNA viruses, causes severe haemorrhagic fever leading up to 90% lethality. Ebolavirus matrix protein VP40 is involved in the virus assembly and budding process. The RNA binding pocket of VP40 is considered as the drug target site for structure based drug design. High Throughput Virtual Screening and molecular docking studies were employed to find the suitable inhibitors against VP40. Ten compounds showing good glide score and glide energy as well as interaction with specific amino acid residues were short listed as drug leads. These small molecule inhibitors could be potent inhibitors for VP40 matrix protein by blocking virus assembly and budding process.

  13. Detection of dimethylarginines in protein hydrolysates by matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Hsieh, Cheng-Hsilin; Tam, Ming F

    2006-03-01

    We report a method to detect the presence of dimethylarginines on proteins. Peptides with dimethylarginines were hydrolyzed in acid. The hydrolysates were subjected to matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometric analysis using a mixture of alpha-cyano-4-hydroxycinnamic acid and nitrocellulose as matrix. Both asymmetric omega-N(G),N(G)-dimethylarginine and symmetric omega-N(G),N(G')-dimethylarginine give a clear signal at m/z 203. Recombinant Sbp1p modified by Hmt1p in vivo were isolated by affinity chromatography followed by electrophoresis on a polyacrylamide gel and subjected to acid hydrolysis. MALDI-TOF analysis of the acid hydrolysates confirmed the presence of dimethylarginines. The detection limit of the method is estimated at approximately 1pmol of protein.

  14. Identification of Bovine Sperm Acrosomal Proteins that Interact with a 32kDa Acrosomal Matrix Protein

    PubMed Central

    Nagdas, Subir K; Smith, Linda; Medina-Ortiz, Ilza; Hernandez-Encarnacion, Luisa; Raychoudhury, Samir

    2016-01-01

    Mammalian fertilization is accomplished by the interaction between sperm and egg. Previous studies from this laboratory have identified a stable acrosomal matrix assembly from the bovine sperm acrosome termed the outer acrosomal membrane-matrix complex (OMC). This stable matrix assembly exhibits precise binding activity for acrosin and N-acetylglucosaminidase. A highly purified OMC fraction is comprised of three major (54, 50, and 45kDa) and several minor (38–19kDa) polypeptides. The set of minor polypeptides (38–19kDa) termed “OMCrpf polypeptides” is selectively solubilized by high-pH extraction (pH 10.5) while the three major polypeptides (55, 50 and 45kDa) remain insoluble. Proteomic identification of the OMC32 polypeptide (32kDa polypeptide isolated from high-pH soluble fraction of OMC) yielded two peptides that matched the NCBI database sequence of acrosin-binding protein. Anti-OMC32 recognized an antigenically related family of polypeptides (OMCrpf polypeptides) in the 38–19kDa range with isoelectric points ranging between 4.0 and 5.1. Other than glycohydrolases, OMC32 may also be complexed to other acrosomal proteins. The present study was undertaken to identify and localize the OMC32 binding polypeptides and to elucidate the potential role of the acrosomal protein complex in sperm function. OMC32 affinity chromatography of a detergent soluble fraction of bovine cauda sperm acrosome followed by mass spectrometry-based identification of bound proteins identified acrosin, lactadherin, SPACA3, and IZUMO1. Co-immunoprecipitation analysis also demonstrated the interaction of OMC32 with acrosin, lactadherin, SPACA3, and IZUMO1. Our immunofluorescence studies revealed the presence of SPACA3 and lactadherin over the apical segment; whereas, IZUMO1 is localized over the equatorial segment of Triton X-100 permeabilized cauda sperm. Immunoblot analysis showed that a significant portion of SPACA3 was released after the lysophosphatidyl choline (LPC

  15. Identification of bovine sperm acrosomal proteins that interact with a 32-kDa acrosomal matrix protein.

    PubMed

    Nagdas, Subir K; Smith, Linda; Medina-Ortiz, Ilza; Hernandez-Encarnacion, Luisa; Raychoudhury, Samir

    2016-03-01

    Mammalian fertilization is accomplished by the interaction between sperm and egg. Previous studies from this laboratory have identified a stable acrosomal matrix assembly from the bovine sperm acrosome termed the outer acrosomal membrane-matrix complex (OMC). This stable matrix assembly exhibits precise binding activity for acrosin and N-acetylglucosaminidase. A highly purified OMC fraction comprises three major (54, 50, and 45 kDa) and several minor (38-19 kDa) polypeptides. The set of minor polypeptides (38-19 kDa) termed "OMCrpf polypeptides" is selectively solubilized by high-pH extraction (pH 10.5), while the three major polypeptides (55, 50, and 45 kDa) remain insoluble. Proteomic identification of the OMC32 polypeptide (32 kDa polypeptide isolated from high-pH soluble fraction of OMC) yielded two peptides that matched the NCBI database sequence of acrosin-binding protein. Anti-OMC32 recognized an antigenically related family of polypeptides (OMCrpf polypeptides) in the 38-19-kDa range with isoelectric points ranging between 4.0 and 5.1. Other than glycohydrolases, OMC32 may also be complexed to other acrosomal proteins. The present study was undertaken to identify and localize the OMC32 binding polypeptides and to elucidate the potential role of the acrosomal protein complex in sperm function. OMC32 affinity chromatography of a detergent-soluble fraction of bovine cauda sperm acrosome followed by mass spectrometry-based identification of bound proteins identified acrosin, lactadherin, SPACA3, and IZUMO1. Co-immunoprecipitation analysis also demonstrated the interaction of OMC32 with acrosin, lactadherin, SPACA3, and IZUMO1. Our immunofluorescence studies revealed the presence of SPACA3 and lactadherin over the apical segment, whereas IZUMO1 is localized over the equatorial segment of Triton X-100 permeabilized cauda sperm. Immunoblot analysis showed that a significant portion of SPACA3 was released after the lysophosphatidylcholine (LPC)-induced acrosome

  16. Elastin-like protein matrix reinforced with collagen microfibers for soft tissue repair

    PubMed Central

    Caves, Jeffrey M.; Cui, Wanxing; Wen, Jing; Kumar, Vivek A.; Haller, Carolyn A.; Chaikof, Elliot L.

    2011-01-01

    Artificial composites designed to mimic the structure and properties of native extracellular matrix may lead to acellular materials for soft tissue repair and replacement, which display mechanical strength, stiffness, and resilience resembling native tissue. We describe the fabrication of thin lamellae consisting of continuous collagen microfiber embedded at controlled orientations and densities in a recombinant elastin-like protein polymer matrix. Multilamellar stacking affords flexible, protein-based composite sheets whose properties are dependent upon both the elastomeric matrix and collagen content and organization. Sheets are produced with properties that range over 13-fold in elongation to break (23 – 314%), six-fold in Young’s modulus (5.3 to 33.1 MPa), and more than two-fold in tensile strength (1.85 to 4.08 MPa), exceeding that of a number of native human tissues, including urinary bladder, pulmonary artery, and aorta. A sheet approximating the mechanical response of human abdominal wall fascia is investigated as a fascial substitute for ventral hernia repair. Protein-based composite patches prevent hernia recurrence in Wistar rats over an 8-week period with new tissue formation and sustained structural integrity. PMID:21550111

  17. Biofilm-specific extracellular matrix proteins of non-typeable Haemophilus influenzae

    PubMed Central

    Wu, Siva; Baum, Marc M.; Kerwin, James; Guerrero-Given, Debbie; Webster, Simon; Schaudinn, Christoph; VanderVelde, David; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi), a human respiratory tract pathogen can form colony biofilms in vitro. Bacterial cells and the amorphous extracellular matrix (ECM) constituting the biofilm can be separated using sonication. The ECM from 24 hr and 96 hr NTHi biofilms contained polysaccharides and proteinaceous components as detected by NMR and FTIR spectroscopy. More conventional chemical assays on the biofilm ECM confirmed the presence of these components and also DNA. Proteomics revealed eighteen proteins present in biofilm ECM that were not detected in planktonic bacteria. One ECM protein was unique to 24 hr biofilms, two were found only in 96 hr biofilms, and fifteen were present in the ECM of both 24 hr and 96 hr NTHi biofilms. All proteins identified were either associated with bacterial membranes or were cytoplasmic proteins. Immunocytochemistry showed two of the identified proteins, a DNA-directed RNA polymerase and the outer membrane protein OMP P2, associated with bacteria and biofilm ECM. Identification of biofilm-specific proteins present in immature biofilms is an important step in understanding the in vitro process of NTHi biofilm formation. The presence of a cytoplasmic protein and a membrane protein in the biofilm ECM of immature NTHi biofilms suggests that bacterial cell lysis may be a feature of early biofilm formation. PMID:24942343

  18. [Immunochemical study of nuclear matrix proteins localization in the structure of perinucleolar chromatin].

    PubMed

    Murasheva, M I; Chentsov, Iu S

    2014-01-01

    Immunofluorescence labeling of proteins with molecular mass of 27, 38, 40, 50 and 65 kDa obtained from serum of patients with autoimmune disease demonstrated different patterns (small clusters or granules) in interphase nuclei of pig kidney cells. It was remarkable that there was no staining inside the nucleoli, but the proteins immunoreactivity was detected around them in the regions of perinucleolar chromatin. Moreover, expression of nucleolar proteins, such as fibrillarin and B23, was found only in nucleoli. After extraction of DNA, PNA and histones, the proteins with molecular mass 27 and 38 kDa were found in the periphery of residual nucleoli, and proteins with molecular mass 40, 50 and 65 kDa had similar localization and were also present in karyoplasm of cells as small clusters. According to our data, nucleolar protein, fibrillarin, was distributed regularly throughout the whole volume of residual nucleoli. At the same time, B23 protein was revealed only at their periphery, where perinucleolar chromatin had localized before treatment. Thus, it has been revealed that the proteins of nuclear matrix with molecular mass 27, 38, 40, 50 and 65 kDa, as well as nucleolar protein B23 are the parts of perinucleolar chromatin, which could be considered as special chromosomal domain associated with the functioning of the nucleolus.

  19. [A novel mutation of cartilage oligomeric matrix protein gene underlies multiple epiphyseal dysplasia].

    PubMed

    Wang, Hui; Xie, Jiansheng; Wu, Weiqing; Xu, Zhiyong; Luo, Fuwei; Geng, Qian

    2013-06-01

    To perform mutation analysis for a female with multiple epiphyseal dysplasia (MED) and provide pre-symptomatic and prenatal diagnosis. Mutation screening of cartilage oligomeric matrix protein (COMP) gene was carried out through targeted next-generation DNA sequencing and Sanger sequencing. A novel c.956 A>T resulting in substitution of Aspartic acid 319 for Valine (p.Asp319Val) has been identified in exon 9 of the COMP gene in the patient. As predicted by a SIFT software, above mutation can cause damage to the structure of COMP protein. A novel c.956 A>T substitution mutation has been identified in a patient featuring MED.

  20. Random matrix approach to collective behavior and bulk universality in protein dynamics.

    PubMed

    Potestio, Raffaello; Caccioli, Fabio; Vivo, Pierpaolo

    2009-12-31

    Covariance matrices of amino acid displacements, commonly used to characterize the large-scale movements of proteins, are investigated through the prism of random matrix theory. Bulk universality is detected in the local spacing statistics of noise-dressed eigenmodes, which is well described by a Brody distribution with parameter beta approximately = 0.8. This finding, supported by other consistent indicators, implies a novel quantitative criterion to single out the collective degrees of freedom of the protein from the majority of high-energy, localized vibrations.

  1. Trends in global warming and evolution of matrix protein 2 family from influenza A virus.

    PubMed

    Yan, Shao-Min; Wu, Guang

    2009-12-01

    The global warming is an important factor affecting the biological evolution, and the influenza is an important disease that threatens humans with possible epidemics or pandemics. In this study, we attempted to analyze the trends in global warming and evolution of matrix protein 2 family from influenza A virus, because this protein is a target of anti-flu drug, and its mutation would have significant effect on the resistance to anti-flu drugs. The evolution of matrix protein 2 of influenza A virus from 1959 to 2008 was defined using the unpredictable portion of amino-acid pair predictability. Then the trend in this evolution was compared with the trend in the global temperature, the temperature in north and south hemispheres, and the temperature in influenza A virus sampling site, and species carrying influenza A virus. The results showed the similar trends in global warming and in evolution of M2 proteins although we could not correlate them at this stage of study. The study suggested the potential impact of global warming on the evolution of proteins from influenza A virus.

  2. Role of Extracellular Matrix Proteins and Their Receptors in the Development of the Vertebrate Neuromuscular Junction

    PubMed Central

    Singhal, Neha; Martin, Paul T.

    2012-01-01

    The vertebrate neuromuscular junction remains the best-studied model for understanding the mechanisms involved in synaptogenesis, due to its relatively large size, its simplicity of patterning and its unparalleled experimental accessibility. During neuromuscular development, each skeletal myofiber secretes and deposits around its extracellular surface an assemblage of extracellular matrix (ECM) proteins that ultimately form a basal lamina. This is also the case at the neuromuscular junction, where the motor nerve contributes additional factors. Before most of the current molecular components were known, it was clear that the synaptic ECM of adult skeletal muscles was unique in composition and contained factors sufficient to induce the differentiation of both pre- and postsynaptic membranes. Biochemical, genetic and microscopy studies have confirmed that agrin, laminin (221, 421, and 521), collagen IV (α3-α6), collagen XIII, perlecan and the ColQ-bound form of acetylcholinesterase are all synaptic ECM proteins with important roles in neuromuscular development. The roles of their many potential receptors and/or binding proteins has been more difficult to assess at the genetic level due to the complexity of membrane interactions with these large proteins, but roles for MuSK-LRP4 in agrin signaling and for integrins, dystroglycan, and voltage-gated calcium channels in laminin-dependent phenotypes have been identified. Synaptic extracellular matrix proteins and their receptors are involved in almost all aspects of synaptic development, including synaptic initiation, topography, ultrastructure, maturation, stability and transmission. PMID:21766463

  3. MVsCarta: A protein database of matrix vesicles to aid understanding of biomineralization.

    PubMed

    Cui, Yazhou; Xu, Quan; Luan, Jing; Hu, Shichang; Pan, Jianbo; Han, Jinxiang; Ji, Zhiliang

    2015-06-01

    Matrix vesicles (MVs) are membranous nanovesicles released by chondrocytes, osteoblasts, and odontoblasts. They play a critical role in modulating mineralization. Here, we present a manually curated database of MV proteins, namely MVsCara to provide comprehensive information on MVs of protein components. In the current version, the database contains 2,713 proteins of six organisms identified in bone, cartilage, tooth tissues, and cells capable of producing a mineralized bone matrix. The MVsCarta database is now freely assessed at http://bioinf.xmu.edu.cn/MVsCarta. The search and browse methods were developed for better retrieval of data. In addition, bioinformatic tools like Gene Ontology (GO) analysis, network visualization and protein-protein interaction analysis were implemented for a functional understanding of MVs components. Similar database hasn't been reported yet. We believe that this free web-based database might serve as a useful repository to elucidate the novel function and regulation of MVs during mineralization, and to stimulate the advancement of MV studies.

  4. Protein sequence-similarity search acceleration using a heuristic algorithm with a sensitive matrix.

    PubMed

    Lim, Kyungtaek; Yamada, Kazunori D; Frith, Martin C; Tomii, Kentaro

    2016-12-01

    Protein database search for public databases is a fundamental step in the target selection of proteins in structural and functional genomics and also for inferring protein structure, function, and evolution. Most database search methods employ amino acid substitution matrices to score amino acid pairs. The choice of substitution matrix strongly affects homology detection performance. We earlier proposed a substitution matrix named MIQS that was optimized for distant protein homology search. Herein we further evaluate MIQS in combination with LAST, a heuristic and fast database search tool with a tunable sensitivity parameter m, where larger m denotes higher sensitivity. Results show that MIQS substantially improves the homology detection and alignment quality performance of LAST across diverse m parameters. Against a protein database consisting of approximately 15 million sequences, LAST with m = 10(5) achieves better homology detection performance than BLASTP, and completes the search 20 times faster. Compared to the most sensitive existing methods being used today, CS-BLAST and SSEARCH, LAST with MIQS and m = 10(6) shows comparable homology detection performance at 2.0 and 3.9 times greater speed, respectively. Results demonstrate that MIQS-powered LAST is a time-efficient method for sensitive and accurate homology search.

  5. HIV-1 matrix protein p17: a candidate antigen for therapeutic vaccines against AIDS.

    PubMed

    Fiorentini, Simona; Giagulli, Cinzia; Caccuri, Francesca; Magiera, Anna K; Caruso, Arnaldo

    2010-12-01

    The success in the development of anti-retroviral therapies (HAART) that contain human immunodeficiency virus type 1 (HIV-1) infection is challenged by the cost of this lifelong therapy and by its toxicity. Immune-based therapeutic strategies that boost the immune response against HIV-1 proteins or protein subunits have been recently proposed to control virus replication in order to provide protection from disease development, reduce virus transmission, and help limit the use of anti-retroviral treatments. HIV-1 matrix protein p17 is a structural protein that is critically involved in most stages of the life cycle of the retrovirus. Besides its well established role in the virus life cycle, increasing evidence suggests that p17 may also be active extracellularly in deregulating biological activities of many different immune cells that are directly or indirectly involved in AIDS pathogenesis. Thus, p17 might represent a promising target for developing a therapeutic vaccine as a contribution to combating AIDS. In this article we review the biological characteristics of HIV-1 matrix protein p17 and we describe why a synthetic peptide representative of the p17 functional epitope may work as a vaccine molecule capable of inducing anti-p17 neutralizing response against p17 derived from divergent HIV-1 strains.

  6. Molecular Cloning and Characterization of First Organic Matrix Protein from Sclerites of Red Coral, Corallium rubrum*

    PubMed Central

    Debreuil, Julien; Tambutté, Éric; Zoccola, Didier; Deleury, Emeline; Guigonis, Jean-Marie; Samson, Michel; Allemand, Denis; Tambutté, Sylvie

    2012-01-01

    We report here for the first time the isolation and characterization of a protein from the organic matrix (OM) of the sclerites of the alcyonarian, Corallium rubrum. This protein named scleritin is one of the predominant proteins extracted from the EDTA-soluble fraction of the OM. The entire open reading frame (ORF) was obtained by comparing amino acid sequences from de novo mass spectrometry and Edman degradation with an expressed sequence tag library dataset of C. rubrum. Scleritin is a secreted basic phosphorylated protein which exhibits a short amino acid sequence of 135 amino acids and a signal peptide of 20 amino acids. From specific antibodies raised against peptide sequences of scleritin, we obtained immunolabeling of scleroblasts and OM of the sclerites which provides information on the biomineralization pathway in C. rubrum. PMID:22505718

  7. Processing of mussel adhesive protein analog thin films by matrix assisted pulsed laser evaporation

    NASA Astrophysics Data System (ADS)

    Cristescu, R.; Patz, T.; Narayan, R. J.; Menegazzo, N.; Mizaikoff, B.; Mihaiescu, D. E.; Messersmith, P. B.; Stamatin, I.; Mihailescu, I. N.; Chrisey, D. B.

    2005-07-01

    Mussel adhesive proteins are a new class of biologically-derived materials that possess unique biocompatibility, bioactivity, and adhesion properties. We have demonstrated successful thin film growth of 3,4-dihydroxyphenyl- L-alanine modified poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (DOPA modified- PEO-PPO-PEO) block copolymer, a mussel adhesive protein analog, using matrix assisted pulsed laser evaporation. We have demonstrated that the main functional groups of the mussel adhesive protein analog are present in the transferred film. The effect of increasing of chain length of the mussel adhesive protein analog on film structure was also examined. These novel polymer thin films could have numerous medical and technological applications if their thin film properties are similar to what is found in bulk. This is the first report of successful MAPLE deposition of this material as thin films.

  8. BmECM25, from the silkworm Bombyx mori, is an extracellular matrix protein.

    PubMed

    Zou, Ziliang; Xu, Yunmin; Ma, Bi; Xiang, Zhonghuai; He, Ningjia

    2015-10-01

    BmECM25 (previously reported as BmVMP25) was previously predicted as a gene encoding the vitelline membrane protein in silkworm, Bombyx mori. In this study, we investigated the detail temporal and spatial patterns of BmECM25 protein. Western blot results showed that BmECM25 was expressed in the follicular epithelium cells from stages -6 to +1, and was then secreted into the oocytes. However, the abundance of BmECM25 decreased during the subsequent oogenesis and finally disappeared in the mature follicles. Immunofluorescence detection showed that BmECM25 locates inside the VM layer and forms a discontinuous layer. These features of BmECM25 suggest that it is an oocyte membrane matrix protein, not a vitelline membrane protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Trimer Enhancement Mutation Effects on HIV-1 Matrix Protein Binding Activities

    PubMed Central

    Alfadhli, Ayna; Mack, Andrew; Ritchie, Christopher; Cylinder, Isabel; Harper, Logan; Tedbury, Philip R.; Freed, Eric O.

    2016-01-01

    ABSTRACT The HIV-1 matrix (MA) protein is the amino-terminal domain of the HIV-1 precursor Gag (Pr55Gag) protein. MA binds to membranes and RNAs, helps transport Pr55Gag proteins to virus assembly sites at the plasma membranes of infected cells, and facilitates the incorporation of HIV-1 envelope (Env) proteins into virions by virtue of an interaction with the Env protein cytoplasmic tails (CTs). MA has been shown to crystallize as a trimer and to organize on membranes in hexamer lattices. MA mutations that localize to residues near the ends of trimer spokes have been observed to impair Env protein assembly into virus particles, and several of these are suppressed by the 62QR mutation at the hubs of trimer interfaces. We have examined the binding activities of wild-type (WT) MA and 62QR MA variants and found that the 62QR mutation stabilized MA trimers but did not alter the way MA proteins organized on membranes. Relative to WT MA, the 62QR protein showed small effects on membrane and RNA binding. However, 62QR proteins bound significantly better to Env CTs than their WT counterparts, and CT binding efficiencies correlated with trimerization efficiencies. Our data suggest a model in which multivalent binding of trimeric HIV-1 Env proteins to MA trimers contributes to the process of Env virion incorporation. IMPORTANCE The HIV-1 Env proteins assemble as trimers, and incorporation of the proteins into virus particles requires an interaction of Env CT domains with the MA domains of the viral precursor Gag proteins. Despite this knowledge, little is known about the mechanisms by which MA facilitates the virion incorporation of Env proteins. To help elucidate this process, we examined the binding activities of an MA mutant that stabilizes MA trimers. We found that the mutant proteins organized similarly to WT proteins on membranes, and that mutant and WT proteins revealed only slight differences in their binding to RNAs or lipids. However, the mutant proteins showed

  10. Dipolar relaxation within the protein matrix of the green fluorescent protein: a red edge excitation shift study.

    PubMed

    Haldar, Sourav; Chattopadhyay, Amitabha

    2007-12-27

    The fluorophore in green fluorescent protein (GFP) is localized in a highly constrained environment, protected from the bulk solvent by the barrel-shaped protein matrix. We have used the wavelength-selective fluorescence approach (red edge excitation shift, REES) to monitor solvent (environment) dynamics around the fluorophore in enhanced green fluorescent protein (EGFP) under various conditions. Our results show that EGFP displays REES in buffer and glycerol, i.e., the fluorescence emission maxima exhibit a progressive shift toward the red edge, as the excitation wavelength is shifted toward the red edge of the absorption spectrum. Interestingly, EGFP displays REES when incorporated in reverse micelles of sodium bis(2-ethylhexyl)sulfosuccinate (AOT), independent of the hydration state. We interpret the observed REES to the constrained environment experienced by the EGFP fluorophore in the rigid protein matrix, rather than to the dynamics of the bulk solvent. These results are supported by the temperature dependence of REES and characteristic wavelength-dependent changes in fluorescence anisotropy.

  11. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    PubMed Central

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  12. Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation

    PubMed Central

    Barros, Marilia; Nanda, Hirsh

    2016-01-01

    ABSTRACT By assembling in a protein lattice on the host's plasma membrane, the retroviral Gag polyprotein triggers formation of the viral protein/membrane shell. The MA domain of Gag employs multiple signals—electrostatic, hydrophobic, and lipid-specific—to bring the protein to the plasma membrane, thereby complementing protein-protein interactions, located in full-length Gag, in lattice formation. We report the interaction of myristoylated and unmyristoylated HIV-1 Gag MA domains with bilayers composed of purified lipid components to dissect these complex membrane signals and quantify their contributions to the overall interaction. Surface plasmon resonance on well-defined planar membrane models is used to quantify binding affinities and amounts of protein and yields free binding energy contributions, ΔG, of the various signals. Charge-charge interactions in the absence of the phosphatidylinositide PI(4,5)P2 attract the protein to acidic membrane surfaces, and myristoylation increases the affinity by a factor of 10; thus, our data do not provide evidence for a PI(4,5)P2 trigger of myristate exposure. Lipid-specific interactions with PI(4,5)P2, the major signal lipid in the inner plasma membrane, increase membrane attraction at a level similar to that of protein lipidation. While cholesterol does not directly engage in interactions, it augments protein affinity strongly by facilitating efficient myristate insertion and PI(4,5)P2 binding. We thus observe that the isolated MA protein, in the absence of protein-protein interaction conferred by the full-length Gag, binds the membrane with submicromolar affinities. IMPORTANCE Like other retroviral species, the Gag polyprotein of HIV-1 contains three major domains: the N-terminal, myristoylated MA domain that targets the protein to the plasma membrane of the host; a central capsid-forming domain; and the C-terminal, genome-binding nucleocapsid domain. These domains act in concert to condense Gag into a membrane

  13. Biophysical characterization and crystal structure of the Feline Immunodeficiency Virus p15 matrix protein.

    PubMed

    Serrière, Jennifer; Robert, Xavier; Perez, Magali; Gouet, Patrice; Guillon, Christophe

    2013-06-24

    Feline Immunodeficiency Virus (FIV) is a viral pathogen that infects domestic cats and wild felids. During the viral replication cycle, the FIV p15 matrix protein oligomerizes to form a closed matrix that underlies the lipidic envelope of the virion. Because of its crucial role in the early and late stages of viral morphogenesis, especially in viral assembly, FIV p15 is an interesting target in the development of potential new therapeutic strategies. Our biochemical study of FIV p15 revealed that it forms a stable dimer in solution under acidic conditions and at high concentration, unlike other retroviral matrix proteins. We determined the crystal structure of full-length FIV p15 to 2 Å resolution and observed a helical organization of the protein, typical for retroviral matrix proteins. A hydrophobic pocket that could accommodate a myristoyl group was identified, and the C-terminal end of FIV p15, which is mainly unstructured, was visible in electron density maps. As FIV p15 crystallizes in acidic conditions but with one monomer in the asymmetric unit, we searched for the presence of a biological dimer in the crystal. No biological assembly was detected by the PISA server, but the three most buried crystallographic interfaces have interesting features: the first one displays a highly conserved tryptophan acting as a binding platform, the second one is located along a 2-fold symmetry axis and the third one resembles the dimeric interface of EIAV p15. Because the C-terminal end of p15 is involved in two of these three interfaces, we investigated the structure and assembly of a C-terminal-truncated form of p15 lacking 14 residues. The truncated FIV p15 dimerizes in solution at a lower concentration and crystallizes with two molecules in the asymmetric unit. The EIAV-like dimeric interface is the only one to be retained in the new crystal form. The dimeric form of FIV p15 in solution and its extended C-terminal end are characteristic among lentiviral matrix proteins

  14. Cloning of matrix Gla protein in a marine cartilaginous fish, Prionace glauca: preferential protein accumulation in skeletal and vascular systems.

    PubMed

    Ortiz-Delgado, J B; Simes, D C; Viegas, C S B; Schaff, B J; Sarasquete, C; Cancela, M L

    2006-07-01

    Matrix Gla protein (MGP) belongs to the family of vitamin K dependent, Gla containing proteins and, in mammals, birds and Xenopus, its mRNA has been previously detected in bone, cartilage and soft tissue extracts, while the accumulation of the protein was found mainly in calcified tissues. More recently, the MGP gene expression was also studied in marine teleost fish where it was found to be associated with chondrocytes, smooth muscle and endothelial cells. To date no information is available on the sites of MGP expression or accumulation in cartilaginous fishes that diverged from osteichthyans, a group that includes mammals, over 400 million years ago. The main objectives of this work were to study the sites of MGP gene expression and protein accumulation by means of in situ hybridization and immunohistochemistry. MGP mRNA and protein were localized as expected not only in cartilage from branchial arches and vertebra but also in the endothelia of the vascular system as well as in the tubular renal endothelium. The accumulation of MGP in non mineralized soft tissues was unexpected and suggests differences in localization or regulation of this protein in shark soft tissues compared to tetrapods and teleosts. Our results also corroborate the hypothesis that in Prionace glauca, as previously shown in mammals, the MGP protein probably also acts as a calcification inhibitor, protecting soft tissues from abnormal and ectopic calcification.

  15. Application of green fluorescent protein-labeled assay for the study of subcellular localization of Newcastle disease virus matrix protein.

    PubMed

    Duan, Zhiqiang; Li, Qunhui; He, Liang; Zhao, Guo; Chen, Jian; Hu, Shunlin; Liu, Xiufan

    2013-12-01

    Green fluorescent protein (GFP) used as a powerful marker of gene expression in vivo has so far been applied widely in studying the localizations and functions of protein in living cells. In this study, GFP-labeled assay was used to investigate the subcellular localization of matrix (M) protein of different virulence and genotype Newcastle disease virus (NDV) strains. The M protein of ten NDV strains fused with GFP (GFP-M) all showed nuclear-and-nucleolar localization throughout transfection, whereas that of the other two strains were observed in the nucleus and nucleolus early in transfection but in the cytoplasm late in transfection. In addition, mutations to the previously defined nuclear localization signal in the GFP-M fusion protein were studied as well. Single changes at positions 262 and 263 did not affect nuclear localization of M, while changing both of these arginine residues to asparagine caused re-localization of M mainly to the cytoplasm. The GFP-M was validated as a suitable system for studying the subcellular localization of M protein and could be used to assist us in further identifying the signal sequences responsible for the nucleolar localization and cytoplasmic localization of M protein.

  16. Constitutive Nuclear Expression of Dentin Matrix Protein 1 Fails to Rescue the Dmp1-null Phenotype*

    PubMed Central

    Lin, Shuxian; Zhang, Qi; Cao, Zhengguo; Lu, Yongbo; Zhang, Hua; Yan, Kevin; Liu, Ying; McKee, Marc D.; Qin, Chunlin; Chen, Zhi; Feng, Jian Q.

    2014-01-01

    Dentin matrix protein 1 (DMP1) plays multiple roles in bone, tooth, phosphate homeostasis, kidney, salivary gland, reproductive cycles, and the development of cancer. In vitro studies have indicated two different biological mechanisms: 1) as a matrix protein, DMP1 interacts with αvβ3 integrin and activates MAP kinase signaling; and 2) DMP1 serves as a transcription co-factor. In vivo studies have demonstrated its key role in osteocytes. This study attempted to determine whether DMP1 functions as a transcription co-factor and regulates osteoblast functions. For gene expression comparisons using adenovirus constructs, we targeted the expression of DMP1 either to the nucleus only by replacing the endogenous signal peptide with a nuclear localization signal (NLS) sequence (referred to as NLSDMP1) or to the extracellular matrix as the WT type (referred to as SPDMP1) in MC3T3 osteoblasts. High levels of DMP1 in either form greatly increased osteogenic gene expression in an identical manner. However, the targeted NLSDMP1 transgene driven by a 3.6-kb rat Col 1α1 promoter in the nucleus of osteoblasts and osteocytes failed to rescue the phenotyope of Dmp1-null mice, whereas the SPDMP1 transgene rescued the rickets defect. These studies support the notion that DMP1 functions as an extracellular matrix protein, rather than as a transcription co-factor in vivo. We also show that DMP1 continues its expression in osteoblasts during postnatal development and that the deletion of Dmp1 leads to an increase in osteoblast proliferation. However, poor mineralization in the metaphysis indicates a critical role for DMP1 in both osteoblasts and osteocytes. PMID:24917674

  17. Regulation of protein glycosylation and sorting by the Golgi matrix proteins GRASP55/65

    PubMed Central

    Xiang, Yi; Zhang, Xiaoyan; Nix, David B.; Katoh, Toshihiko; Aoki, Kazuhiro; Tiemeyer, Michael; Wang, Yanzhuang

    2013-01-01

    The Golgi receives the entire output of newly synthesized cargo from the endoplasmic reticulum (ER), processes it in the stack largely through modification of bound oligosaccharides, and sorts it in the trans-Golgi network (TGN). GRASP65 and GRASP55, two proteins localized to the Golgi stack and early secretory pathway, mediate processes including Golgi stacking, Golgi ribbon linking, and unconventional secretion. Previously we have shown that GRASP depletion in cells disrupts Golgi stack formation. Here we report that knockdown of the GRASP proteins, alone or combined, accelerates protein trafficking through the Golgi membranes but also has striking negative effects on protein glycosylation and sorting. These effects are not caused by Golgi ribbon unlinking, unconventional secretion, or ER stress. We propose that GRASP55/65 are negative regulators of exocytic transport and that this slowdown helps to ensure more complete protein glycosylation in the Golgi stack and proper sorting at the TGN. PMID:23552074

  18. Matrix Proteins of Nipah and Hendra Viruses Interact with Beta Subunits of AP-3 Complexes

    PubMed Central

    Sun, Weina; McCrory, Thomas S.; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell

    2014-01-01

    ABSTRACT Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. IMPORTANCE Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998

  19. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein.

    PubMed

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-12-29

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.

  20. C-Terminal DxD-Containing Sequences within Paramyxovirus Nucleocapsid Proteins Determine Matrix Protein Compatibility and Can Direct Foreign Proteins into Budding Particles

    PubMed Central

    Ray, Greeshma; Schmitt, Phuong Tieu

    2016-01-01

    ABSTRACT Paramyxovirus particles are formed by a budding process coordinated by viral matrix (M) proteins. M proteins coalesce at sites underlying infected cell membranes and induce other viral components, including viral glycoproteins and viral ribonucleoprotein complexes (vRNPs), to assemble at these locations from which particles bud. M proteins interact with the nucleocapsid (NP or N) components of vRNPs, and these interactions enable production of infectious, genome-containing virions. For the paramyxoviruses parainfluenza virus 5 (PIV5) and mumps virus, M-NP interaction also contributes to efficient production of virus-like particles (VLPs) in transfected cells. A DLD sequence near the C-terminal end of PIV5 NP protein was previously found to be necessary for M-NP interaction and efficient VLP production. Here, we demonstrate that 15-residue-long, DLD-containing sequences derived from either the PIV5 or Nipah virus nucleocapsid protein C-terminal ends are sufficient to direct packaging of a foreign protein, Renilla luciferase, into budding VLPs. Mumps virus NP protein harbors DWD in place of the DLD sequence found in PIV5 NP protein, and consequently, PIV5 NP protein is incompatible with mumps virus M protein. A single amino acid change converting DLD to DWD within PIV5 NP protein induced compatibility between these proteins and allowed efficient production of mumps VLPs. Our data suggest a model in which paramyxoviruses share an overall common strategy for directing M-NP interactions but with important variations contained within DLD-like sequences that play key roles in defining M/NP protein compatibilities. IMPORTANCE Paramyxoviruses are responsible for a wide range of diseases that affect both humans and animals. Paramyxovirus pathogens include measles virus, mumps virus, human respiratory syncytial virus, and the zoonotic paramyxoviruses Nipah virus and Hendra virus. Infectivity of paramyxovirus particles depends on matrix-nucleocapsid protein

  1. Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins

    PubMed Central

    Shibata, Toshio; Maki, Kouki; Hadano, Jinki; Fujikawa, Takumi; Kitazaki, Kazuki; Koshiba, Takumi; Kawabata, Shun-ichiro

    2015-01-01

    Transglutaminase (TG) catalyzes protein-protein crosslinking, which has important and diverse roles in vertebrates and invertebrates. Here we demonstrate that Drosophila TG crosslinks drosocrystallin, a peritrophic matrix protein, to form a stable fiber structure on the gut peritrophic matrix. RNA interference (RNAi) of the TG gene was highly lethal in flies and induced apoptosis of gut epithelial cells after oral infection with Pseudomonas entomophila. Moreover, AprA, a metalloprotease secreted by P. entomophila, digested non-crosslinked drosocrystallin fibers, but not drosocrystallin fibers crosslinked by TG. In vitro experiments using recombinant drosocrystallin and monalysin proteins demonstrated that monalysin, a pore-forming exotoxin of P. entomophila, was adsorbed on the crosslinked drosocrystallin fibers in the presence of P. entomophila culture supernatant. In addition, gut-specific TG-RNAi flies had a shorter lifespan than control flies after ingesting P. entomophila, whereas the lifespan after ingesting AprA-knockout P. entomophila was at control levels. We conclude that drosocrystallin fibers crosslinked by TG, but not non-crosslinked drosocrystallin fibers, form an important physical barrier against exotoxins of invading pathogenic microbes. PMID:26506243

  2. LMAN1 (ERGIC-53) is a potential carrier protein for matrix metalloproteinase-9 glycoprotein secretion

    PubMed Central

    Duellman, Tyler; Burnett, John; Shin, Alice; Yang, Jay

    2015-01-01

    Matrix metalloproteinase-9 (MMP-9) is a secreted glycoprotein with a major role in shaping the extra-cellular matrix and a detailed understanding of the secretory mechanism could help identify methods to correct diseases resulting from dysregulation of secretion. MMP-9 appears to follow a canonical secretory pathway through a quality control cycle in the endoplasmic reticulum (ER) before transport of the properly folded protein to the Golgi apparatus and beyond for secretion. Through a complementation assay, we determined that LMAN1, a well-studied lectin-carrier protein, interacts with a secretion-competent N-glycosylated MMP-9 in the ER while N-glycosylation-deficient secretion-compromised MMP-9 does not. In contrast, co-immunoprecipitation demonstrated protein interaction between LMAN1 and secretion-compromised N-glycosylation-deficient MMP-9. MMP-9 secretion was reduced in the LMAN1 knockout cell line compared to control cells confirming the functional role of LMAN1. These observations support the role of LMAN1 as a lectin-carrier protein mediating efficient MMP-9 secretion. PMID:26150355

  3. HIV-1 matrix protein p17 resides in cell nuclei in association with genomic RNA.

    PubMed

    Bukrinskaya, A G; Vorkunova, G K; Tentsov YYu

    1992-10-01

    We have shown previously that HIV-1 matrix protein p17 is transported to the nucleus of Jurkat-tat and H9 cells soon after infection. As shown in this combination, gag polyprotein p55 synthesized 48 h after cell infection is cleaved in cytosol rapidly after its synthesis, and nascent p17 enters the nuclei and gradually accumulates there. Uncleaved p55 molecules and intermediate precursors are rapidly transported to the membranes and are also found in nuclei. Mature gag proteins are seen in membranes only after prolonged period of labelling or chase (4 or more hours later). To determine whether the nascent p17 is associated with viral genomic RNA in the nuclei, the cells were fractionated, the viral complexes were immunoprecipitated by monoclonal antibodies (MAbs) against gag proteins, and RNA was extracted and analyzed by slot and blot hybridization. MAb against p17 precipitated all the viral RNA from the nuclei including full-size genomic RNA and essential parts from membranes while MAb against p24 did not precipitate any viral RNA from the nuclei. These data suggest that matrix protein is linked to genomic RNA in the nuclei and raise the possibility that p17 may transfer viral nucleocapsids from the nuclei to plasma membranes, the site of virus assembly.

  4. Improved binding of acidic bone matrix proteins to cationized filters during solid phase assays.

    PubMed

    Farach-Carson, M C; Wright, G C; Butler, W T

    1992-01-01

    A number of commercially available matrix filter supports have been designed for the immobilization of proteins following either electrotransfer from sodium dodecyl sulfate (SDS) polyacrylamide gels or direct application during dot blotting assays. These matrices differ with respect to chemical composition, charge, pore size, and degree of hydrophobicity. It follows that the properties of the protein(s) of interest will greatly influence the degree to which they interact with and ultimately bind to various filters. Acidic bone proteins contain diverse post-translational modifications that influence their interactions with solid phase matrices such as those used in immunoblotting (Western or dot blotting) or ion binding (overlay) procedures. This communication describes the results of a study comparing binding of various mixtures of non-collagenous acidic bone matrix phosphoproteins as well as purified osteopontin and osteocalcin to various filters including nitrocellulose and cationized paper or nylon. Based on our findings, we recommend the use of cationized filters for solid phase assays requiring the binding of these acidic macromolecules to background supports.

  5. LMAN1 (ERGIC-53) is a potential carrier protein for matrix metalloproteinase-9 glycoprotein secretion.

    PubMed

    Duellman, Tyler; Burnett, John; Shin, Alice; Yang, Jay

    2015-08-28

    Matrix metalloproteinase-9 (MMP-9) is a secreted glycoprotein with a major role in shaping the extracellular matrix and a detailed understanding of the secretory mechanism could help identify methods to correct diseases resulting from dysregulation of secretion. MMP-9 appears to follow a canonical secretory pathway through a quality control cycle in the endoplasmic reticulum (ER) before transport of the properly folded protein to the Golgi apparatus and beyond for secretion. Through a complementation assay, we determined that LMAN1, a well-studied lectin-carrier protein, interacts with a secretion-competent N-glycosylated MMP-9 in the ER while N-glycosylation-deficient secretion-compromised MMP-9 does not. In contrast, co-immunoprecipitation demonstrated protein interaction between LMAN1 and secretion-compromised N-glycosylation-deficient MMP-9. MMP-9 secretion was reduced in the LMAN1 knockout cell line compared to control cells confirming the functional role of LMAN1. These observations support the role of LMAN1 as a lectin-carrier protein mediating efficient MMP-9 secretion.

  6. Analysis of matrix proteins of otolith in upside-down catfish

    NASA Astrophysics Data System (ADS)

    Ohnishi, K.; Okamoto, N.; Takahashi, A.; Ohnishi, T.

    We have previously suggested that the calcium density of the otolith in upside-down swimming Synodontis nigriventris is lower than that in upside-up swimming Synodontis multipunctatus Biol Space Sci 2002 In this study we examined EDTA-soluble matrix proteins of otolith in the utricle of the catfish S nigriventris S multipunctatus and upside-up swimming Synodontis brichadi and goldfish Carassius auratus We detected two main bands about 55 kD and 80 kD with SDS-PAGE in the 3 species of the catfish In cntrast goldfish had the about 55 kD band alone The band of about 80 kD was consisted of two sub-bands a lighter and a heavier band A lighter band was observed in S brichadi and a heavier band was observed in S nigriventris S multipunctatus had the both bands Furthermore mass spectrometric analysis showed there were some proteins of molecular weight under 14 kD The molecular weights of the proteins were different among the fishes These results suggest that many different kinds of matrix protein may cause different degree of calcification in otolith formation

  7. Recombinant mussel proximal thread matrix protein promotes osteoblast cell adhesion and proliferation.

    PubMed

    Yoo, Hee Young; Song, Young Hoon; Foo, Mathias; Seo, Eunseok; Hwang, Dong Soo; Seo, Jeong Hyun

    2016-02-16

    von Willebrand factor (VWF) is a key load bearing domain for mamalian cell adhesion by binding various macromolecular ligands in extracellular matrix such as, collagens, elastin, and glycosaminoglycans. Interestingly, vWF like domains are also commonly found in load bearing systems of marine organisms such as in underwater adhesive of mussel and sea star, and nacre of marine abalone, and play a critical load bearing function. Recently, Proximal Thread Matrix Protein1 (PTMP1) in mussel composed of two vWF type A like domains has characterized and it is known to bind both mussel collagens and mammalian collagens. Here, we cloned and mass produced a recombinant PTMP1 from E. coli system after switching all the minor codons to the major codons of E. coli. Recombinant PTMP1 has an ability to enhance mouse osteoblast cell adhesion, spreading, and cell proliferation. In addition, PTMP1 showed vWF-like properties as promoting collagen expression as well as binding to collagen type I, subsequently enhanced cell viability. Consequently, we found that recombinant PTMP1 acts as a vWF domain by mediating cell adhesion, spreading, proliferation, and formation of actin cytoskeleton. This study suggests that both mammalian cell adhesion and marine underwater adhesion exploits a strong vWF-collagen interaction for successful wet adhesion. In addition, vWF like domains containing proteins including PTMP1 have a great potential for tissue engineering and the development of biomedical adhesives as a component for extra-cellular matrix.

  8. Efficient SIVcpz replication in human lymphoid tissue requires viral matrix protein adaptation

    PubMed Central

    Bibollet-Ruche, Frederic; Heigele, Anke; Keele, Brandon F.; Easlick, Juliet L.; Decker, Julie M.; Takehisa, Jun; Learn, Gerald; Sharp, Paul M.; Hahn, Beatrice H.; Kirchhoff, Frank

    2012-01-01

    SIVs infecting wild-living apes in west central Africa have crossed the species barrier to humans on at least four different occasions, one of which spawned the AIDS pandemic. Although the chimpanzee precursor of pandemic HIV-1 strains must have been able to infect humans, the capacity of SIVcpz strains to replicate in human lymphoid tissues (HLTs) is not known. Here, we show that SIVcpz strains from two chimpanzee subspecies are capable of replicating in human tonsillary explant cultures, albeit only at low titers. However, SIVcpz replication in HLT was significantly improved after introduction of a previously identified human-specific adaptation at position 30 in the viral Gag matrix protein. An Arg or Lys at this position significantly increased SIVcpz replication in HLT, while the same mutation reduced viral replication in chimpanzee-derived CD4+ T cells. Thus, naturally occurring SIVcpz strains are capable of infecting HLTs, the major site of HIV-1 replication in vivo. However, efficient replication requires the acquisition of a host-specific adaptation in the viral matrix protein. These results identify Gag matrix as a major determinant of SIVcpz replication fitness in humans and suggest a critical role in the emergence of HIV/AIDS. PMID:22505456

  9. Herpes simplex (HSV-1) infection of bovine aorta smooth muscle cells (SMC) inhibits matrix protein synthesis

    SciTech Connect

    Lashgari, M.S.; Friedman, H.M.; Kefalides, N.A.

    1986-03-01

    Studies from this laboratory have shown that HSV-1 infection suppresses matrix protein synthesis by endothelial cells in vitro. In this study the authors have investigated the effects of HSV-1 infection on SMC. Monolayers of SMC were infected with HSV-1 at a multiplicity of infection (MOI) ranging from 0.1 to 20. Viral replication and release to the medium was measured by plaque assay in Vero cells. At an MOI of 0.1, 10 or 20, viral replication occurred and maximum virus titers were achieved by 24 hrs. post-infection. Virus release in the medium began during the first 12 hrs. post-infection and reached maximum at 24 hrs. Infected and uninfected cultures of SMC were pulse labeled with either (/sup 14/C)proline or (/sup 35/S)-methionine at different hrs. post-infection. Incorporation of radioactivity into non-dialyzable protein was determined in fluorograms following SDS-PAGE of the cell-matrix or medium fractions. The synthesis of fibronectin and collagen Types I and III was suppressed and the degree of suppression was dependent on the duration of infection and on the virus dose. These data suggest that SMC can support HSV-1 replication in vitro and that such infection can lead to altered extracellular matrix synthesis.

  10. Matrix Pre-coated Targets for High Throughput MALDI Imaging of Proteins

    PubMed Central

    Yang, Junhai; Caprioli, Richard M.

    2014-01-01

    We have developed matrix pre-coated targets for imaging proteins in thin tissue sections by MALDI MS (matrix-assisted laser desorption/ionization mass spectrometry). Gold covered microscope slides were coated with sinapinic acid (SA) in batches in advance and were shown to be stable for over 6 months when kept in the dark. The sample preparation protocol using these SA pre-coated targets involves treatment with diisopropylethylamine (DIEA)-H2O vapor, transforming the matrix layer to a viscous ionic liquid. This SA-DIEA ionic liquid layer extracts proteins and other analytes from tissue sections that are thaw mounted to this target. DIEA is removed by immersion of the target into diluted acetic acid (AcOH), allowing SA to co-crystallizes with extracted analytes directly on the target. Ion images (3–70 kDa) of sections of mouse brain and rat kidney at spatial resolution down to 10 μm were obtained. Use of pre-coated slides greatly reduces sample preparation time for MALDI imaging while providing high throughput, low cost, and high spatial resolution images. PMID:24809903

  11. An intrinsic mechanism controls reactivation of neural stem cells by spindle matrix proteins.

    PubMed

    Li, Song; Koe, Chwee Tat; Tay, Su Ting; Tan, Angie Lay Keng; Zhang, Shenli; Zhang, Yingjie; Tan, Patrick; Sung, Wing-Kin; Wang, Hongyan

    2017-07-25

    The switch between quiescence and proliferation is central for neurogenesis and its alteration is linked to neurodevelopmental disorders such as microcephaly. However, intrinsic mechanisms that reactivate Drosophila larval neural stem cells (NSCs) to exit from quiescence are not well established. Here we show that the spindle matrix complex containing Chromator (Chro) functions as a key intrinsic regulator of NSC reactivation downstream of extrinsic insulin/insulin-like growth factor signalling. Chro also prevents NSCs from ire-entering quiescence at later stages. NSC-specific in vivo profiling has dentified many downstream targets of Chro, including a temporal transcription factor Grainy head (Grh) and a neural stem cell quiescence-inducing factor Prospero (Pros). We show that spindle matrix proteins promote the expression of Grh and repress that of Pros in NSCs to govern their reactivation. Our data demonstrate that nuclear Chro critically regulates gene expression in NSCs at the transition from quiescence to proliferation.The spindle matrix proteins, including Chro, are known to regulate mitotic spindle assembly in the cytoplasm. Here the authors show that in Drosophila larval brain, Chro promotes neural stem cell (NSC) reactivation and prevents activated NSCs from entering quiescence, and that Chro carries out such a role by regulating the expression of key transcription factors in the nucleus.

  12. The extracellular matrix protein WARP is a novel component of a distinct subset of basement membranes.

    PubMed

    Allen, Justin M; Brachvogel, Bent; Farlie, Peter G; Fitzgerald, Jamie; Bateman, John F

    2008-05-01

    WARP is a recently described member of the von Willebrand factor A domain superfamily of extracellular matrix proteins, and is encoded by the Vwa1 gene. We have previously shown that WARP is a multimeric component of the chondrocyte pericellular matrix in articular cartilage and intervertebral disc, where it interacts with the basement membrane heparan sulfate proteoglycan perlecan. However, the tissue-specific expression of WARP in non-cartilaginous tissues and its localization in the extracellular matrix of other perlecan-containing tissues have not been analyzed in detail. To visualize WARP-expressing cells, we generated a reporter gene knock-in mouse by targeted replacement of the Vwa1 gene with beta-galactosidase. Analysis of reporter gene expression and WARP protein localization by immunostaining demonstrates that WARP is a component of a limited number of distinct basement membranes. WARP is expressed in the vasculature of neural tissues and in basement membrane structures of the peripheral nervous system. Furthermore, WARP is also expressed in the apical ectodermal ridge of developing limb buds, and in skeletal and cardiac muscle. These findings are the first evidence for WARP expression in non-cartilaginous tissues, and the identification of WARP as a component of a limited range of specialized basement membranes provides further evidence for the heterogeneous composition of basement membranes between different tissues.

  13. Expression of matrix Gla protein and osteocalcin in the developing tibial epiphysis of mice.

    PubMed

    Liu, Hongrui; Guo, Jie; Wei, Shanliang; Lv, Shengyu; Feng, Wei; Cui, Jian; Hasegawa, Tomoka; Hongo, Hiromi; Yang, Yang; Li, Xiangzhi; Oda, Kimimitsu; Amizuka, Norio; Li, Minqi

    2015-01-01

    This study aimed to investigate the expression of matrix Gla protein (MGP) and osteocalcin (OCN) in the tibial epiphysis of developing mice. At 1, 2, 3, and 4 weeks after birth, tibiae were removed and processed for histochemical observations and western blot analyses under anesthesia. To evaluate bone volume, the specimens were scanned with Micro CT Scanner from the articular cartilage through the growth plate, along the long axis of tibia. At 1 week after birth, OCN reactivity was faint in the region of vascular invasion, while hardly any MGP reactivity was discernible. Subsequently, MGP reactivity was seen on the cartilaginous lacunar walls of hypertrophic chondrocytes, while OCN reactivity was evenly found not only in the bone matrix, but also in the cartilaginous lacunar walls and on the bone surfaces. Furthermore, double-immunostaining clearly showed that MGP reactivity appeared closer to the cartilage matrix than OCN reactivity until postnatal week 3. Interestingly, the immunoreactivities for MGP and OCN both showed tidemarks in the articular cartilage at postnatal week 4, and MGP reactivity was more intense than OCN reactivity. Statistical analyses showed an overall upward trend in MGP and OCN expression levels during tibial epiphysis development, even though OCN was more abundant than MGP at every time-point. Taken together, our findings suggest that the expression of MGP and OCN increased gradually in the murine developing tibial epiphysis, and the two mineral-associated proteins may occur at the same location during a particular period, but at different levels.

  14. Two distinct membrane potential-dependent steps drive mitochondrial matrix protein translocation.

    PubMed

    Schendzielorz, Alexander Benjamin; Schulz, Christian; Lytovchenko, Oleksandr; Clancy, Anne; Guiard, Bernard; Ieva, Raffaele; van der Laan, Martin; Rehling, Peter

    2017-01-02

    Two driving forces energize precursor translocation across the inner mitochondrial membrane. Although the membrane potential (Δψ) is considered to drive translocation of positively charged presequences through the TIM23 complex (presequence translocase), the activity of the Hsp70-powered import motor is crucial for the translocation of the mature protein portion into the matrix. In this study, we show that mitochondrial matrix proteins display surprisingly different dependencies on the Δψ. However, a precursor's hypersensitivity to a reduction of the Δψ is not linked to the respective presequence, but rather to the mature portion of the polypeptide chain. The presequence translocase constituent Pam17 is specifically recruited by the receptor Tim50 to promote the transport of hypersensitive precursors into the matrix. Our analyses show that two distinct Δψ-driven translocation steps energize precursor passage across the inner mitochondrial membrane. The Δψ- and Pam17-dependent import step identified in this study is positioned between the two known energy-dependent steps: Δψ-driven presequence translocation and adenosine triphosphate-driven import motor activity.

  15. Improved Success of Sparse Matrix Protein Crystallization Screening with Heterogeneous Nucleating Agents

    PubMed Central

    Thakur, Anil S.; Robin, Gautier; Guncar, Gregor; Saunders, Neil F. W.; Newman, Janet; Martin, Jennifer L.; Kobe, Bostjan

    2007-01-01

    Background Crystallization is a major bottleneck in the process of macromolecular structure determination by X-ray crystallography. Successful crystallization requires the formation of nuclei and their subsequent growth to crystals of suitable size. Crystal growth generally occurs spontaneously in a supersaturated solution as a result of homogenous nucleation. However, in a typical sparse matrix screening experiment, precipitant and protein concentration are not sampled extensively, and supersaturation conditions suitable for nucleation are often missed. Methodology/Principal Findings We tested the effect of nine potential heterogenous nucleating agents on crystallization of ten test proteins in a sparse matrix screen. Several nucleating agents induced crystal formation under conditions where no crystallization occurred in the absence of the nucleating agent. Four nucleating agents: dried seaweed; horse hair; cellulose and hydroxyapatite, had a considerable overall positive effect on crystallization success. This effect was further enhanced when these nucleating agents were used in combination with each other. Conclusions/Significance Our results suggest that the addition of heterogeneous nucleating agents increases the chances of crystal formation when using sparse matrix screens. PMID:17971854

  16. Properties of the protein matrix revealed by the free energy of cavity formation.

    PubMed

    Kocher, J P; Prévost, M; Wodak, S J; Lee, B

    1996-12-15

    of the core or surface of the protein. The cavity free energy calculations described here provide a much more detailed physical picture of the protein matrix than volume and packing calculations. According to this picture, the packing of hydrophobic sidechains is tight in the interior of the protein, but far from uniform. In particular, the packing is tighter in regions where the backbone forms less regular hydrogen-bonding interactions than at interfaces between secondary structure elements, where such interactions are fully developed. This may have important implications on the role of sidechain packing in protein folding and stability.

  17. Protein-transitions in and out of the dough matrix in wheat flour mixing.

    PubMed

    Wang, Xiaolong; Appels, Rudi; Zhang, Xiaoke; Bekes, Ferenc; Torok, Kitti; Tomoskozi, Sandor; Diepeveen, Dean; Ma, Wujun; Islam, Shahidul

    2017-02-15

    Sequential protein behavior in the wheat dough matrix under continuous mixing and heating treatment has been studied using Mixolab-dough samples from two Australian wheat cultivars, Westonia and Wyalkatchem. Size exclusion high performance liquid chromatography (SE-HPLC) and two-dimensional gel electrophoresis (2-DGE) analysis indicated that 32min (80°C) was a critical time point in forming large protein complexes and loosing extractability of several protein groups like y-type high molecular weight glutenin subunits (HMW-GSs), gamma-gliadins, beta-amylases, serpins, and metabolic proteins with higher mass. Up to 32min (80°C) Westonia showed higher protein extractability compared to Wyalkatchem although it was in the opposite direction thereafter. Twenty differentially expressed proteins could be assigned to chromosomes 1D, 3A, 4A, 4B, 4D, 6A, 6B, 7A and 7B. The results expanded the range of proteins associated with changes in the gluten-complex during processing and provided targets for selecting new genetic variants associated with altered quality attributes of the flour.

  18. Expression and purification of the matrix protein of Nipah virus in baculovirus insect cell system.

    PubMed

    Masoomi Dezfooli, Seyedehsara; Tan, Wen Siang; Tey, Beng Ti; Ooi, Chien Wei; Hussain, Siti Aslina

    2016-01-01

    Nipah virus (NiV) causes fatal respiratory illness and encephalitis in humans and animals. The matrix (M) protein of NiV plays an important role in the viral assembly and budding process. Thus, an access to the NiV M protein is vital to the design of viral antigens as diagnostic reagents. In this study, recombinant DNA technology was successfully adopted in the cloning and expression of NiV M protein. A recombinant expression cassette (baculovirus expression vector) was used to encode an N-terminally His-tagged NiV M protein in insect cells. A time-course study demonstrated that the highest yield of recombinant M protein (400-500 μg) was expressed from 107 infected cells 3 days after infection. A single-step purification method based on metal ion affinity chromatography was established to purify the NiV M protein, which successfully yielded a purity level of 95.67% and a purification factor of 3.39. The Western blotting and enzyme-linked immunosorbent assay (ELISA) showed that the purified recombinant M protein (48 kDa) was antigenic and reacted strongly with the serum of a NiV infected pig.

  19. Role of TGFβ/Smad Signaling in Gremlin Induction of Human Trabecular Meshwork Extracellular Matrix Proteins

    PubMed Central

    Sethi, Anirudh; Jain, Ankur; Zode, Gulab S.; Wordinger, Robert J.

    2011-01-01

    Purpose. The bone morphogenic protein (BMP) antagonist gremlin is elevated in glaucomatous trabecular meshwork (TM) cells and tissues and elevates intraocular pressure (IOP). Gremlin also blocks BMP4 inhibition of transforming growth factor (TGF)-β2 induction of TM extracellular matrix (ECM) proteins. The purpose of this study was to determine whether Gremlin regulates ECM proteins in cultured human TM cells. Methods. Human TM cells were treated with recombinant gremlin to determine the effects on ECM gene and protein expression. Expression of the ECM genes FN, COL1, PAI1, and ELN was examined in cultured human TM cells by quantitative RT-PCR and Western immunoblot analysis. TM cells were pretreated with TGFBR inhibitors (LY364947, SB431542 or TGFBR1/TGFB2 siRNAs), inhibitors of the Smad signaling pathway (SIS3 or Smad2/3/4 siRNAs), or CTGF siRNA to identify the signaling pathway(s) involved in gremlin induction of ECM gene and protein expression. Results. All ECM genes analyzed (FN, COL1, PAI1, and ELN) were induced by gremlin. This gremlin induction of ECM genes and protein expression was blocked by inhibitors of TGFBR and the canonical Smad2/3/4 and CTGF signaling pathways. Conclusions. Gremlin employs canonical TGFβ2/Smad signaling to induce ECM genes and proteins in cultured human TM cells. Gremlin also induces both TGFβ2 and CTGF, which can act downstream to mediate some of these ECM changes in TM cells. PMID:21642622

  20. Loss of caveolin-1 alters extracellular matrix protein expression and ductal architecture in murine mammary glands

    PubMed Central

    Thompson, Christopher; Hielscher, Abigail

    2017-01-01

    The extracellular matrix (ECM) is abnormal in breast tumors and has been reported to contribute to breast tumor progression. One factor, which may drive ongoing matrix synthesis in breast tumors, is the loss of stromal caveolin-1 (cav-1), a scaffolding protein of caveolae, which has been linked to breast tumor aggressiveness. To determine whether loss of cav-1 results in the abnormal expression of matrix proteins, mammary glands from cav- 1-/- and cav- 1 +/+ mice were investigated for differences in expression of several ECM proteins. In addition, the presence of myofibroblasts, changes in the vessel density, and differences in duct number and size were assessed in the mammary glands of both animal models. Using immunohistochemistry, expression of fibronectin, tenascin-C, collagens and αSMA were significantly increased in the mammary glands of cav-1-/- mice. Second harmonic generation revealed more organized collagen fibers in cav-1 -/- glands and supported immunohistochemical analyses of increased collagen abundance in the glands of cav-1 -/- mice. Analysis of the ductal structure demonstrated a significant increase in the number of proliferating ducts in addition to significant increases in the duct circumference and area in cav-1 -/- glands compared to cav- 1 +/+ glands. Differences in microvessel density weren’t apparent between the animal models. In summary, we found that the loss of cav-1 resulted in increased ECM and α-SMA protein expression in murine mammary glands. Furthermore, we found that an abnormal ductal architecture accompanied the loss of cav-1. These data support a role for cav-1 in maintaining mammary gland structure. PMID:28187162

  1. Loss of caveolin-1 alters extracellular matrix protein expression and ductal architecture in murine mammary glands.

    PubMed

    Thompson, Christopher; Rahim, Sahar; Arnold, Jeremiah; Hielscher, Abigail

    2017-01-01

    The extracellular matrix (ECM) is abnormal in breast tumors and has been reported to contribute to breast tumor progression. One factor, which may drive ongoing matrix synthesis in breast tumors, is the loss of stromal caveolin-1 (cav-1), a scaffolding protein of caveolae, which has been linked to breast tumor aggressiveness. To determine whether loss of cav-1 results in the abnormal expression of matrix proteins, mammary glands from cav- 1-/- and cav- 1 +/+ mice were investigated for differences in expression of several ECM proteins. In addition, the presence of myofibroblasts, changes in the vessel density, and differences in duct number and size were assessed in the mammary glands of both animal models. Using immunohistochemistry, expression of fibronectin, tenascin-C, collagens and αSMA were significantly increased in the mammary glands of cav-1-/- mice. Second harmonic generation revealed more organized collagen fibers in cav-1 -/- glands and supported immunohistochemical analyses of increased collagen abundance in the glands of cav-1 -/- mice. Analysis of the ductal structure demonstrated a significant increase in the number of proliferating ducts in addition to significant increases in the duct circumference and area in cav-1 -/- glands compared to cav- 1 +/+ glands. Differences in microvessel density weren't apparent between the animal models. In summary, we found that the loss of cav-1 resulted in increased ECM and α-SMA protein expression in murine mammary glands. Furthermore, we found that an abnormal ductal architecture accompanied the loss of cav-1. These data support a role for cav-1 in maintaining mammary gland structure.

  2. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning.

    PubMed

    Du, Tianchuan; Liao, Li; Wu, Cathy H; Sun, Bilin

    2016-11-01

    Protein-protein interactions play essential roles in many biological processes. Acquiring knowledge of the residue-residue contact information of two interacting proteins is not only helpful in annotating functions for proteins, but also critical for structure-based drug design. The prediction of the protein residue-residue contact matrix of the interfacial regions is challenging. In this work, we introduced deep learning techniques (specifically, stacked autoencoders) to build deep neural network models to tackled the residue-residue contact prediction problem. In tandem with interaction profile Hidden Markov Models, which was used first to extract Fisher score features from protein sequences, stacked autoencoders were deployed to extract and learn hidden abstract features. The deep learning model showed significant improvement over the traditional machine learning model, Support Vector Machines (SVM), with the overall accuracy increased by 15% from 65.40% to 80.82%. We showed that the stacked autoencoders could extract novel features, which can be utilized by deep neural networks and other classifiers to enhance learning, out of the Fisher score features. It is further shown that deep neural networks have significant advantages over SVM in making use of the newly extracted features.

  3. Soybean Hydrophobic Protein is Present in a Matrix Secreted by the Endocarp Epidermis during Seed Development

    PubMed Central

    Enstone, Daryl E.; Peterson, Carol A.; Gijzen, Mark

    2015-01-01

    Hydrophobic protein from soybean (HPS) is present in soybean dust and is an allergen (Gly m 1) that causes asthma in allergic individuals. Past studies have shown that HPS occurs on the seed surface. To determine the microscopic localization of HPS during seed development, monoclonal antibodies to HPS were used to visualize the protein by fluorescence and transmission electron microscopy. Seed coat and endocarp sections were also examined for pectin, cellulose, callose, starch, and protein by histochemical staining. HPS is present in the endocarp epidermal cells at 18 to 28 days post anthesis. At later stages of seed development, HPS occurs in extracellular secretions that accumulate unevenly on the endocarp epidermis and seed surface. HPS is synthesized by the endocarp epidermis and deposited on the seed surface as part of a heterogeneous matrix. PMID:26455712

  4. Patchwork structure-function analysis of the Sendai virus matrix protein.

    PubMed

    Mottet-Osman, Geneviève; Miazza, Vincent; Vidalain, Pierre-Olivier; Roux, Laurent

    2014-09-01

    Paramyxoviruses contain a bi-lipidic envelope decorated by two transmembrane glycoproteins and carpeted on the inner surface with a layer of matrix proteins (M), thought to bridge the glycoproteins with the viral nucleocapsids. To characterize M structure-function features, a set of M domains were mutated or deleted. The genes encoding these modified M were incorporated into recombinant Sendai viruses and expressed as supplemental proteins. Using a method of integrated suppression complementation system (ISCS), the functions of these M mutants were analyzed in the context of the infection. Cellular membrane association, localization at the cell periphery, nucleocapsid binding, cellular protein interactions and promotion of viral particle formation were characterized in relation with the mutations. At the end, lack of nucleocapsid binding go together with lack of cell surface localization and both features definitely correlate with loss of M global function estimated by viral particle production.

  5. The 70 kDa heat shock protein suppresses matrix metalloproteinases in astrocytes.

    PubMed

    Lee, Jong Eun; Kim, Yeun Jung; Kim, Jong Youl; Lee, Won Taek; Yenari, Midori A; Giffard, Rona G

    2004-03-01

    The 70 kDa heat shock protein (Hsp70) is synthesized in response to a variety of stresses, including ischemia, and is thought to act as a molecular chaperone to prevent protein denaturation and facilitate protein folding. Matrix metalloproteinases (MMPs), a family of serine proteases, are also upregulated by ischemia and are thought to promote cell death and tissue injury. We examined the influence of Hsp70 on expression and activity of MMPs. Astrocyte cultures were prepared from neonatal mice and transfected with retroviral vectors containing hsp70 or lacZ or mock infected, then exposed to oxygen-glucose deprivation followed by reperfusion. Zymograms and Western blots showed that Hsp70 over-expression suppressed MMP-2 and MMP-9. These findings suggest that Hsp70 may protect by regulating MMPs.

  6. Matrix-insensitive protein assays push the limits of biosensors in medicine.

    PubMed

    Gaster, Richard S; Hall, Drew A; Nielsen, Carsten H; Osterfeld, Sebastian J; Yu, Heng; Mach, Kathleen E; Wilson, Robert J; Murmann, Boris; Liao, Joseph C; Gambhir, Sanjiv S; Wang, Shan X

    2009-11-01

    Advances in biosensor technologies for in vitro diagnostics have the potential to transform the practice of medicine. Despite considerable work in the biosensor field, there is still no general sensing platform that can be ubiquitously applied to detect the constellation of biomolecules in diverse clinical samples (for example, serum, urine, cell lysates or saliva) with high sensitivity and large linear dynamic range. A major limitation confounding other technologies is signal distortion that occurs in various matrices due to heterogeneity in ionic strength, pH, temperature and autofluorescence. Here we present a magnetic nanosensor technology that is matrix insensitive yet still capable of rapid, multiplex protein detection with resolution down to attomolar concentrations and extensive linear dynamic range. The matrix insensitivity of our platform to various media demonstrates that our magnetic nanosensor technology can be directly applied to a variety of settings such as molecular biology, clinical diagnostics and biodefense.

  7. Dynamic culture substrate that captures a specific extracellular matrix protein in response to light

    NASA Astrophysics Data System (ADS)

    Nakanishi, Jun; Nakayama, Hidekazu; Yamaguchi, Kazuo; Garcia, Andres J.; Horiike, Yasuhiro

    2011-08-01

    The development of methods for the off-on switching of immobilization or presentation of cell-adhesive peptides and proteins during cell culture is important because such surfaces are useful for the analysis of the dynamic processes of cell adhesion and migration. This paper describes a chemically functionalized gold substrate that captures a genetically tagged extracellular matrix protein in response to light. The substrate was composed of mixed self-assembled monolayers (SAMs) of three disulfide compounds containing (i) a photocleavable poly(ethylene glycol) (PEG), (ii) nitrilotriacetic acid (NTA) and (iii) hepta(ethylene glycol) (EG7). Although the NTA group has an intrinsic high affinity for oligohistidine tag (His-tag) sequences in its Ni2+-ion complex, the interaction was suppressed by the steric hindrance of coexisting PEG on the substrate surface. Upon photoirradiation of the substrate to release the PEG chain from the surface, this interaction became possible and hence the protein was captured at the irradiated regions, while keeping the non-specific adsorption of non-His-tagged proteins blocked by the EG7 underbrush. In this way, we selectively immobilized a His-tagged fibronectin fragment (FNIII7-10) to the irradiated regions. In contrast, when bovine serum albumin—a major serum protein—was added as a non-His-tagged protein, the surface did not permit its capture, with or without irradiation. In agreement with these results, cells were selectively attached to the irradiated patterns only when a His-tagged FNIII7-10 was added to the medium. These results indicate that the present method is useful for studying the cellular behavior on the specific extracellular matrix protein in cell-culturing environments.

  8. In situ proteolysis of the Vibrio cholerae matrix protein RbmA promotes biofilm recruitment

    PubMed Central

    Smith, Daniel R.; Maestre-Reyna, Manuel; Lee, Gloria; Gerard, Harry; Wang, Andrew H.-J.; Watnick, Paula I.

    2015-01-01

    The estuarine gram-negative rod and human diarrheal pathogen Vibrio cholerae synthesizes a VPS exopolysaccharide-dependent biofilm matrix that allows it to form a 3D structure on surfaces. Proteins associated with the matrix include, RbmA, RbmC, and Bap1. RbmA, a protein whose crystallographic structure suggests two binding surfaces, associates with cells by means of a VPS-dependent mechanism and promotes biofilm cohesiveness and recruitment of cells to the biofilm. Here, we show that RbmA undergoes limited proteolysis within the biofilm. This proteolysis, which is carried out by the hemagglutinin/protease and accessory proteases, yields the 22-kDa C-terminal polypeptide RbmA*. RbmA* remains biofilm-associated. Unlike full-length RbmA, the association of RbmA* with cells is no longer VPS-dependent, likely due to an electropositive surface revealed by proteolysis. We provide evidence that this proteolysis event plays a role in recruitment of VPS− cells to the biofilm surface. Based on our findings, we propose that association of RbmA with the matrix reinforces the biofilm structure and leads to limited proteolysis of RbmA to RbmA*. RbmA*, in turn, promotes recruitment of cells that have not yet initiated VPS synthesis to the biofilm surface. The assignment of two functions to RbmA, separated by a proteolytic event that depends on matrix association, dictates an iterative cycle in which reinforcement of recently added biofilm layers precedes the recruitment of new VPS− cells to the biofilm. PMID:26240338

  9. Protein matrix involved in the lipid retention of foie gras during cooking: a multimodal hyperspectral imaging study.

    PubMed

    Théron, Laëtitia; Vénien, Annie; Jamme, Frédéric; Fernandez, Xavier; Peyrin, Frédéric; Molette, Caroline; Dumas, Paul; Réfrégiers, Matthieu; Astruc, Thierry

    2014-06-25

    Denaturation of the protein matrix during heat treatment of duck foie gras was studied in relationship to the amount of fat loss during cooking. A low fat loss group was compared with a high fat loss group by histochemistry, FT-IR, and synchrotron UV microspectroscopy combination to characterize their protein matrix at different scales. After cooking, the high fat loss group showed higher densification of its matrix, higher ultraviolet tyrosine autofluorescence, and an infrared shift of the amide I band. These results revealed a higher level of protein denaturation and aggregation during cooking in high fat loss than in low fat loss foie gras. In addition, the fluorescence and infrared responses of the raw tissue revealed differences according to the level of fat losses after cooking. These findings highlight the importance of the supramolecular state of the protein matrix in determining the fat loss of foie gras.

  10. Vesicle formation by self-assembly of membrane-bound matrix proteins into a fluidlike budding domain

    PubMed Central

    Shnyrova, Anna V.; Ayllon, Juan; Mikhalyov, Ilya I.; Villar, Enrique; Zimmerberg, Joshua; Frolov, Vadim A.

    2007-01-01

    The shape of enveloped viruses depends critically on an internal protein matrix, yet it remains unclear how the matrix proteins control the geometry of the envelope membrane. We found that matrix proteins purified from Newcastle disease virus adsorb on a phospholipid bilayer and condense into fluidlike domains that cause membrane deformation and budding of spherical vesicles, as seen by fluorescent and electron microscopy. Measurements of the electrical admittance of the membrane resolved the gradual growth and rapid closure of a bud followed by its separation to form a free vesicle. The vesicle size distribution, confined by intrinsic curvature of budding domains, but broadened by their merger, matched the virus size distribution. Thus, matrix proteins implement domain-driven mechanism of budding, which suffices to control the shape of these proteolipid vesicles. PMID:18025300

  11. Quantitative proteomics analysis integrated with microarray data reveals that extracellular matrix proteins, catenins, and p53 binding protein 1 are important for chemotherapy response in ovarian cancers.

    PubMed

    Pan, Sheng; Cheng, Lihua; White, James T; Lu, Wei; Utleg, Angelita G; Yan, Xiaowei; Urban, Nicole D; Drescher, Charles W; Hood, Leroy; Lin, Biaoyang

    2009-08-01

    Chemotherapy with carboplatin and paclitaxel is the standard treatment for ovarian cancer patients. Although most patients initially respond to this treatment, few are cured. Resistance to chemotherapy is the major cause of treatment failure. We applied a quantitative proteomic approach based on ICAT/MS/MS technology to analyze tissues harvested at primary debulking surgery before the initiation of combination chemotherapy in order to identify potential naive or intrinsic chemotherapy response proteins in ovarian cancers. We identified 44 proteins that are overexpressed, and 34 proteins that are underexpressed in the chemosensitive tissue compared to the chemoresistant tissue. The overexpressed proteins identified in the chemoresistant tissue include 10 proteins (25.6%) belonging to the extracellular matrix (ECM), including decorin, versican, basigin (CD147), fibulin-1, extracellular matrix protein 1, biglycan, fibronectin 1, dermatopontin, alpha-cardiac actin (smooth muscle actin), and an EGF-containing fibulin-like extracellular matrix protein 1. Interesting proteins identified as overexpressed in the chemosensitive tissue include gamma-catenin (junction plakoglobin) and delta-catenin, tumor suppressor p53-binding protein 1 (53BP1), insulin-like growth factor-binding protein 2 (IGFBP2), proliferating cell nuclear antigen (PCNA), annexin A11, and 53 kDa selenium binding protein 1. Integrative analysis with expression profiling data of eight chemoresistant tissues and 13 chemosensitive tissues revealed that 16 proteins showed consistent changes at both the protein and the RNA levels. These include P53 binding protein 1, catenin delta 1 and plakoglobin, EGF-containing fibulin-like extracellular matrix protein 1 and voltage-dependent anion-selective channel protein 1. Our results suggest that chemotherapy response may be determined by multiple and complex system properties involving extracellular-matrix, cell adhesion and junction proteins.

  12. Nucleophosmin/B23 is a proliferate shuttle protein associated with nuclear matrix.

    PubMed

    Yun, Jing-Ping; Chew, Eng Ching; Liew, Choong-Tsek; Chan, John Y H; Jin, Mei-Lin; Ding, Ming-Xiao; Fai, Yam Hin; Li, H K Richard; Liang, Xiao-Man; Wu, Qiu-Liang

    2003-12-15

    It has become obvious that a better understanding and potential elucidation of the nucleolar phosphoprotein B23 involving in functional interrelationship between nuclear organization and gene expression. In present study, protein B23 expression were investigated in the regenerative hepatocytes at different periods (at days 0, 1, 2, 3, 4, 7) during liver regeneration after partial hepatectomy on the rats with immunohistochemistry and Western blot analysis. Another experiment was done with immunolabeling methods and two-dimensional (2-D) gel electrophoresis for identification of B23 in the regenerating hepatocytes and HepG2 cells (hepatoblastoma cell line) after sequential extraction with detergents, nuclease, and salt. The results showed that its expression in the hepatocytes had a locative move and quantitative change during the process of liver regeneration post-operation. Its immunochemical localization in the hepatocytes during the process showed that it moved from nucleoli of the hepatocytes in the stationary stage to nucleoplasm, cytoplasm, mitotic spindles, and mitotic chromosomes of the hepatocytes in the regenerating livers. It was quantitatively increased progressively to peak level at day 3 post-operation and declined gradually to normal level at day 7. It was detected in nuclear matrix protein (NMP) composition extracted from the regenerating hepatocytes and HepG2 cells and identified with isoelectric point (pI) value of 5.1 and molecular weight of 40 kDa. These results indicated that B23 was a proliferate shuttle protein involving in cell cycle and cell proliferation associated with nuclear matrix.

  13. The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages

    PubMed Central

    Starnes, Taylor W.; Bennin, David A.; Bing, Xinyu; Eickhoff, Jens C.; Grahf, Daniel C.; Bellak, Jason M.; Seroogy, Christine M.; Ferguson, Polly J.

    2014-01-01

    PSTPIP1 is a cytoskeletal adaptor and F-BAR protein that has been implicated in autoinflammatory disease, most notably in the PAPA syndrome: pyogenic sterile arthritis, pyoderma gangrenosum, and acne. However, the mechanism by which PSTPIP1 regulates the actin cytoskeleton and contributes to disease pathogenesis remains elusive. Here, we show that endogenous PSTPIP1 negatively regulates macrophage podosome organization and matrix degradation. We identify a novel PSTPIP1-R405C mutation in a patient presenting with aggressive pyoderma gangrenosum. Identification of this mutation reveals that PSTPIP1 regulates the balance of podosomes and filopodia in macrophages. The PSTPIP1-R405C mutation is in the SRC homology 3 (SH3) domain and impairs Wiskott-Aldrich syndrome protein (WASP) binding, but it does not affect interaction with protein-tyrosine phosphatase (PTP)-PEST. Accordingly, WASP inhibition reverses the elevated F-actin content, filopodia formation, and matrix degradation induced by PSTPIP1-R405C. Our results uncover a novel role for PSTPIP1 and WASP in orchestrating different types of actin-based protrusions. Our findings implicate the cytoskeletal regulatory functions of PSTPIP1 in the pathogenesis of pyoderma gangrenosum and suggest that the cytoskeleton is a rational target for therapeutic intervention in autoinflammatory disease. PMID:24421327

  14. The F-BAR protein PSTPIP1 controls extracellular matrix degradation and filopodia formation in macrophages.

    PubMed

    Starnes, Taylor W; Bennin, David A; Bing, Xinyu; Eickhoff, Jens C; Grahf, Daniel C; Bellak, Jason M; Seroogy, Christine M; Ferguson, Polly J; Huttenlocher, Anna

    2014-04-24

    PSTPIP1 is a cytoskeletal adaptor and F-BAR protein that has been implicated in autoinflammatory disease, most notably in the PAPA syndrome: pyogenic sterile arthritis, pyoderma gangrenosum, and acne. However, the mechanism by which PSTPIP1 regulates the actin cytoskeleton and contributes to disease pathogenesis remains elusive. Here, we show that endogenous PSTPIP1 negatively regulates macrophage podosome organization and matrix degradation. We identify a novel PSTPIP1-R405C mutation in a patient presenting with aggressive pyoderma gangrenosum. Identification of this mutation reveals that PSTPIP1 regulates the balance of podosomes and filopodia in macrophages. The PSTPIP1-R405C mutation is in the SRC homology 3 (SH3) domain and impairs Wiskott-Aldrich syndrome protein (WASP) binding, but it does not affect interaction with protein-tyrosine phosphatase (PTP)-PEST. Accordingly, WASP inhibition reverses the elevated F-actin content, filopodia formation, and matrix degradation induced by PSTPIP1-R405C. Our results uncover a novel role for PSTPIP1 and WASP in orchestrating different types of actin-based protrusions. Our findings implicate the cytoskeletal regulatory functions of PSTPIP1 in the pathogenesis of pyoderma gangrenosum and suggest that the cytoskeleton is a rational target for therapeutic intervention in autoinflammatory disease.

  15. Extracellular matrix family proteins that are potential targets of Dd-STATa in Dictyostelium discoideum.

    PubMed

    Shimada, Nao; Nishio, Keiko; Maeda, Mineko; Urushihara, Hideko; Kawata, Takefumi

    2004-10-01

    Dd-STATa is a functional Dictyostelium homologue of metazoan STAT (signal transducers and activators of transcription) proteins, which is activated by cAMP and is thereby translocated into the nuclei of anterior tip cells of the prestalk region of the slug. By using in situ hybridization analyses, we found that the SLF308 cDNA clone, which contains the ecmF gene that encodes a putative extracellular matrix protein and is expressed in the anterior tip cells, was greatly down-regulated in the Dd-STATa-null mutant. Disruption of the ecmF gene, however, resulted in almost no phenotypic change. The absence of any obvious mutant phenotype in the ecmF-null mutant could be due to a redundancy of similar genes. In fact, a search of the Dictyostelium whole genome database demonstrates the existence of an additional 16 homologues, all of which contain a cellulose-binding module. Among these homologues, four genes show Dd-STATa-dependent expression, while the others are Dd-STATa-independent. We discuss the potential role of Dd-STATa in morphogenesis via its effect on the interaction between cellulose and these extracellular matrix family proteins.

  16. Sturgeon osteocalcin shares structural features with matrix Gla protein: evolutionary relationship and functional implications.

    PubMed

    Viegas, Carla S B; Simes, Dina C; Williamson, Matthew K; Cavaco, Sofia; Laizé, Vincent; Price, Paul A; Cancela, M Leonor

    2013-09-27

    Osteocalcin (OC) and matrix Gla protein (MGP) are considered evolutionarily related because they share key structural features, although they have been described to exert different functions. In this work, we report the identification and characterization of both OC and MGP from the Adriatic sturgeon, a ray-finned fish characterized by a slow evolution and the retention of many ancestral features. Sturgeon MGP shows a primary structure, post-translation modifications, and patterns of mRNA/protein distribution and accumulation typical of known MGPs, and it contains seven possible Gla residues that would make the sturgeon protein the most γ-carboxylated among known MGPs. In contrast, sturgeon OC was found to present a hybrid structure. Indeed, although exhibiting protein domains typical of known OCs, it also contains structural features usually found in MGPs (e.g. a putative phosphorylated propeptide). Moreover, patterns of OC gene expression and protein accumulation overlap with those reported for MGP; OC was detected in bone cells and mineralized structures but also in soft and cartilaginous tissues. We propose that, in a context of a reduced rate of evolution, sturgeon OC has retained structural features of the ancestral protein that emerged millions of years ago from the duplication of an ancient MGP gene and may exhibit intermediate functional features.

  17. Hyperoxia decreases matrix metalloproteinase-9 and increases tissue inhibitor of matrix metalloproteinase-1 protein in the newborn rat lung: association with arrested alveolarization.

    PubMed

    Hosford, Gayle E; Fang, Xin; Olson, David M

    2004-07-01

    Matrix metalloproteinases (MMP) are likely effectors of normal lung development, especially branching morphogenesis, angiogenesis, and extracellular matrix degradation. Because hyperoxia exposure (>95% O(2)) from d 4 to 14 in newborn rat pups leads to arrest of alveolarization and mimics newborn chronic lung disease, we tested whether hyperoxia altered MMP-2 and -9 mRNA, protein, and enzymatic activity, and the mRNA and protein expression of the endogenous tissue inhibitor of MMP, TIMP-1. No changes due to hyperoxia exposure were observed in MMP-2 mRNA or pro-enzyme (72 kD) protein levels between d 6 and 14, although the overall protein mass and zymographic activity of the active (68 kD) enzyme were diminished (p < 0.05, ANOVA). However, hyperoxia significantly decreased levels of MMP-9 mRNA and pro-MMP-9 protein and diminished overall MMP-9 pro-enzyme activity. TIMP-1 mRNA was not elevated by hyperoxia until d 14, but protein levels were significantly (p < 0.001) elevated by hyperoxia from d 9 to 14. To estimate the potential of MMP inhibition to arrest alveolarization, administration of doxycycline (20 mg/kg, twice daily by gavage), a pan-MMP proteolysis inhibitor, arrested lung alveolarization. We conclude that hyperoxia decreases MMP-9 mRNA, protein, and activity and elevates TIMP-1 protein, and these changes have the potential to contribute to the arrest of normal lung development.

  18. Role of the extracellular matrix-located Mac-2 binding protein as an interactor of the Wnt proteins.

    PubMed

    Pikkarainen, Timo; Nurmi, Tuomas; Sasaki, Takako; Bergmann, Ulrich; Vainio, Seppo

    2017-09-30

    The Wnt proteins constitute a conserved family of secreted palmitoleate-containing signaling proteins that play important roles in development and tissue homeostasis. Their hydrophobic nature has raised the question of how the proteins are transported outside the cells. Accumulating evidence suggests that several different mechanisms, including transport by lipoprotein particles and exosomes, may contribute to this process. Here, we expressed epitope-tagged Wnt4 in HEK293 cells, and identified Mac-2 binding protein (Mac-2BP) as its binding partner in the serum-free conditioned medium. Serine-to-alanine substitution at the conserved fatty acid-conjugation site did not affect Mac-2BP binding. Subsequent studies showed that Mac-2BP may be a general Wnt interactor. It is found in the extracellular matrix (ECM) of various tissues, where it forms unusual oligomeric ring-like structures. Its functions appear to include interactions with cells and certain ECM components. Intriguingly, both Wnt signaling and Mac-2BP expression are upregulated in many types of cancer. Our studies on the four-domain Mac-2BP indicate a crucial role in Wnt binding for the C-terminal domain that bears no sequence similarity to any other protein. Mac-2BP may have a role in regulating the extracellular spreading and storage of the Wnts, thereby modulating their bioavailability and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Molecular organization of peroxisomal enzymes: protein-protein interactions in the membrane and in the matrix.

    PubMed

    Makkar, Randhir S; Contreras, Miguel A; Paintlia, Ajaib S; Smith, Brian T; Haq, Ehtishamul; Singh, Inderjit

    2006-07-15

    The beta-oxidation of fatty acids in peroxisomes produces hydrogen peroxide (H2O2), a toxic metabolite, as a bi-product. Fatty acids beta-oxidation activity is deficient in X-linked adrenoleukodystrophy (X-ALD) because of mutation in ALD-gene resulting in loss of very long chain acyl-CoA synthetase (VLCS) activity. It is also affected in disease with catalase negative peroxisomes as a result of inactivation by H2O2. Therefore, the following studies were undertaken to delineate the molecular interactions between both the ALD-gene product (adrenoleukodystrophy protein, ALDP) and VLCS as well as H2O2 degrading enzyme catalase and proteins of peroxisomal beta-oxidation. Studies using a yeast two hybrid system and surface plasmon resonance techniques indicate that ALDP, a peroxisomal membrane protein, physically interacts with VLCS. Loss of these interactions in X-ALD cells may result in a deficiency in VLCS activity. The yeast two-hybrid system studies also indicated that catalase physically interacts with L-bifunctional enzyme (L-BFE). Interactions between catalase and L-BFE were further supported by affinity purification, using a catalase-linked resin. The affinity bound 74-kDa protein, was identified as L-BFE by Western blot with specific antibodies and by proteomic analysis. Additional support for their interaction comes from immunoprecipitation of L-BFE with antibodies against catalase as a catalase- L-BFE complex. siRNA for L-BFE decreased the specific activity and protein levels of catalase without changing its subcellular distribution. These observations indicate that L-BFE might help in oligomerization and possibly in the localization of catalase at the site of H2O2 production in the peroxisomal beta-oxidation pathway.

  20. Role of disulphide linkages between protein-coated lipid droplets and the protein matrix in the rheological properties of porcine myofibrillar protein-peanut oil emulsion composite gels.

    PubMed

    Wu, Mangang; Xiong, Youling L; Chen, Jie

    2011-07-01

    The objective of the study was to establish disulphide interaction between protein-coated oil droplets and the surrounding protein matrix in myofibrillar protein (MP)-emulsion composite gels. An MP-stabilized peanut oil emulsion was treated with 0, 1, 3, 5 and 10 mM N-ethylmaleimide (NEM, a sulphydryl-blocking agent) and subsequently incorporated into a bulk MP sol to produce 5%-lipid, 2%-protein composites at pH 6.2. About 69% of sulphydryls in the emulsion (1% protein) were blocked by 1 mM NEM, and almost all were bound at ≥3 mM NEM. The loss of free sulphydryls resulted in a significant drop in the storage modulus (G') and rupture force of the composite gels. Microstructural examination revealed pores and oil leakage from emulsion droplets by NEM treatments, corresponding to declining rheological properties of the MP-emulsion composites. The results supported the hypothesis that disulphide cross-linking between MP-coated oil droplets and protein matrix contributed to the stabilization and reinforcement of protein-emulsion composite gels formed in comminuted muscle foods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. MAF1, a novel plant protein interacting with matrix attachment region binding protein MFP1, is located at the nuclear envelope.

    PubMed Central

    Gindullis, F; Peffer, N J; Meier, I

    1999-01-01

    The interaction of chromatin with the nuclear matrix via matrix attachment region (MAR) DNA is considered to be of fundamental importance for chromatin organization in all eukaryotic cells. MAR binding filament-like protein 1 (MFP1) from tomato is a novel plant protein that specifically binds to MAR DNA. Its filament protein-like structure makes it a likely candidate for a structural component of the nuclear matrix. MFP1 is located at nuclear matrix-associated, specklelike structures at the nuclear envelope. Here, we report the identification of a novel protein that specifically interacts with MFP1 in yeast two-hybrid and in vitro binding assays. MFP1 associated factor 1 (MAF1) is a small, soluble, serine/threonine-rich protein that is ubiquitously expressed and has no similarity to known proteins. MAF1, like MFP1, is located at the nuclear periphery and is a component of the nuclear matrix. These data suggest that MFP1 and MAF1 are in vivo interaction partners and that both proteins are components of a nuclear substructure, previously undescribed in plants, that connects the nuclear envelope and the internal nuclear matrix. PMID:10488241

  2. The application of an enamel matrix protein derivative (Emdogain) in regenerative periodontal therapy: a review.

    PubMed

    Sculean, Anton; Schwarz, Frank; Becker, Jurgen; Brecx, Michel

    2007-01-01

    Regenerative periodontal therapy aims at reconstitution of the lost periodontal structures such as new formation of root cementum, periodontal ligament and alveolar bone. Findings from basic research indicate that enamel matrix protein derivative (EMD) has a key role in periodontal wound healing. Histological results from animal and human studies have shown that treatment with EMD promotes periodontal regeneration. Moreover, clinical studies have indicated that treatment with EMD positively influences periodontal wound healing in humans. This review aims to present an overview of evidence-based clinical indications for regenerative therapy with EMD.

  3. Peeping into human renal calcium oxalate stone matrix: characterization of novel proteins involved in the intricate mechanism of urolithiasis.

    PubMed

    Aggarwal, Kanu Priya; Tandon, Simran; Naik, Pradeep Kumar; Singh, Shrawan Kumar; Tandon, Chanderdeep

    2013-01-01

    The increasing number of patients suffering from urolithiasis represents one of the major challenges which nephrologists face worldwide today. For enhancing therapeutic outcomes of this disease, the pathogenic basis for the formation of renal stones is the need of hour. Proteins are found as major component in human renal stone matrix and are considered to have a potential role in crystal-membrane interaction, crystal growth and stone formation but their role in urolithiasis still remains obscure. Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to anion exchange chromatography followed by molecular-sieve chromatography. The effect of these purified proteins was tested against CaOx nucleation and growth and on oxalate injured Madin-Darby Canine Kidney (MDCK) renal epithelial cells for their activity. Proteins were identified by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF MS) followed by database search with MASCOT server. In silico molecular interaction studies with CaOx crystals were also investigated. Five proteins were identified from the matrix of calcium oxalate kidney stones by MALDI-TOF MS followed by database search with MASCOT server with the competence to control the stone formation process. Out of which two proteins were promoters, two were inhibitors and one protein had a dual activity of both inhibition and promotion towards CaOx nucleation and growth. Further molecular modelling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level. We identified and characterized Ethanolamine-phosphate cytidylyltransferase, Ras GTPase-activating-like protein, UDP-glucose:glycoprotein glucosyltransferase 2, RIMS-binding protein 3A, Macrophage-capping protein as novel proteins from the matrix of human calcium oxalate stone which play a critical role in kidney stone formation. Thus, these proteins having potential to modulate calcium

  4. Dimerization of Matrix Protein Is Required for Budding of Respiratory Syncytial Virus

    PubMed Central

    Förster, Andreas; Maertens, Goedele N.; Farrell, Paul J.

    2015-01-01

    ABSTRACT Respiratory syncytial virus (RSV) infects epithelial cells of the respiratory tract and is a major cause of bronchiolitis and pneumonia in children and the elderly. The virus assembles and buds through the plasma membrane, forming elongated membrane filaments, but details of how this happens remain obscure. Oligomerization of the matrix protein (M) is a key step in the process of assembly and infectious virus production. In addition, it was suggested to affect the conformation of the fusion protein, the major current target for RSV antivirals, in the mature virus. The structure and assembly of M are thus key parameters in the RSV antiviral development strategy. The structure of RSV M was previously published as a monomer. Other paramyxovirus M proteins have been shown to dimerize, and biochemical data suggest that RSV M also dimerizes. Here, using size exclusion chromatography-multiangle laser light scattering, we show that the protein is dimeric in solution. We also crystallized M in two crystal forms and show that it assembles into equivalent dimers in both lattices. Dimerization interface mutations destabilize the M dimer in vitro. To assess the biological relevance of dimerization, we used confocal imaging to show that dimerization interface mutants of M fail to assemble into viral filaments on the plasma membrane. Additionally, budding and release of virus-like particles are prevented in M mutants that fail to form filaments. Importantly, we show that M is biologically active as a dimer and that the switch from M dimers to higher-order oligomers triggers viral filament assembly and virus production. IMPORTANCE Human respiratory syncytial virus (RSV) is the most frequent cause of infantile bronchiolitis and pneumonia. The enormous burden of RSV makes it a major unmet target for a vaccine and antiviral drug therapy. Oligomerization of the matrix protein is a key step in the process of assembly and production of infectious virus, but the molecular

  5. The spindle matrix protein, Chromator, is a novel tubulin binding protein that can interact with both microtubules and free tubulin.

    PubMed

    Yao, Changfu; Wang, Chao; Li, Yeran; Ding, Yun; Rath, Uttama; Sengupta, Saheli; Girton, Jack; Johansen, Kristen M; Johansen, Jørgen

    2014-01-01

    The chromodomain protein, Chromator, is localized to chromosomes during interphase; however, during cell division together with other nuclear proteins Chromator redistributes to form a macro molecular spindle matrix complex that embeds the microtubule spindle apparatus. It has been demonstrated that the CTD of Chromator is sufficient for localization to the spindle matrix and that expression of this domain alone could partially rescue Chro mutant microtubule spindle defects. Furthermore, the presence of frayed and unstable microtubule spindles during mitosis after Chromator RNAi depletion in S2 cells indicated that Chromator may interact with microtubules. In this study using a variety of biochemical assays we have tested this hypothesis and show that Chromator not only has binding activity to microtubules with a Kd of 0.23 µM but also to free tubulin. Furthermore, we have mapped the interaction with microtubules to a relatively small stretch of 139 amino acids in the carboxy-terminal region of Chromator. This sequence is likely to contain a novel microtubule binding interface since database searches did not find any sequence matches with known microtubule binding motifs.

  6. Stimulation of Periodontal Ligament Stem Cells by Dentin Matrix Protein 1 Activates Mitogen-Activated Protein Kinase and Osteoblast Differentiation

    PubMed Central

    Chandrasekaran, Sangeetha; Ramachandran, Amsaveni; Eapen, Asha; George, Anne

    2013-01-01

    Background Periodontitis can ultimately result in tooth loss. Many natural and synthetic materials have been tried to achieve periodontal regeneration, but the results remain variable and unpredictable. We hypothesized that exogenous treatment with dentin matrix protein 1 (DMP1) activates specific genes and results in phenotypic and functional changes in human periodontal ligament stem cells (hPDLSCs). Methods hPDLSCs were isolated from extracted teeth and cultured in the presence or absence of DMP1. Quantitative polymerase chain reactions were performed to analyze the expression of several genes involved in periodontal regeneration. hPDLSCs were also processed for immunocytochemical and Western blot analysis using phosphorylated extracellular signal-regulated kinase (pERK) and ERK antibodies. Alkaline phosphatase and von Kossa staining were performed to characterize the differentiation of hPDLSCs into osteoblasts. Field emission scanning electron microscopic analysis of the treated and control cell cultures were also performed. Results Treatment with DMP1 resulted in the upregulation of genes, such as matrix metalloproteinase-2, alkaline phosphatase, and transforming growth factor β1. Activation of ERK mitogen-activated protein kinase signaling pathway and translocation of pERK from the cytoplasm to the nucleus was observed. Overall, DMP1-treated cells showed increased expression of alkaline phosphatase, increased matrix, and mineralized nodule formation when compared with untreated controls. Conclusion DMP1 can orchestrate a coordinated expression of genes and phenotypic changes in hPDLSCs by activation of the ERK signaling pathway, which may provide a valuable strategy for tissue engineering approaches in periodontal regeneration. PMID:22612367

  7. The Extracellular Matrix of Staphylococcus aureus Biofilms Comprises Cytoplasmic Proteins That Associate with the Cell Surface in Response to Decreasing pH

    PubMed Central

    Foulston, Lucy; Elsholz, Alexander K. W.; DeFrancesco, Alicia S.

    2014-01-01

    ABSTRACT Biofilm formation by Staphylococcus aureus involves the formation of an extracellular matrix, but the composition of this matrix has been uncertain. Here we report that the matrix is largely composed of cytoplasmic proteins that reversibly associate with the cell surface in a manner that depends on pH. We propose a model for biofilm formation in which cytoplasmic proteins are released from cells in stationary phase. These proteins associate with the cell surface in response to decreasing pH during biofilm formation. Rather than utilizing a dedicated matrix protein, S. aureus appears to recycle cytoplasmic proteins that moonlight as components of the extracellular matrix. PMID:25182325

  8. [Inhibitory proteins of neuritic regeneration in the extracellular matrix: structure, molecular interactions and their functions. Mechanisms of extracellular balance].

    PubMed

    Vargas, Javier; Uribe-Escamilla, Rebeca; Alfaro-Rodríguez, Alfonso

    2013-01-01

    After injury of the central nervous system (CNS) in higher vertebrates, neurons neither grow nor reconnect with their targets because their axons or dendrites cannot regenerate within the injured site. In the CNS, the signal from the environment regulating neurite regeneration is not exclusively generated by one molecular group. This signal is generated by the interaction of various types of molecules such as extracellular matrix proteins, soluble factors and surface membrane molecules; all these elements interact with one another generating the matrix's biological state: the extracellular balance. Proteins in the balanced extracellular matrix, support and promote cellular physiological states, including neuritic regeneration. We have reviewed three types of proteins of the extracellular matrix possessing an inhibitory effect and that are determinant of neuritic regeneration failure in the CNS: chondroitin sulfate proteoglycans, keratan sulfate proteoglycans and tenascin. We also review some of the mechanisms involved in the balance of extracellular proteins such as isomerization, epimerization, sulfation and glycosylation as well as the assemblage of the extracellular matrix, the interaction between the matrix and soluble factors and its proteolytic degradation. In the final section, we have presented some examples of the matrix's role in development and in tumor propagation.

  9. An Immunohistochemical Study of Matrix Proteins in the Craniofacial Cartilage in Midterm Human Fetuses

    PubMed Central

    Shibata, S.; Sakamoto, Y.; Baba, O.; Qin, C.; Murakami, G.; Cho, B.H.

    2013-01-01

    Immunohistochemical localization of collagen types I, II, and X, aggrecan, versican, dentin matrix protein (DMP)-1, martix extracellular phosphoprotein (MEPE) were performed for Meckel’s cartilage, cranial base cartilage, and mandibular condylar cartilage in human midterm fetuses; staining patterns within the condylar cartilage were compared to those within other cartilaginous structures. Mandibular condylar cartilage contained aggrecan; it also had more type I collagen and a thicker hypertrophic cell layer than the other two types of cartilage; these three characteristics are similar to those of the secondary cartilage of rodents. MEPE immunoreactivity was first evident in the cartilage matrix of all types of cartilage in the human fetuses and in Meckel’s cartilage of mice and rats. MEPE immunoreactivity was enhanced in the deep layer of the hypertrophic cell layer and in the cartilaginous core of the bone trabeculae in the primary spongiosa. These results indicated that MEPE is a component of cartilage matrix and may be involved in cartilage mineralization. DMP-1 immunoreactivity first became evident in human bone lacunae walls and canaliculi; this pattern of expression was comparable to the pattern seen in rodents. In addition, chondroid bone was evident in the mandibular (glenoid) fossa of the temporal bone, and it had aggrecan, collagen types I and X, MEPE, and DMP-1 immunoreactivity; these findings indicated that chondroid bone in this region has phenotypic expression indicative of both hypertrophic chondrocytes and osteocytes. PMID:24441192

  10. An immunohistochemical study of matrix proteins in the craniofacial cartilage in midterm human fetuses.

    PubMed

    Shibata, S; Sakamoto, Y; Baba, O; Qin, C; Murakami, G; Cho, B H

    2013-12-02

    Immunohistochemical localization of collagen types I, II, and X, aggrecan, versican, dentin matrix protein (DMP)-1, martix extracellular phosphoprotein (MEPE) were performed for Meckel's cartilage, cranial base cartilage, and mandibular condylar cartilage in human midterm fetuses; staining patterns within the condylar cartilage were compared to those within other cartilaginous structures. Mandibular condylar cartilage contained aggrecan; it also had more type I collagen and a thicker hypertrophic cell layer than the other two types of cartilage; these three characteristics are similar to those of the secondary cartilage of rodents. MEPE immunoreactivity was first evident in the cartilage matrix of all types of cartilage in the human fetuses and in Meckel's cartilage of mice and rats. MEPE immunoreactivity was enhanced in the deep layer of the hypertrophic cell layer and in the cartilaginous core of the bone trabeculae in the primary spongiosa. These results indicated that MEPE is a component of cartilage matrix and may be involved in cartilage mineralization. DMP-1 immunoreactivity first became evident in human bone lacunae walls and canaliculi; this pattern of expression was comparable to the pattern seen in rodents. In addition, chondroid bone was evident in the mandibular (glenoid) fossa of the temporal bone, and it had aggrecan, collagen types I and X, MEPE, and DMP-1 immunoreactivity; these findings indicated that chondroid bone in this region has phenotypic expression indicative of both hypertrophic chondrocytes and osteocytes.

  11. Protein kinase D2 induces invasion of pancreatic cancer cells by regulating matrix metalloproteinases

    PubMed Central

    Wille, Christoph; Köhler, Conny; Armacki, Milena; Jamali, Arsia; Gössele, Ulrike; Pfizenmaier, Klaus; Seufferlein, Thomas; Eiseler, Tim

    2014-01-01

    Pancreatic cancer cell invasion, metastasis, and angiogenesis are major challenges for the development of novel therapeutic strategies. Protein kinase D (PKD) isoforms are involved in controlling tumor cell motility, angiogenesis, and metastasis. In particular PKD2 expression is up-regulated in pancreatic cancer, whereas PKD1 expression is lowered. We report that both kinases control pancreatic cancer cell invasive properties in an isoform-specific manner. PKD2 enhances invasion in three-dimensional extracellular matrix (3D-ECM) cultures by stimulating expression and secretion of matrix metalloproteinases 7 and 9 (MMP7/9), by which MMP7 is likely to act upstream of MMP9. Knockdown of MMP7/9 blocks PKD2-mediated invasion in 3D-ECM assays and in vivo using tumors growing on chorioallantois membranes. Furthermore, MMP9 enhances PKD2-mediated tumor angiogenesis by releasing extracellular matrix–bound vascular endothelial growth factor A, increasing its bioavailability and angiogenesis. Of interest, specific knockdown of PKD1 in PKD2-expressing pancreatic cancer cells further enhanced the invasive properties in 3D-ECM systems by generating a high-motility phenotype. Loss of PKD1 thus may be beneficial for tumor cells to enhance their matrix-invading abilities. In conclusion, we define for the first time PKD1 and 2 isoform–selective effects on pancreatic cancer cell invasion and angiogenesis, in vitro and in vivo, addressing PKD isoform specificity as a major factor for future therapeutic strategies. PMID:24336522

  12. OmpL1 Is an Extracellular Matrix- and Plasminogen-Interacting Protein of Leptospira spp.

    PubMed Central

    Fernandes, Luis G. V.; Vieira, Monica L.; Kirchgatter, Karin; Alves, Ivy J.; de Morais, Zenaide M.; Vasconcellos, Silvio A.; Romero, Eliete C.

    2012-01-01

    Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with KD (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a KD of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection. PMID:22802342

  13. The role of myristoylation in the membrane association of the Lassa virus matrix protein Z

    PubMed Central

    Strecker, Thomas; Maisa, Anna; Daffis, Stephane; Eichler, Robert; Lenz, Oliver; Garten, Wolfgang

    2006-01-01

    The Z protein is the matrix protein of arenaviruses and has been identified as the main driving force for budding. Both LCMV and Lassa virus Z proteins bud from cells in the absence of other viral proteins as enveloped virus-like particles. Z accumulates near the inner surface of the plasma membrane where budding takes place. Furthermore, biochemical data have shown that Z is strongly membrane associated. The primary sequence of Z lacks a typical transmembrane domain and until now it is not understood by which mechanism Z is able to interact with cellular membranes. In this report, we analyzed the role of N-terminal myristoylation for the membrane binding of Lassa virus Z. We show that disruption of the N-terminal myristoylation signal by substituting the N-terminal glycine with alanine (Z-G2A mutant) resulted in a significant reduction of Z protein association with cellular membranes. Furthermore, removal of the myristoylation site resulted in a relocalization of Z from a punctuate distribution to a more diffuse cellular distribution pattern. Finally, treatment of Lassa virus-infected cells with various myristoylation inhibitors drastically reduced efficient Lassa virus replication. Our data indicate that myristoylation of Z is critical for its binding ability to lipid membranes and thus, for effective virus budding. PMID:17083745

  14. Design and feasibility of active matrix flat panel detector using avalanche amorphous selenium for protein crystallography.

    PubMed

    Sultana, Afrin; Reznik, Alla; Karim, Karim S; Rowlands, J A

    2008-10-01

    Protein crystallography is the most important technique for resolving the three-dimensional atomic structure of protein by measuring the intensity of its x-ray diffraction pattern. This work proposes a large area flat panel detector for protein crystallography based on direct conversion x-ray detection technique using avalanche amorphous selenium (a-Se) as the high gain photoconductor, and active matrix readout using amorphous silicon (a-Si:H) thin film transistors. The detector employs avalanche multiplication phenomenon of a-Se to make the detector sensitive to each incident x ray. The advantages of the proposed detector over the existing imaging plate and charge coupled device detectors are large area, high dynamic range coupled to single x-ray detection capability, fast readout, high spatial resolution, and inexpensive manufacturing process. The optimal detector design parameters (such as detector size, pixel size, and thickness of a-Se layer), and operating parameters (such as electric field across the a-Se layer) are determined based on the requirements for protein crystallography application. The performance of the detector is evaluated in terms of readout time (<1 s), dynamic range (approximately 10(5)), and sensitivity (approximately 1 x-ray photon), thus validating the detector's efficacy for protein crystallography.

  15. A bioinformatics analysis of alternative exon usage in human genes coding for extracellular matrix proteins.

    PubMed

    Sakabe, Noboru Jo; Vibranovski, Maria Dulcetti; de Souza, Sandro José

    2004-12-30

    Alternative splicing increases protein diversity through the generation of different mRNA molecules from the same gene. Although alternative splicing seems to be a widespread phenomenon in the human transcriptome, it is possible that different subgroups of genes present different patterns, related to their biological roles. Analysis of a subgroup may enhance common features of its members that would otherwise disappear amidst a heterogeneous population. Extracellular matrix (ECM) proteins are a good set for such analyses since they are structurally and functionally related. This family of proteins is involved in a large variety of functions, probably achieved by the combinatorial use of protein domains through exon shuffling events. To determine if ECM genes have a different pattern of alternative splicing, we compared clusters of expressed sequences of ECM to all other genes regarding features related to the most frequent type of alternative splicing, alternative exon usage (AEU), such as: the number of alternative exon-intron structures per cluster, the number of AEU events per exon-intron structure, the number of exons per event, among others. Although we did not find many differences between the two sets, we observed a higher frequency of AEU events involving entire protein domains in the ECM set, a feature that could be associated with their multi-domain nature. As other subgroups or even the ECM set in different tissues could present distinct patterns of AEU, it may be premature to conclude that alternative splicing is homogeneous among groups of related genes.

  16. Expression and Deposition of Fibrous Extracellular Matrix Proteins in Cardiac Valves during Chick Development

    PubMed Central

    Tan, Hong; Junor, Lorain; Price, Robert L.; Norris, Russell A.; Potts, Jay D.; Goodwin, Richard L.

    2011-01-01

    Extracellular matrix (ECM) plays essential signaling and structural roles required for the proper function of cardiac valves. Cardiac valves initially form as jelly-like cushions, which must adapt to withstand the increased circulation hemodynamics associated with fetal development and birth. This increased biomechanical stability of the developing valves is largely imparted by ECM proteins, which form a highly organized fibrous meshwork. Since heart valve defects contribute to most congenital heart diseases, understanding valve development will provide insight into the pathogenesis of various congenital valve anomalies. Thus, the goal of this study is to describe the spatiotemporal deposition of fibrous ECM proteins during cardiac valve development. Chick embryonic and fetal atrioventricular and semilunar valves were examined by light, confocal, and transmission electron microscopy (TEM). Our data demonstrate that fibrous ECM proteins are deposited when the leaflets are adopting an elongated and compacted phenotype. A general pattern of increased fibrotic ECM deposition was detected in valve tissues. Also, each ECM protein examined displayed a unique pattern of organization, suggesting that regulation of fibrous protein deposition is complex and likely involves both genetic and mechanical factors. In addition, the TEM study revealed the presence of membrane protrusions from valvular endocardium, indicating a potential mechanism for mechanical force transduction. PMID:21205426

  17. Molecular aspects of the interaction between Mason-Pfizer monkey virus matrix protein and artificial phospholipid membrane.

    PubMed

    Junková, P; Prchal, J; Spiwok, V; Pleskot, R; Kadlec, J; Krásný, L; Hynek, R; Hrabal, R; Ruml, T

    2016-11-01

    The Mason-Pfizer monkey virus is a type D retrovirus, which assembles its immature particles in the cytoplasm prior to their transport to the host cell membrane. The association with the membrane is mediated by the N-terminally myristoylated matrix protein. To reveal the role of particular residues which are involved in the capsid-membrane interaction, covalent labelling of arginine, lysine and tyrosine residues of the Mason-Pfizer monkey virus matrix protein bound to artificial liposomes containing 95% of phosphatidylcholine and 5% phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2 ) was performed. The experimental results were interpreted by multiscale molecular dynamics simulations. The application of these two complementary approaches helped us to reveal that matrix protein specifically recognizes the PI(4,5)P2 molecule by the residues K20, K25, K27, K74, and Y28, while the residues K92 and K93 stabilizes the matrix protein orientation on the membrane by the interaction with another PI(4,5)P2 molecule. Residues K33, K39, K54, Y66, Y67, and K87 appear to be involved in the matrix protein oligomerization. All arginine residues remained accessible during the interaction with liposomes which indicates that they neither contribute to the interaction with membrane nor are involved in protein oligomerization. Proteins 2016; 84:1717-1727. © 2016 Wiley Periodicals, Inc.

  18. Matrix Gla protein regulates differentiation of endothelial cells derived from mouse embryonic stem cells.

    PubMed

    Yao, Jiayi; Guihard, Pierre J; Blazquez-Medela, Ana M; Guo, Yina; Liu, Ting; Boström, Kristina I; Yao, Yucheng

    2016-01-01

    Matrix Gla protein (MGP) is an antagonist of bone morphogenetic proteins and expressed in vascular endothelial cells. Lack of MGP causes vascular abnormalities in multiple organs in mice. The objective of this study is to define the role of MGP in early endothelial differentiation. We find that expression of endothelial markers is highly induced in Mgp null organs, which, in wild type, contain high MGP expression. Furthermore, Mgp null embryonic stem cells express higher levels of endothelial markers than wild-type controls and an abnormal temporal pattern of expression. We also find that the Mgp-deficient endothelial cells adopt characteristics of mesenchymal stem cells. We conclude that loss of MGP causes dysregulation of early endothelial differentiation.

  19. Protein translation inhibition by Stachybotrys chartarum conidia with and without the mycotoxin containing polysaccharide matrix.

    PubMed

    Karunasena, Enusha; Cooley, J Danny; Straus, Douglas; Straus, David C

    2004-07-01

    Recent studies have correlated the presence of Stachybotrys chartarum in structures with SBS. S. chartarum produces mycotoxins that are thought to produce some of the symptoms reported in sick-building syndrome (SBS). The conidia (spores) produced by Stachybotrys species are not commonly found in the air of buildings that have been found to contain significant interior growth of this organism. This could be due in part to the large size of the Stachybotrys spores, or the organism growing in hidden areas such as wall cavities. However, individuals in buildings with significant Stachybotrys growth frequently display symptoms that may be attributed to exposure to the organism's mycotoxins. In addition, Stachybotrys colonies produce a "slime" or polysaccharide (carbohydrate) matrix that coats the hyphae and the spores. The intent of this project was to determine whether the carbohydrate matrix and the mycotoxins embedded in it could be removed from the spores by repeated washings with either aqueous or organic solvents. The results demonstrated that the process of spore washing removed compounds that were toxic in a protein translation assay as compared to spores that were washed with an organic solution, however a correlation between carbohydrate removal during the washing process and the removal of mycotoxins from the spore surface was not observed. These data demonstrated that mycotoxins are not likely to be found exclusively in the carbohydrate matrix of the spores. Therefore, mycotoxin removal from the spore surface can occur without significant loss of polysaccharide. We also showed that toxic substances may be removed from the spore surface with an aqueous solution. These results suggest that satratoxins are soluble in aqueous solutions without being bound to water-soluble moieties, such as the carbohydrate slime matrix.

  20. Spaceflight has compartment- and gene-specific effects on mRNA levels for bone matrix proteins in rat femur

    NASA Technical Reports Server (NTRS)

    Evans, G. L.; Morey-Holton, E.; Turner, R. T.

    1998-01-01

    In the present study, we evaluated the possibility that the abnormal bone matrix produced during spaceflight may be associated with reduced expression of bone matrix protein genes. To test this possibility, we investigated the effects of a 14-day spaceflight (SLS-2 experiment) on steady-state mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), osteocalcin, osteonectin, and prepro-alpha(1) subunit of type I collagen in the major bone compartments of rat femur. There were pronounced site-specific differences in the steady-state levels of expression of the mRNAs for the three bone matrix proteins and GAPDH in normal weight-bearing rats, and these relationships were altered after spaceflight. Specifically, spaceflight resulted in decreases in mRNA levels for GAPDH (decreased in proximal metaphysis), osteocalcin (decreased in proximal metaphysis), osteonectin (decreased in proximal and distal metaphysis), and collagen (decreased in proximal and distal metaphysis) compared with ground controls. There were no changes in mRNA levels for matrix proteins or GAPDH in the shaft and distal epiphysis. These results demonstrate that spaceflight leads to site- and gene-specific decreases in mRNA levels for bone matrix proteins. These findings are consistent with the hypothesis that spaceflight-induced decreases in bone formation are caused by concomitant decreases in expression of genes for bone matrix proteins.

  1. Actin-associated protein palladin promotes tumor cell invasion by linking extracellular matrix degradation to cell cytoskeleton.

    PubMed

    von Nandelstadh, Pernilla; Gucciardo, Erika; Lohi, Jouko; Li, Rui; Sugiyama, Nami; Carpen, Olli; Lehti, Kaisa

    2014-09-01

    Basal-like breast carcinomas, characterized by unfavorable prognosis and frequent metastases, are associated with epithelial-to-mesenchymal transition. During this process, cancer cells undergo cytoskeletal reorganization and up-regulate membrane-type 1 matrix metalloproteinase (MT1-MMP; MMP14), which functions in actin-based pseudopods to drive invasion by extracellular matrix degradation. However, the mechanisms that couple matrix proteolysis to the actin cytoskeleton in cell invasion have remained unclear. On the basis of a yeast two-hybrid screen for the MT1-MMP cytoplasmic tail-binding proteins, we identify here a novel Src-regulated protein interaction between the dynamic cytoskeletal scaffold protein palladin and MT1-MMP. These proteins were coexpressed in invasive human basal-like breast carcinomas and corresponding cell lines, where they were associated in the same matrix contacting and degrading membrane complexes. The silencing and overexpression of the 90-kDa palladin isoform revealed the functional importance of the interaction with MT1-MMP in pericellular matrix degradation and mesenchymal tumor cell invasion, whereas in MT1-MMP-negative cells, palladin overexpression was insufficient for invasion. Moreover, this invasion was inhibited in a dominant-negative manner by an immunoglobulin domain-containing palladin fragment lacking the dynamic scaffold and Src-binding domains. These results identify a novel protein interaction that links matrix degradation to cytoskeletal dynamics and migration signaling in mesenchymal cell invasion.

  2. Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL.

    PubMed

    Monet-Leprêtre, Marie; Haddad, Iman; Baron-Menguy, Céline; Fouillot-Panchal, Maï; Riani, Meriem; Domenga-Denier, Valérie; Dussaule, Claire; Cognat, Emmanuel; Vinh, Joelle; Joutel, Anne

    2013-06-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, or CADASIL, one of the most common inherited small vessel diseases of the brain, is characterized by a progressive loss of vascular smooth muscle cells and extracellular matrix accumulation. The disease is caused by highly stereotyped mutations within the extracellular domain of the NOTCH3 receptor (Notch3(ECD)) that result in an odd number of cysteine residues. While CADASIL-associated NOTCH3 mutations differentially affect NOTCH3 receptor function and activity, they all are associated with early accumulation of Notch3(ECD)-containing aggregates in small vessels. We still lack mechanistic explanation to link NOTCH3 mutations with small vessel pathology. Herein, we hypothesized that excess Notch3(ECD) could recruit and sequester functionally important proteins within small vessels of the brain. We performed biochemical, nano-liquid chromatography-tandem mass spectrometry and immunohistochemical analyses, using cerebral and arterial tissue derived from patients with CADASIL and mouse models of CADASIL that exhibit vascular lesions in the end- and early-stage of the disease, respectively. Biochemical fractionation of brain and artery samples demonstrated that mutant Notch3(ECD) accumulates in disulphide cross-linked detergent-insoluble aggregates in mice and patients with CADASIL. Further proteomic and immunohistochemical analyses identified two functionally important extracellular matrix proteins, tissue inhibitor of metalloproteinases 3 (TIMP3) and vitronectin (VTN) that are sequestered into Notch3(ECD)-containing aggregates. Using cultured cells, we show that increased levels or aggregation of Notch3 enhances the formation of Notch3(ECD)-TIMP3 complex, promoting TIMP3 recruitment and accumulation. In turn, TIMP3 promotes complex formation including NOTCH3 and VTN. In vivo, brain vessels from mice and patients with CADASIL exhibit elevated levels of both insoluble cross

  3. Processing of the glycosomal matrix-protein import receptor PEX5 of Trypanosoma brucei

    SciTech Connect

    Gualdrón-López, Melisa; Michels, Paul A.M.

    2013-02-01

    Highlights: ► Most eukaryotic cells have a single gene for the peroxin PEX5. ► PEX5 is sensitive to in vitro proteolysis in distantly related organisms. ► TbPEX5 undergoes N-terminal truncation in vitro and possibly in vivo. ► Truncated TbPEX5 is still capable of binding PTS1-containing proteins. ► PEX5 truncation is physiologically relevant or an evolutionary conserved artifact. -- Abstract: Glycolysis in kinetoplastid protists such as Trypanosoma brucei is compartmentalized in peroxisome-like organelles called glycosomes. Glycosomal matrix-protein import involves a cytosolic receptor, PEX5, which recognizes the peroxisomal-targeting signal type 1 (PTS1) present at the C-terminus of the majority of matrix proteins. PEX5 appears generally susceptible to in vitro proteolytic processing. On western blots of T. brucei, two PEX5 forms are detected with apparent M{sub r} of 100 kDa and 72 kDa. 5′-RACE-PCR showed that TbPEX5 is encoded by a unique transcript that can be translated into a protein of maximally 72 kDa. However, recombinant PEX5 migrates aberrantly in SDS–PAGE with an apparent M{sub r} of 100 kDa, similarly as observed for the native peroxin. In vitro protease susceptibility analysis of native and {sup 35}S-labelled PEX5 showed truncation of the 100 kDa form at the N-terminal side by unknown parasite proteases, giving rise to the 72 kDa form which remains functional for PTS1 binding. The relevance of these observations is discussed.

  4. Induction of autoantibodies against lung matrix proteins and smoke-induced inflammation in mice.

    PubMed

    Brandsma, Corry-Anke; Timens, Wim; Geerlings, Marie; Jekel, Henrike; Postma, Dirkje S; Hylkema, Machteld N; Kerstjens, Huib A M

    2010-12-13

    Smoking is the major etiologic factor in COPD, yet the exact underlying pathogenetic mechanisms have not been elucidated. Since a few years, there is mounting evidence that a specific immune response, partly present as an autoimmune response, contributes to the pathogenesis of COPD. Increased levels of anti-Hep-2 epithelial cell and anti-elastin autoantibodies as well as antibodies against airway epithelial and endothelial cells have been observed in COPD patients. Whether the presence of these autoantibodies contributes to the pathogenesis of COPD is unclear. To test whether induction of autoantibodies against lung matrix proteins can augment the smoke-induced inflammatory response, we immunized mice with a mixture of the lung extracellular matrix (ECM) proteins elastin, collagen, and decorin and exposed them to cigarette smoke for 3 or 6 months. To evaluate whether the immunization was successful, the presence of specific antibodies was assessed in serum, and presence of specific antibody producing cells in spleen and lung homogenates. In addition, the presence of inflammatory cells and cytokines was assessed in lung tissue and emphysema development was evaluated by measuring the mean linear intercept. We demonstrated that both ECM immunization and smoke exposure induced a humoral immune response against ECM proteins and that ECM immunization itself resulted in increased macrophage numbers in the lung. The specific immune response against ECM proteins did not augment the smoke-induced inflammatory response in our model. By demonstrating that smoke exposure itself can result in a specific immune response and that presence of this specific immune response is accompanied by an influx of macrophages, we provide support for the involvement of a specific immune response in the smoke-induced inflammatory response as can be seen in patients with COPD.

  5. Secreted protein acidic and rich in cysteine is a matrix scavenger chaperone.

    PubMed

    Chlenski, Alexandre; Guerrero, Lisa J; Salwen, Helen R; Yang, Qiwei; Tian, Yufeng; Morales La Madrid, Andres; Mirzoeva, Salida; Bouyer, Patrice G; Xu, David; Walker, Matthew; Cohn, Susan L

    2011-01-01

    Secreted Protein Acidic and Rich in Cysteine (SPARC) is one of the major non-structural proteins of the extracellular matrix (ECM) in remodeling tissues. The functional significance of SPARC is emphasized by its origin in the first multicellular organisms and its high degree of evolutionary conservation. Although SPARC has been shown to act as a critical modulator of ECM remodeling with profound effects on tissue physiology and architecture, no plausible molecular mechanism of its action has been proposed. In the present study, we demonstrate that SPARC mediates the disassembly and degradation of ECM networks by functioning as a matricellular chaperone. While it has low affinity to its targets inside the cells where the Ca(2+) concentrations are low, high extracellular concentrations of Ca(2+) activate binding to multiple ECM proteins, including collagens. We demonstrated that in vitro, this leads to the inhibition of collagen I fibrillogenesis and disassembly of pre-formed collagen I fibrils by SPARC at high Ca(2+) concentrations. In cell culture, exogenous SPARC was internalized by the fibroblast cells in a time- and concentration-dependent manner. Pulse-chase assay further revealed that internalized SPARC is quickly released outside the cell, demonstrating that SPARC shuttles between the cell and ECM. Fluorescently labeled collagen I, fibronectin, vitronectin, and laminin were co-internalized with SPARC by fibroblasts, and semi-quantitative Western blot showed that SPARC mediates internalization of collagen I. Using a novel 3-dimensional model of fluorescent ECM networks pre-deposited by live fibroblasts, we demonstrated that degradation of ECM depends on the chaperone activity of SPARC. These results indicate that SPARC may represent a new class of scavenger chaperones, which mediate ECM degradation, remodeling and repair by disassembling ECM networks and shuttling ECM proteins into the cell. Further understanding of this mechanism may provide insight into the

  6. Efficient preservation in a silicon oxide matrix of Escherichia coli, producer of recombinant proteins.

    PubMed

    Desimone, Martín F; De Marzi, Mauricio C; Copello, Guillermo J; Fernández, Marisa M; Malchiodi, Emilio L; Diaz, Luis E

    2005-10-01

    The aim of this work was to study the use of silicon oxide matrices for the immobilization and preservation of recombinant-protein-producing bacteria. We immobilized Escherichia coli BL21 transformants containing different expression plasmids. One contained DNA coding for a T-cell receptor beta chain, which was expressed as inclusion bodies in the cytoplasm. The other two encoded bacterial superantigens Staphylococcal Enterotoxin G and Streptococcal Superantigen, which were expressed as soluble proteins in the periplasm. The properties of immobilization and storage stability in inorganic matrices prepared from two precursors, silicon dioxide and tetraethoxysilane, were studied. Immobilized E. coli was stored in sealed tubes at 4 and 20 degrees C and the number of viable cells and level of recombinant protein production were analyzed weekly. Different tests showed that the biochemical characteristics of immobilized E. coli remained intact. At both temperatures selected, we found that the number of bacteria in silicon dioxide-derived matrix was of the same order of magnitude (10(9) cfu ml(-1)) as before immobilization, for 2 months. After 2 weeks, cells immobilized in an alkoxide-derived matrix decreased to 10(4) cfu ml(-1) at 4 degrees C, and no viable cells were detected at 20 degrees C. We found that immobilized bacteria could be used as a starter to produce recombinant proteins with yields comparable to those obtained from glycerol stocks: 15 mg l(-1) for superantigens and 2 mg l(-1) for T-cell receptor beta chain. These results contribute to the development of methods for microbial cell preservation under field conditions.

  7. Prospects for treating osteoarthritis: enzyme–protein interactions regulating matrix metalloproteinase activity

    PubMed Central

    Meszaros, Evan

    2012-01-01

    Primary osteoarthritis (OA) is a musculoskeletal disorder of unknown etiology. OA is characterized by an imbalance between anabolism and catabolism in, and altered homeostasis of articular cartilage. Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motif are upregulated in OA joints. Extracellular matrix (ECM) proteins are critical for resistance to compressive forces and for maintaining the tensile properties of the tissue. Tissue inhibitor of metalloproteinases (TIMPs) is the endogenous inhibitor of MMPs, but in OA, TIMPs do not effectively neutralize MMP activity. Upregulation of MMP gene expression occurs in OA in a milieu of proinflammatory cytokines such as interleukin (IL)-1, IL-6 and tumor necrosis factor α. Presently, the medical therapy of OA includes mainly nonsteroidal anti-inflammatory drugs and corticosteroids which dampen pain and inflammation but appear to have little effect on restoring joint function. Experimental interventions to restore the imbalance between anabolism and catabolism include small molecule inhibitors of MMP subtypes or inhibitors of the interaction between IL-1 and its receptor. Although these agents have some positive effects on reducing MMP subtype activity they have little efficacy at the clinical level. MMP-9 is one MMP subtype implicated in the degradation of articular cartilage ECM proteins. MMP-9 was found in OA synovial fluid as a complex with neutrophil gelatinase-associated lipocalin (NGAL) which protected MMP-9 from autodegradation. Suppressing NGAL synthesis or promoting NGAL degradation may result in reducing the activity of MMP-9. We also propose initiating a search for enzyme–protein interactions to dampen other MMP subtype activity which could suppress ECM protein breakdown. PMID:23342237

  8. Uniqueness of the mechanism of protein import into the peroxisome matrix: transport of folded, co-factor-bound and oligomeric proteins by shuttling receptors.

    PubMed

    Léon, Sébastien; Goodman, Joel M; Subramani, Suresh

    2006-12-01

    Based on earlier suggestions that peroxisomes may have arisen from endosymbionts that later lost their DNA, it was expected that protein transport into this organelle would have parallels to systems found in other organelles of endosymbiont origin, such as mitochondria and chloroplasts. This review highlights three features of peroxisomal matrix protein import that make it unique in comparison with these other subcellular compartments - the ability of this organelle to transport folded, co-factor-bound and oligomeric proteins, the dynamics of the import receptors during the matrix protein import cycle and the existence of a peroxisomal quality-control pathway, which insures that the peroxisome membrane is cleared of cargo-free receptors.

  9. Molecular Structure of a Peroxisomal Matrix Protein Transport Factor, Pex14p

    NASA Astrophysics Data System (ADS)

    Su, Jian-Rong; Takeda, Kazuki; Tamura, Shigehiko; Fujiki, Yukio; Miki, Kunio

    Peroxisome is an organelle in eukaryotic cells, which functions in various metabolisms such as β-oxidation of very long fatty acids. Peroxisomal matrix proteins synthesized in cytosol are imported into the peroxisome by a dynamic system consisting of over a dozen peroxins, Pex1p to Pex26p. Pex14p is a central component of the peroxisomal matrix protein import machinery. Until now, any structural information of Pex14p has not been elucidated at all. We describe here the crystal structure of the conserved domain of mammalian Pex14p at 1.8 Å resolution. A hydrophobic surface is composed of the conserved residues, of which two phenylalanine residues (Phe35 and Phe52) protrude to the solvent. Consequently, two putative binding pockets suitable for recognizing the helical WxxxF/Y motif of Pex5p are formed on the surface by the two phenylalanine residues accompanying with positively charged residues. Other structural studies for peroxins are also reviewed in this report.

  10. Analysis of Small Molecule Ligands Targeting the HIV-1 Matrix Protein-RNA Binding Site*

    PubMed Central

    Alfadhli, Ayna; McNett, Henry; Eccles, Jacob; Tsagli, Seyram; Noviello, Colleen; Sloan, Rachel; López, Claudia S.; Peyton, David H.; Barklis, Eric

    2013-01-01

    The matrix domain (MA) of the HIV-1 precursor Gag (PrGag) protein directs PrGag proteins to assembly sites at the plasma membrane by virtue of its affinity to the phospholipid, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). MA also binds to RNA at a site that overlaps its PI(4,5)P2 site, suggesting that RNA binding may protect MA from associating with inappropriate cellular membranes prior to PrGag delivery to the PM. Based on this, we have developed an assay in which small molecule competitors to MA-RNA binding can be characterized, with the assumption that such compounds might interfere with essential MA functions and help elucidate additional features of MA binding. Following this approach, we have identified four compounds, including three thiadiazolanes, that compete with RNA for MA binding. We also have identified MA residues involved in thiadiazolane binding and found that they overlap the MA PI(4,5)P2 and RNA sites. Cell culture studies demonstrated that thiadiazolanes inhibit HIV-1 replication but are associated with significant levels of toxicity. Nevertheless, these observations provide new insights into MA binding and pave the way for the development of antivirals that target the HIV-1 matrix domain. PMID:23135280

  11. Dermatopontin, a shell matrix protein gene from pearl oyster Pinctada martensii, participates in nacre formation.

    PubMed

    Jiao, Yu; Wang, Huan; Du, Xiaodong; Zhao, Xiaoxia; Wang, Qingheng; Huang, Ronglian; Deng, Yuewen

    2012-08-31

    Dermatopontin (DPT) is identified as a major component of the shell matrix protein. However, its exact function in the shell formation remains obscure. In this study, we described the characteristic and function of DPT gene from Pinctada martensii. DPT cDNA was 797 bp long, containing an open reading fragment (ORF) of 537 bp encoding a polypeptide of 178 amino acids with an estimated molecular mass of 21.4 kDa and theoretical isoelectric point of 5.97. The 5' untranslated region (UTR) was 11 bp and the 3'UTR was 249 with 18 bp poly (A) tail. In the peptide, there was a signal sequence, six potential phosphorylation sites, one glycosylation site and eight cysteine residues. Moreover, a sequence motif (D-R-X-W/F/Y-X-F/Y/I/L/M-X(1-2)-C) was contained and repeated itself three times in the entire sequence. DPT mRNA was constitutively expressed in all studied tissues with the most abundant mRNA in the mantle, which was nacre formation-related tissue. After decreasing DPT expression using RNA interference (RNAi) technology in the mantle, the nacreous layer showed a disordered growth; whereas the prismatic layer of the shells has no significant changes. These results suggested that DPT obtained in this study was a constitutive matrix protein and participated in nacre formation in P. martensii.

  12. Periostin is an extracellular matrix protein required for eruption of incisors in mice

    SciTech Connect

    Kii, Isao; Amizuka, Norio; Minqi, Li; Kitajima, Satoshi; Saga, Yumiko; Kudo, Akira . E-mail: akudo@bio.titech.ac.jp

    2006-04-14

    A characteristic tooth of rodents, the incisor continuously grows throughout life by the constant formation of dentin and enamel. Continuous eruption of the incisor is accompanied with formation of shear zone, in which the periodontal ligament is remodeled. Although the shear zone plays a role in the remodeling, its molecular biological aspect is barely understood. Here, we show that periostin is essential for formation of the shear zone. Periostin {sup -/-} mice showed an eruption disturbance of incisors. Histological observation revealed that deletion of periostin led to disappearance of the shear zone. Electron microscopy revealed that the disappearance of the shear zone resulted from a failure in digestion of collagen fibers in the periostin {sup -/-} mice. Furthermore, immunohistochemical analysis using anti-periostin antibodies demonstrated the restricted localization of periostin protein in the shear zone. Periostin is an extracellular matrix protein, and immunoelectron microscopy showed a close association of periostin with collagen fibrils in vivo. These results suggest that periostin functions in the remodeling of collagen matrix in the shear zone.

  13. Crystal Structure of the Oligomeric Form of Lassa Virus Matrix Protein Z

    PubMed Central

    Hastie, Kathryn M.; Zandonatti, Michelle; Liu, Tong; Li, Sheng; Woods, Virgil L.

    2016-01-01

    ABSTRACT The arenavirus matrix protein Z is highly multifunctional and occurs in both monomeric and oligomeric forms. The crystal structure of a dodecamer of Z from Lassa virus, presented here, illustrates a ring-like structure with a highly basic center. Mutagenesis demonstrates that the dimeric interface within the dodecamer and a Lys-Trp-Lys triad at the center of the ring are important for oligomerization. This structure provides an additional template to explore the many functions of Z. IMPORTANCE The arenavirus Lassa virus causes hundreds of thousands of infections each year, many of which develop into fatal hemorrhagic fever. The arenavirus matrix protein Z is multifunctional, with at least four distinct roles. Z exists in both monomeric and oligomeric forms, each of which likely serves a specific function in the viral life cycle. Here we present the dodecameric form of Lassa virus Z and demonstrate that Z forms a “wreath” with a highly basic center. This structure and that of monomeric Z now provide a pair of critical templates by which the multiple roles of Z in the viral life cycle may be interpreted. PMID:26912609

  14. Matrix Gla protein in Xenopus laevis: molecular cloning, tissue distribution, and evolutionary considerations.

    PubMed

    Cancela, M L; Ohresser, M C; Reia, J P; Viegas, C S; Williamson, M K; Price, P A

    2001-09-01

    Matrix Gla protein (MGP) belongs to the family of vitamin K-dependent, Gla-containing proteins and in higher vertebrates, is found in the extracellular matrix of mineralized tissues and soft tissues. MGP synthesis is highly regulated at the transcription and posttranscription levels and is now known to be involved in the regulation of extracellular matrix calcification and maintenance of cartilage and soft tissue integrity during growth and development. However, its mode of action at the molecular level remains unknown. Because there is a large degree of conservation between amino acid sequences of shark and human MGP, the function of MGP probably has been conserved throughout evolution. Given the complexity of the mammalian system, the study of MGP in a lower vertebrate might be advantageous to relate the onset of MGP expression with specific events during development. Toward this goal, MGP was purified from Xenopus long bones and its N-terminal amino acid sequence was determined and used to clone the Xenopus MGP complementary DNA (cDNA) by a mixture of reverse-transcription (RT)- and 5'- rapid amplification of cDNA ends (RACE)-polymerase chain reaction (PCR). MGP messenger RNA (mRNA) was present in all tissues analyzed although predominantly expressed in Xenopus bone and heart and its presence was detected early in development at the onset of chondrocranium development and long before the appearance of the first calcified structures and metamorphosis. These results show that in this system, as in mammals, MGP may be required to delay or prevent mineralization of cartilage and soft tissues during the early stages of development and indicate that Xenopus is an adequate model organism to further study MGP function during growth and development.

  15. Nuclear localization and secretion competence are conserved among henipavirus matrix proteins.

    PubMed

    McLinton, Elisabeth C; Wagstaff, Kylie M; Lee, Alexander; Moseley, Gregory W; Marsh, Glenn A; Wang, Lin-Fa; Jans, David A; Lieu, Kim G; Netter, Hans J

    2017-04-01

    Viruses of the genus Henipavirus of the family Paramyxoviridae are zoonotic pathogens, which have emerged in Southeast Asia, Australia and Africa. Nipah virus (NiV) and Hendra virus are highly virulent pathogens transmitted from bats to animals and humans, while the henipavirus Cedar virus seems to be non-pathogenic in infection studies. The full replication cycle of the Paramyxoviridae occurs in the host cell's cytoplasm, where viral assembly is orchestrated by the matrix (M) protein. Unexpectedly, the NiV-M protein traffics through the nucleus as an essential step to engage the plasma membrane in preparation for viral budding/release. Comparative studies were performed to assess whether M protein nuclear localization is a common feature of the henipaviruses, including the recently sequenced (although not yet isolated) Ghanaian bat henipavirus (Kumasi virus, GH-M74a virus) and Mojiang virus. Live-cell confocal microscopy revealed that nuclear translocation of GFP-fused M protein is conserved between henipaviruses in both human- and bat-derived cell lines. However, the efficiency of M protein nuclear localization and virus-like particle budding competency varied. Additionally, Cedar virus-, Kumasi virus- and Mojiang virus-M proteins were mutated in a bipartite nuclear localization signal, indicating that a key lysine residue is essential for nuclear import, export and induction of budding events, as previously reported for NiV-M. The results of this study suggest that the M proteins of henipaviruses may utilize a similar nucleocytoplasmic trafficking pathway as an essential step during viral replication in both humans and bats.

  16. Protein Complex Detection via Weighted Ensemble Clustering Based on Bayesian Nonnegative Matrix Factorization

    PubMed Central

    Ou-Yang, Le; Dai, Dao-Qing; Zhang, Xiao-Fei

    2013-01-01

    Detecting protein complexes from protein-protein interaction (PPI) networks is a challenging task in computational biology. A vast number of computational methods have been proposed to undertake this task. However, each computational method is developed to capture one aspect of the network. The performance of different methods on the same network can differ substantially, even the same method may have different performance on networks with different topological characteristic. The clustering result of each computational method can be regarded as a feature that describes the PPI network from one aspect. It is therefore desirable to utilize these features to produce a more accurate and reliable clustering. In this paper, a novel Bayesian Nonnegative Matrix Factorization(NMF)-based weighted Ensemble Clustering algorithm (EC-BNMF) is proposed to detect protein complexes from PPI networks. We first apply different computational algorithms on a PPI network to generate some base clustering results. Then we integrate these base clustering results into an ensemble PPI network, in the form of weighted combination. Finally, we identify overlapping protein complexes from this network by employing Bayesian NMF model. When generating an ensemble PPI network, EC-BNMF can automatically optimize the values of weights such that the ensemble algorithm can deliver better results. Experimental results on four PPI networks of Saccharomyces cerevisiae well verify the effectiveness of EC-BNMF in detecting protein complexes. EC-BNMF provides an effective way to integrate different clustering results for more accurate and reliable complex detection. Furthermore, EC-BNMF has a high degree of flexibility in the choice of base clustering results. It can be coupled with existing clustering methods to identify protein complexes. PMID:23658709

  17. Protein complex detection via weighted ensemble clustering based on Bayesian nonnegative matrix factorization.

    PubMed

    Ou-Yang, Le; Dai, Dao-Qing; Zhang, Xiao-Fei

    2013-01-01

    Detecting protein complexes from protein-protein interaction (PPI) networks is a challenging task in computational biology. A vast number of computational methods have been proposed to undertake this task. However, each computational method is developed to capture one aspect of the network. The performance of different methods on the same network can differ substantially, even the same method may have different performance on networks with different topological characteristic. The clustering result of each computational method can be regarded as a feature that describes the PPI network from one aspect. It is therefore desirable to utilize these features to produce a more accurate and reliable clustering. In this paper, a novel Bayesian Nonnegative Matrix Factorization (NMF)-based weighted Ensemble Clustering algorithm (EC-BNMF) is proposed to detect protein complexes from PPI networks. We first apply different computational algorithms on a PPI network to generate some base clustering results. Then we integrate these base clustering results into an ensemble PPI network, in the form of weighted combination. Finally, we identify overlapping protein complexes from this network by employing Bayesian NMF model. When generating an ensemble PPI network, EC-BNMF can automatically optimize the values of weights such that the ensemble algorithm can deliver better results. Experimental results on four PPI networks of Saccharomyces cerevisiae well verify the effectiveness of EC-BNMF in detecting protein complexes. EC-BNMF provides an effective way to integrate different clustering results for more accurate and reliable complex detection. Furthermore, EC-BNMF has a high degree of flexibility in the choice of base clustering results. It can be coupled with existing clustering methods to identify protein complexes.

  18. An Ensemble Method with Hybrid Features to Identify Extracellular Matrix Proteins

    PubMed Central

    Yang, Runtao; Zhang, Chengjin; Gao, Rui; Zhang, Lina

    2015-01-01

    The extracellular matrix (ECM) is a dynamic composite of secreted proteins that play important roles in numerous biological processes such as tissue morphogenesis, differentiation and homeostasis. Furthermore, various diseases are caused by the dysfunction of ECM proteins. Therefore, identifying these important ECM proteins may assist in understanding related biological processes and drug development. In view of the serious imbalance in the training dataset, a Random Forest-based ensemble method with hybrid features is developed in this paper to identify ECM proteins. Hybrid features are employed by incorporating sequence composition, physicochemical properties, evolutionary and structural information. The Information Gain Ratio and Incremental Feature Selection (IGR-IFS) methods are adopted to select the optimal features. Finally, the resulting predictor termed IECMP (Identify ECM Proteins) achieves an balanced accuracy of 86.4% using the 10-fold cross-validation on the training dataset, which is much higher than results obtained by other methods (ECMPRED: 71.0%, ECMPP: 77.8%). Moreover, when tested on a common independent dataset, our method also achieves significantly improved performance over ECMPP and ECMPRED. These results indicate that IECMP is an effective method for ECM protein prediction, which has a more balanced prediction capability for positive and negative samples. It is anticipated that the proposed method will provide significant information to fully decipher the molecular mechanisms of ECM-related biological processes and discover candidate drug targets. For public access, we develop a user-friendly web server for ECM protein identification that is freely accessible at http://iecmp.weka.cc. PMID:25680094

  19. An Investigation into the Protein Composition of the Teneral Glossina morsitans morsitans Peritrophic Matrix

    PubMed Central

    Rose, Clair; Belmonte, Rodrigo; Armstrong, Stuart D.; Molyneux, Gemma; Haines, Lee R.; Lehane, Michael J.; Wastling, Jonathan; Acosta-Serrano, Alvaro

    2014-01-01

    Background Tsetse flies serve as biological vectors for several species of African trypanosomes. In order to survive, proliferate and establish a midgut infection, trypanosomes must cross the tsetse fly peritrophic matrix (PM), which is an acellular gut lining surrounding the blood meal. Crossing of this multi-layered structure occurs at least twice during parasite migration and development, but the mechanism of how trypanosomes do so is not understood. In order to better comprehend the molecular events surrounding trypanosome penetration of the tsetse PM, a mass spectrometry-based approach was applied to investigate the PM protein composition using Glossina morsitans morsitans as a model organism. Methods PMs from male teneral (young, unfed) flies were dissected, solubilised in urea/SDS buffer and the proteins precipitated with cold acetone/TCA. The PM proteins were either subjected to an in-solution tryptic digestion or fractionated on 1D SDS-PAGE, and the resulting bands digested using trypsin. The tryptic fragments from both preparations were purified and analysed by LC-MS/MS. Results Overall, nearly 300 proteins were identified from both analyses, several of those containing signature Chitin Binding Domains (CBD), including novel peritrophins and peritrophin-like glycoproteins, which are essential in maintaining PM architecture and may act as trypanosome adhesins. Furthermore, 27 proteins from the tsetse secondary endosymbiont, Sodalis glossinidius, were also identified, suggesting this bacterium is probably in close association with the tsetse PM. Conclusion To our knowledge this is the first report on the protein composition of teneral G. m. morsitans, an important vector of African trypanosomes. Further functional analyses of these proteins will lead to a better understanding of the tsetse physiology and may help identify potential molecular targets to block trypanosome development within the tsetse. PMID:24763256

  20. Extracellular Matrix Proteins Mediate HIV-1 gp120 Interactions with α4β7.

    PubMed

    Plotnik, David; Guo, Wenjin; Cleveland, Brad; von Haller, Priska; Eng, Jimmy K; Guttman, Miklos; Lee, Kelly K; Arthos, James; Hu, Shiu-Lok

    2017-08-16

    Gut-homing α4β7(high) CD4(+) T lymphocytes have been shown to be preferentially targeted by Human Immunodeficiency Virus-1 (HIV), and are implicated in HIV pathogenesis. Previous studies demonstrated that HIV envelope protein gp120 binds and signals through α4β7, and that this likely contributes to the infection of α4β7(high) T cells and promotes cell-to-cell virus transmission. Structures within the second variable loop (V2) of gp120, including the tripeptide motif LDV/I, are thought to mediate gp120-α4β7 binding. However, lack of α4β7 binding has been reported in gp120 proteins containing LDV/I, and the precise determinants of gp120-α4β7 binding are not fully defined. In this work, we report the novel finding that fibronectins mediate indirect gp120-α4β7 interactions. We show that Chinese Hamster Ovary (CHO) cells used to express recombinant gp120 produced fibronectins and other extracellular matrix proteins that co-purified with gp120. CHO fibronectins were able to mediate the binding of a diverse panel of gp120 proteins to α4β7 in an in vitro cell binding assay. The V2 loop was not required for fibronectin-mediated binding of gp120 to α4β7, nor did V2-specific antibodies block this interaction. Removal of fibronectin through anion exchange chromatography abrogated V2-independent gp120-α4β7 binding. Additionally, we showed a recombinant human fibronectin fragment mediated gp120-α4β7 interactions in a similar manner to CHO fibronectin. These findings provide an explanation for the apparent contradictory observations regarding the gp120-α4β7 interaction and offer new insights into the potential role of fibronectin and other extracellular matrix proteins in HIV-1 biology.IMPORTANCE Immune tissues within the gut are severely damaged by HIV, and this plays an important role in the development of AIDS. Integrin α4β7 plays a major role in the trafficking of lymphocytes, including CD4(+) T cells, into gut lymphoid tissues. Previous reports

  1. Symposium: Role of the extracellular matrix in mammary development. Regulation of milk protein and basement membrane gene expression: The influence of the extracellular matrix

    SciTech Connect

    Aggeler, J.; Park, C.S.; Bissell, M.J.

    1988-10-01

    Synthesis and secretion of milk proteins ({alpha}-casein, {beta}-casein, {gamma}-casein, and transferrin) by cultured primary mouse mammary epithelial cells is modulated by the extracellular matrix. In cells grown on released or floating type I collagen gels, mRNA for {beta}-casein and transferrin is increased as much as 30-fold over cells grown on plastic. Induction of {beta}-casein expression depends strongly on the presence of lactogenic hormones, especially prolactin, in the culture. When cells are plated onto partially purified reconstituted basement membrane, dramatic changes in morphology and milk protein gene expression are observed. Cells cultured on the matrix for 6 to 8 d in the presence of prolactin, insulin, and hydrocortisone form hollow spheres and duct-like structures that are completely surrounded by matrix. The cells lining these spheres appear actively secretory and are oriented with their apices facing the lumen. Hybridization experiments indicate that mRNA for {beta}-casein can be increased as much as 70-fold in these cultures. Because > 90% of the cultured cells synthesize immunoreactive {beta}-casein, as compared with only 40% of cells in the late pregnant gland, the matrix appears to be able to induce protein expression in previously silent cells. Synthesis of laminin and assembly of a mammary-specific basal lamina by cells cultured on different extracellular matrices also appears to depend on the presence of lactogenic hormones. These studies provide support for the concept of dynamic reciprocity in which complex interactions between extracellular matrix and the cellular cytoskeleton contribute to the induction and maintenance of tissue-specific gene expression in the mammary gland.

  2. Identification and Characterization of the Lysine-Rich Matrix Protein Family in Pinctada fucata: Indicative of Roles in Shell Formation.

    PubMed

    Liang, Jian; Xie, Jun; Gao, Jing; Xu, Chao-Qun; Yan, Yi; Jia, Gan-Chu; Xiang, Liang; Xie, Li-Ping; Zhang, Rong-Qing

    2016-12-01

    Mantle can secret matrix proteins playing key roles in regulating the process of shell formation. The genes encoding lysine-rich matrix proteins (KRMPs) are one of the most highly expressed matrix genes in pearl oysters. However, the expression pattern of KRMPs is limited and the functions of them still remain unknown. In this study, we isolated and identified six new members of lysine-rich matrix proteins, rich in lysine, glycine and tyrosine, and all of them are basic matrix proteins. Combined with four members of the KRMPs previously reported, all these proteins can be divided into three subclasses according to the results of phylogenetic analyses: KRMP1-3 belong to subclass KPI, KRMP4-5 belong to KPII, and KRMP6-10 belong to KPIII. Three subcategories of lysine-rich matrix proteins are highly expressed in the D-phase, the larvae and adult mantle. Lysine-rich matrix proteins are involved in the shell repairing process and associated with the formation of the shell and pearl. What's more, they can cause abnormal shell growth after RNA interference. In detail, KPI subgroup was critical for the beginning formation of the prismatic layer; both KPII and KPIII subgroups participated in the formation of prismatic layer and nacreous layer. Compared with different temperatures and salinity stimulation treatments, the influence of changes in pH on KRMPs gene expression was the greatest. Recombinant KRMP7 significantly inhibited CaCO3 precipitation, changed the morphology of calcite, and inhibited the growth of aragonite in vitro. Our results are beneficial to understand the functions of the KRMP genes during shell formation.

  3. Comparison of native extracellular matrix with adsorbed protein films using secondary ion mass spectrometry.

    PubMed

    Canavan, Heather E; Graham, Daniel J; Cheng, Xuanhong; Ratner, Buddy D; Castner, David G

    2007-01-02

    In the past decade, the temperature-responsive behavior of poly(N-isopropyl acrylamide) (pNIPAM) has come to be recognized as a convenient method for the nondestructive harvest of confluent cell layers. Recently, we have utilized this nondestructive cell harvest method as a means to ascertain the nature of the extracellular matrix (ECM) secreted from cells. In this work, we compare the ECM obtained after cell liftoff to individual ECM proteins adsorbed directly onto RF-plasma-deposited pNIPAM (ppNIPAM). Using X-ray photoelectron spectroscopy, we find that the composition of ppNIPAM post-cell liftoff surfaces is consistent with those of the ppNIPAM post-protein adsorption surface, both of which differ from control surfaces. Using principal component analysis of positive-ion time-of-flight secondary ion mass spectrometry (ToF-SIMS) data, we show that the major ECM proteins examined can effectively be identified from their amino acid compositions. By comparing the positive-ion ToF-SIMS data from each of the ppNIPAM post-protein adsorption surfaces to that of ppNIPAM post-cell liftoff, we find that ppNIPAM post-cell liftoff surfaces are distinctly separate from fibronectin (FN). This result is consistent with our previous observation using immunoassay that FN is clearly associated with the cell sheet after low-temperature liftoff from ppNIPAM.

  4. Structure-function studies of the human immunodeficiency virus type 1 matrix protein, p17.

    PubMed Central

    Cannon, P M; Matthews, S; Clark, N; Byles, E D; Iourin, O; Hockley, D J; Kingsman, S M; Kingsman, A J

    1997-01-01

    The human immunodeficiency virus type 1 (HIV-1) matrix protein, p17, plays important roles in both the early and late stages of the viral life cycle. Using our previously determined solution structure of p17, we have undertaken a rational mutagenesis program aimed at mapping structure-function relationships within the molecule. Amino acids hypothesized to be important for p17 function were mutated and examined for effect in an infectious proviral clone of HIV-1. In parallel, we analyzed by nuclear magnetic resonance spectroscopy the structure of recombinant p17 protein containing such substitutions. These analyses identified three classes of mutants that were defective in viral replication: (i) proteins containing substitutions at internal residues that grossly distorted the structure of recombinant p17 and prevented viral particle formation, (ii) mutations at putative p17 trimer interfaces that allowed correct folding of recombinant protein but produced virus that was defective in particle assembly, and (iii) substitution of basic residues in helix A that caused some relocation of virus assembly to intracellular locations and produced normally budded virions that were completely noninfectious. PMID:9094619

  5. Epitope analysis of capsid and matrix proteins of North American ovine lentivirus field isolates.

    PubMed Central

    Marcom, K A; Pearson, L D; Chung, C S; Poulson, J M; DeMartini, J C

    1991-01-01

    Monoclonal antibodies (MAbs) directed against two phenotypically distinct ovine lentivirus (OvLV) strains were generated by fusion of BALB/c SP2/0-Ag 14 myeloma cells with spleen cells from mice immunized with purified OvLV. Hybridomas were selected by indirect enzyme-linked immunosorbent assay (ELISA) and analysis of reactivity on immunoblots. The majority (17 of 21) of the MAbs recognized the gag-encoded capsid protein, CA p27, of both strains. Four other MAbs recognized a smaller structural protein, presumably a matrix protein, MA p17. Three distinct epitopes on CA p27 and one on MA p17 were distinguished by the MAbs with competition ELISA. MAbs from each epitope group were able to recognize 17 North American field isolates of OvLV and the closely related caprine arthritis-encephalitis virus (CAEV). Analysis of the data indicated that these epitopes were highly conserved among naturally occurring isolates. A representative MAb from each epitope group of anti-CA p27 MAbs reacted with four field strains of OvLV and CAEV on immunoblots. An anti-MA p17 MAb recognized the same OvLV strains on immunoblots but failed to recognize CAEV. MAbs which recognize conserved epitopes of gag-encoded lentivirus proteins (CA p27 and MA p17) are valuable tools. These MAbs can be used to develop sensitive diagnostic assays and to study the pathogenesis of lentivirus infections in sheep and goats. Images PMID:1715884

  6. Sequence-specific fragmentation of matrix-assisted laser-desorbed protein/peptide ions.

    PubMed

    Brown, R S; Lennon, J J

    1995-11-01

    By utilizing delayed pulsed ion extraction of ions generated via the matrix-assisted laser desorption/ionization (MALDI) technique, fast (< 320 ns) metastable ion fragmentation is observed for both peptide and protein analytes in the ion source of a linear time-of-flight mass spectrometer. Small peptides such as the oxidized B chain of bovine insulin exhibit fragmentation at the amide linking bond between peptide residues. Overlapping sequence information is provided by fragmentation from both the C- and N-terminal ends of the peptide (cn-, yn-, and z*n-type fragment ions). Larger proteins can also exhibit a wealth of sequence specific fragment ions in favorable cases. One example is cytochrome c, which undergoes substantial (approximately 80%) fast fragmentation at the amide bonds along the amino acid backbone of the protein. Only amide bond cleavages initiating from the C-terminal end (cn fragments) are observed. The observed fragmentation pattern provides a significant amount of potential sequence information for these molecules. External mass calibration of the intact protonated molecular ions is demonstrated with mass accuracies typically around 100 ppm. Mass accuracies for the observed fragment ions ranged from +/- 0.20 Da for the smaller peptides studied (i.e., oxidized B chain of bovine insulin) to +/- 0.38 Da for the largest protein studied (cytochrome c), based upon the known sequences.

  7. Characterization of a binding protein for leukemia inhibitory factor localized in extracellular matrix

    PubMed Central

    1993-01-01

    Leukemia Inhibitory Factor (LIF) interacts with two classes of high affinity binding sites on rat UMR cells cultured in monolayer. One class of binding sites was found to be localized in the extracellular matrix (ECM) after removal of cells from the culture dish. The interaction of LIF with ECM-localized binding sites is not dependent upon either glycosylation of LIF or the presence of extracellular glycosyaminoglycans. Chemical cross-linking studies demonstrate that LIF interacts with a 200-kD cell-associated protein and a 140-kD ECM- localized protein. A 140-kD protein could also be specifically precipitated from solubilised metabolically radiolabeled UMR ECM by antibodies directed against LIF by virtue of its ability to form a stable complex with unlabeled LIF. In addition, soluble LIF associated with this ECM-localized protein is biologically active in terms of inhibition of ES cell differentiation. The properties of ECM-localized 140-kD species are very similar to those of the secreted form of the LIF receptor suggesting that the ECM localization of LIF and LIF signal transduction may be closely coupled. PMID:8335694

  8. Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly.

    PubMed Central

    Hill, C P; Worthylake, D; Bancroft, D P; Christensen, A M; Sundquist, W I

    1996-01-01

    The human immunodeficiency virus type 1 (HIV-1) matrix protein forms a structural shell associated with the inner viral membrane and performs other essential functions throughout the viral life cycle. The crystal structure of the HIV-1 matrix protein, determined at 2.3 angstrom resolution, reveals that individual matrix molecules are composed of five major helices capped by a three-stranded mixed beta-sheet. Unexpectedly, the protein assembles into a trimer in three different crystal lattices, burying 1880 angstrom2 of accessible surface area at the trimer interfaces. Trimerization appears to create a large, bipartite membrane binding surface in which exposed basic residues could cooperate with the N-terminal myristoyl groups to anchor the protein on the acidic inner membrane of the virus. Images Fig. 1 Fig. 2 Fig. 3 PMID:8610175

  9. Live-cell imaging of migrating cells expressing fluorescently-tagged proteins in a three-dimensional matrix.

    PubMed

    Shih, Wenting; Yamada, Soichiro

    2011-12-22

    Traditionally, cell migration has been studied on two-dimensional, stiff plastic surfaces. However, during important biological processes such as wound healing, tissue regeneration, and cancer metastasis, cells must navigate through complex, three-dimensional extracellular tissue. To better understand the mechanisms behind these biological processes, it is important to examine the roles of the proteins responsible for driving cell migration. Here, we outline a protocol to study the mechanisms of cell migration using the epithelial cell line (MDCK), and a three-dimensional, fibrous, self-polymerizing matrix as a model system. This optically clear extracellular matrix is easily amenable to live-cell imaging studies and better mimics the physiological, soft tissue environment. This report demonstrates a technique for directly visualizing protein localization and dynamics, and deformation of the surrounding three-dimensional matrix. Examination of protein localization and dynamics during cellular processes provides key insight into protein functions. Genetically encoded fluorescent tags provide a unique method for observing protein localization and dynamics. Using this technique, we can analyze the subcellular accumulation of key, force-generating cytoskeletal components in real-time as the cell maneuvers through the matrix. In addition, using multiple fluorescent tags with different wavelengths, we can examine the localization of multiple proteins simultaneously, thus allowing us to test, for example, whether different proteins have similar or divergent roles. Furthermore, the dynamics of fluorescently tagged proteins can be quantified using Fluorescent Recovery After Photobleaching (FRAP) analysis. This measurement assays the protein mobility and how stably bound the proteins are to the cytoskeletal network. By combining live-cell imaging with the treatment of protein function inhibitors, we can examine in real-time the changes in the distribution of proteins and

  10. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation.

    PubMed

    Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan

    2016-11-04

    High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (PGMA-EDMA) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized PGMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests

  11. The Human Metapneumovirus Matrix Protein Stimulates the Inflammatory Immune Response In Vitro

    PubMed Central

    Bagnaud-Baule, Audrey; Reynard, Olivier; Perret, Magali; Berland, Jean-Luc; Maache, Mimoun; Peyrefitte, Christophe; Vernet, Guy; Volchkov, Viktor; Paranhos-Baccalà, Gláucia

    2011-01-01

    Each year, during winter months, human Metapneumovirus (hMPV) is associated with epidemics of bronchiolitis resulting in the hospitalization of many infants. Bronchiolitis is an acute illness of the lower respiratory tract with a consequent inflammation of the bronchioles. The rapid onset of inflammation suggests the innate immune response may have a role to play in the pathogenesis of this hMPV infection. Since, the matrix protein is one of the most abundant proteins in the Paramyxoviridae family virion, we hypothesized that the inflammatory modulation observed in hMPV infected patients may be partly associated with the matrix protein (M-hMPV) response. By western blot analysis, we detected a soluble form of M-hMPV released from hMPV infected cell as well as from M-hMPV transfected HEK 293T cells suggesting that M-hMPV may be directly in contact with antigen presenting cells (APCs) during the course of infection. Moreover, flow cytometry and confocal microscopy allowed determining that M-hMPV was taken up by dendritic cells (moDCs) and macrophages inducing their activation. Furthermore, these moDCs enter into a maturation process inducing the secretion of a broad range of inflammatory cytokines when exposed to M-hMPV. Additionally, M-hMPV activated DCs were shown to stimulate IL-2 and IFN-γ production by allogeneic T lymphocytes. This M-hMPV-mediated activation and antigen presentation of APCs may in part explain the marked inflammatory immune response observed in pathology induced by hMPV in patients. PMID:21412439

  12. RAGE-mediated extracellular matrix proteins accumulation exacerbates HySu-induced pulmonary hypertension.

    PubMed

    Jia, Daile; He, Yuhu; Zhu, Qian; Liu, Huan; Zuo, Caojian; Chen, Guilin; Yu, Ying; Lu, Ankang

    2017-05-01

    Extracellular matrix (ECM) proteins accumulation contributes to the progression of pulmonary arterial hypertension (PAH), a rare and fatal cardiovascular condition defined by high pulmonary arterial pressure, whether primary, idiopathic, or secondary to other causes. The receptor for advanced glycation end products (RAGE) is constitutively expressed in the lungs and plays an important role in ECM deposition. Nonetheless, the mechanisms by which RAGE mediates ECM deposition/formation in pulmonary arteries and its roles in PAH progression remain unclear. Expression of RAGE and its activating ligands, S100/calgranulins and high mobility group box 1 (HMGB1), were increased in both human and mouse pulmonary arterial smooth muscle cells (PASMCs) under hypoxic conditions and were also strikingly upregulated in pulmonary arteries in hypoxia plus SU5416 (HySu)-induced PAH in mice. RAGE deletion alleviated pulmonary arterial pressure and restrained extracellular matrix accumulation in pulmonary arteries in HySu-induced PAH murine model. Moreover, blocking RAGE activity with a neutralizing antibody in human PASMCs, or RAGE deficiency in mouse PASMCs exposed to hypoxia, suppressed the expression of fibrotic proteins by reducing TGF-β1 expression. RAGE reconstitution in deficient mouse PASMCs restored hypoxia-stimulated TGF-β1 production via ERK1/2 and p38 MAPK pathway activation and subsequently increased ECM protein expression. Interestingly, HMGB1 acting on RAGE, not toll-like receptor 4 (TLR4), induced ECM deposition in PASMCs. Finally, in both idiopathic PAH patients and HySu-induced PAH mice, soluble RAGE (sRAGE) levels in serum were significantly elevated compared to those in controls. Activation of RAGE facilitates the development of hypoxia-induced pulmonary hypertension by increase of ECM deposition in pulmonary arteries. Our results indicate that sRAGE may be a potential biomarker for PAH diagnosis and disease severity, and that RAGE may be a promising target for

  13. Effect of different enamel matrix derivative proteins on behavior and differentiation of endothelial cells.

    PubMed

    Andrukhov, Oleh; Gemperli, Anja C; Tang, Yan; Howald, Nadia; Dard, Michel; Falkensammer, Frank; Moritz, Andreas; Rausch-Fan, Xiaohui

    2015-07-01

    Enamel matrix derivative (EMD) is an effective biomaterial for periodontal tissue regeneration and might stimulate angiogenesis. In order to clarify mechanisms underlying its biological activity, we separated two EMD fractions with different molecular weight protein components and investigated their effects on human umbilical vein endothelial cells (HUVECs) in vitro. Fraction Low-Molecular Weight (LMW) included proteins with a molecular weight (M.W.)<8kDa. Fraction LMW-depleted included proteins with M.W.>8kDa and lower than approximately 55kDa. The effect of EMD fractions on proliferation/viability, apoptosis, migration and expression of angiopoetin-2 (ang-2), von Willebrand factor (vWF), E-selectin, intracellular adhesion molecules 1 (ICAM-1), vascular endothelial growth factor (VEGF) receptors Flt-1 and KDR was investigated. The proliferation/viability of HUVECs was inhibited by both LMW and LMW-depleted at concentrations 100μg/ml, whereas EMD slightly increased cell proliferation/viability. The expression of all investigated proteins was up-regulated by EMD. However, differences in the effect of EMD fractions on the protein expression were observed. The effect of LMW-depleted on the expression of ICAM-1 and E-selectin was markedly higher compared to LMW. In contrast, the expression of vWF and VEGF receptors Flt-1 and KDR was primarily affected LMW than by LMW depleted. The expression of ang-2 was not influenced by LMW and LMW-depleted. HUVECs migration was stimulated more strongly by LMW than by EMD and LMW-depleted. Our in vitro study shows that the proteins composing EMD have different and specific biological activities and consequently have the ability to cover different aspects of EMD's biological and clinical effects. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Nucleocapsid and matrix protein contributions to selective human immunodeficiency virus type 1 genomic RNA packaging.

    PubMed

    Poon, D T; Li, G; Aldovini, A

    1998-03-01

    The nucleocapsid protein (NC) of retroviruses plays a major role in genomic RNA packaging, and some evidence has implicated the matrix protein (MA) of certain retroviruses in viral RNA binding. To further investigate the role of NC in the selective recognition of genomic viral RNA and to address the potential contribution of MA in this process, we constructed chimeric and deletion human immunodeficiency virus type 1 (HIV-1) mutants that alter the NC or MA protein. Both HIV and mouse mammary tumor virus (MMTV) NC proteins have two zinc-binding domains and similar basic amino acid compositions but differ substantially in total length, amino acid sequence, and spacing of the zinc-binding motifs. When the entire NC coding sequence of HIV was replaced with the MMTV NC coding sequence, we found that the HIV genome was incorporated into virions at 50% of wild-type levels. Viruses produced from chimeric HIV genomes with complete NC replacements, or with the two NC zinc-binding domains replaced with MMTV sequences, preferentially incorporated HIV genomes when both HIV and MMTV genomes were simultaneously present in the cell. Viruses produced from chimeric MMTV genomes in which the MMTV NC had been replaced with HIV NC preferentially incorporated MMTV genomes when both HIV and MMTV genomes were simultaneously present in the cell. In contrast, viruses produced from chimeric HIV genomes containing the Moloney NC, which contains a single zinc-binding motif, were previously shown to preferentially incorporate Moloney genomic RNA. Taken together, these results indicate that an NC protein with two zinc-binding motifs is required for specific HIV RNA packaging and that the amino acid context of these motifs, while contributing to the process, is less crucial for specificity. The data also suggest that HIV NC may not be the exclusive determinant of RNA selectivity. Analysis of an HIV MA mutant revealed that specific RNA packaging does not require MA protein.

  15. Nucleocapsid and Matrix Protein Contributions to Selective Human Immunodeficiency Virus Type 1 Genomic RNA Packaging

    PubMed Central

    Poon, Dexter T. K.; Li, Guangde; Aldovini, Anna

    1998-01-01

    The nucleocapsid protein (NC) of retroviruses plays a major role in genomic RNA packaging, and some evidence has implicated the matrix protein (MA) of certain retroviruses in viral RNA binding. To further investigate the role of NC in the selective recognition of genomic viral RNA and to address the potential contribution of MA in this process, we constructed chimeric and deletion human immunodeficiency virus type 1 (HIV-1) mutants that alter the NC or MA protein. Both HIV and mouse mammary tumor virus (MMTV) NC proteins have two zinc-binding domains and similar basic amino acid compositions but differ substantially in total length, amino acid sequence, and spacing of the zinc-binding motifs. When the entire NC coding sequence of HIV was replaced with the MMTV NC coding sequence, we found that the HIV genome was incorporated into virions at 50% of wild-type levels. Viruses produced from chimeric HIV genomes with complete NC replacements, or with the two NC zinc-binding domains replaced with MMTV sequences, preferentially incorporated HIV genomes when both HIV and MMTV genomes were simultaneously present in the cell. Viruses produced from chimeric MMTV genomes in which the MMTV NC had been replaced with HIV NC preferentially incorporated MMTV genomes when both HIV and MMTV genomes were simultaneously present in the cell. In contrast, viruses produced from chimeric HIV genomes containing the Moloney NC, which contains a single zinc-binding motif, were previously shown to preferentially incorporate Moloney genomic RNA. Taken together, these results indicate that an NC protein with two zinc-binding motifs is required for specific HIV RNA packaging and that the amino acid context of these motifs, while contributing to the process, is less crucial for specificity. The data also suggest that HIV NC may not be the exclusive determinant of RNA selectivity. Analysis of an HIV MA mutant revealed that specific RNA packaging does not require MA protein. PMID:9499052

  16. Endometrial inflammation and abnormal expression of extracellular matrix proteins induced by Mycoplasma bovis in dairy cows.

    PubMed

    Guo, Mengyao; Wang, Guoqing; Lv, Tingting; Song, Xiaojing; Wang, Tiancheng; Xie, Guanghong; Cao, Yongguo; Zhang, Naisheng; Cao, Rongfeng

    2014-03-15

    Mycoplasma bovis infection can cause endometrial inflammation leading to infertility and involuntary culling in dairy cows. Because extracellular matrix (ECM) proteins affect the adherence of mycoplasma to eukaryotic cell surface, they may play a role in the pathogenesis of the bacteria. The objective of the present study was to evaluate the endometrial inflammatory response and ECM protein expression induced by M bovis. Endometrial concentrations of inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and mRNA and protein expression of collagen IV (CL-IV), fibronectin (FN), and laminin (LN) were evaluated 10, 20, and 30 days after M bovis intrauterine infusion in breed cows 18 days postpartum. The presence of the bacteria in the uterus was detected by nested polymerase chain reaction and denaturing gradient gel electrophoresis. Endometrial TNF-α, IL-1β, and IL-6 concentrations in the treatment group were greater (P < 0.05) than in the positive and negative control groups 20 and 30 days after infusion. Endometrial CL-IV, FN, and LN mRNA and protein expression increased (P < 0.01) 20 days after infusion in all groups. However, the increase was more pronounced in the treatment group and reactive expressions were greater (P < 0.05) than in the positive and negative control groups 10, 20, and 30 days after infusion. In conclusion, M bovis triggered endometrial inflammatory response and increased CL-IV, FN, and LN mRNA and protein expression. The abnormal expression of ECM these proteins may promote the pathogenic effects of M bovis that lead to endometrial tissue damage and infertility.

  17. The Bfp60 surface adhesin is an extracellular matrix and plasminogen protein interacting in Bacteroides fragilis

    PubMed Central

    de Oliveira Ferreira, Eliane; Teixeira, Felipe; Cordeiro, Fabiana; Lobo, Leandro Araujo; Rocha, Edson R.; Smith, Jeffrey C.; Domingues, Regina M C P

    2014-01-01

    Plasminogen (Plg) is a highly abundant protein found in the plasma component of blood and is necessary for the degradation of fibrin, collagen, and other structural components of tissues. This fibrinolytic system is utilized by several pathogenic species of bacteria to manipulate the host plasminogen system and facilitate invasion of tissues during infection by modifying the activation of this process through the binding of Plg at their surface. Bacteroides fragilis is the most commonly isolated Gram-negative obligate anaerobe from human clinical infections, such as intra-abdominal abscesses and anaerobic bacteraemia. The ability of B. fragilis to convert plasminogen (Plg) into plasmin has been associated with an outer membrane protein named Bfp60. In this study, we characterized the function of Bfp60 protein in B. fragilis 638R by constructing the bfp60 defective strain and comparing its with that of the wild type regarding binding to laminin-1 (LMN-1) and activation of Plg into plasmin. Although the results showed in this study indicate that Bfp60 surface protein of B. fragilis is important for the recognition of LMN-1 and Plg activation, a significant slow activation of Plg into plasmin was observed in the mutant strain. For that reason, the possibility of another unidentified mechanism activating Plg is also present in B. fragilis can not be discarded. The results demonstrate that Bfp60 protein is responsible for the recognition of laminin and Plg-plasmin activation. Although the importance of this protein is still unclear in the pathogenicity of the species, it is accepted that since other pathogenic bacteria use this mechanism to disseminate through the extracellular matrix during the infection, it should also contribute to the virulence of B. fragilis. PMID:23850366

  18. Proteomic analyses of gastric cancer cells treated with vesicular stomatitis virus matrix protein.

    PubMed

    Zeng, Dequan; Zhang, Tao; Zhou, Shengtao; Hu, Hao; Li, Jingyi; Huang, Kai; Lei, Yunlong; Wang, Kui; Zhao, Yong; Liu, Rui; Li, Qiu; Wen, Yanjun; Huang, Canhua

    2011-06-01

    Gastric cancer constitutes the second leading cause of mortality worldwide and the fourth most common cancer. While chemotherapy remains the primary treatment for both resectable and advanced gastric cancer, most gastric cancers are naturally resistant to anticancer drugs, rendering new therapeutic avenues in dire need. Vesicular stomatitis virus (VSV) was proved to preferentially replicate in many types of tumor cells and eventually induce apoptosis of host cells. The vesicular stomatitis virus matrix protein (MP) plays a major role in its effects. This study proved that expression of MP could effectively inhibit proliferation and induce cell death in gastric carcinoma MKN28 cells. Furthermore, we utilized a proteomics strategy to characterize proteome-wide alterations between MP-treated MKN28 lines and their untreated counterparts. A total of 97 spots were positively identified as differentially expressed, and of these 62 proteins were up-regulated, whereas 35 proteins were down-regulated. Functional analysis unraveled three significantly modified gene product subgroups: glycolytic enzymes, reactive oxygen species-associated proteins and the proteins regulating RNA transport and maturation. Expression of three altered proteins was further validated by semi-quantitative RT-PCR or/and western blotting. Furthermore, we demonstrated that MP expression could induce rapid intracellular ROS accumulation in MKN28 cells. These results provide evidence for the anti-cancer potential of MP, and a novel MP-mediated apoptotic signaling pathway is proposed. Our findings are considered a significant step toward a better understanding the mechanism of MP-induced anti-cancer effect.

  19. Effect of pH, salt and chemical rinses on bacterial attachment to extracellular matrix proteins.

    PubMed

    Zulfakar, Siti Shahara; White, Jason D; Ross, Tom; Tamplin, Mark

    2013-06-01

    Microbial contamination of carcass surfaces occurs during slaughter and post-slaughter processing steps, therefore interventions are needed to enhance meat safety and quality. Although many studies have been done at the macro-level, little is known about specific processes that influence bacterial attachment to carcass surfaces, particularly the role of extracellular matrix (ECM) proteins. In the present study, the effect of pH and salt (NaCl, KCl and CaCl2) on attachment of Escherichia coli and Salmonella isolates to dominant ECM proteins: collagen I, fibronectin, collagen IV and laminin were assessed. Also, the effects of three chemical rinses commonly used in abattoirs (2% acetic acid, 2% lactic acid and 10% trisodium phosphate (TSP)) were tested. Within a pH range of 5-9, there was no significant effect on attachment to ECM proteins, whereas the effect of salt type and concentration varied depending on combination of strain and ECM protein. A concentration-dependant effect was observed with NaCl and KCl (0.1-0.85%) on attachment of E. coli M23Sr, but only to collagen I. One-tenth percent CaCl2 produced the highest level of attachment to ECM proteins for E. coli M23Sr and EC614. In contrast, higher concentrations of CaCl2 increased attachment of E. coli EC473 to collagen IV. Rinses containing TSP produced >95% reduction in attachment to all ECM proteins. These observations will assist in the design of targeted interventions to prevent or disrupt contamination of meat surfaces, thus improving meat safety and quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A novel Pex14 protein-interacting site of human Pex5 is critical for matrix protein import into peroxisomes.

    PubMed

    Neuhaus, Alexander; Kooshapur, Hamed; Wolf, Janina; Meyer, N Helge; Madl, Tobias; Saidowsky, Jürgen; Hambruch, Eva; Lazam, Anissa; Jung, Martin; Sattler, Michael; Schliebs, Wolfgang; Erdmann, Ralf

    2014-01-03

    Protein import into peroxisomes relies on the import receptor Pex5, which recognizes proteins with a peroxisomal targeting signal 1 (PTS1) in the cytosol and directs them to a docking complex at the peroxisomal membrane. Receptor-cargo docking occurs at the membrane-associated protein Pex14. In human cells, this interaction is mediated by seven conserved diaromatic penta-peptide motifs (WXXX(F/Y) motifs) in the N-terminal half of Pex5 and the N-terminal domain of Pex14. A systematic screening of a Pex5 peptide library by ligand blot analysis revealed a novel Pex5-Pex14 interaction site of Pex5. The novel motif composes the sequence LVAEF with the evolutionarily conserved consensus sequence LVXEF. Replacement of the amino acid LVAEF sequence by alanines strongly affects matrix protein import into peroxisomes in vivo. The NMR structure of a complex of Pex5-(57-71) with the Pex14-N-terminal domain showed that the novel motif binds in a similar α-helical orientation as the WXXX(F/Y) motif but that the tryptophan pocket is now occupied by a leucine residue. Surface plasmon resonance analyses revealed 33 times faster dissociation rates for the LVXEF ligand when compared with a WXXX(F/Y) motif. Surprisingly, substitution of the novel motif with the higher affinity WXXX(F/Y) motif impairs protein import into peroxisomes. These data indicate that the distinct kinetic properties of the novel Pex14-binding site in Pex5 are important for processing of the peroxisomal targeting signal 1 receptor at the peroxisomal membrane. The novel Pex14-binding site may represent the initial tethering site of Pex5 from which the cargo-loaded receptor is further processed in a sequential manner.

  1. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein

    PubMed Central

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-01-01

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins. DOI: http://dx.doi.org/10.7554/eLife.11897.001 PMID:26714107

  2. Link protein N-terminal peptide binds to bone morphogenetic protein (BMP) type II receptor and drives matrix protein expression in rabbit intervertebral disc cells.

    PubMed

    Wang, Zili; Weitzmann, M Neale; Sangadala, Sreedhara; Hutton, William C; Yoon, S Tim

    2013-09-27

    Intervertebral disc (IVD) degeneration and associated spinal disorders are leading sources of morbidity, and they can be responsible for chronic low back pain. Treatments for degenerative disc diseases continue to be a challenge. Intensive research is now focusing on promoting regeneration of degenerated discs by stimulating production of the disc matrix. Link protein N-terminal peptide (LPP) is a proteolytic fragment of link protein, an important cross-linker and stabilizer of the major structural components of cartilage, aggrecan and hyaluronan. In this study we investigated LPP action in rabbit primary intervertebral disc cells cultured ex vivo in a three-dimensional alginate matrix. Our data reveal that LPP promotes disc matrix production, which was evidenced by increased expression of the chondrocyte-specific transcription factor SOX9 and the extracellular matrix macromolecules aggrecan and collagen II. Using colocalization and pulldown studies we further document a noggin-insensitive direct peptide-protein association between LPP and BMP-RII. This association mediated Smad signaling that converges on BMP genes leading to expression of BMP-4 and BMP-7. Furthermore, through a cell-autonomous loop BMP-4 and BMP-7 intensified Smad1/5 signaling though a feedforward circuit involving BMP-RI, ultimately promoting expression of SOX9 and downstream aggrecan and collagen II genes. Our data define a complex regulatory signaling cascade initiated by LPP and suggest that LPP may be a useful therapeutic substitute for direct BMP administration to treat IVD degeneration and to ameliorate IVD-associated chronic low back pain.

  3. Link Protein N-terminal Peptide Binds to Bone Morphogenetic Protein (BMP) Type II Receptor and Drives Matrix Protein Expression in Rabbit Intervertebral Disc Cells*

    PubMed Central

    Wang, Zili; Weitzmann, M. Neale; Sangadala, Sreedhara; Hutton, William C.; Yoon, S. Tim

    2013-01-01

    Intervertebral disc (IVD) degeneration and associated spinal disorders are leading sources of morbidity, and they can be responsible for chronic low back pain. Treatments for degenerative disc diseases continue to be a challenge. Intensive research is now focusing on promoting regeneration of degenerated discs by stimulating production of the disc matrix. Link protein N-terminal peptide (LPP) is a proteolytic fragment of link protein, an important cross-linker and stabilizer of the major structural components of cartilage, aggrecan and hyaluronan. In this study we investigated LPP action in rabbit primary intervertebral disc cells cultured ex vivo in a three-dimensional alginate matrix. Our data reveal that LPP promotes disc matrix production, which was evidenced by increased expression of the chondrocyte-specific transcription factor SOX9 and the extracellular matrix macromolecules aggrecan and collagen II. Using colocalization and pulldown studies we further document a noggin-insensitive direct peptide-protein association between LPP and BMP-RII. This association mediated Smad signaling that converges on BMP genes leading to expression of BMP-4 and BMP-7. Furthermore, through a cell-autonomous loop BMP-4 and BMP-7 intensified Smad1/5 signaling though a feedforward circuit involving BMP-RI, ultimately promoting expression of SOX9 and downstream aggrecan and collagen II genes. Our data define a complex regulatory signaling cascade initiated by LPP and suggest that LPP may be a useful therapeutic substitute for direct BMP administration to treat IVD degeneration and to ameliorate IVD-associated chronic low back pain. PMID:23940040

  4. Matrix metalloproteinase activity in urine of patients with renal cell carcinoma leads to degradation of extracellular matrix proteins: possible use as a screening assay.

    PubMed

    Sherief, Mahmoud H; Low, Seng Hui; Miura, Masumi; Kudo, Noriko; Novick, Andrew C; Weimbs, Thomas

    2003-04-01

    Localized renal cell carcinoma is usually curable by nephrectomy. However, a large fraction of patients already present with metastatic disease, which results in a poor outcome. Currently no clinically relevant screening assay is available to detect early stage renal cell carcinoma. We investigated whether urinary extracellular matrix (ECM) proteins and/or matrix metalloproteinase (MMP) activity may be valuable as a noninvasive indicator of early stage renal cell carcinoma. Urine specimens from preoperative patients with renal cell carcinoma and healthy controls were collected. The urinary excretion of the ECM proteins collagen IV, laminin and fibronectin was investigated by immunoblotting. MMP activity was assessed by gelatin zymography and by a fluorescence based microtiter plate activity assay. The full-length forms of all 3 ECM proteins investigated were significantly decreased or absent in renal cell carcinoma urine. Based on criteria established in this study this finding would lead to the correct detection of 95% of patients with renal cell carcinoma (21 of 22) with a false-positive rate of 4.5% (1 of 22 controls). All 11 nonmetastatic cases of the lowest clinical stage (T1N0M0) were correctly identified. The absence of urinary ECM proteins was due to significantly increased urinary MMP activity. Analysis of decreased urinary ECM proteins and analysis of increased MMP activity may have value for the development of a sensitive, high throughput molecular screening assay to detect early stage renal cell carcinoma.

  5. Evidence for Ubiquitin-Regulated Nuclear and Subnuclear Trafficking among Paramyxovirinae Matrix Proteins

    PubMed Central

    Pentecost, Mickey; Vashisht, Ajay A.; Beaty, Shannon M.; Park, Arnold; Wang, Yao E.; Yun, Tatyana E; Freiberg, Alexander N.; Wohlschlegel, James A.; Lee, Benhur

    2015-01-01

    The paramyxovirus matrix (M) protein is a molecular scaffold required for viral morphogenesis and budding at the plasma membrane. Transient nuclear residence of some M proteins hints at non-structural roles. However, little is known regarding the mechanisms that regulate the nuclear sojourn. Previously, we found that the nuclear-cytoplasmic trafficking of Nipah virus M (NiV-M) is a prerequisite for budding, and is regulated by a bipartite nuclear localization signal (NLSbp), a leucine-rich nuclear export signal (NES), and monoubiquitination of the K258 residue within the NLSbp itself (NLSbp-lysine). To define whether the sequence determinants of nuclear trafficking identified in NiV-M are common among other Paramyxovirinae M proteins, we generated the homologous NES and NLSbp-lysine mutations in M proteins from the five major Paramyxovirinae genera. Using quantitative 3D confocal microscopy, we determined that the NES and NLSbp-lysine are required for the efficient nuclear export of the M proteins of Nipah virus, Hendra virus, Sendai virus, and Mumps virus. Pharmacological depletion of free ubiquitin or mutation of the conserved NLSbp-lysine to an arginine, which inhibits M ubiquitination, also results in nuclear and nucleolar retention of these M proteins. Recombinant Sendai virus (rSeV-eGFP) bearing the NES or NLSbp-lysine M mutants rescued at similar efficiencies to wild type. However, foci of cells expressing the M mutants displayed marked fusogenicity in contrast to wild type, and infection did not spread. Recombinant Mumps virus (rMuV-eGFP) bearing the homologous mutations showed similar defects in viral morphogenesis. Finally, shotgun proteomics experiments indicated that the interactomes of Paramyxovirinae M proteins are significantly enriched for components of the nuclear pore complex, nuclear transport receptors, and nucleolar proteins. We then synthesize our functional and proteomics data to propose a working model for the ubiquitin-regulated nuclear

  6. A Novel Acidic Matrix Protein, PfN44, Stabilizes Magnesium Calcite to Inhibit the Crystallization of Aragonite*

    PubMed Central

    Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2014-01-01

    Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium. PMID:24302723

  7. A novel acidic matrix protein, PfN44, stabilizes magnesium calcite to inhibit the crystallization of aragonite.

    PubMed

    Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing

    2014-01-31

    Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium.

  8. In-gel expression and in situ immobilization of proteins for generation of three dimensional protein arrays in a hydrogel matrix.

    PubMed

    Byun, Ju-Young; Lee, Kyung-Ho; Lee, Ka-Young; Kim, Min-Gon; Kim, Dong-Myung

    2013-03-07

    A method has been developed for the direct conversion of DNA arrays into three dimensional protein arrays on a hydrogel matrix. An agarose gel embedded with bacterial protein synthesis machinery was used as the DNA-programmable expression gel matrix for the in situ translation of genes on a DNA array. Upon incubation of the expression gel matrix cast on a DNA array, protein synthesis took place at the interface of the two surfaces and the cell-free synthesized proteins were deposited on the gel matrix surrounding the corresponding DNA spots. Diffusional dilution of the expressed proteins was minimized by modifying the agarose with Ni-NTA moieties. This procedure resulted in the generation of localized protein spots with confined radii. The developed approach not only simplifies the procedures typically used for the preparation of protein arrays but it also provides conditions for the loading of higher amounts of proteins on the array while retaining their structural integrity and functionality over extended time periods.

  9. Matrix Gla protein deficiency impairs nasal septum growth, causing midface hypoplasia.

    PubMed

    Marulanda, Juliana; Eimar, Hazem; McKee, Marc D; Berkvens, Michelle; Nelea, Valentin; Roman, Hassem; Borrás, Teresa; Tamimi, Faleh; Ferron, Mathieu; Murshed, Monzur

    2017-07-07

    Genetic and environmental factors may lead to abnormal growth of the orofacial skeleton, affecting the overall structure of the face. In this study, we investigated the craniofacial abnormalities in a mouse model for Keutel syndrome, a rare genetic disease caused by loss-of-function mutations in the matrix Gla protein (MGP) gene. Keutel syndrome patients show diffuse ectopic calcification of cartilaginous tissues and impaired midface development. Our comparative cephalometric analyses of micro-computed tomography images revealed a severe midface hypoplasia in Mgp(-/-) mice. In vivo reporter studies demonstrated that the Mgp promoter is highly active at the cranial sutures, cranial base synchondroses, and nasal septum. Interestingly, the cranial sutures of the mutant mice showed normal anatomical features. Although we observed a mild increase in mineralization of the spheno-occipital synchondrosis, it did not reduce the relative length of the cranial base in comparison with total skull length. Contrary to this, we found the nasal septum to be abnormally mineralized and shortened in Mgp(-/-) mice. Transgenic restoration of Mgp expression in chondrocytes fully corrected the craniofacial anomalies caused by MGP deficiency, suggesting a local role for MGP in the developing nasal septum. Although there was no up-regulation of markers for hypertrophic chondrocytes, a TUNEL assay showed a marked increase in apoptotic chondrocytes in the calcified nasal septum. Transmission electron microscopy confirmed unusual mineral deposits in the septal extracellular matrix of the mutant mice. Of note, the systemic reduction of the inorganic phosphate level was sufficient to prevent abnormal mineralization of the nasal septum in Mgp(-/-);Hyp compound mutants. Our work provides evidence that modulation of local and systemic factors regulating extracellular matrix mineralization can be possible therapeutic strategies to prevent ectopic cartilage calcification and some forms of congenital

  10. Protein functional properties prediction in sparsely-label PPI networks through regularized non-negative matrix factorization

    PubMed Central

    2015-01-01

    Background Predicting functional properties of proteins in protein-protein interaction (PPI) networks presents a challenging problem and has important implication in computational biology. Collective classification (CC) that utilizes both attribute features and relational information to jointly classify related proteins in PPI networks has been shown to be a powerful computational method for this problem setting. Enabling CC usually increases accuracy when given a fully-labeled PPI network with a large amount of labeled data. However, such labels can be difficult to obtain in many real-world PPI networks in which there are usually only a limited number of labeled proteins and there are a large amount of unlabeled proteins. In this case, most of the unlabeled proteins may not connected to the labeled ones, the supervision knowledge cannot be obtained effectively from local network connections. As a consequence, learning a CC model in sparsely-labeled PPI networks can lead to poor performance. Results We investigate a latent graph approach for finding an integration latent graph by exploiting various latent linkages and judiciously integrate the investigated linkages to link (separate) the proteins with similar (different) functions. We develop a regularized non-negative matrix factorization (RNMF) algorithm for CC to make protein functional properties prediction by utilizing various data sources that are available in this problem setting, including attribute features, latent graph, and unlabeled data information. In RNMF, a label matrix factorization term and a network regularization term are incorporated into the non-negative matrix factorization (NMF) objective function to seek a matrix factorization that respects the network structure and label information for classification prediction. Conclusion Experimental results on KDD Cup tasks predicting the localization and functions of proteins to yeast genes demonstrate the effectiveness of the proposed RNMF method for

  11. Nell1-deficient mice have reduced expression of extracellular matrix proteins causing cranial and vertebral defects

    SciTech Connect

    Desai, Jayashree; Shannon, Mark E.; Johnson, Mahlon D.; Ruff, David W.; Hughes, Lori A; Kerley, Marilyn K; Carpenter, D A; Johnson, Dabney K; Rinchik, Eugene M.; Culiat, Cymbeline T

    2006-01-01

    The mammalian Nell1 gene encodes a protein kinase C-b1 (PKC-b1) binding protein that belongs to a new class of cell-signaling molecules controlling cell growth and differentiation. Over-expression of Nell1 in the developing cranial sutures in both human and mouse induces craniosynostosis, the premature fusion of the growing cranial bone fronts. Here, we report the generation, positional cloning and characterization of Nell16R, a recessive, neonatal-lethal point mutation in the mouse Nell1 gene, induced by N-ethyl-N-nitrosourea. Nell16R has a T!A base change that converts a codon for cysteine into a premature stop codon [Cys(502)Ter], resulting in severe truncation of the predicted protein product and marked reduction in steady-state levels of the transcript. In addition to the expected alteration of cranial morphology, Nell16R mutants manifest skeletal defects in the vertebral column and ribcage, revealing a hitherto undefined role for Nell1 in signal transduction in endochondral ossification. Real-time quantitative reverse transcription-PCR assays of 219 genes showed an association between the loss of Nell1 function and reduced expression of genes for extracellular matrix (ECM) proteins critical for chondrogenesis and osteogenesis. Several affected genes are involved in the human cartilage disorder Ehlers-Danlos Syndrome and other disorders associated with spinal curvature anomalies. Nell16R mutant mice are a new tool for elucidating basic mechanisms in osteoblast and chrondrocyte differentiation in the developing skull and vertebral column and understanding how perturbations in the production of ECM proteins can lead to anomalies in these structures.

  12. Critical roles for WDR72 in calcium transport and matrix protein removal during enamel maturation

    PubMed Central

    Wang, Shih-Kai; Hu, Yuanyuan; Yang, Jie; Smith, Charles E; Nunez, Stephanie M; Richardson, Amelia S; Pal, Soumya; Samann, Andrew C; Hu, Jan C-C; Simmer, James P

    2015-01-01

    Defects in WDR72 (WD repeat-containing protein 72) cause autosomal recessive hypomaturation amelogenesis imperfecta. We generated and characterized Wdr72-knockout/lacZ-knockin mice to investigate the role of WDR72 in enamel formation. In all analyses, enamel formed by Wdr72 heterozygous mice was indistinguishable from wild-type enamel. Without WDR72, enamel mineral density increased early during the maturation stage but soon arrested. The null enamel layer was only a tenth as hard as wild-type enamel and underwent rapid attrition following eruption. Despite the failure to further mineralize enamel deposited during the secretory stage, ectopic mineral formed on the enamel surface and penetrated into the overlying soft tissue. While the proteins in the enamel matrix were successfully degraded, the digestion products remained inside the enamel. Interactome analysis of WDR72 protein revealed potential interactions with clathrin-associated proteins and involvement in ameloblastic endocytosis. The maturation stage mandibular incisor enamel did not stain with methyl red, indicating that the enamel did not acidify beneath ruffle-ended ameloblasts. Attachment of maturation ameloblasts to the enamel layer was weakened, and SLC24A4, a critical ameloblast calcium transporter, did not localize appropriately along the ameloblast distal membrane. Fewer blood vessels were observed in the papillary layer supporting ameloblasts. Specific WDR72 expression by maturation stage ameloblasts explained the observation that enamel thickness and rod decussation (established during the secretory stage) are normal in the Wdr72 null mice. We conclude that WDR72 serves critical functions specifically during the maturation stage of amelogenesis and is required for both protein removal and enamel mineralization. PMID:26247047

  13. Collagenase treatment enhances proteomic coverage of low-abundance proteins in decellularized matrix bioscaffolds.

    PubMed

    Kuljanin, Miljan; Brown, Cody F C; Raleigh, Matthew J; Lajoie, Gilles A; Flynn, Lauren E

    2017-11-01

    There is great interest in the application of advanced proteomic techniques to characterize decellularized tissues in order to develop a deeper understanding of the effects of the complex extracellular matrix (ECM) composition on the cellular response to these pro-regenerative bioscaffolds. However, the identification of proteins in ECM-derived bioscaffolds is hindered by the high abundance of collagen in the samples, which can interfere with the detection of lower-abundance constituents that may be important regulators of cell function. To address this limitation, we developed a novel multi-enzyme digestion approach using treatment with a highly-purified collagenase derived from Clostridium Histolyticum to selectively deplete collagen from ECM-derived protein extracts, reducing its relative abundance from up to 90% to below 10%. Moreover, we applied this new method to characterize the proteome of human decellularized adipose tissue (DAT), human decellularized cancellous bone (DCB), and commercially-available bovine tendon collagen (BTC). We successfully demonstrated with all three sources that collagenase treatment increased the depth of detection and enabled the identification of a variety of signaling proteins that were masked by collagen in standard digestion protocols with trypsin/LysC, increasing the number of proteins identified in the DAT by ∼2.2 fold, the DCB by ∼1.3 fold, and the BTC by ∼1.6 fold. In addition, quantitative proteomics using label-free quantification demonstrated that the DAT and DCB extracts were compositionally distinct, and identified a number of adipogenic and osteogenic proteins that were consistently more highly expressed in the DAT and DCB respectively. Overall, we have developed a new processing method that may be applied in advanced mass spectrometry studies to improve the high-throughput proteomic characterization of bioscaffolds derived from mammalian tissues. Further, our study provides new insight into the complex ECM

  14. Humoral and cellular immune responses to matrix protein of measles virus in subacute sclerosing panencephalitis.

    PubMed Central

    Dhib-Jalbut, S; McFarland, H F; Mingioli, E S; Sever, J L; McFarlin, D E

    1988-01-01

    The immune response to matrix (M) protein of measles virus was examined in patients with subacute sclerosing panencephalitis (SSPE) and controls. Antibodies specific for M and nucleocapsid (NC) proteins in 11 serum and 8 cerebrospinal fluid (CSF) samples from patients with SSPE were quantitated by enzyme-linked immunosorbent assay by using affinity-purified measles virus proteins. Geometric mean anti-NC antibody titers were higher in the serum (6.58 +/- 0.98 [mean +/- standard deviation]) and CSF (4.38 +/- 0.74) of SSPE patients compared with controls. Anti-M antibodies were present in the serum and CSF of all SSPE samples tested but in titers lower than those of anti-NC antibodies. Geometric mean anti-M antibody titer was 3.35 +/- 0.53 in sera from patients with SSPE compared with 3.05 +/- 0.66 in sera from patients with other neurological diseases and 3.12 +/- 0.74 in sera from healthy individuals. Geometric mean anti-M antibody titer was 2.59 +/- 0.86 in the CSF of eight patients with SSPE compared with a mean less than 1.00 for patients with other neurological disease (controls). Intrathecal synthesis of anti-M or anti-NC antibodies was established in four patients with SSPE. The cellular immune responses to M, F, HA, and NC proteins were examined in four of the patients with SSPE by lymphoproliferation and were not significantly different from those in five healthy controls. The results demonstrate humoral and cellular immune responses to M protein in patients with SSPE and indicate that it is unlikely that a defect in the immune response to this virus component accounts for the disease process in the patients studied. Images PMID:3373575

  15. Products of dentin matrix protein-1 degradation by interleukin-1β-induced matrix metalloproteinase-3 promote proliferation of odontoblastic cells.

    PubMed

    Hase, Naoko; Ozeki, Nobuaki; Hiyama, Taiki; Yamaguchi, Hideyuki; Kawai, Rie; Kondo, Ayami; Nakata, Kazuhiko; Mogi, Makio

    2015-08-01

    We have previously reported that interleukin (IL)-1β induces matrix metalloproteinase (MMP)-3-regulated cell proliferation in mouse embryonic stem cell (ESC)-derived odontoblast-like cells, suggesting that MMP-3 plays a potentially unique physiological role in regeneration by odontoblast-like cells. MMPs are able to process virtually any component of the extracellular matrix, including collagen, laminin and bioactive molecules. Because odontoblasts produce dentin matrix protein-1 (DMP-1), we examined whether the degraded products of DMP-1 by MMP-3 contribute to enhanced proliferation in odontoblast-like cells. IL-1β increased mRNA and protein levels of odontoblastic marker proteins, including DMP-1, but not osteoblastic marker proteins, such as osteocalcin and osteopontin. The recombinant active form of MMP-3 could degrade DMP-1 protein but not osteocalcin and osteopontin in vitro. The exogenous degraded products of DMP-1 by MMP-3 resulted in increased proliferation of odontoblast-like cells in a dose-dependent manner. Treatment with a polyclonal antibody against DMP-1 suppressed IL-1β-induced cell proliferation to a basal level, but identical treatment had no effect on the IL-1β-induced increase in MMP-3 expression and activity. Treatment with siRNA against MMP-3 potently suppressed the IL-1β-induced increase in DMP-1 expression and suppressed cell proliferation (p < 0.05). Similarly, treatment with siRNAs against Wnt5a and Wnt5b suppressed the IL-1β-induced increase in DMP-1 expression and suppressed cell proliferation (p < 0.05). Rat KN-3 cells, representative of authentic odontoblasts, showed similar responses to the odontoblast-like cells. Taken together, our current study demonstrates the sequential involvement of Wnt5, MMP-3, DMP-1 expression, and DMP-1 degradation products by MMP-3, in effecting IL-1β-induced proliferation of ESC-derived odontoblast-like cells.

  16. Copper quantum clusters in protein matrix: potential sensor of Pb2+ ion.

    PubMed

    Goswami, Nirmal; Giri, Anupam; Bootharaju, M S; Xavier, Paulrajpillai Lourdu; Pradeep, Thalappil; Pal, Samir Kumar

    2011-12-15

    A one-pot synthesis of extremely stable, water-soluble Cu quantum clusters (QCs) capped with a model protein, bovine serum albumin (BSA), is reported. From matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, we assign the clusters to be composed of Cu(5) and Cu(13) cores. The QCs also show luminescence properties having excitation and emission maxima at 325 and 410 nm, respectively, with a quantum yield of 0.15, which are found to be different from that of protein alone in similar experimental conditions. The quenching of luminescence of the protein-capped Cu QCs in the presence of very low hydrogen peroxide concentration (approximately nanomolar, or less than part-per-billion) reflects the efficacy of the QCs as a potential sensing material in biological environments. Moreover, as-prepared Cu QCs can detect highly toxic Pb(2+) ions in water, even at the part-per-million level, without suffering any interference from other metal ions.

  17. Mechanical Stimulation of Piezo1 Receptors Depends on Extracellular Matrix Proteins and Directionality of Force.

    PubMed

    Gaub, Benjamin M; Müller, Daniel J

    2017-02-08

    Piezo receptors convert mechanical forces into electrical signals. In mammals, they play important roles in basic physiological functions including proprioception, sensation of touch, and vascular development. However, basic receptor properties like the gating mechanism, the interaction with extracellular matrix (ECM) proteins, and the response to mechanical stimulation, remain poorly understood. Here, we establish an atomic force microscopy (AFM)-based assay to mechanically stimulate Piezo1 receptors in living animal cells, while monitoring receptor activation in real-time using functional calcium imaging. Our experiments show that in the absence of ECM proteins Piezo1 receptors are relatively insensitive to mechanical forces pushing the cellular membrane, whereas they can hardly be activated by mechanically pulling the membrane. Yet, if conjugated with Matrigel, a mix of ECM proteins, the receptors become sensitized. Thereby, forces pulling the cellular membrane activate the receptor much more efficiently compared to pushing forces. Finally, we found that collagen IV, a component of the basal lamina, which forms a cohesive network and mechanical connection between cells, sensitizes Piezo1 receptors to mechanical pulling.

  18. Molecular dynamics analysis of HIV-1 matrix protein: clarifying differences between crystallographic and solution structures.

    PubMed

    Verli, Hugo; Calazans, Alexandre; Brindeiro, Rodrigo; Tanuri, Amilcar; Guimarães, Jorge A

    2007-07-01

    One of the main structural features of the mature HIV-1 virion is the matrix protein (p17). This partially globular protein presents four helixes centrally organized and a fifth one, H5, projecting away from the packed bundle of helixes. Comparison between solution and crystallographic data of p17 indicates a 6 A displacement of a short 3(10) helix and a partial unfolding of H5 in solution related to crystal. While the behavior of the 3(10) helix has been previously addressed to virion assembly, the relevance and origin of H5 partial unfolding is possibly related to the contacts between p17 and other viral elements, such as p24. In this context, we present a 40 ns conformational sampling of monomeric p17 using molecular dynamics simulations. The performed simulations presented a progressive conversion of the p17 crystallographic structure to the NMR conformation, suggesting that the biological form of this protein may have its C-terminal portion partially unfolded.

  19. The neuronal extracellular matrix restricts distribution and internalization of aggregated Tau-protein.

    PubMed

    Suttkus, A; Holzer, M; Morawski, M; Arendt, T

    2016-01-28

    Alzheimer's disease (AD) is a chronic degenerative disorder characterized by fibrillary aggregates of Aß and Tau-protein. Formation and progression of these pathological hallmarks throughout the brain follow a specific spatio-temporal pattern which provides the basis for neuropathological staging. Previously, we could demonstrate that cortical and subcortical neurons are less frequently affected by neurofibrillary degeneration if they are enwrapped by a specialized form of the hyaluronan-based extracellular matrix (ECM), the so called 'perineuronal net' (PN). PNs are composed of large aggregating chondroitin sulfate proteoglycans connected to a hyaluronan backbone, stabilized by link proteins and cross-linked via tenascin-R. Recently, PN-associated neurons were shown to be better protected against iron-induced neurodegeneration compared to neurons without PN, indicating a neuroprotective function. Here, we investigated the role of PNs in distribution and internalization of exogenous Tau-protein by using organotypic slice cultures of wildtype mice as well as mice lacking the ECM-components aggrecan, HAPLN1 or tenascin-R. We could demonstrate that PNs restrict both distribution and internalization of Tau. Accordingly, PN-ensheathed neurons were less frequently affected by Tau-internalization, than neurons without PN. Finally, the PNs as well as their three investigated components were shown to modulate the processes of distribution as well as internalization of Tau.

  20. NOTCH1 regulates matrix gla protein and calcification gene networks in human valve endothelium.

    PubMed

    White, Mark P; Theodoris, Christina V; Liu, Lei; Collins, William J; Blue, Kathleen W; Lee, Joon Ho; Meng, Xianzhong; Robbins, Robert C; Ivey, Kathryn N; Srivastava, Deepak

    2015-07-01

    Valvular and vascular calcification are common causes of cardiovascular morbidity and mortality. Developing effective treatments requires understanding the molecular underpinnings of these processes. Shear stress is thought to play a role in inhibiting calcification. Furthermore, NOTCH1 regulates vascular and valvular endothelium, and human mutations in NOTCH1 can cause calcific aortic valve disease. Here, we determined the genome-wide impact of altering shear stress and NOTCH signaling on human aortic valve endothelium. mRNA-sequencing of primary human aortic valve endothelial cells (HAVECs) with or without knockdown of NOTCH1, in the presence or absence of shear stress, revealed NOTCH1-dependency of the atherosclerosis-related gene connexin 40 (GJA5), and numerous repressors of endochondral ossification. Among these, matrix gla protein (MGP) is highly expressed in aortic valve and vasculature, and inhibits soft tissue calcification by sequestering bone morphogenetic proteins (BMPs). Altering NOTCH1 levels affected MGP mRNA and protein in HAVECs. Furthermore, shear stress activated NOTCH signaling and MGP in a NOTCH1-dependent manner. NOTCH1 positively regulated endothelial MGP in vivo through specific binding motifs upstream of MGP. Our studies suggest that shear stress activates NOTCH1 in primary human aortic valve endothelial cells leading to downregulation of osteoblast-like gene networks that play a role in tissue calcification.

  1. Structure and function of matrix proteins and peptides in the biomineral formation in crustaceans.

    PubMed

    Nagasawa, Hiromichi

    2011-01-01

    Crustaceans have hard cuticle with layered structure, which is composed mainly of chitin, proteins, and calcium carbonate. Crustaceans grow by shedding the old cuticle and replacing it with a new one. Decalcification in the cuticle during the pre-molt stage and concomitant calcification in the stomach to form gastroliths observed in some crustacean species are triggered by the molting hormone. Various proteins and peptides have been identified from calcified cuticle and gastroliths, and their functions have been examined in terms of calcification and interaction with chitin. Acidic nature of matrix proteins is important for recruitment of calcium ions and interaction with calcium carbonate. Examination of the relationship between amino acid sequence containing acidic amino acid residues and calcification inhibitory activity revealed that the potency did not depend on the sequence but on the number of acidic amino acid residues. Calcium carbonate in the calcified tissues of crustaceans is amorphous in many cases. Crustaceans take a strategy to induce and maintain amorphous calcium carbonate by using low-molecular-weight phosphorus compounds.

  2. The Ebola virus matrix protein VP40 selectively induces vesiculation from phosphatidylserine-enriched membranes.

    PubMed

    Soni, Smita P; Stahelin, Robert V

    2014-11-28

    Ebola virus is from the Filoviridae family of viruses and is one of the most virulent pathogens known with ∼ 60% clinical fatality. The Ebola virus negative sense RNA genome encodes seven proteins including viral matrix protein 40 (VP40), which is the most abundant protein found in the virions. Within infected cells VP40 localizes at the inner leaflet of the plasma membrane (PM), binds lipids, and regulates formation of new virus particles. Expression of VP40 in mammalian cells is sufficient to form virus-like particles that are nearly indistinguishable from the authentic virions. However, how VP40 interacts with the PM and forms virus-like particles is for the most part unknown. To investigate VP40 lipid specificity in a model of viral egress we employed giant unilamellar vesicles with different lipid compositions. The results demonstrate VP40 selectively induces vesiculation from membranes containing phosphatidylserine (PS) at concentrations of PS that are representative of the PM inner leaflet content. The formation of intraluminal vesicles was not significantly detected in the presence of other important PM lipids including cholesterol and polyvalent phosphoinositides, further demonstrating PS selectivity. Taken together, these studies suggest that PM phosphatidylserine may be an important component of Ebola virus budding and that VP40 may be able to mediate PM scission.

  3. Molecular evolution of viral fusion and matrix protein genes and phylogenetic relationships among the Paramyxoviridae.

    PubMed

    Westover, K M; Hughes, A L

    2001-10-01

    Phylogenetic relationships among the Paramyxoviridae, a broad family of viruses whose members cause devastating diseases of wildlife, livestock, and humans, were examined with both fusion (F) and matrix (M) protein-coding sequences. Neighbor-joining trees of F and M protein sequences showed that the Paramyxoviridae was divided into the two traditionally recognized subfamilies, the Paramyxovirinae and the Pneumovirinae. Within the Paramyxovirinae, the results also showed groups corresponding to three currently recognized genera: Respirovirus, Morbillivirus, and Rubulavirus. The relationships among the three genera of the Paramyxovirinae were resolved with M protein sequences and there was significant bootstrap support (100%) showing that members of the genus Respirovirus and the genus Morbillivirus were more closely related to each other than to members of the genus Rubulavirus. Both F and M phylogenies showed that Newcastle disease virus (NDV) was more closely related to the genus Rubulavirus than to the other two genera but were consistent with the proposal (B. S. Seal et al., 2000, Virus Res. 66, 1-11) that NDV be classified as a separate genus within the Paramyxovirinae. Both F and M phylogenies were also consistent with the proposal (L. Wang et al., 2000, J. Virol 74, 9972-9979) that Hendra virus be classified as a new genus closely related and basal to the genus Morbillivirus. Rinderpest was most closely related to measles and a more derived virus than to canine distemper virus, phocine distemper virus, or dolphin morbillivirus.

  4. Role of the Vibrio cholerae Matrix Protein Bap1 in Cross-Resistance to Antimicrobial Peptides

    PubMed Central

    Duperthuy, Marylise; Sjöström, Annika E.; Sabharwal, Dharmesh; Damghani, Fatemeh; Uhlin, Bernt Eric; Wai, Sun Nyunt

    2013-01-01

    Outer membrane vesicles (OMVs) that are released from Gram-negative pathogenic bacteria can serve as vehicles for the translocation of effectors involved in infectious processes. In this study we have investigated the role of OMVs of the Vibrio cholerae O1 El Tor A1552 strain in resistance to antimicrobial peptides (AMPs). To assess this potential role, we grew V. cholerae with sub-lethal concentrations of Polymyxin B (PmB) or the AMP LL-37 and analyzed the OMVs produced and their effects on AMP resistance. Our results show that growing V. cholerae in the presence of AMPs modifies the protein content of the OMVs. In the presence of PmB, bacteria release OMVs that are larger in size and contain a biofilm-associated extracellular matrix protein (Bap1). We demonstrated that Bap1 binds to the OmpT porin on the OMVs through the LDV domain of OmpT. In addition, OMVs from cultures incubated in presence of PmB also provide better protection for V. cholerae against LL-37 compared to OMVs from V. cholerae cultures grown without AMPs or in presence of LL-37. Using a bap1 mutant we showed that cross-resistance between PmB and LL-37 involved the Bap1 protein, whereby Bap1 on OMVs traps LL-37 with no subsequent degradation of the AMP. PMID:24098113

  5. The association of matrix Gla protein isomers with calcification in capsules surrounding silicone breast implants.

    PubMed

    Hunter, Larry W; Lieske, John C; Tran, Nho V; Miller, Virginia M

    2011-11-01

    Implanted silicone medical prostheses induce a dynamic sequence of histologic events in adjacent tissue resulting in the formation of a fibrotic peri-prosthetic capsule. In some cases, capsular calcification occurs, requiring surgical intervention. In this study we investigated capsules from silicone gel-filled breast prostheses to test the hypothesis that this calcification might be regulated by the small vitamin K-dependent protein, matrix Gla protein (MGP), a potent inhibitor of arterial calcification, or by Fetuin-A, a hepatocyte-derived glycoprotein also implicated as a regulator of pathologic calcification. Immunolocalization studies of explanted capsular tissue, using conformation-specific antibodies, identified the mineralization-protective γ-carboxylated MGP isomer (cMGP) within cells of uncalcified capsules, whereas the non-functional undercarboxylated isomer (uMGP) was typically absent. Both were upregulated in calcific capsules and co-localized with mineral plaque and adjacent fibers. Synovial-like metaplasia was present in one uncalcified capsule in which MGP species were differentially localized within the pseudosynovium. Fetuin-A was localized to cells within uncalcified capsules and to mineral deposits within calcific capsules. The osteoinductive cytokine bone morphogenic protein-2 localized to collagen fibers in uncalcified capsules. These findings demonstrate that MGP, in its vitamin K-activated conformer, may represent a pharmacological target to sustain the health of the peri-prosthetic tissue which encapsulates silicone breast implants as well as other implanted silicone medical devices.

  6. Interactions of promonocytic U937 cells with proteins of the extracellular matrix.

    PubMed Central

    Pucillo, C E; Colombatti, A; Vitale, M; Salzano, S; Rossi, G; Formisano, S

    1993-01-01

    Monocyte interaction with proteins of the extracellular matrix (ECM) is regulated by expression of specific cell-surface receptors. 12-O-tetradecanoyl phorbol-13-acetate (TPA) has been shown to induce the promonocytic cell line U937 to a more differentiated monocyte-like state. In this study we have analysed the attachment of U937 cells to ECM proteins and the effects of treatment with TPA on this process. Non-induced U937 cells attach to fibronectin- and Matrigel-coated surfaces without TPA stimulation, but TPA further increases adherence to these substrates as measured by an enhanced binding and by the lower concentration of proteins needed in the substrate to achieve 50% of maximal cell adhesion. Attachment to type I collagen was seen only with activated U937 cells, whereas no measurable attachment to bovine serum albumin, vitronectin, and type IV collagen was detected. TPA-activated U937 cells showed a two-fold increase in the expression of the RGD-dependent integrin receptors alpha 3 and alpha 5, and a reduction in the expression of alpha 4, another fibronectin-specific receptor, whereas the common beta 1 chain was unchanged. Attachment of U937 cells to fibronectin was primarily mediated by the alpha 3 and alpha 5 integrins, as revealed by the ability of GRGDS peptides to inhibit attachment, whereas the CS-1 peptide, containing the alpha 4 binding site, was largely ineffective in blocking attachment. PMID:8262552

  7. Effects of enamel matrix proteins on multi-lineage differentiation of periodontal ligament cells in vitro.

    PubMed

    Amin, Harsh D; Olsen, Irwin; Knowles, Jonathan C; Dard, Michel; Donos, Nikolaos

    2013-01-01

    The adult periodontal ligament (PDL) is considered to contain progenitor cells that are involved in the healing of periodontal wounds. Treatment with enamel matrix derivative (EMD), a heat-treated preparation derived from enamel matrix proteins (EMPs), has been shown to be of some clinical benefit in eliciting periodontal regeneration in vivo. Although there is extensive information available about the effects of EMD on periodontal regeneration, the precise influence of this material on alveolar bone and the formation of blood vessels and proprioceptive sensory nerves, prominent features of functionally active periodontal tissue, remain unclear. The aim of the present study was therefore to examine the effects of EMD on the ability of human periodontal ligament cells (HPCs) to undergo multi-lineage differentiation in vitro. Our results showed that HPCs treated with EMD under non-selective growth conditions did not show any evidence of osteogenic, adipogenic, chondrogenic, neovasculogenic, neurogenic and gliogenic "terminal" differentiation. In contrast, under selective lineage-specific culture conditions, EMD up-regulated osteogenic, chondrogenic and neovasculogenic genes and "terminal" differentiation, but suppressed adipogenesis, neurogenesis and gliogenesis. These findings thus demonstrate for the first time that EMD can differentially modulate the multi-lineage differentiation of HPCs in vitro.

  8. Atxn1 protein family and Cic regulate extracellular matrix remodeling and lung alveolarization

    PubMed Central

    Lee, Yoontae; Fryer, John D.; Kang, Hyojin; Crespo-Barreto, Juan; Bowman, Aaron B.; Gao, Yan; Kahle, Juliette J.; Hong, Jeong Soo; Kheradmand, Farrah; Orr, Harry T.; Finegold, Milton J.; Zoghbi, Huda Y.

    2011-01-01

    Summary Although expansion of CAG repeats in ATAXIN1 (ATXN1) causes Spinocerebellar ataxia type 1, the functions of ATXN1 and ATAXIN1-Like (ATXN1L) remain poorly understood. To investigate the function of these proteins, we generated and characterized Atxn1L−/− and Atxn1−/−; Atxn1L−/− mice. Atxn1L−/− mice have hydrocephalus, omphalocoele and lung alveolarization defects. These phenotypes are more penetrant and severe in Atxn1−/−; Atxn1L−/− mice, suggesting that Atxn1 and Atxn1L are functionally redundant. Upon pursuing the molecular mechanism, we discovered that several Matrix metalloproteinase (Mmp) genes are overexpressed and that the transcriptional repressor Capicua (Cic) is destabilized in Atxn1L−/− lungs. Consistent with this, Cic deficiency causes lung alveolarization defect. Loss of either Atxn1L or Cic derepresses Etv4, an activator for Mmp genes, thereby mediating Mmp9 overexpression. These findings demonstrate a critical role of ATXN1/ATXN1L-CIC complexes in extracellular matrix (ECM) remodeling during development and their potential roles in pathogenesis of disorders affecting ECM remodeling. PMID:22014525

  9. Mechanical and failure properties of extracellular matrix sheets as a function of structural protein composition.

    PubMed

    Black, Lauren D; Allen, Philip G; Morris, Shirley M; Stone, Phillip J; Suki, Béla

    2008-03-01

    The goal of this study was to determine how alterations in protein composition of the extracellular matrix (ECM) affect its functional properties. To achieve this, we investigated the changes in the mechanical and failure properties of ECM sheets generated by neonatal rat aortic smooth muscle cells engineered to contain varying amounts of collagen and elastin. Samples underwent static and dynamic mechanical measurements before, during, and after 30 min of elastase digestion followed by a failure test. Microscopic imaging was used to measure thickness at two strain levels to estimate the true stress and moduli in the ECM sheets. We found that adding collagen to the ECM increased the stiffness. However, further increasing collagen content altered matrix organization with a subsequent decrease in the failure strain. We also introduced collagen-related percolation in a nonlinear elastic network model to interpret these results. Additionally, linear elastic moduli correlated with failure stress which may allow the in vivo estimation of the stress tolerance of ECM. We conclude that, in engineered replacement tissues, there is a tradeoff between improved mechanical properties and decreased extensibility, which can impact their effectiveness and how well they match the mechanical properties of native tissue.

  10. Matrix metalloproteinases and protein tyrosine kinases: potential novel targets in acute lung injury and ARDS.

    PubMed

    Aschner, Yael; Zemans, Rachel L; Yamashita, Cory M; Downey, Gregory P

    2014-10-01

    Acute lung injury (ALI) and ARDS fall within a spectrum of pulmonary disease that is characterized by hypoxemia, noncardiogenic pulmonary edema, and dysregulated and excessive inflammation. While mortality rates have improved with the advent of specialized ICUs and lung protective mechanical ventilation strategies, few other therapies have proven effective in the management of ARDS, which remains a significant clinical problem. Further development of biomarkers of disease severity, response to therapy, and prognosis is urgently needed. Several novel pathways have been identified and studied with respect to the pathogenesis of ALI and ARDS that show promise in bridging some of these gaps. This review will focus on the roles of matrix metalloproteinases and protein tyrosine kinases in the pathobiology of ALI in humans, and in animal models and in vitro studies. These molecules can act independently, as well as coordinately, in a feed-forward manner via activation of tyrosine kinase-regulated pathways that are pivotal in the development of ARDS. Specific signaling events involving proteolytic processing by matrix metalloproteinases that contribute to ALI, including cytokine and chemokine activation and release, neutrophil recruitment, transmigration and activation, and disruption of the intact alveolar-capillary barrier, will be explored in the context of these novel molecular pathways.

  11. Expression of bone extracellular matrix proteins on osteoblast cells in the presence of mineral trioxide.

    PubMed

    Tani-Ishii, Nobuyuki; Hamada, Nobushiro; Watanabe, Kiyoko; Tujimoto, Yasuhisa; Teranaka, Toshio; Umemoto, Toshio

    2007-07-01

    The biocompatibility of periapical tissue with mineral trioxide aggregate (MTA) affects its ability to repair and regenerate itself. Here we report the cytotoxicity of MTA and how it affects the expression of bone extracellular matrix protein in MC3T3-E1 osteoblast cells. We quantified the cytotoxicity of MTA, amalgam, and Dycal (Dentsply/Caulk, Milford, DE) on MC3T3-E1 cells by measuring the ability of cells to cleave a tetrazolium salt to produce formazan dye during a period of 24, 48, or 96 hours. We used reverse-transcriptase polymerase chain reaction with primer sets for type I collagen, osteocalcin, and bone sialoprotein to measure the gene-expression response of MC3T3-E1 cells treated with MTA. MTA, amalgam, and Dycal were less toxic after 48 hours. MC3T3-E1 cell growth with MTA and Dycal was greater than nonstimulated controls. MTA caused an upregulation of type I collagen and osteocalcin messenger RNA expression after 24 hours. These results showed that, in the presence of MTA, cells grow faster and produce more mineralized matrix gene expression in osteoblasts.

  12. In vivo evaluation of matrix metalloproteinase responsive silk-elastinlike protein polymers for cancer gene therapy.

    PubMed

    Price, Robert; Poursaid, Azadeh; Cappello, Joseph; Ghandehari, Hamidreza

    2015-09-10

    Silk-elastinlike protein polymers (SELPs) have been effectively used as controlled release matrices for the delivery of viruses for cancer gene therapy in preclinical models. However, the degradability of these polymers needs to be tuned for improved localized intratumoral gene delivery. Using recombinant techniques, systematic modifications in distinct regions of the polymer backbone, namely, within the elastin blocks, silk blocks, and adjacent to silk and elastin blocks, have been made to impart sensitivity to specific matrix metalloproteinases (MMPs) known to be overexpressed in the tumor environment. In this report we investigated the structure-function relationship of MMP-responsive SELPs for viral mediated gene therapy of head and neck cancer. These polymers showed significant degradation in vitro in the presence of MMPs. Their degradation rate was a function of the location of the MMP-responsive sequence in the polymer backbone when in hydrogel form. Treatment efficacy of the adenoviral vectors released from the MMP responsive SELP analogs in a xenograft mouse model of head and neck squamous cell carcinoma (HNSCC) was shown to be polymer structure dependent. These results demonstrate the tunable nature of MMP-responsive SELPs for localized matrix-mediated gene delivery.

  13. Changes in the Expression and Protein Level of Matrix Metalloproteinases after Exposure to Waterpipe Tobacco Smoke

    PubMed Central

    Khabour, Omar; Alzoubi, Karem H.; Abu Thiab, Tuqa M.; Al-Husein, Belal A.; Eissenberg, Thomas; Shihadeh, Alan

    2016-01-01

    Waterpipe smoking has become a worldwide epidemic with health consequences that only now are beginning to be understood fully. Because waterpipe use involves inhaling a large volume of toxicant-laden smoke that can cause inflammation, some health consequences may include inflammation-mediated lung injury. Excess matrix metalloproteinase expression is a key step in the etiology of toxicant exposure-driven inflammation and injury. In this study, changes in the level and mRNA of major matrix metalloproteinases (MMP-1, -9 and -12) in the lungs of mice following exposure to waterpipe smoke were investigated. Balb/c mice were exposed to waterpipe smoke for one hour daily, over a period of two or eight weeks. Control mice were exposed to fresh air only. ELISA and Real-Time PCR techniques were used to determine the protein and mRNA levels of MMP1, 9 and 12 respectively in the lungs. Our findings showed that MMP1, 9 and 12 levels in the lung significantly increased after both two (P < 0.05) and eight weeks (P < 0.01) exposures. Similarly, RT-PCR findings showed that mRNA of those proteinases significantly increased following two (P < 0.01) and eight weeks (P < 0.001) exposures. In conclusion, waterpipe smoking is associated strongly with lung injury as measured by elevation in the expression of MMPs in the lung tissue. PMID:26484568

  14. Staphylococcus aureus Manganese Transport Protein C (MntC) Is an Extracellular Matrix- and Plasminogen-Binding Protein

    PubMed Central

    Salazar, Natália; Castiblanco-Valencia, Mónica Marcela; da Silva, Ludmila Bezerra; de Castro, Íris Arantes; Monaris, Denize; Masuda, Hana Paula; Barbosa, Angela Silva; Arêas, Ana Paula Mattos

    2014-01-01

    Infections caused by Staphylococcus aureus – particularly nosocomial infections - represent a great concern. Usually, the early stage of pathogenesis consists on asymptomatic nasopharynx colonization, which could result in dissemination to other mucosal niches or invasion of sterile sites, such as blood. This pathogenic route depends on scavenging of nutrients as well as binding to and disrupting extracellular matrix (ECM). Manganese transport protein C (MntC), a conserved manganese-binding protein, takes part in this infectious scenario as an ion-scavenging factor and surprisingly as an ECM and coagulation cascade binding protein, as revealed in this work. This study showed a marked ability of MntC to bind to several ECM and coagulation cascade components, including laminin, collagen type IV, cellular and plasma fibronectin, plasminogen and fibrinogen by ELISA. The MntC binding to plasminogen appears to be related to the presence of surface-exposed lysines, since previous incubation with an analogue of lysine residue, ε-aminocaproic acid, or increasing ionic strength affected the interaction between MntC and plasminogen. MntC-bound plasminogen was converted to active plasmin in the presence of urokinase plasminogen activator (uPA). The newly released plasmin, in turn, acted in the cleavage of the α and β chains of fibrinogen. In conclusion, we describe a novel function for MntC that may help staphylococcal mucosal colonization and establishment of invasive disease, through the interaction with ECM and coagulation cascade host proteins. These data suggest that this potential virulence factor could be an adequate candidate to compose an anti-staphylococcal human vaccine formulation. PMID:25409527

  15. Isolation of a Crystal Matrix Protein Associated with Calcium Oxalate Precipitation in Vacuoles of Specialized Cells1

    PubMed Central

    Li, Xingxiang; Zhang, Dianzhong; Lynch-Holm, Valerie J.; Okita, Thomas W.; Franceschi, Vincent R.

    2003-01-01

    The formation of calcium (Ca) oxalate crystals is considered to be a high-capacity mechanism for regulating Ca in many plants. Ca oxalate precipitation is not a stochastic process, suggesting the involvement of specific biochemical and cellular mechanisms. Microautoradiography of water lettuce (Pistia stratiotes) tissue exposed to 3H-glutamate showed incorporation into developing crystals, indicating potential acidic proteins associated with the crystals. Dissolution of crystals leaves behind a crystal-shaped matrix “ghost” that is capable of precipitation of Ca oxalate in the original crystal morphology. To assess whether this matrix has a protein component, purified crystals were isolated and analyzed for internal protein. Polyacrylamide gel electrophoresis revealed the presence of one major polypeptide of about 55 kD and two minor species of 60 and 63 kD. Amino acid analysis indicates the matrix protein is relatively high in acidic amino acids, a feature consistent with its solubility in formic acid but not at neutral pH. 45Ca-binding assays demonstrated the matrix protein has a strong affinity for Ca. Immunocytochemical localization using antibody raised to the isolated protein showed that the matrix protein is specific to crystal-forming cells. Within the vacuole, the surface and internal structures of two morphologically distinct Ca oxalate crystals, raphide and druse, were labeled by the antimatrix protein serum, as were the surfaces of isolated crystals. These results demonstrate that a specific Ca-binding protein exists as an integral component of Ca oxalate crystals, which holds important implications with respect to regulation of crystal formation. PMID:14555781

  16. Use of Emdogain enamel matrix proteins in the surgical treatment of aggressive periodontitis.

    PubMed

    Kiernicka, Małgorzata; Owczarek, Barbara; Gałkowska, Ewa; Wysokińska-Miszczuk, Joanna

    2003-01-01

    One of the ways of treating of the aggressive forms of periodontitis is the method of guided tissue regeneration using enamel matrix proteins included in Emdogain preparation. The aim of work was clinical evaluation of the complex treatment of those periodontolyses using the above mentioned material as the implant material. 35 intrabony pockets were operated in 11 patients aged 17-50. The treatment results were described with the use of clinical indices of API and SBI, indices of pockets depth PPD and the loss of the attachment CAL indices before and within the period of 8 to 12 months after the surgeries. The values of the examined features were submitted to statistical analysis using Shapiro-Wilks and Wilcoxon's tests. The treatment that was applied led to extremely statistically significant improvement of the examined parameters.

  17. Influenza recombinant vaccine: matrix protein M1 on the platform of the adenovirus dodecahedron.

    PubMed

    Naskalska, A; Szolajska, E; Chaperot, L; Angel, J; Plumas, J; Chroboczek, J

    2009-12-09

    We propose a novel influenza vaccine composed of the adenovirus dodecahedron (Dd) as delivery platform carrying an internal influenza matrix protein M1. To attach the antigen to the vector we used WW domains interacting with Dd. Successful internalization of the Dd-M1WW complex was observed using biochemical and cell biology techniques. We show here that the complex of Dd with antigen is a potent activator of human myeloid dendritic cells (MDC), and that it is efficiently presented by MDC to M1-specific CD8+ T lymphocytes. These results show that proposed vaccine model is feasible and that adenovirus dodecahedron is a potent delivery platform for foreign antigens to human cells.

  18. The Lymphocytic Choriomeningitis Virus Matrix Protein PPXY Late Domain Drives the Production of Defective Interfering Particles

    PubMed Central

    Ziegler, Christopher M.; Eisenhauer, Philip; Bruce, Emily A.; Weir, Marion E.; King, Benjamin R.; Klaus, Joseph P.; Krementsov, Dimitry N.; Shirley, David J.; Ballif, Bryan A.; Botten, Jason

    2016-01-01

    Arenaviruses cause severe diseases in humans but establish asymptomatic, lifelong infections in rodent reservoirs. Persistently-infected rodents harbor high levels of defective interfering (DI) particles, which are thought to be important for establishing persistence and mitigating virus-induced cytopathic effect. Little is known about what drives the production of DI particles. We show that neither the PPXY late domain encoded within the lymphocytic choriomeningitis virus (LCMV) matrix protein nor a functional endosomal sorting complex transport (ESCRT) pathway is absolutely required for the generation of standard infectious virus particles. In contrast, DI particle release critically requires the PPXY late domain and is ESCRT-dependent. Additionally, the terminal tyrosine in the PPXY motif is reversibly phosphorylated and our findings indicate that this posttranslational modification may regulate DI particle formation. Thus we have uncovered a new role for the PPXY late domain and a possible mechanism for its regulation. PMID:27010636

  19. Microseed matrix screening for optimization in protein crystallization: what have we learned?

    PubMed Central

    D’Arcy, Allan; Bergfors, Terese; Cowan-Jacob, Sandra W.; Marsh, May

    2014-01-01

    Protein crystals obtained in initial screens typically require optimization before they are of X-ray diffraction quality. Seeding is one such optimization method. In classical seeding experiments, the seed crystals are put into new, albeit similar, conditions. The past decade has seen the emergence of an alternative seeding strategy: microseed matrix screening (MMS). In this strategy, the seed crystals are transferred into conditions unrelated to the seed source. Examples of MMS applications from in-house projects and the literature include the generation of multiple crystal forms and different space groups, better diffracting crystals and crystallization of previously uncrystallizable targets. MMS can be implemented robotically, making it a viable option for drug-discovery programs. In conclusion, MMS is a simple, time- and cost-efficient optimization method that is applicable to many recalcitrant crystallization problems. PMID:25195878

  20. Extracellular matrix proteins as temporary coating for thin-film neural implants

    NASA Astrophysics Data System (ADS)

    Ceyssens, Frederik; Deprez, Marjolijn; Turner, Neill; Kil, Dries; van Kuyck, Kris; Welkenhuysen, Marleen; Nuttin, Bart; Badylak, Stephen; Puers, Robert

    2017-02-01

    Objective. This study investigates the suitability of a thin sheet of extracellular matrix (ECM) proteins as a resorbable coating for temporarily reinforcing fragile or ultra-low stiffness thin-film neural implants to be placed on the brain, i.e. microelectrocorticographic (µECOG) implants. Approach. Thin-film polyimide-based electrode arrays were fabricated using lithographic methods. ECM was harvested from porcine tissue by a decellularization method and coated around the arrays. Mechanical tests and an in vivo experiment on rats were conducted, followed by a histological tissue study combined with a statistical equivalence test (confidence interval approach, 0.05 significance level) to compare the test group with an uncoated control group. Main results. After 3 months, no significant damage was found based on GFAP and NeuN staining of the relevant brain areas. Significance. The study shows that ECM sheets are a suitable temporary coating for thin µECOG neural implants.

  1. Enhanced release of bone morphogenetic proteins from demineralized bone matrix by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Sung, Nak-Yun; Choi, Jong-il

    2015-06-01

    Gamma irradiation is a useful method for sterilizing demineralized bone matrix (DBM), but its effect on the osteoinductivity of DBM is still controversial. In this study, the osteoinductive activity of gamma-irradiated DBM was examined using a mouse myoblastic cell line (C2C12). DBM was extracted from adult bovine bone and was irradiated at a dose of 25 kGy using a 60cobalt gamma-irradiator. Cell proliferation with DBM was not affected by gamma-irradiation, but alkaline phosphatase and osteocalcin productions were significantly increased in C2C12 cell groups treated with gamma-irradiated DBM. It was reasoned that bone morphogenetic proteins were more efficiently released from gamma-irradiated DBM than from the non-irradiated control. This result suggests the effectiveness of radiation sterilization of bone implants

  2. Beyond the Protein Matrix: Probing Cofactor Variants in a Baeyer-Villiger Oxygenation Reaction

    PubMed Central

    Martinoli, Christian; Dudek, Hanna M.; Orru, Roberto; Edmondson, Dale E.; Fraaije, Marco W.; Mattevi, Andrea

    2014-01-01

    A general question in biochemistry is the interplay between the chemical properties of cofactors and the surrounding protein matrix. Here, the functions of NADP+ and FAD are explored by investigation of a representative monooxygenase reconstituted with chemically-modified cofactor analogues. Like pieces of a jigsaw puzzle, the enzyme active site juxtaposes the flavin and nicotinamide rings, harnessing their H-bonding and steric properties to finely construct an oxygen-reacting center that restrains the flavin-peroxide intermediate in a catalytically-competent orientation. Strikingly, the regio- and stereoselectivities of the reaction are essentially unaffected by cofactor modifications. These observations indicate a remarkable robustness of this complex multi-cofactor active site, which has implications for enzyme design based on cofactor engineering approaches. PMID:24443704

  3. [Calcification marker matrix G1a protein in patients with hyperlipidemia].

    PubMed

    Kullich, Werner; Machreich, Kurt; Hawa, Gerhard; Eichinger, Brigitte; Klein, Gert

    2003-01-01

    At the site of atherosclerotic plaque formation, proliferating vascular muscle cells express Matrix-Gla-protein (MGP) which depends on vitamin K and plays a regulatory role in tissue calcification. Measurements of MGP in serum showed significantly higher values in 66 patients with hyperlipidemia compared to healthy controls. MGP correlated with cholesterol, triglyceride, and low-density lipoprotein, but not with the adhesion molecule GMP-140. The evaluation of the patients' life and nutritional habits showed that nearly exclusively the patients who regularly consume fruit had low MGP values. Smokers had high MGP levels, three times higher than non-smokers. A decrease in MGP levels could be shown already three weeks after inpatient rehabilitation comprising therapeutic exercise and change in nutrition.

  4. Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with PTB

    PubMed Central

    Coelho, Miguel B; Attig, Jan; Bellora, Nicolás; König, Julian; Hallegger, Martina; Kayikci, Melis; Eyras, Eduardo; Ule, Jernej; Smith, Christopher WJ

    2015-01-01

    Matrin3 is an RNA- and DNA-binding nuclear matrix protein found to be associated with neural and muscular degenerative diseases. A number of possible functions of Matrin3 have been suggested, but no widespread role in RNA metabolism has yet been clearly demonstrated. We identified Matrin3 by its interaction with the second RRM domain of the splicing regulator PTB. Using a combination of RNAi knockdown, transcriptome profiling and iCLIP, we find that Matrin3 is a regulator of hundreds of alternative splicing events, principally acting as a splicing repressor with only a small proportion of targeted events being co-regulated by PTB. In contrast to other splicing regulators, Matrin3 binds to an extended region within repressed exons and flanking introns with no sharply defined peaks. The identification of this clear molecular function of Matrin3 should help to clarify the molecular pathology of ALS and other diseases caused by mutations of Matrin3. PMID:25599992

  5. Matrix-Gla protein promotes osteosarcoma lung metastasis and associates with poor prognosis.

    PubMed

    Zandueta, Carolina; Ormazábal, Cristina; Perurena, Naiara; Martínez-Canarias, Susana; Zalacaín, Marta; Julián, Mikel San; Grigoriadis, Agamemnon E; Valencia, Karmele; Campos-Laborie, Francisco J; Rivas, Javier De Las; Vicent, Silvestre; Patiño-García, Ana; Lecanda, Fernando

    2016-08-01

    Osteosarcoma (OS) is the most prevalent osseous tumour in children and adolescents and, within this, lung metastases remain one of the factors associated with a dismal prognosis. At present, the genetic determinants driving pulmonary metastasis are poorly understood. We adopted a novel strategy using robust filtering analysis of transcriptomic profiling in tumour osteoblastic cell populations derived from human chemo-naive primary tumours displaying extreme phenotypes (indolent versus metastatic) to uncover predictors associated with metastasis and poor survival. We identified MGP, encoding matrix-Gla protein (MGP), a non-collagenous matrix protein previously associated with the inhibition of arterial calcification. Using different orthotopic models, we found that ectopic expression of Mgp in murine and human OS cells led to a marked increase in lung metastasis. This effect was independent of the carboxylation of glutamic acid residues required for its physiological role. Abrogation of Mgp prevented lung metastatic activity, an effect that was rescued by forced expression. Mgp levels dramatically altered endothelial adhesion, trans-endothelial migration in vitro and tumour cell extravasation ability in vivo. Furthermore, Mgp modulated metalloproteinase activities and TGFβ-induced Smad2/3 phosphorylation. In the clinical setting, OS patients who developed lung metastases had high serum levels of MGP at diagnosis. Thus, MGP represents a novel adverse prognostic factor and a potential therapeutic target in OS. Microarray datasets may be found at: http://bioinfow.dep.usal.es/osteosarcoma/ Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  6. Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins

    PubMed Central

    Stražar, Martin; Žitnik, Marinka; Zupan, Blaž; Ule, Jernej; Curk, Tomaž

    2016-01-01

    Motivation: RNA binding proteins (RBPs) play important roles in post-transcriptional control of gene expression, including splicing, transport, polyadenylation and RNA stability. To model protein–RNA interactions by considering all available sources of information, it is necessary to integrate the rapidly growing RBP experimental data with the latest genome annotation, gene function, RNA sequence and structure. Such integration is possible by matrix factorization, where current approaches have an undesired tendency to identify only a small number of the strongest patterns with overlapping features. Because protein–RNA interactions are orchestrated by multiple factors, methods that identify discriminative patterns of varying strengths are needed. Results: We have developed an integrative orthogonality-regularized nonnegative matrix factorization (iONMF) to integrate multiple data sources and discover non-overlapping, class-specific RNA binding patterns of varying strengths. The orthogonality constraint halves the effective size of the factor model and outperforms other NMF models in predicting RBP interaction sites on RNA. We have integrated the largest data compendium to date, which includes 31 CLIP experiments on 19 RBPs involved in splicing (such as hnRNPs, U2AF2, ELAVL1, TDP-43 and FUS) and processing of 3’UTR (Ago, IGF2BP). We show that the integration of multiple data sources improves the predictive accuracy of retrieval of RNA binding sites. In our study the key predictive factors of protein–RNA interactions were the position of RNA structure and sequence motifs, RBP co-binding and gene region type. We report on a number of protein-specific patterns, many of which are consistent with experimentally determined properties of RBPs. Availability and implementation: The iONMF implementation and example datasets are available at https://github.com/mstrazar/ionmf. Contact: tomaz.curk@fri.uni-lj.si Supplementary information: Supplementary data are available

  7. Divergent patterns of extracellular matrix protein expression in neonatal versus adult liver fibrosis.

    PubMed

    Zeitlin, Leonid; Resnick, Murray B; Konikoff, Fred; Schuppan, Delphan; Bujanover, Yoram; Lerner, Aaron; Belson, Amir; Lifschitz, Beatriz; Reif, Shimon

    2003-01-01

    The extracellular matrix (ECM) expression is subject to distinct changes during ontogeny, and the natural course of liver fibrosis in neonates is thought to differ from that in adults. We compared the expression and distribution of main ECM components between neonatal and adult liver fibrosis. Liver biopsies from infants with neonatal cholestasis and fibrosis were compared to adult biopsies exhibiting an equivalent stage of fibrosis. All biopsies were examined by immunohistochemistry (indirect ABC method) for the ECM proteins, collagens I, III, IV, and VI, laminin, and fibronectin. Infants (aged 1-8 months) with neonatal hepatitis (n = 3), extrahepatic biliary atresia (EHBA) (n = 5), and normal histology (n = 2) were compared with 9 adults (aged 17-70 years) with chronic hepatitis (n = 3), primary biliary cirrhosis (PBC) (n = 4), and normal histology (n = 2). Collagens I, III, and IV and fibronectin were significantly increased in neonatal hepatitis with mild fibrosis (score < or = 4) compared to adults with an equivalent fibrosis stage. This increase was particularly notable in perisinusoidal spaces. Laminin expression was increased in portal and perisinusoidal spaces both in neonatal hepatitis and extrahepatic biliary atresia with mild fibrosis. In infants with moderate to severe fibrosis (score > or = 6), only collagen I was increased in comparison to adults, whereas collagen VI expression was identical in all groups, irrespective of the degree of fibrosis. Expression of matrix proteins was not different in infants and adults without fibrosis. The increased perisinusoidal deposition of certain ECM components in infants with active hepatitis and mild fibrosis may point to an underlying difference in the mechanism or stimulus of fibrogenesis in neonates as compared to adults.

  8. Cartilage oligomeric matrix protein prevents vascular aging and vascular smooth muscle cells senescence.

    PubMed

    Wang, Meili; Fu, Yi; Gao, Cheng; Jia, Yiting; Huang, Yaqian; Liu, Limei; Wang, Xian; Wang, Wengong; Kong, Wei

    2016-09-16

    Aging-related vascular dysfunction contributes to cardiovascular morbidity and mortality. Cartilage oligomeric matrix protein (COMP), a vascular extracellular matrix protein, has been described as a negative regulatory factor for the vascular aging-related processes including atherosclerosis and vascular calcification. However, whether COMP is implicated in the process of vascular aging remains unclear. Here, we identified a novel function of COMP in preventing vascular aging and vascular smooth muscle cells (VSMCs) senescence. Firstly, vascular COMP expression was decreased in three different senescence-accelerated mouse models and was also declining with age. COMP(-/-) mice displayed elevated senescence-associated markers expression, including p53, p21 and p16, in the aortas compared with their wild type (WT) littermates. In accordance, COMP deficiency induced aging-related vascular dysfunction as evidenced by the significantly reduced phenylephrine-induced contraction and increased vascular stiffness as evaluated by pulse wave velocity. The aortic wall of COMP(-/-) mice was susceptible to senescence by displaying senescence-associated β-galactosidase (SA β-gal) activity induced by periadventitial application of CaCl2 to the abdominal aorta. In vitro, COMP knockdown by small interfering (si) RNA led to the elevation of p53, p21 and p16 as well as SA β-gal activity in VSMCs after H2O2 stimulation. VSMCs isolated from COMP(-/-) mice showed elevated senescence-associated markers expression and supplement of COMP adenovirus to COMP-deficient VSMCs greatly rescued cellular senescence. Taken together, these findings revealed the essential role of COMP in retarding the development of vascular aging and VSMC senescence. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Shift of Macrophage Phenotype Due to Cartilage Oligomeric Matrix Protein Deficiency Drives Atherosclerotic Calcification.

    PubMed

    Fu, Yi; Gao, Cheng; Liang, Ying; Wang, Meili; Huang, Yaqian; Ma, Wei; Li, Tuoyi; Jia, Yiting; Yu, Fang; Zhu, Wanlin; Cui, Qinghua; Li, Yanhui; Xu, Qingbo; Wang, Xian; Kong, Wei

    2016-07-08

    Intimal calcification is highly correlated with atherosclerotic plaque burden, but the underlying mechanism is poorly understood. We recently reported that cartilage oligomeric matrix protein (COMP), a component of vascular extracellular matrix, is an endogenous inhibitor of vascular smooth muscle cell calcification. To investigate whether COMP affects atherosclerotic calcification. ApoE(-/-)COMP(-/-) mice fed with chow diet for 12 months manifested more extensive atherosclerotic calcification in the innominate arteries than did ApoE(-/-) mice. To investigate which origins of COMP contributed to atherosclerotic calcification, bone marrow transplantation was performed between ApoE(-/-) and ApoE(-/-)COMP(-/-) mice. Enhanced calcification was observed in mice transplanted with ApoE(-/-)COMP(-/-) bone marrow compared with mice transplanted with ApoE(-/-) bone marrow, indicating that bone marrow-derived COMP may play a critical role in atherosclerotic calcification. Furthermore, microarray profiling of wild-type and COMP(-/-) macrophages revealed that COMP-deficient macrophages exerted atherogenic and osteogenic characters. Integrin β3 protein was attenuated in COMP(-/-) macrophages, and overexpression of integrin β3 inhibited the shift of macrophage phenotypes by COMP deficiency. Furthermore, adeno-associated virus 2-integrin β3 infection attenuated atherosclerotic calcification in ApoE(-/-)COMP(-/-) mice. Mechanistically, COMP bound directly to β-tail domain of integrin β3 via its C-terminus, and blocking of the COMP-integrin β3 association by β-tail domain mimicked the COMP deficiency-induced shift in macrophage phenotypes. Similar to COMP deficiency in mice, transduction of adeno-associated virus 2-β-tail domain enhanced atherosclerotic calcification in ApoE(-/-) mice. These results reveal that COMP deficiency acted via integrin β3 to drive macrophages toward the atherogenic and osteogenic phenotype and thereby aggravate atherosclerotic calcification.

  10. Flexible and rigid structures in HIV-1 p17 matrix protein monitored by relaxation and amide proton exchange with NMR.

    PubMed

    Ohori, Yuka; Okazaki, Honoka; Watanabe, Satoru; Tochio, Naoya; Arai, Munehito; Kigawa, Takanori; Nishimura, Chiaki

    2014-03-01

    The HIV-1 p17 matrix protein is a multifunctional protein that interacts with other molecules including proteins and membranes. The dynamic structure between its folded and partially unfolded states can be critical for the recognition of interacting molecules. One of the most important roles of the p17 matrix protein is its localization to the plasma membrane with the Gag polyprotein. The myristyl group attached to the N-terminus on the p17 matrix protein functions as an anchor for binding to the plasma membrane. Biochemical studies revealed that two regions are important for its function: D14-L31 and V84-V88. Here, the dynamic structures of the p17 matrix protein were studied using NMR for relaxation and amide proton exchange experiments at the physiological pH of 7.0. The results revealed that the α12-loop, which includes the 14-31 region, was relatively flexible, and that helix 4, including the 84-88 region, was the most protected helix in this protein. However, the residues in the α34-loop near helix 4 had a low order parameter and high exchange rate of amide protons, indicating high flexibility. This region is probably flexible because this loop functions as a hinge for optimizing the interactions between helices 3 and 4. The C-terminal long region of K113-Y132 adopted a disordered structure. Furthermore, the C-terminal helix 5 appeared to be slightly destabilized due to the flexible C-terminal tail based on the order parameters. Thus, the dynamic structure of the p17 matrix protein may be related to its multiple functions.

  11. ALK1 heterozygosity increases extracellular matrix protein expression, proliferation and migration in fibroblasts.

    PubMed

    Muñoz-Félix, José M; Perretta-Tejedor, Nuria; Eleno, Nélida; López-Novoa, José M; Martínez-Salgado, Carlos

    2014-06-01

    Fibrosis is a pathological situation in which excessive amounts of extracellular matrix (ECM) are deposited in the tissue. Myofibroblasts play a crucial role in the development and progress of fibrosis as they actively synthesize ECM components such as collagen I, fibronectin and connective tissue growth factor (CTGF) and cause organ fibrosis. Transforming growth factor beta 1 (TGF-β1) plays a major role in tissue fibrosis. Activin receptor-like kinase 1 (ALK1) is a type I receptor of TGF-β1 with an important role in angiogenesis whose function in cellular biology and TGF-β signaling is well known in endothelial cells, but its role in fibroblast biology and its contribution to fibrosis is poorly studied. We have recently demonstrated that ALK1 regulates ECM protein expression in a mouse model of obstructive nephropathy. Our aim was to evaluate the role of ALK1 in several processes involved in fibrosis such as ECM protein expression, proliferation and migration in ALK1(+/+) and ALK1(+/-) mouse embryonic fibroblasts (MEFs) after TGF-β1 stimulations and inhibitors. ALK1 heterozygous MEFs show increased expression of ECM proteins (collagen I, fibronectin and CTGF/CCN2), cell proliferation and migration due to an alteration of TGF-β/Smad signaling. ALK1 heterozygous disruption shows an increase of Smad2 and Smad3 phosphorylation that explains the increases in CTGF/CCN2, fibronectin and collagen I, proliferation and cell motility observed in these cells. Therefore, we suggest that ALK1 plays an important role in the regulation of ECM protein expression, proliferation and migration.

  12. Proteins from the organic matrix of core-top and fossil planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Robbins, L. L.; Brew, K.

    1990-08-01

    Organic constituents isolated from the tests (shells) of six species of core-top planktonic foraminifera, ranging in age between 2 and 4 Ka BP, consist of a heterogeneous mixture of proteins and polypeptides. At least seven discrete polypeptides are present as indicated by reverse phase HPLC and by gel electrophoresis. High percentages of aspartic acid and glutamic acid characterize one class of protein, while glycine, serine, and alanine-rich proteins dominate in a second class. Similar HPLC Chromatographie elution profiles are observed for all species analyzed, varying only in intensity of the peaks and in amino acid composition from species to species. The approximate molecular weights of two major fossil proteins ranged between 50,000 and 70,000 daltons. A comparison of 2-4 and 300 Ka Bp samples shows that while most of the polypeptides are present in both samples, some acidic polypeptides are not present in the older sample. These data suggest that some of the acidic polypeptides may be more soluble than other fractions and are lost more quickly from the test. The remaining hydrophobic, possibly more insoluble, polypeptides may be preserved in much older specimens and may be useful in tracing phylogeny of the planktonic foraminifera. Amino acid analyses of total test extracts before and after dialysis demonstrate that some acidic amino acids, particularly aspartic acid, and possibly peptides less than 6000-8000 daltons are lost during dialysis. Although a large percentage of these components are undoubtedly from the original organic matrix, at this point adsorbed components cannot be ruled out. These data caution against the use of total amino acid compositions in biogeochemical studies.

  13. Cleavage of metastasis suppressor gene product KiSS-1 protein/metastin by matrix metalloproteinases.

    PubMed

    Takino, Takahisa; Koshikawa, Naohiko; Miyamori, Hisashi; Tanaka, Motohiro; Sasaki, Takuma; Okada, Yasunori; Seiki, Motoharu; Sato, Hiroshi

    2003-07-24

    A human placenta cDNA library was screened by the expression cloning method for gene products that interact with matrix metalloproteinases (MMPs), and we isolated a cDNA whose product formed a stable complex with pro-MMP-2 and pro-MMP-9. The cDNA encoded the metastasis suppressor gene KiSS-1. KiSS-1 protein was shown to form a complex with pro-MMP. KiSS-1 protein is known to be processed to peptide ligand of a G-protein-coupled receptor (hOT7T175) named metastin, and suppresses metastasis of tumors expressing the receptor. Active MMP-2, MMP-9, MT1-MMP, MT3-MMP and MT5-MMP cleaved the Gly118-Leu119 peptide bond of not only full-length KiSS-1 protein but also metastin decapeptide. Metastin decapeptide induced formation of focal adhesion and actin stress fibers in cells expressing the receptor, and digestion of metastin decapeptide by MMP abolished its ligand activity. Migration of HT1080 cells expressing hOT7T175 that harbor a high-level MMP activity was only slightly suppressed by either metastin decapeptide or MMP inhibitor BB-94 alone, but the combination of metastin decapeptide and BB-94 showed a synergistic effect in blocking cell migration. We propose that metastin could be used as an antimetastatic agent in combination with MMP inhibitor, or MMP-resistant forms of metastin could be developed and may also be efficacious.

  14. Peroxisomal ubiquitin-protein ligases peroxin2 and peroxin10 have distinct but synergistic roles in matrix protein import and peroxin5 retrotranslocation in Arabidopsis.

    PubMed

    Burkhart, Sarah E; Kao, Yun-Ting; Bartel, Bonnie

    2014-11-01

    Peroxisomal matrix proteins carry peroxisomal targeting signals (PTSs), PTS1 or PTS2, and are imported into the organelle with the assistance of peroxin (PEX) proteins. From a microscopy-based screen to identify Arabidopsis (Arabidopsis thaliana) mutants defective in matrix protein degradation, we isolated unique mutations in PEX2 and PEX10, which encode ubiquitin-protein ligases anchored in the peroxisomal membrane. In yeast (Saccharomyces cerevisiae), PEX2, PEX10, and a third ligase, PEX12, ubiquitinate a peroxisome matrix protein receptor, PEX5, allowing the PEX1 and PEX6 ATP-hydrolyzing enzymes to retrotranslocate PEX5 out of the membrane after cargo delivery. We found that the pex2-1 and pex10-2 Arabidopsis mutants exhibited defects in peroxisomal physiology and matrix protein import. Moreover, the pex2-1 pex10-2 double mutant exhibited severely impaired growth and synergistic physiological defects, suggesting that PEX2 and PEX10 function cooperatively in the wild type. The pex2-1 lesion restored the unusually low PEX5 levels in the pex6-1 mutant, implicating PEX2 in PEX5 degradation when retrotranslocation is impaired. PEX5 overexpression altered pex10-2 but not pex2-1 defects, suggesting that PEX10 facilitates PEX5 retrotranslocation from the peroxisomal membrane. Although the pex2-1 pex10-2 double mutant displayed severe import defects of both PTS1 and PTS2 proteins into peroxisomes, both pex2-1 and pex10-2 single mutants exhibited clear import defects of PTS1 proteins but apparently normal PTS2 import. A similar PTS1-specific pattern was observed in the pex4-1 ubiquitin-conjugating enzyme mutant. Our results indicate that Arabidopsis PEX2 and PEX10 cooperate to support import of matrix proteins into plant peroxisomes and suggest that some PTS2 import can still occur when PEX5 retrotranslocation is slowed.

  15. An empirical study on the matrix-based protein representations and their combination with sequence-based approaches.

    PubMed

    Nanni, Loris; Lumini, Alessandra; Brahnam, Sheryl

    2013-03-01

    Many domains have a stake in the development of reliable systems for automatic protein classification. Of particular interest in recent studies of automatic protein classification is the exploration of new methods for extracting features from a protein that enhance classification for specific problems. These methods have proven very useful in one or two domains, but they have failed to generalize well across several domains (i.e. classification problems). In this paper, we evaluate several feature extraction approaches for representing proteins with the aim of sequence-based protein classification. Several protein representations are evaluated, those starting from: the position specific scoring matrix (PSSM) of the proteins; the amino-acid sequence; a matrix representation of the protein, of dimension (length of the protein) ×20, obtained using the substitution matrices for representing each amino-acid as a vector. A valuable result is that a texture descriptor can be extracted from the PSSM protein representation which improves the performance of standard descriptors based on the PSSM representation. Experimentally, we develop our systems by comparing several protein descriptors on nine different datasets. Each descriptor is used to train a support vector machine (SVM) or an ensemble of SVM. Although different stand-alone descriptors work well on some datasets (but not on others), we have discovered that fusion among classifiers trained using different descriptors obtains a good performance across all the tested datasets. Matlab code/Datasets used in the proposed paper are available at http://www.bias.csr.unibo.it\

  16. Efficient HIV-1 replication can occur in the absence of the viral matrix protein.

    PubMed Central

    Reil, H; Bukovsky, A A; Gelderblom, H R; Göttlinger, H G

    1998-01-01

    Matrix (MA), a major structural protein of retroviruses, is thought to play a critical role in several steps of the HIV-1 replication cycle, including the plasma membrane targeting of Gag, the incorporation of envelope (Env) glycoproteins into nascent particles, and the nuclear import of the viral genome in non-dividing cells. We now show that the entire MA protein is dispensable for the incorporation of HIV-1 Env glycoproteins with a shortened cytoplasmic domain. Furthermore, efficient HIV-1 replication in the absence of up to 90% of MA was observed in a cell line in which the cytoplasmic domain of Env is not required. Additional compensatory changes in Gag permitted efficient virus replication even if all of MA was replaced by a heterologous membrane targeting signal. Viruses which lacked the globular domain of MA but retained its N-terminal myristyl anchor exhibited an increased ability to form both extracellular and intracellular virus particles, consistent with a myristyl switch model of Gag membrane targeting. Pseudotyped HIV-1 particles that lacked the structurally conserved globular head of MA efficiently infected macrophages, indicating that MA is dispensable for nuclear import in terminally differentiated cells. PMID:9564051

  17. Surface features of a Mononegavirales matrix protein indicate sites of membrane interaction.

    PubMed

    Money, Victoria A; McPhee, Helen K; Mosely, Jackie A; Sanderson, John M; Yeo, Robert P

    2009-03-17

    The matrix protein (M) of respiratory syncytial virus (RSV), the prototype viral member of the Pneumovirinae (family Paramyxoviridae, order Mononegavirales), has been crystallized and the structure determined to a resolution of 1.6 A. The structure comprises 2 compact beta-rich domains connected by a relatively unstructured linker region. Due to the high degree of side-chain order in the structure, an extensive contiguous area of positive surface charge covering approximately 600 A(2) can be resolved. This unusually large patch of positive surface potential spans both domains and the linker, and provides a mechanism for driving the interaction of the protein with a negatively-charged membrane surface or other virion components such as the nucleocapsid. This patch is complemented by regions of high hydrophobicity and a striking planar arrangement of tyrosine residues encircling the C-terminal domain. Comparison of the RSV M sequence with other members of the Pneumovirinae shows that regions of divergence correspond to surface exposed loops in the M structure, with the majority of viral species-specific differences occurring in the N-terminal domain.

  18. Surface features of a Mononegavirales matrix protein indicate sites of membrane interaction

    PubMed Central

    Money, Victoria A.; McPhee, Helen K.; Mosely, Jackie A.; Sanderson, John M.; Yeo, Robert P.

    2009-01-01

    The matrix protein (M) of respiratory syncytial virus (RSV), the prototype viral member of the Pneumovirinae (family Paramyxoviridae, order Mononegavirales), has been crystallized and the structure determined to a resolution of 1.6 Å. The structure comprises 2 compact β-rich domains connected by a relatively unstructured linker region. Due to the high degree of side-chain order in the structure, an extensive contiguous area of positive surface charge covering ≈600 Å2 can be resolved. This unusually large patch of positive surface potential spans both domains and the linker, and provides a mechanism for driving the interaction of the protein with a negatively-charged membrane surface or other virion components such as the nucleocapsid. This patch is complemented by regions of high hydrophobicity and a striking planar arrangement of tyrosine residues encircling the C-terminal domain. Comparison of the RSV M sequence with other members of the Pneumovirinae shows that regions of divergence correspond to surface exposed loops in the M structure, with the majority of viral species-specific differences occurring in the N-terminal domain. PMID:19251668

  19. Structure and self-assembly of the calcium binding matrix protein of human metapneumovirus.

    PubMed

    Leyrat, Cedric; Renner, Max; Harlos, Karl; Huiskonen, Juha T; Grimes, Jonathan M

    2014-01-07

    The matrix protein (M) of paramyxoviruses plays a key role in determining virion morphology by directing viral assembly and budding. Here, we report the crystal structure of the human metapneumovirus M at 2.8 Å resolution in its native dimeric state. The structure reveals the presence of a high-affinity Ca²⁺ binding site. Molecular dynamics simulations (MDS) predict a secondary lower-affinity site that correlates well with data from fluorescence-based thermal shift assays. By combining small-angle X-ray scattering with MDS and ensemble analysis, we captured the structure and dynamics of M in solution. Our analysis reveals a large positively charged patch on the protein surface that is involved in membrane interaction. Structural analysis of DOPC-induced polymerization of M into helical filaments using electron microscopy leads to a model of M self-assembly. The conservation of the Ca²⁺ binding sites suggests a role for calcium in the replication and morphogenesis of pneumoviruses.

  20. Transcriptional factor DLX3 promotes the gene expression of enamel matrix proteins during amelogenesis.

    PubMed

    Zhang, Zhichun; Tian, Hua; Lv, Ping; Wang, Weiping; Jia, Zhuqing; Wang, Sainan; Zhou, Chunyan; Gao, Xuejun

    2015-01-01

    Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelogenesis. However, the expression pattern of DLX3 and its specific function in amelogenesis remain largely unknown. The aim of this study was to investigate the effects of DLX3 on enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secretory stage than in the pre-secretory and maturation stages, and the same pattern was found for Dlx3 mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, and Odam, whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformatics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transactivated Enam, Amelx, and Odam through direct binding to their enhancer regions. Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO) inhibited the activation function of DLX3 on expression levels and promoter activities of the Enam, Amelx, and Odam genes. Together, our data show that DLX3 promotes the expression of the EMP genes Amelx, Enam, Klk4, and Odam in amelogenesis, while mutant-DLX3 disrupts this regulatory function, thus providing insights into the molecular mechanisms underlying the enamel defects of TDO disease.

  1. Influence of Extracellular Matrix Proteins and Substratum Topography on Corneal Epithelial Cell Alignment and Migration

    PubMed Central

    Raghunathan, VijayKrishna; McKee, Clayton; Cheung, Wai; Naik, Rachel; Nealey, Paul F.; Russell, Paul

    2013-01-01

    The basement membrane (BM) of the corneal epithelium presents biophysical cues in the form of topography and compliance that can impact the phenotype and behaviors of cells and their nuclei through modulation of cytoskeletal dynamics. In addition, it is also well known that the intrinsic biochemical attributes of BMs can modulate cell behaviors. In this study, the influence of the combination of exogenous coating of extracellular matrix proteins (ECM) (fibronectin-collagen [FNC]) with substratum topography was investigated on cytoskeletal architecture as well as alignment and migration of immortalized corneal epithelial cells. In the absence of FNC coating, a significantly greater percentage of cells aligned parallel with the long axis of the underlying anisotropically ordered topographic features; however, their ability to migrate was impaired. Additionally, changes in the surface area, elongation, and orientation of cytoskeletal elements were differentially influenced by the presence or absence of FNC. These results suggest that the effects of topographic cues on cells are modulated by the presence of surface-associated ECM proteins. These findings have relevance to experiments using cell cultureware with biomimetic biophysical attributes as well as the integration of biophysical cues in tissue-engineering strategies and the development of improved prosthetics. PMID:23488816

  2. Evolution of matrix and bone gamma-carboxyglutamic acid proteins in vertebrates.

    PubMed

    Laizé, Vincent; Martel, Paulo; Viegas, Carla S B; Price, Paul A; Cancela, M Leonor

    2005-07-22

    The evolution of calcified tissues is a defining feature in vertebrate evolution. Investigating the evolution of proteins involved in tissue calcification should help elucidate how calcified tissues have evolved. The purpose of this study was to collect and compare sequences of matrix and bone gamma-carboxyglutamic acid proteins (MGP and BGP, respectively) to identify common features and determine the evolutionary relationship between MGP and BGP. Thirteen cDNAs and genes were cloned using standard methods or reconstructed through the use of comparative genomics and data mining. These sequences were compared with available annotated sequences (a total of 48 complete or nearly complete sequences, 28 BGPs and 20 MGPs) have been identified across 32 different species (representing most classes of vertebrates), and evolutionarily conserved features in both MGP and BGP were analyzed using bioinformatic tools and the Tree-Puzzle software. We propose that: 1) MGP and BGP genes originated from two genome duplications that occurred around 500 and 400 million years ago before jawless and jawed fish evolved, respectively; 2) MGP appeared first concomitantly with the emergence of cartilaginous structures, and BGP appeared thereafter along with bony structures; and 3) BGP derives from MGP. We also propose a highly specific pattern definition for the Gla domain of BGP and MGP.

  3. Efficient HIV-1 replication can occur in the absence of the viral matrix protein.

    PubMed

    Reil, H; Bukovsky, A A; Gelderblom, H R; Göttlinger, H G

    1998-05-01

    Matrix (MA), a major structural protein of retroviruses, is thought to play a critical role in several steps of the HIV-1 replication cycle, including the plasma membrane targeting of Gag, the incorporation of envelope (Env) glycoproteins into nascent particles, and the nuclear import of the viral genome in non-dividing cells. We now show that the entire MA protein is dispensable for the incorporation of HIV-1 Env glycoproteins with a shortened cytoplasmic domain. Furthermore, efficient HIV-1 replication in the absence of up to 90% of MA was observed in a cell line in which the cytoplasmic domain of Env is not required. Additional compensatory changes in Gag permitted efficient virus replication even if all of MA was replaced by a heterologous membrane targeting signal. Viruses which lacked the globular domain of MA but retained its N-terminal myristyl anchor exhibited an increased ability to form both extracellular and intracellular virus particles, consistent with a myristyl switch model of Gag membrane targeting. Pseudotyped HIV-1 particles that lacked the structurally conserved globular head of MA efficiently infected macrophages, indicating that MA is dispensable for nuclear import in terminally differentiated cells.

  4. Beta1 integrin cytoplasmic variants differentially regulate expression of the antiangiogenic extracellular matrix protein thrombospondin 1.

    PubMed

    Goel, Hira Lal; Moro, Loredana; Murphy-Ullrich, Joanne E; Hsieh, Chung-Cheng; Wu, Chin-Lee; Jiang, Zhong; Languino, Lucia R

    2009-07-01

    Beta(1) integrins play an important role in regulating cell proliferation and survival. Using small interfering RNA or an inhibitory antibody to beta(1), we show here that, in vivo, beta(1) integrins are essential for prostate cancer growth. Among the five known beta(1) integrin cytoplasmic variants, two have been shown to differentially affect prostate cell functions. The beta(1A) variant promotes normal and cancer cell proliferation, whereas the beta(1C) variant, which is down-regulated in prostate cancer, inhibits tumor growth and appears to have a dominant effect on beta(1A). To investigate the mechanism by which beta(1C) inhibits the tumorigenic potential of beta(1A), we analyzed changes in gene expression in cells transfected with either beta(1C) or beta(1A). The results show that beta(1C) expression increases the levels of an extracellular matrix protein, thrombospondin 1 (TSP1), an angiogenesis inhibitor. TSP1 protein levels are increased upon beta(1C) expression in prostate cancer cells as well as in beta(1)-null GD25 cells. We show that TSP1 does not affect proliferation, apoptosis, or anchorage-independent growth of prostate cancer cells. In contrast, the newly synthesized TSP1, secreted by prostate cancer cells expressing beta(1C), prevents proliferation of endothelial cells. In conclusion, our novel findings indicate that expression of the beta(1C) integrin variant in prostate glands prevents cancer progression by up-regulation of TSP1 levels and inhibition of angiogenesis.

  5. HIV-1 matrix protein p17 misfolding forms toxic amyloidogenic assemblies that induce neurocognitive disorders.

    PubMed

    Zeinolabediny, Yasmin; Caccuri, Francesca; Colombo, Laura; Morelli, Federica; Romeo, Margherita; Rossi, Alessandro; Schiarea, Silvia; Ciaramelli, Carlotta; Airoldi, Cristina; Weston, Ria; Donghui, Liu; Krupinski, Jerzy; Corpas, Rubén; García-Lara, Elisa; Sarroca, Sara; Sanfeliu, Coral; Slevin, Mark; Caruso, Arnaldo; Salmona, Mario; Diomede, Luisa

    2017-09-04

    Human immunodeficiency virus type-1 (HIV-1)-associated neurocognitive disorder (HAND) remains an important neurological manifestation that adversely affects a patient's quality of life. HIV-1 matrix protein p17 (p17) has been detected in autoptic brain tissue of HAND individuals who presented early with severe AIDS encephalopathy. We hypothesised that the ability of p17 to misfold may result in the generation of toxic assemblies in the brain and may be relevant for HAND pathogenesis. A multidisciplinary integrated approach has been applied to determine the ability of p17 to form soluble amyloidogenic assemblies in vitro. To provide new information into the potential pathogenic role of soluble p17 species in HAND, their toxicological capability was evaluated in vivo. In C. elegans, capable of recognising toxic assemblies of amyloidogenic proteins, p17 induces a specific toxic effect which can be counteracted by tetracyclines, drugs able to hinder the formation of large oligomers and consequently amyloid fibrils. The intrahippocampal injection of p17 in mice reduces their cognitive function and induces behavioral deficiencies. These findings offer a new way of thinking about the possible cause of neurodegeneration in HIV-1-seropositive patients, which engages the ability of p17 to form soluble toxic assemblies.

  6. Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma.

    PubMed

    Tijink, Marlon S L; Wester, Maarten; Glorieux, Griet; Gerritsen, Karin G F; Sun, Junfen; Swart, Pieter C; Borneman, Zandrie; Wessling, Matthias; Vanholder, Raymond; Joles, Jaap A; Stamatialis, Dimitrios

    2013-10-01

    In end stage renal disease (ESRD) waste solutes accumulate in body fluid. Removal of protein bound solutes using conventional renal replacement therapies is currently very poor while their accumulation is associated with adverse outcomes in ESRD. Here we investigate the application of a hollow fiber mixed matrix membrane (MMM) for removal of these toxins. The MMM hollow fiber consists of porous macro-void free polymeric inner membrane layer well attached to the activated carbon containing outer MMM layer. The new membranes have permeation properties in the ultrafiltration range. Under static conditions, they adsorb 57% p-cresylsulfate, 82% indoxyl sulfate and 94% of hippuric acid from spiked human plasma in 4 h. Under dynamic conditions, they adsorb on average 2.27 mg PCS/g membrane and 3.58 mg IS/g membrane in 4 h in diffusion experiments and 2.68 mg/g membrane PCS and 12.85 mg/g membrane IS in convection experiments. Based on the dynamic experiments we estimate that our membranes would suffice to remove the daily production of these protein bound solutes.

  7. The widely expressed extracellular matrix protein SMOC-2 promotes keratinocyte attachment and migration

    SciTech Connect

    Maier, Silke; Paulsson, Mats; Hartmann, Ursula

    2008-08-01

    SMOC-2 is a recently discovered member of the BM-40/SPARC/osteonectin family of extracellular multidomain proteins of so far unknown function. While we have shown earlier that the homologous protein SMOC-1 is associated with basement membranes, in this study we demonstrate that, in the mouse, SMOC-2 could be detected in a large number of non-basement membrane localizations, often showing a diffuse tissue distribution. A more distinct expression pattern was seen in skin where SMOC-2 is mainly present in the basal layers of the epidermis. Functionally, recombinant SMOC-2 stimulated attachment of primary epidermal cells as well as several epidermal-derived cell lines but had no effect on the attachment of non-epidermal cells. Inhibition experiments using blocking antibodies against individual integrin subunits allowed the identification of {alpha}v{beta}6 and {alpha}v{beta}1 integrins as important cellular receptors for SMOC-2. Cell attachment as well as the formation of focal adhesions could be attributed to the extracellular calcium-binding domain. The calcium-binding domain also stimulated migration, but not proliferation of keratinocyte-like HaCaT cells. We conclude that SMOC-2, like other members of the BM40/SPARC family, acts as a regulator of cell-matrix interactions.

  8. PECM: prediction of extracellular matrix proteins using the concept of Chou's pseudo amino acid composition.

    PubMed

    Zhang, Jian; Sun, Pingping; Zhao, Xiaowei; Ma, Zhiqiang

    2014-12-21

    The extracellular matrix proteins (ECMs) are widely found in the tissues of multicellular organisms. They consist of various secreted proteins, mainly polysaccharides and glycoproteins. The ECMs involve the exchange of materials and information between resident cells and the external environment. Accurate identification of ECMs is a significant step in understanding the evolution of cancer as well as promises wide range of potential applications in therapeutic targets or diagnostic markers. In this paper, an accurate computational method named PECM is proposed for identifying ECMs. Here, we explore various sequence-derived discriminative features including evolutionary information, predicted secondary structure, and physicochemical properties. Rather than simply combining the features which may bring information redundancy and unwanted noises, we use Fisher-Markov selector and incremental feature selection approach to search the optimal feature subsets. Then, we train our model by the technique of support vector machine (SVM). PECM achieves good prediction performance with the ACC scores about 86% and 90% on testing and independent datasets, which are competitive with the state-of-the-art ECMs prediction tools. A web-server named PECM which implements the proposed approach is freely available at http://59.73.198.144:8088/PECM/. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The HIV matrix protein p17 induces hepatic lipid accumulation via modulation of nuclear receptor transcriptoma

    PubMed Central

    Renga, Barbara; Francisci, Daniela; Carino, Adriana; Marchianò, Silvia; Cipriani, Sabrina; Chiara Monti, Maria; Del Sordo, Rachele; Schiaroli, Elisabetta; Distrutti, Eleonora; Baldelli, Franco; Fiorucci, Stefano

    2015-01-01

    Liver disease is the second most common cause of mortality in HIV-infected persons. Exactly how HIV infection per se affects liver disease progression is unknown. Here we have investigated mRNA expression of 49 nuclear hormone receptors (NRs) and 35 transcriptional coregulators in HepG2 cells upon stimulation with the HIV matrix protein p17. This viral protein regulated mRNA expression of some NRs among which LXRα and its transcriptional co-activator MED1 were highly induced at mRNA level. Dissection of p17 downstream intracellular pathway demonstrated that p17 mediated activation of Jak/STAT signaling is responsible for the promoter dependent activation of LXR. The treatment of both HepG2 as well as primary hepatocytes with HIV p17 results in the transcriptional activation of LXR target genes (SREBP1c and FAS) and lipid accumulation. These effects are lost in HepG2 cells pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide as well as in HepG2 cells pre-incubated with the natural LXR antagonist gymnestrogenin. These results suggest that HIV p17 affects NRs and their related signal transduction thus contributing to the progression of liver disease in HIV infected patients. PMID:26469385

  10. Reducing Jagged 1 and 2 levels prevents cerebral arteriovenous malformations in matrix Gla protein deficiency.

    PubMed

    Yao, Yucheng; Yao, Jiayi; Radparvar, Melina; Blazquez-Medela, Ana M; Guihard, Pierre J; Jumabay, Medet; Boström, Kristina I

    2013-11-19

    Cerebral arteriovenous malformations (AVMs) are common vascular malformations, which may result in hemorrhagic strokes and neurological deficits. Bone morphogenetic protein (BMP) and Notch signaling are both involved in the development of cerebral AVMs, but the cross-talk between the two signaling pathways is poorly understood. Here, we show that deficiency of matrix Gla protein (MGP), a BMP inhibitor, causes induction of Notch ligands, dysregulation of endothelial differentiation, and the development of cerebral AVMs in MGP null (Mgp(-/-)) mice. Increased BMP activity due to the lack of MGP induces expression of the activin receptor-like kinase 1, a BMP type I receptor, in cerebrovascular endothelium. Subsequent activation of activin receptor-like kinase 1 enhances expression of Notch ligands Jagged 1 and 2, which increases Notch activity and alters the expression of Ephrin B2 and Ephrin receptor B4, arterial and venous endothelial markers, respectively. Reducing the expression of Jagged 1 and 2 in the Mgp(-/-) mice by crossing them with Jagged 1 or 2 deficient mice reduces Notch activity, normalizes endothelial differentiation, and prevents cerebral AVMs, but not pulmonary or renal AVMs. Our results suggest that Notch signaling mediates and can modulate changes in BMP signaling that lead to cerebral AVMs.

  11. Influence of extracellular matrix proteins and substratum topography on corneal epithelial cell alignment and migration.

    PubMed

    Raghunathan, Vijaykrishna; McKee, Clayton; Cheung, Wai; Naik, Rachel; Nealey, Paul F; Russell, Paul; Murphy, Christopher J

    2013-08-01

    The basement membrane (BM) of the corneal epithelium presents biophysical cues in the form of topography and compliance that can impact the phenotype and behaviors of cells and their nuclei through modulation of cytoskeletal dynamics. In addition, it is also well known that the intrinsic biochemical attributes of BMs can modulate cell behaviors. In this study, the influence of the combination of exogenous coating of extracellular matrix proteins (ECM) (fibronectin-collagen [FNC]) with substratum topography was investigated on cytoskeletal architecture as well as alignment and migration of immortalized corneal epithelial cells. In the absence of FNC coating, a significantly greater percentage of cells aligned parallel with the long axis of the underlying anisotropically ordered topographic features; however, their ability to migrate was impaired. Additionally, changes in the surface area, elongation, and orientation of cytoskeletal elements were differentially influenced by the presence or absence of FNC. These results suggest that the effects of topographic cues on cells are modulated by the presence of surface-associated ECM proteins. These findings have relevance to experiments using cell cultureware with biomimetic biophysical attributes as well as the integration of biophysical cues in tissue-engineering strategies and the development of improved prosthetics.

  12. Broad Spectrum Anti-Influenza Agents by Inhibiting Self-Association of Matrix Protein 1

    PubMed Central

    Mosier, Philip D.; Chiang, Meng-Jung; Lin, Zhengshi; Gao, Yamei; Althufairi, Bashayer; Zhou, Qibing; Musayev, Faik; Safo, Martin K.; Xie, Hang; Desai, Umesh R.

    2016-01-01

    The matrix protein 1 (M1) of influenza A virus (IAV) exists as a three-dimensional oligomeric structure in mature virions with high sequence conservation across different IAV subtypes, which makes it a potential broad spectrum antiviral target. We hypothesized that impairing self-association of M1 through a small molecule ‘wedge’, which avidly binds to an M1-M1 interface, would result in a completely new class of anti-influenza agents. To establish this proof-of-principle, we performed virtual screening on a library of >70,000 commercially available small molecules that resulted in several plausible ‘wedges’. Biophysical studies showed that the best molecule bound the M1 protein potently and weakened M1-M1 self-association. Most importantly, the agent reduced the thickness of the M1 layer in mature virions and inhibited in ovo propagation of multiple IAV strains including H1N1, pandemic H1N1, H3N2 and H5N1, which supports the “wedge” hypothesis. These results demonstrate that M1 is a promising druggable target for the discovery of a completely new line of broad spectrum anti-IAV agents. PMID:27573445

  13. The HIV matrix protein p17 induces hepatic lipid accumulation via modulation of nuclear receptor transcriptoma.

    PubMed

    Renga, Barbara; Francisci, Daniela; Carino, Adriana; Marchianò, Silvia; Cipriani, Sabrina; Chiara Monti, Maria; Del Sordo, Rachele; Schiaroli, Elisabetta; Distrutti, Eleonora; Baldelli, Franco; Fiorucci, Stefano

    2015-10-15

    Liver disease is the second most common cause of mortality in HIV-infected persons. Exactly how HIV infection per se affects liver disease progression is unknown. Here we have investigated mRNA expression of 49 nuclear hormone receptors (NRs) and 35 transcriptional coregulators in HepG2 cells upon stimulation with the HIV matrix protein p17. This viral protein regulated mRNA expression of some NRs among which LXRα and its transcriptional co-activator MED1 were highly induced at mRNA level. Dissection of p17 downstream intracellular pathway demonstrated that p17 mediated activation of Jak/STAT signaling is responsible for the promoter dependent activation of LXR. The treatment of both HepG2 as well as primary hepatocytes with HIV p17 results in the transcriptional activation of LXR target genes (SREBP1c and FAS) and lipid accumulation. These effects are lost in HepG2 cells pre-incubated with a serum from HIV positive person who underwent a vaccination with a p17 peptide as well as in HepG2 cells pre-incubated with the natural LXR antagonist gymnestrogenin. These results suggest that HIV p17 affects NRs and their related signal transduction thus contributing to the progression of liver disease in HIV infected patients.

  14. Enamel matrix protein adsorption to root surfaces in the presence or absence of human blood.

    PubMed

    Miron, Richard J; Bosshardt, Dieter D; Laugisch, Oliver; Katsaros, Christos; Buser, Daniel; Sculean, Anton

    2012-07-01

    The clinical use of an enamel matrix derivative (EMD) has been shown to promote formation of new cementum, periodontal ligament (PDL), and bone and to significantly enhance the clinical outcomes after regenerative periodontal surgery. It is currently unknown to what extent the bleeding during periodontal surgery may compete with EMD adsorption to root surfaces. The aim of this study is to evaluate the effect of blood interactions on EMD adsorption to root surfaces mimicking various clinical settings and to test their ability to influence human PDL cell attachment and proliferation. Teeth extracted for orthodontic reasons were subjected to ex vivo scaling and root planing and treated with 24% EDTA, EMD, and/or human blood in six clinically related settings to determine the ability of EMD to adsorb to root surfaces. Surfaces were analyzed for protein adsorption via scanning electron microscopy and immunohistochemical staining with an anti-EMD antibody. Primary human PDL cells were seeded on root surfaces and quantified for cell attachment and cell proliferation. Plasma proteins from blood samples altered the ability of EMD to adsorb to root surfaces on human teeth. Samples coated with EMD lacking blood demonstrated a consistent even layer of EMD adsorption to the root surface. In vitro experiments with PDL cells demonstrated improved cell attachment and proliferation in all samples coated with EMD (irrespective of EDTA) when compared to samples containing human blood. Based on these findings, it is advised to minimize blood interactions during periodontal surgeries to allow better adsorption of EMD to root surfaces.

  15. Matrix Gla-protein: the calcification inhibitor in need of vitamin K.

    PubMed

    Schurgers, Leon J; Cranenburg, Ellen C M; Vermeer, Cees

    2008-10-01

    Among the proteins involved in vascular calcium metabolism, the vitamin K-dependent matrix Gla-protein (MGP) plays a dominant role. Although on a molecular level its mechanism of action is not completely understood, it is generally accepted that MGP is a potent inhibitor of arterial calcification. Its pivotal importance for vascular health is demonstrated by the fact that there seems to be no effective alternative mechanism for calcification inhibition in the vasculature. An optimal vitamin K intake is therefore important to maintain the risk and rate of calcification as low as possible. With the aid of conformation-specific antibodies MGP species in both tissue and the circulation have been detected in the healthy population, and significant differences were found in patients with cardiovascular disease (CVD). Using ELISA-based assays, uncarboxylated MGP (ucMGP) was demonstrated to be a promising biomarker for cardiovascular calcification detection. These assays may have potential value for identifying patients as well as apparently healthy subjects at high risk for CVD and/or cardiovascular calcification and for monitoring the treatment of CVD and vascular calcification.

  16. [Nuclear protein matrix from giant nuclei of Chironomus plumosus determinates polythene chromosome organization].

    PubMed

    Makarov, M S; Chentsov, Iu S

    2010-01-01

    Giant nuclei from salivary glands of Chironomus plumosus were treated in situ with detergent, 2 M NaCl and nucleases in order to reveal residual nuclear matrix proteins (NMP). It was shown, that preceding stabilization of non-histone proteins with 2 mM CuCl2 allowed to visualize the structure of polythene chromosomes at every stage of the extraction of histones and DNA. Stabilized NPM of polythene chromosomes maintains their morphology and banding patterns, which is observed by light and electron microscopy, whereas internal fibril net or residual nucleoli are not found. In stabilized NPM of polythene chromosomes, topoisomerase IIalpha and SMC1 retain their localization that is typical of untreated chromosomes. NPM of polythene chromosomes also includes sites of DNA replication, visualized with BrDU incubation, and some RNA-components. So, we can conclude that structure of NPM from giant nuclei is equal to NPM from normal interphase nuclei, and that morphological features of polythene chromosomes depend on the presence of NMP.

  17. Alterations in junctional proteins, inflammatory mediators and extracellular matrix molecules in eosinophilic esophagitis.

    PubMed

    Abdulnour-Nakhoul, Solange M; Al-Tawil, Youhanna; Gyftopoulos, Alex A; Brown, Karen L; Hansen, Molly; Butcher, Kathy F; Eidelwein, Alexandra P; Noel, Robert A; Rabon, Edd; Posta, Allison; Nakhoul, Nazih L

    2013-08-01

    Eosinophilic esophagitis (EoE), an inflammatory atopic disease of the esophagus, causes massive eosinophil infiltration, basal cell hyperplasia, and sub-epithelial fibrosis. To elucidate cellular and molecular factors involved in esophageal tissue damage and remodeling, we examined pinch biopsies from EoE and normal pediatric patients. An inflammation gene array confirmed that eotaxin-3, its receptor CCR3 and interleukins IL-13 and IL-5 were upregulated. An extracellular matrix (ECM) gene array revealed upregulation of CD44 & CD54, and of ECM proteases (ADAMTS1 & MMP14). A cytokine antibody array showed a marked decrease in IL-1α and IL-1 receptor antagonist and an increase in eotaxin-2 and epidermal growth factor. Western analysis indicated reduced expression of intercellular junction proteins, E-cadherin and claudin-1 and increased expression of occludin and vimentin. We have identified a number of novel genes and proteins whose expression is altered in EoE. These findings provide new insights into the molecular mechanisms of the disease.

  18. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure.

    PubMed

    Liu, Xiaojun; Zeng, Shimei; Dong, Shaojian; Jin, Can; Li, Jiale

    2015-01-01

    In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%). Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer.

  19. A Novel Matrix Protein Hic31 from the Prismatic Layer of Hyriopsis Cumingii Displays a Collagen-Like Structure

    PubMed Central

    Dong, Shaojian; Jin, Can; Li, Jiale

    2015-01-01

    In this study, we clone and characterize a novel matrix protein, hic31, from the mantle of Hyriopsis cumingii. The amino acid composition of hic31 consists of a high proportion of Glycine residues (26.67%). Tissue expression detection by RT-PCR indicates that hic31 is expressed specifically at the mantle edge. In situ hybridization results reveals strong signals from the dorsal epithelial cells of the outer fold at the mantle edge, and weak signals from inner epithelial cells of the same fold, indicating that hic31 is a prismatic-layer matrix protein. Although BLASTP results identify no shared homology with other shell-matrix proteins or any other known proteins, the hic31 tertiary structure is similar to that of collagen I, alpha 1 and alpha 2. It has been well proved that collagen forms the basic organic frameworks in way of collagen fibrils and minerals present within or outside of these fibrils. Therefore, hic31 might be a framework-matrix protein involved in the prismatic-layer biomineralization. Besides, the gene expression of hic31 increase in the early stages of pearl sac development, indicating that hic31 may play important roles in biomineralization of the pearl prismatic layer. PMID:26262686

  20. Off surface matrix based on-chip electrochemical biosensor platform for protein biomarker detection in undiluted serum.

    PubMed

    Arya, Sunil K; Kongsuphol, Patthara; Park, Mi Kyoung

    2017-06-15

    The manuscript describes a concept of using off surface matrix modified with capturing biomolecule for on-chip electrochemical biosensing. 3D matrix made by laser engraving of polymethyl methacrylate (PMMA) sheet as off surface matrix was integrated in very close vicinity of the electrode surface. Laser engraving and holes in PMMA along with spacing from surface provide fluidic channel and incubation chamber. Covalent binding of capturing biomolecule (anti-TNF-α antibody) on off-surface matrix was achieved via azide group activity of 4-fluoro-3-nitro-azidobenzene (FNAB), which act as cross-linker and further covalently binds to anti-TNF-α antibody via thermal reaction. Anti-TNF-α/FNAB/PMMA matrix was then integrated over comb structured gold electrode array based sensor chip. Separate surface modification followed by integration of sensor helped to prevent the sensor chip surface from fouling during functionalization. Nonspecific binding was prevented using starting block T20 (PBS). Results for estimating protein biomarker (TNF-α) in undiluted serum using Anti-TNF-α/FNAB/PMMA/Au reveal that system can detect TNF-α in 100pg/ml to 100ng/ml range with high sensitivity of 119nA/(ng/ml), with negligible interference from serum proteins and other cytokines. Thus, use of off surface matrix may provide the opportunity to electrochemically sense biomarkers sensitively to ng/ml range with negligible nonspecific binding and false signal in undiluted serum. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Pex12 Interacts with Pex5 and Pex10 and Acts Downstream of Receptor Docking in Peroxisomal Matrix Protein Import

    PubMed Central

    Chang, Chia-Che; Warren, Daniel S.; Sacksteder, Katherine A.; Gould, Stephen J.

    1999-01-01

    Peroxisomal matrix protein import requires PEX12, an integral peroxisomal membrane protein with a zinc ring domain at its carboxy terminus. Mutations in human PEX12 result in Zellweger syndrome, a lethal neurological disorder, and implicate the zinc ring domain in PEX12 function. Using two-hybrid studies, blot overlay assays, and coimmunoprecipitation experiments, we observed that the zinc-binding domain of PEX12 binds both PEX5, the PTS1 receptor, and PEX10, another integral peroxisomal membrane protein required for peroxisomal matrix protein import. Furthermore, we identified a patient with a missense mutation in the PEX12 zinc-binding domain, S320F, and observed that this mutation reduces the binding of PEX12 to PEX5 and PEX10. Overexpression of either PEX5 or PEX10 can suppress this PEX12 mutation, providing genetic evidence that these interactions are biologically relevant. PEX5 is a predominantly cytoplasmic protein and previous PEX5-binding proteins have been implicated in docking PEX5 to the peroxisome surface. However, we find that loss of PEX12 or PEX10 does not reduce the association of PEX5 with peroxisomes, demonstrating that these peroxins are not required for receptor docking. These and other results lead us to propose that PEX12 and PEX10 play direct roles in peroxisomal matrix protein import downstream of the receptor docking event. PMID:10562279

  2. Proteomic Analysis of Tendon Extracellular Matrix Reveals Disease Stage-specific Fragmentation and Differential Cleavage of COMP (Cartilage Oligomeric Matrix Protein)*

    PubMed Central

    Dakin, Stephanie Georgina; Smith, Roger Kenneth Whealands; Heinegård, Dick; Önnerfjord, Patrik; Khabut, Areej; Dudhia, Jayesh

    2014-01-01

    During inflammatory processes the extracellular matrix (ECM) is extensively remodeled, and many of the constituent components are released as proteolytically cleaved fragments. These degradative processes are better documented for inflammatory joint diseases than tendinopathy even though the pathogenesis has many similarities. The aims of this study were to investigate the proteomic composition of injured tendons during early and late disease stages to identify disease-specific cleavage patterns of the ECM protein cartilage oligomeric matrix protein (COMP). In addition to characterizing fragments released in naturally occurring disease, we hypothesized that stimulation of tendon explants with proinflammatory mediators in vitro would induce fragments of COMP analogous to natural disease. Therefore, normal tendon explants were stimulated with IL-1β and prostaglandin E2, and their effects on the release of COMP and its cleavage patterns were characterized. Analyses of injured tendons identified an altered proteomic composition of the ECM at all stages post injury, showing protein fragments that were specific to disease stage. IL-1β enhanced the proteolytic cleavage and release of COMP from tendon explants, whereas PGE2 had no catabolic effect. Of the cleavage fragments identified in early stage tendon disease, two fragments were generated by an IL-1-mediated mechanism. These fragments provide a platform for the development of neo-epitope assays specific to injury stage for tendon disease. PMID:24398684

  3. Quantification of Extracellular Matrix Proteins from a Rat Lung Scaffold to Provide a Molecular Readout for Tissue Engineering*

    PubMed Central

    Hill, Ryan C.; Calle, Elizabeth A.; Dzieciatkowska, Monika; Niklason, Laura E.; Hansen, Kirk C.

    2015-01-01

    The use of extracellular matrix (ECM)1 scaffolds, derived from decellularized tissues for engineered organ generation, holds enormous potential in the field of regenerative medicine. To support organ engineering efforts, we developed a targeted proteomics method to extract and quantify extracellular matrix components from tissues. Our method provides more complete and accurate protein characterization than traditional approaches. This is accomplished through the analysis of both the chaotrope-soluble and -insoluble protein fractions and using recombinantly generated stable isotope labeled peptides for endogenous protein quantification. Using this approach, we have generated 74 peptides, representing 56 proteins to quantify protein in native (nondecellularized) and decellularized lung matrices. We have focused on proteins of the ECM and additional intracellular proteins that are challenging to remove during the decellularization procedure. Results indicate that the acellular lung scaffold is predominantly composed of structural collagens, with the majority of these proteins found in the insoluble ECM, a fraction that is often discarded using widely accepted proteomic methods. The decellularization procedure removes over 98% of intracellular proteins evaluated and retains, to varying degrees, proteoglycans and glycoproteins of the ECM. Accurate characterization of ECM proteins from tissue samples will help advance organ engineering efforts by generating a molecular readout that can be correlated with functional outcome to drive the next generation of engineered organs. PMID:25660013

  4. Extracellular matrix protein in calcified endoskeleton: a potential additive for crystal growth and design

    NASA Astrophysics Data System (ADS)

    Azizur Rahman, M.; Fujimura, Hiroyuki; Shinjo, Ryuichi; Oomori, Tamotsu

    2011-06-01

    In this study, we demonstrate a key function of extracellular matrix proteins (ECMPs) on seed crystals, which are isolated from calcified endoskeletons of soft coral and contain only CaCO 3 without any living cells. This is the first report that an ECMP protein extracted from a marine organism could potentially influence in modifying the surface of a substrate for designing materials via crystallization. We previously studied with the ECMPs from a different type of soft coral ( Sinularia polydactyla) without introducing any seed crystals in the process , which showed different results. Thus, crystallization on the seed in the presence of ECMPs of present species is an important first step toward linking function to individual proteins from soft coral. For understanding this interesting phenomenon, in vitro crystallization was initiated in a supersaturated solution on seed particles of calcite (1 0 4) with and without ECMPs. No change in the crystal growth shape occurred without ECMPs present during the crystallization process. However, with ECMPs, the morphology and phase of the crystals in the crystallization process changed dramatically. Upon completion of crystallization with ECMPs, an attractive crystal morphology was found. Scanning electron microscopy (SEM) was utilized to observe the crystal morphologies on the seeds surface. The mineral phases of crystals nucleated by ECMPs on the seeds surface were examined by Raman spectroscopy. Although 50 mM Mg 2+ is influential in making aragonite in the crystallization process, the ECMPs significantly made calcite crystals even when 50 mM Mg 2+ was present in the process. Crystallization with the ECMP additive seems to be a technically attractive strategy to generate assembled micro crystals that could be used in crystals growth and design in the Pharmaceutical and biotechnology industries.

  5. Adhesion dynamics of porcine esophageal fibroblasts on extracellular matrix protein-functionalized poly(lactic acid).

    PubMed

    Cai, Ning; Gong, Yingxue; Chian, Kerm Sin; Chan, Vincent; Liao, Kin

    2008-03-01

    Effective attachment of esophageal cells on biomaterials is one important requirement in designing engineered esophagus substitute for esophageal cancer treatment. In this study, poly(lactic acid) (PLA) was subjected to surface modification by coupling extracellular matrix (ECM) proteins on its surface to promote cell adhesion. Two typical ECM proteins, collagen type I (COL) and fibronectin (FN), were immobilized on the PLA surface with the aid of glutaraldehyde as a cross linker between aminolyzed PLA and ECM proteins. By using confocal reflectance interference contrast microscopy (C-RICM) integrating with phase contrast microscopy, the long-term adhesion dynamics of porcine esophageal fibroblasts (PEFs) on four types of surfaces (unmodified PLA, PLA-COOH, PLA-COL and PLA-FN) was investigated during 24 h of culture. It is demonstrated by C-RICM results that PEFs form strong adhesion contact on all four types of surfaces at different stages of cell seeding. Among the four surfaces, PEFs on the PLA-FN surface reach the maximum adhesion energy (9.5 x 10(-7) J m(-2)) in the shortest time (20 min) during the initial stage of cell seeding. After adhesion energy reaches the maximum value, PEFs maintain their highly deformed geometries till they reached a steady state after 20 h of culture. F-actin immunostaining results show that the evolvement of spatial organization of F-actin is tightly correlated with the formation of adhesion contact and cell spreading. Furthermore, the cell attachment ratio of PEFs on PLA in 2 h is only 26% compared with 88% on PLA-FN, 73% on PLA-COL and 36% on PLA-COOH. All the results demonstrate the effect of surface functionalization on the biophysical responses of PEFs in cell adhesion. Fibronectin-immobilized PLA demonstrates promising potential for application as an engineered esophagus substitute.

  6. Membrane Interactions of the Mason-Pfizer Monkey Virus Matrix Protein and Its Budding Deficient Mutants.

    PubMed

    Kroupa, Tomáš; Langerová, Hana; Doležal, Michal; Prchal, Jan; Spiwok, Vojtěch; Hunter, Eric; Rumlová, Michaela; Hrabal, Richard; Ruml, Tomáš

    2016-11-20

    Matrix proteins (MAs) play a key role in the transport of retroviral proteins inside infected cells and in the interaction with cellular membranes. In most retroviruses, retroviral MAs are N-terminally myristoylated. This modification serves as a membrane targeting signal and also as an anchor for membrane interaction. The aim of this work was to characterize the interactions anchoring retroviral MA at the plasma membrane of infected cell. To address this issue, we compared the structures and membrane affinity of the Mason-Pfizer monkey virus (M-PMV) wild-type MA with its two budding deficient double mutants, that is, T41I/T78I and Y28F/Y67F. The structures of the mutants were determined using solution NMR spectroscopy, and their interactions with water-soluble phospholipids were studied. Water-soluble phospholipids are widely used models for studying membrane interactions by solution NMR spectroscopy. However, this approach might lead to artificial results due to unnatural hydrophobic interactions. Therefore, we used a new approach based on the measurement of the loss of the (1)H NMR signal intensity of the protein sample induced by the addition of the liposomes containing phospholipids with naturally long fatty acids. HIV-1 MA was used as a positive control because its ability to interact with liposomes has already been described. We found that in contrast to HIV-1, the M-PMV MA interacted with the liposomes differently and much weaker. In our invivo experiments, the M-PMV MA did not co-localize with lipid rafts. Therefore, we concluded that M-PMV might adopt a different membrane binding mechanism than HIV-1.

  7. Matrix Gla protein inhibits ectopic calcification by a direct interaction with hydroxyapatite crystals.

    PubMed

    O'Young, Jason; Liao, Yinyin; Xiao, Yizhi; Jalkanen, Jari; Lajoie, Gilles; Karttunen, Mikko; Goldberg, Harvey A; Hunter, Graeme K

    2011-11-16

    Mice lacking the gene encoding matrix gla protein (MGP) exhibit massive mineral deposition in blood vessels and die soon after birth. We hypothesize that MGP prevents arterial calcification by adsorbing to growing hydroxyapatite (HA) crystals. To test this, we have used a combined experimental-computational approach. We synthesized peptides covering the entire sequence of human MGP, which contains three sites of serine phosphorylation and five sites of γ-carboxylation, and studied their effects on HA crystal growth using a constant-composition autotitration assay. In parallel studies, the interactions of these sequences with the {100} and {001} faces of HA were analyzed using atomistic molecular dynamics (MD) simulations. YGlapS (amino acids 1-14 of human MGP) and SK-Gla (MGP43-56) adsorbed rapidly to the {100} and {001} faces and strongly inhibited HA growth (IC(50) = 2.96 μg/mL and 4.96 μg/mL, respectively). QR-Gla (MGP29-42) adsorbed more slowly and was a moderate growth inhibitor, while the remaining three (nonpost-translationally modified) peptides had little or no effect in either analysis. Substitution of gla with glutamic acid reduced the adsorption and inhibition activities of SK-Gla and (to a lesser extent) QR-Gla but not YGlapS; substitution of phosphoserine with serine reduced the inhibitory potency of YGlapS. These studies suggest that MGP prevents arterial calcification by a direct interaction with HA crystals that involves both phosphate groups and gla residues of the protein. The strong correlation between simulated adsorption and measured growth inhibition indicates that MD provides a powerful tool to predict the effects of proteins and peptides on crystal formation.

  8. Viral infectivity and intracellular distribution of matrix (M) protein of canine distemper virus are affected by actin filaments.

    PubMed

    Klauschies, F; Gützkow, T; Hinkelmann, S; von Messling, V; Vaske, B; Herrler, G; Haas, L

    2010-09-01

    To investigate the role of cytoskeletal components in canine distemper virus (CDV) replication, various agents were used that interfere with turnover of actin filaments and microtubules. Only inhibition of actin filaments significantly reduced viral infectivity. Analysis of the intracellular localization of the viral matrix (M) protein revealed that it aligned along actin filaments. Treatment with actin filament-disrupting drugs led to a marked intracellular redistribution of M protein during infection as well as transfection. In contrast, the localization of the CDV fusion (F) protein was not significantly changed during transfection. Thus, a M protein-actin filament interaction appears to be important for generation of infectious CDV.

  9. The effect of enamel matrix proteins and deproteinized bovine bone mineral on heterotopic bone formation.

    PubMed

    Donos, Nikolaos; Kostopoulos, Lambros; Tonetti, Maurizio; Karring, Thorkild; Lang, Niklaus P

    2006-08-01

    To evaluate the osteoinductive potential of deproteinized bovine bone mineral (DBBM) and an enamel matrix derivative (EMD) in the muscle of rats. Sixteen rats were used in this study. The animals were divided in three groups. Group A: a pouch was created in one of the pectoralis profundis muscles of the thorax of the rats and DBBM particles (Bio-Oss) were placed into the pouch. Healing: 60 days. Group B: a small pouch was created on both pectoralis profundis muscles at each side of the thorax midline. In one side, a mixture of EMD (Emdogain) mixed with DBBM was placed into one of the pouches, whereas in the contralateral side of the thorax the pouch was implanted with DBBM mixed with the propylene glycol alginate (PGA--carrier for enamel matrix proteins of EMD). Healing: 60 days. Group C: the same procedure as group B, but with a healing period of 120 days. Qualitative histological analysis of the results was performed. At 60 days, the histological appearance of the DBBM particles implanted alone was similar to that of the particles implanted together with EMD or PGA at both 60 and 120 days. The DBBM particles were encapsulated into a connective tissue stroma and an inflammatory infiltrate. At 120 days, the DBBM particles implanted together with EMD or PGA exhibited the presence of resorption lacunae in some cases. Intramuscular bone formation was not encountered in any group. The implantation of DBBM particles alone, combined with EMD or its carrier (PGA) failed to exhibit extraskeletal, bone-inductive properties.

  10. [Mineral phase and protein matrix status of rat bony tissue after a flight on the Kosmos-1129 biosatellite].

    PubMed

    Prokhonchukov, A A; Desiatnichenko, K S; Tigranian, R A; Komissarova, N A

    1982-01-01

    The major parameters of the mineral component and protein matrix of bones were investigated in 30 rats flown onboard Cosmos-1129. Postflight, the content of calcium decreased by 7.8%, that of phosphorus diminished by 11.8%, the Ca/P ratio increased by 5.9%, the content of collagen diminished by 14.7% and that of non-collagenous proteins by 45.7% and the content of sialic and hexuronic acids increased by 36.2% and 14.6%, respectively, as compared to the vivarium controls. The paper discusses the role of EDTA-and HCl-protein extracts, soluble and poorly soluble calcium fractions, protein-Ca-phosphate complex, sialic and hexuronic acids in the mechanism of calcium binding by the bone organic matrix.

  11. On-bead expression of recombinant proteins in an agarose gel matrix coated on a glass slide.

    PubMed

    Lee, Kyung-Ho; Lee, Ka-Young; Byun, Ju-Young; Kim, Byung-Gee; Kim, Dong-Myung

    2012-05-07

    A system for expression and in situ display of recombinant proteins on a microbead surface is described. Biotinylated PCR products were immobilized on microbead surfaces, which were then embedded in a gel matrix and supplied with translation machinery and substrates. Upon the incubation of the gel matrix, target proteins encoded on the bead-immobilized DNA were expressed and captured on the same bead, thus allowing bead-mediated linkage of DNA and encoded proteins. The new method combines the simplicity and convenience of solid-phase separation of genetic information with the benefits of cell-free protein synthesis, such as instant translation of genetic information, unrestricted substrate accessibility and flexible assay configuration design.

  12. Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry for the Investigation of Proteins and Peptides

    NASA Astrophysics Data System (ADS)

    Burnum, Kristin E.; Frappier, Sara L.; Caprioli, Richard M.

    2008-07-01

    Mass spectrometry (MS) is an excellent technology for molecular imaging because of its high data dimensionality. MS can monitor thousands of individual molecular data channels measured as mass-to-charge (m/z). We describe the use of matrix-assisted laser desorption/ionization (MALDI) MS for the image analysis of proteins, peptides, lipids, drugs, and metabolites in tissues. We discuss the basic instrumentation and sample preparation methods needed to produce high-resolution images and high image reproducibility. Matrix-addition protocols are briefly discussed along with normal operating procedures, and selected biological and medical applications of MALDI imaging MS are described. We give examples of both two- and three-dimensional imaging, including normal mouse embryo implantation, sperm maturation in mouse epididymis, protein distributions in brain sections, protein alterations as a result of drug administration, and protein changes in brain due to neurodegeneration and tumor formation. Advantages of this technology and future challenges for its improvement are discussed.

  13. Hot Melt Extrusion for Sustained Protein Release: Matrix Erosion and In Vitro Release of PLGA-Based Implants.

    PubMed

    Cossé, Anne; König, Corinna; Lamprecht, Alf; Wagner, Karl G

    2017-01-01

    The design of biodegradable implants for sustained release of proteins is a complex challenge optimizing protein polymer interaction in combination with a mini-scale process which is predictive for production. The process of hot melt extrusion (HME) was therefore conducted on 5- and 9-mm mini-scale twin screw extruders. Poly(lactic-co-glycolic acid) (PLGA) implants were characterized for their erosion properties and the in vitro release of the embedded protein (bovine serum albumin, BSA). The release of acidic monomers as well as other parameters (pH value, mass loss) during 16 weeks indicated a delayed onset of matrix erosion in week 3. BSA-loaded implants released 17.0% glycolic and 5.9% lactic acid after a 2-week lag time. Following a low burst release (3.7% BSA), sustained protein release started in week 4. Storage under stress conditions (30°C, 75% rH) revealed a shift of erosion onset of 1 week (BSA-loaded implants: 26.9% glycolic and 9.3% lactic acid). Coherent with the changed erosion profiles, an influence on the protein release was observed. Confocal laser scanning and Raman microscopy showed a homogenous protein distribution throughout the matrix after extrusion and during release studies. Raman spectra indicated a conformational change of the protein structure which could be one reason for incomplete protein release. The study underlined the suitability of the HME process to obtain a solid dispersion of protein inside a polymeric matrix providing sustained protein release. However, the incomplete protein release and the impact by storage conditions require thorough characterization and understanding of erosion and release mechanisms.

  14. Crystallization of bFGF-DNA Aptamer Complexes Using a Sparse Matrix Designed for Protein-Nucleic Acid Complexes

    NASA Technical Reports Server (NTRS)

    Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.

  15. Inhibition of bone morphogenetic protein signal transduction prevents the medial vascular calcification associated with matrix Gla protein deficiency.

    PubMed

    Malhotra, Rajeev; Burke, Megan F; Martyn, Trejeeve; Shakartzi, Hannah R; Thayer, Timothy E; O'Rourke, Caitlin; Li, Pingcheng; Derwall, Matthias; Spagnolli, Ester; Kolodziej, Starsha A; Hoeft, Konrad; Mayeur, Claire; Jiramongkolchai, Pawina; Kumar, Ravindra; Buys, Emmanuel S; Yu, Paul B; Bloch, Kenneth D; Bloch, Donald B

    2015-01-01

    Matrix Gla protein (MGP) is reported to inhibit bone morphogenetic protein (BMP) signal transduction. MGP deficiency is associated with medial calcification of the arterial wall, in a process that involves both osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) and mesenchymal transition of endothelial cells (EndMT). In this study, we investigated the contribution of BMP signal transduction to the medial calcification that develops in MGP-deficient mice. MGP-deficient mice (MGP(-/-)) were treated with one of two BMP signaling inhibitors, LDN-193189 or ALK3-Fc, beginning one day after birth. Aortic calcification was assessed in 28-day-old mice by measuring the uptake of a fluorescent bisphosphonate probe and by staining tissue sections with Alizarin red. Aortic calcification was 80% less in MGP(-/-) mice treated with LDN-193189 or ALK3-Fc compared with vehicle-treated control animals (P<0.001 for both). LDN-193189-treated MGP(-/-) mice survived longer than vehicle-treated MGP(-/-) mice. Levels of phosphorylated Smad1/5 and Id1 mRNA (markers of BMP signaling) did not differ in the aortas from MGP(-/-) and wild-type mice. Markers of EndMT and osteogenesis were increased in MGP(-/-) aortas, an effect that was prevented by LDN-193189. Calcification of isolated VSMCs was also inhibited by LDN-193189. Inhibition of BMP signaling leads to reduced vascular calcification and improved survival in MGP(-/-) mice. The EndMT and osteogenic transdifferentiation associated with MGP deficiency is dependent upon BMP signaling. These results suggest that BMP signal transduction has critical roles in the development of vascular calcification in MGP-deficient mice.

  16. [Role of enamel matrix proteins in inducing biomimetic mineralization of the enamel: a study with quartz crystal microbalance technique].

    PubMed

    Wang, Zhi-wei; Zhao, Yue-ping; Zhou, Chang-ren; Liao, Guo-wei

    2009-05-01

    To investigate the adsorption behavior of enamel matrix proteins (EMPs) on the enamel surface and study their effect on biomineralization of enamel using quartz crystal microbalance (QCM) technique. The EMPs were adsorbed on the enamel surface to form a protein film, which was soaked in simulated body fluid solutions. After 30 days of biomimetic mineralization, the hydroxyapatite nucleation, growth and aggregation occurred with hydroxyapatite crystal formation on the enamel surface. The EMPs play a key role in regulating enamel mineralization.

  17. [The nuclear matrix proteins (mol. mass 38 and 50 kDa) are transported by chromosomes in mitosis].

    PubMed

    Murasheva, M I; Chentsov, Iu S

    2010-01-01

    It was shown by immunofluorescence method that serum M68 and serum K43 from patients with autoimmune disease stain interphase nuclei and periphery of mitotic chromosomes of pig kidney cells. Western blotting reveals the polypeptide with mol. mass of 50 kDa in serum M68, and the polypeptide with mol. mass of 38 kDa in serum K43. In the nuclear protein matrix, the antibodies to protein with mol. mass of 38 kDa stained only nucleolar periphery, while the antibodies to the protein with mol. mass of 50 kDa stained both the nucleolar periphery and all the interphase nucleus. It shows that among all components of nuclear protein matrix (lamina, internuclear network, residual nucleoli) only nucleolar periphery contains the 38 kDa protein, while the 50 kDa protein is a part of residual nucleolar periphery and takes part in nuclear protein network formation. In the interphase cells, both proteins were in situ localized in the nuclei, but one of them with mol. mass of 50 kDa was in the form of small clearly outlined granules, while the other (38 kDa) was in the form of small bright granules against the background of diffusely stained nuclei. Both proteins were also revealed as continuous ring around nucleolar periphery. During all mitotic stages, the 50 kDa protein was seen on the chromosomal periphery as a cover, and the 38 kDa protein formed separate fragments and granules around them. After nuclear and chromosome decondensation induced by hypotonic treatment, both antibodies stain interphase nuclei in diffuse manner, but in mitotic cells they stained the surface of the swollen chromosomes. The polypeptide with mol. mass of 50 kDa maintained strong connection with chromosome periphery both in norm and under condition of decondensation induced by hypotonic treatment and at subsequent recondensation in isotonic medium. In contrast, the protein with mol. mass of 38 kDa partially lost the contact with a chromosome during recondensation appearing also in the form of granules in

  18. Dimerization Efficiency of Canine Distemper Virus Matrix Protein Regulates Membrane-Budding Activity.

    PubMed

    Bringolf, Fanny; Herren, Michael; Wyss, Marianne; Vidondo, Beatriz; Langedijk, Johannes P; Zurbriggen, Andreas; Plattet, Philippe

    2017-08-15

    Paramyxoviruses rely on the matrix (M) protein to orchestrate viral assembly and budding at the plasma membrane. Although the mechanistic details remain largely unknown, structural data suggested that M dimers and/or higher-order oligomers may facilitate membrane budding. To gain functional insights, we employed a structure-guided mutagenesis approach to investigate the role of canine distemper virus (CDV) M protein self-assembly in membrane-budding activity. Three six-alanine-block (6A-block) mutants with mutations located at strategic oligomeric positions were initially designed. While the first one includes residues potentially residing at the protomer-protomer interface, the other two display amino acids located within two distal surface-exposed α-helices proposed to be involved in dimer-dimer contacts. We further focused on the core of the dimeric interface by mutating asparagine 138 (N138) to several nonconservative amino acids. Cellular localization combined with dimerization and coimmunopurification assays, performed under various denaturing conditions, revealed that all 6A-block mutants were impaired in self-assembly and cell periphery accumulation. These phenotypes correlated with deficiencies in relocating CDV nucleocapsid proteins to the cell periphery and in virus-like particle (VLP) production. Conversely, all M-N138 mutants remained capable of self-assembly, though to various extents, which correlated with proper accumulation and redistribution of nucleocapsid proteins at the plasma membrane. However, membrane deformation and VLP assays indicated that the M-N138 variants exhibiting the most reduced dimerization propensity were also defective in triggering membrane remodeling and budding, despite proper plasma membrane accumulation. Overall, our data provide mechanistic evidence that the efficiency of CDV M dimerization/oligomerization governs both cell periphery localization and membrane-budding activity.IMPORTANCE Despite the availability of

  19. A nano-sized manganese oxide in a protein matrix as a natural water-oxidizing site.

    PubMed

    Najafpour, Mohammad Mahdi; Ghobadi, Mohadeseh Zarei; Haghighi, Behzad; Tomo, Tatsuya; Carpentier, Robert; Shen, Jian-Ren; Allakhverdiev, Suleyman I

    2014-08-01

    The purpose of this review is to present recent advances in the structural and functional studies of water-oxidizing center of Photosystem II and its surrounding protein matrix in order to synthesize artificial catalysts for production of clean and efficient hydrogen fuel.

  20. Matrix proteins associated with bone calcification are present in human vascular smooth muscle cells grown in vitro.

    PubMed

    Severson, A R; Ingram, R T; Fitzpatrick, L A

    1995-12-01

    Atherosclerotic lesions are composed of cellular elements that have migrated from the vessel lumen and wall to form the cellular component of the developing plaque. The cellular elements are influenced by various growth-regulatory molecules, cytokines, chemoattractants, and vasoregulatory molecules that regulate the synthesis of the extracellular matrix composing the plaque. Because vascular smooth muscle cells (VSMC) constitute the major cellular elements of the atherosclerotic plaque and are thought to be responsible for the extracellular matrix that becomes calcified in mature plaques, immunostaining for collagenous and noncollagenous proteins typically associated with bone matrix was conducted on VSMC grown in vitro. VSMC obtained from human aorta were grown in chambers on glass slides and immunostained for procollagen type I, bone sialoprotein, osteonectin, osteocalcin, osteopontin, decorin, and biglycan. VSMC demonstrated an intense staining for procollagen type I, and a moderately intense staining for the noncollagenous proteins, bone sialoprotein and osteonectin, two proteins closely associated with bone mineralization. Minimal immunostaining was noted for osteocalcin, osteopontin, decorin, and biglycan. The presence in VSMC of collagenous and noncollagenous proteins associated with bone mineralization suggest that the smooth muscle cells in the developing atherosclerotic plaque play an important role in the deposition of the extracellular matrix involved in calcification of developing lesions.

  1. Bap, a Biofilm Matrix Protein of Staphylococcus aureus Prevents Cellular Internalization through Binding to GP96 Host Receptor

    PubMed Central

    Valle, Jaione; Latasa, Cristina; Gil, Carmen; Toledo-Arana, Alejandro; Solano, Cristina; Penadés, José R.; Lasa, Iñigo

    2012-01-01

    The biofilm matrix, composed of exopolysaccharides, proteins, nucleic acids and lipids, plays a well-known role as a defence structure, protecting bacteria from the host immune system and antimicrobial therapy. However, little is known about its responsibility in the interaction of biofilm cells with host tissues. Staphylococcus aureus, a leading cause of biofilm-associated chronic infections, is able to develop a biofilm built on a proteinaceous Bap-mediated matrix. Here, we used the Bap protein as a model to investigate the role that components of the biofilm matrix play in the interaction of S. aureus with host cells. The results show that Bap promotes the adhesion but prevents the entry of S. aureus into epithelial cells. A broad analysis of potential interaction partners for Bap using ligand overlayer immunoblotting, immunoprecipitation with purified Bap and pull down with intact bacteria, identified a direct binding between Bap and Gp96/GRP94/Hsp90 protein. The interaction of Bap with Gp96 provokes a significant reduction in the capacity of S. aureus to invade epithelial cells by interfering with the fibronectin binding protein invasion pathway. Consistent with these results, Bap deficient bacteria displayed an enhanced capacity to invade mammary gland epithelial cells in a lactating mice mastitis model. Our observations begin to elucidate the mechanisms by which components of the biofilm matrix can facilitate the colonization of host tissues and the establishment of persistent infections. PMID:22876182

  2. Circulating uncarboxylated matrix gla protein is associated with vitamin K nutritional status, but not coronary artery calcium, in older adults

    USDA-ARS?s Scientific Manuscript database

    Matrix Gla protein (MGP) is a calcification inhibitor in vascular tissue. To function, MGP must be carboxylated by vitamin K. Evidence suggests that circulating uncarboxylated MGP (ucMGP) is elevated in diseased individuals with vascular calcification. The extent to which this reflects vitamin K’s r...

  3. Differential expression of cardiac muscle mitochondrial matrix proteins in broilers from ascites-resistant and susceptible lines.

    PubMed

    Cisar, C R; Balog, J M; Anthony, N B; Donoghue, A M

    2005-05-01

    Ascites is a metabolic disorder of modern broilers that is distinguished by cardiopulmonary insufficiency in the face of intense oxygen demands of rapidly growing tissues. Broilers with ascites exhibit sustained elevation of pulmonary arterial pressure and right ventricular hypertrophy, the end result of which is heart failure. It has been shown that mitochondrial function is impaired in broilers with ascites. In the current study, mitochondrial matrix protein levels were compared between ascites-resistant line broilers and ascites-susceptible line broilers with and without ascites using two-dimensional (2-D) gel electrophoresis. One hundred seventy-two protein spots were detected on the gels, and 9 of the spots were present at different levels in the 4 groups of broilers. These 9 protein spots were selected for identification by mass spectrometry. Two of the spots were found to contain single mitochondrial matrix proteins. Both mitochondrial matrix proteins, the dihydrolipoamide succinyltransferase component of the 2-oxoglutarate dehydrogenase complex and the alpha-subunit of mitochondrial trifunctional enzyme, were present at higher levels in ascites-resistant line broilers with ascites in the present study. The elevated levels of 2 key proteins in aerobic metabolism in ascites-resistant line broilers with ascites observed in the present study suggests that the mitochondria of broilers with this disease may respond inappropriately to hypoxia.

  4. Altered expression of tight junction proteins and matrix metalloproteinases in thiamine-deficient mouse brain.

    PubMed

    Beauchesne, Elizabeth; Desjardins, Paul; Hazell, Alan S; Butterworth, Roger F

    2009-09-01

    Wernicke's encephalopathy (WE) in humans is a metabolic disorder caused by thiamine deficiency (TD). In both humans and experimental animals, TD leads to selective neuronal cell death in diencephalic and brainstem structures. Neuropathologic features of WE include petechial hemorrhagic lesions, and blood-brain barrier (BBB) breakdown has been suggested to play an important role in the pathogenesis of TD. The goal of the present study was to examine expression of the tight junction (TJ) protein occludin, its associated scaffolding proteins zona occludens (ZO-1 and ZO-2), and to measure matrix metalloproteinase (MMP) levels as a function of regional BBB permeability changes in thiamine-deficient mice. TD was induced in 12-week-old male C57Bl/6 mice by feeding a thiamine-deficient diet and administration of the central thiamine antagonist pyrithiamine. BBB permeability was measured by IgG extravasation; expression of occludin, ZO-1 and ZO-2 was measured by Western blot analysis and RT-PCR, structural integrity of the BBB was assessed using occludin and ZO-1 immunostaining, and MMPs levels were measured by gelatin zymography and immunohistochemistry. Studies were performed in vulnerable (medial thalamus) versus spared (frontal cortex) regions of the brain. Hemorrhagic lesions, selective increases in brain IgG extravasation, a concomitant loss in protein expression of occludin, ZO-1 and ZO-2, as well as decreased and disrupted patterns of occludin and ZO-1 immunostaining were observed in the medial thalamus of thiamine-deficient mice. MMP-9 levels were also selectively increased in the medial thalamus of these animals, and were found to be localized in the vascular endothelium, as well as in cells with an apparent polymorphonuclear morphology. No changes of TJ gene expression were observed. These results indicate that alterations in TJ proteins occur in TD, and offer a plausible explanation for the selective increase in BBB permeability in thiamine-deficient animals

  5. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis.

    PubMed

    Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L

    2017-02-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell.

  6. Peptides of Matrix Gla Protein Inhibit Nucleation and Growth of Hydroxyapatite and Calcium Oxalate Monohydrate Crystals

    PubMed Central

    Goiko, Maria; Dierolf, Joshua; Gleberzon, Jared S.; Liao, Yinyin; Grohe, Bernd; Goldberg, Harvey A.; de Bruyn, John R.; Hunter, Graeme K.

    2013-01-01

    Matrix Gla protein (MGP) is a phosphorylated and γ-carboxylated protein that has been shown to prevent the deposition of hydroxyapatite crystals in the walls of blood vessels. MGP is also expressed in kidney and may inhibit the formation of kidney stones, which mainly consist of another crystalline phase, calcium oxalate monohydrate. To determine the mechanism by which MGP prevents soft-tissue calcification, we have synthesized peptides corresponding to the phosphorylated and γ-carboxylated sequences of human MGP in both post-translationally modified and non-modified forms. The effects of these peptides on hydroxyapatite formation and calcium oxalate crystallization were quantified using dynamic light scattering and scanning electron microscopy, respectively. Peptides YGlapS (MGP1-14: YγEpSHEpSMEpSYELNP), YEpS (YEpSHEpSMEpSYELNP), YGlaS (YγESHESMESYELNP) and SK-Gla (MGP43-56: SKPVHγELNRγEACDD) inhibited formation of hydroxyapatite in order of potency YGlapS > YEpS > YGlaS > SK-Gla. The effects of YGlapS, YEpS and YGlaS on hydroxyapatite formation were on both crystal nucleation and growth; the effect of SK-Gla was on nucleation. YGlapS and YEpS significantly inhibited the growth of calcium oxalate monohydrate crystals, while simultaneously promoting the formation of calcium oxalate dihydrate. The effects of these phosphopeptides on calcium oxalate monohydrate formation were on growth of crystals rather than nucleation. We have shown that the use of dynamic light scattering allows inhibitors of hydroxyapatite nucleation and growth to be distinguished. We have also demonstrated for the first time that MGP peptides inhibit the formation of calcium oxalate monohydrate. Based on the latter finding, we propose that MGP function not only to prevent blood-vessel calcification but also to inhibit stone formation in kidney. PMID:24265810

  7. Polydom Is an Extracellular Matrix Protein Involved in Lymphatic Vessel Remodeling.

    PubMed

    Morooka, Nanami; Futaki, Sugiko; Sato-Nishiuchi, Ryoko; Nishino, Masafumi; Totani, Yuta; Shimono, Chisei; Nakano, Itsuko; Nakajima, Hiroyuki; Mochizuki, Naoki; Sekiguchi, Kiyotoshi

    2017-04-14

    Lymphatic vasculature constitutes a second vascular system essential for immune surveillance and tissue fluid homeostasis. Maturation of the hierarchical vascular structure, with a highly branched network of capillaries and ducts, is crucial for its function. Environmental cues mediate the remodeling process, but the mechanism that underlies this process is largely unknown. Polydom (also called Svep1) is an extracellular matrix protein identified as a high-affinity ligand for integrin α9β1. However, its physiological function is unclear. Here, we investigated the role of Polydom in lymphatic development. We generated Polydom-deficient mice. Polydom(-/-) mice showed severe edema and died immediately after birth because of respiratory failure. We found that although a primitive lymphatic plexus was formed, it failed to undergo remodeling in Polydom(-/-) embryos, including sprouting of new capillaries and formation of collecting lymphatic vessels. Impaired lymphatic development was also observed after knockdown/knockout of polydom in zebrafish. Polydom was deposited around lymphatic vessels, but secreted from surrounding mesenchymal cells. Expression of Foxc2 (forkhead box protein c2), a transcription factor involved in lymphatic remodeling, was decreased in Polydom(-/-) mice. Polydom bound to the lymphangiogenic factor Ang-2 (angiopoietin-2), which was found to upregulate Foxc2 expression in cultured lymphatic endothelial cells. Expressions of Tie1/Tie2 receptors for angiopoietins were also decreased in Polydom(-/-) mice. Polydom affects remodeling of lymphatic vessels in both mouse and zebrafish. Polydom deposited around lymphatic vessels seems to ensure Foxc2 upregulation in lymphatic endothelial cells, possibly via the Ang-2 and Tie1/Tie2 receptor system. © 2017 American Heart Association, Inc.

  8. Synthesis of dental matrix proteins and viability of odontoblast-like cells irradiated with blue LED.

    PubMed

    Alonso, Juliana Rosa Luiz; Turrioni, Ana Paula Silveira; Basso, Fernanda Gonçalves; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-04-01

    To evaluate the effect of irradiation with light-emitting diode (LED; 455 nm) on the viability and synthesis of dentin matrix proteins by odontoblast-like cells, MDPC-23 cells were cultivated (10(4) cells/cm(2)) in 24-well culture plates. After 12 h incubation in Dulbecco's modified Eagle's medium (DMEM), the cells were submitted to nutritional restriction by means of reducing the concentration of fetal bovine serum (FBS) for an additional 12 h. Cells were irradiated one single time with one of the following energy densities (EDs): 0.5, 2, 4, 10, or 15 J/cm(2) and irradiance fixed at 20 mW/cm(2). Non-irradiated cells served as control. After 72 h, cells were evaluated with regard to viability (methylthiazol tetrazolium technique (MTT)), mineralization nodule (MN) formation, total protein (TP) production, alkaline phosphatase activity (ALP), and collagen synthesis (Sircol), n = 8. The data were submitted to Kruskal-Wallis and Mann-Whitney tests (p > 0.05). There was no statistical difference between the viability of cells irradiated or not (control), for all the EDs. However, an increase in TP was observed for all the EDs when compared with the control group. A reduced ALP activity was seen in all irradiated groups, except for the ED of 0.5 J/cm(2), which did not differ from the control. There was no difference between the irradiated groups and control regarding collagen synthesis, with the exception of the ED of 10 J/cm(2), which inhibited this cell function. Significant reduction in MN occurred only for the EDs of 0.5 and 2 J/cm(2). The single irradiation with blue LED (455 nm), irradiance of 20 mW/cm(2), and energy densities ranging from 0.5 to 15 J/cm(2) exerted no effective biostimulatory capacity on odontoblast-like cells.

  9. The inhibition effect of non-protein thiols on dentinal matrix metalloproteinase activity and HEMA cytotoxicity.

    PubMed

    Nassar, Mohannad; Hiraishi, Noriko; Shimokawa, Hitoyata; Tamura, Yukihiko; Otsuki, Masayuki; Kasugai, Shohei; Ohya, Keiichi; Tagami, Junji

    2014-03-01

    Phosphoric acid (PA) etching used in etch-and-rinse adhesives is known to activate host-derived dentinal matrix-metalloproteinases (MMPs) and increase dentinal permeability. These two phenomena will result, respectively; in degradation of dentine-adhesive bond and leaching of some monomers especially 2-hydroxyethyl methacrylate (HEMA) into the pulp that would negatively affect the viability of pulpal cells. This study is the first to investigate the inhibitory effect of non-protein thiols (NPSH); namely reduced glutathione (GSH) and N-acetylcysteine (NAC) on dentinal MMPs and compare their effects on HEMA cytotoxicity. Dentine powder was prepared from human teeth, demineralized with 1% PA and then treated with 2% GSH, 2% NAC or 2% chlorhexidine (CHX). Zymographic analysis of extracted proteins was performed. To evaluate the effect of GSH, NAC and CHX on HEMA cytotoxicity, solutions of these compounds were prepared with or without HEMA and rat pulpal cells were treated with the tested solutions for (6 and 24h). Cells viability was measured by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cytotoxicity data were analysed by one-way ANOVA and Tukey post hoc tests (p<0.05). The inhibitory effect of GSH and NAC on dentinal MMPs was confirmed. GSH showed similar effectiveness to NAC regarding HEMA cytotoxicity inhibition. NPSH were effective to inhibit dentinal MMPs and HEMA cytotoxicity. The tested properties of NPSH provide promising clinical use of these agents which would enhance dentine-bond durability and decrease post-operative sensitivity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Peptides of Matrix Gla protein inhibit nucleation and growth of hydroxyapatite and calcium oxalate monohydrate crystals.

    PubMed

    Goiko, Maria; Dierolf, Joshua; Gleberzon, Jared S; Liao, Yinyin; Grohe, Bernd; Goldberg, Harvey A; de Bruyn, John R; Hunter, Graeme K

    2013-01-01

    Matrix Gla protein (MGP) is a phosphorylated and γ-carboxylated protein that has been shown to prevent the deposition of hydroxyapatite crystals in the walls of blood vessels. MGP is also expressed in kidney and may inhibit the formation of kidney stones, which mainly consist of another crystalline phase, calcium oxalate monohydrate. To determine the mechanism by which MGP prevents soft-tissue calcification, we have synthesized peptides corresponding to the phosphorylated and γ-carboxylated sequences of human MGP in both post-translationally modified and non-modified forms. The effects of these peptides on hydroxyapatite formation and calcium oxalate crystallization were quantified using dynamic light scattering and scanning electron microscopy, respectively. Peptides YGlapS (MGP1-14: YγEpSHEpSMEpSYELNP), YEpS (YEpSHEpSMEpSYELNP), YGlaS (YγESHESMESYELNP) and SK-Gla (MGP43-56: SKPVHγELNRγEACDD) inhibited formation of hydroxyapatite in order of potency YGlapS > YEpS > YGlaS > SK-Gla. The effects of YGlapS, YEpS and YGlaS on hydroxyapatite formation were on both crystal nucleation and growth; the effect of SK-Gla was on nucleation. YGlapS and YEpS significantly inhibited the growth of calcium oxalate monohydrate crystals, while simultaneously promoting the formation of calcium oxalate dihydrate. The effects of these phosphopeptides on calcium oxalate monohydrate formation were on growth of crystals rather than nucleation. We have shown that the use of dynamic light scattering allows inhibitors of hydroxyapatite nucleation and growth to be distinguished. We have also demonstrated for the first time that MGP peptides inhibit the formation of calcium oxalate monohydrate. Based on the latter finding, we propose that MGP function not only to prevent blood-vessel calcification but also to inhibit stone formation in kidney.

  11. Matrix Gla protein is involved in elastic fiber calcification in the dermis of pseudoxanthoma elasticum patients.

    PubMed

    Gheduzzi, Dealba; Boraldi, Federica; Annovi, Giulia; DeVincenzi, Chiara Paolinelli; Schurgers, Leon J; Vermeer, Cees; Quaglino, Daniela; Ronchetti, Ivonne Pasquali

    2007-10-01

    Mature MGP (Matrix gamma-carboxyglutamic acid protein) is known to inhibit soft connective tissues calcification. We investigated its possible involvement in pseudoxanthoma elasticum (PXE), a genetic disorder whose clinical manifestations are due to mineralization of elastic fibers. PXE patients have lower serum concentration of total MGP compared to controls (P<0.001). Antibodies specific for the noncarboxylated (Glu-MGP) and for the gamma-carboxylated (Gla-MGP) forms of MGP were assayed on ultrathin sections of dermis from controls and PXE patients. Normal elastic fibers in controls and patients were slightly positive for both forms of MGP, whereas Gla-MGP was more abundant within control's than within patient's elastic fibers (P<0.001). In patients' calcified elastic fibers, Glu-MGP intensively colocalized with mineral precipitates, whereas Gla-MGP precisely localized at the mineralization front. Data suggest that MGP is present within elastic fibers and is associated with calcification of dermal elastic fibers in PXE. To investigate whether local cells produce MGP, dermal fibroblasts were cultured in vitro and MGP was assayed at mRNA and protein levels. In spite of very similar MGP mRNA expression, cells from PXE patients produced 30% less of Gla-MGP compared to controls. Data were confirmed by immunocytochemistry on ultrathin sections. Normal fibroblasts in vitro were positive for both forms of MGP. PXE fibroblasts were positive for Glu-MGP and only barely positive for Gla-MGP (P<0.001). In conclusion, MGP is involved in elastic fiber calcification in PXE. The lower ratio of Gla-MGP over Glu-MGP in pathological fibroblasts compared to controls suggests these cells may play an important role in the ectopic calcification in PXE.

  12. Matrix Gla protein (MGP) promoter polymorphic variants and its serum level in stenosis of coronary artery.

    PubMed

    Najafi, Mohammad; Roustazadeh, Abazar; Amirfarhangi, Abdollah; Kazemi, Bahram

    2014-03-01

    Although the role of matrix Gla protein (MGP) is not completely known but, its expression within subendothelial macrophages and vascular smooth muscle cells is suggested to be involved in vascular calcification. In this study, we investigated the associations between the serum MGP levels and the MGP promoter high minor allele frequency (MAF) variants with the development of stenosis in coronary arteries. Moreover, we evaluated the allele changes within predicted transcription factor elements with bioinformatics tools. 182 subjects were recruited from who underwent coronary angiography. The MGP promoter rs1800801, rs1800802 and rs1800799 genotypes and haplotypes were detected by ARMS-RFLP PCR techniques. The serum MGP concentration was measured using ELISA method. Jaspar profiles were used for scoring the polymorphic variations within the transcription factor elements. The genotype and two-allelic haplotype distributions were not significant between the patient and control groups (P > 0.05). The serum MGP levels had not significant differences between the genotypes (P > 0.1) and haplotypes (P > 0.4). Based on the prediction studies, we did not observe significant differences between the polymorphic scores in the predicted elements (P > 0.05). We concluded that the genotype and haplotype distributions of the MGP promoter high-MAF polymorphisms, as confirmed in the prediction studies and the serum MGP level are not significantly associated with the coronary artery disease. Based on the study results, the MGP protein did not play an important role in the development of stenosis of coronary arteries.

  13. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  14. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    NASA Technical Reports Server (NTRS)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  15. Ambulation speed and corresponding mechanics are associated with changes in serum cartilage oligomeric matrix protein.

    PubMed

    Denning, W Matt; Becker Pardo, Michael; Winward, Jason G; Hunter, Iain; Ridge, Sarah; Hopkins, J Ty; Reese, C Shane; Parcell, Allen C; Seeley, Matthew K

    2016-02-01

    Because serum cartilage oligomeric matrix protein (COMP) has been used to reflect articular cartilage condition, we aimed to identify walking and running mechanics that are associated with changes in serum COMP. Eighteen subjects (9 male, 9 female; age=23 ± 2 yrs.; mass=68.3 ± 9.6 kg; height=1.70 ± 0.08 m) completed 4000 steps on an instrumented treadmill on three separate days. Each day corresponded to a different ambulation speed: slow (preferred walking speed), medium (+50% of slow), and fast (+100% of slow). Synchronized ground reaction force and video data were collected to evaluate walking mechanics. Blood samples were collected pre-, post-, 30-minute post-, and 60-minute post-ambulation to determine serum COMP concentration at these times. Serum COMP increased 29%, 18%, and 5% immediately post ambulation for the fast, medium, and slow sessions (p<0.01). When the speeds were pooled, peak ankle inversion, knee extension, knee abduction, hip flexion, hip extension, and hip abduction moment, and knee flexion angle at impact explained 61.4% of total variance in COMP concentration change (p<0.001). These results indicate that (1) certain joint mechanics are associated with acute change in serum COMP due to ambulation, and (2) increased ambulation speed increases serum COMP concentration.

  16. Cartilage Oligomeric Matrix Protein Angiopoeitin-1 Provides Benefits During Nerve Regeneration In Vivo and In Vitro.

    PubMed

    Qiu, Longhai; He, Bo; Hu, Jun; Zhu, Zhaowei; Liu, Xiaolin; Zhu, Jiakai

    2015-12-01

    Our group pioneered the study of nerve regeneration in China and has successfully developed human "acellular nerve grafts (ACNGs)". However, our clinical studies revealed that the effects of ACNGs for long and large nerve defects are far from satisfactory. To improve the efficacy of ACNGs, we combined Cartilage oligomeric matrix protein angiopoietin-1 (COMP-Ang1) with ACNGs in rat sciatic nerve injury models and observed the outcomes via angiographic, morphological, and functional analyses. Co-cultures of endothelial cells (ECs) and dorsal root ganglion neurons (DRGs) were also used to characterize the relationship between neovascularization and nerve regeneration. The results showed significant improvements in early neovascularization, nerve regeneration, and functional outcomes in vivo in the ACNG + COMP-Ang1 group. In vitro, neurite length, and density as well as the expression levels of neurofilament 68 (NF68) and phosphorylated-Tie-2 (p-Tie-2) significantly increased when ECs were co-cultured with DRGs using COMP-Ang1. p-Tie-2 expression dramatically decreased after treatment with a Tie-2 kinase inhibitor (S157701), which consequently decreased the level of NF68. COMP-Ang1 can be concluded to promote early neovascularization followed by brisk nerve regeneration, and the mechanism of this regeneration may involve the modulation of the p-Tie-2 and Tie-2 receptors on ECs. These findings demonstrate that ACNGs can be modified using COMP-Ang1 to improve their efficacy in repairing peripheral nerve defects in clinical trials.

  17. Serum cartilage oligomeric matrix protein (COMP) level is a marker of disease activity in relapsing polychondritis.

    PubMed

    Kempta Lekpa, F; Piette, J C; Bastuji-Garin, S; Kraus, V B; Stabler, T V; Poole, A R; Marini-Portugal, A; Chevalier, X

    2010-01-01

    Relapsing polychondritis (RP) is a rare and severe disease which may lead to destruction of elastic cartilages. Until now, no reliable biomarker of disease activity in RP has been available. This study was designed to measure serum levels of cartilage biomarkers during both active and inactive phases of the disease. Serum levels of cartilage oligomeric matrix protein (COMP), chondroitin sulfate 846 epitope (CS846) of proteoglycan aggrecan and collagen type II collagenase cleavage neoepitope (C2C) were measured retrospectively in 21 subjects with RP. The Wilcoxon matched-pairs signed-rank test was used for statistical comparisons of biomarker levels in active and inactive phases of RP. Only the serum level of COMP was significantly increased during disease flares. Steroids did not alter the serum cartilage-related biomarker levels. However, during the active phase, C2C levels were significantly higher in steroid treated patients compared with non-steroid treated patients. This study suggests that serum COMP level may be useful for monitoring disease activity of RP. Further prospective studies are required to confirm this result.

  18. Detection of Cartilage Oligomeric Matrix Protein Using a Quartz Crystal Microbalance

    PubMed Central

    Wang, Shih-Han; Shen, Chi-Yen; Weng, Ting-Chan; Lin, Pin-Hsuan; Yang, Jia-Jyun; Chen, I-Fen; Kuo, Shyh-Ming; Chang, Shwu-Jen; Tu, Yuan-Kun; Kao, Yu-Hsien; Hung, Chih-Hsin

    2010-01-01

    Current methods for diagnosing early stage osteoarthritis (OA) based on the magnetic resonance imaging and enzyme-linked immunosorbent assay methods are specific, but require specialized laboratory facilities and highly trained personal to obtain a definitive result. In this work, a user friendly and non-invasive quartz crystal microbalance (QCM) immunosensor method has been developed to detect Cartilage Oligomeric Matrix Protein (COMP) for early stage OA diagnosis. This QCM immunosensor was fabricated to immobilize COMP antibodies utilizing the self-assembled monolayer technique. The surface properties of the immunosensor were characterized by its FTIR and electrochemical impedance spectra (EIS). The feasibility study was based on urine samples obtained from 41 volunteers. Experiments were carried out in a flow system and the reproducibility of the electrodes was evaluated by the impedance measured by EIS. Its potential dynamically monitored the immunoreaction processes and could increase the efficiency and sensitivity of COMP detection in laboratory-cultured preparations and clinical samples. The frequency responses of the QCM immunosensor changed from 6 kHz when testing 50 ng/mL COMP concentration. The linear regression equation of frequency shift and COMP concentration was determined as: y = 0.0872 x + 1.2138 (R2 = 0.9957). The COMP in urine was also determined by both QCM and EIS for comparison. A highly sensitive, user friendly and cost effective analytical method for the early stage OA diagnosis has thus been successfully developed. PMID:22163547

  19. Cellular aspartyl proteases promote the unconventional secretion of biologically active HIV-1 matrix protein p17

    PubMed Central

    Caccuri, Francesca; Iaria, Maria Luisa; Campilongo, Federica; Varney, Kristen; Rossi, Alessandro; Mitola, Stefania; Schiarea, Silvia; Bugatti, Antonella; Mazzuca, Pietro; Giagulli, Cinzia; Fiorentini, Simona; Lu, Wuyuan; Salmona, Mario; Caruso, Arnaldo

    2016-01-01

    The human immune deficiency virus type 1 (HIV-1) matrix protein p17 (p17), although devoid of a signal sequence, is released by infected cells and detected in blood and in different organs and tissues even in HIV-1-infected patients undergoing successful combined antiretroviral therapy (cART). Extracellularly, p17 deregulates the function of different cells involved in AIDS pathogenesis. The mechanism of p17 secretion, particularly during HIV-1 latency, still remains to be elucidated. A recent study showed that HIV-1-infected cells can produce Gag without spreading infection in a model of viral latency. Here we show that in Gag-expressing cells, secretion of biologically active p17 takes place at the plasma membrane and occurs following its interaction with phosphatidylinositol-(4,5)-bisphosphate and its subsequent cleavage from the precursor Gag (Pr55Gag) operated by cellular aspartyl proteases. These enzymes operate a more complex Gag polypeptide proteolysis than the HIV-1 protease, thus hypothetically generating slightly truncated or elongated p17s in their C-terminus. A 17 C-terminal residues excised p17 was found to be structurally and functionally identical to the full-length p17 demonstrating that the final C-terminal region of p17 is irrelevant for the protein’s biological activity. These findings offer new opportunities to identify treatment strategies for inhibiting p17 release in the extracellular microenvironment. PMID:27905556

  20. Haemophilus influenzae P4 Interacts With Extracellular Matrix Proteins Promoting Adhesion and Serum Resistance.

    PubMed

    Su, Yu-Ching; Mukherjee, Oindrilla; Singh, Birendra; Hallgren, Oskar; Westergren-Thorsson, Gunilla; Hood, Derek; Riesbeck, Kristian

    2016-01-15

    Interaction with the extracellular matrix (ECM) is one of the successful colonization strategies employed by nontypeable Haemophilus influenzae (NTHi). Here we identified Haemophilus lipoprotein e (P4) as a receptor for ECM proteins. Purified recombinant P4 displayed a high binding affinity for laminin (Kd = 9.26 nM) and fibronectin (Kd = 10.19 nM), but slightly less to vitronectin (Kd = 16.51 nM). A P4-deficient NTHi mutant showed a significantly decreased binding to these ECM components. Vitronectin acquisition conferred serum resistance to both P4-expressing NTHi and Escherichia coli transformants. P4-mediated bacterial adherence to pharynx, type II alveolar, and bronchial epithelial cells was mainly attributed to fibronectin. Importantly, a significantly reduced bacterial infection was observed in the middle ear of the Junbo mouse model when NTHi was devoid of P4. In conclusion, our data provide new insight into the role of P4 as an important factor for Haemophilus colonization and subsequent respiratory tract infection.

  1. Extracellular matrix specific protein fingerprints measured in serum can separate pancreatic cancer patients from healthy controls

    PubMed Central

    2013-01-01

    Background Pancreatic cancer (PC) is an aggressive disease with an urgent need for biomarkers. Hallmarks of PC include increased collagen deposition (desmoplasia) and increased matrix metalloproteinase (MMP) activity. The aim of this study was to investigate whether protein fingerprints of specific MMP-generated collagen fragments differentiate PC patients from healthy controls when measured in serum. Methods The levels of biomarkers reflecting MMP-mediated degradation of type I (C1M), type III (C3M) and type IV (C4M, C4M12a1) collagen were assessed in serum samples from PC patients (n = 15) and healthy controls (n = 33) using well-characterized and validated competitive ELISAs. Results The MMP-generated collagen fragments were significantly elevated in serum from PC patients as compared to controls. The diagnostic power of C1M, C3M, C4M and C4M12 were ≥83% (p < 0.001) and when combining all biomarkers 99% (p < 0.0001). Conclusions A panel of serum biomarkers reflecting altered MMP-mediated collagen turnover is able to differentiate PC patients from healthy controls. These markers may increase the understanding of mode of action of the disease and, if validated in larger clinical studies, provide an improved and additional tool in the PC setting. PMID:24261855

  2. Different mechanical loading protocols influence serum cartilage oligomeric matrix protein levels in young healthy humans.

    PubMed

    Niehoff, A; Kersting, U G; Helling, S; Dargel, J; Maurer, J; Thevis, M; Brüggemann, G-P

    2010-10-01

    The purpose of the study was to investigate whether a relationship between the loading mode of physical activity and serum cartilage oligomeric matrix protein (COMP) concentration exists and whether the lymphatic system contributes to COMP release into the serum. Serum COMP levels were determined in healthy male subjects before, after and at 18 further time points within 7 h at four separate experimental days with four different loading interventions. The loading intervention included high impact running exercise, slow but deep knee bends, and lymphatic drainage of 30 min duration, respectively, and a resting protocol. The serum COMP levels were measured using a commercially available quantitative enzyme-linked immunosorbent assay. An increase (p < 0.001) in serum COMP concentration was detected immediately after 30 min running exercise. Slow but deep knee bends did not cause any significant changes in serum COMP levels. Lymphatic drainage also had no effect on the serum COMP concentration. After 30 min of complete rest the serum COMP level was significantly (p = 0.008) reduced. The elevation of COMP serum concentration seems to depend on the loading mode of the physical activity and to reflect the extrusion of COMP fragments from the impact loaded articular cartilage or synovial fluid.

  3. The skin autofluorescence reflects the posttranslational glycation grade of the matrix protein collagen.

    PubMed

    Jacobs, Kathleen; Navarrete Santos, Alexander; Simm, Andreas; Silber, Rolf-Edgar; Hofmann, Britt

    2014-10-01

    Advanced glycation end products (AGEs) seem to be involved in ageing as well as in the development of cardiovascular diseases. Accumulation of AGEs contribute to tissue stiffness and organ dysfunction by crosslinking extracellular matrix proteins like collagen. We aimed to assess whether AGE-modified cardiac tissue collagen and AGE related skin autofluorescence may reflect the cardiac function and have a prognostic value for the outcome of coronary artery bypass surgery patients. Therefore, AGE-modifications in collagen from 72 male patients undergoing isolated coronary artery bypass graft (CABG) surgery were analyzed. Collagen fractions were isolated from the right atrial auricle and the residual bypass graft material (saphenous vein) of these patients and quantified by 4-hydroxyproline assay. AGE modifications were determined by the AGE intrinsic fluorescence (excitation 360nm/emission 440nm). The skin autofluorescence (sAF) as a non-invasive parameter was measured using the AGE reader. The non-extractable collagen contained the highest amounts of AGEs and positively correlates with the patients age (p=0.0001), blood glucose level (p=0.002), HbA1c level (p=0.01) and sAF (p=0.008). The right atrial auricle collagen showed significantly more modifications compared to vein graft material of the same patient (p=0,001). Skin autofluorescence positively correlates with AGE content in cardiac tissue (p=0.01) and therefore could be used as a predictor of tissue stiffness in patients with coronary heart disease.

  4. Immunolocalization of dentin matrix protein-1 in human primary teeth treated with different pulp capping materials.

    PubMed

    Lourenço Neto, Natalino; Marques, Nádia C T; Fernandes, Ana Paula; Rodini, Camila O; Sakai, Vivien T; Abdo, Ruy Cesar C; Machado, Maria Aparecida A M; Santos, Carlos F; Oliveira, Thais M

    2016-01-01

    The aim of this study was to evaluate the immunolocalization of dentin matrix protein (DMP)-1 in human primary teeth treated with different pulp capping materials. Twenty-five primary molars were divided into the following groups: formocresol (FC), calcium hydroxide (CH), mineral trioxide aggregate (MTA), corticosteroid/antibiotic solution + CH (O + CH), and Portland cement (PC), and all received conventional pulpotomy treatment. The teeth at the regular exfoliation period were extracted for histological analysis and immunolocalization of DMP-1. Statistical analysis was performed using the χ(2) test (p < 0.05). Histological analysis revealed statistically significant differences in the comparison among the groups through the use of a score system regarding the presence of hard tissue barrier, odontoblastic layer, and internal resorption, but not regarding pulp calcification. Immunohistochemical analysis showed immunostaining for DMP-1 in groups CH, MTA, O + CH, and PC. Internal resorption was observed in the groups FC and CH. MTA and PC showed pulp repair without inflammation and with the presence of hard tissue barrier. DMP-1 immunostaining was higher for MTA and PC, confirming the reparative and bioinductive capacity of these materials.

  5. Biomembranes enriched with TGFbeta1 favor bone matrix protein expression by human osteoblasts in vitro.

    PubMed

    Lilli, C; Marinucci, L; Stabellini, G; Belcastro, S; Becchetti, E; Balducci, C; Staffolani, N; Locci, P

    2002-01-01

    The use of growth factors in oral tissue regeneration is currently under investigation. When growth factors are combined with commercial materials, the in vitro mechanisms of action still remain unclear. The present study first evaluated the capacity of barrier membranes, used in oral surgery, to sequester TGFbeta(1). Resorbable HYAFF, paroguide, poly DL-lactide and nonresorbable PTFE membranes were immersed in MEM containing 0.2 ng (125)I-TGFbeta(1) for different periods of time. It was found that HYAFF membrane and paroguide sequestered the most TGFbeta(1), which was then released in its active form (as shown by the CCL64 cell line bioassay). Untreated membranes and membranes enriched with TGFbeta(1) were then used as substrate for human bone cells to evaluate the synthesis of the osteoblast phenotype, as indicated by specific parameters. Results showed that membranes enriched with TGFbeta(1) increased alkaline phosphatase activity, collagen, and osteocalcin production more than untreated membranes. HYAFF and paroguide membranes, which sequestered the most of TGFbeta(1), were the most suitable for stimulating bone matrix proteins.

  6. Vitamin K-Dependent Carboxylation of Matrix Gla Protein Influences the Risk of Calciphylaxis.

    PubMed

    Nigwekar, Sagar U; Bloch, Donald B; Nazarian, Rosalynn M; Vermeer, Cees; Booth, Sarah L; Xu, Dihua; Thadhani, Ravi I; Malhotra, Rajeev

    2017-01-03

    Matrix Gla protein (MGP) is a potent inhibitor of vascular calcification. The ability of MGP to inhibit calcification requires the activity of a vitamin K-dependent enzyme, which mediates MGP carboxylation. We investigated how MGP carboxylation influences the risk of calciphylaxis in adult patients receiving dialysis and examined the effects of vitamin K deficiency on MGP carboxylation. Our study included 20 patients receiving hemodialysis with calciphylaxis (cases) and 20 patients receiving hemodialysis without calciphylaxis (controls) matched for age, sex, race, and warfarin use. Cases had higher plasma levels of uncarboxylated MGP (ucMGP) and carboxylated MGP (cMGP) than controls. However, the fraction of total MGP that was carboxylated (relative cMGP concentration = cMGP/[cMGP + uncarboxylated MGP]) was lower in cases than in controls (0.58±0.02 versus 0.69±0.03, respectively; P=0.003). In patients not taking warfarin, cases had a similarly lower relative cMGP concentration. Each 0.1 unit reduction in relative cMGP concentration associated with a more than two-fold increase in calciphylaxis risk. Vitamin K deficiency associated with lower relative cMGP concentration in multivariable adjusted analyses (β=-8.99; P=0.04). In conclusion, vitamin K deficiency-mediated reduction in relative cMGP concentration may have a role in the pathogenesis of calciphylaxis. Whether vitamin K supplementation can prevent and/or treat calciphylaxis requires further study.

  7. Extracellular matrix protein Reelin promotes myeloma progression by facilitating tumor cell proliferation and glycolysis

    PubMed Central

    Qin, Xiaodan; Lin, Liang; Cao, Li; Zhang, Xinwei; Song, Xiao; Hao, Jie; Zhang, Yan; Wei, Risheng; Huang, Xiaojun; Lu, Jin; Ge, Qing

    2017-01-01

    Reelin is an extracellular matrix protein that is crucial for neuron migration, adhesion, and positioning. We examined the expression of Reelin in a large cohort of multiple myeloma patients recorded in Gene Expression Omnibus (GEO) database and used over-expression and siRNA knockdown of Reelin to investigate the role of Reelin in myeloma cell growth. We find that Reelin expression is negatively associated with myeloma prognosis. Reelin promotes myeloma cell proliferation in vitro as well as in vivo. The Warburg effect, evidenced by increased glucose uptake and lactate production, is also enhanced in Reelin-expressing cells. The activation of FAK/Syk/Akt/mTOR and STAT3 pathways contributes to Reelin-induced cancer cell growth and metabolic reprogramming. Our findings further reveal that activated Akt and STAT3 pathways induce the upregulation of HIF1α and its downstream targets (LDHA and PDK1), leading to increased glycolysis in myeloma cells. Together, our results demonstrate the critical contributions of Reelin to myeloma growth and metabolism. It presents an opportunity for myeloma therapeutic intervention by inhibiting Reelin and its signaling pathways. PMID:28345605

  8. Improved bone morphogenetic protein-2 retention in an injectable collagen matrix using bifunctional peptides.

    PubMed

    Hamilton, Paul T; Jansen, Michelle S; Ganesan, Sathya; Benson, R Edward; Hyde-Deruyscher, Robin; Beyer, Wayne F; Gile, Joseph C; Nair, Shrikumar A; Hodges, Jonathan A; Grøn, Hanne

    2013-01-01

    To promote healing of many orthopedic injuries, tissue engineering approaches are being developed that combine growth factors such as Bone Morphogenetic Proteins (BMP) with biomaterial carriers. Although these technologies have shown great promise, they still face limitations. We describe a generalized approach to create target-specific modular peptides that bind growth factors to implantable biomaterials. These bifunctional peptide coatings provide a novel way to modulate biology on the surface of an implant. Using phage display techniques, we have identified peptides that bind with high affinity to BMP-2. The peptides that bind to BMP-2 fall into two different sequence clusters. The first cluster of peptide sequences contains the motif W-X-X-F-X-X-L (where X can be any amino acid) and the second cluster contains the motif F-P-L-K-G. We have synthesized bifunctional peptide linkers that contain BMP-2 and collagen-binding domains. Using a rat ectopic bone formation model, we have injected rhBMP-2 into a collagen matrix with or without a bifunctional BMP-2: collagen peptide (BC-1). The presence of BC-1 significantly increased osteogenic cellular activity, the area of bone formed, and bone maturity at the site of injection. Our results suggest that bifunctional peptides that can simultaneously bind to a growth factor and an implantable biomaterial can be used to control the delivery and release of growth factors at the site of implantation.

  9. Silk-elastin-like protein polymer matrix for intraoperative delivery of an oncolytic vaccinia virus

    PubMed Central

    Price, Daniel L.; Li, Pingdong; Chen, Chun-Hao; Wong, Danni; Yu, Zhenkun; Chen, Nanhai G.; Yu, Yong A.; Szalay, Aladar A.; Cappello, Joseph; Fong, Yuman; Wong, Richard J.

    2016-01-01

    Background Oncolytic viral efficacy may be limited by the penetration of the virus into tumors. This may be enhanced by intraoperative application of virus immediately after surgical resection. Methods Oncolytic vaccinia virus GLV-1h68 was delivered in silk-elastin-like protein polymer (SELP) in vitro and in vivo in anaplastic thyroid carcinoma cell line 8505c in nude mice. Results GLV-1h68 in SELP infected and lysed anaplastic thyroid cancer cells in vitro equally as effectively as in phosphate-buffered saline (PBS), and at 1 week retains a thousand fold greater infectious plaque-forming units. In surgical resection models of residual tumor, GLV-1h68 in SELP improves tumor control and shows increased viral β-galactosidase expression as compared to PBS. Conclusion The use of SELP matrix for intraoperative oncolytic viral delivery protects infectious viral particles from degradation, facilitates sustained viral delivery and transgene expression, and improves tumor control. Such optimization of methods of oncolytic viral delivery may enhance therapeutic outcomes. PMID:25244076

  10. Quercetin Attenuates Warfarin-induced Vascular Calcification in Vitro Independently from Matrix Gla Protein*

    PubMed Central

    Beazley, Kelly E.; Eghtesad, Saman; Nurminskaya, Maria V.

    2013-01-01

    Warfarin can stimulate vascular calcification in vitro via activation of β-catenin signaling and/or inhibition of matrix Gla protein (MGP) carboxylation. Calcification was induced in vascular smooth muscle cells (VSMCs) with therapeutic levels of warfarin in normal calcium and clinically acceptable phosphate levels. Although TGF/BMP and PKA pathways are activated in calcifying VSMCs, pharmacologic analysis reveals that their activation is not contributory. However, β-catenin activity is important because inhibition of β-catenin with shRNA or bioflavonoid quercetin prevents calcification in primary human VSMCs, rodent aortic rings, and rat A10 VSMC line. In the presence of quercetin, reactivation of β-catenin using the glycogen synthase kinase-3β (GSK-3β) inhibitor LiCl restores calcium accumulation, confirming that quercetin mechanism of action hinges on inhibition of the β-catenin pathway. Calcification in VSMCs induced by 10 μm warfarin does not associate with reduced levels of carboxylated MGP, and inhibitory effects of quercetin do not involve induction of MGP carboxylation. Further, down-regulation of MGP by shRNA does not alter the effect of quercetin. These results suggest a new β-catenin-targeting strategy to prevent vascular calcification induced by warfarin and identify quercetin as a potential therapeutic in this pathology. PMID:23223575

  11. Adolescent binge ethanol treatment alters adult brain regional volumes, cortical extracellular matrix protein and behavioral flexibility.

    PubMed

    Coleman, Leon Garland; Liu, Wen; Oguz, Ipek; Styner, Martin; Crews, Fulton T

    2014-01-01

    Adolescents binge drink more than any other age group, increasing risk of disrupting the development of the frontal cortex. We hypothesized that adolescent binge drinking would lead to persistent alterations in adulthood. In this study, we modeled adolescent weekend underage binge-drinking, using adolescent mice (post-natal days [P] 28-37). The adolescent intermittent binge ethanol (AIE) treatment includes 6 binge intragastric doses of ethanol in an intermittent pattern across adolescence. Assessments were conducted in adulthood following extended abstinence to determine if there were persistent changes in adults. Reversal learning, open field and other behavioral assessments as well as brain structure using magnetic imaging and immunohistochemistry were determined. We found that AIE did not impact adult Barnes Maze learning. However, AIE did cause reversal learning deficits in adults. AIE also caused structural changes in the adult brain. AIE was associated with adulthood volume enlargements in specific brain regions without changes in total brain volume. Enlarged regions included the orbitofrontal cortex (OFC, 4%), cerebellum (4.5%), thalamus (2%), internal capsule (10%) and genu of the corpus callosum (7%). The enlarged OFC volume in adults after AIE is consistent with previous imaging studies in human adolescents. AIE treatment was associated with significant increases in the expression of several extracellular matrix (ECM) proteins in the adult OFC including WFA (55%), Brevican (32%), Neurocan (105%), Tenacin-C (25%), and HABP (5%). These findings are consistent with AIE causing persistent changes in brain structure that could contribute to a lack of behavioral flexibility.

  12. Adolescent binge ethanol treatment alters adult brain regional volumes, cortical extracellular matrix protein and behavioral flexibility

    PubMed Central

    Coleman, Leon Garland; Liu, Wen; Oguz, Ipek; Styner, Martin; Crews, Fulton T.

    2014-01-01

    Adolescents binge drink more than any other age group, increasing risk of disrupting the development of the frontal cortex. We hypothesized that adolescent binge drinking would lead to persistent alterations in adulthood. In this study, we modeled adolescent weekend underage binge-drinking, using adolescent mice (post-natal days [P] 28–37). The adolescent intermittent binge ethanol (AIE) treatment includes 6 binge intragastric doses of ethanol in an intermittent pattern across adolescence. Assessments were conducted in adulthood following extended abstinence to determine if there were persistent changes in adults. Reversal learning, open field and other behavioral assessments as well as brain structure using magnetic imaging and immunohistochemistry were determined. We found AIE did not impact adult Barnes Maze learning. However, AIE did cause reversal learning deficits in adults. AIE also caused structural changes in the adult brain. AIE was associated with adulthood volume enlargements in specific brain regions without changes in total brain volume. Enlarged regions included the orbitofrontal cortex (OFC, 4%), cerebellum (4.5%), thalamus (2%), internal capsule (10%) and genu of the corpus callosum (7%). The enlarged OFC volume in adults after AIE is consistent with previous imaging studies in human adolescents. AIE treatment was associated with significant increases in the expression of several extracellular matrix (ECM) proteins in the adult OFC including WFA (55%), Brevican (32%), Neurocan (105%), Tenacin-C (25%), and HABP (5%). These findings are consistent with AIE causing persistent changes in brain structure that could contribute to a lack of behavioral flexibility. PMID:24275185

  13. Nanoscale Viscoelasticity of Extracellular Matrix Proteins in Soft Tissues: a Multiscale Approach

    PubMed Central

    Miri, Amir K.; Heris, Hossein K.; Mongeau, Luc; Javid, Farhad

    2013-01-01

    We propose that the bulk viscoelasticity of soft tissues results from two length-scale-dependent mechanisms: the time-dependent response of extracellular matrix proteins (ECM) at the nanometer scale and the biophysical interactions between the ECM solid structure and interstitial fluid at the micrometer scale. The latter was modeled using the poroelasticity theory wi