Arakane, Y; Muthukrishnan, S; Kramer, K J; Specht, C A; Tomoyasu, Y; Lorenzen, M D; Kanost, M; Beeman, R W
2005-10-01
Functional analysis of the two chitin synthase genes, TcCHS1 and TcCHS2, in the red flour beetle, Tribolium castaneum, revealed unique and complementary roles for each gene. TcCHS1-specific RNA interference (RNAi) disrupted all three types of moult (larval-larval, larval-pupal and pupal-adult) and greatly reduced whole-body chitin content. Exon-specific RNAi showed that splice variant 8a of TcCHS1 was required for both the larval-pupal and pupal-adult moults, whereas splice variant 8b was required only for the latter. TcCHS2-specific RNAi had no effect on metamorphosis or on total body chitin content. However, RNAi-mediated down-regulation of TcCHS2, but not TcCHS1, led to cessation of feeding, a dramatic shrinkage in larval size and reduced chitin content in the midgut.
Tank, Juliane; Lindner, Diana; Wang, Xiaomin; Stroux, Andrea; Gilke, Leona; Gast, Martina; Zietsch, Christin; Skurk, Carsten; Scheibenbogen, Carmen; Klingel, Karin; Lassner, Dirk; Kühl, Uwe; Schultheiss, Heinz-Peter; Westermann, Dirk; Poller, Wolfgang
2014-01-01
Therapeutic targets of broad relevance are likely located in pathogenic pathways common to disorders of various etiologies. Screening for targets of this type revealed CCN genes to be consistently upregulated in multiple cardiomyopathies. We developed RNA interference (RNAi) to silence CCN2 and found this single-target approach to block multiple proinflammatory and profibrotic pathways in activated primary cardiac fibroblasts (PCFBs). The RNAi-strategy was developed in murine PCFBs and then investigated in "individual" human PCFBs grown from human endomyocardial biopsies (EMBs). Screening of short hairpin RNA (shRNA) sequences for high silencing efficacy and specificity yielded RNAi adenovectors silencing CCN2 in murine or human PCFBs, respectively. Comparison of RNAi with CCN2-modulating microRNA (miR) vectors expressing miR-30c or miR-133b showed higher efficacy of RNAi. In murine PCFBs, CCN2 silencing resulted in strongly reduced expression of stretch-induced chemokines (Ccl2, Ccl7, Ccl8), matrix metalloproteinases (MMP2, MMP9), extracellular matrix (Col3a1), and a cell-to-cell contact protein (Cx43), suggesting multiple signal pathways to be linked to CCN2. Immune cell chemotaxis towards CCN2-depleted PCFBs was significantly reduced. We demonstrate here that this RNAi strategy is technically applicable to "individual" human PCFBs, too, but that these display individually strikingly different responses to CCN2 depletion. Either genomically encoded factors or stable epigenetic modification may explain different responses between individual PCFBs. The new RNAi approach addresses a key regulator protein induced in cardiomyopathies. Investigation of this and other molecular therapies in individual human PCBFs may help to dissect differential pathogenic processes between otherwise similar disease entities and individuals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Clarke, Cassie J.; Berg, Tracy J.; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L.; Vermeulen, Peter B.; Foo, Shane; Kostaras, Eleftherios; Jones, J. Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R.; Norman, Jim C.
2016-01-01
Summary Expression of the initiator methionine tRNA (tRNAiMet) is deregulated in cancer. Despite this fact, it is not currently known how tRNAiMet expression levels influence tumor progression. We have found that tRNAiMet expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAiMet in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAiMet contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAiMet gene (2+tRNAiMet mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAiMet mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAiMet mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAiMet significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAiMet-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAiMet-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAiMet mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAiMet levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. PMID:26948875
Clarke, Cassie J; Berg, Tracy J; Birch, Joanna; Ennis, Darren; Mitchell, Louise; Cloix, Catherine; Campbell, Andrew; Sumpton, David; Nixon, Colin; Campbell, Kirsteen; Bridgeman, Victoria L; Vermeulen, Peter B; Foo, Shane; Kostaras, Eleftherios; Jones, J Louise; Haywood, Linda; Pulleine, Ellie; Yin, Huabing; Strathdee, Douglas; Sansom, Owen; Blyth, Karen; McNeish, Iain; Zanivan, Sara; Reynolds, Andrew R; Norman, Jim C
2016-03-21
Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice
Majmudar, Maulik D.; Keliher, Edmund J.; Heidt, Timo; Leuschner, Florian; Truelove, Jessica; Sena, Brena F.; Gorbatov, Rostic; Iwamoto, Yoshiko; Dutta, Partha; Wojtkiewicz, Gregory; Courties, Gabriel; Sebas, Matt; Borodovsky, Anna; Fitzgerald, Kevin; Nolte, Marc W.; Dickneite, Gerhard; Chen, John W.; Anderson, Daniel G.; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias
2013-01-01
Background Exaggerated and prolonged inflammation after myocardial infarction (MI) accelerates left ventricular remodeling. Inflammatory pathways may present a therapeutic target to prevent post-MI heart failure. However, the appropriate magnitude and timing of interventions are largely unknown, in part because noninvasive monitoring tools are lacking. We here employed nanoparticle-facilitated silencing of CCR2, the chemokine receptor that governs inflammatory Ly-6Chigh monocyte subset traffic, to reduce infarct inflammation in apoE−/− mice after MI. We used dual target PET/MRI of transglutaminase factor XIII (FXIII) and myeloperoxidase (MPO) activity to monitor how monocyte subset-targeted RNAi altered infarct inflammation and healing. Methods and Results Flow cytometry, gene expression analysis and histology revealed reduced monocyte numbers and enhanced resolution of inflammation in infarcted hearts of apoE−/− mice that were treated with nanoparticle-encapsulated siRNA. To follow extracellular matrix crosslinking non-invasively, we developed a fluorine-18 labeled PET agent (18F-FXIII). Recruitment of MPO-rich inflammatory leukocytes was imaged using a molecular MRI sensor of MPO activity (MPO-Gd). PET/MRI detected anti-inflammatory effects of intravenous nanoparticle-facilitated siRNA therapy (75% decrease of MPO-Gd signal, p<0.05) while 18F-FXIII PET reflected unimpeded matrix crosslinking in the infarct. Silencing of CCR2 during the first week after MI improved ejection fraction on day 21 after MI from 29 to 35% (p<0.05). Conclusion CCR2 targeted RNAi reduced recruitment of Ly-6Chigh monocytes, attenuated infarct inflammation and curbed post-MI left ventricular remodeling. PMID:23616627
Gagnon, Keith T.; Li, Liande; Janowski, Bethany A.; Corey, David R.
2014-01-01
RNA interference (RNAi) is well known for its ability to regulate gene expression in the cytoplasm of mammalian cells. In mammalian cell nuclei, however, the impact of RNAi has remained more controversial. A key technical hurdle has been a lack of optimized protocols for the isolation and analysis of cell nuclei. Here we describe a simplified protocol for nuclei isolation from cultured cells that incorporates a method for obtaining nucleoplasmic and chromatin fractions and removing cytoplasmic contamination. Cell fractions can then be used to detect the presence and activity of RNAi factors in the nucleus. We present a protocol for investigating an early step in RNAi, Argonaute protein loading with small RNAs, which is enabled by our improved extract preparations. These protocols facilitate characterization of nuclear RNAi and can be applied to the analysis of other nuclear proteins and pathways. From cellular fractionation to analysis of Argonaute loading results, this protocol takes 4–6 d to complete. PMID:25079428
Bando, Tetsuya; Ishimaru, Yoshiyasu; Kida, Takuro; Hamada, Yoshimasa; Matsuoka, Yuji; Nakamura, Taro; Ohuchi, Hideyo; Noji, Sumihare; Mito, Taro
2013-03-01
In the cricket Gryllus bimaculatus, missing distal parts of the amputated leg are regenerated from the blastema, a population of dedifferentiated proliferating cells that forms at the distal tip of the leg stump. To identify molecules involved in blastema formation, comparative transcriptome analysis was performed between regenerating and normal unamputated legs. Components of JAK/STAT signalling were upregulated more than twofold in regenerating legs. To verify their involvement, Gryllus homologues of the interleukin receptor Domeless (Gb'dome), the Janus kinase Hopscotch (Gb'hop) and the transcription factor STAT (Gb'Stat) were cloned, and RNAi was performed against these genes. Gb'dome(RNAi), Gb'hop(RNAi) and Gb'Stat(RNAi) crickets showed defects in leg regeneration. Blastema expression of Gb'cyclinE was decreased in the Gb'Stat(RNAi) cricket compared with that in the control. Hyperproliferation of blastema cells caused by Gb'fat(RNAi) or Gb'warts(RNAi) was suppressed by RNAi against Gb'Stat. The results suggest that JAK/STAT signalling regulates blastema cell proliferation during leg regeneration.
Meng, Fanli; Yang, Mingyu; Li, Yang; Li, Tianyu; Liu, Xinxin; Wang, Guoyue; Wang, Zhanchun; Jin, Xianhao; Li, Wenbin
2018-01-01
RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccas e 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like ( Sil1 ), scavenger receptor class C ( Src ), and scavenger receptor class B ( Srb3 and Srb4 ) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean.
Meng, Fanli; Yang, Mingyu; Li, Yang; Li, Tianyu; Liu, Xinxin; Wang, Guoyue; Wang, Zhanchun; Jin, Xianhao; Li, Wenbin
2018-01-01
RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccase 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like (Sil1), scavenger receptor class C (Src), and scavenger receptor class B (Srb3 and Srb4) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean. PMID:29773992
Griffith, Elen; Coutts, Amanda S; Black, Donald M
2005-03-01
TES was originally identified as a candidate tumour suppressor gene and has subsequently been found to encode a novel focal adhesion protein. As well as localising to cell-matrix adhesions, TES localises to cell-cell contacts and to actin stress fibres. TES interacts with a variety of cytoskeletal proteins including zyxin, mena, VASP, talin and actin. There is evidence that TES may function in actin-dependent processes as overexpression of TES results in increased cell spreading and decreased cell motility. Together with TES's interacting partners, these data suggest that TES might be involved in regulation of the actin cytoskeleton. Here, for the first time, we have used RNAi to successfully knockdown TES in HeLa cells and we demonstrate that loss of TES from focal adhesions results in loss of actin stress fibres. Similarly, and as previously reported, RNAi-mediated knockdown of zyxin results in loss of actin stress fibres. TES siRNA treated cells show reduced RhoA activity, suggesting that the Rho GTPase pathway may be involved in the TES RNAi-induced loss of stress fibres. We have also used RNAi to examine the requirement of TES and zyxin for each other's localisation at focal adhesions, and we propose a hierarchy of recruitment, with zyxin being first, followed by VASP and then TES. Cell Motil. Copyright 2005 Wiley-Liss, Inc.
Xu, Qin; Ying, Mingang; Chen, Guilin; Lin, Ang; Xie, Yunqing; Ohara, Noriyuki; Zhou, Dongmei
2014-08-01
Metalloproteinase activities of a disintegrin and metalloproteinase 17 (ADAM17), amphiregulin (AREG), extracellular matrix metalloproteinase inducer (EMMPRIN), and matrix metalloproteinases (MMPs) are involved in tumor biology. In patients with uterine cervical carcinoma, the expression and prognostic significance of ADAM17 remain to be fully elucidated. The expression of ADAM17, AREG, EMMPRIN, phospho-epidermal growth factor receptor (p-EGFR), phospho-extracellular signal-regulated kinase (p-ERK), MMP-2, and MMP-9 was assessed by immunohistochemistry and/or Western blotting from cervical carcinoma cell lines, SiHa and HeLa cells, and cervical carcinoma tissues. AREG activity was measured by ELISA assay. The correlation of ADAM17, AREG, EMMPRIN, and MMP-9 expression with patients' survival rates was assessed by Kaplan-Meier and Cox regression analyses. RNA interference (RNAi) experiment was performed using small interfering mRNA to ADAM17 and EMMPRIN. ADAM17, EMMPRIN, and MMP-9 protein content was overexpressed in cervical carcinoma tissues compared with normal cervical tissues (P < 0.05). Strong expression of ADAM17, AREG, EMMPRIN, and MMP-9 was significantly associated with stages, lymph node metastasis, differentiation, and parametrium invasion (P < 0.05). Overexpression of ADAM17, AREG, EMMPRIN, and MMP-9 was significantly correlated with short progression-free survival and overall survival (P < 0.05). Multivariate analysis suggested that lymph node metastasis, parametrium invasion, and ADAM17 expression were independent prognostic indicators for cervical cancer. ADAM17 RNAi decreased EMMPRIN, p-EGFR, p-ERK, MMP-2, and MMP-9 proteins in SiHa and HeLa cells. ELISA assay revealed that AREG activity was stimulated by ADAM17 and was reversed by ADAM17 RNAi in SiHa and HeLa cells. Our data suggest that the increased expression of ADAM17 in cervical cancer is significantly associated with aggressive progression and poor prognosis. ADAM17 may be a molecular marker for predicting the progression and prognosis in cervical cancer.
Towards the elements of successful insect RNAi.
Scott, Jeffrey G; Michel, Kristin; Bartholomay, Lyric C; Siegfried, Blair D; Hunter, Wayne B; Smagghe, Guy; Zhu, Kun Yan; Douglas, Angela E
2013-12-01
RNA interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that the efficiency of RNAi varies between different species, the mode of RNAi delivery, and the genes being targeted. There is also variation in the duration of transcript suppression. At present, we have a limited capacity to predict the ideal experimental strategy for RNAi of a particular gene/insect because of our incomplete understanding of whether and how the RNAi signal is amplified and spread among insect cells. Consequently, development of the optimal RNAi protocols is a highly empirical process. This limitation can be relieved by systematic analysis of the molecular physiological basis of RNAi mechanisms in insects. An enhanced conceptual understanding of RNAi function in insects will facilitate the application of RNAi for dissection of gene function, and to fast-track the application of RNAi to both control pests and develop effective methods to protect beneficial insects and non-insect arthropods, particularly the honey bee (Apis mellifera) and cultured Pacific white shrimp (Litopenaeus vannamei) from viral and parasitic diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.
The FLIGHT Drosophila RNAi database
Bursteinas, Borisas; Jain, Ekta; Gao, Qiong; Baum, Buzz; Zvelebil, Marketa
2010-01-01
FLIGHT (http://flight.icr.ac.uk/) is an online resource compiling data from high-throughput Drosophila in vivo and in vitro RNAi screens. FLIGHT includes details of RNAi reagents and their predicted off-target effects, alongside RNAi screen hits, scores and phenotypes, including images from high-content screens. The latest release of FLIGHT is designed to enable users to upload, analyze, integrate and share their own RNAi screens. Users can perform multiple normalizations, view quality control plots, detect and assign screen hits and compare hits from multiple screens using a variety of methods including hierarchical clustering. FLIGHT integrates RNAi screen data with microarray gene expression as well as genomic annotations and genetic/physical interaction datasets to provide a single interface for RNAi screen analysis and datamining in Drosophila. PMID:20855970
Defense Mechanisms against Viral Infection in Drosophila: RNAi and Non-RNAi.
Swevers, Luc; Liu, Jisheng; Smagghe, Guy
2018-05-01
RNAi is considered a major antiviral defense mechanism in insects, but its relative importance as compared to other antiviral pathways has not been evaluated comprehensively. Here, it is attempted to give an overview of the antiviral defense mechanisms in Drosophila that involve both RNAi and non-RNAi. While RNAi is considered important in most viral infections, many other pathways can exist that confer antiviral resistance. It is noted that very few direct recognition mechanisms of virus infections have been identified in Drosophila and that the activation of immune pathways may be accomplished indirectly through cell damage incurred by viral replication. In several cases, protection against viral infection can be obtained in RNAi mutants by non-RNAi mechanisms, confirming the variability of the RNAi defense mechanism according to the type of infection and the physiological status of the host. This analysis is aimed at more systematically investigating the relative contribution of RNAi in the antiviral response and more specifically, to ask whether RNAi efficiency is affected when other defense mechanisms predominate. While Drosophila can function as a useful model, this issue may be more critical for economically important insects that are either controlled (agricultural pests and vectors of diseases) or protected from parasite infection (beneficial insects as bees) by RNAi products.
Defense Mechanisms against Viral Infection in Drosophila: RNAi and Non-RNAi
Liu, Jisheng
2018-01-01
RNAi is considered a major antiviral defense mechanism in insects, but its relative importance as compared to other antiviral pathways has not been evaluated comprehensively. Here, it is attempted to give an overview of the antiviral defense mechanisms in Drosophila that involve both RNAi and non-RNAi. While RNAi is considered important in most viral infections, many other pathways can exist that confer antiviral resistance. It is noted that very few direct recognition mechanisms of virus infections have been identified in Drosophila and that the activation of immune pathways may be accomplished indirectly through cell damage incurred by viral replication. In several cases, protection against viral infection can be obtained in RNAi mutants by non-RNAi mechanisms, confirming the variability of the RNAi defense mechanism according to the type of infection and the physiological status of the host. This analysis is aimed at more systematically investigating the relative contribution of RNAi in the antiviral response and more specifically, to ask whether RNAi efficiency is affected when other defense mechanisms predominate. While Drosophila can function as a useful model, this issue may be more critical for economically important insects that are either controlled (agricultural pests and vectors of diseases) or protected from parasite infection (beneficial insects as bees) by RNAi products. PMID:29723993
An interactive web-based application for Comprehensive Analysis of RNAi-screen Data.
Dutta, Bhaskar; Azhir, Alaleh; Merino, Louis-Henri; Guo, Yongjian; Revanur, Swetha; Madhamshettiwar, Piyush B; Germain, Ronald N; Smith, Jennifer A; Simpson, Kaylene J; Martin, Scott E; Buehler, Eugen; Beuhler, Eugen; Fraser, Iain D C
2016-02-23
RNAi screens are widely used in functional genomics. Although the screen data can be susceptible to a number of experimental biases, many of these can be corrected by computational analysis. For this purpose, here we have developed a web-based platform for integrated analysis and visualization of RNAi screen data named CARD (for Comprehensive Analysis of RNAi Data; available at https://card.niaid.nih.gov). CARD allows the user to seamlessly carry out sequential steps in a rigorous data analysis workflow, including normalization, off-target analysis, integration of gene expression data, optimal thresholds for hit selection and network/pathway analysis. To evaluate the utility of CARD, we describe analysis of three genome-scale siRNA screens and demonstrate: (i) a significant increase both in selection of subsequently validated hits and in rejection of false positives, (ii) an increased overlap of hits from independent screens of the same biology and (iii) insight to microRNA (miRNA) activity based on siRNA seed enrichment.
An interactive web-based application for Comprehensive Analysis of RNAi-screen Data
Dutta, Bhaskar; Azhir, Alaleh; Merino, Louis-Henri; Guo, Yongjian; Revanur, Swetha; Madhamshettiwar, Piyush B.; Germain, Ronald N.; Smith, Jennifer A.; Simpson, Kaylene J.; Martin, Scott E.; Beuhler, Eugen; Fraser, Iain D. C.
2016-01-01
RNAi screens are widely used in functional genomics. Although the screen data can be susceptible to a number of experimental biases, many of these can be corrected by computational analysis. For this purpose, here we have developed a web-based platform for integrated analysis and visualization of RNAi screen data named CARD (for Comprehensive Analysis of RNAi Data; available at https://card.niaid.nih.gov). CARD allows the user to seamlessly carry out sequential steps in a rigorous data analysis workflow, including normalization, off-target analysis, integration of gene expression data, optimal thresholds for hit selection and network/pathway analysis. To evaluate the utility of CARD, we describe analysis of three genome-scale siRNA screens and demonstrate: (i) a significant increase both in selection of subsequently validated hits and in rejection of false positives, (ii) an increased overlap of hits from independent screens of the same biology and (iii) insight to microRNA (miRNA) activity based on siRNA seed enrichment. PMID:26902267
RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi?
Unniyampurath, Unnikrishnan; Pilankatta, Rajendra; Krishnan, Manoj N.
2016-01-01
The recent emergence of multiple technologies for modifying gene structure has revolutionized mammalian biomedical research and enhanced the promises of gene therapy. Over the past decade, RNA interference (RNAi) based technologies widely dominated various research applications involving experimental modulation of gene expression at the post-transcriptional level. Recently, a new gene editing technology, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system, has received unprecedented acceptance in the scientific community for a variety of genetic applications. Unlike RNAi, the CRISPR/Cas9 system is bestowed with the ability to introduce heritable precision insertions and deletions in the eukaryotic genome. The combination of popularity and superior capabilities of CRISPR/Cas9 system raises the possibility that this technology may occupy the roles currently served by RNAi and may even make RNAi obsolete. We performed a comparative analysis of the technical aspects and applications of the CRISPR/Cas9 system and RNAi in mammalian systems, with the purpose of charting out a predictive picture on whether the CRISPR/Cas9 system will eclipse the existence and future of RNAi. The conclusion drawn from this analysis is that RNAi will still occupy specific domains of biomedical research and clinical applications, under the current state of development of these technologies. However, further improvements in CRISPR/Cas9 based technology may ultimately enable it to dominate RNAi in the long term. PMID:26927085
RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi?
Unniyampurath, Unnikrishnan; Pilankatta, Rajendra; Krishnan, Manoj N
2016-02-26
The recent emergence of multiple technologies for modifying gene structure has revolutionized mammalian biomedical research and enhanced the promises of gene therapy. Over the past decade, RNA interference (RNAi) based technologies widely dominated various research applications involving experimental modulation of gene expression at the post-transcriptional level. Recently, a new gene editing technology, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system, has received unprecedented acceptance in the scientific community for a variety of genetic applications. Unlike RNAi, the CRISPR/Cas9 system is bestowed with the ability to introduce heritable precision insertions and deletions in the eukaryotic genome. The combination of popularity and superior capabilities of CRISPR/Cas9 system raises the possibility that this technology may occupy the roles currently served by RNAi and may even make RNAi obsolete. We performed a comparative analysis of the technical aspects and applications of the CRISPR/Cas9 system and RNAi in mammalian systems, with the purpose of charting out a predictive picture on whether the CRISPR/Cas9 system will eclipse the existence and future of RNAi. The conclusion drawn from this analysis is that RNAi will still occupy specific domains of biomedical research and clinical applications, under the current state of development of these technologies. However, further improvements in CRISPR/Cas9 based technology may ultimately enable it to dominate RNAi in the long term.
Establishment of a tissue-specific RNAi system in C. elegans.
Qadota, Hiroshi; Inoue, Makiko; Hikita, Takao; Köppen, Mathias; Hardin, Jeffrey D; Amano, Mutsuki; Moerman, Donald G; Kaibuchi, Kozo
2007-10-01
In C. elegans, mosaic analysis is a powerful genetic tool for determining in which tissue or specific cells a gene of interest is required. For traditional mosaic analysis, a loss-of-function mutant and a genomic fragment that can rescue the mutant phenotype are required. Here we establish an easy and rapid mosaic system using RNAi (RNA mediated interference), using a rde-1 mutant that is resistant to RNAi. Tissue-specific expression of the wild type rde-1 cDNA in rde-1 mutants limits RNAi sensitivity to a specific tissue. We established hypodermal-and muscle-specific RNAi systems by expressing rde-1 cDNA under the control of the lin-26 and hlh-1 promoters, respectively. We confirmed tissue-specific RNAi using two assays: (1) tissue-specific knockdown of GFP expression, and (2) phenocopy of mutations in essential genes that were previously known to function in a tissue-specific manner. We also applied this system to an essential gene, ajm-1, expressed in hypodermis and gut, and show that lethality in ajm-1 mutants is due to loss of expression in hypodermal cells. Although we demonstrate tissue-specific RNAi in hypodermis and muscle, this method could be easily applied to other tissues.
Establishment of a tissue-specific RNAi system in C. elegans
Qadota, Hiroshi; Inoue, Makiko; Hikita, Takao; Köppen, Mathias; Hardin, Jeffrey D.; Amano, Mutsuki; Moerman, Donald G.; Kaibuchi, Kozo
2011-01-01
In C. elegans, mosaic analysis is a powerful genetic tool for determining in which tissue or specific cells a gene of interest is required. For traditional mosaic analysis, a loss-of-function mutant and a genomic fragment that can rescue the mutant phenotype are required. Here we establish an easy and rapid mosaic system using RNAi (RNA mediated interference), using a rde-1 mutant that is resistant to RNAi. Tissue-specific expression of the wild type rde-1 cDNA in rde-1 mutants limits RNAi sensitivity to a specific tissue. We established hypodermal- and muscle-specific RNAi systems by expressing rde-1 cDNA under the control of the lin-26 and hlh-1 promoters, respectively. We confirmed tissue-specific RNAi using two assays: (1) tissue-specific knockdown of GFP expression, and (2) phenocopy of mutations in essential genes that were previously known to function in a tissue-specific manner. We also applied this system to an essential gene, ajm-1, expressed in hypodermis and gut, and show that lethality in ajm-1 mutants is due to loss of expression in hypodermal cells. Although we demonstrate tissue-specific RNAi in hypodermis and muscle, this method could be easily applied to other tissues. PMID:17681718
Environmental RNAi in herbivorous insects.
Ivashuta, Sergey; Zhang, Yuanji; Wiggins, B Elizabeth; Ramaseshadri, Partha; Segers, Gerrit C; Johnson, Steven; Meyer, Steve E; Kerstetter, Randy A; McNulty, Brian C; Bolognesi, Renata; Heck, Gregory R
2015-05-01
Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene expression in a receptive organism by exogenous double-stranded RNA (dsRNA). Although demonstrated under artificial dietary conditions and via transgenic plant presentations in several herbivorous insects, the magnitude and consequence of exogenous dsRNA uptake and the role of eRNAi remains unknown under natural insect living conditions. Our analysis of coleopteran insects sensitive to eRNAi fed on wild-type plants revealed uptake of plant endogenous long dsRNAs, but not small RNAs. Subsequently, the dsRNAs were processed into 21 nt siRNAs by insects and accumulated in high quantities in insect cells. No accumulation of host plant-derived siRNAs was observed in lepidopteran larvae that are recalcitrant to eRNAi. Stability of ingested dsRNA in coleopteran larval gut followed by uptake and transport from the gut to distal tissues appeared to be enabling factors for eRNAi. Although a relatively large number of distinct coleopteran insect-processed plant-derived siRNAs had sequence complementarity to insect transcripts, the vast majority of the siRNAs were present in relatively low abundance, and RNA-seq analysis did not detect a significant effect of plant-derived siRNAs on insect transcriptome. In summary, we observed a broad genome-wide uptake of plant endogenous dsRNA and subsequent processing of ingested dsRNA into 21 nt siRNAs in eRNAi-sensitive insects under natural feeding conditions. In addition to dsRNA stability in gut lumen and uptake, dosage of siRNAs targeting a given insect transcript is likely an important factor in order to achieve measurable eRNAi-based regulation in eRNAi-competent insects that lack an apparent silencing amplification mechanism. © 2015 Ivashuta et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Hu, Yanhui; Comjean, Aram; Roesel, Charles; Vinayagam, Arunachalam; Flockhart, Ian; Zirin, Jonathan; Perkins, Lizabeth; Perrimon, Norbert; Mohr, Stephanie E.
2017-01-01
The FlyRNAi database of the Drosophila RNAi Screening Center (DRSC) and Transgenic RNAi Project (TRiP) at Harvard Medical School and associated DRSC/TRiP Functional Genomics Resources website (http://fgr.hms.harvard.edu) serve as a reagent production tracking system, screen data repository, and portal to the community. Through this portal, we make available protocols, online tools, and other resources useful to researchers at all stages of high-throughput functional genomics screening, from assay design and reagent identification to data analysis and interpretation. In this update, we describe recent changes and additions to our website, database and suite of online tools. Recent changes reflect a shift in our focus from a single technology (RNAi) and model species (Drosophila) to the application of additional technologies (e.g. CRISPR) and support of integrated, cross-species approaches to uncovering gene function using functional genomics and other approaches. PMID:27924039
Modulating the tumor microenvironment with RNA interference as a cancer treatment strategy.
Zins, Karin; Sioud, Mouldy; Aharinejad, Seyedhossein; Lucas, Trevor; Abraham, Dietmar
2015-01-01
The tumor microenvironment is composed of accessory cells and immune cells in addition to extracellular matrix (ECM) components. The stromal compartment interacts with cancer cells in a complex crosstalk to support tumor development. Growth factors and cytokines produced by stromal cells support the growth of tumor cells and promote interaction with the vasculature to enhance tumor progression and invasion. The activation of autocrine and paracrine oncogenic signaling pathways by growth factors, cytokines, and proteases derived from both tumor cells and the stromal compartment is thought to play a major role in assisting tumor cells during metastasis. Consequently, targeting tumor-stroma interactions by RNA interference (RNAi)-based approaches is a promising strategy in the search for novel treatment modalities in human cancer. Recent advances in packaging technology including the use of polymers, peptides, liposomes, and nanoparticles to deliver small interfering RNAs (siRNAs) into target cells may overcome limitations associated with potential RNAi-based therapeutics. Newly developed nonviral gene delivery approaches have shown improved anticancer efficacy suggesting that RNAi-based therapeutics provide novel opportunities to elicit significant gene silencing and induce regression of tumor growth. This chapter summarizes our current understanding of the tumor microenvironment and highlights some potential targets for therapeutic intervention with RNAi-based cancer therapeutics.
Soaking RNAi in Bombyx mori BmN4-SID1 Cells Arrests Cell Cycle Progression
Mon, Hiroaki; Li, Zhiqing; Kobayashi, Isao; Tomita, Shuichiro; Lee, JaeMan; Sezutsu, Hideki; Tamura, Toshiki; Kusakabe, Takahiro
2013-01-01
RNA interference (RNAi) is an evolutionarily conserved mechanism for sequence-specific gene silencing. Previously, the BmN4-SID1 cell expressing Caenorhabditis ele gans SID-1 was established, in which soaking RNAi could induce effective gene silencing. To establish its utility, 6 cell cycle progression related cDNAs, CDK1, MYC, MYB, RNRS, CDT1, and GEMININ, were isolated from the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), and their expressions were further silenced by soaking RNAi in the BmN4-SID1 cells. The cell cycle progression analysis using flow cytometer demonstrated that the small amount of double stranded RNA was enough to arrest cell cycle progression at the specific cell phases. These data suggest that RNAi in the BmN4-SID1 cells can be used as a powerful tool for loss-of-function analysis of B. mori genes. PMID:24773378
False negative rates in Drosophila cell-based RNAi screens: a case study
2011-01-01
Background High-throughput screening using RNAi is a powerful gene discovery method but is often complicated by false positive and false negative results. Whereas false positive results associated with RNAi reagents has been a matter of extensive study, the issue of false negatives has received less attention. Results We performed a meta-analysis of several genome-wide, cell-based Drosophila RNAi screens, together with a more focused RNAi screen, and conclude that the rate of false negative results is at least 8%. Further, we demonstrate how knowledge of the cell transcriptome can be used to resolve ambiguous results and how the number of false negative results can be reduced by using multiple, independently-tested RNAi reagents per gene. Conclusions RNAi reagents that target the same gene do not always yield consistent results due to false positives and weak or ineffective reagents. False positive results can be partially minimized by filtering with transcriptome data. RNAi libraries with multiple reagents per gene also reduce false positive and false negative outcomes when inconsistent results are disambiguated carefully. PMID:21251254
Riechmann, Veit
2017-01-01
In vivo RNAi in Drosophila facilitates simple and rapid analysis of gene functions in a cell- or tissue-specific manner. The versatility of the UAS-GAL4 system allows to control exactly where and when during development the function of a gene is depleted. The epithelium of the ovary is a particularly good model to study in a living animal how stem cells are maintained and how their descendants proliferate and differentiate. Here I provide basic information about the publicly available reagents for in vivo RNAi, and I describe how the oogenesis system can be applied to analyze stem cells and epithelial development at a histological level. Moreover, I give helpful hints to optimize the use of the UAS-GAL4 system for RNAi induction in the follicular epithelium. Finally, I provide detailed step-by-step protocols for ovary dissection, antibody stainings, and ovary mounting for microscopic analysis.
Smith, Ian; Greenside, Peyton G; Natoli, Ted; Lahr, David L; Wadden, David; Tirosh, Itay; Narayan, Rajiv; Root, David E; Golub, Todd R; Subramanian, Aravind; Doench, John G
2017-11-01
The application of RNA interference (RNAi) to mammalian cells has provided the means to perform phenotypic screens to determine the functions of genes. Although RNAi has revolutionized loss-of-function genetic experiments, it has been difficult to systematically assess the prevalence and consequences of off-target effects. The Connectivity Map (CMAP) represents an unprecedented resource to study the gene expression consequences of expressing short hairpin RNAs (shRNAs). Analysis of signatures for over 13,000 shRNAs applied in 9 cell lines revealed that microRNA (miRNA)-like off-target effects of RNAi are far stronger and more pervasive than generally appreciated. We show that mitigating off-target effects is feasible in these datasets via computational methodologies to produce a consensus gene signature (CGS). In addition, we compared RNAi technology to clustered regularly interspaced short palindromic repeat (CRISPR)-based knockout by analysis of 373 single guide RNAs (sgRNAs) in 6 cells lines and show that the on-target efficacies are comparable, but CRISPR technology is far less susceptible to systematic off-target effects. These results will help guide the proper use and analysis of loss-of-function reagents for the determination of gene function.
Shi, Ji-Feng; Mu, Li-Li; Chen, Xu; Guo, Wen-Chao; Li, Guo-Qing
2016-01-01
Dietary introduction of bacterially expressed double-stranded RNA (dsRNA) has great potential for management of Leptinotarsa decemlineata . Identification of the most attractive candidate genes for RNA interference (RNAi) is the first step. In the present paper, three complete chitin synthase cDNA sequences ( LdChSAa , LdChSAb and LdChSB ) were cloned. LdChSAa and LdChSAb , two splicing variants of LdChSA gene, were highly expressed in ectodermally-derived epidermal cells forming epidermis, trachea, foregut and hindgut, whereas LdChSB was mainly transcribed in midgut cells. Feeding bacterially expressed ds ChSA (derived from a common fragment of LdChSAa and LdChSAb ), ds ChSAa , ds ChSAb and ds ChSB in the second- and fourth-instar larvae specifically knocked down their target mRNAs. RNAi of LdChSAa + LdChSAb and LdChSAa lowered chitin contents in whole body and integument samples, and thinned tracheal taenidia. The resulting larvae failed to ecdyse, pupate, or emerge as adults. Comparably, knockdown of LdChSAb mainly affected pupal-adult molting. The LdChSAb RNAi pupae did not completely shed the old larval exuviae, which caused failure of adult emergence. In contrast, silencing of LdChSB significantly reduced foliage consumption, decreased chitin content in midgut sample, damaged midgut peritrophic matrix, and retarded larval growth. As a result, the development of the LdChSB RNAi hypomorphs was arrested. Our data reveal that these LdChS s are among the effective candidate genes for an RNAi-based control strategy against L. decemlineata .
Zhang, Chi; Montgomery, Taiowa A; Fischer, Sylvia E J; Garcia, Susana M D A; Riedel, Christian G; Fahlgren, Noah; Sullivan, Christopher M; Carrington, James C; Ruvkun, Gary
2012-05-22
In nematodes, plants, and fungi, RNAi is remarkably potent and persistent due to the amplification of initial silencing signals by RNA-dependent RNA polymerases (RdRPs). In Caenorhabditis elegans (C. elegans), the interaction between the RNA-induced silencing complex (RISC) loaded with primary small interfering RNAs (siRNAs) and the target messenger RNA (mRNA) leads to the recruitment of RdRPs and synthesis of secondary siRNAs using the target mRNA as the template. The mechanism and genetic requirements for secondary siRNA accumulation are not well understood. From a forward genetic screen for C. elegans genes required for RNAi, we identified rde-10, and through proteomic analysis of RDE-10-interacting proteins, we identified a protein complex containing the new RNAi factor RDE-11, the known RNAi factors RSD-2 and ERGO-1, and other candidate RNAi factors. The RNAi defective genes rde-10 and rde-11 encode a novel protein and a RING-type zinc finger domain protein, respectively. Mutations in rde-10 and rde-11 genes cause dosage-sensitive RNAi deficiencies: these mutants are resistant to low dosage but sensitive to high dosage of double-stranded RNAs. We assessed the roles of rde-10, rde-11, and other dosage-sensitive RNAi-defective genes rsd-2, rsd-6, and haf-6 in both exogenous and endogenous small RNA pathways using high-throughput sequencing and qRT-PCR. These genes are required for the accumulation of secondary siRNAs in both exogenous and endogenous RNAi pathways. The RDE-10/RDE-11 complex is essential for the amplification of RNAi in C. elegans by promoting secondary siRNA accumulation. Copyright © 2012 Elsevier Ltd. All rights reserved.
The effectiveness of RNAi in Caenorhabditis elegans is maintained during spaceflight.
Etheridge, Timothy; Nemoto, Kanako; Hashizume, Toko; Mori, Chihiro; Sugimoto, Tomoko; Suzuki, Hiromi; Fukui, Keiji; Yamazaki, Takashi; Higashibata, Akira; Szewczyk, Nathaniel J; Higashitani, Atsushi
2011-01-01
Overcoming spaceflight-induced (patho)physiologic adaptations is a major challenge preventing long-term deep space exploration. RNA interference (RNAi) has emerged as a promising therapeutic for combating diseases on Earth; however the efficacy of RNAi in space is currently unknown. Caenorhabditis elegans were prepared in liquid media on Earth using standard techniques and treated acutely with RNAi or a vector control upon arrival in Low Earth Orbit. After culturing during 4 and 8 d spaceflight, experiments were stopped by freezing at -80°C until analysis by mRNA and microRNA array chips, microscopy and Western blot on return to Earth. Ground controls (GC) on Earth were simultaneously grown under identical conditions. After 8 d spaceflight, mRNA expression levels of components of the RNAi machinery were not different from that in GC (e.g., Dicer, Argonaute, Piwi; P>0.05). The expression of 228 microRNAs, of the 232 analysed, were also unaffected during 4 and 8 d spaceflight (P>0.05). In spaceflight, RNAi against green fluorescent protein (gfp) reduced chromosomal gfp expression in gonad tissue, which was not different from GC. RNAi against rbx-1 also induced abnormal chromosome segregation in the gonad during spaceflight as on Earth. Finally, culture in RNAi against lysosomal cathepsins prevented degradation of the muscle-specific α-actin protein in both spaceflight and GC conditions. Treatment with RNAi works as effectively in the space environment as on Earth within multiple tissues, suggesting RNAi may provide an effective tool for combating spaceflight-induced pathologies aboard future long-duration space missions. Furthermore, this is the first demonstration that RNAi can be utilised to block muscle protein degradation, both on Earth and in space.
Zhang, Chi; Montgomery, Taiowa A.; Fischer, Sylvia E. J.; Garcia, Susana M. D. A.; Riedel, Christian G.; Fahlgren, Noah; Sullivan, Christopher M.; Carrington, James C.; Ruvkun, Gary
2012-01-01
SUMMARY Background In nematodes, plants and fungi, RNAi is remarkably potent and persistent due to the amplification of initial silencing signals by RNA-dependent RNA polymerases (RdRPs). In Caenorhabditis elegans (C. elegans), the interaction between the RNA-induced silencing complex (RISC) loaded with primary siRNAs and the target mRNA leads to the recruitment of RdRPs and synthesis of secondary siRNAs using the target mRNA as the template. The mechanism and genetic requirements for secondary siRNA accumulation are not well understood. Results From a forward genetic screen for C. elegans genes required for RNAi, we identified rde-10 and through proteomic analysis of RDE-10-interacting proteins, we identified a protein complex containing the new RNAi factor RDE-11, the known RNAi factors RSD-2 and ERGO-1, as well as other candidate RNAi factors. The RNAi defective genes rde-10 and rde-11 encode a novel protein and a RING-type zinc finger domain protein, respectively. Mutations in rde-10 and rde-11 genes cause dosage-sensitive RNAi deficiencies: these mutants are resistant to low dosage, but sensitive to high dosage of double-stranded RNAs (dsRNAs). We assessed the roles of rde-10, rde-11, and other dosage-sensitive RNAi-defective genes rsd-2, rsd-6 and haf-6 in both exogenous and endogenous small RNA pathways using high-throughput sequencing and qRT-PCR. These genes are required for the accumulation of secondary siRNAs in both exogenous and endogenous RNAi pathways. Conclusions The RDE-10/RDE-11 complex is essential for the amplification of RNAi in C. elegans by promoting secondary siRNA accumulation. PMID:22542102
The Effectiveness of RNAi in Caenorhabditis elegans Is Maintained during Spaceflight
Hashizume, Toko; Mori, Chihiro; Sugimoto, Tomoko; Suzuki, Hiromi; Fukui, Keiji; Yamazaki, Takashi; Higashibata, Akira; Szewczyk, Nathaniel J.; Higashitani, Atsushi
2011-01-01
Background Overcoming spaceflight-induced (patho)physiologic adaptations is a major challenge preventing long-term deep space exploration. RNA interference (RNAi) has emerged as a promising therapeutic for combating diseases on Earth; however the efficacy of RNAi in space is currently unknown. Methods Caenorhabditis elegans were prepared in liquid media on Earth using standard techniques and treated acutely with RNAi or a vector control upon arrival in Low Earth Orbit. After culturing during 4 and 8 d spaceflight, experiments were stopped by freezing at −80°C until analysis by mRNA and microRNA array chips, microscopy and Western blot on return to Earth. Ground controls (GC) on Earth were simultaneously grown under identical conditions. Results After 8 d spaceflight, mRNA expression levels of components of the RNAi machinery were not different from that in GC (e.g., Dicer, Argonaute, Piwi; P>0.05). The expression of 228 microRNAs, of the 232 analysed, were also unaffected during 4 and 8 d spaceflight (P>0.05). In spaceflight, RNAi against green fluorescent protein (gfp) reduced chromosomal gfp expression in gonad tissue, which was not different from GC. RNAi against rbx-1 also induced abnormal chromosome segregation in the gonad during spaceflight as on Earth. Finally, culture in RNAi against lysosomal cathepsins prevented degradation of the muscle-specific α-actin protein in both spaceflight and GC conditions. Conclusions Treatment with RNAi works as effectively in the space environment as on Earth within multiple tissues, suggesting RNAi may provide an effective tool for combating spaceflight-induced pathologies aboard future long-duration space missions. Furthermore, this is the first demonstration that RNAi can be utilised to block muscle protein degradation, both on Earth and in space. PMID:21673804
Kamatuka, Kenta; Hattori, Masahiro; Sugiyama, Tomoyasu
2016-12-01
RNA interference (RNAi) screening is extensively used in the field of reverse genetics. RNAi libraries constructed using random oligonucleotides have made this technology affordable. However, the new methodology requires exploration of the RNAi target gene information after screening because the RNAi library includes non-natural sequences that are not found in genes. Here, we developed a web-based tool to support RNAi screening. The system performs short hairpin RNA (shRNA) target prediction that is informed by comprehensive enquiry (SPICE). SPICE automates several tasks that are laborious but indispensable to evaluate the shRNAs obtained by RNAi screening. SPICE has four main functions: (i) sequence identification of shRNA in the input sequence (the sequence might be obtained by sequencing clones in the RNAi library), (ii) searching the target genes in the database, (iii) demonstrating biological information obtained from the database, and (iv) preparation of search result files that can be utilized in a local personal computer (PC). Using this system, we demonstrated that genes targeted by random oligonucleotide-derived shRNAs were not different from those targeted by organism-specific shRNA. The system facilitates RNAi screening, which requires sequence analysis after screening. The SPICE web application is available at http://www.spice.sugysun.org/.
Rohrbough, Jeffrey; Rushton, Emma; Woodruff, Elvin; Fergestad, Tim; Vigneswaran, Krishanthan; Broadie, Kendal
2007-01-01
Formation and regulation of excitatory glutamatergic synapses is essential for shaping neural circuits throughout development. In a Drosophila genetic screen for synaptogenesis mutants, we identified mind the gap (mtg), which encodes a secreted, extracellular N-glycosaminoglycan-binding protein. MTG is expressed neuronally and detected in the synaptic cleft, and is required to form the specialized transsynaptic matrix that links the presynaptic active zone with the post-synaptic glutamate receptor (GluR) domain. Null mtg embryonic mutant synapses exhibit greatly reduced GluR function, and a corresponding loss of localized GluR domains. All known post-synaptic signaling/scaffold proteins functioning upstream of GluR localization are also grossly reduced or mislocalized in mtg mutants, including the dPix–dPak–Dock cascade and the Dlg/PSD-95 scaffold. Ubiquitous or neuronally targeted mtg RNA interference (RNAi) similarly reduce post-synaptic assembly, whereas post-synaptically targeted RNAi has no effect, indicating that presynaptic MTG induces and maintains the post-synaptic pathways driving GluR domain formation. These findings suggest that MTG is secreted from the presynaptic terminal to shape the extracellular synaptic cleft domain, and that the cleft domain functions to mediate transsynaptic signals required for post-synaptic development. PMID:17901219
Yang, Huan; Zhang, Ying; Vallandingham, Jim; Li, Hau; Florens, Laurence; Mak, Ho Yi
2012-01-01
The molecular mechanisms for target mRNA degradation in Caenorhabditis elegans undergoing RNAi are not fully understood. Using a combination of genetic, proteomic, and biochemical approaches, we report a divergent RDE-10/RDE-11 complex that is required for RNAi in C. elegans. Genetic analysis indicates that the RDE-10/RDE-11 complex acts in parallel to nuclear RNAi. Association of the complex with target mRNA is dependent on RDE-1 but not RRF-1, suggesting that target mRNA recognition depends on primary but not secondary siRNA. Furthermore, RDE-11 is required for mRNA degradation subsequent to target engagement. Deep sequencing reveals a fivefold decrease in secondary siRNA abundance in rde-10 and rde-11 mutant animals, while primary siRNA and microRNA biogenesis is normal. Therefore, the RDE-10/RDE-11 complex is critical for amplifying the exogenous RNAi response. Our work uncovers an essential output of the RNAi pathway in C. elegans. PMID:22508728
Yang, Huan; Zhang, Ying; Vallandingham, Jim; Li, Hua; Li, Hau; Florens, Laurence; Mak, Ho Yi
2012-04-15
The molecular mechanisms for target mRNA degradation in Caenorhabditis elegans undergoing RNAi are not fully understood. Using a combination of genetic, proteomic, and biochemical approaches, we report a divergent RDE-10/RDE-11 complex that is required for RNAi in C. elegans. Genetic analysis indicates that the RDE-10/RDE-11 complex acts in parallel to nuclear RNAi. Association of the complex with target mRNA is dependent on RDE-1 but not RRF-1, suggesting that target mRNA recognition depends on primary but not secondary siRNA. Furthermore, RDE-11 is required for mRNA degradation subsequent to target engagement. Deep sequencing reveals a fivefold decrease in secondary siRNA abundance in rde-10 and rde-11 mutant animals, while primary siRNA and microRNA biogenesis is normal. Therefore, the RDE-10/RDE-11 complex is critical for amplifying the exogenous RNAi response. Our work uncovers an essential output of the RNAi pathway in C. elegans.
Intelligent Interfaces for Mining Large-Scale RNAi-HCS Image Databases
Lin, Chen; Mak, Wayne; Hong, Pengyu; Sepp, Katharine; Perrimon, Norbert
2010-01-01
Recently, High-content screening (HCS) has been combined with RNA interference (RNAi) to become an essential image-based high-throughput method for studying genes and biological networks through RNAi-induced cellular phenotype analyses. However, a genome-wide RNAi-HCS screen typically generates tens of thousands of images, most of which remain uncategorized due to the inadequacies of existing HCS image analysis tools. Until now, it still requires highly trained scientists to browse a prohibitively large RNAi-HCS image database and produce only a handful of qualitative results regarding cellular morphological phenotypes. For this reason we have developed intelligent interfaces to facilitate the application of the HCS technology in biomedical research. Our new interfaces empower biologists with computational power not only to effectively and efficiently explore large-scale RNAi-HCS image databases, but also to apply their knowledge and experience to interactive mining of cellular phenotypes using Content-Based Image Retrieval (CBIR) with Relevance Feedback (RF) techniques. PMID:21278820
iScreen: Image-Based High-Content RNAi Screening Analysis Tools.
Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua
2015-09-01
High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.
Xu, Q; Cao, X; Pan, J; Ye, Y; Xie, Y; Ohara, N; Ji, H
2015-01-01
PUPOSE OF INVESTIGATION: To study the expression of extracellular matrix metalloproteinase inducer (EMMPRIN), matrix metalloproteinases (MMPs), and tissue inhibitors of MMP (TIMPs) in uterine cervical cancer cell lines in vitro. EMMPRIN, MMPs, and TIMPs expression were assessed by Western blot and real-time RT-PCR from cervical carcinoma SiHa, HeLa, and C33-A cells. EMMPRIN recombinant significantly increased MMP-2, MMP-9 protein and mRNA expression in SiHa and Hela cells, but not in C33-A cells by Western blot analysis and real-time RT-PCR. EMMPRIN recombinant significantly inhibited TIMP-1 protein and mRNA levels in SiHa and Hela cells, but not in C33-A cells. There was no difference on the TIMP-2 expression in those cells with the treatment of EMMPRIN recombinant. EMMPRIN RNAi decreased MMP-2 and MMP-9 and increased TIMP-1 expression in SiHa and HeLa cells, but not in C33-A cells. There was no change on the expression of TIMP-2 mRNA levels in SiHa, HeLa and C33-A cells transfected with siEMMPRIN. EMMPRIN may induce MMP-2 and MMP-9, and downregulate TIMP-1 in HPV-positive cervical cancer cells in vitro.
Rac-WAVE2 signaling is involved in the invasive and metastatic phenotypes of murine melanoma cells.
Kurisu, Shusaku; Suetsugu, Shiro; Yamazaki, Daisuke; Yamaguchi, Hideki; Takenawa, Tadaomi
2005-02-17
WAVEs (WASP-family verprolin-homologous proteins) regulate the actin cytoskeleton through activation of Arp2/3 complex. As cell motility is regulated by actin cytoskeleton rearrangement and is required for tumor invasion and metastasis, blocking actin polymerization may be an effective strategy to prevent tumor dissemination. We show that WAVEs, especially WAVE2, are essential for invasion and metastasis of melanoma cells. Malignant B16F10 mouse melanoma cells expressed more WAVE1 and WAVE2 proteins and showed higher Rac activity than B16 parental cells, which are neither invasive nor metastatic. The effect of WAVE2 silencing by RNA interference (RNAi) on the highly invasive nature of B16F10 cells was more dramatic than that of WAVE1 RNAi. Membrane ruffling, cell motility, invasion into the extracellular matrix, and pulmonary metastasis of B16F10 cells were suppressed by WAVE2 RNAi. WAVE2 RNAi also had a profound effect on invasion induced by a constitutively active form of Rac (RacCA). In addition, ectopic expression of both RacCA and WAVE2 in B16 cells resulted in further increase in the invasiveness than that observed in B16 cells expressing only RacCA. Thus, WAVE2 acts as the primary effector downstream of Rac to achieve invasion and metastasis, suggesting that suppression of WAVE2 activity holds a promise for preventing cancer invasion and metastasis.
Chen, Chun-Chieh G; Simard, Martin J; Tabara, Hiroaki; Brownell, Daniel R; McCollough, Jennifer A; Mello, Craig C
2005-02-22
RNA interference (RNAi) is an ancient, highly conserved mechanism in which small RNA molecules (siRNAs) guide the sequence-specific silencing of gene expression . Several silencing machinery protein components have been identified, including helicases, RNase-related proteins, double- and single-stranded RNA binding proteins, and RNA-dependent RNA polymerase-related proteins . Work on these factors has led to the revelation that RNAi mechanisms intersect with cellular pathways required for development and fertility . Despite rapid progress in understanding key steps in the RNAi pathway, it is clear that many factors required for both RNAi and related developmental mechanisms have not yet been identified. Here, we report the characterization of the C. elegans gene rde-3. Genetic analysis of presumptive null alleles indicates that rde-3 is required for siRNA accumulation and for efficient RNAi in all tissues, and it is essential for fertility and viability at high temperatures. RDE-3 contains conserved domains found in the polymerase beta nucleotidyltransferase superfamily, which includes conventional poly(A) polymerases, 2'-5' oligoadenylate synthetase (OAS), and yeast Trf4p . These findings implicate a new enzymatic modality in RNAi and suggest possible models for the role of RDE-3 in the RNAi mechanism.
Wang, Yi; Li, Quan; Wei, Xianzhao; Xu, Jie; Chen, Qi; Song, Shuang; Lu, Zhe; Wang, Zimin
2015-09-01
Subacromial bursitis (SAB) is the major source of pain in rotator cuff disease. Although multiple investigations have provided support for the role of inflammatory cytokines in SAB, few have focussed on the use these cytokines in the treatment of SAB. The aim of the present study was to observe the therapeutic efficacy of lentivirus‑mediated RNA interference (RNAi) on carrageenan‑induced SAB by injecting lentivirus‑tumor necrosis factor (TNF)‑α‑RNAi expressing TNF‑α small interfering (si)RNA. Using screened siRNA segments, an siRNA was designed. A lentivirus vector expressing siRNA was established and packed as lentivirus particles. A lentivirus that expressed the negative sequence was used as a lentivirus‑negative control (NC). The carrageenan‑induced SAB model was established in 32 male Sprague‑Dawley rats. The modeled rats were randomly assigned to four groups: Lentivirus‑RNAi treatment group, lentivirus‑NC group, SAB group and phosphate‑buffered saline (PBS) blank control group. The lentivirus was injected (1x10(7) transducing units) into the subacromial bursa of the rats in the lentivirus‑RNAi group and lentivirus‑NC group, whereas 100 µl PBS was injected at the same site in the SAB group and the PBS blank control group. At 5 weeks following injection, the animals were sacrificed and venous blood was obtained. The effect of TNF‑α interference and the expression of inflammatory cytokines were determined by reverse transcription‑quantitative polymerase chain reaction, western blotting, hematoxylin and eosin staining, Van Gieson's staining and immunofluorescence. The expression of TNF‑α was decreased in the lentivirus‑TNF‑α‑RNAi group compared with that in the SAB group. Morphological observations revealed that the number of inflammatory cells were reduced and damage to tendon fibers was attenuated in this group, suggesting that the downregulation of the protein expression levels of TNF‑α‑associated nuclear factor‑κB, matrix metalloproteinase (MMP)1, MMP9, cyclooxygenase (COX)‑1 and COX‑2 may exert a therapeutic effect on inflammation of the SAB caused by rheumatoid arthritis. It was also found that the expression of stromal cell‑derived growth factor‑1 was downregulated in the lentivirus‑TNF‑α‑RNAi group. Therefore, the present study demonstrated that lentivirus‑mediated TNF‑α RNAi effectively inhibited the inflammatory response in SAB, and that injection of a lentivirus vector into the affected region is an effective way of achieving RNAi in vivo.
Automated microscopy for high-content RNAi screening
2010-01-01
Fluorescence microscopy is one of the most powerful tools to investigate complex cellular processes such as cell division, cell motility, or intracellular trafficking. The availability of RNA interference (RNAi) technology and automated microscopy has opened the possibility to perform cellular imaging in functional genomics and other large-scale applications. Although imaging often dramatically increases the content of a screening assay, it poses new challenges to achieve accurate quantitative annotation and therefore needs to be carefully adjusted to the specific needs of individual screening applications. In this review, we discuss principles of assay design, large-scale RNAi, microscope automation, and computational data analysis. We highlight strategies for imaging-based RNAi screening adapted to different library and assay designs. PMID:20176920
Yang, Jing; Wang, Rong; Li, Hongjiang; Lv, Qing; Meng, Wentong; Yang, Xiaoqin
2016-07-08
Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN) or cluster of differentiation 147 (CD147), a glycoprotein enriched on the plasma membrane of tumor cells, promotes proliferation, invasion, metastasis, and survival of malignant tumor cells. In this study, we sought to examine the expression of EMMPRIN in breast tumors, and to identify the potential roles of EMMPRIN on breast cancer cells. EMMPRIN expression in breast cancer tissues was assessed by immunohistochemistry. We used a lentivirus vector-based RNA interference (RNAi) approach expressing short hairpin RNA (shRNA) to knockdown EMMPRIN gene in breast cancer cell lines MDA-MB-231 and MCF-7. In vitro, Cell proliferative, invasive potential were determined by Cell Counting Kit (CCK-8), cell cycle analysis and matrigel invasion assay, respectively. In vivo, tumorigenicity was monitored by inoculating tumor cells into breast fat pad of female nude mice. EMMPRIN was over-expressed in breast tumors and breast cancer cell lines. Down-regulation of EMMPRIN by lentivirus vector-based RNAi led to decreased cell proliferative, decreased matrigel invasion in vitro, and attenuated tumor formation in vivo. High expression of EMMPRIN plays a crucial role in breast cancer cell proliferation, matrigel invasion and tumor formation.
Deconvolution of seed and RNA-binding protein crosstalk in RNAi-based functional genomics.
Suzuki, Hiroshi I; Spengler, Ryan M; Grigelioniene, Giedre; Kobayashi, Tatsuya; Sharp, Phillip A
2018-05-01
RNA interference (RNAi) is a major, powerful platform for gene perturbations, but is restricted by off-target mechanisms. Communication between RNAs, small RNAs, and RNA-binding proteins (RBPs) is a pervasive feature of cellular RNA networks. We present a crosstalk scenario, designated as crosstalk with endogenous RBPs' (ceRBP), in which small interfering RNAs or microRNAs with seed sequences that overlap RBP motifs have extended biological effects by perturbing endogenous RBP activity. Systematic analysis of small interfering RNA (siRNA) off-target data and genome-wide RNAi cancer lethality screens using 501 human cancer cell lines, a cancer dependency map, identified that seed-to-RBP crosstalk is widespread, contributes to off-target activity, and affects RNAi performance. Specifically, deconvolution of the interactions between gene knockdown and seed-mediated silencing effects in the cancer dependency map showed widespread contributions of seed-to-RBP crosstalk to growth-phenotype modulation. These findings suggest a novel aspect of microRNA biology and offer a basis for improvement of RNAi agents and RNAi-based functional genomics.
Chen, C; Li, H; Zhou, X; Wong, S T C
2008-05-01
Image-based, high throughput genome-wide RNA interference (RNAi) experiments are increasingly carried out to facilitate the understanding of gene functions in intricate biological processes. Automated screening of such experiments generates a large number of images with great variations in image quality, which makes manual analysis unreasonably time-consuming. Therefore, effective techniques for automatic image analysis are urgently needed, in which segmentation is one of the most important steps. This paper proposes a fully automatic method for cells segmentation in genome-wide RNAi screening images. The method consists of two steps: nuclei and cytoplasm segmentation. Nuclei are extracted and labelled to initialize cytoplasm segmentation. Since the quality of RNAi image is rather poor, a novel scale-adaptive steerable filter is designed to enhance the image in order to extract long and thin protrusions on the spiky cells. Then, constraint factor GCBAC method and morphological algorithms are combined to be an integrated method to segment tight clustered cells. Compared with the results obtained by using seeded watershed and the ground truth, that is, manual labelling results by experts in RNAi screening data, our method achieves higher accuracy. Compared with active contour methods, our method consumes much less time. The positive results indicate that the proposed method can be applied in automatic image analysis of multi-channel image screening data.
Kurscheid, Sebastian; Lew-Tabor, Ala E; Rodriguez Valle, Manuel; Bruyeres, Anthea G; Doogan, Vivienne J; Munderloh, Ulrike G; Guerrero, Felix D; Barrero, Roberto A; Bellgard, Matthew I
2009-01-01
Background The Arthropods are a diverse group of organisms including Chelicerata (ticks, mites, spiders), Crustacea (crabs, shrimps), and Insecta (flies, mosquitoes, beetles, silkworm). The cattle tick, Rhipicephalus (Boophilus) microplus, is an economically significant ectoparasite of cattle affecting cattle industries world wide. With the availability of sequence reads from the first Chelicerate genome project (the Ixodes scapularis tick) and extensive R. microplus ESTs, we investigated evidence for putative RNAi proteins and studied RNA interference in tick cell cultures and adult female ticks targeting Drosophila homologues with known cell viability phenotype. Results We screened 13,643 R. microplus ESTs and I. scapularis genome reads to identify RNAi related proteins in ticks. Our analysis identified 31 RNAi proteins including a putative tick Dicer, RISC associated (Ago-2 and FMRp), RNA dependent RNA polymerase (EGO-1) and 23 homologues implicated in dsRNA uptake and processing. We selected 10 R. microplus ESTs with >80% similarity to D. melanogaster proteins associated with cell viability for RNAi functional screens in both BME26 R. microplus embryonic cells and female ticks in vivo. Only genes associated with proteasomes had an effect on cell viability in vitro. In vivo RNAi showed that 9 genes had significant effects either causing lethality or impairing egg laying. Conclusion We have identified key RNAi-related proteins in ticks and along with our loss-of-function studies support a functional RNAi pathway in R. microplus. Our preliminary studies indicate that tick RNAi pathways may differ from that of other Arthropods such as insects. PMID:19323841
Chen, Qing; Rehman, S; Smant, G; Jones, John T
2005-07-01
RNA interference (RNAi) has been used widely as a tool for examining gene function and a method that allows its use with plant-parasitic nematodes recently has been described. Here, we use a modified method to analyze the function of secreted beta-1,4, endoglucanases of the potato cyst nematode Globodera rostochiensis, the first in vivo functional analysis of a pathogenicity protein of a plant-parasitic nematode. Knockout of the beta-1,4, endoglucanases reduced the ability of the nematodes to invade roots. We also use RNAi to show that gr-ams-1, a secreted protein of the main sense organs (the amphids), is essential for host location.
Hu, Yanhui; Sopko, Richelle; Foos, Marianna; Kelley, Colleen; Flockhart, Ian; Ammeux, Noemie; Wang, Xiaowei; Perkins, Lizabeth; Perrimon, Norbert; Mohr, Stephanie E.
2013-01-01
The evaluation of specific endogenous transcript levels is important for understanding transcriptional regulation. More specifically, it is useful for independent confirmation of results obtained by the use of microarray analysis or RNA-seq and for evaluating RNA interference (RNAi)-mediated gene knockdown. Designing specific and effective primers for high-quality, moderate-throughput evaluation of transcript levels, i.e., quantitative, real-time PCR (qPCR), is nontrivial. To meet community needs, predefined qPCR primer pairs for mammalian genes have been designed and sequences made available, e.g., via PrimerBank. In this work, we adapted and refined the algorithms used for the mammalian PrimerBank to design 45,417 primer pairs for 13,860 Drosophila melanogaster genes, with three or more primer pairs per gene. We experimentally validated primer pairs for ~300 randomly selected genes expressed in early Drosophila embryos, using SYBR Green-based qPCR and sequence analysis of products derived from conventional PCR. All relevant information, including primer sequences, isoform specificity, spatial transcript targeting, and any available validation results and/or user feedback, is available from an online database (www.flyrnai.org/flyprimerbank). At FlyPrimerBank, researchers can retrieve primer information for fly genes either one gene at a time or in batch mode. Importantly, we included the overlap of each predicted amplified sequence with RNAi reagents from several public resources, making it possible for researchers to choose primers suitable for knockdown evaluation of RNAi reagents (i.e., to avoid amplification of the RNAi reagent itself). We demonstrate the utility of this resource for validation of RNAi reagents in vivo. PMID:23893746
Nicolás, Francisco E; Vila, Ana; Moxon, Simon; Cascales, María D; Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M; Garre, Victoriano
2015-03-25
RNA interference (RNAi) is a conserved mechanism of genome defence that can also have a role in the regulation of endogenous functions through endogenous small RNAs (esRNAs). In fungi, knowledge of the functions regulated by esRNAs has been hampered by lack of clear phenotypes in most mutants affected in the RNAi machinery. Mutants of Mucor circinelloides affected in RNAi genes show defects in physiological and developmental processes, thus making Mucor an outstanding fungal model for studying endogenous functions regulated by RNAi. Some classes of Mucor esRNAs map to exons (ex-siRNAs) and regulate expression of the genes from which they derive. To have a broad picture of genes regulated by the silencing machinery during vegetative growth, we have sequenced and compared the mRNA profiles of mutants in the main RNAi genes by using RNA-seq. In addition, we have achieved a more complete phenotypic characterization of silencing mutants. Deletion of any main RNAi gene provoked a deep impact in mRNA accumulation at exponential and stationary growth. Genes showing increased mRNA levels, as expected for direct ex-siRNAs targets, but also genes with decreased expression were detected, suggesting that, most probably, the initial ex-siRNA targets regulate the expression of other genes, which can be up- or down-regulated. Expression of 50% of the genes was dependent on more than one RNAi gene in agreement with the existence of several classes of ex-siRNAs produced by different combinations of RNAi proteins. These combinations of proteins have also been involved in the regulation of different cellular processes. Besides genes regulated by the canonical RNAi pathway, this analysis identified processes, such as growth at low pH and sexual interaction that are regulated by a dicer-independent non-canonical RNAi pathway. This work shows that the RNAi pathways play a relevant role in the regulation of a significant number of endogenous genes in M. circinelloides during exponential and stationary growth phases and opens up an important avenue for in-depth study of genes involved in the regulation of physiological and developmental processes in this fungal model.
Musiyenko, Alla; Bitko, Vira; Barik, Sailen
2007-07-01
Stable RNA interference (RNAi) is commonly achieved by recombinant expression of short hairpin RNA (shRNA). To generate virus-resistant cell lines, we cloned a shRNA cassette against the phosphoprotein gene of respiratory syncytial virus (RSV) into a polIII-driven plasmid vector. Analysis of individual stable transfectants showed a spectrum of RSV resistance correlating with the levels of shRNA expressed from different chromosomal locations. Interestingly, resistance in a minority of clones was due to mono-allelic disruption of the cellular gene for vasodilator-stimulated phosphoprotein (VASP). Thus, pure clones of chromosomally integrated DNA-directed RNAi can exhibit gene disruption phenotypes resembling but unrelated to RNAi.
Ulrich, Julia; Dao, Van Anh; Majumdar, Upalparna; Schmitt-Engel, Christian; Schwirz, Jonas; Schultheis, Dorothea; Ströhlein, Nadi; Troelenberg, Nicole; Grossmann, Daniela; Richter, Tobias; Dönitz, Jürgen; Gerischer, Lizzy; Leboulle, Gérard; Vilcinskas, Andreas; Stanke, Mario; Bucher, Gregor
2015-09-03
Insect pest control is challenged by insecticide resistance and negative impact on ecology and health. One promising pest specific alternative is the generation of transgenic plants, which express double stranded RNAs targeting essential genes of a pest species. Upon feeding, the dsRNA induces gene silencing in the pest resulting in its death. However, the identification of efficient RNAi target genes remains a major challenge as genomic tools and breeding capacity is limited in most pest insects impeding whole-animal-high-throughput-screening. We use the red flour beetle Tribolium castaneum as a screening platform in order to identify the most efficient RNAi target genes. From about 5,000 randomly screened genes of the iBeetle RNAi screen we identify 11 novel and highly efficient RNAi targets. Our data allowed us to determine GO term combinations that are predictive for efficient RNAi target genes with proteasomal genes being most predictive. Finally, we show that RNAi target genes do not appear to act synergistically and that protein sequence conservation does not correlate with the number of potential off target sites. Our results will aid the identification of RNAi target genes in many pest species by providing a manageable number of excellent candidate genes to be tested and the proteasome as prime target. Further, the identified GO term combinations will help to identify efficient target genes from organ specific transcriptomes. Our off target analysis is relevant for the sequence selection used in transgenic plants.
RNA interference inhibits yellow fever virus replication in vitro and in vivo.
Pacca, Carolina C; Severino, Adriana A; Mondini, Adriano; Rahal, Paula; D'avila, Solange G P; Cordeiro, José Antonio; Nogueira, Mara Correa Lelles; Bronzoni, Roberta V M; Nogueira, Maurício L
2009-04-01
RNA interference (RNAi) is a process that is induced by double stranded RNA and involves the degradation of specific sequences of mRNA in the cytoplasm of the eukaryotic cells. It has been used as an antiviral tool against many viruses, including flaviviruses. The genus Flavivirus contains the most important arboviruses in the world, i.e., dengue (DENV) and yellow fever (YFV). In our study, we investigated the in vitro and in vivo effect of RNAi against YFV. Using stable cell lines that expressed RNAi against YFV, the cell lines were able to inhibit as much as 97% of the viral replication. Two constructions (one against NS1 and the other against E region of YFV genome) were able to protect the adult Balb/c mice against YFV challenge. The histopathologic analysis demonstrated an important protection of the central nervous system by RNAi after 10 days of viral challenge. Our data suggests that RNAi is a potential viable therapeutic weapon against yellow fever.
Single-cell analysis of population context advances RNAi screening at multiple levels
Snijder, Berend; Sacher, Raphael; Rämö, Pauli; Liberali, Prisca; Mench, Karin; Wolfrum, Nina; Burleigh, Laura; Scott, Cameron C; Verheije, Monique H; Mercer, Jason; Moese, Stefan; Heger, Thomas; Theusner, Kristina; Jurgeit, Andreas; Lamparter, David; Balistreri, Giuseppe; Schelhaas, Mario; De Haan, Cornelis A M; Marjomäki, Varpu; Hyypiä, Timo; Rottier, Peter J M; Sodeik, Beate; Marsh, Mark; Gruenberg, Jean; Amara, Ali; Greber, Urs; Helenius, Ari; Pelkmans, Lucas
2012-01-01
Isogenic cells in culture show strong variability, which arises from dynamic adaptations to the microenvironment of individual cells. Here we study the influence of the cell population context, which determines a single cell's microenvironment, in image-based RNAi screens. We developed a comprehensive computational approach that employs Bayesian and multivariate methods at the single-cell level. We applied these methods to 45 RNA interference screens of various sizes, including 7 druggable genome and 2 genome-wide screens, analysing 17 different mammalian virus infections and four related cell physiological processes. Analysing cell-based screens at this depth reveals widespread RNAi-induced changes in the population context of individual cells leading to indirect RNAi effects, as well as perturbations of cell-to-cell variability regulators. We find that accounting for indirect effects improves the consistency between siRNAs targeted against the same gene, and between replicate RNAi screens performed in different cell lines, in different labs, and with different siRNA libraries. In an era where large-scale RNAi screens are increasingly performed to reach a systems-level understanding of cellular processes, we show that this is often improved by analyses that account for and incorporate the single-cell microenvironment. PMID:22531119
[Expression analysis of a transformer gene in Daphnia pulex after RNAi].
Guo, C Y; Chen, P; Zhang, M M; Ning, J J; Wang, С L; Wang, D L; Zhao, Y L
2016-01-01
In order to explore the importance of the transformer (tra) gene in reproductive mode switching in Daphnia pulex, we studied the effect of silencing of this gene using RNA interference (RNAi). We obtained Dptra dsRNA by constructing and using a dsRNA expression vector and transcription method in vitro. D. pulex individuals in different reproductive modes were treated by soaking in a solution of Dptra dsRNA. We then assayed the expression of the endogenous Dptra mRNA after RNAi treatment using RT-PCR and obtained the suppression ratio. Expression of the tra gene in the RNAi groups was down-regulated compared with the controls after 16 h (p < 0.05). We also analyzed the effect of RNAi on the expression of the TRA protein using Western blot, which showed that the expression level of the TRA protein was reduced after RNAi treatment. Our experimental results showed that soaking of D. pulex adults in tra-specific dsRNA transcribed in vitro can specifically reduce the level of tra mRNA and also reduce the expression of the TRA protein, demonstrating effective in vivo silencing of the tra gene.
Wu, Ke; Hoy, Marjorie A.
2014-01-01
Clathrin heavy chain has been shown to be important for viability, embryogenesis, and RNA interference (RNAi) in arthropods such as Drosophila melanogaster. However, the functional roles of clathrin heavy chain in chelicerate arthropods, such as the predatory mite Metaseiulus occidentalis, remain unknown. We previously showed that dsRNA ingestion, followed by feeding on spider mites, induced systemic and robust RNAi in M. occidentalis females. In the current study, we performed a loss-of-function analysis of the clathrin heavy chain gene in M. occidentalis using RNAi. We showed that ingestion of clathrin heavy chain dsRNA by M. occidentalis females resulted in gene knockdown and reduced longevity. In addition, clathrin heavy chain dsRNA treatment almost completely abolished oviposition by M. occidentalis females and the few eggs produced did not hatch. Finally, we demonstrated that clathrin heavy chain gene knockdown in M. occidentalis females significantly reduced a subsequent RNAi response induced by ingestion of cathepsin L dsRNA. The last finding suggests that clathrin heavy chain may be involved in systemic RNAi responses mediated by orally delivered dsRNAs in M. occidentalis. PMID:25329675
Takahashi, Yuki; Nishikawa, Makiya; Kobayashi, Naoki; Takakura, Yoshinobu
2005-07-20
Silencing of oncogenes or other genes contributing to tumor malignancy or progression by RNA interference (RNAi) offers a promising approach to treating tumor patients. To achieve RNAi-based tumor therapy, a small interfering RNA (siRNA) or siRNA-expressing vector needs to be delivered to tumor cells, but little information about its in vivo delivery has been reported. In this study, we examined whether the expression of the target gene in tumor cells can be suppressed by the delivery of RNAi effectors to primary and metastatic tumor cells. To quantitatively evaluate the RNAi effects in tumor cells, mouse melanoma B16-BL6 cells were stably transfected with both firefly (a model target gene) and sea pansy (an internal standard gene) luciferase genes to obtain B16-BL6/dual Luc cells. The target gene expression in subcutaneous primary tumors of B16-BL6/dual Luc cells was significantly suppressed by direct injection of the RNAi effectors followed by electroporation. The expression in metastatic hepatic tumors was also significantly reduced by an intravenous injection of either RNAi effector by the hydrodynamics-based procedure. These results indicate that the both RNAi effectors have a potential to silence target gene in tumor cells in vivo when successfully delivered to tumor cells.
Cui, Lei; Wang, Haiying; Ji, Yanxi; Yang, Jie; Xu, Shan; Huang, Xingyu; Wang, Zidao; Qin, Lei; Tien, Po; Zhou, Xi; Guo, Deyin; Chen, Yu
2015-09-01
RNA interference (RNAi) is a process of eukaryotic posttranscriptional gene silencing that functions in antiviral immunity in plants, nematodes, and insects. However, recent studies provided strong supports that RNAi also plays a role in antiviral mechanism in mammalian cells. To combat RNAi-mediated antiviral responses, many viruses encode viral suppressors of RNA silencing (VSR) to facilitate their replication. VSRs have been widely studied for plant and insect viruses, but only a few have been defined for mammalian viruses currently. We identified a novel VSR from coronaviruses, a group of medically important mammalian viruses including Severe acute respiratory syndrome coronavirus (SARS-CoV), and showed that the nucleocapsid protein (N protein) of coronaviruses suppresses RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. Mouse hepatitis virus (MHV) is closely related to SARS-CoV in the family Coronaviridae and was used as a coronavirus replication model. The replication of MHV increased when the N proteins were expressed in trans, while knockdown of Dicer1 or Ago2 transcripts facilitated the MHV replication in mammalian cells. These results support the hypothesis that RNAi is a part of the antiviral immunity responses in mammalian cells. IMPORTANCE RNAi has been well known to play important antiviral roles from plants to invertebrates. However, recent studies provided strong supports that RNAi is also involved in antiviral response in mammalian cells. An important indication for RNAi-mediated antiviral activity in mammals is the fact that a number of mammalian viruses encode potent suppressors of RNA silencing. Our results demonstrate that coronavirus N protein could function as a VSR through its double-stranded RNA binding activity. Mutational analysis of N protein allowed us to find out the critical residues for the VSR activity. Using the MHV-A59 as the coronavirus replication model, we showed that ectopic expression of SARS-CoV N protein could promote MHV replication in RNAi-active cells but not in RNAi-depleted cells. These results indicate that coronaviruses encode a VSR that functions in the replication cycle and provide further evidence to support that RNAi-mediated antiviral response exists in mammalian cells.
Barad, Shiri; Sela, Noa; Dubey, Amit K; Kumar, Dilip; Luria, Neta; Ment, Dana; Cohen, Shahar; Schaffer, Arthur A; Prusky, Dov
2017-08-04
The destructive phytopathogen Colletotrichum gloeosporioides causes anthracnose disease in fruit. During host colonization, it secretes ammonia, which modulates environmental pH and regulates gene expression, contributing to pathogenicity. However, the effect of host pH environment on pathogen colonization has never been evaluated. Development of an isogenic tomato line with reduced expression of the gene for acidity, SlPH (Solyc10g074790.1.1), enabled this analysis. Total RNA from C. gloeosporioides colonizing wild-type (WT) and RNAi-SlPH tomato lines was sequenced and gene-expression patterns were compared. C. gloeosporioides inoculation of the RNAi-SlPH line with pH 5.96 compared to the WT line with pH 4.2 showed 30% higher colonization and reduced ammonia accumulation. Large-scale comparative transcriptome analysis of the colonized RNAi-SlPH and WT lines revealed their different mechanisms of colonization-pattern activation: whereas the WT tomato upregulated 13-LOX (lipoxygenase), jasmonic acid and glutamate biosynthesis pathways, it downregulated processes related to chlorogenic acid biosynthesis II, phenylpropanoid biosynthesis and hydroxycinnamic acid tyramine amide biosynthesis; the RNAi-SlPH line upregulated UDP-D-galacturonate biosynthesis I and free phenylpropanoid acid biosynthesis, but mainly downregulated pathways related to sugar metabolism, such as the glyoxylate cycle and L-arabinose degradation II. Comparison of C. gloeosporioides gene expression during colonization of the WT and RNAi-SlPH lines showed that the fungus upregulates ammonia and nitrogen transport and the gamma-aminobutyric acid metabolic process during colonization of the WT, while on the RNAi-SlPH tomato, it mainly upregulates the nitrate metabolic process. Modulation of tomato acidity and pH had significant phenotypic effects on C. gloeosporioides development. The fungus showed increased colonization on the neutral RNAi-SlPH fruit, and limited colonization on the WT acidic fruit. The change in environmental pH resulted in different defense responses for the two tomato lines. Interestingly, the WT line showed upregulation of jasmonate pathways and glutamate accumulation, supporting the reduced symptom development and increased ammonia accumulation, as the fungus might utilize glutamate to accumulate ammonia and increase environmental pH for better expression of pathogenicity factors. This was not found in the RNAi-SlPH line which downregulated sugar metabolism and upregulated the phenylpropanoid pathway, leading to host susceptibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicolas, Francisco E.; Vila, Ana; Moxon, Simon
Here, RNA interference (RNAi) is a conserved mechanism of genome defence that can also have a role in the regulation of endogenous functions through endogenous small RNAs (esRNAs). In fungi, knowledge of the functions regulated by esRNAs has been hampered by lack of clear phenotypes in most mutants affected in the RNAi machinery. Mutants of Mucor circinelloides affected in RNAi genes show defects in physiological and developmental processes, thus making Mucor an outstanding fungal model for studying endogenous functions regulated by RNAi. Some classes of Mucor esRNAs map to exons (ex-siRNAs) and regulate expression of the genes from which theymore » derive. To have a broad picture of genes regulated by the silencing machinery during vegetative growth, we have sequenced and compared the mRNA profiles of mutants in the main RNAi genes by using RNA-seq. In addition, we have achieved a more complete phenotypic characterization of silencing mutants Deletion of any main RNAi gene provoked a deep impact in mRNA accumulation at exponential and stationary growth. Genes showing increased mRNA levels, as expected for direct ex-siRNAs targets, but also genes with decreased expression were detected, suggesting that, most probably, the initial ex-siRNA targets regulate the expression of other genes, which can be up- or down-regulated. Expression of 50% of the genes was dependent on more than one RNAi gene in agreement with the existence of several classes of ex-siRNAs produced by different combinations of RNAi proteins. These combinations of proteins have also been involved in the regulation of different cellular processes. Besides genes regulated by the canonical RNAi pathway, this analysis identified processes, such as growth at low pH and sexual interaction that are regulated by a dicer-independent non-canonical RNAi pathway. In conclusion, this work shows that the RNAi pathways play a relevant role in the regulation of a significant number of endogenous genes in M. circinelloides during exponential and stationary growth phases and opens up an important avenue for in-depth study of genes involved in the regulation of physiological and developmental processes in this fungal model.« less
Nicolas, Francisco E.; Vila, Ana; Moxon, Simon; ...
2015-03-25
Here, RNA interference (RNAi) is a conserved mechanism of genome defence that can also have a role in the regulation of endogenous functions through endogenous small RNAs (esRNAs). In fungi, knowledge of the functions regulated by esRNAs has been hampered by lack of clear phenotypes in most mutants affected in the RNAi machinery. Mutants of Mucor circinelloides affected in RNAi genes show defects in physiological and developmental processes, thus making Mucor an outstanding fungal model for studying endogenous functions regulated by RNAi. Some classes of Mucor esRNAs map to exons (ex-siRNAs) and regulate expression of the genes from which theymore » derive. To have a broad picture of genes regulated by the silencing machinery during vegetative growth, we have sequenced and compared the mRNA profiles of mutants in the main RNAi genes by using RNA-seq. In addition, we have achieved a more complete phenotypic characterization of silencing mutants Deletion of any main RNAi gene provoked a deep impact in mRNA accumulation at exponential and stationary growth. Genes showing increased mRNA levels, as expected for direct ex-siRNAs targets, but also genes with decreased expression were detected, suggesting that, most probably, the initial ex-siRNA targets regulate the expression of other genes, which can be up- or down-regulated. Expression of 50% of the genes was dependent on more than one RNAi gene in agreement with the existence of several classes of ex-siRNAs produced by different combinations of RNAi proteins. These combinations of proteins have also been involved in the regulation of different cellular processes. Besides genes regulated by the canonical RNAi pathway, this analysis identified processes, such as growth at low pH and sexual interaction that are regulated by a dicer-independent non-canonical RNAi pathway. In conclusion, this work shows that the RNAi pathways play a relevant role in the regulation of a significant number of endogenous genes in M. circinelloides during exponential and stationary growth phases and opens up an important avenue for in-depth study of genes involved in the regulation of physiological and developmental processes in this fungal model.« less
funRNA: a fungi-centered genomics platform for genes encoding key components of RNAi.
Choi, Jaeyoung; Kim, Ki-Tae; Jeon, Jongbum; Wu, Jiayao; Song, Hyeunjeong; Asiegbu, Fred O; Lee, Yong-Hwan
2014-01-01
RNA interference (RNAi) is involved in genome defense as well as diverse cellular, developmental, and physiological processes. Key components of RNAi are Argonaute, Dicer, and RNA-dependent RNA polymerase (RdRP), which have been functionally characterized mainly in model organisms. The key components are believed to exist throughout eukaryotes; however, there is no systematic platform for archiving and dissecting these important gene families. In addition, few fungi have been studied to date, limiting our understanding of RNAi in fungi. Here we present funRNA http://funrna.riceblast.snu.ac.kr/, a fungal kingdom-wide comparative genomics platform for putative genes encoding Argonaute, Dicer, and RdRP. To identify and archive genes encoding the abovementioned key components, protein domain profiles were determined from reference sequences obtained from UniProtKB/SwissProt. The domain profiles were searched using fungal, metazoan, and plant genomes, as well as bacterial and archaeal genomes. 1,163, 442, and 678 genes encoding Argonaute, Dicer, and RdRP, respectively, were predicted. Based on the identification results, active site variation of Argonaute, diversification of Dicer, and sequence analysis of RdRP were discussed in a fungus-oriented manner. funRNA provides results from diverse bioinformatics programs and job submission forms for BLAST, BLASTMatrix, and ClustalW. Furthermore, sequence collections created in funRNA are synced with several gene family analysis portals and databases, offering further analysis opportunities. funRNA provides identification results from a broad taxonomic range and diverse analysis functions, and could be used in diverse comparative and evolutionary studies. It could serve as a versatile genomics workbench for key components of RNAi.
Kretova, Olga V; Chechetkin, Vladimir R; Fedoseeva, Daria M; Kravatsky, Yuri V; Sosin, Dmitri V; Alembekov, Ildar R; Gorbacheva, Maria A; Gashnikova, Natalya M; Tchurikov, Nickolai A
2017-02-01
Any method for silencing the activity of the HIV-1 retrovirus should tackle the extremely high variability of HIV-1 sequences and mutational escape. We studied sequence variability in the vicinity of selected RNA interference (RNAi) targets from isolates of HIV-1 subtype A in Russia, and we propose that using artificial RNAi is a potential alternative to traditional antiretroviral therapy. We prove that using multiple RNAi targets overcomes the variability in HIV-1 isolates. The optimal number of targets critically depends on the conservation of the target sequences. The total number of targets that are conserved with a probability of 0.7-0.8 should exceed at least 2. Combining deep sequencing and multitarget RNAi may provide an efficient approach to cure HIV/AIDS.
Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun
2015-09-03
Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management.
Guo, Zhaojiang; Kang, Shi; Zhu, Xun; Xia, Jixing; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhang, Youjun
2015-01-01
Insect pests cause serious crop damage and develop high-level resistance to chemical insecticides and Bacillus thuringiensis (Bt) insecticidal Cry toxins. A new promising approach for controlling them and overcoming this resistance is RNA interference (RNAi). The RNAi-based insect control strategy depends on the selection of suitable target genes. In this study, we cloned and characterized a novel ABC transporter gene PxABCH1 in diamondback moth, Plutella xylostella (L.). Phylogenetic analysis showed that PxABCH1 is closely related to ABCA and ABCG subfamily members. Spatial-temporal expression detection revealed that PxABCH1 was expressed in all tissues and developmental stages, and highest expressed in head and male adult. Midgut sequence variation and expression analyses of PxABCH1 in all the susceptible and Bt-resistant P. xylostella strains and the functional analysis by sublethal RNAi demonstrated that Cry1Ac resistance was independent of this gene. Silencing of PxABCH1 by a relatively high dose of dsRNA dramatically reduced its expression and resulted in larval and pupal lethal phenotypes in both susceptible and Cry1Ac-resistant P. xylostella strains. To our knowledge, this study provides the first insight into ABCH1 in lepidopterans and reveals it as an excellent target for RNAi-based insect pest control and resistance management. PMID:26333918
RNA Interference in Moths: Mechanisms, Applications, and Progress
Xu, Jin; Wang, Xia-Fei; Chen, Peng; Liu, Fang-Tao; Zheng, Shuai-Chao; Ye, Hui; Mo, Ming-He
2016-01-01
The vast majority of lepidopterans, about 90%, are moths. Some moths, particularly their caterpillars, are major agricultural and forestry pests in many parts of the world. However, some other members of moths, such as the silkworm Bombyx mori, are famous for their economic value. Fire et al. in 1998 initially found that exogenous double-stranded RNA (dsRNA) can silence the homolog endogenous mRNA in organisms, which is called RNA interference (RNAi). Soon after, the RNAi technique proved to be very promising not only in gene function determination but also in pest control. However, later studies demonstrate that performing RNAi in moths is not as straightforward as shown in other insect taxa. Nevertheless, since 2007, especially after 2010, an increasing number of reports have been published that describe successful RNAi experiments in different moth species either on gene function analysis or on pest management exploration. So far, more than 100 peer-reviewed papers have reported successful RNAi experiments in moths, covering 10 families and 25 species. By using classic and novel dsRNA delivery methods, these studies effectively silence the expression of various target genes and determine their function in larval development, reproduction, immunology, resistance against chemicals, and other biological processes. In addition, a number of laboratory and field trials have demonstrated that RNAi is also a potential strategy for moth pest management. In this review, therefore, we summarize and discuss the mechanisms and applications of the RNAi technique in moths by focusing on recent progresses. PMID:27775569
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Liang-Jiao; Frost, Christopher J.; Tsai, Chung-Jui
Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism inmore » root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.« less
Core RNAi machinery and gene knockdown in the emerald ash borer (Agrilus planipennis).
Zhao, Chaoyang; Alvarez Gonzales, Miguel A; Poland, Therese M; Mittapalli, Omprakash
2015-01-01
The RNA interference (RNAi) technology has been widely used in insect functional genomics research and provides an alternative approach for insect pest management. To understand whether the emerald ash borer (Agrilus planipennis), an invasive and destructive coleopteran insect pest of ash tree (Fraxinus spp.), possesses a strong RNAi machinery that is capable of degrading target mRNA as a response to exogenous double-stranded RNA (dsRNA) induction, we identified three RNAi pathway core component genes, Dicer-2, Argonaute-2 and R2D2, from the A. planipennis genome sequence. Characterization of these core components revealed that they contain conserved domains essential for the proteins to function in the RNAi pathway. Phylogenetic analyses showed that they are closely related to homologs derived from other coleopteran species. We also delivered the dsRNA fragment of AplaScrB-2, a β-fructofuranosidase-encoding gene horizontally acquired by A. planipennis as we reported previously, into A. planipennis adults through microinjection. Quantitative real-time PCR analysis on the dsRNA-treated beetles demonstrated a significantly decreased gene expression level of AplaScrB-2 appearing on day 2 and lasting until at least day 6. This study is the first record of RNAi applied in A. planipennis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Imae, Rieko; Dejima, Katsufumi; Kage-Nakadai, Eriko; Arai, Hiroyuki; Mitani, Shohei
2016-01-01
RNA silencing signals in C. elegans spread among cells, leading to RNAi throughout the body. During systemic spread of RNAi, membrane trafficking is thought to play important roles. Here, we show that RNAi Spreading Defective-3 (rsd-3), which encodes a homolog of epsinR, a conserved ENTH (epsin N-terminal homology) domain protein, generally participates in cellular uptake of silencing RNA. RSD-3 is previously thought to be involved in systemic RNAi only in germ cells, but we isolated several deletion alleles of rsd-3, and found that these mutants are defective in the spread of silencing RNA not only into germ cells but also into somatic cells. RSD-3 is ubiquitously expressed, and intracellularly localized to the trans-Golgi network (TGN) and endosomes. Tissue-specific rescue experiments indicate that RSD-3 is required for importing silencing RNA into cells rather than exporting from cells. Structure/function analysis showed that the ENTH domain alone is sufficient, and membrane association of the ENTH domain is required, for RSD-3 function in systemic RNAi. Our results suggest that endomembrane trafficking through the TGN and endosomes generally plays an important role in cellular uptake of silencing RNA. PMID:27306325
Imae, Rieko; Dejima, Katsufumi; Kage-Nakadai, Eriko; Arai, Hiroyuki; Mitani, Shohei
2016-06-16
RNA silencing signals in C. elegans spread among cells, leading to RNAi throughout the body. During systemic spread of RNAi, membrane trafficking is thought to play important roles. Here, we show that RNAi Spreading Defective-3 (rsd-3), which encodes a homolog of epsinR, a conserved ENTH (epsin N-terminal homology) domain protein, generally participates in cellular uptake of silencing RNA. RSD-3 is previously thought to be involved in systemic RNAi only in germ cells, but we isolated several deletion alleles of rsd-3, and found that these mutants are defective in the spread of silencing RNA not only into germ cells but also into somatic cells. RSD-3 is ubiquitously expressed, and intracellularly localized to the trans-Golgi network (TGN) and endosomes. Tissue-specific rescue experiments indicate that RSD-3 is required for importing silencing RNA into cells rather than exporting from cells. Structure/function analysis showed that the ENTH domain alone is sufficient, and membrane association of the ENTH domain is required, for RSD-3 function in systemic RNAi. Our results suggest that endomembrane trafficking through the TGN and endosomes generally plays an important role in cellular uptake of silencing RNA.
Xue, Liang-Jiao; Frost, Christopher J.; Tsai, Chung-Jui; ...
2016-09-19
Transgenic Populus tremula x alba (717-1B4) plants with reduced expression of a tonoplast sucrose efflux transporter, PtaSUT4, exhibit reduced shoot growth compared to wild type (WT) under sustained mild drought. The present study was undertaken to determine whether SUT4-RNAi directly or indirectly altered poplar predisposition and/or response to changes in soil water availability. While sucrose and hexose levels were constitutively elevated in shoot organs, expression responses to drought were most altered in the root tips of SUT4-RNAi plants. Prior to any drought treatment, constitutively elevated transcript levels of abscisic acid biosynthetic genes and bark/vegetative storage proteins suggested altered metabolism inmore » root tips of RNAi plants. Stronger drought-stimulation of stress-inducible genes encoding late-embryogenesis-abundant proteins in transgenic roots was consistent with increased vulnerability to soil drying. Transcript evidence suggested an RNAi effect on intercellular water trafficking by aquaporins in stem xylem during soil drying and recovery. Co-expression network analysis predicted altered integration of abscisic acid sensing/signaling with ethylene and jasmonate sensing/signaling in RNAi compared to WT roots. The overall conclusion is that steepened shoot-root sugar gradient in RNAi plants increased sensitivity of root tips to decreasing soil water availability.« less
The insect ecdysone receptor is a good potential target for RNAi-based pest control.
Yu, Rong; Xu, Xinping; Liang, Yongkang; Tian, Honggang; Pan, Zhanqing; Jin, Shouheng; Wang, Na; Zhang, Wenqing
2014-01-01
RNA interference (RNAi) has great potential for use in insect pest control. However, some significant challenges must be overcome before RNAi-based pest control can become a reality. One challenge is the proper selection of a good target gene for RNAi. Here, we report that the insect ecdysone receptor (EcR) is a good potential target for RNAi-based pest control in the brown planthopper Nilaparvata lugens, a serious insect pest of rice plants. We demonstrated that the use of a 360 bp fragment (NlEcR-c) that is common between NlEcR-A and NlEcR-B for feeding RNAi experiments significantly decreased the relative mRNA expression levels of NlEcR compared with those in the dsGFP control. Feeding RNAi also resulted in a significant reduction in the number of offspring per pair of N. lugens. Consequently, a transgenic rice line expressing NlEcR dsRNA was constructed by Agrobacterium- mediated transformation. The results of qRT-PCR showed that the total copy number of the target gene in all transgenic rice lines was 2. Northern blot analysis showed that the small RNA of the hairpin dsNlEcR-c was successfully expressed in the transgenic rice lines. After newly hatched nymphs of N. lugens fed on the transgenic rice lines, effective RNAi was observed. The NlEcR expression levels in all lines examined were decreased significantly compared with the control. In all lines, the survival rate of the nymphs was nearly 90%, and the average number of offspring per pair in the treated groups was significantly less than that observed in the control, with a decrease of 44.18-66.27%. These findings support an RNAi-based pest control strategy and are also important for the management of rice insect pests.
Advance of RNA interference technique in Hemipteran insects.
Li, Jie; Wang, Xiaoping; Wang, Manqun; Ma, Weihua; Hua, Hongxia
2012-07-24
RNA interference (RNAi) suppressed the expression of the target genes by post transcriptional regulation and the double-stranded RNA (dsRNA) mediated gene silencing has been a conserved mechanism in many eukaryotes, which prompted RNAi to become a valuable tool for unveiling the gene function in many model insects. Recent research attested that RNAi technique can be also effective in downregulation target genes in Hemipteran insects. In this review, we collected the researches of utilizing RNAi technique in gene functional analysis in Hemipteran insects, highlighted the methods of dsRNA/siRNA uptake by insects and discussed the knock-down efficiency of these techniques. Although the RNA interference technique has drawbacks and obscure points, our primary goal of this review is try to exploit it for further discovering gene functions and pest control tactic in the Hemipteran insects. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.
Haynes, Cole M.; Yang, Yun; Blais, Steven P.; Neubert, Thomas A.; Ron, David
2010-01-01
Summary Genetic analyses previously implicated the matrix-localized protease ClpP in signaling the stress of protein misfolding in the mitochondrial matrix to activate nuclear encoded mitochondrial chaperone genes in C. elegans (UPRmt). Here we report that haf-1, a gene encoding a mitochondria-localized ATP-binding cassette protein, is required for signaling within the UPRmt and for coping with misfolded protein stress. Peptide efflux from isolated mitochondria was ATP-dependent and required HAF-1 and the protease ClpP. Defective UPRmt signaling in the haf-1 deleted worms was associated with failure of the bZIP protein, ZC376.7, to localize to nuclei in worms with perturbed mitochondrial protein folding, whereas zc376.7(RNAi) strongly inhibited the UPRmt. These observations suggest a simple model whereby perturbation of the protein-folding environment in the mitochondrial matrix promotes ClpP-mediated generation of peptides whose haf-1-dependent export from the matrix contributes to UPRmt signaling across the mitochondrial inner membrane. PMID:20188671
Khalil, Farghama; Yueyu, Xu; Naiyan, Xiao; Di, Liu; Tayyab, Muhammad; Hengbo, Wang; Islam, Waqar; Rauf, Saeed; Pinghua, Chen
2018-05-04
Sugarcane is an essential crop for sugar and biofuel. Globally, its production is severely affected by sugarcane yellow leaf disease (SCYLD) caused by Sugarcane Yellow Leaf Virus (SCYLV). Many aphid vectors are involved in the spread of the disease which reduced the effectiveness of cultural and chemical management. Empirical methods of plant breeding such as introgression from wild and cultivated germplasm were not possible or at least challenging due to the absence of resistance in cultivated and wild germplasm of sugarcane. RNA interference (RNAi) transformation is an effective method to create virus-resistant varieties. Nevertheless, limited progress has been made due to lack of comprehensive research program on SCYLV based on RNAi technique. In order to show improvement and to propose future strategies for the feasibility of the RNAi technique to cope SCYLV, genome-wide consensus sequences of SCYLV were analyzed through GenBank. The coverage rates of every consensus sequence in SCYLV isolates were calculated to evaluate their practicability. Our analysis showed that single consensus sequence from SCYLV could not work well for RNAi based sugarcane breeding programs. This may be due to high mutation rate and continuous recombination within and between various viral strains. Alternative multi-target RNAi strategy is suggested to combat several strains of the viruses and to reduce the silencing escape. The multi-target small interfering RNA (siRNA) can be used together to construct RNAi plant expression plasmid, and to transform sugarcane tissues to develop new sugarcane varieties resistant to SCYLV. Copyright © 2018 Elsevier Ltd. All rights reserved.
Guan, Ruo-Bing; Li, Hai-Chao; Miao, Xue-Xia
2018-06-01
When using RNA interference (RNAi) to study gene functions in Lepidoptera insects, we discovered that some genes could not be suppressed; instead, their expression levels could be up-regulated by double-stranded RNA (dsRNA). To predict which genes could be easily silenced, we treated the Asian corn borer (Ostrinia furnacalis) with dsGFP (green fluorescent protein) and dsMLP (muscle lim protein). A transcriptome sequence analysis was conducted using the cDNAs 6 h after treatment with dsRNA. The results indicated that 160 genes were up-regulated and 44 genes were down-regulated by the two dsRNAs. Then, 50 co-up-regulated, 25 co-down-regulated and 43 unaffected genes were selected to determine their RNAi responses. All the 25 down-regulated genes were knocked down by their corresponding dsRNA. However, several of the up-regulated and unaffected genes were up-regulated when treated with their corresponding dsRNAs instead of being knocked down. The genes up-regulated by the dsGFP treatment may be involved in insect immune responses or the RNAi pathway. When the immune-related genes were excluded, only seven genes were induced by dsGFP, including ago-2 and dicer-2. These results not only provide a reference for efficient RNAi target predications, but also provide some potential RNAi pathway-related genes for further study. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Cationic liquid crystalline nanoparticles for the delivery of synthetic RNAi-based therapeutics.
Gentile, Emanuela; Oba, Taro; Lin, Jing; Shao, Ruping; Meng, Feng; Cao, Xiaobo; Lin, Heather Y; Mourad, Majidi; Pataer, Apar; Baladandayuthapani, Veerabhadran; Cai, Dong; Roth, Jack A; Ji, Lin
2017-07-18
RNA interference (RNAi)-based therapeutics have been used to silence the expression of targeted pathological genes. Small interfering RNA (siRNAs) and microRNA (miRNAs) inhibitor have performed this function. However, short half-life, poor cellular uptake, and nonspecific distribution of small RNAs call for the development of novel delivery systems to facilitate the use of RNAi. We developed a novel cationic liquid crystalline nanoparticle (CLCN) to efficiently deliver synthetic siRNAs and miRNAs. CLCNs were prepared by using high-speed homogenization and assembled with synthetic siRNA or miRNA molecules in nuclease-free water to create CLCN/siRNA or miRNA complexes. The homogeneous and stable CLCNs and CLCN-siRNA complexes were about 100 nm in diameter, with positively charged surfaces. CLCNs are nontoxic and are taken up by human cells though endocytosis. Significant inhibition of gene expression was detected in transiently transfected lung cancer H1299 cells treated with CLCNs/anti-GFP complexes 24 hours after transfection. Biodistribution analysis showed that the CLCNs and CLCNs-RNAi complexes were successfully delivered to various organs and into the subcutaneous human lung cancer H1299 tumor xenografts in mice 24 hours after systemic administration. These results suggest that CLCNs are a unique and advanced delivery system capable of protecting RNAi from degradation and of efficiently delivering RNAi in vitro and in vivo.
Cationic liquid crystalline nanoparticles for the delivery of synthetic RNAi-based therapeutics
Gentile, Emanuela; Oba, Taro; Lin, Jing; Shao, Ruping; Meng, Feng; Cao, Xiaobo; Lin, Heather Y.; Mourad, Majidi; Pataer, Apar; Baladandayuthapani, Veerabhadran; Cai, Dong; Roth, Jack A.; Ji, Lin
2017-01-01
RNA interference (RNAi)-based therapeutics have been used to silence the expression of targeted pathological genes. Small interfering RNA (siRNAs) and microRNA (miRNAs) inhibitor have performed this function. However, short half-life, poor cellular uptake, and nonspecific distribution of small RNAs call for the development of novel delivery systems to facilitate the use of RNAi. We developed a novel cationic liquid crystalline nanoparticle (CLCN) to efficiently deliver synthetic siRNAs and miRNAs. CLCNs were prepared by using high-speed homogenization and assembled with synthetic siRNA or miRNA molecules in nuclease-free water to create CLCN/siRNA or miRNA complexes. The homogeneous and stable CLCNs and CLCN-siRNA complexes were about 100 nm in diameter, with positively charged surfaces. CLCNs are nontoxic and are taken up by human cells though endocytosis. Significant inhibition of gene expression was detected in transiently transfected lung cancer H1299 cells treated with CLCNs/anti-GFP complexes 24 hours after transfection. Biodistribution analysis showed that the CLCNs and CLCNs-RNAi complexes were successfully delivered to various organs and into the subcutaneous human lung cancer H1299 tumor xenografts in mice 24 hours after systemic administration. These results suggest that CLCNs are a unique and advanced delivery system capable of protecting RNAi from degradation and of efficiently delivering RNAi in vitro and in vivo. PMID:28637023
Phosphorylation-specific status of RNAi triggers in pharmacokinetic and biodistribution analyses
Trubetskoy, Vladimir S.; Griffin, Jacob B.; Nicholas, Anthony L.; Nord, Eric M.; Xu, Zhao; Peterson, Ryan M.; Wooddell, Christine I.; Rozema, David B.; Wakefield, Darren H.; Lewis, David L.
2017-01-01
Abstract The RNA interference (RNAi)-based therapeutic ARC-520 for chronic hepatitis B virus (HBV) infection consists of a melittin-derived peptide conjugated to N-acetylgalactosamine for hepatocyte targeting and endosomal escape, and cholesterol-conjugated RNAi triggers, which together result in HBV gene silencing. To characterize the kinetics of RNAi trigger delivery and 5΄-phosphorylation of guide strands correlating with gene knockdown, we employed a peptide-nucleic acid (PNA) hybridization assay. A fluorescent sense strand PNA probe binding to RNAi duplex guide strands was coupled with anion exchange high performance liquid chromatography to quantitate guide strands and metabolites. Compared to PCR- or ELISA-based methods, this assay enables separate quantitation of non-phosphorylated full-length guide strands from 5΄-phosphorylated forms that may associate with RNA-induced silencing complexes (RISC). Biodistribution studies in mice indicated that ARC-520 guide strands predominantly accumulated in liver. 5΄-phosphorylation of guide strands was observed within 5 min after ARC-520 injection, and was detected for at least 4 weeks corresponding to the duration of HBV mRNA silencing. Guide strands detected in RISC by AGO2 immuno-isolation represented 16% of total 5΄-phosphorylated guide strands in liver, correlating with a 2.7 log10 reduction of HBsAg. The PNA method enables pharmacokinetic analysis of RNAi triggers, elucidates potential metabolic processing events and defines pharmacokinetic-pharmacodynamic relationships. PMID:28180327
Mukherjee, Krishanu; Campos, Henry; Kolaczkowski, Bryan
2013-03-01
RNA interference (RNAi) is a eukaryotic molecular system that serves two primary functions: 1) gene regulation and 2) protection against selfish elements such as viruses and transposable DNA. Although the biochemistry of RNAi has been detailed in model organisms, very little is known about the broad-scale patterns and forces that have shaped RNAi evolution. Here, we provide a comprehensive evolutionary analysis of the Dicer protein family, which carries out the initial RNA recognition and processing steps in the RNAi pathway. We show that Dicer genes duplicated and diversified independently in early animal and plant evolution, coincident with the origins of multicellularity. We identify a strong signature of long-term protein-coding adaptation that has continually reshaped the RNA-binding pocket of the plant Dicer responsible for antiviral immunity, suggesting an evolutionary arms race with viral factors. We also identify key changes in Dicer domain architecture and sequence leading to specialization in either gene-regulatory or protective functions in animal and plant paralogs. As a whole, these results reveal a dynamic picture in which the evolution of Dicer function has driven elaboration of parallel RNAi functional pathways in animals and plants.
Xu, Ning; Gkountela, Sofia; Saeed, Khalid; Akusjärvi, Göran
2009-11-01
Human Adenovirus type 5 encodes two short RNA polymerase III transcripts, the virus-associated (VA) RNAI and VA RNAII, which can adopt stable hairpin structures that resemble micro-RNA precursors. The terminal stems of the VA RNAs are processed into small RNAs (mivaRNAs) that are incorporated into RISC. It has been reported that VA RNAI has two transcription initiation sites, which produce two VA RNAI species; a major species, VA RNAI(G), which accounts for 75% of the VA RNAI pool, and a minor species, VA RNAI(A), which initiates transcription three nucleotides upstream compared to VA RNAI(G). We show that this 5'-heterogeneity results in a dramatic difference in RISC assembly. Thus, both VA RNAI(G) and VA RNAI(A) are processed by Dicer at the same position in the terminal stem generating the same 3'-strand mivaRNA. This mivaRNA is incorporated into RISC with 200-fold higher efficiency compared to the 5'-strand of mivaRNAI. Of the small number of 5'-strands used in RISC assembly only VA RNAI(A) generated active RISC complexes. We also show that the 3'-strand of mivaRNAI, although being the preferred substrate for RISC assembly, generates unstable RISC complexes with a low in vitro cleavage activity, only around 2% compared to RISC assembled on the VA RNAI(A) 5'-strand.
Caenorhabditis elegans ABCRNAi transporters interact genetically with rde-2 and mut-7.
Sundaram, Prema; Han, Wang; Cohen, Nancy; Echalier, Benjamin; Albin, John; Timmons, Lisa
2008-02-01
RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABC(RNAi) mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABC(RNAi) gene class. Genetic complementation tests reveal functions for ABC(RNAi) transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABC(RNAi) proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABC(RNAi) mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABC(RNAi) gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABC(RNAi) transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity.
Kir, Gokhan; Ye, Huaxun; Nelissen, Hilde; Neelakandan, Anjanasree K.; Kusnandar, Andree S.; Luo, Anding; Inzé, Dirk; Sylvester, Anne W.; Yin, Yanhai; Becraft, Philip W.
2015-01-01
Brassinosteroids (BRs) are plant hormones involved in various growth and developmental processes. The BR signaling system is well established in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) but poorly understood in maize (Zea mays). BRASSINOSTEROID INSENSITIVE1 (BRI1) is a BR receptor, and database searches and additional genomic sequencing identified five maize homologs including duplicate copies of BRI1 itself. RNA interference (RNAi) using the extracellular coding region of a maize zmbri1 complementary DNA knocked down the expression of all five homologs. Decreased response to exogenously applied brassinolide and altered BR marker gene expression demonstrate that zmbri1-RNAi transgenic lines have compromised BR signaling. zmbri1-RNAi plants showed dwarf stature due to shortened internodes, with upper internodes most strongly affected. Leaves of zmbri1-RNAi plants are dark green, upright, and twisted, with decreased auricle formation. Kinematic analysis showed that decreased cell division and cell elongation both contributed to the shortened leaves. A BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1-yellow fluorescent protein (BES1-YFP) transgenic line was developed that showed BR-inducible BES1-YFP accumulation in the nucleus, which was decreased in zmbri1-RNAi. Expression of the BES1-YFP reporter was strong in the auricle region of developing leaves, suggesting that localized BR signaling is involved in promoting auricle development, consistent with the zmbri1-RNAi phenotype. The blade-sheath boundary disruption, shorter ligule, and disrupted auricle morphology of RNAi lines resemble KNOTTED1-LIKE HOMEOBOX (KNOX) mutants, consistent with a mechanistic connection between KNOX genes and BR signaling. PMID:26162429
E-RNAi: a web application for the multi-species design of RNAi reagents—2010 update
Horn, Thomas; Boutros, Michael
2010-01-01
The design of RNA interference (RNAi) reagents is an essential step for performing loss-of-function studies in many experimental systems. The availability of sequenced and annotated genomes greatly facilitates RNAi experiments in an increasing number of organisms that were previously not genetically tractable. The E-RNAi web-service, accessible at http://www.e-rnai.org/, provides a computational resource for the optimized design and evaluation of RNAi reagents. The 2010 update of E-RNAi now covers 12 genomes, including Drosophila, Caenorhabditis elegans, human, emerging model organisms such as Schmidtea mediterranea and Acyrthosiphon pisum, as well as the medically relevant vectors Anopheles gambiae and Aedes aegypti. The web service calculates RNAi reagents based on the input of target sequences, sequence identifiers or by visual selection of target regions through a genome browser interface. It identifies optimized RNAi target-sites by ranking sequences according to their predicted specificity, efficiency and complexity. E-RNAi also facilitates the design of secondary RNAi reagents for validation experiments, evaluation of pooled siRNA reagents and batch design. Results are presented online, as a downloadable HTML report and as tab-delimited files. PMID:20444868
GenomeRNAi: a database for cell-based RNAi phenotypes.
Horn, Thomas; Arziman, Zeynep; Berger, Juerg; Boutros, Michael
2007-01-01
RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at http://rnai.dkfz.de.
The RNAi Inheritance Machinery of Caenorhabditis elegans.
Spracklin, George; Fields, Brandon; Wan, Gang; Becker, Diveena; Wallig, Ashley; Shukla, Aditi; Kennedy, Scott
2017-07-01
Gene silencing mediated by dsRNA (RNAi) can persist for multiple generations in Caenorhabditis elegans (termed RNAi inheritance). Here we describe the results of a forward genetic screen in C. elegans that has identified six factors required for RNAi inheritance: GLH-1/VASA, PUP-1/CDE-1, MORC-1, SET-32, and two novel nematode-specific factors that we term here (heritable RNAi defective) HRDE-2 and HRDE-4 The new RNAi inheritance factors exhibit mortal germline (Mrt) phenotypes, which we show is likely caused by epigenetic deregulation in germ cells. We also show that HRDE-2 contributes to RNAi inheritance by facilitating the binding of small RNAs to the inheritance Argonaute (Ago) HRDE-1 Together, our results identify additional components of the RNAi inheritance machinery whose conservation provides insights into the molecular mechanism of RNAi inheritance, further our understanding of how the RNAi inheritance machinery promotes germline immortality, and show that HRDE-2 couples the inheritance Ago HRDE-1 with the small RNAs it needs to direct RNAi inheritance and germline immortality. Copyright © 2017 by the Genetics Society of America.
Yu, Xiudao; Gowda, Siddarame; Killiny, Nabil
2017-09-01
Asian citrus psyllid, Diaphorina citri Kuwayama, is the most important economic pest of citrus because it transmits Candidatus Liberibacter asiaticus (CLas), the causal agent of huanglongbing (HLB). Silencing genes by RNA interference (RNAi) is a promising approach for controlling D. citri. RNAi-based insect management strategies depend on the selection of suitable target genes. The muscle protein 20 gene DcMP20 was characterized from D. citri in an effort to impair proper muscle development through RNAi. Phylogenetic analysis showed that DcMP20 was more closely related to MP20 from Drosophila compared with its counterpart from other insect species. Developmental expression analysis revealed that transcription of DcMP20 was development dependent and reached a maximum level in the last instar (fourth-fifth) of the nymphal stage. The extent of RNAi in D. citri was dose dependent, with dsRNA-DcMP20 at 75 ng µL -1 being sufficient to knock down endogenous DcMP20 expression, which resulted in significant mortality and reduced body weight that positively correlated with the silencing of DcMP20. No effect was found when dsRNA-GFP or water was used, indicating the specific effect of dsRNA-DcMP20. Our results suggest that dsRNA can be delivered to D. citri through soaking, and DcMP20 is an effective RNAi target to be used in the management of D. citri. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Role of RNA interference (RNAi) in the Moss Physcomitrella patens.
Arif, Muhammad Asif; Frank, Wolfgang; Khraiwesh, Basel
2013-01-14
RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species.
Development of RNAi methods for Peregrinus maidis, the corn planthopper.
Yao, Jianxiu; Rotenberg, Dorith; Afsharifar, Alireza; Barandoc-Alviar, Karen; Whitfield, Anna E
2013-01-01
The corn planthopper, Peregrinus maidis, is a major pest of agronomically-important crops. Peregrinus maidis has a large geographical distribution and transmits Maize mosaic rhabdovirus (MMV) and Maize stripe tenuivirus (MSpV). The objective of this study was to develop effective RNAi methods for P. maidis. Vacuolar-ATPase (V-ATPase) is an essential enzyme for hydrolysis of ATP and for transport of protons out of cells thereby maintaining membrane ion balance, and it has been demonstrated to be an efficacious target for RNAi in other insects. In this study, two genes encoding subunits of P. maidis V-ATPase (V-ATPase B and V-ATPase D) were chosen as RNAi target genes. The open reading frames of V-ATPase B and D were generated and used for constructing dsRNA fragments. Experiments were conducted using oral delivery and microinjection of V-ATPase B and V-ATPase D dsRNA to investigate the effectiveness of RNAi in P. maidis. Real-time quantitative reverse transcriptase-PCR (qRT-PCR) analysis indicated that microinjection of V-ATPase dsRNA led to a minimum reduction of 27-fold in the normalized abundance of V-ATPase transcripts two days post injection, while ingestion of dsRNA resulted in a two-fold reduction after six days of feeding. While both methods of dsRNA delivery resulted in knockdown of target transcripts, the injection method was more rapid and effective. The reduction in V-ATPase transcript abundance resulted in observable phenotypes. Specifically, the development of nymphs injected with 200 ng of either V-ATPase B or D dsRNA was impaired, resulting in higher mortality and lower fecundity than control insects injected with GFP dsRNA. Microscopic examination of these insects revealed that female reproductive organs did not develop normally. The successful development of RNAi in P. maidis to target specific genes will enable the development of new insect control strategies and functional analysis of vital genes and genes associated with interactions between P. maidis and MMV.
Rancour, David M.; Hatfield, Ronald D.; Marita, Jane M.; Rohr, Nicholas A.; Schmitz, Robert J.
2015-01-01
Nucleotide-activated sugars are essential substrates for plant cell-wall carbohydrate-polymer biosynthesis. The most prevalent grass cell wall (CW) sugars are glucose (Glc), xylose (Xyl), and arabinose (Ara). These sugars are biosynthetically related via the UDP–sugar interconversion pathway. We sought to target and generate UDP–sugar interconversion pathway transgenic Brachypodium distachyon lines resulting in CW carbohydrate composition changes with improved digestibility and normal plant stature. Both RNAi-mediated gene-suppression and constitutive gene-expression approaches were performed. CWs from 336 T0 transgenic plants with normal appearance were screened for complete carbohydrate composition. RNAi mutants of BdRGP1, a UDP-arabinopyranose mutase, resulted in large alterations in CW carbohydrate composition with significant decreases in CW Ara content but with minimal change in plant stature. Five independent RNAi-RGP1 T1 plant lines were used for in-depth analysis of plant CWs. Real-time PCR analysis indicated that gene expression levels for BdRGP1, BdRGP2, and BdRGP3 were reduced in RNAi-RGP1 plants to 15–20% of controls. CW Ara content was reduced by 23–51% of control levels. No alterations in CW Xyl and Glc content were observed. Corresponding decreases in CW ferulic acid (FA) and ferulic acid-dimers (FA-dimers) were observed. Additionally, CW p-coumarates (pCA) were decreased. We demonstrate the CW pCA decrease corresponds to Ara-coupled pCA. Xylanase-mediated digestibility of RNAi-RGP1 Brachypodium CWs resulted in a near twofold increase of released total carbohydrate. However, cellulolytic hydrolysis of CW material was inhibited in leaves of RNAi-RGP1 mutants. Our results indicate that targeted manipulation of UDP–sugar biosynthesis can result in biomass with substantially altered compositions and highlights the complex effect CW composition has on digestibility. PMID:26136761
EMMPRIN in gynecologic cancers: pathologic and therapeutic aspects.
Liu, Dan-tong
2015-07-01
The highly glycosylated transmembrane protein extracellular matrix metalloproteinase inducer (EMMPRIN) is associated with several pathological conditions, including various types of cancers. In different gynecological malignancies, such as ovarian, cervical, and endometrial cancers, EMMPRIN plays significant roles in cell adhesion modulation, tumor growth, invasion, angiogenesis, and metastasis by inducing the production of various molecules, including matrix metalloproteinases and vascular endothelial growth factor. Because of its high level of expression, EMMPRIN can possibly be used as a diagnostic marker of gynecological cancers. Recent studies have showed that targeting EMMPRIN, especially by RNA interference (RNAi) technology, has promising therapeutic potential in basic research on gynecological cancer treatments, which make a platform for the future clinical success. This review study focused on the association of EMMPRIN in gynecological cancers in the perspectives of pathogenesis, diagnosis, and therapeutics.
Evangelista, Cláudia Carolina Silva; Guidelli, Giovanna Vieira; Borges, Gustavo; Araujo, Thais Fenz; de Souza, Tiago Alves Jorge; Neves, Ubiraci Pereira da Costa; Tunnacliffe, Alan; Pereira, Tiago Campos
2017-01-01
Abstract The molecular basis of anhydrobiosis, the state of suspended animation entered by some species during extreme desiccation, is still poorly understood despite a number of transcriptome and proteome studies. We therefore conducted functional screening by RNA interference (RNAi) for genes involved in anhydrobiosis in the holo-anhydrobiotic nematode Panagrolaimus superbus. A new method of survival analysis, based on staining, and proof-of-principle RNAi experiments confirmed a role for genes involved in oxidative stress tolerance, while a novel medium-scale RNAi workflow identified a further 40 anhydrobiosis-associated genes, including several involved in proteostasis, DNA repair and signal transduction pathways. This suggests that multiple genes contribute to anhydrobiosis in P. superbus. PMID:29111563
GenomeRNAi: a database for cell-based RNAi phenotypes
Horn, Thomas; Arziman, Zeynep; Berger, Juerg; Boutros, Michael
2007-01-01
RNA interference (RNAi) has emerged as a powerful tool to generate loss-of-function phenotypes in a variety of organisms. Combined with the sequence information of almost completely annotated genomes, RNAi technologies have opened new avenues to conduct systematic genetic screens for every annotated gene in the genome. As increasing large datasets of RNAi-induced phenotypes become available, an important challenge remains the systematic integration and annotation of functional information. Genome-wide RNAi screens have been performed both in Caenorhabditis elegans and Drosophila for a variety of phenotypes and several RNAi libraries have become available to assess phenotypes for almost every gene in the genome. These screens were performed using different types of assays from visible phenotypes to focused transcriptional readouts and provide a rich data source for functional annotation across different species. The GenomeRNAi database provides access to published RNAi phenotypes obtained from cell-based screens and maps them to their genomic locus, including possible non-specific regions. The database also gives access to sequence information of RNAi probes used in various screens. It can be searched by phenotype, by gene, by RNAi probe or by sequence and is accessible at PMID:17135194
Beyond insects: current status, achievements and future perspectives of RNAi in mite pests.
Niu, Jinzhi; Shen, Guangmao; Christiaens, Olivier; Smagghe, Guy; He, Lin; Wang, Jinjun
2018-05-11
Mites comprise a group of key agricultural pests on a wide range of crops. They cause harm through feeding on the plant and transferring dangerous pathogens, and the rapid evolution of pesticide resistance in mites highlights the need for novel control methods. Currently, RNA interference (RNAi) shows a great potential for insect pest control. Here, we review the literature associated with RNAi in mite pests. We discuss different target genes and RNAi efficiency in various mite species, a promising Varroa control program through RNAi, the synergy of RNAi with plant defense mechanisms and microorganisms, and the current understandings of systemic movement of dsRNA. Based on this, we can conclude that there is a clear potential for an RNAi-based mite control application but further research on several aspects is needed, including: (i) the factors influencing the RNAi efficiency, (ii) the mechanism of environmental RNAi and cross-kingdom dsRNA trafficking, (iii) the mechanism of possible systemic and parental RNAi, and (iv) non-target effects, specifically in predatory mites, should be considered during the RNAi target selection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Analysis of energetically biased transcripts of viruses and transposable elements
Secolin, Rodrigo; Pascoal, Vinícius D’Ávila Bitencourt; Lopes-Cendes, Iscia; Pereira, Tiago Campos
2012-01-01
RNA interference (RNAi) is a natural endogenous process by which double-stranded RNA molecules trigger potent and specific gene silencing in eukaryotic cells and is characterized by target RNA cleavage. In mammals, small interfering RNAs (siRNAs) are the trigger molecules of choice and constitute a new class of RNA-based antiviral agents. In an efficient RNAi response, the antisense strand of siRNAs must enter the RNA-induced silencing complex (RISC) in a process mediated by thermodynamic features. In this report, we hypothesize that silent mutations capable of inverting thermodynamic properties can promote resistance to siRNAs. Extensive computational analyses were used to assess whether continuous selective pressure that promotes such mutations could lead to the emergence of viral strains completely resistant to RNAi (i.e., prone to transfer only the sense strands to RISC). Based on our findings, we propose that, although synonymous mutations may produce functional resistance, this strategy cannot be systematically adopted by viruses since the longest RNAi-refractory sequence is only 10 nt long. This finding also suggests that all mRNAs display fluctuating thermodynamic landscapes and that, in terms of thermodynamic features, RNAi is a very efficient antiviral system since there will always be sites susceptible to siRNAs. PMID:23271949
Kaplan, Fatma; Guy, Charles L
2005-12-01
It has been suggested that beta-amylase (BMY) induction during temperature stress in Arabidopsis could lead to starch-dependent maltose accumulation, and that maltose may contribute to protection of the electron transport chain and proteins in the chloroplast stroma during acute stress. A time-course transcript profiling analysis for cold shock at 4 degrees C revealed that BMY8 (At4g17090) was induced specifically in response to cold shock, while major induction was not observed for any of the other eight beta-amylases. A parallel metabolite-profiling analysis revealed a robust transient maltose accumulation during cold shock. BMY8 RNAi lines with lower BMY8 expression exhibited a starch-excess phenotype, and a dramatic decrease in maltose accumulation during a 6-h cold shock at 4 degrees C. The decreased maltose content was also accompanied by decreased glucose, fructose and sucrose content in the BMY8 RNAi plants, consistent with the roles of beta-amylase and maltose in transitory starch metabolism. BMY8 RNAi lines with reduced soluble sugar content exhibited diminished chlorophyll fluorescence as F(v)/F(m) ratio compared with wild type, suggesting that PSII photochemical efficiency was more sensitive to freezing stress. Together, carbohydrate analysis and freezing stress results of BMY8 RNAi lines indicate that increased maltose content, by itself or together through a maltose-dependent increase in other soluble sugars, contributes to the protection of the photosynthetic electron transport chain during freezing stress.
Tai, Kuo-Feng; Wang, Chien-Hsing
2013-12-01
The transforming growth factor β (TGF-β) is the key molecule implicated in impaired immune function in human patients with malignant melanoma. TGF-β can promote tumor growth, invasion, and metastasis in advanced stages of melanoma. Blocking these tumor-promoting effects of TGF-β provides a potentially important therapeutic strategy for the treatment of melanoma. In this study, we used an adenovirus-based shRNA expression system and successfully constructed Ad/TGF-β1-RNA interference (RNAi) which mediated the RNAi for TGF-β1 gene silencing. We examined the effects of TGF-β1 protein knockdown by RNAi on the growth and metastasis of melanoma in C57BL/6 mice induced by the B16F0 cell line. The TGF-β1 hairpin oligonucleotide was cloned into adenoviral vector. The resulting recombinant adenoviruses infected murine melanoma cell line, B16F0, and designated as B16F0/TGF-β1-RNAi cells. The blank adenoviral vector also infected B16F0 cells and designed as B16F0/vector-control cells served as a control. TGF-β1 expression was reduced in B16F0/TGF-β1-RNAi cells compared with B16F0 cells and B16F0/vector-control cells. Three million wild-type B16F0 cells, B16F0/vector-control cells, and B16F0/TGF-β1-RNAi cells were injected subcutaneously into the right flanks of adult female syngeneic mice C57BL/6. The tumor sizes were 756.09 (65.35), 798.48 (78.77), and 203.55 (24.56) mm at the 14th day in the mice receiving B16F0 cells, B16F0/vector-control cells, and B16F0/TGFβ1-RNAi cells, respectively. The P value was less than 0.01 by 1-way analysis of variance. TGF-β1 knockdown in B16F0 cells enhanced the infiltration of CD4 and CD8 T cells in the tumor regions. C57BL/6 mice were evaluated for pulmonary metastasis after tail vein injection of 2 million B16F0 cells, B16F0/vector-control cells, and B16F0/TGF-β1-RNAi cells. The pulmonary metastasis also reduced significantly on days 14 day and 21 in mice injected with B16F0/TGF-β1-RNAi tumors. The blood vessel density of the tumors markedly reduced in B16F0/TGF-β1-RNAi tumors. Our results showed that Ad/TGF-β1-RNAi could induce silencing of the TGF-β1 gene effectively. Silencing of TGF-β1 expression in B16F0 cells by RNAi technology can inhibit the growth and metastasis of this tumor after being transplanted to C57BL/6 mice. This kind of adenoviral vector based on RNAi might be a promising vector for cancer therapy.
Chemical Ligation Reactions of Oligonucleotides for Biological and Medicinal Applications.
Abe, Hiroshi; Kimura, Yasuaki
2018-01-01
Chemical ligation of oligonucleotides (ONs) is the key reaction for various ON-based technologies. We have tried to solve the problems of RNA interference (RNAi) technology by applying ON chemical ligation to RNAi. We designed a new RNAi system, called intracellular buildup RNAi (IBR-RNAi), where the RNA fragments are built up into active small-interference RNA (siRNA) in cells through a chemical ligation reaction. Using the phosphorothioate and iodoacetyl groups as reactive functional groups for the ligation, we achieved RNAi effects without inducing immune responses. Additionally, we developed a new chemical ligation for IBR-RNAi, which affords a more native-like structure in the ligated product. The new ligation method should be useful not only for IBR-RNAi but also for the chemical synthesis of biofunctional ONs.
Cheng, Han; Koning, Katie; O'Hearn, Aileen; Wang, Minxiu; Rumschlag-Booms, Emily; Varhegyi, Elizabeth; Rong, Lijun
2015-11-24
Genome-wide RNAi screening has been widely used to identify host proteins involved in replication and infection of different viruses, and numerous host factors are implicated in the replication cycles of these viruses, demonstrating the power of this approach. However, discrepancies on target identification of the same viruses by different groups suggest that high throughput RNAi screening strategies need to be carefully designed, developed and optimized prior to the large scale screening. Two genome-wide RNAi screens were performed in parallel against the entry of pseudotyped Marburg viruses and avian influenza virus H5N1 utilizing an HIV-1 based surrogate system, to identify host factors which are important for virus entry. A comparative analysis approach was employed in data analysis, which alleviated systematic positional effects and reduced the false positive number of virus-specific hits. The parallel nature of the strategy allows us to easily identify the host factors for a specific virus with a greatly reduced number of false positives in the initial screen, which is one of the major problems with high throughput screening. The power of this strategy is illustrated by a genome-wide RNAi screen for identifying the host factors important for Marburg virus and/or avian influenza virus H5N1 as described in this study. This strategy is particularly useful for highly pathogenic viruses since pseudotyping allows us to perform high throughput screens in the biosafety level 2 (BSL-2) containment instead of the BSL-3 or BSL-4 for the infectious viruses, with alleviated safety concerns. The screening strategy together with the unique comparative analysis approach makes the data more suitable for hit selection and enables us to identify virus-specific hits with a much lower false positive rate.
Characterization of viral siRNA populations in honey bee colony collapse disorder.
Chejanovsky, Nor; Ophir, Ron; Schwager, Michal Sharabi; Slabezki, Yossi; Grossman, Smadar; Cox-Foster, Diana
2014-04-01
Colony Collapse Disorder (CCD), a special case of collapse of honey bee colonies, has resulted in significant losses for beekeepers. CCD-colonies show abundance of pathogens which suggests that they have a weakened immune system. Since honey bee viruses are major players in colony collapse and given the important role of viral RNA interference (RNAi) in combating viral infections we investigated if CCD-colonies elicit an RNAi response. Deep-sequencing analysis of samples from CCD-colonies from US and Israel revealed abundant small interfering RNAs (siRNA) of 21-22 nucleotides perfectly matching the Israeli acute paralysis virus (IAPV), Kashmir virus and Deformed wing virus genomes. Israeli colonies showed high titers of IAPV and a conserved RNAi-pattern of matching the viral genome. That was also observed in sample analysis from colonies experimentally infected with IAPV. Our results suggest that CCD-colonies set out a siRNA response that is specific against predominant viruses associated with colony losses. Copyright © 2014 Elsevier Inc. All rights reserved.
Ifuku, Kentaro; Ikeda, Ken-ichi; Inoue, Kanako Ikeda; Park, Pyoyun; Tamoi, Masahiro; Inoue, Hironori; Sakamoto, Katsuhiko; Saito, Ryota
2016-01-01
Lipid-derived reactive carbonyl species (RCS) possess electrophilic moieties and cause oxidative stress by reacting with cellular components. Arabidopsis (Arabidopsis thaliana) has a chloroplast-localized alkenal/one oxidoreductase (AtAOR) for the detoxification of lipid-derived RCS, especially α,β-unsaturated carbonyls. In this study, we aimed to evaluate the physiological importance of AtAOR and analyzed AtAOR (aor) mutants, including a transfer DNA knockout, aor (T-DNA), and RNA interference knockdown, aor (RNAi), lines. We found that both aor mutants showed smaller plant sizes than wild-type plants when they were grown under day/night cycle conditions. To elucidate the cause of the aor mutant phenotype, we analyzed the photosynthetic rate and the respiration rate by gas-exchange analysis. Subsequently, we found that both wild-type and aor (RNAi) plants showed similar CO2 assimilation rates; however, the respiration rate was lower in aor (RNAi) than in wild-type plants. Furthermore, we revealed that phosphoenolpyruvate carboxylase activity decreased and starch degradation during the night was suppressed in aor (RNAi). In contrast, the phenotype of aor (RNAi) was rescued when aor (RNAi) plants were grown under constant light conditions. These results indicate that the smaller plant sizes observed in aor mutants grown under day/night cycle conditions were attributable to the decrease in carbon utilization during the night. Here, we propose that the detoxification of lipid-derived RCS by AtAOR in chloroplasts contributes to the protection of dark respiration and supports plant growth during the night. PMID:26884484
Takagi, Daisuke; Ifuku, Kentaro; Ikeda, Ken-Ichi; Inoue, Kanako Ikeda; Park, Pyoyun; Tamoi, Masahiro; Inoue, Hironori; Sakamoto, Katsuhiko; Saito, Ryota; Miyake, Chikahiro
2016-04-01
Lipid-derived reactive carbonyl species (RCS) possess electrophilic moieties and cause oxidative stress by reacting with cellular components. Arabidopsis (Arabidopsis thaliana) has a chloroplast-localized alkenal/one oxidoreductase (AtAOR) for the detoxification of lipid-derived RCS, especially α,β-unsaturated carbonyls. In this study, we aimed to evaluate the physiological importance of AtAOR and analyzed AtAOR (aor) mutants, including a transfer DNA knockout, aor (T-DNA), and RNA interference knockdown, aor (RNAi), lines. We found that both aor mutants showed smaller plant sizes than wild-type plants when they were grown under day/night cycle conditions. To elucidate the cause of the aor mutant phenotype, we analyzed the photosynthetic rate and the respiration rate by gas-exchange analysis. Subsequently, we found that both wild-type and aor (RNAi) plants showed similar CO2 assimilation rates; however, the respiration rate was lower in aor (RNAi) than in wild-type plants. Furthermore, we revealed that phosphoenolpyruvate carboxylase activity decreased and starch degradation during the night was suppressed in aor (RNAi). In contrast, the phenotype of aor (RNAi) was rescued when aor (RNAi) plants were grown under constant light conditions. These results indicate that the smaller plant sizes observed in aor mutants grown under day/night cycle conditions were attributable to the decrease in carbon utilization during the night. Here, we propose that the detoxification of lipid-derived RCS by AtAOR in chloroplasts contributes to the protection of dark respiration and supports plant growth during the night. © 2016 American Society of Plant Biologists. All Rights Reserved.
Calo, Silvia; Nicolás, Francisco E; Lee, Soo Chan; Vila, Ana; Cervantes, Maria; Torres-Martinez, Santiago; Ruiz-Vazquez, Rosa M; Cardenas, Maria E; Heitman, Joseph
2017-03-01
Mucorales are a group of basal fungi that includes the casual agents of the human emerging disease mucormycosis. Recent studies revealed that these pathogens activate an RNAi-based pathway to rapidly generate drug-resistant epimutant strains when exposed to stressful compounds such as the antifungal drug FK506. To elucidate the molecular mechanism of this epimutation pathway, we performed a genetic analysis in Mucor circinelloides that revealed an inhibitory role for the non-canonical RdRP-dependent Dicer-independent silencing pathway, which is an RNAi-based mechanism involved in mRNA degradation that was recently identified. Thus, mutations that specifically block the mRNA degradation pathway, such as those in the genes r3b2 and rdrp3, enhance the production of drug resistant epimutants, similar to the phenotype previously described for mutation of the gene rdrp1. Our genetic analysis also revealed two new specific components of the epimutation pathway related to the quelling induced protein (qip) and a Sad-3-like helicase (rnhA), as mutations in these genes prevented formation of drug-resistant epimutants. Remarkably, drug-resistant epimutant production was notably increased in M. circinelloides f. circinelloides isolates from humans or other animal hosts. The host-pathogen interaction could be a stressful environment in which the phenotypic plasticity provided by the epimutant pathway might provide an advantage for these strains. These results evoke a model whereby balanced regulation of two different RNAi pathways is determined by the activation of the RNAi-dependent epimutant pathway under stress conditions, or its repression when the regular maintenance of the mRNA degradation pathway operates under non-stress conditions.
Zhang, Nan; Membreno, Edward; Raj, Susan; Zhang, Hongjie; Khan, Liakot A; Gobel, Verena
2017-10-03
The four C. elegans excretory canals are narrow tubes extended through the length of the animal from a single cell, with almost equally far extended intracellular endotubes that build and stabilize the lumen with a membrane and submembraneous cytoskeleton of apical character. The excretory cell expands its length approximately 2,000 times to generate these canals, making this model unique for the in vivo assessment of de novo polarized membrane biogenesis, intracellular lumen morphogenesis and unicellular tubulogenesis. The protocol presented here shows how to combine standard labeling, gain- and loss-of-function genetic or RNA interference (RNAi)-, and microscopic approaches to use this model to visually dissect and functionally analyze these processes on a molecular level. As an example of a labeling approach, the protocol outlines the generation of transgenic animals with fluorescent fusion proteins for live analysis of tubulogenesis. As an example of a genetic approach, it highlights key points of a visual RNAi-based interaction screen designed to modify a gain-of-function cystic canal phenotype. The specific methods described are how to: label and visualize the canals by expressing fluorescent proteins; construct a targeted RNAi library and strategize RNAi screening for the molecular analysis of canal morphogenesis; visually assess modifications of canal phenotypes; score them by dissecting fluorescence microscopy; characterize subcellular canal components at higher resolution by confocal microscopy; and quantify visual parameters. The approach is useful for the investigator who is interested in taking advantage of the C. elegans excretory canal for identifying and characterizing genes involved in the phylogenetically conserved processes of intracellular lumen and unicellular tube morphogenesis.
Liu, Tao; Sims, David; Baum, Buzz
2009-01-01
In recent years RNAi screening has proven a powerful tool for dissecting gene functions in animal cells in culture. However, to date, most RNAi screens have been performed in a single cell line, and results then extrapolated across cell types and systems. Here, to dissect generic and cell type-specific mechanisms underlying cell morphology, we have performed identical kinome RNAi screens in six different Drosophila cell lines, derived from two distinct tissues of origin. This analysis identified a core set of kinases required for normal cell morphology in all lines tested, together with a number of kinases with cell type-specific functions. Most significantly, the screen identified a role for minibrain (mnb/DYRK1A), a kinase associated with Down's syndrome, in the regulation of actin-based protrusions in CNS-derived cell lines. This cell type-specific requirement was not due to the peculiarities in the morphology of CNS-derived cells and could not be attributed to differences in mnb expression. Instead, it likely reflects differences in gene expression that constitute the cell type-specific functional context in which mnb/DYRK1A acts. Using parallel RNAi screens and gene expression analyses across cell types we have identified generic and cell type-specific regulators of cell morphology, which include mnb/DYRK1A in the regulation of protrusion morphology in CNS-derived cell lines. This analysis reveals the importance of using different cell types to gain a thorough understanding of gene function across the genome and, in the case of kinases, the difficulties of using the differential gene expression to predict function.
Therapeutic application of RNAi: is mRNA targeting finally ready for prime time?
Grimm, Dirk; Kay, Mark A.
2007-01-01
With unprecedented speed, RNA interference (RNAi) has advanced from its basic discovery in lower organisms to becoming a powerful genetic tool and perhaps our single most promising biotherapeutic for a wide array of diseases. Numerous studies document RNAi efficacy in laboratory animals, and the first clinical trials are underway and thus far suggest that RNAi is safe to use in humans. Yet substantial hurdles have also surfaced and must be surmounted before therapeutic RNAi applications can become a standard therapy. Here we review the most critical roadblocks and concerns for clinical RNAi transition, delivery, and safety. We highlight emerging solutions and concurrently discuss novel therapeutic RNAi-based concepts. The current rapid advances create realistic optimism that the establishment of RNAi as a new and potent clinical modality in humans is near. PMID:18060021
Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference
Li, Xiaoxue; Dong, Xiaolong; Zou, Cong; Zhang, Hongyu
2015-01-01
RNA interference (RNAi) is a powerful and convenient tool for sequence-specific gene silencing, and it is triggered by double-stranded RNA (dsRNA). RNAi can be easily achieved in many eukaryotes by either injecting or feeding dsRNAs. This mechanism has demonstrated its potential in fundamental research on genetics, medicine and agriculture. However, the possibility that insects might develop refractoriness to RNAi remains unexplored. In this study, we report that the oriental fruit fly, Bactrocera dorsalis, became refractory to RNAi using orally administered dsRNA targeting endogenous genes. Furthermore, refractoriness to RNAi is not gene-specific, and its duration depends on the dsRNA concentration. RNAi blockage requires the endocytic pathway. Fluorescence microscopy indicated that in RNAi refractory flies, dsRNA uptake is blocked. Genes involved in the entry of dsRNAs into cells, including chc, cog3, light and others, are down-regulated in RNAi refractory flies. Increasing the endocytic capacity by improving F-actin polymerization disrupts RNAi refractoriness after both primary and secondary dsRNA exposures. Our results demonstrate that an insect can become refractory to RNAi by preventing the entry of dsRNA into its cells. PMID:25731667
Development of small RNA delivery systems for lung cancer therapy.
Fujita, Yu; Kuwano, Kazuyoshi; Ochiya, Takahiro
2015-03-06
RNA interference (RNAi) has emerged as a powerful tool for studying target identification and holds promise for the development of therapeutic gene silencing. Recent advances in RNAi delivery and target selection provide remarkable opportunities for translational medical research. The induction of RNAi relies on small silencing RNAs, which affect specific messenger RNA (mRNA) degradation. Two types of small RNA molecules, small interfering RNAs (siRNAs) and microRNAs (miRNAs), have a central function in RNAi technology. The success of RNAi-based therapeutic delivery may be dependent upon uncovering a delivery route, sophisticated delivery carriers, and nucleic acid modifications. Lung cancer is still the leading cause of cancer death worldwide, for which novel therapeutic strategies are critically needed. Recently, we have reported a novel platform (PnkRNA™ and nkRNA®) to promote naked RNAi approaches through inhalation without delivery vehicles in lung cancer xenograft models. We suggest that a new class of RNAi therapeutic agent and local drug delivery system could also offer a promising RNAi-based strategy for clinical applications in cancer therapy. In this article, we show recent strategies for an RNAi delivery system and suggest the possible clinical usefulness of RNAi-based therapeutics for lung cancer treatment.
Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference.
Li, Xiaoxue; Dong, Xiaolong; Zou, Cong; Zhang, Hongyu
2015-03-03
RNA interference (RNAi) is a powerful and convenient tool for sequence-specific gene silencing, and it is triggered by double-stranded RNA (dsRNA). RNAi can be easily achieved in many eukaryotes by either injecting or feeding dsRNAs. This mechanism has demonstrated its potential in fundamental research on genetics, medicine and agriculture. However, the possibility that insects might develop refractoriness to RNAi remains unexplored. In this study, we report that the oriental fruit fly, Bactrocera dorsalis, became refractory to RNAi using orally administered dsRNA targeting endogenous genes. Furthermore, refractoriness to RNAi is not gene-specific, and its duration depends on the dsRNA concentration. RNAi blockage requires the endocytic pathway. Fluorescence microscopy indicated that in RNAi refractory flies, dsRNA uptake is blocked. Genes involved in the entry of dsRNAs into cells, including chc, cog3, light and others, are down-regulated in RNAi refractory flies. Increasing the endocytic capacity by improving F-actin polymerization disrupts RNAi refractoriness after both primary and secondary dsRNA exposures. Our results demonstrate that an insect can become refractory to RNAi by preventing the entry of dsRNA into its cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smialowska, Agata, E-mail: smialowskaa@gmail.com; School of Life Sciences, Södertörn Högskola, Huddinge 141-89; Djupedal, Ingela
Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its rolemore » in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.« less
RNAi technologies in agricultural biotechnology: The Toxicology Forum 40th Annual Summer Meeting.
Sherman, James H; Munyikwa, Tichafa; Chan, Stephen Y; Petrick, Jay S; Witwer, Kenneth W; Choudhuri, Supratim
2015-11-01
During the 40th Annual Meeting of The Toxicology Forum, the current and potential future science, regulations, and politics of agricultural biotechnology were presented and discussed. The meeting session described herein focused on the technology of RNA interference (RNAi) in agriculture. The general process by which RNAi works, currently registered RNAi-based plant traits, example RNAi-based traits in development, potential use of double stranded RNA (dsRNA) as topically applied pesticide active ingredients, research related to the safety of RNAi, biological barriers to ingested dsRNA, recent regulatory RNAi science reviews, and regulatory considerations related to the use of RNAi in agriculture were discussed. Participants generally agreed that the current regulatory framework is robust and appropriate for evaluating the safety of RNAi employed in agricultural biotechnology and were also supportive of the use of RNAi to develop improved crop traits. However, as with any emerging technology, the potential range of future products, potential future regulatory frameworks, and public acceptance of the technology will continue to evolve. As such, continuing dialogue was encouraged to promote education of consumers and science-based regulations. Copyright © 2015 Elsevier Inc. All rights reserved.
Individualised cancer therapeutics: dream or reality? Therapeutics construction.
Shen, Yuqiao; Senzer, Neil; Nemunaitis, John
2005-11-01
The analysis of DNA microarray and proteomic data, and the subsequent integration into functional expression sets, provides a circuit map of the hierarchical cellular networks responsible for sustaining the viability and environmental competitiveness of cancer cells, that is, their robust systematics. These technologies can be used to 'snapshot' the unique patterns of molecular derangements and modified interactions in cancer, and allow for strategic selection of therapeutics that best match the individual profile of the tumour. This review highlights technology that can be used to selectively disrupt critical molecular targets and describes possible vehicles to deliver the synthesised molecular therapeutics to the relevant cellular compartments of the malignant cells. RNA interference (RNAi) involves a group of evolutionarily conserved gene silencing mechanisms in which small sequences of double-stranded RNA or intrinsic antisense RNA trigger mRNA cleavage or translational repression, respectively. Although RNAi molecules can be synthesised to 'silence' virtually any gene, even if upregulated, a mechanism for selective delivery of RNAi effectors to sites of malignant disease remains challenging. The authors will discuss gene-modified conditionally replicating viruses as candidate vehicles for the delivery of RNAi.
Kandeel, Mahmoud; Kitade, Yukio
2013-07-01
RNA interference (RNAi) is a critical cellular pathway activated by double stranded RNA and regulates the gene expression of target mRNA. During RNAi, the 3' end of siRNA binds with the PAZ domain, followed by release and rebinding in a cyclic manner, which deemed essential for proper gene silencing. Recently, we provided the forces underlying the recognition of small interfering RNA by PAZ in a computational study based on the structure of Drosophila Argonaute 2 (Ago2) PAZ domain. We have now reanalyzed these data within the view of the new available structures from human Argonauts. While the parameters of weak binding are correlated with higher (RNAi) in the Drosophila model, a different profile is predicted with the human Ago2 PAZ domain. On the basis of the human Ago2 PAZ models, the indicators of stronger binding as the total binding energy and the free energy were associated with better RNAi efficacy. This discrepancy might be attributable to differences in the binding site topology and the difference in the conformation of the bound nucleotides.
RNA Interference in Insect Vectors for Plant Viruses.
Kanakala, Surapathrudu; Ghanim, Murad
2016-12-12
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.
RNA Interference in Insect Vectors for Plant Viruses
Kanakala, Surapathrudu; Ghanim, Murad
2016-01-01
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists. PMID:27973446
Hassan, Ali
2006-06-01
RNA interference (RNAi) in eukaryotes is a recently identified phenomenon in which small double stranded RNA molecules called short interfering RNA (siRNA) interact with messenger RNA (mRNA) containing homologous sequences in a sequence-specific manner. Ultimately, this interaction results in degradation of the target mRNA. Because of the high sequence specificity of the RNAi process, and the apparently ubiquitous expression of the endogenous protein components necessary for RNAi, there appears to be little limitation to the genes that can be targeted for silencing by RNAi. Thus, RNAi has enormous potential, both as a research tool and as a mode of therapy. Several recent patents have described advances in RNAi technology that are likely to lead to new treatments for cardiovascular disease. These patents have described methods for increased delivery of siRNA to cardiovascular target tissues, chemical modifications of siRNA that improve their pharmacokinetic characteristics, and expression vectors capable of expressing RNAi effectors in situ. Though RNAi has only recently been demonstrated to occur in mammalian tissues, work has advanced rapidly in the development of RNAi-based therapeutics. Recently, therapeutic silencing of apoliporotein B, the ligand for the low density lipoprotein receptor, has been demonstrated in adult mice by systemic administration of chemically modified siRNA. This demonstrates the potential for RNAi-based therapeutics, and suggests that the future for RNAi in the treatment of cardiovascular disease is bright.
Emerging strategies for RNA interference (RNAi) applications in insects.
Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W
2015-01-01
RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response.
HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs
Daniels, Sylvanne M; Sinck, Lucile; Ward, Natalie J; Melendez-Peña, Carlos E; Scarborough, Robert J; Azar, Ibrahim; Rance, Elodie; Daher, Aïcha; Pang, Ka-Ming; Rossi, John J; Gatignol, Anne
2015-01-01
Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses. PMID:25668122
HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs.
Daniels, Sylvanne M; Sinck, Lucile; Ward, Natalie J; Melendez-Peña, Carlos E; Scarborough, Robert J; Azar, Ibrahim; Rance, Elodie; Daher, Aïcha; Pang, Ka-Ming; Rossi, John J; Gatignol, Anne
2015-01-01
Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses.
RDE-2 interacts with MUT-7 to mediate RNA interference in Caenorhabditis elegans.
Tops, Bastiaan B J; Tabara, Hiroaki; Sijen, Titia; Simmer, Femke; Mello, Craig C; Plasterk, Ronald H A; Ketting, René F
2005-01-01
In Caenorhabditis elegans, the activity of transposable elements is repressed in the germline. One of the mechanisms involved in this repression is RNA interference (RNAi), a process in which dsRNA targets cleavage of mRNAs in a sequence-specific manner. The first gene found to be involved in RNAi and transposon silencing in C.elegans is mut-7, a gene encoding a putative exoribonuclease. Here, we show that the MUT-7 protein resides in complexes of approximately 250 kDa in the nucleus and in the cytosol. In addition, we find that upon triggering of RNAi the cytosolic MUT-7 complex increases in size. This increase is independent of the presence of target RNA, but does depend on the presence of RDE-1 and RDE-4, two proteins involved in small interfering RNA (siRNA) production. Finally, using a yeast two-hybrid screen, we identified RDE-2/MUT-8 as one of the other components of this complex. This protein is encoded by the rde-2/mut-8 locus, previously implicated in RNAi and transposon silencing. Using genetic complementation analysis, we show that the interaction between these two proteins is required for efficient RNAi in vivo. Together these data support a role for the MUT-7/RDE-2 complex downstream of siRNA formation, but upstream of siRNA mediated target RNA recognition, possibly indicating a role in the siRNA amplification step.
Begnis, Martina; Apte, Manasi S; Masuda, Hirohisa; Jain, Devanshi; Wheeler, David Lee; Cooper, Julia Promisel
2018-04-01
The identification of telomerase-negative HAATI (heterochromatin amplification-mediated and telomerase-independent) cells, in which telomeres are superseded by nontelomeric heterochromatin tracts, challenged the idea that canonical telomeres are essential for chromosome linearity and raised crucial questions as to how such tracts translocate to eroding chromosome ends and confer end protection. Here we show that HAATI arises when telomere loss triggers a newly recognized illegitimate translocation pathway that requires RNAi factors. While RNAi is necessary for the translocation events that mobilize ribosomal DNA (rDNA) tracts to all chromosome ends (forming "HAATI rDNA " chromosomes), it is dispensable for HAATI rDNA maintenance. Surprisingly, Dicer (Dcr1) plays a separate, RNAi-independent role in preventing formation of the rare HAATI subtype in which a different repetitive element (the subtelomeric element) replaces telomeres. Using genetics and fusions between shelterin components and rDNA-binding proteins, we mapped the mechanism by which rDNA loci engage crucial end protection factors-despite the absence of telomere repeats-and secure end protection. Sequence analysis of HAATI rDNA genomes allowed us to propose RNA and DNA polymerase template-switching models for the mechanism of RNAi-triggered rDNA translocations. Collectively, our results reveal unforeseen roles for noncoding RNAs (ncRNAs) in assembling a telomere-free chromosome end protection device. © 2018 Begnis et al.; Published by Cold Spring Harbor Laboratory Press.
Isolani, Maria Emilia; Abril, Josep F.; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata
2013-01-01
Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies. PMID:23405188
Isolani, Maria Emilia; Abril, Josep F; Saló, Emili; Deri, Paolo; Bianucci, Anna Maria; Batistoni, Renata
2013-01-01
Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies.
NASA Astrophysics Data System (ADS)
Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen
2011-03-01
RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.
Sekihara, Sanae; Shibata, Toshio; Hyakkendani, Mai; Kawabata, Shun-ichiro
2016-01-01
We recently reported that transglutaminase (TG) suppresses immune deficiency pathway-controlled antimicrobial peptides (IMD-AMPs), thereby conferring immune tolerance to gut microbes, and that RNAi of the TG gene in flies decreases the lifespan compared with non-TG-RNAi flies. Here, analysis of the bacterial composition of the Drosophila gut by next-generation sequencing revealed that gut microbiota comprising one dominant genus of Acetobacter in non-TG-RNAi flies was shifted to that comprising two dominant genera of Acetobacter and Providencia in TG-RNAi flies. Four bacterial strains, including Acetobacter persici SK1 and Acetobacter indonesiensis SK2, Lactobacillus pentosus SK3, and Providencia rettgeri SK4, were isolated from the midgut of TG-RNAi flies. SK1 exhibited the highest resistance to the IMD-AMPs Cecropin A1 and Diptericin among the isolated bacteria. In contrast, SK4 exhibited considerably lower resistance against Cecropin A1, whereas SK4 exhibited high resistance to hypochlorous acid. The resistance of strains SK1–4 against IMD-AMPs in in vitro assays could not explain the shift of the microbiota in the gut of TG-RNAi flies. The lifespan was reduced in gnotobiotic flies that ingested both SK4 and SK1, concomitant with the production of reactive oxygen species and apoptosis in the midgut, whereas the survival rate was not altered in gnotobiotic flies that mono-ingested either SK4 or SK1. Interestingly, significant amounts of reactive oxygen species were detected in the midgut of gnotobiotic flies that ingested SK4 and SK2, concomitant with no significant apoptosis in the midgut. In gnotobiotic flies that co-ingested SK4 and SK1, an additional unknown factor(s) may be required to cause midgut apoptosis. PMID:27760824
Jung, Je Hyeong; Kannan, Baskaran; Dermawan, Hugo; Moxley, Geoffrey W; Altpeter, Fredy
2016-11-01
Sugarcane (Saccharum spp. hybrids) is a major feedstock for commercial bioethanol production. The recent integration of conversion technologies that utilize lignocellulosic sugarcane residues as well as sucrose from stem internodes has elevated bioethanol yields. RNAi suppression of lignin biosynthetic enzymes is a successful strategy to improve the saccharification of lignocellulosic biomass. 4-coumarate:coenzyme A ligase (4CL) is a key enzyme in the biosynthesis of phenylpropanoid metabolites, such as lignin and flavonoids. Identifying a major 4CL involved in lignin biosynthesis among multiple isoforms with functional divergence is key to manipulate lignin biosynthesis. In this study, two full length 4CL genes (Sh4CL1 and Sh4CL2) were isolated and characterized in sugarcane. Phylogenetic, expression and RNA interference (RNAi) analysis confirmed that Sh4CL1 is a major lignin biosynthetic gene. An intragenic precision breeding strategy may facilitate the regulatory approval of the genetically improved events and was used for RNAi suppression of Sh4CL1. Both, the RNAi inducing cassette and the expression cassette for the mutated ALS selection marker consisted entirely of DNA sequences from sugarcane or the sexually compatible species Sorghum bicolor. Field grown sugarcane with intragenic RNAi suppression of Sh4CL1 resulted in reduction of the total lignin content by up to 16.5 % along with altered monolignol ratios without reduction in biomass yield. Mature, field grown, intragenic sugarcane events displayed 52-76 % improved saccharification efficiency of lignocellulosic biomass compared to wild type (WT) controls. This demonstrates for the first time that an intragenic approach can add significant value to lignocellulosic feedstocks for biofuel and biochemical production.
High throughput RNAi assay optimization using adherent cell cytometry.
Nabzdyk, Christoph S; Chun, Maggie; Pradhan, Leena; Logerfo, Frank W
2011-04-25
siRNA technology is a promising tool for gene therapy of vascular disease. Due to the multitude of reagents and cell types, RNAi experiment optimization can be time-consuming. In this study adherent cell cytometry was used to rapidly optimize siRNA transfection in human aortic vascular smooth muscle cells (AoSMC). AoSMC were seeded at a density of 3000-8000 cells/well of a 96 well plate. 24 hours later AoSMC were transfected with either non-targeting unlabeled siRNA (50 nM), or non-targeting labeled siRNA, siGLO Red (5 or 50 nM) using no transfection reagent, HiPerfect or Lipofectamine RNAiMax. For counting cells, Hoechst nuclei stain or Cell Tracker green were used. For data analysis an adherent cell cytometer, Celigo® was used. Data was normalized to the transfection reagent alone group and expressed as red pixel count/cell. After 24 hours, none of the transfection conditions led to cell loss. Red fluorescence counts were normalized to the AoSMC count. RNAiMax was more potent compared to HiPerfect or no transfection reagent at 5 nM siGLO Red (4.12 +/-1.04 vs. 0.70 +/-0.26 vs. 0.15 +/-0.13 red pixel/cell) and 50 nM siGLO Red (6.49 +/-1.81 vs. 2.52 +/-0.67 vs. 0.34 +/-0.19). Fluorescence expression results supported gene knockdown achieved by using MARCKS targeting siRNA in AoSMCs. This study underscores that RNAi delivery depends heavily on the choice of delivery method. Adherent cell cytometry can be used as a high throughput-screening tool for the optimization of RNAi assays. This technology can accelerate in vitro cell assays and thus save costs.
High throughput RNAi assay optimization using adherent cell cytometry
2011-01-01
Background siRNA technology is a promising tool for gene therapy of vascular disease. Due to the multitude of reagents and cell types, RNAi experiment optimization can be time-consuming. In this study adherent cell cytometry was used to rapidly optimize siRNA transfection in human aortic vascular smooth muscle cells (AoSMC). Methods AoSMC were seeded at a density of 3000-8000 cells/well of a 96well plate. 24 hours later AoSMC were transfected with either non-targeting unlabeled siRNA (50 nM), or non-targeting labeled siRNA, siGLO Red (5 or 50 nM) using no transfection reagent, HiPerfect or Lipofectamine RNAiMax. For counting cells, Hoechst nuclei stain or Cell Tracker green were used. For data analysis an adherent cell cytometer, Celigo® was used. Data was normalized to the transfection reagent alone group and expressed as red pixel count/cell. Results After 24 hours, none of the transfection conditions led to cell loss. Red fluorescence counts were normalized to the AoSMC count. RNAiMax was more potent compared to HiPerfect or no transfection reagent at 5 nM siGLO Red (4.12 +/-1.04 vs. 0.70 +/-0.26 vs. 0.15 +/-0.13 red pixel/cell) and 50 nM siGLO Red (6.49 +/-1.81 vs. 2.52 +/-0.67 vs. 0.34 +/-0.19). Fluorescence expression results supported gene knockdown achieved by using MARCKS targeting siRNA in AoSMCs. Conclusion This study underscores that RNAi delivery depends heavily on the choice of delivery method. Adherent cell cytometry can be used as a high throughput-screening tool for the optimization of RNAi assays. This technology can accelerate in vitro cell assays and thus save costs. PMID:21518450
Jadiya, Pooja; Nazir, Aamir
2014-01-01
Background The approach of RNAi mediated gene knockdown, employing exogenous dsRNA, is being beneficially exploited in various fields of functional genomics. The immense utility of the approach came to fore from studies with model system C. elegans, but quickly became applicable with varied research models ranging from in vitro to various in vivo systems. Previously, there have been reports on the refractoriness of the neuronal cells to RNAi mediated gene silencing following which several modulators like eri-1 and lin-15 were described in C. elegans which, when present, would negatively impact the gene knockdown. Methodology/Principal Findings Taking a clue from these findings, we went on to screen hypothesis-driven- methodologies towards exploring the efficiency in the process of RNAi under various experimental conditions, wherein these genes would be knocked down preceding to, or concurrently with, the knocking down of a gene of interest. For determining the efficiency of gene knockdown, we chose to study visually stark phenotypes of uncoordinated movement, dumpy body morphology and blistered cuticle obtained by knocking down of genes unc-73, dpy-9 and bli-3 respectively, employing the RNAi-by-feeding protocol in model system C. elegans. Conclusions/Significance Our studies led to a very interesting outcome as the results reveal that amongst various methods tested, pre-incubation with eri-1 dsRNA synthesizing bacteria followed by co-incubation with eri-1 and gene-of-interest dsRNA synthesizing bacteria leads to the most efficient gene silencing as observed by the analysis of marker phenotypes. This provides an approach for effectively employing RNAi induced gene silencing while working with different genetic backgrounds including transgenic and mutant strains. PMID:24475317
RNAi-mediated down-regulation of SHATTERPROOF gene in transgenic oilseed rape.
Kord, Hadis; Shakib, Ali Mohammad; Daneshvar, Mohammad Hossein; Azadi, Pejman; Bayat, Vahid; Mashayekhi, Mohsen; Zarea, Mahboobeh; Seifi, Alireza; Ahmad-Raji, Mana
2015-06-01
Oilseed rape is one of the important oil plants. Pod shattering is one of the problems in oilseed rape production especially in regions with dry conditions. One of the important genes in Brassica pod opening is SHATTERPROOF1 (SHP1). Down-regulation of BnSHP1 expression by RNAi can increase resistance to pod shattering. A 470 bp of the BnSHP1 cDNA sequence constructed in an RNAi-silencing vector was transferred to oilseed rape cv. SLM046. Molecular analysis of T2 transgenic plants by RT-PCR and Real-time PCR showed that expression of the BnSHP alleles was highly decreased in comparison with control plants. Morphologically, transgenic plants were normal and produced seeds at greenhouse conditions. At ripening, stage pods failed to shatter, and a finger pressure was needed for pod opening.
CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila.
Xue, Zhaoyu; Wu, Menghua; Wen, Kejia; Ren, Menda; Long, Li; Zhang, Xuedi; Gao, Guanjun
2014-09-05
Existing transgenic RNA interference (RNAi) methods greatly facilitate functional genome studies via controlled silencing of targeted mRNA in Drosophila. Although the RNAi approach is extremely powerful, concerns still linger about its low efficiency. Here, we developed a CRISPR/Cas9-mediated conditional mutagenesis system by combining tissue-specific expression of Cas9 driven by the Gal4/upstream activating site system with various ubiquitously expressed guide RNA transgenes to effectively inactivate gene expression in a temporally and spatially controlled manner. Furthermore, by including multiple guide RNAs in a transgenic vector to target a single gene, we achieved a high degree of gene mutagenesis in specific tissues. The CRISPR/Cas9-mediated conditional mutagenesis system provides a simple and effective tool for gene function analysis, and complements the existing RNAi approach. Copyright © 2014 Xue et al.
Suppression of RNA Interference by Adenovirus Virus-Associated RNA†
Andersson, M. Gunnar; Haasnoot, P. C. Joost; Xu, Ning; Berenjian, Saideh; Berkhout, Ben; Akusjärvi, Göran
2005-01-01
We show that human adenovirus inhibits RNA interference (RNAi) at late times of infection by suppressing the activity of two key enzyme systems involved, Dicer and RNA-induced silencing complex (RISC). To define the mechanisms by which adenovirus blocks RNAi, we used a panel of mutant adenoviruses defective in virus-associated (VA) RNA expression. The results show that the virus-associated RNAs, VA RNAI and VA RNAII, function as suppressors of RNAi by interfering with the activity of Dicer. The VA RNAs bind Dicer and function as competitive substrates squelching Dicer. Further, we show that VA RNAI and VA RNAII are processed by Dicer, both in vitro and during a lytic infection, and that the resulting short interfering RNAs (siRNAs) are incorporated into active RISC. Dicer cleaves the terminal stem of both VA RNAI and VA RNAII. However, whereas both strands of the VA RNAI-specific siRNA are incorporated into RISC, the 3′ strand of the VA RNAII-specific siRNA is selectively incorporated during a lytic infection. In summary, our work shows that adenovirus suppresses RNAi during a lytic infection and gives insight into the mechanisms of RNAi suppression by VA RNA. PMID:16014917
Considering RNAi experimental design in parasitic helminths.
Dalzell, Johnathan J; Warnock, Neil D; McVeigh, Paul; Marks, Nikki J; Mousley, Angela; Atkinson, Louise; Maule, Aaron G
2012-04-01
Almost a decade has passed since the first report of RNA interference (RNAi) in a parasitic helminth. Whilst much progress has been made with RNAi informing gene function studies in disparate nematode and flatworm parasites, substantial and seemingly prohibitive difficulties have been encountered in some species, hindering progress. An appraisal of current practices, trends and ideals of RNAi experimental design in parasitic helminths is both timely and necessary for a number of reasons: firstly, the increasing availability of parasitic helminth genome/transcriptome resources means there is a growing need for gene function tools such as RNAi; secondly, fundamental differences and unique challenges exist for parasite species which do not apply to model organisms; thirdly, the inherent variation in experimental design, and reported difficulties with reproducibility undermine confidence. Ideally, RNAi studies of gene function should adopt standardised experimental design to aid reproducibility, interpretation and comparative analyses. Although the huge variations in parasite biology and experimental endpoints make RNAi experimental design standardization difficult or impractical, we must strive to validate RNAi experimentation in helminth parasites. To aid this process we identify multiple approaches to RNAi experimental validation and highlight those which we deem to be critical for gene function studies in helminth parasites.
Kutys, Matthew L; Yamada, Kenneth M
2014-09-01
Rho-family GTPases govern distinct types of cell migration on different extracellular matrix proteins in tissue culture or three-dimensional (3D) matrices. We searched for mechanisms selectively regulating 3D cell migration in different matrix environments and discovered a form of Cdc42-RhoA crosstalk governing cell migration through a specific pair of GTPase activator and inhibitor molecules. We first identified βPix, a guanine nucleotide exchange factor (GEF), as a specific regulator of migration in 3D collagen using an affinity-precipitation-based GEF screen. Knockdown of βPix specifically blocks cell migration in fibrillar collagen microenvironments, leading to hyperactive cellular protrusion accompanied by increased collagen matrix contraction. Live FRET imaging and RNAi knockdown linked this βPix knockdown phenotype to loss of polarized Cdc42 but not Rac1 activity, accompanied by enhanced, de-localized RhoA activity. Mechanistically, collagen phospho-regulates βPix, leading to its association with srGAP1, a GTPase-activating protein (GAP), needed to suppress RhoA activity. Our results reveal a matrix-specific pathway controlling migration involving a GEF-GAP interaction of βPix with srGAP1 that is critical for maintaining suppressive crosstalk between Cdc42 and RhoA during 3D collagen migration.
In vivo RNAi: Today and Tomorrow
Perrimon, Norbert; Ni, Jian-Quan; Perkins, Lizabeth
2010-01-01
SUMMARY RNA interference (RNAi) provides a powerful reverse genetics approach to analyze gene functions both in tissue culture and in vivo. Because of its widespread applicability and effectiveness it has become an essential part of the tool box kits of model organisms such as Caenorhabditis elegans, Drosophila, and the mouse. In addition, the use of RNAi in animals in which genetic tools are either poorly developed or nonexistent enables a myriad of fundamental questions to be asked. Here, we review the methods and applications of in vivo RNAi to characterize gene functions in model organisms and discuss their impact to the study of developmental as well as evolutionary questions. Further, we discuss the applications of RNAi technologies to crop improvement, pest control and RNAi therapeutics, thus providing an appreciation of the potential for phenomenal applications of RNAi to agriculture and medicine. PMID:20534712
Current issues of RNAi therapeutics delivery and development.
Haussecker, D
2014-12-10
12 years following the discovery of the RNAi mechanism in Man, a number of RNAi therapeutics development candidates have emerged with profiles suggesting that they could become drugs of significant medical importance for diseases like TTR amyloidosis, HBV, solid cancers, and hemophilia. Despite this robust progress, the perception of RNAi therapeutics has been on a roller-coaster ride driven not only by science, but also regulatory trends, the stock markets, and Big Pharma business development decisions [1]. This presentation provides an update on the current state of RNAi therapeutics development with a particular focus on what RNAi delivery can achieve today and key challenges to be overcome to expand therapeutic opportunities. The delivery of RNAi triggers to disease-relevant cell types clearly represents the rate-limiting factor in broadly expanding the applicability of RNAi therapeutics. Today, with at least 3 delivery options (lipid nanoparticles/LNPs, GalNAc-siRNA conjugates, Dynamic PolyConjugates/DPCs) for which profound gene knockdowns have been demonstrated in non-human primates and in the clinic, RNAi therapeutics should in principle be able to address most diseases related to gene expression in the liver. Given the central importance of the liver in systemic physiology, this already represents a significant therapeutic and commercial opportunity rivaling that of e.g. monoclonal antibodies. Beyond the liver, there is a reason to believe that current RNAi therapeutics technologies can address a number of solid tumors (e.g. LNPs), diseases of the eye (e.g. self-delivering RNAi triggers) as well as diseases involving the respiratory epithelium (e.g. aerosolized LNPs), certain phagocytic cells (LNPs), hematopoietic stem cells and their progeny (lentiviral DNA-directed RNAi), vascular endothelial cells (cationic lipoplexes), and certain cell types in the kidney (self-delivering RNAi triggers, DPCs; Table 1). Despite this success, there has been a sense that the applications of RNAi therapeutics are rather limited. This is largely based on the observation that the biodistribution of RNAi formulations is typically more limited compared to small molecules and oral administration is not possible with current technologies. Similarly, the utility of a given RNAi formulation is limited to a few cell types and tissues at most and a universal delivery strategy should remain elusive for the foreseeable future. Therefore, to further expand on the therapeutic utility and patient convenience of RNAi, it is important to overcome a number of delivery-related technical and scientific challenges which will be discussed in this presentation. For systemic applications, these include the necessity for extended blood circulation times, vascular escape (probably the most rewarding inquiry currently), tissue penetration, cellular uptake, and escape into the cytoplasm. In terms of safety, it is important that these formulations do not accumulate in the body, do not cause excessive off-targeting due to 'chemical stickiness' (often useful for purposes of biodistribution), and overcome the physical/biological barriers in a controlled manner. The time for realizing the therapeutic potential of RNAi has come. At the same time, it is important to lay the foundations for the next leg of value creation by overcoming the challenges of delivering RNAi to new cell types. Based on results from exploratory research, the renewed interest in RNAi therapeutics and capital infusion, there is a reason to be optimistic that this can be achieved. Copyright © 2014 Elsevier B.V. All rights reserved.
Natural and Unanticipated Modifiers of RNAi Activity in Caenorhabditis elegans
Asad, Nadeem; Aw, Wen Yih; Timmons, Lisa
2012-01-01
Organisms used as model genomics systems are maintained as isogenic strains, yet evidence of sequence differences between independently maintained wild-type stocks has been substantiated by whole-genome resequencing data and strain-specific phenotypes. Sequence differences may arise from replication errors, transposon mobilization, meiotic gene conversion, or environmental or chemical assault on the genome. Low frequency alleles or mutations with modest effects on phenotypes can contribute to natural variation, and it has proven possible for such sequences to become fixed by adapted evolutionary enrichment and identified by resequencing. Our objective was to identify and analyze single locus genetic defects leading to RNAi resistance in isogenic strains of Caenorhabditis elegans. In so doing, we uncovered a mutation that arose de novo in an existing strain, which initially frustrated our phenotypic analysis. We also report experimental, environmental, and genetic conditions that can complicate phenotypic analysis of RNAi pathway defects. These observations highlight the potential for unanticipated mutations, coupled with genetic and environmental phenomena, to enhance or suppress the effects of known mutations and cause variation between wild-type strains. PMID:23209671
Monaghan, Michael; Browne, Shane; Schenke-Layland, Katja; Pandit, Abhay
2014-04-01
Directing appropriate extracellular matrix remodeling is a key aim of regenerative medicine strategies. Thus, antifibrotic interfering RNA (RNAi) therapy with exogenous microRNA (miR)-29B was proposed as a method to modulate extracellular matrix remodeling following cutaneous injury. It was hypothesized that delivery of miR-29B from a collagen scaffold will efficiently modulate the extracellular matrix remodeling response and reduce maladaptive remodeling such as aggressive deposition of collagen type I after injury. The release of RNA from the scaffold was assessed and its ability to silence collagen type I and collagen type III expression was evaluated in vitro. When primary fibroblasts were cultured with scaffolds doped with miR-29B, reduced levels of collagen type I and collagen type III mRNA expression were observed for up to 2 weeks of culture. When the scaffolds were applied to full thickness wounds in vivo, reduced wound contraction, improved collagen type III/I ratios and a significantly higher matrix metalloproteinase (MMP)-8: tissue inhibitor of metalloproteinase (TIMP)-1 ratio were detected when the scaffolds were functionalized with miR-29B. Furthermore, these effects were significantly influenced by the dose of miR-29B in the collagen scaffold (0.5 versus 5 μg). This study shows a potential of combining exogenous miRs with collagen scaffolds to improve extracellular matrix remodeling following injury.
Pan, Cong; Fang, Dong; Xu, Guangrui; Liang, Jian; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing
2014-01-01
Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium. PMID:24302723
Friedrich, Michael; Meier, Doreen; Schuster, Isabelle; Nellen, Wolfgang
2015-01-01
We have previously shown that the most abundant Dictyostelium discoideum retroelement DIRS-1 is suppressed by RNAi mechanisms. Here we provide evidence that both inverted terminal repeats have strong promoter activity and that bidirectional expression apparently generates a substrate for Dicer. A cassette containing the inverted terminal repeats and a fragment of a gene of interest was sufficient to activate the RNAi response, resulting in the generation of ~21 nt siRNAs, a reduction of mRNA and protein expression of the respective endogene. Surprisingly, no transitivity was observed on the endogene. This was in contrast to previous observations, where endogenous siRNAs caused spreading on an artificial transgene. Knock-down was successful on seven target genes that we examined. In three cases a phenotypic analysis proved the efficiency of the approach. One of the target genes was apparently essential because no knock-out could be obtained; the RNAi mediated knock-down, however, resulted in a very slow growing culture indicating a still viable reduction of gene expression. ADVANTAGES OF THE DIRS-1–RNAI SYSTEM: The knock-down system required a short DNA fragment (~400 bp) of the target gene as an initial trigger. Further siRNAs were generated by RdRPs since we have shown some siRNAs with a 5'-triphosphate group. Extrachromosomal vectors facilitate the procedure and allowed for molecular and phenotypic analysis within one week. The system provides an efficient and rapid method to reduce protein levels including those of essential genes.
Effects of HBV Genetic Variability on RNAi Strategies
Panjaworayan, Nattanan; Brown, Chris M.
2011-01-01
RNAi strategies present promising antiviral strategies against HBV. RNAi strategies require base pairing between short RNAi effectors and targets in the HBV pregenome or other RNAs. Natural variation in HBV genotypes, quasispecies variation, or mutations selected by the RNAi strategy could potentially make these strategies less effective. However, current and proposed antiviral strategies against HBV are being, or could be, designed to avoid this. This would involve simultaneous targeting of multiple regions of the genome, or regions in which variation or mutation is not tolerated. RNAi strategies against single genotypes or against variable regions of the genome would need to have significant other advantages to be part of robust therapies. PMID:21760994
Ran, Ruixue; Li, Tianyu; Liu, Xinxin; Ni, Hejia; Li, Wenbin; Meng, Fanli
2018-01-01
RNA interference (RNAi) technology may be useful for developing new crop protection strategies against the soybean pod borer (SPB; Leguminivora glycinivorella ), which is a critical soybean pest in northeastern Asia. Immune-related genes have been recently identified as potential RNAi targets for controlling insects. However, little is known about these genes or mechanisms underlying their expression in the SPB. In this study, we completed a transcriptome-wide analysis of SPB immune-related genes. We identified 41 genes associated with SPB microbial recognition proteins, immune-related effectors or signalling molecules in immune response pathways (e.g., Toll and immune deficiency pathways). Eleven of these genes were selected for a double-stranded RNA artificial feeding assay. The down-regulated expression levels of LgToll-5-1a and LgPGRP-LB2a resulted in relatively high larval mortality rates and abnormal development. Our data represent a comprehensive genetic resource for immune-related SPB genes, and may contribute to the elucidation of the mechanism regulating innate immunity in Lepidoptera species. Furthermore, two immune-related SPB genes were identified as potential RNAi targets, which may be used in the development of RNAi-mediated SPB control methods.
Ran, Ruixue; Li, Tianyu; Liu, Xinxin; Ni, Hejia; Li, Wenbin
2018-01-01
RNA interference (RNAi) technology may be useful for developing new crop protection strategies against the soybean pod borer (SPB; Leguminivora glycinivorella), which is a critical soybean pest in northeastern Asia. Immune-related genes have been recently identified as potential RNAi targets for controlling insects. However, little is known about these genes or mechanisms underlying their expression in the SPB. In this study, we completed a transcriptome-wide analysis of SPB immune-related genes. We identified 41 genes associated with SPB microbial recognition proteins, immune-related effectors or signalling molecules in immune response pathways (e.g., Toll and immune deficiency pathways). Eleven of these genes were selected for a double-stranded RNA artificial feeding assay. The down-regulated expression levels of LgToll-5-1a and LgPGRP-LB2a resulted in relatively high larval mortality rates and abnormal development. Our data represent a comprehensive genetic resource for immune-related SPB genes, and may contribute to the elucidation of the mechanism regulating innate immunity in Lepidoptera species. Furthermore, two immune-related SPB genes were identified as potential RNAi targets, which may be used in the development of RNAi-mediated SPB control methods. PMID:29910977
RDE-2 interacts with MUT-7 to mediate RNA interference in Caenorhabditis elegans
Tops, Bastiaan B. J.; Tabara, Hiroaki; Sijen, Titia; Simmer, Femke; Mello, Craig C.; Plasterk, Ronald H. A.; Ketting, René F.
2005-01-01
In Caenorhabditis elegans, the activity of transposable elements is repressed in the germline. One of the mechanisms involved in this repression is RNA interference (RNAi), a process in which dsRNA targets cleavage of mRNAs in a sequence-specific manner. The first gene found to be involved in RNAi and transposon silencing in C.elegans is mut-7, a gene encoding a putative exoribonuclease. Here, we show that the MUT-7 protein resides in complexes of ∼250 kDa in the nucleus and in the cytosol. In addition, we find that upon triggering of RNAi the cytosolic MUT-7 complex increases in size. This increase is independent of the presence of target RNA, but does depend on the presence of RDE-1 and RDE-4, two proteins involved in small interfering RNA (siRNA) production. Finally, using a yeast two-hybrid screen, we identified RDE-2/MUT-8 as one of the other components of this complex. This protein is encoded by the rde-2/mut-8 locus, previously implicated in RNAi and transposon silencing. Using genetic complementation analysis, we show that the interaction between these two proteins is required for efficient RNAi in vivo. Together these data support a role for the MUT-7/RDE-2 complex downstream of siRNA formation, but upstream of siRNA mediated target RNA recognition, possibly indicating a role in the siRNA amplification step. PMID:15653635
Targeting the undruggable: Advances and obstacles in current RNAi therapy
Wu, Sherry Y.; Lopez-Berestein, Gabriel; Calin, George A.; Sood, Anil K.
2014-01-01
RNA interference (RNAi) therapeutics represents a rapidly emerging platform for personalized cancer treatment. Recent advances in delivery, target selection, and safety of RNAi cancer therapy provide unprecedented opportunities for clinical translation. Here, we discuss these advances and present strategies for making RNAi-based therapy a viable part of cancer management. PMID:24920658
Zotti, M J; Smagghe, G
2015-06-01
The time has passed for us to wonder whether RNA interference (RNAi) effectively controls pest insects or protects beneficial insects from diseases. The RNAi era in insect science began with studies of gene function and genetics that paved the way for the development of novel and highly specific approaches for the management of pest insects and, more recently, for the treatment and prevention of diseases in beneficial insects. The slight differences in components of RNAi pathways are sufficient to provide a high degree of variation in responsiveness among insects. The current framework to assess the negative effects of genetically modified (GM) plants on human health is adequate for RNAi-based GM plants. Because of the mode of action of RNAi and the lack of genomic data for most exposed non-target organisms, it becomes difficult to determine the environmental risks posed by RNAi-based technologies and the benefits provided for the protection of crops. A better understanding of the mechanisms that determine the variability in the sensitivity of insects would accelerate the worldwide release of commercial RNAi-based approaches.
Barnard, Annette-Christi; Nijhof, Ard M.; Fick, Wilma; Stutzer, Christian; Maritz-Olivier, Christine
2012-01-01
The availability of genome sequencing data in combination with knowledge of expressed genes via transcriptome and proteome data has greatly advanced our understanding of arthropod vectors of disease. Not only have we gained insight into vector biology, but also into their respective vector-pathogen interactions. By combining the strengths of postgenomic databases and reverse genetic approaches such as RNAi, the numbers of available drug and vaccine targets, as well as number of transgenes for subsequent transgenic or paratransgenic approaches, have expanded. These are now paving the way for in-field control strategies of vectors and their pathogens. Basic scientific questions, such as understanding the basic components of the vector RNAi machinery, is vital, as this allows for the transfer of basic RNAi machinery components into RNAi-deficient vectors, thereby expanding the genetic toolbox of these RNAi-deficient vectors and pathogens. In this review, we focus on the current knowledge of arthropod vector RNAi machinery and the impact of RNAi on understanding vector biology and vector-pathogen interactions for which vector genomic data is available on VectorBase. PMID:24705082
Mishra, Bhawana; Sangwan, Rajender Singh; Asha; Jadaun, Jyoti Singh; Sangwan, Neelam S.
2016-01-01
Withania somnifera Dunal, is one of the most commonly used medicinal plant in Ayurvedic and indigenous medicine traditionally owing to its therapeutic potential, because of major chemical constituents, withanolides. Withanolide biosynthesis requires the activities of several enzymes in vivo. Cycloartenol synthase (CAS) is an important enzyme in the withanolide biosynthetic pathway, catalyzing cyclization of 2, 3 oxidosqualene into cycloartenol. In the present study, we have cloned full-length WsCAS from Withania somnifera by homology-based PCR method. For gene function investigation, we constructed three RNAi gene-silencing constructs in backbone of RNAi vector pGSA and a full-length over-expression construct. These constructs were transformed in Agrobacterium strain GV3101 for plant transformation in W. somnifera. Molecular and metabolite analysis was performed in putative Withania transformants. The PCR and Southern blot results showed the genomic integration of these RNAi and overexpression construct(s) in Withania genome. The qRT-PCR analysis showed that the expression of WsCAS gene was considerably downregulated in stable transgenic silenced Withania lines compared with the non-transformed control and HPLC analysis showed that withanolide content was greatly reduced in silenced lines. Transgenic plants over expressing CAS gene displayed enhanced level of CAS transcript and withanolide content compared to non-transformed controls. This work is the first full proof report of functional validation of any metabolic pathway gene in W. somnifera at whole plant level as per our knowledge and it will be further useful to understand the regulatory role of different genes involved in the biosynthesis of withanolides. PMID:26919744
Adapting rice anther culture to gene transformation and RNA interference.
Chen, Caiyan; Xiao, Han; Zhang, Wenli; Wang, Aiju; Xia, Zhihui; Li, Xiaobing; Zhai, Wenxue; Cheng, Zhukuan; Zhu, Lihuang
2006-10-01
Anther culture offers a rapid method of generating homozygous lines for breeding program and genetic analysis. To produce homozygous transgenic lines of rice (Oryza sativa L.) in one step, we developed an efficient protocol of anther-callus-based transformation mediated by Agrobacterium after optimizing several factors influencing efficient transformation, including callus induction and Agrobacterium density for co-cultivation. Using this protocol, we obtained 145 independent green transformants from five cultivars of japonica rice by transformation with a binary vector pCXK1301 bearing the rice gene, Xa21 for resistance to bacterial blight, of which 140 were further confirmed by PCR and Southern hybridization analysis, including haploids (32.1%), diploids (62.1%) and mixoploids (7.5%). Fifteen diploids were found to be doubled haploids, which accounted for 10.7% of the total positive lines. Finally, by including 28 from colchicine induced or spontaneous diploidization of haploids later after transformation, a total of 43 doubled haploids (30.7%) of Xa21 transgenic lines were obtained. We also generated two RNAi transgenic haploids of the rice OsMADS2 gene, a putative redundant gene of OsMADS4 based on their sequence similarity, to investigate its possible roles in rice flower development by this method. Flowers from the two OsMADS2 RNAi transgenic haploids displayed obvious homeotic alternations, in which lodicules were transformed into palea/lemma-like tissues, whereas identities of other floral organs were maintained. The phenotypic alternations were proved to result from specific transcriptional suppression of OsMADS2 gene by the introduced RNAi transgene. The results confirmed that OsMADS2 is involved in lodicule development of rice flower and functionally redundant with OsMADS4 gene. Our results demonstrated that rice anther culture could be adapted to gene transformation and RNAi analysis in rice.
Differential effects of RNAi treatments on field populations of the western corn rootworm.
Chu, Chia-Ching; Sun, Weilin; Spencer, Joseph L; Pittendrigh, Barry R; Seufferheld, Manfredo J
2014-03-01
RNA interference (RNAi) mediated crop protection against insect pests is a technology that is greatly anticipated by the academic and industrial pest control communities. Prior to commercialization, factors influencing the potential for evolution of insect resistance to RNAi should be evaluated. While mutations in genes encoding the RNAi machinery or the sequences targeted for interference may serve as a prominent mechanism of resistance evolution, differential effects of RNAi on target pests may also facilitate such evolution. However, to date, little is known about how variation of field insect populations could influence the effectiveness of RNAi treatments. To approach this question, we evaluated the effects of RNAi treatments on adults of three western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte) populations exhibiting different levels of gut cysteine protease activity, tolerance of soybean herbivory, and immune gene expression; two populations were collected from crop rotation-resistant (RR) problem areas and one from a location where RR was not observed (wild type; WT). Our results demonstrated that RNAi targeting DvRS5 (a highly expressed cysteine protease gene) reduced gut cysteine protease activity in all three WCR populations. However, the proportion of the cysteine protease activity that was inhibited varied across populations. When WCR adults were treated with double-stranded RNA of an immune gene att1, different changes in survival among WT and RR populations on soybean diets occurred. Notably, for both genes, the sequences targeted for RNAi were the same across all populations examined. These findings indicate that the effectiveness of RNAi treatments could vary among field populations depending on their physiological and genetic backgrounds and that the consistency of an RNAi trait's effectiveness on phenotypically different populations should be considered or tested prior to wide deployment. Also, genes that are potentially subjected to differential selection in the field should be avoided for RNAi-based pest control. Published by Elsevier Inc.
Bacterial delivery of RNAi effectors: transkingdom RNAi.
Lage, Hermann; Krühn, Andrea
2010-08-18
RNA interference (RNAi) represents a high effective mechanism for specific inhibition of mRNA expression. Besides its potential as a powerful laboratory tool, the RNAi pathway appears to be promising for therapeutic utilization. For development of RNA interference (RNAi)-based therapies, delivery of RNAi-mediating agents to target cells is one of the major obstacles. A novel strategy to overcome this hurdle is transkingdom RNAi (tkRNAi). This technology uses non-pathogenic bacteria, e.g. Escherichia coli, to produce and deliver therapeutic short hairpin RNA (shRNA) into target cells to induce RNAi. A first-generation tkRNAi-mediating vector, TRIP, contains the bacteriophage T7 promoter for expression regulation of a therapeutic shRNA of interest. Furthermore, TRIP has the Inv locus from Yersinia pseudotuberculosis that encodes invasin, which permits natural noninvasive bacteria to enter beta1-integrin-positive mammalian cells and the HlyA gene from Listeria monocytogenes, which produces listeriolysin O. This enzyme allows the therapeutic shRNA to escape from entry vesicles within the cytoplasm of the target cell. TRIP constructs are introduced into a competent non-pathogenic Escherichia coli strain, which encodes T7 RNA polymerase necessary for the T7 promoter-driven synthesis of shRNAs. A well-characterized cancer-associated target molecule for different RNAi strategies is ABCB1 (MDR1/P-glycoprotein, MDR1/P-gp). This ABC-transporter acts as a drug extrusion pump and mediates the "classical" ABCB1-mediated multidrug resistance (MDR) phenotype of human cancer cells which is characterized by a specific cross resistance pattern. Different ABCB1-expressing MDR cancer cells were treated with anti-ABCB1 shRNA expression vector bearing E. coli. This procedure resulted in activation of the RNAi pathways within the cancer cells and a considerable down regulation of the ABCB1 encoding mRNA as well as the corresponding drug extrusion pump. Accordingly, drug accumulation was enhanced in the pristine drug-resistant cancer cells and the MDR phenotype was reversed. By means of this model the data provide the proof-of-concept that tkRNAi is suitable for modulation of cancer-associated factors, e.g. ABCB1, in human cancer cells.
Photoinduced RNA interference.
Matsushita-Ishiodori, Yuka; Ohtsuki, Takashi
2012-07-17
Because RNA interference (RNAi) can be applied to any gene, this technique has been widely used for studying gene functions. In addition, many researchers are attempting to use RNAi technology in RNAi-based therapies. However, several challenging and controversial issues have arisen during the widespread application of RNAi including target gene specificity, target cell specificity, and spatiotemporal control of gene silencing. To address these issues, several groups have utilized photochemistry to control the RNA release, both spatially and temporally. In this Account, we focus on recent studies using photocleavable protecting groups, photosensitizers, Hand gold nanoparticles for photoinduced RNAi. In 2005 the first report of photoinduced RNAi used a caged short interfering RNA (siRNA), an siRNA carrying a photocleavable protecting group. Caging groups block the bioactivities of target molecules, but allow for complete recovery of these functions via photoactivation. However, some RNAi activity can occur in these caged siRNAs, so it will be necessary to decrease this "leakage" and raise the RNAi activity restored after irradiation. This technique also uses UV light around 350 nm, which is cytotoxic, but in the near future we expect that it will be possible to use visible and near-infrared light We also examine the application of photochemical internalization (PCI) to RNAi technology, which involves a combination of photosensitizers and light. Instead of inducing RNAi using light, the strategy behind this method was to enhance RNAi using RNA carriers. Many wellknown RNA carriers deliver siRNAs into cells by endocytosis. The siRNAs are trapped in endocytic vesicles and have to be released into the cytoplasm in order to express their activity. To achieve the endosomal escape of siRNAs, PCI technology employed photosensitizers to generate light-dependent reactive oxygen species (ROS) that disrupted the endocytic vesicles. In most studies, RNAi-mediated knockdown of the target gene was detected even without PCI. Recently, a polymer capable of trapping the siRNA in endocytic vesicles controlled RNAi almost entirely by light. CLIP-RNAi uses photosensitizing carrier proteins that can be activated over a wide range of visible light wavelengths. With this method RNA carrier/siRNA complexes are completely trapped within endosomes, and RNAi is controlled strictly by light. Such precise, light-dependent control will open up new possibilities for cellular and molecular biology and therapy. Most recently, gold nanoparticles (AuNPs) conjugated to siRNA have provided temporal and spatial control of RNAi. The light-dependent melting of AuNPs accompanied by a shape transformation induces the release of thiolated siRNAs from AuNPs. In this method, the unique optical properties of the AuNP enable deep penetration of the excitation light into tissues at nearinfrared wavelengths. The development of photoinduced RNAi technology will lead to novel insights into gene functions and selective drug delivery, and many other scientific fields will continue to influence its progress.
Conditional RNAi: towards a silent gene therapy.
Lee, Sang-Kyung; Kumar, Priti
2009-07-02
RNA interference (RNAi) has the potential to permit the downregulation of virtually any gene. While transgenic RNAi enables stable propagation of the resulting phenotype to progeny, the dominant nature of RNAi limits its use to applications where the continued suppression of gene expression does not disturb normal cell functioning. This is of particular importance when the target gene product is essential for cell survival, development or differentiation. It is therefore desirable that knockdown be externally regulatable. This review is aimed at providing an overview of the approaches for conditional RNAi in mammalian systems, with a special mention of studies employing these approaches to target therapeutically/biologically relevant molecules, their advantages and disadvantages, and a pointer towards approaches best suited for RNAi-based gene therapy.
Sykes, Steven E.
2013-01-01
The dihydrolipoyl succinyltransferase (E2) of the multisubunit α-ketoglutarate dehydrogenase complex (α-KD) is an essential Krebs cycle enzyme commonly found in the matrices of mitochondria. African trypanosomes developmentally regulate mitochondrial carbohydrate metabolism and lack a functional Krebs cycle in the bloodstream of mammals. We found that despite the absence of a functional α-KD, bloodstream form (BF) trypanosomes express α-KDE2, which localized to the mitochondrial matrix and inner membrane. Furthermore, α-KDE2 fractionated with the mitochondrial genome, the kinetoplast DNA (kDNA), in a complex with the flagellum. A role for α-KDE2 in kDNA maintenance was revealed in α-KDE2 RNA interference (RNAi) knockdowns. Following RNAi induction, bloodstream trypanosomes showed pronounced growth reduction and often failed to equally distribute kDNA to daughter cells, resulting in accumulation of cells devoid of kDNA (dyskinetoplastic) or containing two kinetoplasts. Dyskinetoplastic trypanosomes lacked mitochondrial membrane potential and contained mitochondria of substantially reduced volume. These results indicate that α-KDE2 is bifunctional, both as a metabolic enzyme and as a mitochondrial inheritance factor necessary for the distribution of kDNA networks to daughter cells at cytokinesis. PMID:23125353
Sykes, Steven E; Hajduk, Stephen L
2013-01-01
The dihydrolipoyl succinyltransferase (E2) of the multisubunit α-ketoglutarate dehydrogenase complex (α-KD) is an essential Krebs cycle enzyme commonly found in the matrices of mitochondria. African trypanosomes developmentally regulate mitochondrial carbohydrate metabolism and lack a functional Krebs cycle in the bloodstream of mammals. We found that despite the absence of a functional α-KD, bloodstream form (BF) trypanosomes express α-KDE2, which localized to the mitochondrial matrix and inner membrane. Furthermore, α-KDE2 fractionated with the mitochondrial genome, the kinetoplast DNA (kDNA), in a complex with the flagellum. A role for α-KDE2 in kDNA maintenance was revealed in α-KDE2 RNA interference (RNAi) knockdowns. Following RNAi induction, bloodstream trypanosomes showed pronounced growth reduction and often failed to equally distribute kDNA to daughter cells, resulting in accumulation of cells devoid of kDNA (dyskinetoplastic) or containing two kinetoplasts. Dyskinetoplastic trypanosomes lacked mitochondrial membrane potential and contained mitochondria of substantially reduced volume. These results indicate that α-KDE2 is bifunctional, both as a metabolic enzyme and as a mitochondrial inheritance factor necessary for the distribution of kDNA networks to daughter cells at cytokinesis.
The WRKY transcription factor OsWRKY78 regulates stem elongation and seed development in rice.
Zhang, Chang-Quan; Xu, Yong; Lu, Yan; Yu, Heng-Xiu; Gu, Ming-Hong; Liu, Qiao-Quan
2011-09-01
WRKY proteins are a large super family of transcriptional regulators primarily involved in various plant physiological programs. In present study, the expression profile and putative function of the WRKY transcriptional factor, WRKY78, in rice were identified. Real-time RT-PCR analysis showed that OsWRKY78 transcript was most abundant in elongating stems though its expression was detected in all the tested organs. The expression profiles were further confirmed by using promoter-GUS analysis in transgenic rice. OsWRKY78::GFP fusion gene transient expression analysis demonstrated that OsWRKY78 targeted to the nuclei of onion epidermal cell. Furthermore, OsWRKY78 RNAi and overexpression transgenic rice lines were generated. Transgenic plants with OsWRKY78 overexpression exhibited a phenotype identical to the wild type, whereas inhibition of OsWRKY78 expression resulted in a semi-dwarf and small kernel phenotype due to reduced cell length in transgenic plants. In addition, a T-DNA insertion mutant line oswrky78 was identified and a phenotype similar to that of RNAi plants was also observed. Grain quality analysis data showed no significant differences, with the exception of minor changes in endosperm starch crystal structure in RNAi plants. Taken together, these results suggest that OsWRKY78 may acts as a stem elongation and seed development regulator in rice.
Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics
Lee, Byoungkoo; Konen, Jessica; Wilkinson, Scott; Marcus, Adam I.; Jiang, Yi
2017-01-01
Invasive cancer cells interact with the surrounding extracellular matrix (ECM), remodeling ECM fiber network structure by condensing, degrading, and aligning these fibers. We developed a novel local alignment vector analysis method to quantitatively measure collagen fiber alignment as a vector field using Circular Statistics. This method was applied to human non-small cell lung carcinoma (NSCLC) cell lines, embedded as spheroids in a collagen gel. Collagen remodeling was monitored using second harmonic generation imaging under normal conditions and when the LKB1-MARK1 pathway was disrupted through RNAi-based approaches. The results showed that inhibiting LKB1 or MARK1 in NSCLC increases the collagen fiber alignment and captures outward alignment vectors from the tumor spheroid, corresponding to high invasiveness of LKB1 mutant cancer cells. With time-lapse imaging of ECM micro-fiber morphology, the local alignment vector can measure the dynamic signature of invasive cancer cell activity and cell-migration-induced ECM and collagen remodeling and realigning dynamics. PMID:28045069
Delivery of RNAi Therapeutics to the Airways-From Bench to Bedside.
Qiu, Yingshan; Lam, Jenny K W; Leung, Susan W S; Liang, Wanling
2016-09-20
RNA interference (RNAi) is a potent and specific post-transcriptional gene silencing process. Since its discovery, tremendous efforts have been made to translate RNAi technology into therapeutic applications for the treatment of different human diseases including respiratory diseases, by manipulating the expression of disease-associated gene(s). Similar to other nucleic acid-based therapeutics, the major hurdle of RNAi therapy is delivery. Pulmonary delivery is a promising approach of delivering RNAi therapeutics directly to the airways for treating local conditions and minimizing systemic side effects. It is a non-invasive route of administration that is generally well accepted by patients. However, pulmonary drug delivery is a challenge as the lungs pose a series of anatomical, physiological and immunological barriers to drug delivery. Understanding these barriers is essential for the development an effective RNA delivery system. In this review, the different barriers to pulmonary drug delivery are introduced. The potential of RNAi molecules as new class of therapeutics, and the latest preclinical and clinical studies of using RNAi therapeutics in different respiratory conditions are discussed in details. We hope this review can provide some useful insights for moving inhaled RNAi therapeutics from bench to bedside.
Stacking up CRISPR against RNAi for therapeutic gene inhibition.
Haussecker, Dirk
2016-09-01
Both RNA interference (RNAi) and clustered regularly-interspaced short palindromic repeats (CRISPR) technologies allow for the sequence-specific inhibition of gene function and therefore have the potential to be used as therapeutic modalities. By judging the current public and scientific journal interest, it would seem that CRISPR, by enabling clean, durable knockouts, will dominate therapeutic gene inhibition, also at the expense of RNAi. This review aims to look behind prevailing sentiments and to more clearly define the likely scope of the therapeutic applications of the more recently developed CRISPR technology and its relative strengths and weaknesses with regards to RNAi. It is found that largely because of their broadly overlapping delivery constraints, while CRISPR presents formidable competition for DNA-directed RNAi strategies, its impact on RNAi therapeutics triggered by synthetic oligonucleotides will likely be more moderate. Instead, RNAi and genome editing, and in particular CRISPR, are poised to jointly promote a further shift toward sequence-targeted precision medicines. © 2016 Federation of European Biochemical Societies.
Jang, Mihue; Han, Hee Dong; Ahn, Hyung Jun
2016-01-01
Incorporating multiple copies of two RNAi molecules into a single nanostructure in a precisely controlled manner can provide an efficient delivery tool to regulate multiple gene pathways in the relation of mutual dependence. Here, we show a RNA nanotechnology platform for a two-in-one RNAi delivery system to contain polymeric two RNAi molecules within the same RNA nanoparticles, without the aid of polyelectrolyte condensation reagents. As our RNA nanoparticles lead to the simultaneous silencing of two targeted mRNAs, of which biological functions are highly interdependent, combination therapy for multi-drug resistance cancer cells, which was studied as a specific application of our two-in-one RNAi delivery system, demonstrates the efficient synergistic effects for cancer therapy. Therefore, this RNA nanoparticles approach has an efficient tool for a simultaneous co-delivery of RNAi molecules in the RNAi-based biomedical applications, and our current studies present an efficient strategy to overcome multi-drug resistance caused by malfunction of genes in chemotherapy. PMID:27562435
Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study
2010-01-01
Background Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. Results An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs) have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. Conclusions The knowledge gained from our study provides useful insights on how to analyze various cross-platform RNAi data for uncovering of their complex mechanism. PMID:20380733
Multi-task learning for cross-platform siRNA efficacy prediction: an in-silico study.
Liu, Qi; Xu, Qian; Zheng, Vincent W; Xue, Hong; Cao, Zhiwei; Yang, Qiang
2010-04-10
Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs. An elegant multi-task learning paradigm for cross-platform siRNA efficacy prediction is proposed. Experimental studies were performed on a large dataset of siRNA sequences which encompass several RNAi experiments recently conducted by different research groups. By using our multi-task learning method, the synergy among different experiments is exploited and an efficient multi-task predictor for siRNA efficacy prediction is obtained. The 19 most popular biological features for siRNA according to their jointly importance in multi-task learning were ranked. Furthermore, the hypothesis is validated out that the siRNA binding efficacy on different messenger RNAs(mRNAs) have different conditional distribution, thus the multi-task learning can be conducted by viewing tasks at an "mRNA"-level rather than at the "experiment"-level. Such distribution diversity derived from siRNAs bound to different mRNAs help indicate that the properties of target mRNA have important implications on the siRNA binding efficacy. The knowledge gained from our study provides useful insights on how to analyze various cross-platform RNAi data for uncovering of their complex mechanism.
Fassnacht, Christina; Tocchini, Cristina; Kumari, Pooja; Gaidatzis, Dimos; Stadler, Michael B; Ciosk, Rafal
2018-03-01
Endogenous RNAi (endoRNAi) is a conserved mechanism for fine-tuning gene expression. In the nematode Caenorhabditis elegans, several endoRNAi pathways are required for the successful development of reproductive cells. The CSR-1 endoRNAi pathway promotes germ cell development, primarily by facilitating the expression of germline genes. In this study, we report a novel function for the CSR-1 pathway in preventing premature activation of embryonic transcription in the developing oocytes, which is accompanied by a general Pol II activation. This CSR-1 function requires its RNase activity, suggesting that, by controlling the levels of maternal mRNAs, CSR-1-dependent endoRNAi contributes to an orderly reprogramming of transcription during the oocyte-to-embryo transition.
Tocchini, Cristina; Kumari, Pooja; Gaidatzis, Dimos
2018-01-01
Endogenous RNAi (endoRNAi) is a conserved mechanism for fine-tuning gene expression. In the nematode Caenorhabditis elegans, several endoRNAi pathways are required for the successful development of reproductive cells. The CSR-1 endoRNAi pathway promotes germ cell development, primarily by facilitating the expression of germline genes. In this study, we report a novel function for the CSR-1 pathway in preventing premature activation of embryonic transcription in the developing oocytes, which is accompanied by a general Pol II activation. This CSR-1 function requires its RNase activity, suggesting that, by controlling the levels of maternal mRNAs, CSR-1-dependent endoRNAi contributes to an orderly reprogramming of transcription during the oocyte-to-embryo transition. PMID:29579041
RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella
Fabrick, Jeffrey A.; Kanost, Michael R.; Baker, James E.
2004-01-01
Gene silencing through the introduction of double-stranded RNA (RNA interference, RNAi) provides a powerful tool for the elucidation of gene function in many systems, including those where genomics and proteomics are incomplete. The use of RNAi technology for gene silencing in Lepidoptera has lacked significant attention compared to other systems. To demonstrate that RNAi can be utilized in the lepidopteran, Plodia interpunctella, we cloned a cDNA for tryptophan oxygenase, and showed that silencing of tryptophan oxygenase through RNAi during embryonic development resulted in loss of eye-color pigmentation. The complete amino acid sequence of Plodia tryptophan oxygenase can be accessed through NCBI Protein Database under NCBI Accession # AY427951. Abbreviation RNAi RNA interference PCR polymerase chain reaction RT-PCR reverse transcription-PCR PMID:15861231
Flavivirus RNAi suppression: decoding non-coding RNA.
Pijlman, Gorben P
2014-08-01
Flaviviruses are important human pathogens that are transmitted by invertebrate vectors, mostly mosquitoes and ticks. During replication in their vector, flaviviruses are subject to a potent innate immune response known as antiviral RNA interference (RNAi). This defense mechanism is associated with the production of small interfering (si)RNA that lead to degradation of viral RNA. To what extent flaviviruses would benefit from counteracting antiviral RNAi is subject of debate. Here, the experimental evidence to suggest the existence of flavivirus RNAi suppressors is discussed. I will highlight the putative role of non-coding, subgenomic flavivirus RNA in suppression of RNAi in insect and mammalian cells. Novel insights from ongoing research will reveal how arthropod-borne viruses modulate innate immunity including antiviral RNAi. Copyright © 2014 Elsevier B.V. All rights reserved.
OfftargetFinder: a web tool for species-specific RNAi design.
Good, R T; Varghese, T; Golz, J F; Russell, D A; Papanicolaou, A; Edwards, O; Robin, C
2016-04-15
RNA interference (RNAi) technology is being developed as a weapon for pest insect control. To maximize the specificity that such an approach affords we have developed a bioinformatic web tool that searches the ever-growing arthropod transcriptome databases so that pest-specific RNAi sequences can be identified. This will help technology developers finesse the design of RNAi sequences and suggests which non-target species should be assessed in the risk assessment process. http://rnai.specifly.org crobin@unimelb.edu.au. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
RNAi Screening in Spodoptera frugiperda.
Ghosh, Subhanita; Singh, Gatikrushna; Sachdev, Bindiya; Kumar, Ajit; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K
2016-01-01
RNA interference is a potent and precise reverse genetic approach to carryout large-scale functional genomic studies in a given organism. During the past decade, RNAi has also emerged as an important investigative tool to understand the process of viral pathogenesis. Our laboratory has successfully generated transgenic reporter and RNAi sensor line of Spodoptera frugiperda (Sf21) cells and developed a reversal of silencing assay via siRNA or shRNA guided screening to investigate RNAi factors or viral pathogenic factors with extraordinary fidelity. Here we describe empirical approaches and conceptual understanding to execute successful RNAi screening in Spodoptera frugiperda 21-cell line.
RNAi in the mouse: rapid and affordable gene function studies in a vertebrate system.
Rytlewski, Julie A; Beronja, Slobodan
2015-01-01
The addition of RNA interference (RNAi) to the mammalian genomic toolbox has significantly expanded our ability to use higher-order models in studies of development and disease. The mouse, in particular, has benefited most from RNAi technology. Unique combinations of RNAi vectors and delivery methods now offer a broad platform for gene silencing in transgenic mice, enabling the design of new physiologically relevant models. The era of RNAi mice has accelerated the pace of genetic study and made high-throughput screens not only feasible but also affordable. © 2014 Wiley Periodicals, Inc.
RNAi as a Routine Route Toward Breast Cancer Therapy
2013-09-01
Award Number: W81XWH-08-1-0572 TITLE: RNAi as a Routine Route Toward Breast Cancer Therapy...To) 1 SEP 2012 - 31 AUG 2013 4. TITLE AND SUBTITLE RNAi as a Routine Route Toward Breast Cancer Therapy 5a. CONTRACT NUMBER...generation RNAi library and made that available to the breast cancer community. This resource has nearly 75,000 independent, sequence verified clones
Nabzdyk, Christoph S; Lancero, Hope; Nguyen, Khanh P; Salek, Sherveen; Conte, Michael S
2011-11-01
Survivin (SVV) is a multifunctional protein that has been implicated in the development of neointimal hyperplasia. Nuclear SVV is essential for mitosis, whereas in mitochondria SVV has a cytoprotective function. Here, we investigated the effects of RNA interference (RNAi)-mediated SVV knockdown on cell cycle kinetics, apoptosis, migration, and gene expression in primary cultured vascular smooth muscle cells (VSMCs) from the human saphenous vein. Primary Human VSMCs were obtained from saphenous veins and cultured under standard conditions. SVV knockdown was achieved by either small interfering RNA or lentiviral transduction of short hairpin RNA, reducing SVV gene expression by quantitative PCR (>75%, P < 0.01) without a loss of cell viability. Subcellular fractionation revealed that RNAi treatment effectively targeted the nuclear SVV pool, whereas the larger mitochondrial pool was much less sensitive to transient knockdown. Both p53 and p27 protein levels were notably increased. SVV RNAi treatment significantly blocked VSMC proliferation in response to serum and PDGF-AB, arresting VSMC growth. Cell cycle analysis revealed an increased G(2)/M fraction consistent with a mitotic defect; 4',6-diamidino-2-phenylindole staining confirmed an increased frequency of polyploid and abnormal nuclei. In a transwell assay, SVV knockdown reduced migration to PDGF-AB, and actin-phalloidin staining revealed disorganized actin filaments and polygonal cell shape. However, apoptosis (DNA content and annexin V flow cytometry) was not directly induced by SVV RNAi, and sensitivity to apoptotic agonists (e.g., staurosporine and cytokines) was unchanged. In conclusion, RNAi-mediated SVV knockdown in VSMCs leads to profound cell cycle arrest at G(2)/M and impaired chemotaxis without cytotoxicity. The regulation of mitosis and apoptosis in VSMC involves differentially regulated subcellular pools of SVV. Thus, treatment of VSMC with RNAi targeting SVV might limit the response to vascular injury without destabilizing the vessel wall.
Nabzdyk, Christoph S.; Lancero, Hope; Nguyen, Khanh P.; Salek, Sherveen
2011-01-01
Survivin (SVV) is a multifunctional protein that has been implicated in the development of neointimal hyperplasia. Nuclear SVV is essential for mitosis, whereas in mitochondria SVV has a cytoprotective function. Here, we investigated the effects of RNA interference (RNAi)-mediated SVV knockdown on cell cycle kinetics, apoptosis, migration, and gene expression in primary cultured vascular smooth muscle cells (VSMCs) from the human saphenous vein. Primary Human VSMCs were obtained from saphenous veins and cultured under standard conditions. SVV knockdown was achieved by either small interfering RNA or lentiviral transduction of short hairpin RNA, reducing SVV gene expression by quantitative PCR (>75%, P < 0.01) without a loss of cell viability. Subcellular fractionation revealed that RNAi treatment effectively targeted the nuclear SVV pool, whereas the larger mitochondrial pool was much less sensitive to transient knockdown. Both p53 and p27 protein levels were notably increased. SVV RNAi treatment significantly blocked VSMC proliferation in response to serum and PDGF-AB, arresting VSMC growth. Cell cycle analysis revealed an increased G2/M fraction consistent with a mitotic defect; 4′,6-diamidino-2-phenylindole staining confirmed an increased frequency of polyploid and abnormal nuclei. In a transwell assay, SVV knockdown reduced migration to PDGF-AB, and actin-phalloidin staining revealed disorganized actin filaments and polygonal cell shape. However, apoptosis (DNA content and annexin V flow cytometry) was not directly induced by SVV RNAi, and sensitivity to apoptotic agonists (e.g., staurosporine and cytokines) was unchanged. In conclusion, RNAi-mediated SVV knockdown in VSMCs leads to profound cell cycle arrest at G2/M and impaired chemotaxis without cytotoxicity. The regulation of mitosis and apoptosis in VSMC involves differentially regulated subcellular pools of SVV. Thus, treatment of VSMC with RNAi targeting SVV might limit the response to vascular injury without destabilizing the vessel wall. PMID:21856925
Killiny, Nabil; Hajeri, Subhas; Tiwari, Siddharth; Gowda, Siddarame; Stelinski, Lukasz L
2014-01-01
Silencing of genes through RNA interference (RNAi) in insects has gained momentum during the past few years. RNAi has been used to cause insect mortality, inhibit insect growth, increase insecticide susceptibility, and prevent the development of insecticide resistance. We investigated the efficacy of topically applied dsRNA to induce RNAi for five Cytochrome P450 genes family 4 (CYP4) in Diaphorina citri. We previously reported that these CYP4 genes are associated with the development of insecticide resistance in D. citri. We targeted five CYP4 genes that share a consensus sequence with one dsRNA construct. Quantitative PCR confirmed suppressed expression of the five CYP4 genes as a result of dsRNA topically applied to the thoracic region of D. citri when compared to the expression levels in a control group. Western blot analysis indicated a reduced signal of cytochrome P450 proteins (45 kDa) in adult D. citri treated with the dsRNA. In addition, oxidase activity and insecticide resistance were reduced for D. citri treated with dsRNA that targeted specific CYP4 genes. Mortality was significantly higher in adults treated with dsRNA than in adults treated with water. Our results indicate that topically applied dsRNA can penetrate the cuticle of D. citri and induce RNAi. These results broaden the scope of RNAi as a mechanism to manage pests by targeting a broad range of genes. The results also support the application of RNAi as a viable tool to overcome insecticide resistance development in D. citri populations. However, further research is needed to develop grower-friendly delivery systems for the application of dsRNA under field conditions. Considering the high specificity of dsRNA, this tool can also be used for management of D. citri by targeting physiologically critical genes involved in growth and development.
RNA Interference: Biology, Mechanism, and Applications
Agrawal, Neema; Dasaradhi, P. V. N.; Mohmmed, Asif; Malhotra, Pawan; Bhatnagar, Raj K.; Mukherjee, Sunil K.
2003-01-01
Double-stranded RNA-mediated interference (RNAi) is a simple and rapid method of silencing gene expression in a range of organisms. The silencing of a gene is a consequence of degradation of RNA into short RNAs that activate ribonucleases to target homologous mRNA. The resulting phenotypes either are identical to those of genetic null mutants or resemble an allelic series of mutants. Specific gene silencing has been shown to be related to two ancient processes, cosuppression in plants and quelling in fungi, and has also been associated with regulatory processes such as transposon silencing, antiviral defense mechanisms, gene regulation, and chromosomal modification. Extensive genetic and biochemical analysis revealed a two-step mechanism of RNAi-induced gene silencing. The first step involves degradation of dsRNA into small interfering RNAs (siRNAs), 21 to 25 nucleotides long, by an RNase III-like activity. In the second step, the siRNAs join an RNase complex, RISC (RNA-induced silencing complex), which acts on the cognate mRNA and degrades it. Several key components such as Dicer, RNA-dependent RNA polymerase, helicases, and dsRNA endonucleases have been identified in different organisms for their roles in RNAi. Some of these components also control the development of many organisms by processing many noncoding RNAs, called micro-RNAs. The biogenesis and function of micro-RNAs resemble RNAi activities to a large extent. Recent studies indicate that in the context of RNAi, the genome also undergoes alterations in the form of DNA methylation, heterochromatin formation, and programmed DNA elimination. As a result of these changes, the silencing effect of gene functions is exercised as tightly as possible. Because of its exquisite specificity and efficiency, RNAi is being considered as an important tool not only for functional genomics, but also for gene-specific therapeutic activities that target the mRNAs of disease-related genes. PMID:14665679
Killiny, Nabil; Hajeri, Subhas; Tiwari, Siddharth; Gowda, Siddarame; Stelinski, Lukasz L.
2014-01-01
Silencing of genes through RNA interference (RNAi) in insects has gained momentum during the past few years. RNAi has been used to cause insect mortality, inhibit insect growth, increase insecticide susceptibility, and prevent the development of insecticide resistance. We investigated the efficacy of topically applied dsRNA to induce RNAi for five Cytochrome P450 genes family 4 (CYP4) in Diaphorina citri. We previously reported that these CYP4 genes are associated with the development of insecticide resistance in D. citri. We targeted five CYP4 genes that share a consensus sequence with one dsRNA construct. Quantitative PCR confirmed suppressed expression of the five CYP4 genes as a result of dsRNA topically applied to the thoracic region of D. citri when compared to the expression levels in a control group. Western blot analysis indicated a reduced signal of cytochrome P450 proteins (45 kDa) in adult D. citri treated with the dsRNA. In addition, oxidase activity and insecticide resistance were reduced for D. citri treated with dsRNA that targeted specific CYP4 genes. Mortality was significantly higher in adults treated with dsRNA than in adults treated with water. Our results indicate that topically applied dsRNA can penetrate the cuticle of D. citri and induce RNAi. These results broaden the scope of RNAi as a mechanism to manage pests by targeting a broad range of genes. The results also support the application of RNAi as a viable tool to overcome insecticide resistance development in D. citri populations. However, further research is needed to develop grower-friendly delivery systems for the application of dsRNA under field conditions. Considering the high specificity of dsRNA, this tool can also be used for management of D. citri by targeting physiologically critical genes involved in growth and development. PMID:25330026
Hymyc1 downregulation promotes stem cell proliferation in Hydra vulgaris.
Ambrosone, Alfredo; Marchesano, Valentina; Tino, Angela; Hobmayer, Bert; Tortiglione, Claudia
2012-01-01
Hydra is a unique model for studying the mechanisms underlying stem cell biology. The activity of the three stem cell lineages structuring its body constantly replenishes mature cells lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. In vertebrates, one of many genes that participate in regulating stem cell homeostasis is the protooncogene c-myc, which has been recently identified also in Hydra, and found expressed in the interstitial stem cell lineage. In the present paper, by developing a novel strategy of RNA interference-mediated gene silencing (RNAi) based on an enhanced uptake of small interfering RNAi (siRNA), we provide molecular and biological evidence for an unexpected function of the Hydra myc gene (Hymyc1) in the homeostasis of the interstitial stem cell lineage. We found that Hymyc1 inhibition impairs the balance between stem cell self renewal/differentiation, as shown by the accumulation of stem cell intermediate and terminal differentiation products in genetically interfered animals. The identical phenotype induced by the 10058-F4 inhibitor, a disruptor of c-Myc/Max dimerization, demonstrates the specificity of the RNAi approach. We show the kinetic and the reversible feature of Hymyc1 RNAi, together with the effects displayed on regenerating animals. Our results show the involvement of Hymyc1 in the control of interstitial stem cell dynamics, provide new clues to decipher the molecular control of the cell and tissue plasticity in Hydra, and also provide further insights into the complex myc network in higher organisms. The ability of Hydra cells to uptake double stranded RNA and to trigger a RNAi response lays the foundations of a comprehensive analysis of the RNAi response in Hydra allowing us to track back in the evolution and the origin of this process.
Hymyc1 Downregulation Promotes Stem Cell Proliferation in Hydra vulgaris
Ambrosone, Alfredo; Marchesano, Valentina; Tino, Angela; Hobmayer, Bert; Tortiglione, Claudia
2012-01-01
Hydra is a unique model for studying the mechanisms underlying stem cell biology. The activity of the three stem cell lineages structuring its body constantly replenishes mature cells lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. In vertebrates, one of many genes that participate in regulating stem cell homeostasis is the protooncogene c-myc, which has been recently identified also in Hydra, and found expressed in the interstitial stem cell lineage. In the present paper, by developing a novel strategy of RNA interference-mediated gene silencing (RNAi) based on an enhanced uptake of small interfering RNAi (siRNA), we provide molecular and biological evidence for an unexpected function of the Hydra myc gene (Hymyc1) in the homeostasis of the interstitial stem cell lineage. We found that Hymyc1 inhibition impairs the balance between stem cell self renewal/differentiation, as shown by the accumulation of stem cell intermediate and terminal differentiation products in genetically interfered animals. The identical phenotype induced by the 10058-F4 inhibitor, a disruptor of c-Myc/Max dimerization, demonstrates the specificity of the RNAi approach. We show the kinetic and the reversible feature of Hymyc1 RNAi, together with the effects displayed on regenerating animals. Our results show the involvement of Hymyc1 in the control of interstitial stem cell dynamics, provide new clues to decipher the molecular control of the cell and tissue plasticity in Hydra, and also provide further insights into the complex myc network in higher organisms. The ability of Hydra cells to uptake double stranded RNA and to trigger a RNAi response lays the foundations of a comprehensive analysis of the RNAi response in Hydra allowing us to track back in the evolution and the origin of this process. PMID:22292012
Kretova, Olga V; Fedoseeva, Daria M; Gorbacheva, Maria A; Gashnikova, Natalya M; Gashnikova, Maria P; Melnikova, Nataliya V; Chechetkin, Vladimir R; Kravatsky, Yuri V; Tchurikov, Nickolai A
2017-09-15
RNAi has been suggested for use in gene therapy of HIV/AIDS, but the main problem is that HIV-1 is highly variable and could escape attack from the small interfering RNAs (siRNAs) due to even single nucleotide substitutions in the potential targets. To exhaustively check the variability in selected RNA targets of HIV-1, we used ultra-deep sequencing of six regions of HIV-1 from the plasma of two independent cohorts of patients from Russia. Six RNAi targets were found that are invariable in 82%-97% of viruses in both cohorts and are located inside the domains specifying reverse transcriptase (RT), integrase, vpu, gp120, and p17. The analysis of mutation frequencies and their characteristics inside the targets suggests a likely role for APOBEC3G (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G, A3G) in G-to-A mutations and a predominant effect of RT biases in the detected variability of the virus. The lowest frequency of mutations was detected in the central part of all six targets. We also discovered that the identical RNAi targets are present in many HIV-1 strains from many countries and from all continents. The data are important for both the understanding of the patterns of HIV-1 mutability and properties of RT and for the development of gene therapy approaches using RNAi for the treatment of HIV/AIDS. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Avila, Emily L; Brown, Michelle; Pan, Songqin; Desikan, Radhika; Neill, Steven J; Girke, Thomas; Surpin, Marci; Raikhel, Natasha V
2008-01-01
Vacuolar sorting receptors (VSRs) are responsible for the proper targeting of soluble cargo proteins to their destination compartments. The Arabidopsis genome encodes seven VSRs. In this work, the spatio-temporal expression of one of the members of this gene family, AtVSR3, was determined by RT-PCR and promoter::reporter gene fusions. AtVSR3 was expressed specifically in guard cells. Consequently, a reverse genetics approach was taken to determine the function of AtVSR3 by using RNA interference (RNAi) technology. Plants expressing little or no AtVSR3 transcript had a compressed life cycle, bolting approximately 1 week earlier and senescing up to 2 weeks earlier than the wild-type parent line. While the development and distribution of stomata in AtVSR3 RNAi plants appeared normal, stomatal function was altered. The guard cells of mutant plants did not close in response to abscisic acid treatment, and the mean leaf temperatures of the RNAi plants were on average 0.8 degrees C lower than both wild type and another vacuolar sorting receptor mutant, atvsr1-1. Furthermore, the loss of AtVSR3 protein caused the accumulation of nitric oxide and hydrogen peroxide, signalling molecules implicated in the regulation of stomatal opening and closing. Finally, proteomics and western blot analyses of cellular proteins isolated from wild-type and AtVSR3 RNAi leaves showed that phospholipase Dgamma, which may play a role in abscisic acid signalling, accumulated to higher levels in AtVSR3 RNAi guard cells. Thus, AtVSR3 may play an important role in responses to plant stress.
Kakumani, Pavan Kumar; Ponia, Sanket Singh; S, Rajgokul K.; Sood, Vikas; Chinnappan, Mahendran; Banerjea, Akhil C.; Medigeshi, Guruprasad R.; Malhotra, Pawan
2013-01-01
RNA interference (RNAi) is an important antiviral defense response in plants and invertebrates; however, evidences for its contribution to mammalian antiviral defense are few. In the present study, we demonstrate the anti-dengue virus role of RNAi in mammalian cells. Dengue virus infection of Huh 7 cells decreased the mRNA levels of host RNAi factors, namely, Dicer, Drosha, Ago1, and Ago2, and in corollary, silencing of these genes in virus-infected cells enhanced dengue virus replication. In addition, we observed downregulation of many known human microRNAs (miRNAs) in response to viral infection. Using reversion-of-silencing assays, we further showed that NS4B of all four dengue virus serotypes is a potent RNAi suppressor. We generated a series of deletion mutants and demonstrated that NS4B mediates RNAi suppression via its middle and C-terminal domains, namely, transmembrane domain 3 (TMD3) and TMD5. Importantly, the NS4B N-terminal region, including the signal sequence 2K, which has been implicated in interferon (IFN)-antagonistic properties, was not involved in mediating RNAi suppressor activity. Site-directed mutagenesis of conserved residues revealed that a Phe-to-Ala (F112A) mutation in the TMD3 region resulted in a significant reduction of the RNAi suppression activity. The green fluorescent protein (GFP)-small interfering RNA (siRNA) biogenesis of the GFP-silenced line was considerably reduced by wild-type NS4B, while the F112A mutant abrogated this reduction. These results were further confirmed by in vitro dicer assays. Together, our results suggest the involvement of miRNA/RNAi pathways in dengue virus establishment and that dengue virus NS4B protein plays an important role in the modulation of the host RNAi/miRNA pathway to favor dengue virus replication. PMID:23741001
Yoon, Sunghee; Kawasaki, Ichiro; Shim, Yhong-Hee
2012-04-01
In Caenorhabditis elegans, cdc-25.1 loss-of-function mutants display a lack of germline proliferation. We found that the proliferation defect of cdc-25.1 mutants was suppressed by wee-1.3 RNAi. Further, among the seven cdk and seven cyclin homologs examined, cdk-1 and cyb-3 RNAi treatment caused the most severe germline proliferation defects in an rrf-1 mutant background, which were similar to those of the cdc-25.1 mutants. In addition, while RNAi of cyd-1 and cye-1 caused significant germline proliferation defects, RNAi of cdk-2 and cdk-4 did not. Compared with the number of germ nuclei in wee-1.3(RNAi) worms, the number in wee-1.3(RNAi);cdk-1(RNAi) and wee-1.3(RNAi);cyb-3(RNAi) worms further decreased to the level of cdk-1(RNAi) and cyb-3(RNAi) worms, respectively, indicating that cdk-1 and cyb-3 are epistatic and function downstream of cdc-25.1 and wee-1.3 in the control of the cell cycle. BrdU labeling of adult worms showed that, while 100% of the wild-type germ nuclei in the mitotic region incorporated BrdU when labeled for more than 12 h at 20°C, a small fraction of the cdc-25.1 mutant germ nuclei failed to incorporate BrdU even when labeled for 68 h. These results indicate that CDC-25.1 is required for maintaining proper rate of germline mitotic cell cycle. We propose that CDC-25.1 regulates the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively controlling CDK-1, which forms a complex primarily with CYB-3, but also possibly with CYD-1 and CYE-1.
Foda, Bardees M.; Singh, Upinder
2015-01-01
RNA interference (RNAi) is a fundamental biological process that plays a crucial role in regulation of gene expression in many organisms. Transcriptional gene silencing (TGS) is one of the important nuclear roles of RNAi. Our previous data show that Entamoeba histolytica has a robust RNAi pathway that links to TGS via Argonaute 2-2 (Ago2-2) associated 27-nucleotide small RNAs with 5′-polyphosphate termini. Here, we report the first repressive histone mark to be identified in E. histolytica, dimethylation of H3K27 (H3K27Me2), and demonstrate that it is enriched at genes that are silenced by RNAi-mediated TGS. An RNAi-silencing trigger can induce H3K27Me2 deposits at both episomal and chromosomal loci, mediating gene silencing. Our data support two phases of RNAi-mediated TGS: an active silencing phase where the RNAi trigger is present and both H3K27Me2 and Ago2-2 concurrently enrich at chromosomal loci; and an established silencing phase in which the RNAi trigger is removed, but gene silencing with H3K27Me2 enrichment persist independently of Ago2-2 deposition. Importantly, some genes display resistance to chromosomal silencing despite induction of functional small RNAs. In those situations, the RNAi-triggering plasmid that is maintained episomally gets partially silenced and has H3K27Me2 enrichment, but the chromosomal copy displays no repressive histone enrichment. Our data are consistent with a model in which H3K27Me2 is a repressive histone modification, which is strongly associated with transcriptional repression. This is the first example of an epigenetic histone modification that functions to mediate RNAi-mediated TGS in the deep-branching eukaryote E. histolytica. PMID:26149683
An RNAi Screen To Identify Protein Phosphatases That Function Within the Drosophila Circadian Clock.
Agrawal, Parul; Hardin, Paul E
2016-12-07
Circadian clocks in eukaryotes keep time via cell-autonomous transcriptional feedback loops. A well-characterized example of such a transcriptional feedback loop is in Drosophila, where CLOCK-CYCLE (CLK-CYC) complexes activate transcription of period (per) and timeless (tim) genes, rising levels of PER-TIM complexes feed-back to repress CLK-CYC activity, and degradation of PER and TIM permits the next cycle of CLK-CYC transcription. The timing of CLK-CYC activation and PER-TIM repression is regulated posttranslationally, in part through rhythmic phosphorylation of CLK, PER, and TIM. Previous behavioral screens identified several kinases that control CLK, PER, and TIM levels, subcellular localization, and/or activity, but two phosphatases that function within the clock were identified through the analysis of candidate genes from other pathways or model systems. To identify phosphatases that play a role in the clock, we screened clock cell-specific RNA interference (RNAi) knockdowns of all annotated protein phosphatases and protein phosphatase regulators in Drosophila for altered activity rhythms. This screen identified 19 protein phosphatases that lengthened or shortened the circadian period by ≥1 hr (p ≤ 0.05 compared to controls) or were arrhythmic. Additional RNAi lines, transposon inserts, overexpression, and loss-of-function mutants were tested to independently confirm these RNAi phenotypes. Based on genetic validation and molecular analysis, 15 viable protein phosphatases remain for future studies. These candidates are expected to reveal novel features of the circadian timekeeping mechanism in Drosophila that are likely to be conserved in all animals including humans. Copyright © 2016 Agrawal and Hardin.
Fraga, Amanda; Ribeiro, Lupis; Lobato, Mariana; Santos, Vitória; Silva, José Roberto; Gomes, Helga; da Cunha Moraes, Jorge Luiz; de Souza Menezes, Jackson
2013-01-01
Control of energy metabolism is an essential process for life. In insects, egg formation (oogenesis) and embryogenesis is dependent on stored molecules deposited by the mother or transcribed later by the zygote. In oviparous insects the egg becomes an isolated system after egg laying with all energy conversion taking place during embryogenesis. Previous studies in a few vector species showed a strong correlation of key morphogenetic events and changes in glucose metabolism. Here, we investigate glycogen and glucose metabolism in the red flour beetle Tribolium castaneum, an insect amenable to functional genomic studies. To examine the role of the key enzymes on glycogen and glucose regulation we cloned and analyzed the function of glycogen synthase kinase 3 (GSK-3) and hexokinase (HexA) genes during T. castaneum embryogenesis. Expression analysis via in situ hybridization shows that both genes are expressed only in the embryonic tissue, suggesting that embryonic and extra-embryonic cells display different metabolic activities. dsRNA adult female injection (parental RNAi) of both genes lead a reduction in egg laying and to embryonic lethality. Morphological analysis via DAPI stainings indicates that early development is impaired in Tc-GSK-3 and Tc-HexA1 RNAi embryos. Importantly, glycogen levels are upregulated after Tc-GSK-3 RNAi and glucose levels are upregulated after Tc-HexA1 RNAi, indicating that both genes control metabolism during embryogenesis and oogenesis, respectively. Altogether our results show that T. castaneum embryogenesis depends on the proper control of glucose and glycogen. PMID:23750237
Feretzaki, Marianna; Billmyre, R Blake; Clancey, Shelly Applen; Wang, Xuying; Heitman, Joseph
2016-03-01
RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein) and Qip1 (a homolog of N. crassa Qip) were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor) and Fzc28 (a transcription factor) are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory.
Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images
Yan, Pingkum; Zhou, Xiaobo; Shah, Mubarak; Wong, Stephen T. C.
2010-01-01
High-throughput genome-wide RNA interference (RNAi) screening is emerging as an essential tool to assist biologists in understanding complex cellular processes. The large number of images produced in each study make manual analysis intractable; hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. In this paper, a fully automatic method for segmentation of cells from genome-wide RNAi screening images is proposed. Nuclei are first extracted from the DNA channel by using a modified watershed algorithm. Cells are then extracted by modeling the interaction between them as well as combining both gradient and region information in the Actin and Rac channels. A new energy functional is formulated based on a novel interaction model for segmenting tightly clustered cells with significant intensity variance and specific phenotypes. The energy functional is minimized by using a multiphase level set method, which leads to a highly effective cell segmentation method. Promising experimental results demonstrate that automatic segmentation of high-throughput genome-wide multichannel screening can be achieved by using the proposed method, which may also be extended to other multichannel image segmentation problems. PMID:18270043
DNA-RNA hybrid formation mediates RNAi-directed heterochromatin formation.
Nakama, Mina; Kawakami, Kei; Kajitani, Takuya; Urano, Takeshi; Murakami, Yota
2012-03-01
Certain noncoding RNAs (ncRNAs) implicated in the regulation of chromatin structure associate with chromatin. During the formation of RNAi-directed heterochromatin in fission yeast, ncRNAs transcribed from heterochromatin are thought to recruit the RNAi machinery to chromatin for the formation of heterochromatin; however, the molecular details of this association are not clear. Here, using RNA immunoprecipitation assay, we showed that the heterochromatic ncRNA was associated with chromatin via the formation of a DNA-RNA hybrid and bound to the RNA-induced transcriptional silencing (RITS) complex. The presence of DNA-RNA hybrid in the cell was also confirmed by immunofluorescence analysis using anti-DNA-RNA hybrid antibody. Over-expression and depletion of RNase H in vivo decreased and increased the amount of DNA-RNA hybrid formed, respectively, and both disturbed heterochromatin. Moreover, DNA-RNA hybrid was formed on, and over-expression of RNase H inhibited the formation of, artificial heterochromatin induced by tethering of RITS to mRNA. These results indicate that heterochromatic ncRNAs are retained on chromatin via the formation of DNA-RNA hybrids and provide a platform for the RNAi-directed heterochromatin assembly and suggest that DNA-RNA hybrid formation plays a role in chromatic ncRNA function. © 2012 The Authors. Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.
RNAi-mediated male sterility of tobacco by silencing TA29.
Nawaz-ul-Rehman, Muhammad Shah; Mansoor, Shahid; Khan, Asif Ali; Zafar, Yusuf; Briddon, Rob W
2007-06-01
The superior performance of F1 hybrids has a significant impact on agricultural productivity. For commercial application, the availability of an efficient system for obtaining male-sterile lines of crops is an essential prerequisite. Here we have investigated the use of RNA interference (RNAi) technology to silence a male-specific gene in the model host tobacco. TA29 is expressed exclusively in anthers at the time of microspore development. About 10 out of 13 tobacco lines transformed with a hairpin RNAi construct containing TA29 sequences were male sterile. Transgenic plants were phenotypically indistinguishable from non-transgenic plants. At the anthesis stage, pollen grains from transgenic, male-sterile plants were aborted and lysed in comparison to the round and fully developed pollen in non-transgenic plants. Microscopic analysis of anthers showed selective degradation of tapetum in transgenic plants with no microspore development. One week after self-pollination, the ovules of non-transgenic plants were double the size of those in transgenic plants, due to successful self-fertilization. Male sterile transgenic plants set seed normally, when cross-pollinated with pollen from non-transgenic plants, confirming no adverse effect on the female parts of the flower. These results show that silencing of male-specific genes by RNAi is potentially a useful tool for generating male-sterile lines for producing hybrid seed.
siRNAs and piRNAs Collaborate for Transposon Control in the Two-Spotted Spider Mite.
Mondal, Mosharrof; Mansfield, Kody; Flynt, Alex
2018-04-20
RNAi has revolutionized genetic research, and is being commercialized as an insect pest control technology. Mechanisms exploited for this purpose are antiviral and therefore rapidly evolving. Ideally, RNAi will also be used for non-insect pests, however, differences in RNAi biology makes this uncertain. Tetranychus urticae (two-spotted spider mite) is a destructive non-insect pest, which has a proclivity to develop pesticide resistance. Here we provide a comprehensive study of the endogenous RNAi pathways of spider mites to inform design of exogenous RNAi triggers. This effort revealed unexpected roles for small RNAs and novel genome surveillance pathways. Spider mites have an expanded RNAi machinery relative to insects, encoding RNA dependent RNA polymerase (Rdrp) and extra Piwi-class effectors. Through analyzing T. urticae transcriptome data we explored small RNA biogenesis, and discovered five siRNA loci that appear central to genome surveillance. These RNAs are expressed in the gonad, which we hypothesize to trigger production of piRNAs for control of transposable elements (TEs). This work highlights the need to investigate endogenous RNAi biology as lessons from model organisms may not hold in other species, impacting development of an RNAi strategy. Published by Cold Spring Harbor Laboratory Press for the RNA Society.
RNA Interference in Infectious Tropical Diseases
Hong, Young S.
2008-01-01
Introduction of double-stranded RNA (dsRNA) into some cells or organisms results in degradation of its homologous mRNA, a process called RNA interference (RNAi). The dsRNAs are processed into short interfering RNAs (siRNAs) that subsequently bind to the RNA-induced silencing complex (RISC), causing degradation of target mRNAs. Because of this sequence-specific ability to silence target genes, RNAi has been extensively used to study gene functions and has the potential to control disease pathogens or vectors. With this promise of RNAi to control pathogens and vectors, this paper reviews the current status of RNAi in protozoans, animal parasitic helminths and disease-transmitting vectors, such as insects. Many pathogens and vectors cause severe parasitic diseases in tropical regions and it is difficult to control once the host has been invaded. Intracellularly, RNAi can be highly effective in impeding parasitic development and proliferation within the host. To fully realize its potential as a means to control tropical diseases, appropriate delivery methods for RNAi should be developed, and possible off-target effects should be minimized for specific gene suppression. RNAi can also be utilized to reduce vector competence to interfere with disease transmission, as genes critical for pathogenesis of tropical diseases are knockdowned via RNAi. PMID:18344671
RNA interference: learning gene knock-down from cell physiology
Mocellin, Simone; Provenzano, Maurizio
2004-01-01
Over the past decade RNA interference (RNAi) has emerged as a natural mechanism for silencing gene expression. This ancient cellular antiviral response can be exploited to allow specific inhibition of the function of any chosen target gene. RNAi is proving to be an invaluable research tool, allowing much more rapid characterization of the function of known genes. More importantly, RNAi technology considerably bolsters functional genomics to aid in the identification of novel genes involved in disease processes. This review briefly describes the molecular principles underlying the biology of RNAi phenomenon and discuss the main technical issues regarding optimization of RNAi experimental design. PMID:15555080
RNAi revised--target mRNA-dependent enhancement of gene silencing.
Dornseifer, Simon; Willkomm, Sarah; Far, Rosel Kretschmer-Kazemi; Liebschwager, Janine; Beltsiou, Foteini; Frank, Kirsten; Laufer, Sandra D; Martinetz, Thomas; Sczakiel, Georg; Claussen, Jens Christian; Restle, Tobias
2015-12-15
The discovery of RNA interference (RNAi) gave rise to the development of new nucleic acid-based technologies as powerful investigational tools and potential therapeutics. Mechanistic key details of RNAi in humans need to be deciphered yet, before such approaches take root in biomedicine and molecular therapy. We developed and validated an in silico-based model of siRNA-mediated RNAi in human cells in order to link in vitro-derived pre-steady state kinetic data with a quantitative and time-resolved understanding of RNAi on the cellular level. The observation that product release by Argonaute 2 is accelerated in the presence of an excess of target RNA in vitro inspired us to suggest an associative mechanism for the RNA slicer reaction where incoming target mRNAs actively promote dissociation of cleaved mRNA fragments. This novel associative model is compatible with high multiple turnover rates of RNAi-based gene silencing in living cells and accounts for target mRNA concentration-dependent enhancement of the RNAi machinery. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Molecular mechanisms influencing efficiency of RNA interference in insects.
Cooper, Anastasia M W; Silver, Kristopher; Jianzhen, Zhang; Park, Yoonseong; Zhu, Kun Yan
2018-06-21
RNA interference (RNAi) is an endogenous, sequence-specific gene silencing mechanism elicited by small RNA molecules. RNAi is a powerful reverse genetic tool, and is currently being utilized for managing insects and viruses. Widespread implementation of RNAi-based pest management strategies is currently hindered by inefficient and highly variable results when different insect species, strains, developmental stages, tissues, and genes are targeted. Mechanistic studies have shown that double-stranded ribonucleases (dsRNases), endosomal entrapment, deficient function of the core machinery, and inadequate immune stimulation contribute to limited RNAi efficiency. However, a comprehensive understanding of the molecular mechanisms limiting RNAi efficiency remains elusive. The recent advances in dsRNA stability in physiological tissues, dsRNA internalization into cells, the composition and function of the core RNAi machinery, as well as small-interfering RNA/double-stranded RNA amplification and spreading mechanisms are reviewed to establish a global understanding of the obstacles impeding wider understanding of RNAi mechanisms in insects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Zhou, Yinjian; Zhang, Chunling; Liang, Wei
2014-11-10
RNA interference (RNAi) was intensively studied in the past decades due to its potential in therapy of diseases. The target specificity and universal treatment spectrum endowed siRNA advantages over traditional small molecules and protein drugs. However, barriers exist in the blood circulation system and the diseased tissues blocked the actualization of RNAi effect, which raised function versatility requirements to siRNA therapeutic agents. Appropriate functionalization of siRNAs is necessary to break through these barriers and target diseased tissues in local or systemic targeted application. In this review, we summarized that barriers exist in the delivery process and popular functionalized technologies for siRNA such as chemical modification and physical encapsulation. Preclinical targeted siRNA delivery and the current status of siRNA based RNAi therapeutic agents in clinical trial were reviewed and finally the future of siRNA delivery was proposed. The valuable experience from the siRNA agent delivery study and the RNAi therapeutic agents in clinical trial paved ways for practical RNAi therapeutics to emerge early. Copyright © 2014 Elsevier B.V. All rights reserved.
Bugs Are Not to Be Silenced: Small RNA Pathways and Antiviral Responses in Insects.
Mongelli, Vanesa; Saleh, Maria-Carla
2016-09-29
Like every other organism on Earth, insects are infected with viruses, and they rely on RNA interference (RNAi) mechanisms to circumvent viral infections. A remarkable characteristic of RNAi is that it is both broadly acting, because it is triggered by double-stranded RNA molecules derived from virtually any virus, and extremely specific, because it targets only the particular viral sequence that initiated the process. Reviews covering the different facets of the RNAi antiviral immune response in insects have been published elsewhere. In this review, we build a framework to guide future investigation. We focus on the remaining questions and avenues of research that need to be addressed to move the field forward, including issues such as the activity of viral suppressors of RNAi, comparative genomics, the development of detailed maps of the subcellular localization of viral replication complexes with the RNAi machinery, and the regulation of the antiviral RNAi response.
RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.)
Abdurakhmonov, Ibrokhim Y.; Ayubov, Mirzakamol S.; Ubaydullaeva, Khurshida A.; Buriev, Zabardast T.; Shermatov, Shukhrat E.; Ruziboev, Haydarali S.; Shapulatov, Umid M.; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z.; Percy, Richard G.; Devor, Eric J.; Sharma, Govind C.; Sripathi, Venkateswara R.; Kumpatla, Siva P.; van der Krol, Alexander; Kater, Hake D.; Khamidov, Khakimdjan; Salikhov, Shavkat I.; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.
2016-01-01
RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization. PMID:26941765
RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.).
Abdurakhmonov, Ibrokhim Y; Ayubov, Mirzakamol S; Ubaydullaeva, Khurshida A; Buriev, Zabardast T; Shermatov, Shukhrat E; Ruziboev, Haydarali S; Shapulatov, Umid M; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Percy, Richard G; Devor, Eric J; Sharma, Govind C; Sripathi, Venkateswara R; Kumpatla, Siva P; van der Krol, Alexander; Kater, Hake D; Khamidov, Khakimdjan; Salikhov, Shavkat I; Jenkins, Johnie N; Abdukarimov, Abdusattor; Pepper, Alan E
2016-01-01
RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization.
Ghosh, Animesh; Mukherjee, Koushik; Jiang, Xinpeng; Zhou, Ying; McCarroll, Joshua; Qu, James; Swain, Pamela M.; Baigude, Huricha; Rana, Tariq M.
2010-01-01
RNA interference (RNAi), a gene-silencing phenomenon whereby double-stranded RNA (dsRNA) triggers the sequence-specific degradation of homologous mRNA. RNAi has been quickly and widely applied to discover gene functions and holds great potential to provide a new class of therapeutic agents. However, new chemistry and delivery approaches are greatly needed to silence disease-causing genes without toxic effects. We reasoned that conjugation of the cholesterol moiety to cationic lipids would enhance RNAi efficiencies and lower the toxic effects of lipid-mediated RNAi delivery. Here, we report the first design and synthesis of new cholesterol-conjugated cationic lipids for RNAi delivery using microwave-assisted quaternization (MAQ) of tertiary amines. This strategy can be employed to develop new classes of non-viral gene delivery agents under safe and fast reaction conditions. PMID:20722369
EPA Registers Innovative Tool to Control Corn Rootworm
Ribonucleic acid interference (RNAi) based Plant Incorporated Protectant (PIP) technology is a new and innovative scientific tool utilized by U.S. growers. Learn more about RNAi technology and the 4 new products containing the RNAi based PIP called SMARTST
RNA interference: ready to silence cancer?
Mocellin, Simone; Costa, Rodolfo; Nitti, Donato
2006-01-01
RNA interference (RNAi) is considered the most promising functional genomics tool recently developed. As in other medical fields, this biotechnology might revolutionize the approach to dissecting the biology of cancer, ultimately speeding up the discovery pace of novel targets suitable for molecularly tailored antitumor therapies. In addition, preclinical results suggest that RNAi itself might be used as a therapeutic weapon. With the aim of illustrating not only the potentials but also the current limitations of RNAi as a tool in the fight against cancer, here we summarize the physiology of RNAi, discuss the main technical issues of RNAi-based gene silencing, and review some of the most interesting preclinical results obtained so far with its implementation in the field of oncology.
Grimm, Dirk
2011-10-26
For the past five years, evidence has accumulated that vector-mediated robust RNA interference (RNAi) expression can trigger severe side effects in small and large animals, from cytotoxicity and accelerated tumorigenesis to organ failure and death. The recurring notions in these studies that a critical parameter is the strength of RNAi expression and that Exportin-5 and the Argonaute proteins are rate-limiting mammalian RNAi, strongly imply dose-dependent saturation of the endogenous miRNA pathway as one of the underlying mechanisms. This minireview summarizes the relevant work and data leading to this intriguing model and highlights potential avenues by which to alleviate RNAi-induced toxicities in future clinical applications.
Yang, Chunxiao; Preisser, Evan L; Zhang, Hongjun; Liu, Yong; Dai, Liangying; Pan, Huipeng; Zhou, Xuguo
2016-01-01
The development of genetically engineered plants that employ RNA interference (RNAi) to suppress invertebrate pests opens up new avenues for insect control. While this biotechnology shows tremendous promise, the potential for both non-target and off-target impacts, which likely manifest via altered mRNA expression in the exposed organisms, remains a major concern. One powerful tool for the analysis of these un-intended effects is reverse transcriptase-quantitative polymerase chain reaction, a technique for quantifying gene expression using a suite of reference genes for normalization. The seven-spotted ladybeetle Coccinella septempunctata , a commonly used predator in both classical and augmentative biological controls, is a model surrogate species used in the environmental risk assessment (ERA) of plant incorporated protectants (PIPs). Here, we assessed the suitability of eight reference gene candidates for the normalization and analysis of C. septempunctata v-ATPase A gene expression under both biotic and abiotic conditions. Five computational tools with distinct algorisms, geNorm, Normfinder, BestKeeper , the Δ C t method, and RefFinder , were used to evaluate the stability of these candidates. As a result, unique sets of reference genes were recommended, respectively, for experiments involving different developmental stages, tissues, and ingested dsRNAs. By providing a foundation for standardized RT-qPCR analysis in C. septempunctata , our work improves the accuracy and replicability of the ERA of PIPs involving RNAi transgenic plants.
Transcriptional silencing of a transgene by RNAi in the soma of C. elegans.
Grishok, Alla; Sinskey, Jina L; Sharp, Phillip A
2005-03-15
The silencing of transgene expression at the level of transcription in the soma of Caenorhabditis elegans through an RNAi-dependent pathway has not been previously characterized. Most gene silencing due to RNAi in C. elegans occurs at the post-transcriptional level. We observed transcriptional silencing when worms containing the elt-2::gfp/LacZ transgene were fed RNA produced from the commonly used L4440 vector. The transgene and the vector share plasmid backbone sequences. This transgene silencing depends on multiple RNAi pathway genes, including dcr-1, rde-1, rde-4, and rrf-1. Unlike post-transcriptional gene silencing in worms, elt-2::gfp/LacZ silencing is dependent on the PAZ-PIWI protein Alg-1 and on the HP1 homolog Hpl-2. The latter is a chromatin silencing factor, and expression of the transgene is inhibited at the level of intron-containing precursor mRNA. This inhibition is accompanied by a decrease in the acetylation of histones associated with the transgene. This transcriptional silencing in the soma can be distinguished from transgene silencing in the germline by its inability to be transmitted across generations and its dependence on the rde-1 gene. We therefore define this type of silencing as RNAi-induced Transcriptional Gene Silencing (RNAi-TGS). Additional chromatin-modifying components affecting RNAi-TGS were identified in a candidate RNAi screen.
Pareek, Manish; Rajam, Manchikatla Venkat
2017-09-01
Fusarium oxysporum is a soil-borne plant fungal pathogen, and causes colossal losses in several crop plants including tomato. Effective control measures include the use of harmful fungicides and resistant cultivars, but these methods have shown limited success. Conventional methods to validate fungal pathogenic genes are labour intensive. Therefore, an alternative strategy is required to efficiently characterize unknown pathogenic genes. RNA interference (RNAi) has emerged as a potential tool to functionally characterize novel fungal pathogenic genes and also to control fungal diseases. Here, we report an efficient method to produce stable RNAi transformants of F. oxysporum using Agrobacterium-mediated transformation (AMT). We have transformed F. oxysporum spores using RNAi constructs of Fmk1, Hog1, and Pbs2 MAP kinase signalling genes. Fmk1 RNAi fungal transformants showed loss of surface hydrophobicity, reduced invasive growth on tomato fruits and hypo-virulence on tomato seedlings. Hog1 and Pbs2 RNAi transformants showed altered conidial size, and reduced invasive growth and pathogenesis. These results showed that AMT using RNAi constructs is an effective approach for dissecting the role of genes involved in pathogenesis in F. oxysporum and this could be extended for other fungal systems. The obtained knowledge can be easily translated for developing fungal resistant crops by RNAi. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.
Terenius, Olle; Papanicolaou, Alexie; Garbutt, Jennie S; Eleftherianos, Ioannis; Huvenne, Hanneke; Kanginakudru, Sriramana; Albrechtsen, Merete; An, Chunju; Aymeric, Jean-Luc; Barthel, Andrea; Bebas, Piotr; Bitra, Kavita; Bravo, Alejandra; Chevalier, François; Collinge, Derek P; Crava, Cristina M; de Maagd, Ruud A; Duvic, Bernard; Erlandson, Martin; Faye, Ingrid; Felföldi, Gabriella; Fujiwara, Haruhiko; Futahashi, Ryo; Gandhe, Archana S; Gatehouse, Heather S; Gatehouse, Laurence N; Giebultowicz, Jadwiga M; Gómez, Isabel; Grimmelikhuijzen, Cornelis J P; Groot, Astrid T; Hauser, Frank; Heckel, David G; Hegedus, Dwayne D; Hrycaj, Steven; Huang, Lihua; Hull, J Joe; Iatrou, Kostas; Iga, Masatoshi; Kanost, Michael R; Kotwica, Joanna; Li, Changyou; Li, Jianghong; Liu, Jisheng; Lundmark, Magnus; Matsumoto, Shogo; Meyering-Vos, Martina; Millichap, Peter J; Monteiro, Antónia; Mrinal, Nirotpal; Niimi, Teruyuki; Nowara, Daniela; Ohnishi, Atsushi; Oostra, Vicencio; Ozaki, Katsuhisa; Papakonstantinou, Maria; Popadic, Aleksandar; Rajam, Manchikatla V; Saenko, Suzanne; Simpson, Robert M; Soberón, Mario; Strand, Michael R; Tomita, Shuichiro; Toprak, Umut; Wang, Ping; Wee, Choon Wei; Whyard, Steven; Zhang, Wenqing; Nagaraju, Javaregowda; Ffrench-Constant, Richard H; Herrero, Salvador; Gordon, Karl; Swevers, Luc; Smagghe, Guy
2011-02-01
Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive experiments have not been collected in such a way that they are possible to analyze. In this review, we have collected detailed data from more than 150 experiments including all to date published and many unpublished experiments. Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity. On the contrary, gene expression in epidermal tissues seems to be most difficult to silence. In addition, gene silencing by feeding dsRNA requires high concentrations for success. Possible causes for the variability of success in RNAi experiments in Lepidoptera are discussed. The review also points to a need to further investigate the mechanism of RNAi in lepidopteran insects and its possible connection to the innate immune response. Our general understanding of RNAi in Lepidoptera will be further aided in the future as our public database at http://insectacentral.org/RNAi will continue to gather information on RNAi experiments. Copyright © 2010 Elsevier Ltd. All rights reserved.
RNAi-mediated gene silencing of WsSGTL1 in W.somnifera affects growth and glycosylation pattern
Saema, Syed; Rahman, Laiq ur; Niranjan, Abhishek; Ahmad, Iffat Zareen; Misra, Pratibha
2015-01-01
Sterol glycosyltransferases (SGTs) belong to family 1 of glycosyltransferases (GTs) and are enzymes responsible for synthesis of sterol–glucosides (SGs) in many organisms. WsSGTL1 is a SGT of Withania somnifera that has been found associated with plasma membranes. However its biological function in W.somnifera is largely unknown. In the present study, we have demonstrated through RNAi silencing of WsSGTL1 gene that it performs glycosylation of withanolides and sterols resulting in glycowithanolides and glycosylated sterols respectively, and affects the growth and development of transgenic W.somnifera. For this, RNAi construct (pFGC1008-WsSGTL1) was made and genetic transformation was done by Agrobacterium tumefaciens. HPLC analysis depicts the reduction of withanoside V (the glycowithanolide of W.somnifera) and a large increase of withanolides (majorly withaferin A) content. Also, a significant decrease in level of glycosylated sterols has been observed. Hence, the obtained data provides an insight into the biological function of WsSGTL1 gene in W.somnifera. PMID:26357855
Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis.
Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima
2017-01-01
RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests.
Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis
Almeida Garcia, Rayssa; Lima Pepino Macedo, Leonardo; Cabral do Nascimento, Danila; Gillet, François-Xavier; Moreira-Pinto, Clidia Eduarda; Faheem, Muhammad; Moreschi Basso, Angelina Maria; Mattar Silva, Maria Cristina
2017-01-01
RNA interference (RNAi) approaches have been applied as a biotechnological tool for controlling plant insect pests via selective gene down regulation. However, the inefficiency of RNAi mechanism in insects is associated with several barriers, including dsRNA delivery and uptake by the cell, dsRNA interaction with the cellular membrane receptor and dsRNA exposure to insect gut nucleases during feeding. The cotton boll weevil (Anthonomus grandis) is a coleopteran in which RNAi-mediated gene silencing does not function efficiently through dsRNA feeding, and the factors involved in the mechanism remain unknown. Herein, we identified three nucleases in the cotton boll weevil transcriptome denoted AgraNuc1, AgraNuc2, and AgraNuc3, and the influences of these nucleases on the gene silencing of A. grandis chitin synthase II (AgraChSII) were evaluated through oral dsRNA feeding trials. A phylogenetic analysis showed that all three nucleases share high similarity with the DNA/RNA non-specific endonuclease family of other insects. These nucleases were found to be mainly expressed in the posterior midgut region of the insect. Two days after nuclease RNAi-mediated gene silencing, dsRNA degradation by the gut juice was substantially reduced. Notably, after nucleases gene silencing, the orally delivered dsRNA against the AgraChSII gene resulted in improved gene silencing efficiency when compared to the control (non-silenced nucleases). The data presented here demonstrates that A. grandis midgut nucleases are effectively one of the main barriers to dsRNA delivery and emphasize the need to develop novel RNAi delivery strategies focusing on protecting the dsRNA from gut nucleases and enhancing its oral delivery and uptake to crop insect pests. PMID:29261729
Potential and development of inhaled RNAi therapeutics for the treatment of pulmonary tuberculosis.
Man, Dede K W; Chow, Michael Y T; Casettari, Luca; Gonzalez-Juarrero, Mercedes; Lam, Jenny K W
2016-07-01
Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (Mtb), continues to pose a serious threat to public health, and the situation is worsening with the rapid emergence of multidrug resistant (MDR) TB. Current TB regimens require long duration of treatment, and their toxic side effects often lead to poor adherence and low success rates. There is an urgent need for shorter and more effective treatment for TB. In recent years, RNA interference (RNAi) has become a powerful tool for studying gene function by silencing the target genes. The survival of Mtb in host macrophages involves the attenuation of the antimicrobial responses mounted by the host cells. RNAi technology has helped to improve our understanding of how these bacilli interferes with the bactericidal effect and host immunity during TB infection. It has been suggested that the host-directed intervention by modulation of host pathways can be employed as a novel and effective therapy against TB. This therapeutic approach could be achieved by RNAi, which holds enormous potential beyond a laboratory to the clinic. RNAi therapy targeting TB is being investigated for enhancing host antibacterial capacity or improving drug efficacy on drug resistance strains while minimizing the associated adverse effects. One of the key challenges of RNAi therapeutics arises from the delivery of the RNAi molecules into the target cells, and inhalation could serve as a direct administration route for the treatment of pulmonary TB in a non-invasive manner. However, there are still major obstacles that need to be overcome. This review focuses on the RNAi candidates that are currently explored for the treatment of TB and discusses the major barriers of pulmonary RNAi delivery. From this, we hope to stimulate further studies of local RNAi therapeutics for pulmonary TB treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
OsAGSW1, an ABC1-like kinase gene, is involved in the regulation of grain size and weight in rice.
Li, Tao; Jiang, Jieming; Zhang, Shengchun; Shu, Haoran; Wang, Yaqin; Lai, Jianbin; Du, Jinju; Yang, Chengwei
2015-09-01
Grain shape and weight are two determining agronomic traits of rice yield. ABC1 (Activity of bc1 complex) is a newly found atypical kinase in plants. Here, we report on an ABC1 protein kinase gene, OsAGSW1 (ABC1-like kinase related to Grain size and Weight). Expression of OsAGSW1-GFP in rice revealed that OsAGSW1 is localized to the chloroplasts in rice. Analysis of OsAGSW1 promoter::β-glucuronidase transgenic rice indicated that this gene was highly expressed in vascular bundles in shoot, hull and caryopsis. Furthermore, OsAGSW1-RNAi and overexpressed transgenic rice lines were generated. Stable transgenic lines overexpressing OsAGSW1 exhibited a phenotype with a significant increase in grain size, grain weight, grain filling rate and 1000-grain weight compared with the wild-type and RNAi transgenic plants. Microscopy analysis showed that spikelet hulls just before heading were different in the OsAGSW1-overexpressed plants compared with wild-type and OsAGSW1 RNAi rice. Further cytological analysis showed that the number of external parenchyma cells in rice hulls of OsAGSW1-overexpressed plants increased, leading to wider and longer spikelet hulls than those of the wild-type and OsAGSW1-RNAi plants. The vascular cross-sectional area in lemma, carpopodium and ovules also strikingly increased and area of both xylem and phloem were enlarged in the OsAGSW1-overexpressed plants. Thus, our results demonstrated that OsAGSW1 plays an important role in seed shape and size of rice by regulating the number of external parenchyma cells and the development of vascular bundles, providing a new insight into the functions of ABC1 genes in plants. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Wang, Zhishi; Craven, Mark; Newton, Michael A.; Ahlquist, Paul
2013-01-01
Systematic, genome-wide RNA interference (RNAi) analysis is a powerful approach to identify gene functions that support or modulate selected biological processes. An emerging challenge shared with some other genome-wide approaches is that independent RNAi studies often show limited agreement in their lists of implicated genes. To better understand this, we analyzed four genome-wide RNAi studies that identified host genes involved in influenza virus replication. These studies collectively identified and validated the roles of 614 cell genes, but pair-wise overlap among the four gene lists was only 3% to 15% (average 6.7%). However, a number of functional categories were overrepresented in multiple studies. The pair-wise overlap of these enriched-category lists was high, ∼19%, implying more agreement among studies than apparent at the gene level. Probing this further, we found that the gene lists implicated by independent studies were highly connected in interacting networks by independent functional measures such as protein-protein interactions, at rates significantly higher than predicted by chance. We also developed a general, model-based approach to gauge the effects of false-positive and false-negative factors and to estimate, from a limited number of studies, the total number of genes involved in a process. For influenza virus replication, this novel statistical approach estimates the total number of cell genes involved to be ∼2,800. This and multiple other aspects of our experimental and computational results imply that, when following good quality control practices, the low overlap between studies is primarily due to false negatives rather than false-positive gene identifications. These results and methods have implications for and applications to multiple forms of genome-wide analysis. PMID:24068911
Han, Pengfei; Fan, Jiqiao; Liu, Yu; Cuthbertson, Andrew G S; Yan, Shaoqiao; Qiu, Bao-Li; Ren, Shunxiang
2014-01-01
Destruxin A is a mycotoxin that is secreted by entomopathogenic fungi which has a broad-spectrum insecticidal effect. Previous transcript and protein profiling analysis showed that destruxin A has significant effects on the expression of serine protease inhibitor genes (serpin-2, 4, 5) in the larvae of Plutella xylostella. In the current study, we aimed to understand the role of serpins under application of destruxin A. We obtained two full-length cDNA sequences of P. xylostella serpins, named serpin-4 and serpin-5, and cloned the serpin-2 gene whose full-length has already been published. Phylogenetic analysis indicated that these two serpin genes were highly clustered with other serpins associated with the immune response in other insects. The temporal and spatial expression of serpin-2, serpin-4 and serpin-5 were determined to be the highest in the fat body and hemolymph of 4th larval stage using qRT-PCR and western blot detection techniques. RNA interference (RNAi) mediated knockdown of P. xylostella serpin genes was carried out by microinjection of double-stranded RNA (dsRNA). The expression levels of serpins decreased significantly after RNAi. Results showed that the depletion of serpins induced cecropins expression, increased phenoloxidase (PO) activity, body melanization and mortality in the larvae of P. xylostella under the same lethal concentration of destruxin A. The superimposed effects of serpins RNAi were similar with the destruxin A treatment upon mortality of P. xylostella larvae. We discovered for the first time that serpins play indispensable role in P. xylostella when challenged by destruxin A and deduced the possible function mechanism of destruxin A. Our findings are conducive to fully understanding the potential insecticidal mechanism of destruxin A and constitute a well-defined potential molecular target for novel insecticides.
Indrasumunar, Arief; Wilde, Julia; Hayashi, Satomi; Li, Dongxue; Gresshoff, Peter M
2015-03-15
Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes. Copyright © 2015 Elsevier GmbH. All rights reserved.
Small RNA Analysis in Sindbis Virus Infected Human HEK293 Cells
Dalmay, Tamas; Powell, Penny P.
2013-01-01
Introduction In contrast to the defence mechanism of RNA interference (RNAi) in plants and invertebrates, its role in the innate response to virus infection of mammals is a matter of debate. Since RNAi has a well-established role in controlling infection of the alphavirus Sindbis virus (SINV) in insects, we have used this virus to investigate the role of RNAi in SINV infection of human cells. Results SINV AR339 and TR339-GFP were adapted to grow in HEK293 cells. Deep sequencing of small RNAs (sRNAs) early in SINV infection (4 and 6 hpi) showed low abundance (0.8%) of viral sRNAs (vsRNAs), with no size, sequence or location specific patterns characteristic of Dicer products nor did they possess any discernible pattern to ascribe to a specific RNAi biogenesis pathway. This was supported by multiple variants for each sequence, and lack of hot spots along the viral genome sequence. The abundance of the best defined vsRNAs was below the limit of Northern blot detection. The adaptation of the virus to HEK293 cells showed little sequence changes compared to the reference; however, a SNP in E1 gene with a preference from G to C was found. Deep sequencing results showed little variation of expression of cellular microRNAs (miRNAs) at 4 and 6 hpi compared to uninfected cells. Twelve miRNAs exhibiting some minor differential expression by sequencing, showed no difference in expression by Northern blot analysis. Conclusions We show that, unlike SINV infection of invertebrates, generation of Dicer-dependent svRNAs and change in expression of cellular miRNAs were not detected as part of the Human response to SINV. PMID:24391886
Towards the elements of successful insect Ribonucleic acid interference (RNAi)
USDA-ARS?s Scientific Manuscript database
Ribonucleic acid interference (RNAi), the sequence-specific suppression of gene expression, offers great opportunities for insect science, especially to analyze gene function, manage pest populations, and reduce disease pathogens. The accumulating body of literature on insect RNAi has revealed that ...
[RNA interference library research progress and its application in cancer research].
Zhao, Ning; Cai, Li
2013-02-01
RNA interference is a homologous mRNA special degradation phenomenon which is caused by the double-stranded RNA. RNAi library is a pooled library that is artificially constructed using RNAi technology. As RNAi library has made a major breakthrough in the field of genetic research, it has been widely used in the field of medical research, especially in the field of cancer research. This review discussed the research progress of RNAi library and its applications in cancer research.
Biolistics-based gene silencing in plants using a modified particle inflow gun.
Davies, Kevin M; Deroles, Simon C; Boase, Murray R; Hunter, Don A; Schwinn, Kathy E
2013-01-01
RNA interference (RNAi) is one of the most commonly used techniques for examining the function of genes of interest. In this chapter we present two examples of RNAi that use the particle inflow gun for delivery of the DNA constructs. In one example transient RNAi is used to show the function of an anthocyanin regulatory gene in flower petals. In the second example stably transformed cell cultures are produced with an RNAi construct that results in a change in the anthocyanin hydroxylation pattern.
Aedes aegypti uses RNA interference in defense against Sindbis virus infection.
Campbell, Corey L; Keene, Kimberly M; Brackney, Douglas E; Olson, Ken E; Blair, Carol D; Wilusz, Jeffrey; Foy, Brian D
2008-03-17
RNA interference (RNAi) is an important anti-viral defense mechanism. The Aedes aegypti genome encodes RNAi component orthologs, however, most populations of this mosquito are readily infected by, and subsequently transmit flaviviruses and alphaviruses. The goal of this study was to use Ae. aegypti as a model system to determine how the mosquito's anti-viral RNAi pathway interacts with recombinant Sindbis virus (SINV; family Togaviridae, genus Alphavirus). SINV (TR339-eGFP) (+) strand RNA, infectious virus titers and infection rates transiently increased in mosquitoes following dsRNA injection to cognate Ago2, Dcr2, or TSN mRNAs. Detection of SINV RNA-derived small RNAs at 2 and 7 days post-infection in non-silenced mosquitoes provided important confirmation of RNAi pathway activity. Two different recombinant SINV viruses (MRE16-eGFP and TR339-eGFP) with significant differences in infection kinetics were used to delineate vector/virus interactions in the midgut. We show virus-dependent effects on RNAi component transcript and protein levels during infection. Monitoring midgut Ago2, Dcr2, and TSN transcript levels during infection revealed that only TSN transcripts were significantly increased in midguts over blood-fed controls. Ago2 protein levels were depleted immediately following a non-infectious bloodmeal and varied during SINV infection in a virus-dependent manner. We show that silencing RNAi components in Ae. aegypti results in transient increases in SINV replication. Furthermore, Ae. aegypti RNAi is active during SINV infection as indicated by production of virus-specific siRNAs. Lastly, the RNAi response varies in a virus-dependent manner. These data define important features of RNAi anti-viral defense in Ae. aegypti.
RNAi Technique in Stem Cell Research: Current Status and Future Perspectives.
Zou, Gang-Ming
2017-01-01
RNAi is a mechanism displayed by most eukaryotic cells to rid themselves of foreign double-strand RNA molecules. In the 18 years since the initial report, RNAi has now been demonstrated to function in mammalian cells to alter gene expression and has been used as a means for genetic discovery as well as a possible strategy for genetic correction and genetic therapy in cancer and other disease. The aim of this review is to provide a general overview of how RNAi suppresses gene expression and to examine some published RNAi approaches that have resulted in changes in stem cell function and suggest the possible clinical relevance of this work in cancer therapy through targeting cancer stem cells.
Asian citrus psyllid RNAi pathway - RNAi evidence
USDA-ARS?s Scientific Manuscript database
In silico analyses of the draft genome of Diaphorina citri, the Asian citrus psyllid, for genes within the Ribonucleic acid interference(RNAi), pathway was successful. The psyllid is the vector of the plant-infecting bacterium, Candidatus Liberibacter asiaticus (CLas), which is linked to citrus gree...
RNAi and retroviruses: are they in RISC?
Vasselon, Thierry; Bouttier, Manuella; Saumet, Anne; Lecellier, Charles-Henri
2013-02-01
RNA interference (RNAi) is a potent cellular system against viruses in various organisms. Although common traits are observed in plants, insects, and nematodes, the situation observed in mammals appears more complex. In mammalian somatic cells, RNAi is implicated in endonucleolytic cleavage mediated by artificially delivered small interfering RNAs (siRNAs) as well as in translation repression mediated by microRNAs (miRNAs). Because siRNAs and miRNAs recognize viral mRNAs, RNAi inherently limits virus production and participates in antiviral defense. However, several observations made in the cases of hepatitis C virus and retroviruses (including the human immunodeficiency virus and the primate foamy virus) bring evidence that this relationship is much more complex and that certain components of the RNAi effector complex [called the RNA-induced silencing complex (RISC)], such as AGO2, are also required for viral replication. Here, we summarize recent discoveries that have revealed this dual implication in virus biology. We further discuss their potential implications for the functions of RNAi-related proteins, with special emphasis on retrotransposition and genome stability.
Bosher, J M; Dufourcq, P; Sookhareea, S; Labouesse, M
1999-01-01
In nematodes, flies, trypanosomes, and planarians, introduction of double-stranded RNA results in sequence-specific inactivation of gene function, a process termed RNA interference (RNAi). We demonstrate that RNAi against the Caenorhabditis elegans gene lir-1, which is part of the lir-1/lin-26 operon, induced phenotypes very different from a newly isolated lir-1 null mutation. Specifically, lir-1(RNAi) induced embryonic lethality reminiscent of moderately strong lin-26 alleles, whereas the lir-1 null mutant was viable. We show that the lir-1(RNAi) phenotypes resulted from a severe loss of lin-26 gene expression. In addition, we found that RNAi directed against lir-1 or lin-26 introns induced similar phenotypes, so we conclude that lir-1(RNAi) targets the lir-1/lin-26 pre-mRNA. This provides direct evidence that RNA interference can prevent gene expression by targeting nuclear transcripts. Our results highlight that caution may be necessary when interpreting RNA interference without the benefit of mutant alleles. PMID:10545456
2010-01-01
Background Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. Results We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. Conclusions The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities. PMID:20482787
Tolopko, Andrew N; Sullivan, John P; Erickson, Sean D; Wrobel, David; Chiang, Su L; Rudnicki, Katrina; Rudnicki, Stewart; Nale, Jennifer; Selfors, Laura M; Greenhouse, Dara; Muhlich, Jeremy L; Shamu, Caroline E
2010-05-18
Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.
RNAi control of aflatoxins in peanut plants, a multifactorial system
USDA-ARS?s Scientific Manuscript database
RNA-interference (RNAi)-mediated control of aflatoxin contamination in peanut plants is a multifactorial and hyper variable system. The use of RNAi biotechnology to silence single genes in plants has inherently high-variability among transgenic events. Also the level of expression of small interfe...
Kroll, Torsten; Schmidt, David; Schwanitz, Georg; Ahmad, Mubashir; Hamann, Jana; Schlosser, Corinne; Lin, Yu-Chieh; Böhm, Konrad J; Tuckermann, Jan; Ploubidou, Aspasia
2016-07-01
High-content analysis (HCA) converts raw light microscopy images to quantitative data through the automated extraction, multiparametric analysis, and classification of the relevant information content. Combined with automated high-throughput image acquisition, HCA applied to the screening of chemicals or RNAi-reagents is termed high-content screening (HCS). Its power in quantifying cell phenotypes makes HCA applicable also to routine microscopy. However, developing effective HCA and bioinformatic analysis pipelines for acquisition of biologically meaningful data in HCS is challenging. Here, the step-by-step development of an HCA assay protocol and an HCS bioinformatics analysis pipeline are described. The protocol's power is demonstrated by application to focal adhesion (FA) detection, quantitative analysis of multiple FA features, and functional annotation of signaling pathways regulating FA size, using primary data of a published RNAi screen. The assay and the underlying strategy are aimed at researchers performing microscopy-based quantitative analysis of subcellular features, on a small scale or in large HCS experiments. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Meng, Wenbo; Li, Xun; Bai, Zhongtian; Li, Yan; Yuan, Jinqiu; Liu, Tao; Yan, Jun; Zhou, Wence; Zhu, Kexiang; Zhang, Hui; Li, Yumin
2014-01-01
Alpha-fetoprotein not only serves as a diagnostic marker for liver cancer, but also posses a variety of biological functions. However, the role of Alpha-fetoprotein on tumor angiogenesis and cell invasion remains incompletely understood. In this study, we aimed to evaluate if Alpha-fetoprotein can regulate the major angiogenic factors and matrix metalloproteinases in human liver cancer cells. Alpha-fetoprotein silencing was achieved by Stealth RNAi. Expression of Alpha-fetoprotein was examined by a full-automatic electrochemistry luminescence immunity analyzer. Expression of VEGF, VEGFR-2, MMP-9, and MMP-2 was examined by Western blot and immunocytochemistry. Apoptosis was detected by TUNEL assay. Angiogenesis was detected by in vitro angiogenesis assay kit. Silencing of Alpha-fetoprotein led to an increased apoptosis, which was associated with a decreased expression of vascular endothelial growth factor, vascular endothelial growth factor receptor 2, matrix metalloproteinases-2/9. These results suggest that Alpha-fetoprotein may play a regulatory role on angiogenesis and cell invasion during liver cancer development.
Luciferase reporter assay in Drosophila and mammalian tissue culture cells
Yun, Chi
2014-01-01
Luciferase reporter gene assays are one of the most common methods for monitoring gene activity. Because of their sensitivity, dynamic range, and lack of endogenous activity, luciferase assays have been particularly useful for functional genomics in cell-based assays, such as RNAi screening. This unit describes delivery of two luciferase reporters with other nucleic acids (siRNA /dsRNA), measurement of the dual luciferase activities, and analysis of data generated. The systematic query of gene function (RNAi) combined with the advances in luminescent technology have made it possible to design powerful whole genome screens to address diverse and significant biological questions. PMID:24652620
Influence of EARLI1-like genes on flowering time and lignin synthesis of Arabidopsis thaliana.
Shi, Y; Zhang, X; Xu, Z-Y; Li, L; Zhang, C; Schläppi, M; Xu, Z-Q
2011-09-01
EARLI1 encodes a 14.7 kDa protein in the cell wall, is a member of the PRP (proline-rich protein) family and has multiple functions, including resistance to low temperature and fungal infection. RNA gel blot analyses in the present work indicated that expression of EARLI1-like genes, EARLI1, At4G12470 and At4G12490, was down-regulated in Col-FRI-Sf2 RNAi plants derived from transformation with Agrobacterium strain ABI, which contains a construct encoding a double-strand RNA targeting 8CM of EARLI1. Phenotype analyses revealed that Col-FRI-Sf2 RNAi plants of EARLI1 flowered earlier than Col-FRI-Sf2 wild-type plants. The average bolting time of Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants was 39.7 and 19.4 days, respectively, under a long-day photoperiod. In addition, there were significant differences in main stem length, internode number and rosette leaf number between Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants. RT-PCR showed that EARLI1-like genes might delay flowering time through the autonomous and long-day photoperiod pathways by maintaining the abundance of FLC transcripts. In Col-FRI-Sf2 RNAi plants, transcription of FLC was repressed, while expression of SOC1 and FT was activated. Microscopy observations showed that EARLI1-like genes were also associated with morphogenesis of leaf cells in Arabidopsis. Using histochemical staining, EARLI1-like genes were found to be involved in regulation of lignin synthesis in inflorescence stems, and Col-FRI-Sf2 and Col-FRI-Sf2 RNAi plants had 9.67% and 8.76% dry weight lignin, respectively. Expression analysis revealed that cinnamoyl-CoA reductase, a key enzyme in lignin synthesis, was influenced by EARLI1-like genes. These data all suggest that EARLI1-like genes could control the flowering process and lignin synthesis in Arabidopsis. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
Modeling RNA interference in mammalian cells
2011-01-01
Background RNA interference (RNAi) is a regulatory cellular process that controls post-transcriptional gene silencing. During RNAi double-stranded RNA (dsRNA) induces sequence-specific degradation of homologous mRNA via the generation of smaller dsRNA oligomers of length between 21-23nt (siRNAs). siRNAs are then loaded onto the RNA-Induced Silencing multiprotein Complex (RISC), which uses the siRNA antisense strand to specifically recognize mRNA species which exhibit a complementary sequence. Once the siRNA loaded-RISC binds the target mRNA, the mRNA is cleaved and degraded, and the siRNA loaded-RISC can degrade additional mRNA molecules. Despite the widespread use of siRNAs for gene silencing, and the importance of dosage for its efficiency and to avoid off target effects, none of the numerous mathematical models proposed in literature was validated to quantitatively capture the effects of RNAi on the target mRNA degradation for different concentrations of siRNAs. Here, we address this pressing open problem performing in vitro experiments of RNAi in mammalian cells and testing and comparing different mathematical models fitting experimental data to in-silico generated data. We performed in vitro experiments in human and hamster cell lines constitutively expressing respectively EGFP protein or tTA protein, measuring both mRNA levels, by quantitative Real-Time PCR, and protein levels, by FACS analysis, for a large range of concentrations of siRNA oligomers. Results We tested and validated four different mathematical models of RNA interference by quantitatively fitting models' parameters to best capture the in vitro experimental data. We show that a simple Hill kinetic model is the most efficient way to model RNA interference. Our experimental and modeling findings clearly show that the RNAi-mediated degradation of mRNA is subject to saturation effects. Conclusions Our model has a simple mathematical form, amenable to analytical investigations and a small set of parameters with an intuitive physical meaning, that makes it a unique and reliable mathematical tool. The findings here presented will be a useful instrument for better understanding RNAi biology and as modelling tool in Systems and Synthetic Biology. PMID:21272352
RNA interference for functional genomics and improvement of cotton (Gossypium species)
USDA-ARS?s Scientific Manuscript database
RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium ssp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function ...
RNAi mediated, stable resistance to Triticum mosaic virus in wheat
USDA-ARS?s Scientific Manuscript database
Triticum mosaic virus (TriMV), discovered in 2006, affects wheat production systems in the Great Plains of the United States. There are no available TriMV resistant commercial varieties. RNA interference (RNAi) was evaluated as an alternative strategy to generate resistance to TriMV. An RNAi pANDA...
Common ground: small RNA programming and chromatin modifications.
Lejeune, Erwan; Allshire, Robin C
2011-06-01
Epigenetic mechanisms regulate genome structure and expression profiles in eukaryotes. RNA interference (RNAi) and other small RNA-based chromatin-modifying activities can act to reset the epigenetic landscape at defined chromatin domains. Centromeric heterochromatin assembly is a RNAi-dependent process in the fission yeast Schizosaccharomyces pombe, and provides a paradigm for detailed examination of such epigenetic processes. Here we review recent progress in understanding the mechanisms that underpin RNAi-mediated heterochromatin formation in S. pombe. We discuss recent analyses of the events that trigger RNAi and manipulations which uncouple RNAi and chromatin modification. Finally we provide an overview of similar molecular machineries across species where related small RNA pathways appear to drive the epigenetic reprogramming in germ cells and/or during early development in metazoans. Copyright © 2011 Elsevier Ltd. All rights reserved.
RNAi for functional genomics in plants.
McGinnis, Karen M
2010-03-01
RNAi refers to several different types of gene silencing mediated by small, dsRNA molecules. Over the course of 20 years, the scientific understanding of RNAi has developed from the initial observation of unexpected expression patterns to a sophisticated understanding of a multi-faceted, evolutionarily conserved network of mechanisms that regulate gene expression in many organisms. It has also been developed as a genetic tool that can be exploited in a wide range of species. Because transgene-induced RNAi has been effective at silencing one or more genes in a wide range of plants, this technology also bears potential as a powerful functional genomics tool across the plant kingdom. Transgene-induced RNAi has indeed been shown to be an effective mechanism for silencing many genes in many organisms, but the results from multiple projects which attempted to exploit RNAi on a genome-wide scale suggest that there is a great deal of variation in the silencing efficacy between transgenic events, silencing targets and silencing-induced phenotype. The results from these projects indicate several important variables that should be considered in experimental design prior to the initiation of functional genomics efforts based on RNAi silencing. In recent years, alternative strategies have been developed for targeted gene silencing, and a combination of approaches may also enhance the use of targeted gene silencing for functional genomics.
Multimodality Imaging of RNA Interference
Nayak, Tapas R.; Krasteva, Lazura K.; Cai, Weibo
2013-01-01
The discovery of small interfering RNAs (siRNAs) and their potential to knock down virtually any gene of interest has ushered in a new era of RNA interference (RNAi). Clinical use of RNAi faces severe limitations due to inefficiency delivery of siRNA or short hairpin RNA (shRNA). Many molecular imaging techniques have been adopted in RNAi-related research for evaluation of siRNA/shRNA delivery, biodistribution, pharmacokinetics, and the therapeutic effect. In this review article, we summarize the current status of in vivo imaging of RNAi. The molecular imaging techniques that have been employed include bioluminescence/fluorescence imaging, magnetic resonance imaging/spectroscopy, positron emission tomography, single-photon emission computed tomography, and various combinations of these techniques. Further development of non-invasive imaging strategies for RNAi, not only focusing on the delivery of siRNA/shRNA but also the therapeutic efficacy, is critical for future clinical translation. Rigorous validation will be needed to confirm that biodistribution of the carrier is correlated with that of siRNA/shRNA, since imaging only detects the label (e.g. radioisotopes) but not the gene or carrier themselves. It is also essential to develop multimodality imaging approaches for realizing the full potential of therapeutic RNAi, as no single imaging modality may be sufficient to simultaneously monitor both the gene delivery and silencing effect of RNAi. PMID:23745567
Larval RNA Interference in the Red Flour Beetle, Tribolium castaneum
Tomoyasu, Yoshinori
2014-01-01
The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle’s body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting. PMID:25350485
Bingsohn, L; Knorr, E; Billion, A; Narva, K E; Vilcinskas, A
2017-02-01
RNA interference (RNAi) is a promising alternative strategy for ecologically friendly pest management. However, the identification of RNAi candidate genes is challenging owing to the absence of laboratory strains and the seasonality of most pest species. Tribolium castaneum is a well-established model, with a strong and robust RNAi response, which can be used as a high-throughput screening platform to identify potential RNAi target genes. Recently, the cactus gene was identified as a sensitive RNAi target for pest control. To explore whether the spectrum of promising RNAi targets can be expanded beyond those found by random large-scale screening, to encompass others identified using targeted knowledge-based approaches, we constructed a Cactus interaction network. We tested nine genes in this network and found that the delivery of double-stranded RNA corresponding to fusilli and cactin showed lethal effects. The silencing of cactin resulted in 100% lethality at every developmental stage from the larva to the adult. The knockdown of pelle, Dorsal-related immunity factor and short gastrulation reduced or even prevented egg hatching in the next generation. The combination of such targets with lethal and parental RNAi effects can now be tested against different pest species in field studies. © 2016 The Royal Entomological Society.
RNAiFold 2.0: a web server and software to design custom and Rfam-based RNA molecules.
Garcia-Martin, Juan Antonio; Dotu, Ivan; Clote, Peter
2015-07-01
Several algorithms for RNA inverse folding have been used to design synthetic riboswitches, ribozymes and thermoswitches, whose activity has been experimentally validated. The RNAiFold software is unique among approaches for inverse folding in that (exhaustive) constraint programming is used instead of heuristic methods. For that reason, RNAiFold can generate all sequences that fold into the target structure or determine that there is no solution. RNAiFold 2.0 is a complete overhaul of RNAiFold 1.0, rewritten from the now defunct COMET language to C++. The new code properly extends the capabilities of its predecessor by providing a user-friendly pipeline to design synthetic constructs having the functionality of given Rfam families. In addition, the new software supports amino acid constraints, even for proteins translated in different reading frames from overlapping coding sequences; moreover, structure compatibility/incompatibility constraints have been expanded. With these features, RNAiFold 2.0 allows the user to design single RNA molecules as well as hybridization complexes of two RNA molecules. the web server, source code and linux binaries are publicly accessible at http://bioinformatics.bc.edu/clotelab/RNAiFold2.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Kaur, Punit; Nagaraja, Ganachari M; Asea, Alexzander
2011-01-01
Elevated heat shock protein 27 (Hsp27) expression has been found in a number of tumors, including breast, prostate, gastric, uterine, ovarian, head and neck, and tumor arising from the nervous system and urinary system, and determined to be a predictor of poor clinical outcome. Although the mechanism of action of Hsp27 has been well documented, there are currently no available inhibitors of Hsp27 in clinical trials. RNA interference (RNAi) has the potential to offer more specificity and flexibility than traditional drugs to silence gene expression. Not surprisingly, RNAi has become a major focus for biotechnology and pharmaceutical companies, which are now in the early stages of developing RNAi therapeutics, mostly based on short interfering RNA (siRNAs), to target viral infection, cancer, hypercholesterolemia, cardiovascular disease, macular degeneration, and neurodegenerative diseases. However, the critical issues associated with RNAi as a therapeutic are delivery, specificity, and stability of the RNAi reagents. To date, the delivery is currently considered the biggest hurdle, as the introduction of siRNAs systemically into body fluids can result in their degradation, off-target effects, and immune detection. In this chapter, we discuss a method of combined lentiviral and RNAi-based technology for the delivery and permanent silencing of the hsp25 gene.
Pierson, Lisa; Mousley, Angela; Devine, Lynda; Marks, Nikki J; Day, Tim A; Maule, Aaron G
2010-04-01
Evolving RNA interference (RNAi) platforms are providing opportunities to probe gene function in parasitic helminths using reverse genetics. Although relatively robust methods for the application of RNAi in parasitic flatworms have been established, reports of successful RNAi are confined to three genera and there are no known reports of the application of RNAi to the class Cestoda. Here we report the successful application of RNAi to a cestode. Our target species was the common ruminant tapeworm, Moniezia expansa which can significantly impact the health/productivity of cattle, sheep and goats. Initial efforts aimed to silence the neuronally expressed neuropeptide F gene (Me-npf-1), which encodes one of the most abundant neuropeptides in flatworms and a homologue of vertebrate neuropeptide Y (NPY). Double stranded (ds)RNAs, delivered by electroporation and soaking (4-8h), failed to trigger consistent Me-npf-1 transcript knock-down in adult worms; small interfering RNAs (siRNAs) were also ineffective. Identical approaches resulted in significant and consistent transcript knock-down of actin transcript (71+/-4%) following soaking in Me-act-1 dsRNA. Similar successes were seen with hydrophobic lipid-binding protein (Me-lbp-1), with a dsRNA inducing significant target transcript reduction (72+/-5%). To confirm the validity of the observed transcript knock-downs we further investigated Me-act-1 RNAi worms for associated changes in protein levels, morphology and phenotype. Me-act-1 RNAi worms displayed significant reductions in both filamentous actin immunostaining (62+/-3%) and the amount of actin detected in Western blots (54+/-13%). Morphologically, Me-act-1 RNAi worms displayed profound tegumental disruption/blebbing. Further, muscle tension recordings from Me-act-1 RNAi worms revealed a significant reduction in both the number of worms contracting in response to praziquantel (20+/-12%) and in their contractile ability. These data demonstrate, to our knowledge for the first time, a functional RNAi pathway in a cestode and show that the robust knock-down of abundant gene transcripts is achievable using long dsRNAs following short exposure times. 2009 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Analysis of C. elegans VIG-1 expression.
Shin, Kyoung-Hwa; Choi, Boram; Park, Yang-Seo; Cho, Nam Jeong
2008-12-31
Double-stranded RNA (dsRNA) induces gene silencing in a sequence-specific manner by a process known as RNA interference (RNAi). The RNA-induced silencing complex (RISC) is a multi-subunit ribonucleoprotein complex that plays a key role in RNAi. VIG (Vasa intronic gene) has been identified as a component of Drosophila RISC; however, the role VIG plays in regulating RNAi is poorly understood. Here, we examined the spatial and temporal expression patterns of VIG-1, the C. elegans ortholog of Drosophila VIG, using a vig-1::gfp fusion construct. This construct contains the 908-bp region immediately upstream of vig-1 gene translation initiation site. Analysis by confocal microscopy demonstrated GFP-VIG-1 expression in a number of tissues including the pharynx, body wall muscle, hypodermis, intestine, reproductive system, and nervous system at the larval and adult stages. Furthermore, western blot analysis showed that VIG-1 is present in each developmental stage examined. To investigate regulatory sequences for vig-1 gene expression, we generated constructs containing deletions in the upstream region. It was determined that the GFP expression pattern of a deletion construct (delta-908 to -597) was generally similar to that of the non-deletion construct. In contrast, removal of a larger segment (delta-908 to -191) resulted in the loss of GFP expression in most cell types. Collectively, these results indicate that the 406-bp upstream region (-596 to -191) contains essential regulatory sequences required for VIG-1 expression.
Bringing RNA Interference (RNAi) into the High School Classroom
ERIC Educational Resources Information Center
Sengupta, Sibani
2013-01-01
RNA interference (abbreviated RNAi) is a relatively new discovery in the field of mechanisms that serve to regulate gene expression (a.k.a. protein synthesis). Gene expression can be regulated at the transcriptional level (mRNA production, processing, or stability) and at the translational level (protein synthesis). RNAi acts in a gene-specific…
Engineered Hydrogels for Local and Sustained Delivery of RNA-Interference Therapies.
Wang, Leo L; Burdick, Jason A
2017-01-01
It has been nearly two decades since RNA-interference (RNAi) was first reported. While there are no approved clinical uses, several phase II and III clinical trials suggest the great promise of RNAi therapeutics. One challenge for RNAi therapies is the controlled localization and sustained presentation to target tissues, to both overcome systemic toxicity concerns and to enhance in vivo efficacy. One approach that is emerging to address these limitations is the entrapment of RNAi molecules within hydrogels for local and sustained release. In these systems, nucleic acids are either delivered as siRNA conjugates or within nanoparticles. A plethora of hydrogels has been implemented using these approaches, including both traditional hydrogels that have already been developed for other applications and new hydrogels developed specifically for RNAi delivery. These hydrogels have been applied to various applications in vivo, including cancer, bone regeneration, inflammation and cardiac repair. This review will examine the design and implementation of such hydrogel RNAi systems and will cover the most recent applications of these systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Human Virus-Derived Small RNAs Can Confer Antiviral Immunity in Mammals.
Qiu, Yang; Xu, Yanpeng; Zhang, Yao; Zhou, Hui; Deng, Yong-Qiang; Li, Xiao-Feng; Miao, Meng; Zhang, Qiang; Zhong, Bo; Hu, Yuanyang; Zhang, Fu-Chun; Wu, Ligang; Qin, Cheng-Feng; Zhou, Xi
2017-06-20
RNA interference (RNAi) functions as a potent antiviral immunity in plants and invertebrates; however, whether RNAi plays antiviral roles in mammals remains unclear. Here, using human enterovirus 71 (HEV71) as a model, we showed HEV71 3A protein as an authentic viral suppressor of RNAi during viral infection. When the 3A-mediated RNAi suppression was impaired, the mutant HEV71 readily triggered the production of abundant HEV71-derived small RNAs with canonical siRNA properties in cells and mice. These virus-derived siRNAs were produced from viral dsRNA replicative intermediates in a Dicer-dependent manner and loaded into AGO, and they were fully active in degrading cognate viral RNAs. Recombinant HEV71 deficient in 3A-mediated RNAi suppression was significantly restricted in human somatic cells and mice, whereas Dicer deficiency rescued HEV71 infection independently of type I interferon response. Thus, RNAi can function as an antiviral immunity, which is induced and suppressed by a human virus, in mammals. Copyright © 2017 Elsevier Inc. All rights reserved.
Stc1: A Critical Link between RNAi and Chromatin Modification Required for Heterochromatin Integrity
Bayne, Elizabeth H.; White, Sharon A.; Kagansky, Alexander; Bijos, Dominika A.; Sanchez-Pulido, Luis; Hoe, Kwang-Lae; Kim, Dong-Uk; Park, Han-Oh; Ponting, Chris P.; Rappsilber, Juri; Allshire, Robin C.
2010-01-01
Summary In fission yeast, RNAi directs heterochromatin formation at centromeres, telomeres, and the mating type locus. Noncoding RNAs transcribed from repeat elements generate siRNAs that are incorporated into the Argonaute-containing RITS complex and direct it to nascent homologous transcripts. This leads to recruitment of the CLRC complex, including the histone methyltransferase Clr4, promoting H3K9 methylation and heterochromatin formation. A key question is what mediates the recruitment of Clr4/CLRC to transcript-bound RITS. We have identified a LIM domain protein, Stc1, that is required for centromeric heterochromatin integrity. Our analyses show that Stc1 is specifically required to establish H3K9 methylation via RNAi, and interacts both with the RNAi effector Ago1, and with the chromatin-modifying CLRC complex. Moreover, tethering Stc1 to a euchromatic locus is sufficient to induce silencing and heterochromatin formation independently of RNAi. We conclude that Stc1 associates with RITS on centromeric transcripts and recruits CLRC, thereby coupling RNAi to chromatin modification. PMID:20211136
RNA interference-based therapeutics for inherited long QT syndrome.
Li, Guoliang; Ma, Shuting; Sun, Chaofeng
2015-08-01
Inherited long QT syndrome (LQTS) is an electrical heart disorder that manifests with syncope, seizures, and increased risk of torsades de pointes and sudden cardiac death. Dominant-negative current suppression is a mechanism by which pathogenic proteins disrupt the function of ion channels in inherited LQTS. However, current approaches for the management of inherited LQTS are inadequate. RNA interference (RNAi) is a powerful technique that is able to suppress or silence the expression of mutant genes. RNAi may be harnessed to knock out mRNAs that code for toxic proteins, and has been increasingly recognized as a potential therapeutic intervention for a range of conditions. The present study reviews the literature for RNAi-based therapeutics in the treatment of inherited LQTS. Furthermore, this review discusses the combined use of RNAi with the emerging technology of induced pluripotent stem cells for the treatment of inherited LQTS. In addition, key challenges that must be overcome prior to RNAi-based therapies becoming clinically applicable are addressed. In summary, RNAi-based therapy is potentially a powerful therapeutic intervention, although a number of difficulties remain unresolved.
RNA interference-based therapeutics for inherited long QT syndrome
LI, GUOLIANG; MA, SHUTING; SUN, CHAOFENG
2015-01-01
Inherited long QT syndrome (LQTS) is an electrical heart disorder that manifests with syncope, seizures, and increased risk of torsades de pointes and sudden cardiac death. Dominant-negative current suppression is a mechanism by which pathogenic proteins disrupt the function of ion channels in inherited LQTS. However, current approaches for the management of inherited LQTS are inadequate. RNA interference (RNAi) is a powerful technique that is able to suppress or silence the expression of mutant genes. RNAi may be harnessed to knock out mRNAs that code for toxic proteins, and has been increasingly recognized as a potential therapeutic intervention for a range of conditions. The present study reviews the literature for RNAi-based therapeutics in the treatment of inherited LQTS. Furthermore, this review discusses the combined use of RNAi with the emerging technology of induced pluripotent stem cells for the treatment of inherited LQTS. In addition, key challenges that must be overcome prior to RNAi-based therapies becoming clinically applicable are addressed. In summary, RNAi-based therapy is potentially a powerful therapeutic intervention, although a number of difficulties remain unresolved. PMID:26622327
The Transgenic RNAi Project at Harvard Medical School: Resources and Validation
Perkins, Lizabeth A.; Holderbaum, Laura; Tao, Rong; Hu, Yanhui; Sopko, Richelle; McCall, Kim; Yang-Zhou, Donghui; Flockhart, Ian; Binari, Richard; Shim, Hye-Seok; Miller, Audrey; Housden, Amy; Foos, Marianna; Randkelv, Sakara; Kelley, Colleen; Namgyal, Pema; Villalta, Christians; Liu, Lu-Ping; Jiang, Xia; Huan-Huan, Qiao; Wang, Xia; Fujiyama, Asao; Toyoda, Atsushi; Ayers, Kathleen; Blum, Allison; Czech, Benjamin; Neumuller, Ralph; Yan, Dong; Cavallaro, Amanda; Hibbard, Karen; Hall, Don; Cooley, Lynn; Hannon, Gregory J.; Lehmann, Ruth; Parks, Annette; Mohr, Stephanie E.; Ueda, Ryu; Kondo, Shu; Ni, Jian-Quan; Perrimon, Norbert
2015-01-01
To facilitate large-scale functional studies in Drosophila, the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) was established along with several goals: developing efficient vectors for RNAi that work in all tissues, generating a genome-scale collection of RNAi stocks with input from the community, distributing the lines as they are generated through existing stock centers, validating as many lines as possible using RT–qPCR and phenotypic analyses, and developing tools and web resources for identifying RNAi lines and retrieving existing information on their quality. With these goals in mind, here we describe in detail the various tools we developed and the status of the collection, which is currently composed of 11,491 lines and covering 71% of Drosophila genes. Data on the characterization of the lines either by RT–qPCR or phenotype is available on a dedicated website, the RNAi Stock Validation and Phenotypes Project (RSVP, http://www.flyrnai.org/RSVP.html), and stocks are available from three stock centers, the Bloomington Drosophila Stock Center (United States), National Institute of Genetics (Japan), and TsingHua Fly Center (China). PMID:26320097
Deng, Yan; Wang, Chi Chiu; Choy, Kwong Wai; Du, Quan; Chen, Jiao; Wang, Qin; Li, Lu; Chung, Tony Kwok Hung; Tang, Tao
2014-04-01
During recent decades there have been remarkable advances in biology, in which one of the most important discoveries is RNA interference (RNAi). RNAi is a specific post-transcriptional regulatory pathway that can result in silencing gene functions. Efforts have been done to translate this new discovery into clinical applications for disease treatment. However, technical difficulties restrict the development of RNAi, including stability, off-target effects, immunostimulation and delivery problems. Researchers have attempted to surmount these barriers and improve the bioavailability and safety of RNAi-based therapeutics by optimizing the chemistry and structure of these molecules. This paper aimed to describe the principles of RNA interference, review the therapeutic potential in various diseases and discuss the new strategies for in vivo delivery of RNAi to overcome the challenges. Copyright © 2013 Elsevier B.V. All rights reserved.
The rde-1 gene, RNA interference, and transposon silencing in C. elegans.
Tabara, H; Sarkissian, M; Kelly, W G; Fleenor, J; Grishok, A; Timmons, L; Fire, A; Mello, C C
1999-10-15
Double-stranded (ds) RNA can induce sequence-specific inhibition of gene function in several organisms. However, both the mechanism and the physiological role of the interference process remain mysterious. In order to study the interference process, we have selected C. elegans mutants resistant to dsRNA-mediated interference (RNAi). Two loci, rde-1 and rde-4, are defined by mutants strongly resistant to RNAi but with no obvious defects in growth or development. We show that rde-1 is a member of the piwi/sting/argonaute/zwille/eIF2C gene family conserved from plants to vertebrates. Interestingly, several, but not all, RNAi-deficient strains exhibit mobilization of the endogenous transposons. We discuss implications for the mechanism of RNAi and the possibility that one natural function of RNAi is transposon silencing.
C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation.
Liu, Ying; Ye, Xuecheng; Jiang, Feng; Liang, Chunyang; Chen, Dongmei; Peng, Junmin; Kinch, Lisa N; Grishin, Nick V; Liu, Qinghua
2009-08-07
The catalytic engine of RNA interference (RNAi) is the RNA-induced silencing complex (RISC), wherein the endoribonuclease Argonaute and single-stranded small interfering RNA (siRNA) direct target mRNA cleavage. We reconstituted long double-stranded RNA- and duplex siRNA-initiated RISC activities with the use of recombinant Drosophila Dicer-2, R2D2, and Ago2 proteins. We used this core reconstitution system to purify an RNAi regulator that we term C3PO (component 3 promoter of RISC), a complex of Translin and Trax. C3PO is a Mg2+-dependent endoribonuclease that promotes RISC activation by removing siRNA passenger strand cleavage products. These studies establish an in vitro RNAi reconstitution system and identify C3PO as a key activator of the core RNAi machinery.
Novel Drosophila Viruses Encode Host-Specific Suppressors of RNAi
van Mierlo, Joël T.; Overheul, Gijs J.; Obadia, Benjamin; van Cleef, Koen W. R.; Webster, Claire L.; Saleh, Maria-Carla; Obbard, Darren J.; van Rij, Ronald P.
2014-01-01
The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary ‘arms race’ may occur between rapidly evolving components of the antiviral RNAi pathway of Drosophila and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of Drosophila melanogaster Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of D. immigrans (DimmNV) and D. subobscura (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in D. melanogaster S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, D. immigrans. Specifically, we find that DimmNV VP1 interacts with D. immigrans AGO2, but not with D. melanogaster AGO2, and that it suppresses slicer activity in embryo lysates from D. immigrans, but not in lysates from D. melanogaster. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors. PMID:25032815
Down-Regulation of Gene Expression by RNA-Induced Gene Silencing
NASA Astrophysics Data System (ADS)
Travella, Silvia; Keller, Beat
Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.
Therapeutic RNA interference for neurodegenerative diseases: From promise to progress.
Gonzalez-Alegre, Pedro
2007-04-01
RNA interference (RNAi) has emerged as a powerful tool to manipulate gene expression in the laboratory. Due to its remarkable discriminating properties, individual genes, or even alleles can be targeted with exquisite specificity in cultured cells or living animals. Among its many potential biomedical applications, silencing of disease-linked genes stands out as a promising therapeutic strategy for many incurable disorders. Neurodegenerative diseases represent one of the more attractive targets for the development of therapeutic RNAi. In this group of diseases, the progressive loss of neurons leads to the gradual appearance of disabling neurological symptoms and premature death. Currently available therapies aim to improve the symptoms but not to halt the process of neurodegeneration. The increasing prevalence and economic burden of some of these diseases, such as Alzheimer's disease (AD) or Parkinson's disease (PD), has boosted the efforts invested in the development of interventions, such as RNAi, aimed at altering their natural course. This review will summarize where we stand in the therapeutic application of RNAi for neurodegenerative diseases. The basic principles of RNAi will be reviewed, focusing on features important for its therapeutic manipulation. Subsequently, a stepwise strategy for the development of therapeutic RNAi will be presented. Finally, the different preclinical trials of therapeutic RNAi completed in disease models will be summarized, stressing the experimental questions that need to be addressed before planning application in human disease.
RNA-Interference Pathways Display High Rates of Adaptive Protein Evolution in Multiple Invertebrates
Palmer, William H.; Hadfield, Jarrod D.; Obbard, Darren J.
2018-01-01
Conflict between organisms can lead to a reciprocal adaptation that manifests as an increased evolutionary rate in genes mediating the conflict. This adaptive signature has been observed in RNA-interference (RNAi) pathway genes involved in the suppression of viruses and transposable elements in Drosophila melanogaster, suggesting that a subset of Drosophila RNAi genes may be locked in an arms race with these parasites. However, it is not known whether rapid evolution of RNAi genes is a general phenomenon across invertebrates, or which RNAi genes generally evolve adaptively. Here we use population genomic data from eight invertebrate species to infer rates of adaptive sequence evolution, and to test for past and ongoing selective sweeps in RNAi genes. We assess rates of adaptive protein evolution across species using a formal meta-analytic framework to combine data across species and by implementing a multispecies generalized linear mixed model of mutation counts. Across species, we find that RNAi genes display a greater rate of adaptive protein substitution than other genes, and that this is primarily mediated by positive selection acting on the genes most likely to defend against viruses and transposable elements. In contrast, evidence for recent selective sweeps is broadly spread across functional classes of RNAi genes and differs substantially among species. Finally, we identify genes that exhibit elevated adaptive evolution across the analyzed insect species, perhaps due to concurrent parasite-mediated arms races. PMID:29437826
Hajeri, Subhas; Killiny, Nabil; El-Mohtar, Choaa; Dawson, William O; Gowda, Siddarame
2014-04-20
A transient expression vector based on Citrus tristeza virus (CTV) is unusually stable. Because of its stability it is being considered for use in the field to control Huanglongbing (HLB), which is caused by Candidatus Liberibacter asiaticus (CLas) and vectored by Asian citrus psyllid, Diaphorina citri. In the absence of effective control strategies for CLas, emphasis has been on control of D. citri. Coincident cohabitation in phloem tissue by CLas, D. citri and CTV was exploited to develop a novel method to mitigate HLB through RNA interference (RNAi). Since CTV has three RNA silencing suppressors, it was not known if CTV-based vector could induce RNAi in citrus. Yet, expression of sequences targeting citrus phytoene desaturase gene by CTV-RNAi resulted in photo-bleaching phenotype. CTV-RNAi vector, engineered with truncated abnormal wing disc (Awd) gene of D. citri, induced altered Awd expression when silencing triggers ingested by feeding D. citri nymphs. Decreased Awd in nymphs resulted in malformed-wing phenotype in adults and increased adult mortality. This impaired ability of D. citri to fly would potentially limit the successful vectoring of CLas bacteria between citrus trees in the grove. CTV-RNAi vector would be relevant for fast-track screening of candidate sequences for RNAi-mediated pest control. Copyright © 2014. Published by Elsevier B.V.
Knorr, Eileen; Fishilevich, Elane; Tenbusch, Linda; Frey, Meghan L F; Rangasamy, Murugesan; Billion, Andre; Worden, Sarah E; Gandra, Premchand; Arora, Kanika; Lo, Wendy; Schulenberg, Greg; Valverde-Garcia, Pablo; Vilcinskas, Andreas; Narva, Kenneth E
2018-02-01
RNAi shows potential as an agricultural technology for insect control, yet, a relatively low number of robust lethal RNAi targets have been demonstrated to control insects of agricultural interest. In the current study, a selection of lethal RNAi target genes from the iBeetle (Tribolium castaneum) screen were used to demonstrate efficacy of orthologous targets in the economically important coleopteran pests Diabrotica virgifera virgifera and Meligethes aeneus. Transcript orthologs of 50 selected genes were analyzed in D. v. virgifera diet-based RNAi bioassays; 21 of these RNAi targets showed mortality and 36 showed growth inhibition. Low dose injection- and diet-based dsRNA assays in T. castaneum and D. v. virgifera, respectively, enabled the identification of the four highly potent RNAi target genes: Rop, dre4, ncm, and RpII140. Maize was genetically engineered to express dsRNA directed against these prioritized candidate target genes. T 0 plants expressing Rop, dre4, or RpII140 RNA hairpins showed protection from D. v. virgifera larval feeding damage. dsRNA targeting Rop, dre4, ncm, and RpII140 in M. aeneus also caused high levels of mortality both by injection and feeding. In summary, high throughput systems for model organisms can be successfully used to identify potent RNA targets for difficult-to-work with agricultural insect pests.
A status report on RNAi therapeutics
2010-01-01
Fire and Mello initiated the current explosion of interest in RNA interference (RNAi) biology with their seminal work in Caenorhabditis elegans. These observations were closely followed by the demonstration of RNAi in Drosophila melanogaster. However, the full potential of these new discoveries only became clear when Tuschl and colleagues showed that 21-22 bp RNA duplexes with 3" overhangs, termed small interfering (si)RNAs, could reliably execute RNAi in a range of mammalian cells. Soon afterwards, it became clear that many different human cell types had endogenous machinery, the RNA-induced silencing complex (RISC), which could be harnessed to silence any gene in the genome. Beyond the availability of a novel way to dissect biology, an important target validation tool was now available. More importantly, two key properties of the RNAi pathway - sequence-mediated specificity and potency - suggested that RNAi might be the most important pharmacological advance since the advent of protein therapeutics. The implications were profound. One could now envisage selecting disease-associated targets at will and expect to suppress proteins that had remained intractable to inhibition by conventional methods, such as small molecules. This review attempts to summarize the current understanding on siRNA lead discovery, the delivery of RNAi therapeutics, typical in vivo pharmacological profiles, preclinical safety evaluation and an overview of the 14 programs that have already entered clinical practice. PMID:20615220
ERIC Educational Resources Information Center
Roy, Nicole M.
2013-01-01
RNA interference (RNAi) is a powerful technology used to knock down genes in basic research and medicine. In 2006 RNAi technology using "Caenorhabditis elegans" ("C. elegans") was awarded the Nobel Prize in medicine and thus students graduating in the biological sciences should have experience with this technology. However,…
"Caenorhabditis Elegans" as an Undergraduate Educational Tool for Teaching RNAi
ERIC Educational Resources Information Center
Andersen, Janet; Krichevsky, Alexander; Leheste, Joerg R.; Moloney, Daniel J.
2008-01-01
Discovery of RNA-mediated interference (RNAi) is widely recognized as one of the most significant molecular biology breakthroughs in the past 10 years. There is a need for science educators to develop teaching tools and laboratory activities that demonstrate the power of this new technology and help students to better understand the RNAi process.…
USDA-ARS?s Scientific Manuscript database
Asian longhorned beetle (ALB), Anoplophora glabripennis, is a serious invasive forest pest in several countries including the United States, Canada, and Europe. RNA interference (RNAi)technology is being developed as a novel method for pest management. Here, we identified the ALB core RNAi genes in...
Scott, Tristan; Paweska, Janusz T; Arbuthnot, Patrick; Weinberg, Marc S
2012-01-01
Rift Valley fever virus (RVFV), a member of the Bunyaviridae family, may cause severe hepatitis, encephalitis and haemorrhagic fever in humans. There are currently no available licensed vaccines or therapies to treat the viral infection in humans. RNA interference (RNAi)-based viral gene silencing offers a promising approach to inhibiting replication of this highly pathogenic virus. The small (S) segment of the RVFV tripartite genome carries the genetic determinates for pathogenicity during infection. This segment encodes the non-structural S (NSs) and essential nucleocapsid (N) genes. To advance RNAi-based inhibition of RVFV replication, we designed several Pol III short hairpin RNA (shRNA) expression cassettes against the NSs and N genes, including a multimerized plasmid vector that included four shRNA expression cassettes. Effective target silencing was demonstrated using full- and partial-length target reporter assays, and confirmed by western blot analysis of exogenous N and NSs expression. Small RNA northern blots showed detectable RNAi guide strand formation from single and multimerized shRNA constructs. Using a cell culture model of RVFV replication, shRNAs targeting the N gene decreased intracellular nucleocapsid protein concentration and viral replication. The shRNAs directed against the NSs gene reduced NSs protein concentrations and alleviated NSs-mediated cytotoxicity, which may be caused by host transcription suppression. These data are the first demonstration that RNAi activators have a potential therapeutic benefit for countering RVFV infection.
Role of RNA interference in plant improvement
NASA Astrophysics Data System (ADS)
Jagtap, Umesh Balkrishna; Gurav, Ranjit Gajanan; Bapat, Vishwas Anant
2011-06-01
Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.
Suckau, Lennart; Fechner, Henry; Chemaly, Elie; Krohn, Stefanie; Hadri, Lahouaria; Kockskämper, Jens; Westermann, Dirk; Bisping, Egbert; Ly, Hung; Wang, Xiaomin; Kawase, Yoshiaki; Chen, Jiqiu; Liang, Lifan; Sipo, Isaac; Vetter, Roland; Weger, Stefan; Kurreck, Jens; Erdmann, Volker; Tschope, Carsten; Pieske, Burkert; Lebeche, Djamel; Schultheiss, Heinz-Peter; Hajjar, Roger J.; Poller, Wolfgang Ch.
2009-01-01
Background RNA interference (RNAi) has the potential to be a novel therapeutic strategy in diverse areas of medicine. We report on targeted RNAi for the treatment of heart failure (HF), an important disorder in humans resulting from multiple etiologies. Successful treatment of HF is demonstrated in a rat model of transaortic banding by RNAi targeting of phospholamban (PLB), a key regulator of cardiac Ca2+ homeostasis. Whereas gene therapy rests on recombinant protein expression as its basic principle, RNAi therapy employs regulatory RNAs to achieve its effect. Methods and Results We describe structural requirements to obtain high RNAi activity from adenoviral (AdV) and adeno-associated virus (AAV9) vectors and show that an AdV short hairpin RNA vector (AdV-shRNA) silenced PLB in cardiomyocytes (NRCMs) and improved hemodynamics in HF rats 1 month after aortic root injection. For simplified long-term therapy we developed a dimeric cardiotropic AAV vector (rAAV9-shPLB) delivering RNAi activity to the heart via intravenous injection. Cardiac PLB protein was reduced to 25% and SERCA2a suppression in the HF groups was rescued. In contrast to traditional vectors rAAV9 shows high affinity for myocardium, but low affinity for liver and other organs. rAAV9-shPLB therapy restored diastolic (LVEDP, dp/dtmin, Tau) and systolic (fractional shortening) functional parameters to normal range. The massive cardiac dilation was normalized and the cardiac hypertrophy, cardiomyocyte diameter and cardiac fibrosis significantly reduced. Importantly, there was no evidence of microRNA deregulation or hepatotoxicity during these RNAi therapies. Conclusion Our data show, for the first time, high efficacy of an RNAi therapeutic strategy in a cardiac disease. PMID:19237664
Autonomously folded α-helical lockers promote RNAi*
NASA Astrophysics Data System (ADS)
Guyader, Christian P. E.; Lamarre, Baptiste; de Santis, Emiliana; Noble, James E.; Slater, Nigel K.; Ryadnov, Maxim G.
2016-10-01
RNAi is an indispensable research tool with a substantial therapeutic potential. However, the complete transition of the approach to an applied capability remains hampered due to poorly understood relationships between siRNA delivery and gene suppression. Here we propose that interfacial tertiary contacts between α-helices can regulate siRNA cytoplasmic delivery and RNAi. We introduce a rationale of helical amphipathic lockers that differentiates autonomously folded helices, which promote gene silencing, from helices folded with siRNA, which do not. Each of the helical designs can deliver siRNA into cells via energy-dependent endocytosis, while only autonomously folded helices with pre-locked hydrophobic interfaces were able to promote statistically appreciable gene silencing. We propose that it is the amphipathic locking of interfacing helices prior to binding to siRNA that enables RNAi. The rationale offers structurally balanced amphipathic scaffolds to advance the exploitation of functional RNAi.
Autonomously folded α-helical lockers promote RNAi*
Guyader, Christian P. E.; Lamarre, Baptiste; De Santis, Emiliana; Noble, James E.; Slater, Nigel K.; Ryadnov, Maxim G.
2016-01-01
RNAi is an indispensable research tool with a substantial therapeutic potential. However, the complete transition of the approach to an applied capability remains hampered due to poorly understood relationships between siRNA delivery and gene suppression. Here we propose that interfacial tertiary contacts between α-helices can regulate siRNA cytoplasmic delivery and RNAi. We introduce a rationale of helical amphipathic lockers that differentiates autonomously folded helices, which promote gene silencing, from helices folded with siRNA, which do not. Each of the helical designs can deliver siRNA into cells via energy-dependent endocytosis, while only autonomously folded helices with pre-locked hydrophobic interfaces were able to promote statistically appreciable gene silencing. We propose that it is the amphipathic locking of interfacing helices prior to binding to siRNA that enables RNAi. The rationale offers structurally balanced amphipathic scaffolds to advance the exploitation of functional RNAi. PMID:27721465
Autonomously folded α-helical lockers promote RNAi.
Guyader, Christian P E; Lamarre, Baptiste; De Santis, Emiliana; Noble, James E; Slater, Nigel K; Ryadnov, Maxim G
2016-10-10
RNAi is an indispensable research tool with a substantial therapeutic potential. However, the complete transition of the approach to an applied capability remains hampered due to poorly understood relationships between siRNA delivery and gene suppression. Here we propose that interfacial tertiary contacts between α-helices can regulate siRNA cytoplasmic delivery and RNAi. We introduce a rationale of helical amphipathic lockers that differentiates autonomously folded helices, which promote gene silencing, from helices folded with siRNA, which do not. Each of the helical designs can deliver siRNA into cells via energy-dependent endocytosis, while only autonomously folded helices with pre-locked hydrophobic interfaces were able to promote statistically appreciable gene silencing. We propose that it is the amphipathic locking of interfacing helices prior to binding to siRNA that enables RNAi. The rationale offers structurally balanced amphipathic scaffolds to advance the exploitation of functional RNAi.
Seo, Gil Ju; Kincaid, Rodney P.; Phanaksri, Teva; Burke, James M.; Pare, Justin M.; Cox, Jennifer E.; Hsiang, Tien-Ying; Krug, Robert M.; Sullivan, Christopher S.
2013-01-01
SUMMARY RNA interference (RNAi) is an established antiviral defense mechanism in plants and invertebrates. Whether RNAi serves a similar function in mammalian cells remains unresolved. We find that in some cell types, mammalian RNAi activity is reduced shortly after viral infection via poly ADP-ribosylation of the RNA induced silencing complex (RISC), a core component of RNAi. Well-established antiviral signaling pathways, including RIG-I/MAVS and RNAseL, contribute to inhibition of RISC. In the absence of virus infection, microRNAs repress interferon-stimulated genes (ISGs) associated with cell death and proliferation, thus maintaining homeostasis. Upon detection of intracellular pathogen-associated molecular patterns, RISC activity decreases, contributing to increased expression of ISGs. Our results suggest that unlike in lower eukaryotes, mammalian RISC is not antiviral in some contexts, but rather, RISC has been co-opted to negatively regulate toxic host antiviral effectors via microRNAs. PMID:24075860
RNAi Mediated curcin precursor gene silencing in Jatropha (Jatropha curcas L.).
Patade, Vikas Yadav; Khatri, Deepti; Kumar, Kamal; Grover, Atul; Kumari, Maya; Gupta, Sanjay Mohan; Kumar, Devender; Nasim, Mohammed
2014-07-01
Curcin, a type I ribosomal inhibiting protein-RIP, encoded by curcin precursor gene, is a phytotoxin present in Jatropha (Jatropha curcas L.). Here, we report designing of RNAi construct for the curcin precursor gene and further its genetic transformation of Jatropha to reduce its transcript expression. Curcin precursor gene was first cloned from Jatropha strain DARL-2 and part of the gene sequence was cloned in sense and antisense orientation separated by an intron sequence in plant expression binary vector pRI101 AN. The construction of the RNAi vector was confirmed by double digestion and nucleotide sequencing. The vector was then mobilized into Agrobacterium tumefaciens strain GV 3101 and used for tissue culture independent in planta transformation protocol optimized for Jatropha. Germinating seeds were injured with a needle before infection with Agrobacterium and then transferred to sterilized sand medium. The seedlings were grown for 90 days and genomic DNA was isolated from leaves for transgenic confirmation based on real time PCR with NPT II specific dual labeled probe. Result of the transgenic confirmation analysis revealed presence of the gene silencing construct in ten out of 30 tested seedlings. Further, quantitative transcript expression analysis of the curcin precursor gene revealed reduction in the transcript abundance by more than 98% to undetectable level. The transgenic plants are being grown in containment for further studies on reduction in curcin protein content in Jatropha seeds.
Post, Janina; van Deenen, Nicole; Fricke, Julia; Kowalski, Natalie; Wurbs, David; Schaller, Hubert; Eisenreich, Wolfgang; Huber, Claudia; Twyman, Richard M; Prüfer, Dirk; Gronover, Christian Schulze
2012-03-01
Certain Taraxacum species, such as Taraxacum koksaghyz and Taraxacum brevicorniculatum, produce large amounts of high-quality natural rubber in their latex, the milky cytoplasm of specialized cells known as laticifers. This high-molecular mass biopolymer consists mainly of poly(cis-1,4-isoprene) and is deposited in rubber particles by particle-bound enzymes that carry out the stereospecific condensation of isopentenyl diphosphate units. The polymer configuration suggests that the chain-elongating enzyme (rubber transferase; EC 2.5.1.20) is a cis-prenyltransferase (CPT). Here, we present a comprehensive analysis of transgenic T. brevicorniculatum plants in which the expression of three recently isolated CPTs known to be associated with rubber particles (TbCPT1 to -3) was heavily depleted by laticifer-specific RNA interference (RNAi). Analysis of the CPT-RNAi plants by nuclear magnetic resonance, size-exclusion chromatography, and gas chromatography-mass spectrometry indicated a significant reduction in rubber biosynthesis and a corresponding 50% increase in the levels of triterpenes and the main storage carbohydrate, inulin. Transmission electron microscopy revealed that the laticifers in CPT-RNAi plants contained fewer and smaller rubber particles than wild-type laticifers. We also observed lower activity of hydroxymethylglutaryl-coenzyme A reductase, the key enzyme in the mevalonate pathway, reflecting homeostatic control of the isopentenyl diphosphate pool. To our knowledge, this is the first in planta demonstration of latex-specific CPT activity in rubber biosynthesis.
Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences
Robert, Valérie J.P.; Sijen, Titia; van Wolfswinkel, Josien; Plasterk, Ronald H.A.
2005-01-01
Protection of genomes against invasion by repetitive sequences, such as transposons, viruses, and repetitive transgenes, involves strong and selective silencing of these sequences. During silencing of repetitive transgenes, a trans effect (“cosuppression”) occurs that results in silencing of cognate endogenous genes. Here we report RNA interference (RNAi) screens performed to catalog genes required for cosuppression in the Caenorhabditis elegans germline. We find factors with a putative role in chromatin remodeling and factors involved in RNAi. Together with molecular data also presented in this study, these results suggest that in C. elegans repetitive sequences trigger transcriptional gene silencing using RNAi and chromatin factors. PMID:15774721
Liu, Xiaoxuan; Liu, Cheng; Catapano, Carlo V; Peng, Ling; Zhou, Jiehua; Rocchi, Palma
2014-01-01
RNAi-based nucleic acid molecules have attracted considerable attention as compelling therapeutics providing safe and competent delivery systems are available. Dendrimers are emerging as appealing nanocarriers for nucleic acid delivery thanks to their unique well-defined architecture and the resulting cooperativity and multivalency confined within a nanostructure. The present review offers a brief overview of the structurally flexible triethanolamine-core poly(amidoamine) (PAMAM) dendrimers developed in our group as nanovectors for the delivery of RNAi therapeutics. Their excellent activity for delivering different RNAi therapeutics in various disease models in vitro and in vivo will be highlighted here. © 2013.
Pompey, Justine M; Foda, Bardees; Singh, Upinder
2015-01-01
Dicer enzymes process double-stranded RNA (dsRNA) into small RNAs that target gene silencing through the RNA interference (RNAi) pathway. Dicer enzymes are complex, multi-domain RNaseIII proteins, however structural minimalism of this protein has recently emerged in parasitic and fungal systems. The most minimal Dicer, Saccharomyces castellii Dicer1, has a single RNaseIII domain and two double stranded RNA binding domains. In the protozoan parasite Entamoeba histolytica 27nt small RNAs are abundant and mediate silencing, yet no canonical Dicer enzyme has been identified. Although EhRNaseIII does not exhibit robust dsRNA cleavage in vitro, it can process dsRNA in the RNAi-negative background of Saccharomyces cerevisiae, and in conjunction with S. castellii Argonaute1 can partially reconstitute the RNAi pathway. Thus, although EhRNaseIII lacks the domain architecture of canonical or minimal Dicer enzymes, it has dsRNA processing activity that contributes to gene silencing via RNAi. Our data advance the understanding of small RNA biogenesis in Entamoeba as well as broaden the spectrum of non-canonical Dicer enzymes that contribute to the RNAi pathway.
Small silencing RNAs: state-of-the-art.
Grimm, Dirk
2009-07-25
Over just a single decade, we have witnessed the rapid maturation of the field of RNA interference - the sequence-specific gene silencing mediated by small double-stranded RNAs - directly from its infancy into adulthood. With exciting data currently emerging from first clinical trials, it is now more likely than ever that RNAi drugs will soon provide another potent class of agents in our battle against infectious and genetic diseases. Accelerating this process and adding to RNAi's promise is our steadily expanding arsenal of innovative RNAi-based experimental tools and clinically applicable technologies. This article will critically review a selection of relevant recent advances in RNAi therapeutics, from novel asymmetric or bi-functional siRNA designs, deliberate use of small RNAs to regulate nuclear transcription, engineering of potent adeno-associated viral vectors for shRNA expression, exploitation of endogenous miRNAs to control transgene expression or vector tropism, to elegant attempts to inhibit cellular miRNAs involved in human disease. This review will also present cautionary notes on the potential risks inherent to in vivo RNAi applications, before discussing the latest surprising findings on circulating miRNAs in human body fluids, and concluding with an outlook into the possible future of RNAi as an increasingly powerful biomedical tool.
Singh, Upinder
2015-01-01
Dicer enzymes process double-stranded RNA (dsRNA) into small RNAs that target gene silencing through the RNA interference (RNAi) pathway. Dicer enzymes are complex, multi-domain RNaseIII proteins, however structural minimalism of this protein has recently emerged in parasitic and fungal systems. The most minimal Dicer, Saccharomyces castellii Dicer1, has a single RNaseIII domain and two double stranded RNA binding domains. In the protozoan parasite Entamoeba histolytica 27nt small RNAs are abundant and mediate silencing, yet no canonical Dicer enzyme has been identified. Although EhRNaseIII does not exhibit robust dsRNA cleavage in vitro, it can process dsRNA in the RNAi-negative background of Saccharomyces cerevisiae, and in conjunction with S. castellii Argonaute1 can partially reconstitute the RNAi pathway. Thus, although EhRNaseIII lacks the domain architecture of canonical or minimal Dicer enzymes, it has dsRNA processing activity that contributes to gene silencing via RNAi. Our data advance the understanding of small RNA biogenesis in Entamoeba as well as broaden the spectrum of non-canonical Dicer enzymes that contribute to the RNAi pathway. PMID:26230096
The Transgenic RNAi Project at Harvard Medical School: Resources and Validation.
Perkins, Lizabeth A; Holderbaum, Laura; Tao, Rong; Hu, Yanhui; Sopko, Richelle; McCall, Kim; Yang-Zhou, Donghui; Flockhart, Ian; Binari, Richard; Shim, Hye-Seok; Miller, Audrey; Housden, Amy; Foos, Marianna; Randkelv, Sakara; Kelley, Colleen; Namgyal, Pema; Villalta, Christians; Liu, Lu-Ping; Jiang, Xia; Huan-Huan, Qiao; Wang, Xia; Fujiyama, Asao; Toyoda, Atsushi; Ayers, Kathleen; Blum, Allison; Czech, Benjamin; Neumuller, Ralph; Yan, Dong; Cavallaro, Amanda; Hibbard, Karen; Hall, Don; Cooley, Lynn; Hannon, Gregory J; Lehmann, Ruth; Parks, Annette; Mohr, Stephanie E; Ueda, Ryu; Kondo, Shu; Ni, Jian-Quan; Perrimon, Norbert
2015-11-01
To facilitate large-scale functional studies in Drosophila, the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) was established along with several goals: developing efficient vectors for RNAi that work in all tissues, generating a genome-scale collection of RNAi stocks with input from the community, distributing the lines as they are generated through existing stock centers, validating as many lines as possible using RT-qPCR and phenotypic analyses, and developing tools and web resources for identifying RNAi lines and retrieving existing information on their quality. With these goals in mind, here we describe in detail the various tools we developed and the status of the collection, which is currently composed of 11,491 lines and covering 71% of Drosophila genes. Data on the characterization of the lines either by RT-qPCR or phenotype is available on a dedicated website, the RNAi Stock Validation and Phenotypes Project (RSVP, http://www.flyrnai.org/RSVP.html), and stocks are available from three stock centers, the Bloomington Drosophila Stock Center (United States), National Institute of Genetics (Japan), and TsingHua Fly Center (China). Copyright © 2015 by the Genetics Society of America.
Arias, Renée S.; Dang, Phat M.; Sobolev, Victor S.
2015-01-01
The Food and Agriculture Organization of the United Nations estimates that 25% of the food crops in the world are contaminated with aflatoxins. That represents 100 million tons of food being destroyed or diverted to non-human consumption each year. Aflatoxins are powerful carcinogens normally accumulated by the fungi Aspergillus flavus and A. parasiticus in cereals, nuts, root crops and other agricultural products. Silencing of five aflatoxin-synthesis genes by RNA interference (RNAi) in peanut plants was used to control aflatoxin accumulation following inoculation with A. flavus. Previously, no method existed to analyze the effectiveness of RNAi in individual peanut transgenic events, as these usually produce few seeds, and traditional methods of large field experiments under aflatoxin-conducive conditions were not an option. In the field, the probability of finding naturally contaminated seeds is often 1/100 to 1/1,000. In addition, aflatoxin contamination is not uniformly distributed. Our method uses few seeds per transgenic event, with small pieces processed for real-time PCR (RT-PCR) or small RNA sequencing, and for analysis of aflatoxin accumulation by ultra-performance liquid chromatography (UPLC). RNAi-expressing peanut lines 288-72 and 288-74, showed up to 100% reduction (p≤0.01) in aflatoxin B1 and B2 compared to the control that accumulated up to 14,000 ng.g-1 of aflatoxin B1 when inoculated with aflatoxigenic A. flavus. As reference, the maximum total of aflatoxins allowable for human consumption in the United States is 20 ng.g-1. This protocol describes the application of RNAi-mediated control of aflatoxins in transgenic peanut seeds and methods for its evaluation. We believe that its application in breeding of peanut and other crops will bring rapid advancement in this important area of science, medicine and human nutrition, and will significantly contribute to the international effort to control aflatoxins, and potentially other mycotoxins in major food crops. PMID:26709851
Arias, Renée S; Dang, Phat M; Sobolev, Victor S
2015-12-21
The Food and Agriculture Organization of the United Nations estimates that 25% of the food crops in the world are contaminated with aflatoxins. That represents 100 million tons of food being destroyed or diverted to non-human consumption each year. Aflatoxins are powerful carcinogens normally accumulated by the fungi Aspergillus flavus and A. parasiticus in cereals, nuts, root crops and other agricultural products. Silencing of five aflatoxin-synthesis genes by RNA interference (RNAi) in peanut plants was used to control aflatoxin accumulation following inoculation with A. flavus. Previously, no method existed to analyze the effectiveness of RNAi in individual peanut transgenic events, as these usually produce few seeds, and traditional methods of large field experiments under aflatoxin-conducive conditions were not an option. In the field, the probability of finding naturally contaminated seeds is often 1/100 to 1/1,000. In addition, aflatoxin contamination is not uniformly distributed. Our method uses few seeds per transgenic event, with small pieces processed for real-time PCR (RT-PCR) or small RNA sequencing, and for analysis of aflatoxin accumulation by ultra-performance liquid chromatography (UPLC). RNAi-expressing peanut lines 288-72 and 288-74, showed up to 100% reduction (p ≤ 0.01) in aflatoxin B1 and B2 compared to the control that accumulated up to 14,000 ng · g(-1) of aflatoxin B1 when inoculated with aflatoxigenic A. flavus. As reference, the maximum total of aflatoxins allowable for human consumption in the United States is 20 ng · g(-1). This protocol describes the application of RNAi-mediated control of aflatoxins in transgenic peanut seeds and methods for its evaluation. We believe that its application in breeding of peanut and other crops will bring rapid advancement in this important area of science, medicine and human nutrition, and will significantly contribute to the international effort to control aflatoxins, and potentially other mycotoxins in major food crops.
Zha, Wenjun; Peng, Xinxin; Chen, Rongzhi; Du, Bo; Zhu, Lili; He, Guangcun
2011-01-01
Background RNA interference (RNAi) is a powerful technique for functional genomics research in insects. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been reported for lepidopteran and coleopteran insects, showing potential for field-level control of insect pests, but this has not been reported for other insect orders. Methodology/Principal Findings The Hemipteran insect brown planthopper (Nilaparvata lugens Stål) is a typical phloem sap feeder specific to rice (Oryza sativa L.). To analyze the potential of exploiting RNAi-mediated effects in this insect, we identified genes (Nlsid-1 and Nlaub) encoding proteins that might be involved in the RNAi pathway in N. lugens. Both genes are expressed ubiquitously in nymphs and adult insects. Three genes (the hexose transporter gene NlHT1, the carboxypeptidase gene Nlcar and the trypsin-like serine protease gene Nltry) that are highly expressed in the N. lugens midgut were isolated and used to develop dsRNA constructs for transforming rice. RNA blot analysis showed that the dsRNAs were transcribed and some of them were processed to siRNAs in the transgenic lines. When nymphs were fed on rice plants expressing dsRNA, levels of transcripts of the targeted genes in the midgut were reduced; however, lethal phenotypic effects after dsRNA feeding were not observed. Conclusions Our study shows that genes for the RNAi pathway (Nlsid-1 and Nlaub) are present in N. lugens. When insects were fed on rice plant materials expressing dsRNAs, RNA interference was triggered and the target genes transcript levels were suppressed. The gene knockdown technique described here may prove to be a valuable tool for further investigations in N. lugens. The results demonstrate the potential of dsRNA-mediated RNAi for field-level control of planthoppers, but appropriate target genes must be selected when designing the dsRNA-transgenic plants. PMID:21655219
Alaaeldin, Eman; Abu Lila, Amr S; Ando, Hidenori; Fukushima, Masakazu; Huang, Cheng-Long; Wada, Hiromi; Sarhan, Hatem A; Khaled, Khaled A; Ishida, Tatsuhiro
2017-06-10
Many therapeutic strategies have been applied in efforts to conquer the development and/or progression of cancer. The combination of chemotherapy and an RNAi-based approach has proven to be an efficient anticancer therapy. However, the feasibility of such a therapeutic strategy has been substantially restricted either by the failure to achieve the efficient delivery of RNAi molecules to tumor tissue or by the immunostimulatory response triggered by RNAi molecules. In this study, therefore, we intended to investigate the efficacy of using liposomal oxaliplatin (liposomal l-OHP) to guarantee the efficient delivery of RNAi molecules, namely shRNA against thymidylate synthase (TS shRNA) complexed with cationic liposome (TS shRNA-lipoplex), to solid tumors, and to suppress the immunostimulatory effect of RNAi molecules, TS shRNA, following intravenous administration. Herein, we describe how liposomal l-OHP enhanced the intra-tumor accumulation of TS shRNA-lipoplex and significantly reduced the immunostimulatory response triggered by TS shRNA. Consequently, such enhanced accumulation of TS shRNA-lipoplex along with the cytotoxic effect of liposomal l-OHP led to a remarkable tumor growth suppression (compared to mono-therapy) following systemic administration. Our results, therefore, may have important implications for the provision of a safer and more applicable combination therapy of RNAi molecules and anti-cancer agents that can produce a more reliable anti-tumor effect. Copyright © 2017 Elsevier B.V. All rights reserved.
Phylogenetic Origin and Diversification of RNAi Pathway Genes in Insects.
Dowling, Daniel; Pauli, Thomas; Donath, Alexander; Meusemann, Karen; Podsiadlowski, Lars; Petersen, Malte; Peters, Ralph S; Mayer, Christoph; Liu, Shanlin; Zhou, Xin; Misof, Bernhard; Niehuis, Oliver
2016-12-01
RNA interference (RNAi) refers to the set of molecular processes found in eukaryotic organisms in which small RNA molecules mediate the silencing or down-regulation of target genes. In insects, RNAi serves a number of functions, including regulation of endogenous genes, anti-viral defense, and defense against transposable elements. Despite being well studied in model organisms, such as Drosophila, the distribution of core RNAi pathway genes and their evolution in insects is not well understood. Here we present the most comprehensive overview of the distribution and diversity of core RNAi pathway genes across 100 insect species, encompassing all currently recognized insect orders. We inferred the phylogenetic origin of insect-specific RNAi pathway genes and also identified several hitherto unrecorded gene expansions using whole-body transcriptome data from the international 1KITE (1000 Insect Transcriptome Evolution) project as well as other resources such as i5K (5000 Insect Genome Project). Specifically, we traced the origin of the double stranded RNA binding protein R2D2 to the last common ancestor of winged insects (Pterygota), the loss of Sid-1/Tag-130 orthologs in Antliophora (fleas, flies and relatives, and scorpionflies in a broad sense), and confirm previous evidence for the splitting of the Argonaute proteins Aubergine and Piwi in Brachyceran flies (Diptera, Brachycera). Our study offers new reference points for future experimental research on RNAi-related pathway genes in insects. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Ma, Ning-Qiang; Liu, Li-Li; Min, Jie; Wang, Jun-Wei; Jiang, Wei-Feng; Liu, Yan; Feng, Yan-Guo; Su, Hai-Chuan; Feng, Ying-Ming; Zhang, He-Long
2011-12-01
Bone is the third most common site of cancer metastasis. Over 30 to 40% of lung cancers can develop skeletal metastasis and no effective curative therapy exists in clinic cases. Previously we screened the different expression of proteins between SBC-5 cells and SBC-3 cells by proteomic study methods (MALDI-TOF/TOF-MS) and found that calcineurin (hereafter referred as Cn) overexpresses in SBC-5 which has special priority in metastasis to bone in a multiple-organ metastasis mice model. However the roles of Cn in osteotropism of SCLC remain to be elucidated. At present study, we decrease CnAα expression in SBC-5 by lentiviral vector-mediated RNAi and found that down regulation of CnAα gene expression can decrease the proliferation and colony formation rate, impede the cell cycle progression, reduce the cell migration and invasion, and inhibit cells adhering to bone matrix, but not change the apoptosis rate of SBC-5 in vitro. In vivo down or up regulation of CnAα gene expression can only decrease or increase the bone metastasis rate, but not affect the metastasis rate to the visceral organs. Our research reveals that CnAα is closely related to the osteotropism metastasis of SCLC and a candidate tumor promotor gene for developing bone metastases.
Han, Pengfei; Fan, Jiqiao; Liu, Yu; Cuthbertson, Andrew G. S.; Yan, Shaoqiao; Qiu, Bao-Li; Ren, Shunxiang
2014-01-01
Destruxin A is a mycotoxin that is secreted by entomopathogenic fungi which has a broad-spectrum insecticidal effect. Previous transcript and protein profiling analysis showed that destruxin A has significant effects on the expression of serine protease inhibitor genes (serpin-2, 4, 5) in the larvae of Plutella xylostella. In the current study, we aimed to understand the role of serpins under application of destruxin A. We obtained two full-length cDNA sequences of P. xylostella serpins, named serpin-4 and serpin-5, and cloned the serpin-2 gene whose full-length has already been published. Phylogenetic analysis indicated that these two serpin genes were highly clustered with other serpins associated with the immune response in other insects. The temporal and spatial expression of serpin-2, serpin-4 and serpin-5 were determined to be the highest in the fat body and hemolymph of 4th larval stage using qRT-PCR and western blot detection techniques. RNA interference (RNAi) mediated knockdown of P. xylostella serpin genes was carried out by microinjection of double-stranded RNA (dsRNA). The expression levels of serpins decreased significantly after RNAi. Results showed that the depletion of serpins induced cecropins expression, increased phenoloxidase (PO) activity, body melanization and mortality in the larvae of P. xylostella under the same lethal concentration of destruxin A. The superimposed effects of serpins RNAi were similar with the destruxin A treatment upon mortality of P. xylostella larvae. We discovered for the first time that serpins play indispensable role in P. xylostella when challenged by destruxin A and deduced the possible function mechanism of destruxin A. Our findings are conducive to fully understanding the potential insecticidal mechanism of destruxin A and constitute a well-defined potential molecular target for novel insecticides. PMID:24837592
Meng, Huimin; Wang, Zhangxun; Wang, Yulong; Zhu, Hong; Huang, Bo
2017-04-01
RNA interference (RNAi) is a gene-silencing mechanism that plays an important role in gene regulation in a number of eukaryotic organisms. Two core components, Dicer and Argonaute, are central in the RNAi machinery. However, the physiological roles of Dicer and Argonaute in the entomopathogenic fungus Metarhizium robertsii have remained unclear. Here, the roles of genes encoding Dicer ( M. robertsii dcl1 [ Mrdcl1 ] and Mrdcl2 ) and Argonaute ( Mrago1 and Mrago2 ) proteins in M. robertsii were investigated. The results showed that the Dicer-like protein MrDCL2 and Argonaute protein MrAGO1 are the major components of the RNAi process occurring in M. robertsii The Dicer and Argonaute genes were not involved in the regulation of growth and diverse abiotic stress response in M. robertsii under the tested conditions. Moreover, our results showed that the Dicer and Argonaute gene mutants demonstrated reduced abilities to produce conidia, compared to the wild type (WT) and the gene-rescued mutant. In particular, the conidial yields in the Δ dcl2 and Δ ago1 mutants were reduced by 55.8% and 59.3%, respectively, compared with those from the control strains. Subsequently, for the WT and Δ dcl2 mutant strains, digital gene expression (DGE) profiling analysis of the stage of mycelium growth and conidiogenesis revealed that modest changes occur in development or metabolism processes, which may explain the reduction in conidiation in the Δ dcl2 mutant. In addition, we further applied high-throughput sequencing technology to identify small RNAs (sRNAs) that are differentially expressed in the WT and the Δ dcl2 mutant and found that 4 known microRNA-like small RNAs (milRNAs) and 8 novel milRNAs were Mrdcl2 dependent in M. robertsii IMPORTANCE The identification and characterization of components in RNAi have contributed significantly to our understanding of the mechanism and functions of RNAi in eukaryotes. Here, we found that Dicer and Argonaute genes play an important role in regulating conidiation in M. robertsii Our study also demonstrates that diverse small RNA pathways exist in M. robertsii The study provides a theoretical platform for exploration of the functions of Dicer and Argonaute genes involved in RNAi in fungi. Copyright © 2017 American Society for Microbiology.
O'Grady, Michael; Raha, Debasish; Hanson, Bonnie J; Bunting, Michaeline; Hanson, George T
2005-01-01
Background The transcription factor activator protein-1 (AP-1) has been implicated in a large variety of biological processes including oncogenic transformation. The tyrosine kinases of the epidermal growth factor receptor (EGFR) constitute the beginning of one signal transduction cascade leading to AP-1 activation and are known to control cell proliferation and differentiation. Drug discovery efforts targeting this receptor and other pathway components have centred on monoclonal antibodies and small molecule inhibitors. Resistance to such inhibitors has already been observed, guiding the prediction of their use in combination therapies with other targeted agents such as RNA interference (RNAi). This study examines the use of RNAi and kinase inhibitors for qualification of components involved in the EGFR/AP-1 pathway of ME180 cells, and their inhibitory effects when evaluated individually or in tandem against multiple components of this important disease-related pathway. Methods AP-1 activation was assessed using an ME180 cell line stably transfected with a beta-lactamase reporter gene under the control of AP-1 response element following epidermal growth factor (EGF) stimulation. Immunocytochemistry allowed for further quantification of small molecule inhibition on a cellular protein level. RNAi and RT-qPCR experiments were performed to assess the amount of knockdown on an mRNA level, and immunocytochemistry was used to reveal cellular protein levels for the targeted pathway components. Results Increased potency of kinase inhibitors was shown by combining RNAi directed towards EGFR and small molecule inhibitors acting at proximal or distal points in the pathway. After cellular stimulation with EGF and analysis at the level of AP-1 activation using a β-lactamase reporter gene, a 10–12 fold shift or 2.5–3 fold shift toward greater potency in the IC50 was observed for EGFR and MEK-1 inhibitors, respectively, in the presence of RNAi targeting EGFR. Conclusion EGFR pathway components were qualified as targets for inhibition of AP-1 activation using RNAi and small molecule inhibitors. The combination of these two targeted agents was shown to increase the efficacy of EGFR and MEK-1 kinase inhibitors, leading to possible implications for overcoming or preventing drug resistance, lowering effective drug doses, and providing new strategies for interrogating cellular signalling pathways. PMID:16202132
RNAi screening comes of age: improved techniques and complementary approaches
Mohr, Stephanie E.; Smith, Jennifer A.; Shamu, Caroline E.; Neumüller, Ralph A.; Perrimon, Norbert
2014-01-01
Gene silencing through sequence-specific targeting of mRNAs by RNAi has enabled genome-wide functional screens in cultured cells and in vivo in model organisms. These screens have resulted in the identification of new cellular pathways and potential drug targets. Considerable progress has been made to improve the quality of RNAi screen data through the development of new experimental and bioinformatics approaches. The recent availability of genome-editing strategies, such as the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system, when combined with RNAi, could lead to further improvements in screen data quality and follow-up experiments, thus promoting our understanding of gene function and gene regulatory networks. PMID:25145850
RNAi functionalized scaffold for scarless skin regeneration
Liu, Xing; Ma, Lie; Gao, Changyou
2013-01-01
Combination of a 3-D scaffold with the emerging RNA interference (RNAi) technique represents the latest paradigm of regenerative medicine. In our recent paper “RNAi functionalized collagen-chitosan/silicone membrane bilayer dermal equivalent for full-thickness skin regeneration with inhibited scarring” in the journal Biomaterials, we not only demonstrated a 3-D system for siRNA sustained delivery, but also presented a comprehensive in vivo study by targeting a vital problem in skin regeneration: scarring. It is expected that further development of this kind of RNAi functionalized scaffold can provide a better platform for directing cell fates by integrating the “down-regulating” biomolecular cues into the cellular microenvironment, leading to the complete functional regeneration of skin. PMID:23811756
Zhu, Bao-Song; Yu, Li-Yan; Zhao, Kui; Wu, Yong-You; Cheng, Xiao-Li; Wu, Yong; Zhong, Feng-Yun; Gong, Wei; Chen, Qiang; Xing, Chun-Gen
2013-01-01
AIM: To investigate the effects of small interfering RNA (siRNA)-mediated inhibition of Class I phosphoinositide 3-kinase (Class I PI3K) signal transduction on the proliferation, apoptosis, and autophagy of gastric cancer SGC7901 and MGC803 cells. METHODS: We constructed the recombinant replication adenovirus PI3K(I)-RNA interference (RNAi)-green fluorescent protein (GFP) and control adenovirus NC-RNAi-GFP, and infected it into human gastric cancer cells. MTT assay was used to determine the growth rate of the gastric cancer cells. Activation of autophagy was monitored with monodansylcadaverine (MDC) staining after adenovirus PI3K(I)-RNAi-GFP and control adenovirus NC-RNAi-GFP treatment. Immunofluorescence staining was used to detect the expression of microtubule-associated protein 1 light chain 3 (LC3). Mitochondrial membrane potential was measured using the fluorescent probe JC-1. The expression of autophagy was monitored with MDC, LC3 staining, and transmission electron microscopy. Western blotting was used to detect p53, Beclin-1, Bcl-2, and LC3 protein expression in the culture supernatant. RESULTS: The viability of gastric cancer cells was inhibited after siRNA targeting to the Class I PI3K blocked Class I PI3K signal pathway. MTT assays revealed that, after SGC7901 cancer cells were treated with adenovirus PI3K(I)-RNAi-GFP, the rate of inhibition reached 27.48% ± 2.71% at 24 h, 41.92% ± 2.02% at 48 h, and 50.85% ± 0.91% at 72 h. After MGC803 cancer cells were treated with adenovirus PI3K(I)-RNAi-GFP, the rate of inhibition reached 24.39% ± 0.93% at 24 h, 47.00% ± 0.87% at 48 h, and 70.30% ± 0.86% at 72 h (P < 0.05 compared to control group). It was determined that when 50 MOI, the transfection efficiency was 95% ± 2.4%. Adenovirus PI3K(I)-RNAi-GFP (50 MOI) induced mitochondrial dysfunction and activated cell apoptosis in SGC7901 cells, and the results described here prove that RNAi of Class I PI3K induced apoptosis in SGC7901 cells. The results showed that adenovirus PI3K(I)-RNAi-GFP transfection induced punctate distribution of LC3 immunoreactivity, indicating increased formation of autophagosomes. The results showed that the basal level of Beclin-1 and LC3 protein in SGC7901 cells was low. After incubating with adenovirus PI3K(I)-RNAi-GFP (50 MOI), Beclin-1, LC3, and p53 protein expression was significantly increased from 24 to 72 h. We also found that Bcl-2 protein expression down-regulated with the treatment of adenovirus PI3K(I)-RNAi-GFP (50 MOI). A number of isolated membranes, possibly derived from ribosome-free endoplasmic reticulum, were seen. These isolated membranes were elongated and curved to engulf a cytoplasmic fraction and organelles. We used transmission electron microscopy to identify ultrastructural changes in SGC7901 cells after adenovirus PI3K(I)-RNAi-GFP (50 MOI) treatment. Control cells showed a round shape and contained normal-looking organelles, nucleus, and chromatin, while adenovirus PI3K(I)-RNAi-GFP (50 MOI)-treated cells exhibited the typical signs of autophagy. CONCLUSION: After the Class I PI3K signaling pathway has been blocked by siRNA, the proliferation of cells was inhibited and the apoptosis of gastric cancer cells was enhanced. PMID:23555164
Tabara, Hiroaki; Yigit, Erbay; Siomi, Haruhiko; Mello, Craig C
2002-06-28
Double-stranded (ds) RNA induces potent gene silencing, termed RNA interference (RNAi). At an early step in RNAi, an RNaseIII-related enzyme, Dicer (DCR-1), processes long-trigger dsRNA into small interfering RNAs (siRNAs). DCR-1 is also required for processing endogenous regulatory RNAs called miRNAs, but how DCR-1 recognizes its endogenous and foreign substrates is not yet understood. Here we show that the C. elegans RNAi pathway gene, rde-4, encodes a dsRNA binding protein that interacts during RNAi with RNA identical to the trigger dsRNA. RDE-4 protein also interacts in vivo with DCR-1, RDE-1, and a conserved DExH-box helicase. Our findings suggest a model in which RDE-4 and RDE-1 function together to detect and retain foreign dsRNA and to present this dsRNA to DCR-1 for processing.
Elhassan, Mohamed O.; Christie, Jennifer; Duxbury, Mark S.
2012-01-01
Locally initiated RNA interference (RNAi) has the potential for spatial propagation, inducing posttranscriptional gene silencing in distant cells. In Caenorhabditis elegans, systemic RNAi requires a phylogenetically conserved transmembrane channel, SID-1. Here, we show that a human SID-1 orthologue, SIDT1, facilitates rapid, contact-dependent, bidirectional small RNA transfer between human cells, resulting in target-specific non-cell-autonomous RNAi. Intercellular small RNA transfer can be both homotypic and heterotypic. We show SIDT1-mediated intercellular transfer of microRNA-21 to be a driver of resistance to the nucleoside analog gemcitabine in human adenocarcinoma cells. Documentation of a SIDT1-dependent small RNA transfer mechanism and the associated phenotypic effects on chemoresistance in human cancer cells raises the possibility that conserved systemic RNAi pathways contribute to the acquisition of drug resistance. Mediators of non-cell-autonomous RNAi may be tractable targets for novel therapies aimed at improving the efficacy of current cytotoxic agents. PMID:22174421
Fabozzi, Giulia; Nabel, Christopher S; Dolan, Michael A; Sullivan, Nancy J
2011-03-01
Cellular RNA interference (RNAi) provides a natural response against viral infection, but some viruses have evolved mechanisms to antagonize this form of antiviral immunity. To determine whether Ebolavirus (EBOV) counters RNAi by encoding suppressors of RNA silencing (SRSs), we screened all EBOV proteins using an RNAi assay initiated by exogenously delivered small interfering RNAs (siRNAs) against either an EBOV or a reporter gene. In addition to viral protein 35 (VP35), we found that VP30 and VP40 independently act as SRSs. Here, we present the molecular mechanisms of VP30 and VP35. VP30 interacts with Dicer independently of siRNA and with one Dicer partner, TRBP, only in the presence of siRNA. VP35 directly interacts with Dicer partners TRBP and PACT in an siRNA-independent fashion and in the absence of effects on interferon (IFN). Taken together, our findings elucidate a new mechanism of RNAi suppression that extends beyond the role of SRSs in double-stranded RNA (dsRNA) binding and IFN antagonism. The presence of three suppressors highlights the relevance of host RNAi-dependent antiviral immunity in EBOV infection and illustrates the importance of RNAi in shaping the evolution of RNA viruses.
Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.
Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F
2018-04-03
High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.
Caenorhabditis elegans ABCRNAi Transporters Interact Genetically With rde-2 and mut-7
Sundaram, Prema; Han, Wang; Cohen, Nancy; Echalier, Benjamin; Albin, John; Timmons, Lisa
2008-01-01
RNA interference (RNAi) mechanisms are conserved and consist of an interrelated network of activities that not only respond to exogenous dsRNA, but also perform endogenous functions required in the fine tuning of gene expression and in maintaining genome integrity. Not surprisingly, RNAi functions have widespread influences on cellular function and organismal development. Previously, we observed a reduced capacity to mount an RNAi response in nine Caenorhabditis elegans mutants that are defective in ABC transporter genes (ABCRNAi mutants). Here, we report an exhaustive study of mutants, collectively defective in 49 different ABC transporter genes, that allowed for the categorization of one additional transporter into the ABCRNAi gene class. Genetic complementation tests reveal functions for ABCRNAi transporters in the mut-7/rde-2 branch of the RNAi pathway. These second-site noncomplementation interactions suggest that ABCRNAi proteins and MUT-7/RDE-2 function together in parallel pathways and/or as multiprotein complexes. Like mut-7 and rde-2, some ABCRNAi mutants display transposon silencing defects. Finally, our analyses reveal a genetic interaction network of ABCRNAi gene function with respect to this part of the RNAi pathway. From our results, we speculate that the coordinated activities of ABCRNAi transporters, through their effects on endogenous RNAi-related mechanisms, ultimately affect chromosome function and integrity. PMID:18245353
RNA interference: Applications and advances in insect toxicology and insect pest management.
Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan
2015-05-01
Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management. Copyright © 2015 Elsevier Inc. All rights reserved.
Koch, Aline; Kogel, Karl-Heinz
2014-09-01
RNA interference (RNAi) has emerged as a powerful genetic tool for scientific research over the past several years. It has been utilized not only in fundamental research for the assessment of gene function, but also in various fields of applied research, such as human and veterinary medicine and agriculture. In plants, RNAi strategies have the potential to allow manipulation of various aspects of food quality and nutritional content. In addition, the demonstration that agricultural pests, such as insects and nematodes, can be killed by exogenously supplied RNAi targeting their essential genes has raised the possibility that plant predation can be controlled by lethal RNAi signals generated in planta. Indeed, recent evidence argues that this strategy, called host-induced gene silencing (HIGS), is effective against sucking insects and nematodes; it also has been shown to compromise the growth and development of pathogenic fungi, as well as bacteria and viruses, on their plant hosts. Here, we review recent studies that reveal the enormous potential RNAi strategies hold not only for improving the nutritive value and safety of the food supply, but also for providing an environmentally friendly mechanism for plant protection. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Ho, Hsiang; Milenković, Tijana; Memisević, Vesna; Aruri, Jayavani; Przulj, Natasa; Ganesan, Anand K
2010-06-15
RNA-mediated interference (RNAi)-based functional genomics is a systems-level approach to identify novel genes that control biological phenotypes. Existing computational approaches can identify individual genes from RNAi datasets that regulate a given biological process. However, currently available methods cannot identify which RNAi screen "hits" are novel components of well-characterized biological pathways known to regulate the interrogated phenotype. In this study, we describe a method to identify genes from RNAi datasets that are novel components of known biological pathways. We experimentally validate our approach in the context of a recently completed RNAi screen to identify novel regulators of melanogenesis. In this study, we utilize a PPI network topology-based approach to identify targets within our RNAi dataset that may be components of known melanogenesis regulatory pathways. Our computational approach identifies a set of screen targets that cluster topologically in a human PPI network with the known pigment regulator Endothelin receptor type B (EDNRB). Validation studies reveal that these genes impact pigment production and EDNRB signaling in pigmented melanoma cells (MNT-1) and normal melanocytes. We present an approach that identifies novel components of well-characterized biological pathways from functional genomics datasets that could not have been identified by existing statistical and computational approaches.
2010-01-01
Background RNA-mediated interference (RNAi)-based functional genomics is a systems-level approach to identify novel genes that control biological phenotypes. Existing computational approaches can identify individual genes from RNAi datasets that regulate a given biological process. However, currently available methods cannot identify which RNAi screen "hits" are novel components of well-characterized biological pathways known to regulate the interrogated phenotype. In this study, we describe a method to identify genes from RNAi datasets that are novel components of known biological pathways. We experimentally validate our approach in the context of a recently completed RNAi screen to identify novel regulators of melanogenesis. Results In this study, we utilize a PPI network topology-based approach to identify targets within our RNAi dataset that may be components of known melanogenesis regulatory pathways. Our computational approach identifies a set of screen targets that cluster topologically in a human PPI network with the known pigment regulator Endothelin receptor type B (EDNRB). Validation studies reveal that these genes impact pigment production and EDNRB signaling in pigmented melanoma cells (MNT-1) and normal melanocytes. Conclusions We present an approach that identifies novel components of well-characterized biological pathways from functional genomics datasets that could not have been identified by existing statistical and computational approaches. PMID:20550706
Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing
Kola, Vijaya Sudhakara Rao; Renuka, P.; Madhav, Maganti Sheshu; Mangrauthia, Satendra K.
2015-01-01
RNA interference (RNAi) is a mechanism of homology dependent gene silencing present in plants and animals. It operates through 21–24 nucleotides small RNAs which are processed through a set of core enzymatic machinery that involves Dicer and Argonaute proteins. In recent past, the technology has been well appreciated toward the control of plant pathogens and insects through suppression of key genes/proteins of infecting organisms. The genes encoding key enzymes/proteins with the great potential for developing an effective insect control by RNAi approach are actylcholinesterase, cytochrome P450 enzymes, amino peptidase N, allatostatin, allatotropin, tryptophan oxygenase, arginine kinase, vacuolar ATPase, chitin synthase, glutathione-S-transferase, catalase, trehalose phosphate synthase, vitellogenin, hydroxy-3-methylglutaryl coenzyme A reductase, and hormone receptor genes. Through various studies, it is demonstrated that RNAi is a reliable molecular tool which offers great promises in meeting the challenges imposed by crop insects with careful selection of key enzymes/proteins. Utilization of RNAi tool to target some of these key proteins of crop insects through various approaches is described here. The major challenges of RNAi based insect control such as identifying potential targets, delivery methods of silencing trigger, off target effects, and complexity of insect biology are very well illustrated. Further, required efforts to address these challenges are also discussed. PMID:25954206
Firnhaber, Christopher; Hammarlund, Marc
2013-11-01
Forward genetic screens are important tools for exploring the genetic requirements for neuronal function. However, conventional forward screens often have difficulty identifying genes whose relevant functions are masked by pleiotropy. In particular, if loss of gene function results in sterility, lethality, or other severe pleiotropy, neuronal-specific functions cannot be readily analyzed. Here we describe a method in C. elegans for generating cell-specific knockdown in neurons using feeding RNAi and its application in a screen for the role of essential genes in GABAergic neurons. We combine manipulations that increase the sensitivity of select neurons to RNAi with manipulations that block RNAi in other cells. We produce animal strains in which feeding RNAi results in restricted gene knockdown in either GABA-, acetylcholine-, dopamine-, or glutamate-releasing neurons. In these strains, we observe neuron cell-type specific behavioral changes when we knock down genes required for these neurons to function, including genes encoding the basal neurotransmission machinery. These reagents enable high-throughput, cell-specific knockdown in the nervous system, facilitating rapid dissection of the site of gene action and screening for neuronal functions of essential genes. Using the GABA-specific RNAi strain, we screened 1,320 RNAi clones targeting essential genes on chromosomes I, II, and III for their effect on GABA neuron function. We identified 48 genes whose GABA cell-specific knockdown resulted in reduced GABA motor output. This screen extends our understanding of the genetic requirements for continued neuronal function in a mature organism.
Freeley, Michael; Derrick, Emily; Dempsey, Eugene; Hoff, Antje; Davies, Anthony; Leake, Devin; Vermeulen, Annaleen; Kelleher, Dermot; Long, Aideen
2015-09-01
Screening of RNA interference (RNAi) libraries in primary T cells is labor-intensive and technically challenging because these cells are hard to transfect. Chemically modified, self-delivering small interfering RNAs (siRNAs) offer a solution to this problem, because they enter hard-to-transfect cell types without needing a delivery reagent and are available in library format for RNAi screening. In this study, we have screened a library of chemically modified, self-delivering siRNAs targeting the expression of 72 distinct genes in conjunction with an image-based high-content-analysis platform as a proof-of-principle strategy to identify genes involved in lymphocyte function-associated antigen-1 (LFA-1)-mediated migration in primary human T cells. Our library-screening strategy identified the small GTPase RhoA as being crucial for T cell polarization and migration in response to LFA-1 stimulation and other migratory ligands. We also demonstrate that multiple downstream assays can be performed within an individual RNAi screen and have used the remainder of the cells for additional assays, including cell viability and adhesion to ICAM-1 (the physiological ligand for LFA-1) in the absence or presence of the chemokine SDF-1α. This study therefore demonstrates the ease and benefits of conducting siRNA library screens in primary human T cells using self-delivering, chemically modified siRNAs, and it emphasizes the feasibility and potential of this approach for elucidating the signaling pathways that regulate T cell function. © 2015 Society for Laboratory Automation and Screening.
Durand-Dubief, Mickaël; Absalon, Sabrina; Menzer, Linda; Ngwabyt, Sandra; Ersfeld, Klaus; Bastin, Philippe
2007-12-01
The protist Trypanosoma brucei possesses a single Argonaute gene called TbAGO1 that is necessary for RNAi silencing. We previously showed that in strain 427, TbAGO1 knock-out leads to a slow growth phenotype and to chromosome segregation defects. Here we report that the slow growth phenotype is linked to defects in segregation of both large and mini-chromosome populations, with large chromosomes being the most affected. These phenotypes are completely reversed upon inducible re-expression of TbAGO1 fused to GFP, demonstrating their link with TbAGO1. Trypanosomes that do not express TbAGO1 show a general increase in the abundance of transcripts derived from the short retroposon RIME (Ribosomal Interspersed Mobile Element). Supplementary large RIME transcripts emerge in the absence of RNAi, a phenomenon coupled to the disappearance of short transcripts. These fluctuations are reversed by inducible expression of GFP::TbAGO1. Furthermore, we use a combination of Northern blots, RT-PCR and sequencing to reveal that RNAi controls expression of transcripts derived from RHS (Retrotransposon Hot Spot) pseudogenes (RHS genes with retro-element(s) integrated within their coding sequence). Absence of RNAi also leads to an increase of steady-state transcripts from regular RHS genes (those without retro-element), indicating a role for pseudogene in control of gene expression. However, analysis of retroposon abundance and arrangement in the genome of multiple clonal cell lines of TbAGO1-/- failed to reveal movement of mobile elements despite the increased amounts of retroposon transcripts.
Singh, Anand K; Lakhotia, Subhash C
2016-01-01
A delayed organismic lethality was reported in Drosophila following heat shock when developmentally active and stress-inducible noncoding hsrω-n transcripts were down-regulated during heat shock through hs-GAL4-driven expression of the hsrω-RNAi transgene, despite the characteristic elevation of all heat shock proteins (Hsp), including Hsp70. Here, we show that hsrω-RNAi transgene expression prior to heat shock singularly prevents accumulation of Hsp70 in all larval tissues without affecting transcriptional induction of hsp70 genes and stability of their transcripts. Absence of the stress-induced Hsp70 accumulation was not due to higher levels of Hsc70 in hsrω-RNAi transgene-expressing tissues. Inhibition of proteasomal activity during heat shock restored high levels of the induced Hsp70, suggesting very rapid degradation of the Hsp70 even during the stress when hsrω-RNAi transgene was expressed ahead of heat shock. Unexpectedly, while complete absence of hsrω transcripts in hsrω (66) homozygotes (hsrω-null) did not prevent high accumulation of heat shock-induced Hsp70, hsrω-RNAi transgene expression in hsrω-null background blocked Hsp70 accumulation. Nonspecific RNAi transgene expression did not affect Hsp70 induction. These observations reveal that, under certain conditions, the stress-induced Hsp70 can be selectively and rapidly targeted for proteasomal degradation even during heat shock. In the present case, the selective degradation of Hsp70 does not appear to be due to down-regulation of the hsrω-n transcripts per se; rather, this may be an indirect effect of the expression of hsrω-RNAi transgene whose RNA products may titrate away some RNA-binding proteins which may also be essential for stability of the induced Hsp70.
NHR-23 dependent collagen and hedgehog-related genes required for molting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kouns, Nathaniel A.; Nakielna, Johana; Behensky, Frantisek
2011-10-07
Highlights: {yields} NHR-23 is a critical regulator of nematode development and molting. {yields} The manuscript characterizes the loss-of-function phenotype of an nhr-23 mutant. {yields} Whole genome expression analysis identifies new potential targets of NHR-23. {yields} Hedgehog-related genes are identified as NHR-23 dependent genes. {yields} New link between sterol mediated signaling and regulation by NHR-23 is found. -- Abstract: NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparativemore » expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.« less
Matsushima, Yuichi; Adán, Cristina; Garesse, Rafael; Kaguni, Laurie S
2005-04-29
We report the cloning and molecular analysis of Drosophila mitochondrial transcription factor (d-mtTF) B1. An RNA interference (RNAi) construct was designed that reduces expression of d-mtTFB1 to 5% of its normal level in Schneider cells. In striking contrast with our previous study on d-mtTFB2, we found that RNAi knock-down of d-mtTFB1 does not change the abundance of specific mitochondrial RNA transcripts, nor does it affect the copy number of mitochondrial DNA. In a corollary manner, overexpression of d-mtTFB1 did not increase either the abundance of mitochondrial RNA transcripts or mitochondrial DNA copy number. Our data suggest that, unlike d-mtTFB2, d-mtTFB1 does not have a critical role in either transcription or regulation of the copy number of mitochondrial DNA. Instead, because we found that RNAi knockdown of d-mtTFB1 reduces mitochondrial protein synthesis, we propose that it serves its primary role in modulating translation. Our work represents the first study to document the role of mtTFB1 in vivo and establishes clearly functional differences between mtTFB1 and mtTFB2.
Sindhu, Annu; Arora, Pooja; Chaudhury, Ashok
2012-07-01
A novel laboratory revolution for disease therapy, the RNA interference (RNAi) technology, has adopted a new era of molecular research as the next generation "Gene-targeted prophylaxis." In this review, we have focused on the chief technological challenges associated with the efforts to develop RNAi-based therapeutics that may guide the biomedical researchers. Many non-curable maladies, like neurodegenerative diseases and cancers have effectively been cured using this technology. Rapid advances are still in progress for the development of RNAi-based technologies that will be having a major impact on medical research. We have highlighted the recent discoveries associated with the phenomenon of RNAi, expression of silencing molecules in mammals along with the vector systems used for disease therapeutics.
Post, Janina; van Deenen, Nicole; Fricke, Julia; Kowalski, Natalie; Wurbs, David; Schaller, Hubert; Eisenreich, Wolfgang; Huber, Claudia; Twyman, Richard M.; Prüfer, Dirk; Gronover, Christian Schulze
2012-01-01
Certain Taraxacum species, such as Taraxacum koksaghyz and Taraxacum brevicorniculatum, produce large amounts of high-quality natural rubber in their latex, the milky cytoplasm of specialized cells known as laticifers. This high-molecular mass biopolymer consists mainly of poly(cis-1,4-isoprene) and is deposited in rubber particles by particle-bound enzymes that carry out the stereospecific condensation of isopentenyl diphosphate units. The polymer configuration suggests that the chain-elongating enzyme (rubber transferase; EC 2.5.1.20) is a cis-prenyltransferase (CPT). Here, we present a comprehensive analysis of transgenic T. brevicorniculatum plants in which the expression of three recently isolated CPTs known to be associated with rubber particles (TbCPT1 to -3) was heavily depleted by laticifer-specific RNA interference (RNAi). Analysis of the CPT-RNAi plants by nuclear magnetic resonance, size-exclusion chromatography, and gas chromatography-mass spectrometry indicated a significant reduction in rubber biosynthesis and a corresponding 50% increase in the levels of triterpenes and the main storage carbohydrate, inulin. Transmission electron microscopy revealed that the laticifers in CPT-RNAi plants contained fewer and smaller rubber particles than wild-type laticifers. We also observed lower activity of hydroxymethylglutaryl-coenzyme A reductase, the key enzyme in the mevalonate pathway, reflecting homeostatic control of the isopentenyl diphosphate pool. To our knowledge, this is the first in planta demonstration of latex-specific CPT activity in rubber biosynthesis. PMID:22238421
He, Junhua; Bian, Yunfei; Gao, Fen; Li, Maolian; Qiu, Ling; Wu, Weidong; Zhou, Hua; Liu, Gaizhen; Xiao, Chuanshi
2009-02-01
The purpose of the present study was to investigate the effects on blood pressure and myocardial hypertrophy in SHRs (spontaneously hypertensive rats) of RNAi (RNA interference) targeting ACE (angiotensin-converting enzyme). SHRs were treated with normal saline as vehicle controls, with Ad5-EGFP as vector controls, and with recombinant adenoviral vectors Ad5-EGFP-ACE-shRNA, carrying shRNA (small hairpin RNA) for ACE as ACE-RNAi. WKY (Wistar-Kyoto) rats were used as normotensive controls treated with normal saline. The systolic blood pressure of the caudal artery was recorded. Serum levels of ACE and AngII (angiotensin II) were determined using ELISA. ACE mRNA and protein levels were determined in aorta, myocardium, kidney and lung. On day 32 of the experiment, the heart was pathologically examined. The ratios of heart weight/body weight and left ventricular weight/body weight were calculated. The serum concentration of ACE was lower in ACE-RNAi rats (16.37+/-3.90 ng/ml) compared with vehicle controls and vector controls (48.26+/-1.50 ng/ml and 46.67+/-2.82 ng/ml respectively; both P<0.05), but comparable between ACE-RNAi rats and WKY rats (14.88+/-3.15 ng/ml; P>0.05). The serum concentration of AngII was also significantly lower in ACE-RNAi rats (18.24+/-3.69 pg/ml) compared with vehicle controls and vector controls (46.21+/-5.06 pg/ml and 44.93+/-4.12 pg/ml respectively; both P<0.05), but comparable between ACE-RNAi rats and WKY rats (16.06+/-3.11 pg/ml; P>0.05). The expression of ACE mRNA and ACE protein were significantly reduced in the myocardium, aorta, kidney and lung in ACE-RNAi rats compared with that in vehicle controls and in vector controls (all P<0.05). ACE-RNAi treatment resulted in a reduction in systolic blood pressure by 22+/-3 mmHg and the ACE-RNAi-induced reduction lasted for more than 14 days. In contrast, blood pressure was continuously increased in the vehicle controls as well as in the vector controls. The ratios of heart weight/body weight and left ventricular weight/body weight were significantly lower in ACE-RNAi rats (3.12+/-0.23 mg/g and 2.24+/-0.19 mg/g) compared with the vehicle controls (4.29+/-0.24 mg/g and 3.21+/-0.13 mg/g; P<0.05) and the vector controls (4.43+/-0.19 mg/g and 3.13+/-0.12 mg/g; P<0.05). The conclusion of the present study is that ACE-silencing had significant antihypertensive effects and reversed hypertensive-induced cardiac hypertrophy in SHRs, and therefore RNAi might be a new strategy in controlling hypertension.
Paudel, Jamuna Risal; Davidson, Charlotte; Song, Jun; Maxim, Itkin; Aharoni, Asaph; Tai, Helen H
2017-11-01
Steroidal glycoalkaloids (SGAs) are major secondary metabolites constitutively produced in cultivated potato Solanum tuberosum, and α-solanine and α-chaconine are the most abundant SGAs. SGAs are toxic to humans at high levels but their role in plant protection against pests and pathogens is yet to be established. In this study, levels of SGAs in potato were reduced by RNA interference (RNAi)-mediated silencing of GLYCOALKALOID METABOLISM 4 (GAME4)-a gene encoding cytochrome P450, involved in an oxidation step in the conversion of cholesterol to SGA aglycones. Two GAME4 RNAi lines, T8 and T9, were used to investigate the effects of manipulation of the SGA biosynthetic pathway in potato. Growth and development of an insect pest, Colorado potato beetle (CPB), were affected in these lines. While no effect on CPB leaf consumption or weight gain was observed, early instar larval death and accelerated development of the insect was found while feeding on leaves of GAME4 RNAi lines. Modulation of SGA biosynthetic pathway in GAME4 RNAi plants was associated with a larger alteration to the metabolite profile, including increased levels of one or both the steroidal saponins or phytoecdysteroids, which could affect insect mortality as well as development time. Colonization by Verticillium dahliae on GAME4 RNAi plants was also tested. There were increased pathogen levels in the T8 GAME4 RNAi line but not in the T9. Metabolite differences between T8 and T9 were found and may have contributed to differences in V. dahliae infection. Drought responses created by osmotic stress were not affected by modulation of SGA biosynthetic pathway in potato.
Dietary Risk Assessment of v-ATPase A dsRNAs on Monarch Butterfly Larvae.
Pan, Huipeng; Yang, Xiaowei; Bidne, Keith; Hellmich, Richard L; Siegfried, Blair D; Zhou, Xuguo
2017-01-01
By suppressing the expression of genes with essential biological functions, in planta RNAi can negatively affect the development and survival of target pests. As a part of a concerted effort to assess the risks of RNAi transgenic crops on non-target organisms, we developed an in vivo toxicity assay to examine the impacts of ingested dsRNAs incurred to the monarch butterfly, Danaus plexippus (L.), an iconic eco-indicator in North America. To create the worst case scenario, the full-length v-ATPase A cDNAs from the target pest, western corn rootworm, Diabrotica virgifera virgifera , and the non-target D. plexippus were respectively cloned. A 400 bp fragment with the highest sequence similarity between the two species was used as the template to synthesize dsRNAs for the subsequent dietary RNAi toxicity assay. Specifically, newly hatched neonates were provisioned with leaf disks surface-coated with v-ATPase A dsRNAs synthesized from D. v. virgifera and D. plexippus , respectively, a control dsRNA, β -glucoruronidase , from plants, and H 2 O. The endpoint measurements included gene expressions and life history traits. The 2283 bp D. plexippus v-ATPase A cDNA contains a 99 bp 5'-untranslated region, a 330 bp 3'-untranslated region, and an 1851 bp ORF encoding 617 amino acids. The temporal RNAi study did not detect any impact to D. plexippus v-ATPase A expression by the assay days and treatments. This was reflected in the phenotypic impacts of dietary RNAi, in which both survival rate and development time were not affected by the uptake of ingested dsRNAs. These combined results suggest that D. plexippus larvae are not susceptible to dietary RNAi, therefore, the impact of transgenic RNAi plants on this non-target organism is, likely, negligible.
Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance.
Ni, Mi; Ma, Wei; Wang, Xiaofang; Gao, Meijing; Dai, Yan; Wei, Xiaoli; Zhang, Lei; Peng, Yonggang; Chen, Shuyuan; Ding, Lingyun; Tian, Yue; Li, Jie; Wang, Haiping; Wang, Xiaolin; Xu, Guowang; Guo, Wangzhen; Yang, Yihua; Wu, Yidong; Heuberger, Shannon; Tabashnik, Bruce E; Zhang, Tianzhen; Zhu, Zhen
2017-09-01
Transgenic crops producing insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are extensively cultivated worldwide. To counter rapidly increasing pest resistance to crops that produce single Bt toxins, transgenic plant 'pyramids' producing two or more Bt toxins that kill the same pest have been widely adopted. However, cross-resistance and antagonism between Bt toxins limit the sustainability of this approach. Here we describe development and testing of the first pyramids of cotton combining protection from a Bt toxin and RNA interference (RNAi). We developed two types of transgenic cotton plants producing double-stranded RNA (dsRNA) from the global lepidopteran pest Helicoverpa armigera designed to interfere with its metabolism of juvenile hormone (JH). We focused on suppression of JH acid methyltransferase (JHAMT), which is crucial for JH synthesis, and JH-binding protein (JHBP), which transports JH to organs. In 2015 and 2016, we tested larvae from a Bt-resistant strain and a related susceptible strain of H. armigera on seven types of cotton: two controls, Bt cotton, two types of RNAi cotton (targeting JHAMT or JHBP) and two pyramids (Bt cotton plus each type of RNAi). Both types of RNAi cotton were effective against Bt-resistant insects. Bt cotton and RNAi acted independently against the susceptible strain. In computer simulations of conditions in northern China, where millions of farmers grow Bt cotton as well as abundant non-transgenic host plants of H. armigera, pyramided cotton combining a Bt toxin and RNAi substantially delayed resistance relative to using Bt cotton alone. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Sindhu, Anoop S; Maier, Tom R; Mitchum, Melissa G; Hussey, Richard S; Davis, Eric L; Baum, Thomas J
2009-01-01
Cyst nematodes are highly evolved sedentary plant endoparasites that use parasitism proteins injected through the stylet into host tissues to successfully parasitize plants. These secretory proteins likely are essential for parasitism as they are involved in a variety of parasitic events leading to the establishment of specialized feeding cells required by the nematode to obtain nourishment. With the advent of RNA interference (RNAi) technology and the demonstration of host-induced gene silencing in parasites, a new strategy to control pests and pathogens has become available, particularly in root-knot nematodes. Plant host-induced silencing of cyst nematode genes so far has had only limited success but similarly should disrupt the parasitic cycle and render the host plant resistant. Additional in planta RNAi data for cyst nematodes are being provided by targeting four parasitism genes through host-induced RNAi gene silencing in transgenic Arabidopsis thaliana, which is a host for the sugar beet cyst nematode Heterodera schachtii. Here it is reported that mRNA abundances of targeted nematode genes were specifically reduced in nematodes feeding on plants expressing corresponding RNAi constructs. Furthermore, this host-induced RNAi of all four nematode parasitism genes led to a reduction in the number of mature nematode females. Although no complete resistance was observed, the reduction of developing females ranged from 23% to 64% in different RNAi lines. These observations demonstrate the relevance of the targeted parasitism genes during the nematode life cycle and, potentially more importantly, suggest that a viable level of resistance in crop plants may be accomplished in the future using this technology against cyst nematodes.
He, Hongbin; Ding, Fangrong; Yang, Hongjun; Cheng, Lei; Liu, Wenhao; Zhong, Jifeng; Dai, Yunping; Li, Guangpeng; He, Chengqiang; Yu, Li; Li, Jianbin
2012-01-01
Background Although it is known that RNA interference (RNAi) targeting viral genes protects experimental animals, such as mice, from the challenge of Foot-and-mouth disease virus (FMDV), it has not been previously investigated whether shRNAs targeting FMDV in transgenic dairy cattle or primary transgenic bovine epithelium cells will confer resistance against FMDV challenge. Principal Finding Here we constructed three recombinant lentiviral vectors containing shRNA against VP2 (RNAi-VP2), VP3 (RNAi-VP3), or VP4 (RNAi-VP4) of FMDV, and found that all of them strongly suppressed the transient expression of a FLAG-tagged viral gene fusion protein in 293T cells. In BHK-21 cells, RNAi-VP4 was found to be more potent in inhibition of viral replication than the others with over 98% inhibition of viral replication. Therefore, recombinant lentiviral vector RNAi-VP4 was transfected into bovine fetal fibroblast cells to generate transgenic nuclear donor cells. With subsequent somatic cell cloning, we generated forty transgenic blastocysts, and then transferred them to 20 synchronized recipient cows. Three transgenic bovine fetuses were obtained after pregnant period of 4 months, and integration into chromosome in cloned fetuses was confirmed by Southern hybridization. The primary tongue epithelium cells of transgenic fetuses were isolated and inoculated with 100 TCID50 of FMDV, and it was observed that shRNA significantly suppressed viral RNA synthesis and inhibited over 91% of viral replication after inoculation of FMDV for 48 h. Conclusion RNAi-VP4 targeting viral VP4 gene appears to prevent primary epithelium cells of transgenic bovine fetus from FMDV infection, and it could be a candidate shRNA used for cultivation of transgenic cattle against FMDV. PMID:22905125
Two distinct roles of the yorkie/yap gene during homeostasis in the planarian Dugesia japonica.
Hwang, Byulnim; An, Yang; Agata, Kiyokazu; Umesono, Yoshihiko
2015-04-01
Adult planarians possess somatic pluripotent stem cells called neoblasts that give rise to all missing cell types during regeneration and homeostasis. Recent studies revealed that the Yorkie (Yki)/Yes-associated protein (YAP) transcriptional coactivator family plays an important role in the regulation of tissue growth during development and regeneration, and therefore we investigated the role of a planarian yki-related gene (termed Djyki) during regeneration and homeostasis of the freshwater planarian Dugesia japonica. We found that knockdown of the function of Djyki by RNA interference (RNAi) downregulated neoblast proliferation and caused regeneration defects after amputation. In addition, Djyki RNAi caused edema during homeostasis. These seemingly distinct defects induced by Djyki RNAi were rescued by simultaneous RNAi of a planarian mats-related gene (termed Djmats), suggesting an important role of Djmats in the negative regulation of Djyki, in accordance with the conservation of the functional relationship of these two genes during the course of evolution. Interestingly, Djyki RNAi did not prevent normal protonephridial structure, suggesting that Djyki RNAi induced the edema phenotype without affecting the excretory system. Further analyses revealed that increased expression of the D. japonica gene DjaquaporinA (DjaqpA), which belongs to a large gene family that encodes a water channel protein for the regulation of transcellular water flow, promoted the induction of edema, but not defects in neoblast dynamics, in Djyki(RNAi) animals. Thus, we conclude that Djyki plays two distinct roles in the regulation of active proliferation of stem cells and in osmotic water transport across the body surface in D. japonica. © 2015 The Authors Development, Growth & Differentiation published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Society of Developmental Biologists.
Biotechnological uses of RNAi in plants: risk assessment considerations.
Casacuberta, Josep M; Devos, Yann; du Jardin, Patrick; Ramon, Matthew; Vaucheret, Hervé; Nogué, Fabien
2015-03-01
RNAi offers opportunities to generate new traits in genetically modified (GM) plants. Instead of expressing novel proteins, RNAi-based GM plants reduce target gene expression. Silencing of off-target genes may trigger unintended effects, and identifying these genes would facilitate risk assessment. However, using bioinformatics alone is not reliable, due to the lack of genomic data and insufficient knowledge of mechanisms governing mRNA-small (s)RNA interactions. Copyright © 2014 Elsevier Ltd. All rights reserved.
The next phase of life-sciences spaceflight research
Etheridge, Timothy; Nemoto, Kanako; Hashizume, Toko; Mori, Chihiro; Sugimoto, Tomoko; Suzuki, Hiromi; Fukui, Keiji; Yamazaki, Takashi; Higashibata, Akira; Higashitani, Atsushi
2011-01-01
Recently we demonstrated that the effectiveness of RNAi interference (RNAi) for inhibiting gene expression is maintained during spaceflight in the worm Caenorhabditis elegans and argued for the biomedical importance of this finding. We also successfully utilized green fluorescent protein (GFP)-tagged proteins to monitor changes in GPF localization during flight. Here we discuss potential applications of RNAi and GFP in spaceflight studies and the ramifications of these experiments for the future of space life-sciences research. PMID:22446523
Ruiz-Vázquez, Rosa M; Nicolás, Francisco E; Torres-Martínez, Santiago; Garre, Victoriano
2015-01-01
The basal fungus Mucor circinelloides has become, in recent years, a valuable model to study RNA-mediated gene silencing or RNA interference (RNAi). Serendipitously discovered in the late 1900s, the gene silencing in M. circinelloides is a landscape of consensus and dissents. Although similar to other classical fungal models in the basic design of the essential machinery that is responsible for silencing of gene expression, the existence of small RNA molecules of different sizes generated during this process and the presence of a mechanism that amplifies the silencing signal, give it a unique identity. In addition, M. circinelloides combines the components of RNAi machinery to carry out functions that not only limit themselves to the defense against foreign genetic material, but it uses some of these elements to regulate the expression of its own genes. Thus, different combinations of RNAi elements produce distinct classes of endogenous small RNAs (esRNAs) that regulate different physiological and developmental processes in response to environmental signals. The recent discovery of a new RNAi pathway involved in the specific degradation of endogenous mRNAs, using a novel RNase protein, adds one more element to the exciting puzzle of the gene silencing in M. circinelloides, in addition to providing hints about the evolutionary origin of the RNAi mechanism. Copyright © 2015 Elsevier Inc. All rights reserved.
A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia
Marker, Simone; Carradec, Quentin; Tanty, Véronique; Arnaiz, Olivier; Meyer, Eric
2014-01-01
In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia. PMID:24860163
Grimm, Dirk; Wang, Lora; Lee, Joyce S; Schürmann, Nina; Gu, Shuo; Börner, Kathleen; Storm, Theresa A; Kay, Mark A
2010-09-01
shRNA overexpression from viral gene therapy vectors can trigger cytotoxicity leading to organ failure and lethality in mice and rats. This process likely involves saturation of endogenous cellular RNAi factors including exportin-5 (Xpo-5). Here, we have shown that Xpo-5 overexpression enhanced shRNA efficiency in the liver of adult mice but increased hepatotoxicity. We identified the 4 members of the human Argonaute (Ago) protein family as downstream factors involved in saturation of endogenous cellular RNAi, all of which were able to interact with shRNAs in cells and mice. In Ago/shRNA coexpression studies, Ago-2 (Slicer) was the primary rate-limiting determinant of both in vitro and in vivo RNAi efficacy, toxicity, and persistence. In adult mice, vector-based Ago-2/Xpo-5 coexpression enhanced U6-driven shRNA silencing of exogenous and endogenous hepatic targets, reduced hepatotoxicity, and extended RNAi stability by more than 3 months. Use of weaker RNA polymerase III promoters to minimize shRNA expression likewise alleviated in vivo toxicity and permitted greater than 95% persistent knockdown of hepatitis B virus and other transgenes in mouse liver for more than 1 year. Our studies substantiate that abundant small RNAs can overload the endogenous RNAi pathway and reveal possible strategies for reducing hepatotoxicity of short- and long-term clinical gene silencing in humans.
Gao, Mai-cang; Jia, Xiao-di; Wu, Qi-fei; Cheng, Yan; Chen, Fen-rong; Zhang, Jun
2011-01-01
Aim: To investigate whether down-regulation of peroxiredoxin 1 (Prx1) and/or peroxiredoxin 5 (Prx5) sensitizes human esophageal cancer cells to ionizing radiation (IR). Methods: Human esophageal carcinoma cell lines Eca-109 and TE-1 were used. Prx mRNA expression profiles in Eca-109 and TE-1 cells were determined using RT-PCR. Two highly expressed isoforms of Prxs, Prx1 and Prx5, were silenced by RNA interference (RNAi). Following IR, intracellular reactive oxygen species (ROS) and apoptosis were measured using flow cytometry, the activities of catalase, superoxide dismutase and glutathione peroxidase were measured, and the radiosensitizing effect of RNAi was observed. Tumor xenograft model was also used to examine the radiosensitizing effect of RNAi in vivo. Results: Down-regulation of Prx1 and/or Prx5 by RNAi does not alter the activities of catalase, superoxide dismutase and glutathione peroxidase, but made human tumor cells more sensitive to IR-induced apoptosis both in vitro and in vivo. When the two isoforms were decreased simultaneously, intracellular ROS and apoptosis significantly increased after IR. Conclusion: Silencing Prx1 and/or Prx5 by RNAi sensitizes human Eca-109 and TE-1 cells to IR, and the intracellular ROS accumulation may contribute to the radiosensitizing effect of the RNAi. PMID:21468086
Kocan, Katherine M; Manzano-Roman, Raúl; de la Fuente, José
2007-05-01
RNA interference (RNAi) has become the most powerful experimental tool for the study of gene function in ticks. Subolesin, initially called 4D8, was found to be protective against tick infestations when used as a vaccine and was shown to be highly conserved among ixodid tick species at the nucleotide and protein levels. RNAi caused systemic silencing of subolesin and demonstrated that this protein is involved in regulation of tick feeding, reproduction, and development. Recently, these results were extended to the one-host tick Rhipicephalus (Boophilus) microplus in which injection of dsRNA into replete females resulted in transovarial silencing of subolesin expression in eggs and larvae. Herein, we report transovarial silencing of subolesin by RNAi in the three-host ticks, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis. Silencing of subolesin expression by RNAi in these tick species also affected subolesin expression in eggs and larvae. Transovarial RNAi appears to be a common mechanism in ixodid ticks and provides a simple method for the rapid characterization of tick genes involved in oviposition, embryogenesis, and larval development.
Small RNAs—The Secret Agents in the Plant-Pathogen Interactions
Weiberg, Arne; Jin, Hailing
2015-01-01
Eukaryotic regulatory small RNAs (sRNAs) that induce RNA interference (RNAi) are involved in a plethora of biological processes, including host immunity and pathogen virulence. In plants, diverse classes of sRNAs contribute to the regulation of host innate immunity. These immune-regulatory sRNAs operate through distinct RNAi pathways that trigger transcriptional or post-transcriptional gene silencing. Similarly, many pathogen-derived sRNAs also regulate pathogen virulence. Remarkably, the influence of regulatory sRNAs is not limited to the individual organism in which they are generated. It can sometimes extend to interacting species from even different kingdoms. There they trigger gene silencing in the interacting organism, a phenomenon called cross-kingdom RNAi. This is exhibited in advanced pathogens and parasites that produce sRNAs to suppress host immunity. Conversely, in host-induced gene silencing (HIGS), diverse plants are engineered to trigger RNAi against pathogens and pests to confer host resistance. Cross-kingdom RNAi opens up a vastly unexplored area of research on mobile sRNAs in the battlefield between hosts and pathogens. PMID:26123395
Ciaudo, Constance; Jay, Florence; Okamoto, Ikuhiro; Chen, Chong-Jian; Sarazin, Alexis; Servant, Nicolas; Barillot, Emmanuel; Heard, Edith; Voinnet, Olivier
2013-01-01
In most mouse tissues, long-interspersed elements-1 (L1s) are silenced via methylation of their 5′-untranslated regions (5′-UTR). A gradual loss-of-methylation in pre-implantation embryos coincides with L1 retrotransposition in blastocysts, generating potentially harmful mutations. Here, we show that Dicer- and Ago2-dependent RNAi restricts L1 accumulation and retrotransposition in undifferentiated mouse embryonic stem cells (mESCs), derived from blastocysts. RNAi correlates with production of Dicer-dependent 22-nt small RNAs mapping to overlapping sense/antisense transcripts produced from the L1 5′-UTR. However, RNA-surveillance pathways simultaneously degrade these transcripts and, consequently, confound the anti-L1 RNAi response. In Dicer−/− mESC complementation experiments involving ectopic Dicer expression, L1 silencing was rescued in cells in which microRNAs remained strongly depleted. Furthermore, these cells proliferated and differentiated normally, unlike their non-complemented counterparts. These results shed new light on L1 biology, uncover defensive, in addition to regulatory roles for RNAi, and raise questions on the differentiation defects of Dicer−/− mESCs. PMID:24244175
RNA Interference (RNAi) Induced Gene Silencing: A Promising Approach of Hi-Tech Plant Breeding.
Younis, Adnan; Siddique, Muhammad Irfan; Kim, Chang-Kil; Lim, Ki-Byung
2014-01-01
RNA interference (RNAi) is a promising gene regulatory approach in functional genomics that has significant impact on crop improvement which permits down-regulation in gene expression with greater precise manner without affecting the expression of other genes. RNAi mechanism is expedited by small molecules of interfering RNA to suppress a gene of interest effectively. RNAi has also been exploited in plants for resistance against pathogens, insect/pest, nematodes, and virus that cause significant economic losses. Keeping beside the significance in the genome integrity maintenance as well as growth and development, RNAi induced gene syntheses are vital in plant stress management. Modifying the genes by the interference of small RNAs is one of the ways through which plants react to the environmental stresses. Hence, investigating the role of small RNAs in regulating gene expression assists the researchers to explore the potentiality of small RNAs in abiotic and biotic stress management. This novel approach opens new avenues for crop improvement by developing disease resistant, abiotic or biotic stress tolerant, and high yielding elite varieties.
RNA Interference (RNAi) Induced Gene Silencing: A Promising Approach of Hi-Tech Plant Breeding
Younis, Adnan; Siddique, Muhammad Irfan; Kim, Chang-Kil; Lim, Ki-Byung
2014-01-01
RNA interference (RNAi) is a promising gene regulatory approach in functional genomics that has significant impact on crop improvement which permits down-regulation in gene expression with greater precise manner without affecting the expression of other genes. RNAi mechanism is expedited by small molecules of interfering RNA to suppress a gene of interest effectively. RNAi has also been exploited in plants for resistance against pathogens, insect/pest, nematodes, and virus that cause significant economic losses. Keeping beside the significance in the genome integrity maintenance as well as growth and development, RNAi induced gene syntheses are vital in plant stress management. Modifying the genes by the interference of small RNAs is one of the ways through which plants react to the environmental stresses. Hence, investigating the role of small RNAs in regulating gene expression assists the researchers to explore the potentiality of small RNAs in abiotic and biotic stress management. This novel approach opens new avenues for crop improvement by developing disease resistant, abiotic or biotic stress tolerant, and high yielding elite varieties. PMID:25332689
Efficacy of a Novel Class of RNA Interference Therapeutic Agents
Matsumoto, Takahiro; D'Alessandro-Gabazza, Corina N.; Gil-Bernabe, Paloma; Boveda-Ruiz, Daniel; Naito, Masahiro; Kobayashi, Tetsu; Toda, Masaaki; Mizutani, Takayuki; Taguchi, Osamu; Morser, John; Eguchi, Yutaka; Kuroda, Masahiko; Ochiya, Takahiro; Hayashi, Hirotake; Gabazza, Esteban C.; Ohgi, Tadaaki
2012-01-01
RNA interference (RNAi) is being widely used in functional gene research and is an important tool for drug discovery. However, canonical double-stranded short interfering RNAs are unstable and induce undesirable adverse effects, and thus there is no currently RNAi-based therapy in the clinic. We have developed a novel class of RNAi agents, and evaluated their effectiveness in vitro and in mouse models of acute lung injury (ALI) and pulmonary fibrosis. The novel class of RNAi agents (nkRNA®, PnkRNA™) were synthesized on solid phase as single-stranded RNAs that, following synthesis, self-anneal into a unique helical structure containing a central stem and two loops. They are resistant to degradation and suppress their target genes. nkRNA and PnkRNA directed against TGF-β1mRNA ameliorate outcomes and induce no off-target effects in three animal models of lung disease. The results of this study support the pathological relevance of TGF-β1 in lung diseases, and suggest the potential usefulness of these novel RNAi agents for therapeutic application. PMID:22916145
RNA interference-based nanosystems for inflammatory bowel disease therapy
Guo, Jian; Jiang, Xiaojing; Gui, Shuangying
2016-01-01
Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn’s disease, is a chronic, recrudescent disease that invades the gastrointestinal tract, and it requires surgery or lifelong medicinal therapy. The conventional medicinal therapies for IBD, such as anti-inflammatories, glucocorticoids, and immunosuppressants, are limited because of their systemic adverse effects and toxicity during long-term treatment. RNA interference (RNAi) precisely regulates susceptibility genes to decrease the expression of proinflammatory cytokines related to IBD, which effectively alleviates IBD progression and promotes intestinal mucosa recovery. RNAi molecules generally include short interfering RNA (siRNA) and microRNA (miRNA). However, naked RNA tends to degrade in vivo as a consequence of endogenous ribonucleases and pH variations. Furthermore, RNAi treatment may cause unintended off-target effects and immunostimulation. Therefore, nanovectors of siRNA and miRNA were introduced to circumvent these obstacles. Herein, we introduce non-viral nanosystems of RNAi molecules and discuss these systems in detail. Additionally, the delivery barriers and challenges associated with RNAi molecules will be discussed from the perspectives of developing efficient delivery systems and potential clinical use. PMID:27789943
2014-01-01
Background Medulloblastoma is the most common type of malignant brain tumor that afflicts children. Although recent advances in chemotherapy and radiation have improved outcomes, high-risk patients do poorly with significant morbidity. Methods To identify new molecular targets, we performed an integrated genomic analysis using structural and functional methods. Gene expression profiling in 16 medulloblastoma patient samples and subsequent gene set enrichment analysis indicated that cell cycle-related kinases were associated with disease development. In addition a kinome-wide small interfering RNA (siRNA) screen was performed to identify kinases that, when inhibited, could prevent cell proliferation. The two genome-scale analyses were combined to identify key vulnerabilities in medulloblastoma. The inhibition of one of the identified targets was further investigated using RNAi and a small molecule inhibitor. Results Combining the two analyses revealed that mitosis-related kinases were critical determinants of medulloblastoma cell proliferation. RNA interference (RNAi)-mediated knockdown of WEE1 kinase and other mitotic kinases was sufficient to reduce medulloblastoma cell proliferation. These data prompted us to examine the effects of inhibiting WEE1 by RNAi and by a small molecule inhibitor of WEE1, MK-1775, in medulloblastoma cell lines. MK-1775 inhibited the growth of medulloblastoma cell lines, induced apoptosis and increased DNA damage at nanomolar concentrations. Further, MK-1775 was synergistic with cisplatin in reducing medulloblastoma cell proliferation and resulted in an associated increase in cell death. In vivo MK-1775 suppressed medulloblastoma tumor growth as a single agent. Conclusions Taken together, these findings highlight mitotic kinases and, in particular, WEE1 as a rational therapeutic target for medulloblastoma. PMID:24661910
Silencing of ATP11B by RNAi-Induced Changes in Neural Stem Cell Morphology.
Wang, Jiao; Wang, Qian; Zhou, Fangfang; Wang, Dong; Wen, Tieqiao
2017-01-01
RNA interference (RNAi) technology is one of the main research tools in many studies of neural stem cells. This study describes effects of ATP11B on the morphology change of neural stem cells by using RNAi. ATP11B belongs to P4-ATPases family, which is preferential translocate phosphatidylserine of cell membrane. Although it exists in neural stem cells, its physiological function is poorly understood. By using RNAi technology to downregulate expression of ATP11B, we found distinct morphological changes in neural stem cells. More important, psiRNA-ATP11B-transfected cells displayed short neurite outgrowth compared to the control cells. These data strongly suggest that ATP11B plays a key role in the morphological change of neural stem cells.
Zhang, Xiaohua Douglas; Yang, Xiting Cindy; Chung, Namjin; Gates, Adam; Stec, Erica; Kunapuli, Priya; Holder, Dan J; Ferrer, Marc; Espeseth, Amy S
2006-04-01
RNA interference (RNAi) high-throughput screening (HTS) experiments carried out using large (>5000 short interfering [si]RNA) libraries generate a huge amount of data. In order to use these data to identify the most effective siRNAs tested, it is critical to adopt and develop appropriate statistical methods. To address the questions in hit selection of RNAi HTS, we proposed a quartile-based method which is robust to outliers, true hits and nonsymmetrical data. We compared it with the more traditional tests, mean +/- k standard deviation (SD) and median +/- 3 median of absolute deviation (MAD). The results suggested that the quartile-based method selected more hits than mean +/- k SD under the same preset error rate. The number of hits selected by median +/- k MAD was close to that by the quartile-based method. Further analysis suggested that the quartile-based method had the greatest power in detecting true hits, especially weak or moderate true hits. Our investigation also suggested that platewise analysis (determining effective siRNAs on a plate-by-plate basis) can adjust for systematic errors in different plates, while an experimentwise analysis, in which effective siRNAs are identified in an analysis of the entire experiment, cannot. However, experimentwise analysis may detect a cluster of true positive hits placed together in one or several plates, while platewise analysis may not. To display hit selection results, we designed a specific figure called a plate-well series plot. We thus suggest the following strategy for hit selection in RNAi HTS experiments. First, choose the quartile-based method, or median +/- k MAD, for identifying effective siRNAs. Second, perform the chosen method experimentwise on transformed/normalized data, such as percentage inhibition, to check the possibility of hit clusters. If a cluster of selected hits are observed, repeat the analysis based on untransformed data to determine whether the cluster is due to an artifact in the data. If no clusters of hits are observed, select hits by performing platewise analysis on transformed data. Third, adopt the plate-well series plot to visualize both the data and the hit selection results, as well as to check for artifacts.
WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia
Patel-King, Ramila S.; Gilberti, Renée M.; Hom, Erik F. Y.; King, Stephen M.
2013-01-01
Retrograde intraflagellar transport (IFT) is required for assembly of cilia. We identify a Chlamydomonas flagellar protein (flagellar-associated protein 163 [FAP163]) as being closely related to the D1bIC(FAP133) intermediate chain (IC) of the dynein that powers this movement. Biochemical analysis revealed that FAP163 is present in the flagellar matrix and is actively trafficked by IFT. Furthermore, FAP163 copurified with D1bIC(FAP133) and the LC8 dynein light chain, indicating that it is an integral component of the retrograde IFT dynein. To assess the functional role of FAP163, we generated an RNA interference knockdown of the orthologous protein (WD60) in planaria. The Smed-wd60(RNAi) animals had a severe ciliary assembly defect that dramatically compromised whole-organism motility. Most cilia were present as short stubs that had accumulated large quantities of IFT particle–like material between the doublet microtubules and the membrane. The few remaining approximately full-length cilia had a chaotic beat with a frequency reduced from 24 to ∼10 Hz. Thus WD60/FAP163 is a dynein IC that is absolutely required for retrograde IFT and ciliary assembly. PMID:23864713
RNA interference in the clinic: challenges and future directions
Pecot, Chad V.; Calin, George A.; Coleman, Robert L.; Lopez-Berestein, Gabriel; Sood, Anil K.
2011-01-01
Inherent difficulties with blocking many desirable targets using conventional approaches have prompted many to consider using RNA interference (RNAi) as a therapeutic approach. Although exploitation of RNAi has immense potential as a cancer therapeutic, many physiological obstacles stand in the way of successful and efficient delivery. This Review explores current challenges to the development of synthetic RNAi-based therapies and considers new approaches to circumvent biological barriers, to avoid intolerable side effects and to achieve controlled and sustained release. PMID:21160526
RNAi-based GM plants: food for thought for risk assessors.
Ramon, Matthew; Devos, Yann; Lanzoni, Anna; Liu, Yi; Gomes, Ana; Gennaro, Andrea; Waigmann, Elisabeth
2014-12-01
RNA interference (RNAi) is an emerging technology that offers new opportunities for the generation of new traits in genetically modified (GM) plants. Potential risks associated with RNAi-based GM plants and issues specific to their risk assessment were discussed during an international scientific workshop (June 2014) organized by the European Food Safety Authority (EFSA). Selected key outcomes of the workshop are reported here. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
2010-01-01
Background Some organisms can survive extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living mycophagous nematode Aphelenchus avenae can be induced to enter anhydrobiosis by pre-exposure to moderate reductions in relative humidity (RH) prior to extreme desiccation. This preconditioning phase is thought to allow modification of the transcriptome by activation of genes required for desiccation tolerance. Results To identify such genes, a panel of expressed sequence tags (ESTs) enriched for sequences upregulated in A. avenae during preconditioning was created. A subset of 30 genes with significant matches in databases, together with a number of apparently novel sequences, were chosen for further study. Several of the recognisable genes are associated with water stress, encoding, for example, two new hydrophilic proteins related to the late embryogenesis abundant (LEA) protein family. Expression studies confirmed EST panel members to be upregulated by evaporative water loss, and the majority of genes was also induced by osmotic stress and cold, but rather fewer by heat. We attempted to use RNA interference (RNAi) to demonstrate the importance of this gene set for anhydrobiosis, but found A. avenae to be recalcitrant with the techniques used. Instead, therefore, we developed a cross-species RNAi procedure using A. avenae sequences in another anhydrobiotic nematode, Panagrolaimus superbus, which is amenable to gene silencing. Of 20 A. avenae ESTs screened, a significant reduction in survival of desiccation in treated P. superbus populations was observed with two sequences, one of which was novel, while the other encoded a glutathione peroxidase. To confirm a role for glutathione peroxidases in anhydrobiosis, RNAi with cognate sequences from P. superbus was performed and was also shown to reduce desiccation tolerance in this species. Conclusions This study has identified and characterised the expression profiles of members of the anhydrobiotic gene set in A. avenae. It also demonstrates the potential of RNAi for the analysis of anhydrobiosis and provides the first genetic data to underline the importance of effective antioxidant systems in metazoan desiccation tolerance. PMID:20085654
USDA-ARS?s Scientific Manuscript database
The reniform nematode, Rotylenchulus reniformis Linford & Oliveira, is a sedentary semi-endoparasitic roundworm that infects the roots of many economically important plant species. Engineered resistance to plant-parasitic nematodes (PPNs) via RNA-interference (RNAi) has shown promise in providing h...
New technology and resources for cryptococcal research
Zhang, Nannan; Park, Yoon-Dong; Williamson, Peter R.
2014-01-01
Rapid advances in molecular biology and genome sequencing have enabled the generation of new technology and resources for cryptococcal research. RNAi-mediated specific gene knock down has become routine and more efficient by utilizing modified shRNA plasmids and convergent promoter RNAi constructs. This system was recently applied in a high-throughput screen to identify genes involved in host-pathogen interactions. Gene deletion efficiencies have also been improved by increasing rates of homologous recombination through a number of approaches, including a combination of double-joint PCR with split-marker transformation, the use of dominant selectable markers and the introduction of Cre-Loxp systems into Cryptococcus. Moreover, visualization of cryptococcal proteins has become more facile using fusions with codon-optimized fluorescent tags, such as green or red fluorescent proteins or, mCherry. Using recent genome-wide analytical tools, new transcriptional factors and regulatory proteins have been identified in novel virulence-related signaling pathways by employing microarray analysis, RNA-sequencing and proteomic analysis. PMID:25460849
Yang, Ning; Zhang, Wenxi; He, Tao; Xing, Yiqiao
2017-06-01
Aberrant neovascularization is a consequence of inappropriate angiogenic signaling and contributes to several diseases. Although many regulators of pathogenic angiogenesis have been identified, the understanding of this process remains incomplete. Galectin-1 (Gal-1), as a homodimeric protein with a single carbohydrate-recognition domain, is implicated in several pathologic processes, including angiogenesis; however, its involvement in retinal neovascularization (RNV) remains unknown. Here, we investigated the anti-angiogenic effect of silencing Gal-1 through intravitreal injection in a mouse model of oxygen-induced retinopathy (OIR). Our results revealed that Gal-1 was overexpressed and closely related to retinal neo-vessels in OIR retinas. After silencing Gal-1 via intravitreal injection of adenoviral-Gal-1-RNA interference (Ad-Gal-1-RNAi), RNV and retinal hypoxia were significantly attenuated, indicating the anti-angiogenic effect of Gal-1 inhibition. Western blot analysis and real-time polymerase chain reaction indicated that the expression of both neuropilin-1 (Nrp-1) and B cell lymphoma-2 (Bcl-2) decreased after intravitreal injection of Ad-Gal-1-RNAi, implying the possible involvement of Nrp-1 and Bcl-2 in Gal-1-related angiogenic processes. Additionally, whole-mount fluorescence and hematoxylin and eosin staining showed that intravitreal injection of Ad-Gal-1-RNAi did not significantly disrupt the retinal vasculature and neuronal structure of room air mice. Moreover, Ad-Gal-1-RNAi transfer promoted retinal vascular sprouting and increased retinal vascular perfusion, likely through decreased phosphorylation of myosin phosphatase target protein-1. Collectively, our results demonstrated that Gal-1 functions as an important regulator in RNV and offers a promising strategy for the treatment of RNV diseases, such as proliferative diabetic retinopathy and retinopathy of prematurity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mounet-Gilbert, Louise; Dumont, Marie; Ferrand, Carine; Bournonville, Céline; Monier, Antoine; Jorly, Joana; Lemaire-Chamley, Martine; Mori, Kentaro; Atienza, Isabelle; Hernould, Michel; Stevens, Rebecca; Lehner, Arnaud; Mollet, Jean Claude; Rothan, Christophe; Lerouge, Patrice; Baldet, Pierre
2016-08-01
GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Okazaki, Yozo; Lithio, Andrew; Jin, Huanan
2017-01-01
We report the characterization of the Arabidopsis (Arabidopsis thaliana) 3-hydroxyacyl-acyl carrier protein dehydratase (mtHD) component of the mitochondrial fatty acid synthase (mtFAS) system, encoded by AT5G60335. The mitochondrial localization and catalytic capability of mtHD were demonstrated with a green fluorescent protein transgenesis experiment and by in vivo complementation and in vitro enzymatic assays. RNA interference (RNAi) knockdown lines with reduced mtHD expression exhibit traits typically associated with mtFAS mutants, namely a miniaturized morphological appearance, reduced lipoylation of lipoylated proteins, and altered metabolomes consistent with the reduced catalytic activity of lipoylated enzymes. These alterations are reversed when mthd-rnai mutant plants are grown in a 1% CO2 atmosphere, indicating the link between mtFAS and photorespiratory deficiency due to the reduced lipoylation of glycine decarboxylase. In vivo biochemical feeding experiments illustrate that sucrose and glycolate are the metabolic modulators that mediate the alterations in morphology and lipid accumulation. In addition, both mthd-rnai and mtkas mutants exhibit reduced accumulation of 3-hydroxytetradecanoic acid (i.e. a hallmark of lipid A-like molecules) and abnormal chloroplastic starch granules; these changes are not reversible by the 1% CO2 atmosphere, demonstrating two novel mtFAS functions that are independent of photorespiration. Finally, RNA sequencing analysis revealed that mthd-rnai and mtkas mutants are nearly equivalent to each other in altering the transcriptome, and these analyses further identified genes whose expression is affected by a functional mtFAS system but independent of photorespiratory deficiency. These data demonstrate the nonredundant nature of the mtFAS system, which contributes unique lipid components needed to support plant cell structure and metabolism. PMID:28202596
Ribonucleic acid interference (RNAi) and control of citrus pests
USDA-ARS?s Scientific Manuscript database
Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control. ...
RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies.
Malhotra, Meenakshi; Toulouse, André; Godinho, Bruno M D C; Mc Carthy, David John; Cryan, John F; O'Driscoll, Caitriona M
2015-10-01
Malignant primary brain tumors are aggressive cancerous cells that invade the surrounding tissues of the central nervous system. The current treatment options for malignant brain tumors are limited due to the inability to cross the blood-brain barrier. The advancements in current research has identified and characterized certain molecular markers that are essential for tumor survival, progression, metastasis and angiogenesis. These molecular markers have served as therapeutic targets for the RNAi based therapies, which enable site-specific silencing of the gene responsible for tumor proliferation. However, to bring about therapeutic success, an efficient delivery carrier that can cross the blood-brain barrier and reach the targeted site is essential. The current review focuses on the potential of targeted, non-viral and viral particles containing RNAi therapeutic molecules as delivery strategies specifically for brain tumors.
RNAi of COL1A1 in mesenchymal progenitor cells.
Millington-Ward, Sophia; McMahon, Helena P; Allen, Danny; Tuohy, Gearóid; Kiang, Anna-Sophia; Palfi, Arpad; Kenna, Paul F; Humphries, Peter; Farrar, G Jane
2004-10-01
Given that mutant COL1A1 is known to cause Osteogenesis Imperfecta (OI), tools to modulate COL1A1 expression are likely to be of significant therapeutic value. In this context, we have evaluated RNA interference (RNAi) as a means to downregulate COL1A1 expression in Cos-7 cells and in human mesenchymal progenitor stem cells (MPCs), the latter cells giving rise to bone and therefore representing a target cell type for collagen-related disorders. In addition, allele-specificity, a key factor to the success of RNAi-based suppression, was explored with a view to developing a mutation-independent RNAi-based therapeutic for OI by targeting an intragenic SNP within transcripts derived from the COL1A1 gene. Preferential suppression of individual polymorphic alleles that differed by a single nucleotide was observed.
Hamada, Yoshimasa; Bando, Tetsuya; Nakamura, Taro; Ishimaru, Yoshiyasu; Mito, Taro; Noji, Sumihare; Tomioka, Kenji; Ohuchi, Hideyo
2015-09-01
Hemimetabolous insects such as the cricket Gryllus bimaculatus regenerate lost tissue parts using blastemal cells, a population of dedifferentiated proliferating cells. The expression of several factors that control epigenetic modification is upregulated in the blastema compared with differentiated tissue, suggesting that epigenetic changes in gene expression might control the differentiation status of blastema cells during regeneration. To clarify the molecular basis of epigenetic regulation during regeneration, we focused on the function of the Gryllus Enhancer of zeste [Gb'E(z)] and Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (Gb'Utx) homologues, which regulate methylation and demethylation of histone H3 lysine 27 (H3K27), respectively. Methylated histone H3K27 in the regenerating leg was diminished by Gb'E(z)(RNAi) and was increased by Gb'Utx(RNAi). Regenerated Gb'E(z)(RNAi) cricket legs exhibited extra leg segment formation between the tibia and tarsus, and regenerated Gb'Utx(RNAi) cricket legs showed leg joint formation defects in the tarsus. In the Gb'E(z)(RNAi) regenerating leg, the Gb'dac expression domain expanded in the tarsus. By contrast, in the Gb'Utx(RNAi) regenerating leg, Gb'Egfr expression in the middle of the tarsus was diminished. These results suggest that regulation of the histone H3K27 methylation state is involved in the repatterning process during leg regeneration among cricket species via the epigenetic regulation of leg patterning gene expression. © 2015. Published by The Company of Biologists Ltd.
Dissecting the function of Cullin-RING ubiquitin ligase complex genes in planarian regeneration.
Strand, Nicholas S; Allen, John M; Ghulam, Mahjoobah; Taylor, Matthew R; Munday, Roma K; Carrillo, Melissa; Movsesyan, Artem; Zayas, Ricardo M
2018-01-15
The ubiquitin system plays a role in nearly every aspect of eukaryotic cell biology. The enzymes responsible for transferring ubiquitin onto specific substrates are the E3 ubiquitin ligases, a large and diverse family of proteins, for which biological roles and target substrates remain largely undefined. Studies using model organisms indicate that ubiquitin signaling mediates key steps in developmental processes and tissue regeneration. Here, we used the freshwater planarian, Schmidtea mediterranea, to investigate the role of Cullin-RING ubiquitin ligase (CRL) complexes in stem cell regulation during regeneration. We identified six S. mediterranea cullin genes, and used RNAi to uncover roles for homologs of Cullin-1, -3 and -4 in planarian regeneration. The cullin-1 RNAi phenotype included defects in blastema formation, organ regeneration, lesions, and lysis. To further investigate the function of cullin-1-mediated cellular processes in planarians, we examined genes encoding the adaptor protein Skp1 and F-box substrate-recognition proteins that are predicted to partner with Cullin-1. RNAi against skp1 resulted in phenotypes similar to cullin-1 RNAi, and an RNAi screen of the F-box genes identified 19 genes that recapitulated aspects of cullin-1 RNAi, including ones that in mammals are involved in stem cell regulation and cancer biology. Our data provides evidence that CRLs play discrete roles in regenerative processes and provide a platform to investigate how CRLs regulate stem cells in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
Taylor, Jessica; Woodcock, Simon
2015-09-01
For more than a decade, RNA interference (RNAi) has brought about an entirely new approach to functional genomics screening. Enabling high-throughput loss-of-function (LOF) screens against the human genome, identifying new drug targets, and significantly advancing experimental biology, RNAi is a fast, flexible technology that is compatible with existing high-throughput systems and processes; however, the recent advent of clustered regularly interspaced palindromic repeats (CRISPR)-Cas, a powerful new precise genome-editing (PGE) technology, has opened up vast possibilities for functional genomics. CRISPR-Cas is novel in its simplicity: one piece of easily engineered guide RNA (gRNA) is used to target a gene sequence, and Cas9 expression is required in the cells. The targeted double-strand break introduced by the gRNA-Cas9 complex is highly effective at removing gene expression compared to RNAi. Together with the reduced cost and complexity of CRISPR-Cas, there is the realistic opportunity to use PGE to screen for phenotypic effects in a total gene knockout background. This review summarizes the exciting development of CRISPR-Cas as a high-throughput screening tool, comparing its future potential to that of well-established RNAi screening techniques, and highlighting future challenges and opportunities within these disciplines. We conclude that the two technologies actually complement rather than compete with each other, enabling greater understanding of the genome in relation to drug discovery. © 2015 Society for Laboratory Automation and Screening.
2012-01-01
Background Colorectal carcinomas (CRC) carry massive genetic and transcriptional alterations that influence multiple cellular pathways. The study of proteins whose loss-of-function (LOF) alters the growth of CRC cells can be used to further understand the cellular processes cancer cells depend upon for survival. Results A small-scale RNAi screen of ~400 genes conducted in SW480 CRC cells identified several candidate genes as required for the viability of CRC cells, most prominently CASP8AP2/FLASH. To understand the function of this gene in maintaining the viability of CRC cells in an unbiased manner, we generated gene specific expression profiles following RNAi. Silencing of CASP8AP2/FLASH resulted in altered expression of over 2500 genes enriched for genes associated with cellular growth and proliferation. Loss of CASP8AP2/FLASH function was significantly associated with altered transcription of the genes encoding the replication-dependent histone proteins as a result of the expression of the non-canonical polyA variants of these transcripts. Silencing of CASP8AP2/FLASH also mediated enrichment of changes in the expression of targets of the NFκB and MYC transcription factors. These findings were confirmed by whole transcriptome analysis of CASP8AP2/FLASH silenced cells at multiple time points. Finally, we identified and validated that CASP8AP2/FLASH LOF increases the expression of neurofilament heavy polypeptide (NEFH), a protein recently linked to regulation of the AKT1/ß-catenin pathway. Conclusions We have used unbiased RNAi based approaches to identify and characterize the function of CASP8AP2/FLASH, a protein not previously reported as required for cell survival. This study further defines the role CASP8AP2/FLASH plays in the regulating expression of the replication-dependent histones and shows that its LOF results in broad and reproducible effects on the transcriptome of colorectal cancer cells including the induction of expression of the recently described tumor suppressor gene NEFH. PMID:22216762
Yin, Ling; Chen, Hancai; Cao, Bihao; Lei, Jianjun; Chen, Guoju
2017-01-01
Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28 , the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology ( BoaMYB28 ) was identified in Chinese kale ( Brassica oleracea var. alboglabra Bailey). Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes in RNAi lines were considerably lower than those in the wild-type. The results suggest that BoaMYB28 has the potential to alter the aliphatic glucosinolates contents in Chinese kale at the genetic level.
Yin, Ling; Chen, Hancai; Cao, Bihao; Lei, Jianjun; Chen, Guoju
2017-01-01
Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28, the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology (BoaMYB28) was identified in Chinese kale (Brassica oleracea var. alboglabra Bailey). Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes in RNAi lines were considerably lower than those in the wild-type. The results suggest that BoaMYB28 has the potential to alter the aliphatic glucosinolates contents in Chinese kale at the genetic level. PMID:28680435
Hummon, Amanda B; Pitt, Jason J; Camps, Jordi; Emons, Georg; Skube, Susan B; Huppi, Konrad; Jones, Tamara L; Beissbarth, Tim; Kramer, Frank; Grade, Marian; Difilippantonio, Michael J; Ried, Thomas; Caplen, Natasha J
2012-01-04
Colorectal carcinomas (CRC) carry massive genetic and transcriptional alterations that influence multiple cellular pathways. The study of proteins whose loss-of-function (LOF) alters the growth of CRC cells can be used to further understand the cellular processes cancer cells depend upon for survival. A small-scale RNAi screen of ~400 genes conducted in SW480 CRC cells identified several candidate genes as required for the viability of CRC cells, most prominently CASP8AP2/FLASH. To understand the function of this gene in maintaining the viability of CRC cells in an unbiased manner, we generated gene specific expression profiles following RNAi. Silencing of CASP8AP2/FLASH resulted in altered expression of over 2500 genes enriched for genes associated with cellular growth and proliferation. Loss of CASP8AP2/FLASH function was significantly associated with altered transcription of the genes encoding the replication-dependent histone proteins as a result of the expression of the non-canonical polyA variants of these transcripts. Silencing of CASP8AP2/FLASH also mediated enrichment of changes in the expression of targets of the NFκB and MYC transcription factors. These findings were confirmed by whole transcriptome analysis of CASP8AP2/FLASH silenced cells at multiple time points. Finally, we identified and validated that CASP8AP2/FLASH LOF increases the expression of neurofilament heavy polypeptide (NEFH), a protein recently linked to regulation of the AKT1/ß-catenin pathway. We have used unbiased RNAi based approaches to identify and characterize the function of CASP8AP2/FLASH, a protein not previously reported as required for cell survival. This study further defines the role CASP8AP2/FLASH plays in the regulating expression of the replication-dependent histones and shows that its LOF results in broad and reproducible effects on the transcriptome of colorectal cancer cells including the induction of expression of the recently described tumor suppressor gene NEFH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czarnecki, Olaf; Bryan, Anthony C.; Jawdy, Sara S.
Genetic engineering of plants that results in successful establishment of new biochemical or regulatory pathways requires stable introduction of one or more genes into the plant genome. It might also be necessary to down-regulate or turn off expression of endogenous genes in order to reduce activity of competing pathways. An established way to knockdown gene expression in plants is expressing a hairpin-RNAi construct, eventually leading to degradation of a specifically targeted mRNA. Knockdown of multiple genes that do not share homologous sequences is still challenging and involves either sophisticated cloning strategies to create vectors with different serial expression constructs ormore » multiple transformation events that is often restricted by a lack of available transformation markers. Synthetic RNAi fragments were assembled in yeast carrying homologous sequences to six or seven non-family genes and introduced into pAGRIKOLA. Transformation of Arabidopsis thaliana and subsequent expression analysis of targeted genes proved efficient knockdown of all target genes. In conclusion, we present a simple and cost-effective method to create constructs to simultaneously knockdown multiple non-family genes or genes that do not share sequence homology. The presented method can be applied in plant and animal synthetic biology as well as traditional plant and animal genetic engineering.« less
Studying human disease genes in Caenorhabditis elegans: a molecular genetics laboratory project.
Cox-Paulson, Elisabeth A; Grana, Theresa M; Harris, Michelle A; Batzli, Janet M
2012-01-01
Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether Caenorhabditis elegans can be a useful model system for studying genes associated with human disease. In a large-enrollment, sophomore-level laboratory course, groups of three to four students were assigned a gene associated with either breast cancer (brc-1), Wilson disease (cua-1), ovarian dysgenesis (fshr-1), or colon cancer (mlh-1). Students compared observable phenotypes of wild-type C. elegans and C. elegans with a homozygous deletion in the assigned gene. They confirmed the genetic deletion with nested polymerase chain reaction and performed a bioinformatics analysis to predict how the deletion would affect the encoded mRNA and protein. Students also performed RNA interference (RNAi) against their assigned gene and evaluated whether RNAi caused a phenotype similar to that of the genetic deletion. As a capstone activity, students prepared scientific posters in which they presented their data, evaluated whether C. elegans was a useful model system for studying their assigned genes, and proposed future directions. Assessment showed gains in understanding genotype versus phenotype, RNAi, common bioinformatics tools, and the utility of model organisms.
Parker, Greg S; Eckert, Debra M; Bass, Brenda L
2006-05-01
In organisms ranging from Arabidopsis to humans, Dicer requires dsRNA-binding proteins (dsRBPs) to carry out its roles in RNA interference (RNAi) and micro-RNA (miRNA) processing. In Caenorhabditis elegans, the dsRBP RDE-4 acts with Dicer during the initiation of RNAi, when long dsRNA is cleaved to small interfering RNAs (siRNAs). RDE-4 is not required in subsequent steps, and how RDE-4 distinguishes between long dsRNA and short siRNA is unclear. We report the first detailed analysis of RDE-4 binding, using purified recombinant RDE-4 and various truncated proteins. We find that, similar to other dsRBPs, RDE-4 is not sequence-specific. However, consistent with its in vivo roles, RDE-4 binds with higher affinity to long dsRNA. We also observe that RDE-4 is a homodimer in solution, and that the C-terminal domain of the protein is required for dimerization. Using extracts from wild-type and rde-4 mutant C. elegans, we show that the C-terminal dimerization domain is required for the production of siRNA. Our findings suggest a model for RDE-4 function during the initiation of RNAi.
Grishok, Alla; Hoersch, Sebastian; Sharp, Phillip A
2008-12-23
In Caenorhabditis elegans, a vast number of endogenous short RNAs corresponding to thousands of genes have been discovered recently. This finding suggests that these short interfering RNAs (siRNAs) may contribute to regulation of many developmental and other signaling pathways in addition to silencing viruses and transposons. Here, we present a microarray analysis of gene expression in RNA interference (RNAi)-related mutants rde-4, zfp-1, and alg-1 and the retinoblastoma (Rb) mutant lin-35. We found that a component of Dicer complex RDE-4 and a chromatin-related zinc finger protein ZFP-1, not implicated in endogenous RNAi, regulate overlapping sets of genes. Notably, genes a) up-regulated in the rde-4 and zfp-1 mutants and b) up-regulated in the lin-35(Rb) mutant, but not the down-regulated genes are highly represented in the set of genes with corresponding endogenous siRNAs (endo-siRNAs). Our study suggests that endogenous siRNAs cooperate with chromatin factors, either C. elegans ortholog of acute lymphoblastic leukemia-1 (ALL-1)-fused gene from chromosome 10 (AF10), ZFP-1, or tumor suppressor Rb, to regulate overlapping sets of genes and predicts a large role for RNAi-based chromatin silencing in control of gene expression in C. elegans.
DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells
Spike, Caroline A.; Bader, Jason; Reinke, Valerie; Strome, Susan
2008-01-01
P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs). PMID:18234720
Parker, Greg S.; Eckert, Debra M.; Bass, Brenda L.
2006-01-01
In organisms ranging from Arabidopsis to humans, Dicer requires dsRNA-binding proteins (dsRBPs) to carry out its roles in RNA interference (RNAi) and micro-RNA (miRNA) processing. In Caenorhabditis elegans, the dsRBP RDE-4 acts with Dicer during the initiation of RNAi, when long dsRNA is cleaved to small interfering RNAs (siRNAs). RDE-4 is not required in subsequent steps, and how RDE-4 distinguishes between long dsRNA and short siRNA is unclear. We report the first detailed analysis of RDE-4 binding, using purified recombinant RDE-4 and various truncated proteins. We find that, similar to other dsRBPs, RDE-4 is not sequence-specific. However, consistent with its in vivo roles, RDE-4 binds with higher affinity to long dsRNA. We also observe that RDE-4 is a homodimer in solution, and that the C-terminal domain of the protein is required for dimerization. Using extracts from wild-type and rde-4 mutant C. elegans, we show that the C-terminal dimerization domain is required for the production of siRNA. Our findings suggest a model for RDE-4 function during the initiation of RNAi. PMID:16603715
DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells.
Spike, Caroline A; Bader, Jason; Reinke, Valerie; Strome, Susan
2008-03-01
P granules are germ-cell-specific cytoplasmic structures containing RNA and protein, and required for proper germ cell development in C. elegans. PGL-1 and GLH-1 were previously identified as critical components of P granules. We have identified a new P-granule-associated protein, DEPS-1, the loss of which disrupts P-granule structure and function. DEPS-1 is required for the proper localization of PGL-1 to P granules, the accumulation of glh-1 mRNA and protein, and germ cell proliferation and fertility at elevated temperatures. In addition, DEPS-1 is required for RNA interference (RNAi) of germline-expressed genes, possibly because DEPS-1 promotes the accumulation of RDE-4, a dsRNA-binding protein required for RNAi. A genome wide analysis of gene expression in deps-1 mutant germ lines identified additional targets of DEPS-1 regulation, many of which are also regulated by the RNAi factor RDE-3. Our studies suggest that DEPS-1 is a key component of the P-granule assembly pathway and that its roles include promoting accumulation of some mRNAs, such as glh-1 and rde-4, and reducing accumulation of other mRNAs, perhaps by collaborating with RDE-3 to generate endogenous short interfering RNAs (endo-siRNAs).
Grishok, Alla; Hoersch, Sebastian; Sharp, Phillip A.
2008-01-01
In Caenorhabditis elegans, a vast number of endogenous short RNAs corresponding to thousands of genes have been discovered recently. This finding suggests that these short interfering RNAs (siRNAs) may contribute to regulation of many developmental and other signaling pathways in addition to silencing viruses and transposons. Here, we present a microarray analysis of gene expression in RNA interference (RNAi)-related mutants rde-4, zfp-1, and alg-1 and the retinoblastoma (Rb) mutant lin-35. We found that a component of Dicer complex RDE-4 and a chromatin-related zinc finger protein ZFP-1, not implicated in endogenous RNAi, regulate overlapping sets of genes. Notably, genes a) up-regulated in the rde-4 and zfp-1 mutants and b) up-regulated in the lin-35(Rb) mutant, but not the down-regulated genes are highly represented in the set of genes with corresponding endogenous siRNAs (endo-siRNAs). Our study suggests that endogenous siRNAs cooperate with chromatin factors, either C. elegans ortholog of acute lymphoblastic leukemia-1 (ALL-1)-fused gene from chromosome 10 (AF10), ZFP-1, or tumor suppressor Rb, to regulate overlapping sets of genes and predicts a large role for RNAi-based chromatin silencing in control of gene expression in C. elegans. PMID:19073934
Studying Human Disease Genes in Caenorhabditis elegans: A Molecular Genetics Laboratory Project
Cox-Paulson, Elisabeth A.; Grana, Theresa M.; Harris, Michelle A.; Batzli, Janet M.
2012-01-01
Scientists routinely integrate information from various channels to explore topics under study. We designed a 4-wk undergraduate laboratory module that used a multifaceted approach to study a question in molecular genetics. Specifically, students investigated whether Caenorhabditis elegans can be a useful model system for studying genes associated with human disease. In a large-enrollment, sophomore-level laboratory course, groups of three to four students were assigned a gene associated with either breast cancer (brc-1), Wilson disease (cua-1), ovarian dysgenesis (fshr-1), or colon cancer (mlh-1). Students compared observable phenotypes of wild-type C. elegans and C. elegans with a homozygous deletion in the assigned gene. They confirmed the genetic deletion with nested polymerase chain reaction and performed a bioinformatics analysis to predict how the deletion would affect the encoded mRNA and protein. Students also performed RNA interference (RNAi) against their assigned gene and evaluated whether RNAi caused a phenotype similar to that of the genetic deletion. As a capstone activity, students prepared scientific posters in which they presented their data, evaluated whether C. elegans was a useful model system for studying their assigned genes, and proposed future directions. Assessment showed gains in understanding genotype versus phenotype, RNAi, common bioinformatics tools, and the utility of model organisms. PMID:22665589
Hériché, Jean-Karim; Lees, Jon G.; Morilla, Ian; Walter, Thomas; Petrova, Boryana; Roberti, M. Julia; Hossain, M. Julius; Adler, Priit; Fernández, José M.; Krallinger, Martin; Haering, Christian H.; Vilo, Jaak; Valencia, Alfonso; Ranea, Juan A.; Orengo, Christine; Ellenberg, Jan
2014-01-01
The advent of genome-wide RNA interference (RNAi)–based screens puts us in the position to identify genes for all functions human cells carry out. However, for many functions, assay complexity and cost make genome-scale knockdown experiments impossible. Methods to predict genes required for cell functions are therefore needed to focus RNAi screens from the whole genome on the most likely candidates. Although different bioinformatics tools for gene function prediction exist, they lack experimental validation and are therefore rarely used by experimentalists. To address this, we developed an effective computational gene selection strategy that represents public data about genes as graphs and then analyzes these graphs using kernels on graph nodes to predict functional relationships. To demonstrate its performance, we predicted human genes required for a poorly understood cellular function—mitotic chromosome condensation—and experimentally validated the top 100 candidates with a focused RNAi screen by automated microscopy. Quantitative analysis of the images demonstrated that the candidates were indeed strongly enriched in condensation genes, including the discovery of several new factors. By combining bioinformatics prediction with experimental validation, our study shows that kernels on graph nodes are powerful tools to integrate public biological data and predict genes involved in cellular functions of interest. PMID:24943848
Czarnecki, Olaf; Bryan, Anthony C.; Jawdy, Sara S.; ...
2016-02-17
Genetic engineering of plants that results in successful establishment of new biochemical or regulatory pathways requires stable introduction of one or more genes into the plant genome. It might also be necessary to down-regulate or turn off expression of endogenous genes in order to reduce activity of competing pathways. An established way to knockdown gene expression in plants is expressing a hairpin-RNAi construct, eventually leading to degradation of a specifically targeted mRNA. Knockdown of multiple genes that do not share homologous sequences is still challenging and involves either sophisticated cloning strategies to create vectors with different serial expression constructs ormore » multiple transformation events that is often restricted by a lack of available transformation markers. Synthetic RNAi fragments were assembled in yeast carrying homologous sequences to six or seven non-family genes and introduced into pAGRIKOLA. Transformation of Arabidopsis thaliana and subsequent expression analysis of targeted genes proved efficient knockdown of all target genes. In conclusion, we present a simple and cost-effective method to create constructs to simultaneously knockdown multiple non-family genes or genes that do not share sequence homology. The presented method can be applied in plant and animal synthetic biology as well as traditional plant and animal genetic engineering.« less
Ibrahim, Abdulrazak B; Monteiro, Tatiane R; Cabral, Glaucia B; Aragão, Francisco J L
2017-10-01
RNA interference (RNAi)-based transgenic technologies have evolved as potent biochemical tools for silencing specific genes of plant pathogens and pests. The approach has been demonstrated to be useful in silencing genes in insect species. Here, we report on the successful construction of RNAi-based plasmid containing an interfering cassette designed to generate dsRNAs that target a novel v-ATPase transcript in whitefly (Bemisia tabaci), an important agricultural pest in tropical and sub-tropical regions. The presence of the transgene was confirmed in T 0 and T 1 generations of transgenic lettuce lines, segregating in a Mendelian fashion. Seven lines were infested with whiteflies and monitored over a period of 32 days. Analysis of mortality showed that within five days of feeding, insects on transgenic plants showed a mortality rate of 83.8-98.1%. In addition, a reduced number of eggs (95 fold less) was observed in flies feeding on transgenic lettuce plants than insects on control lines. Quantitative reverse transcription PCR showed decreased expression level of endogenous v-ATPase gene in whiteflies feeding on transgenic plants. This technology is a foundation for the production of whitefly-resistant commercial crops, improving agricultural sustainability and food security, reducing the use of more environmentally aggressive methods of pest control.
Transcriptional and phenotypic comparisons of Ppara knockout and siRNA knockdown mice
De Souza, Angus T.; Dai, Xudong; Spencer, Andrew G.; Reppen, Tom; Menzie, Ann; Roesch, Paula L.; He, Yudong; Caguyong, Michelle J.; Bloomer, Sherri; Herweijer, Hans; Wolff, Jon A.; Hagstrom, James E.; Lewis, David L.; Linsley, Peter S.; Ulrich, Roger G.
2006-01-01
RNA interference (RNAi) has great potential as a tool for studying gene function in mammals. However, the specificity and magnitude of the in vivo response to RNAi remains to be fully characterized. A molecular and phenotypic comparison of a genetic knockout mouse and the corresponding knockdown version would help clarify the utility of the RNAi approach. Here, we used hydrodynamic delivery of small interfering RNA (siRNA) to knockdown peroxisome proliferator activated receptor alpha (Ppara), a gene that is central to the regulation of fatty acid metabolism. We found that Ppara knockdown in the liver results in a transcript profile and metabolic phenotype that is comparable to those of Ppara−/− mice. Combining the profiles from mice treated with the PPARα agonist fenofibrate, we confirmed the specificity of the RNAi response and identified candidate genes proximal to PPARα regulation. Ppara knockdown animals developed hypoglycemia and hypertriglyceridemia, phenotypes observed in Ppara−/− mice. In contrast to Ppara−/− mice, fasting was not required to uncover these phenotypes. Together, these data validate the utility of the RNAi approach and suggest that siRNA can be used as a complement to classical knockout technology in gene function studies. PMID:16945951
Yang, Lei; Hong, Qin; Zhang, Min; Liu, Xiao; Pan, Xiao-Qin; Guo, Mei; Fei, Li; Guo, Xi-Rong; Tong, Mei-Ling; Chi, Xia
2013-06-17
The current study aimed to investigate the possible role of Homer 1a in the etiology and pathogenesis of attention deficit hyperactivity disorder (ADHD). We divided 32 rats into four groups. The rats in the RNAi-MPH group were given the lentiviral vector containing Homer 1a-specific miRNA (Homer 1a-RNAi-LV) by intracerebroventricular injection, and 7 days later they were given three daily doses of methylphenidate (MPH) by intragastric gavage. The RNAi-SAL group was given Homer 1a-RNAi-LV and saline later. The NC-MPH group was given the negative control lentiviral vector (NC-LV) and MPH later. The NC-SAL group was given NC-LV and saline later. Rats that were given Homer 1a RNAi exhibited increased locomotor activity and non-selective attention, and impaired learning and memory abilities, which is in line with the behavioral findings of animal models of ADHD. However, MPH ameliorated these abnormal behaviors. All findings indicated that Homer 1a may play an important role in the etiology and pathogenesis of ADHD. Copyright © 2013 Elsevier B.V. All rights reserved.
Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting
De Paula, Daniel; Bentley, M. Vitória L.B.; Mahato, Ram I.
2007-01-01
RNA interference (RNAi) is an evolutionarily conserved process by which double-stranded small interfering RNA (siRNA) induces sequence-specific, post-transcriptional gene silencing. Unlike other mRNA targeting strategies, RNAi takes advantage of the physiological gene silencing machinery. The potential use of siRNA as therapeutic agents has attracted great attention as a novel approach for treating severe and chronic diseases. RNAi can be achieved by either delivery of chemically synthesized siRNAs or endogenous expression of small hairpin RNA, siRNA, and microRNA (miRNA). However, the relatively high dose of siRNA required for gene silencing limits its therapeutic applications. This review discusses several strategies to improve therapeutic efficacy as well as to abrogate off-target effects and immunostimulation caused by siRNAs. There is an in-depth discussion on various issues related to the (1) mechanisms of RNAi, (2) methods of siRNA production, (3) barriers to RNAi-based therapies, (4) biodistribution, (5) design of siRNA molecules, (6) chemical modification and bioconjugation, (7) complex formation with lipids and polymers, (8) encapsulation into lipid particles, and (9) target specificity for enhanced therapeutic effectiveness. PMID:17329355
Fornalé, Silvia; Capellades, Montserrat; Encina, Antonio; Wang, Kan; Irar, Sami; Lapierre, Catherine; Ruel, Katia; Joseleau, Jean-Paul; Berenguer, Jordi; Puigdomènech, Pere; Rigau, Joan; Caparrós-Ruiz, David
2012-07-01
Cinnamyl alcohol dehydrogenase (CAD) is a key enzyme involved in the last step of monolignol biosynthesis. The effect of CAD down-regulation on lignin production was investigated through a transgenic approach in maize. Transgenic CAD-RNAi plants show a different degree of enzymatic reduction depending on the analyzed tissue and show alterations in cell wall composition. Cell walls of CAD-RNAi stems contain a lignin polymer with a slight reduction in the S-to-G ratio without affecting the total lignin content. In addition, these cell walls accumulate higher levels of cellulose and arabinoxylans. In contrast, cell walls of CAD-RNAi midribs present a reduction in the total lignin content and of cell wall polysaccharides. In vitro degradability assays showed that, although to a different extent, the changes induced by the repression of CAD activity produced midribs and stems more degradable than wild-type plants. CAD-RNAi plants grown in the field presented a wild-type phenotype and produced higher amounts of dry biomass. Cellulosic bioethanol assays revealed that CAD-RNAi biomass produced higher levels of ethanol compared to wild-type, making CAD a good target to improve both the nutritional and energetic values of maize lignocellulosic biomass.
RNA Interference: A Novel Source of Resistance to Combat Plant Parasitic Nematodes.
Banerjee, Sagar; Banerjee, Anamika; Gill, Sarvajeet S; Gupta, Om P; Dahuja, Anil; Jain, Pradeep K; Sirohi, Anil
2017-01-01
Plant parasitic nematodes cause severe damage and yield loss in major crops all over the world. Available control strategies include use of insecticides/nematicides but these have proved detrimental to the environment, while other strategies like crop rotation and resistant cultivars have serious limitations. This scenario provides an opportunity for the utilization of technological advances like RNA interference (RNAi) to engineer resistance against these devastating parasites. First demonstrated in the model free living nematode, Caenorhabtidis elegans ; the phenomenon of RNAi has been successfully used to suppress essential genes of plant parasitic nematodes involved in parasitism, nematode development and mRNA metabolism. Synthetic neurotransmitants mixed with dsRNA solutions are used for in vitro RNAi in plant parasitic nematodes with significant success. However, host delivered in planta RNAi has proved to be a pioneering phenomenon to deliver dsRNAs to feeding nematodes and silence the target genes to achieve resistance. Highly enriched genomic databases are exploited to limit off target effects and ensure sequence specific silencing. Technological advances like gene stacking and use of nematode inducible and tissue specific promoters can further enhance the utility of RNAi based transgenics against plant parasitic nematodes.
Basnet, Sanjay; Kamble, Shripat T
2018-05-04
The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae) is a nuisance household pest causing significant medical and economic impacts. RNA interference (RNAi) of genes that are involved in vital physiological processes can serve as potential RNAi targets for insect control. Brahma is an ATPase subunit of a chromatin-remodeling complex involved in transcription of several genes for cellular processes, most importantly the homeotic genes. In this study, we used a microinjection technique to deliver double stranded RNA into female bed bugs. Delivery of 0.05 and 0.5 µg/insect of brahma dsRNA directly into hemocele resulted substantial reduction in oviposition. Eggs laid by bed bugs receiving both doses of brahma dsRNA exhibited significantly lower hatching percentage as compared to controls. In addition, brahma RNAi in female bed bugs caused significant mortality. Our results disclosed the potential of brahma RNAi to suppress bed bug population through injection of specific dsRNA, suggesting a critical function of this gene in bed bugs' reproduction and survival. Based on our data, brahma can be a promising RNAi target for suppression of bed bug population.
Molecular Characterization and the Function of Argonaute3 in RNAi Pathway of Plutella xylostella
Hameed, Muhammad Salman; Wang, Zhengbing; Yang, Guang
2018-01-01
Argonaute (Ago) protein family plays a key role in the RNA interference (RNAi) process in different insects including Lepidopteran. However, the role of Ago proteins in the RNAi pathway of Plutella xylostella is still unknown. We cloned an Argonaute3 gene in P. xylostella (PxAgo3) with the complete coding sequence of 2832 bp. The encoded protein had 935 amino acids with an expected molecular weight of 108.9 kDa and an isoelectric point of 9.29. It contained a PAZ (PIWI/Argonaute/Zwile) domain and PIWI (P-element-induced whimpy testes) domain. PxAgo3 was classified into the Piwi subfamily of Ago proteins with a high similarity of 93.0% with Bombyx mori Ago3 (BmAgo3). The suppression of PxAgo3 by dsPxAgo3 was observed 3 h after treatment and was maintained until 24 h. Knockdown of PxAgo3 decreased the suppression level of PxActin by dsPxActin in P. xylostella cells, while overexpression of PxAgo3 increased the RNAi efficiency. Our results suggest that PxAgo3 play a key role in the double stranded RNA (dsRNA)-regulated RNAi pathway in P. xylostella. PMID:29677157
Molecular Characterization and the Function of Argonaute3 in RNAi Pathway of Plutella xylostella.
Hameed, Muhammad Salman; Wang, Zhengbing; Vasseur, Liette; Yang, Guang
2018-04-20
Argonaute (Ago) protein family plays a key role in the RNA interference (RNAi) process in different insects including Lepidopteran. However, the role of Ago proteins in the RNAi pathway of Plutella xylostella is still unknown. We cloned an Argonaute3 gene in P. xylostella ( PxAgo3 ) with the complete coding sequence of 2832 bp. The encoded protein had 935 amino acids with an expected molecular weight of 108.9 kDa and an isoelectric point of 9.29. It contained a PAZ (PIWI/Argonaute/Zwile) domain and PIWI (P-element-induced whimpy testes) domain. PxAgo3 was classified into the Piwi subfamily of Ago proteins with a high similarity of 93.0% with Bombyx mori Ago3 (BmAgo3). The suppression of PxAgo3 by dsPxAgo3 was observed 3 h after treatment and was maintained until 24 h. Knockdown of PxAgo3 decreased the suppression level of PxActin by dsPxActin in P. xylostella cells, while overexpression of PxAgo3 increased the RNAi efficiency. Our results suggest that PxAgo3 play a key role in the double stranded RNA (dsRNA)-regulated RNAi pathway in P. xylostella .
Runo, Steven
2011-01-01
RNA interference (RNAi) has rapidly advanced to become a powerful genetic tool and holds promise to revolutionizing agriculture by providing a strategy for controlling a wide array of crop pests. Numerous studies document RNAi efficacy in achieving silencing in viruses, insects, nematodes and weeds parasitizing crops. In general, host derived pest resistance through RNAi is achieved by genetically transforming host plants with double stranded RNA constructs targeted at essential parasite genes leading to generation of small interfering RNAs (siRNAs). Small interfering RNAs formed in the host are then delivered to the parasite and transported to target cells. Delivery can be oral - worms and insects, viral infections, viruses - or through a vascular connections - parasitic plants, while delivery to target cells is by cell to cell systemic movement of the silencing signal. Despite the overall optimism in generating pest resistant crops through RNAi-mediated silencing, some hurdles have recently begun to emerge. Presently, the main challenge is delivery of sufficient siRNAs, in the right cells, and at the right time to mount; a strong, durable, and broad-spectrum posttranscriptional gene silencing (PTGS) signal. This review highlights the novel strategies available for improving host derived RNAi resistance in downstream applied agriculture.
RNA interference-mediated intrinsic antiviral immunity in invertebrates.
Nayak, Arabinda; Tassetto, Michel; Kunitomi, Mark; Andino, Raul
2013-01-01
In invertebrates such as insects and nematodes, RNA interference (RNAi) provides RNA-based protection against viruses. This form of immunity restricts viral replication and dissemination from infected cells and viruses, in turn, have evolved evasion mechanisms or RNAi suppressors to counteract host defenses. Recent advances indicate that, in addition to RNAi, other related small RNA pathways contribute to antiviral functions in invertebrates. This has led to a deeper understanding of fundamental aspects of small RNA-based antiviral immunity in invertebrates and its contribution to viral spread and pathogenesis.
RNAiFold2T: Constraint Programming design of thermo-IRES switches.
Garcia-Martin, Juan Antonio; Dotu, Ivan; Fernandez-Chamorro, Javier; Lozano, Gloria; Ramajo, Jorge; Martinez-Salas, Encarnacion; Clote, Peter
2016-06-15
RNA thermometers (RNATs) are cis-regulatory elements that change secondary structure upon temperature shift. Often involved in the regulation of heat shock, cold shock and virulence genes, RNATs constitute an interesting potential resource in synthetic biology, where engineered RNATs could prove to be useful tools in biosensors and conditional gene regulation. Solving the 2-temperature inverse folding problem is critical for RNAT engineering. Here we introduce RNAiFold2T, the first Constraint Programming (CP) and Large Neighborhood Search (LNS) algorithms to solve this problem. Benchmarking tests of RNAiFold2T against existent programs (adaptive walk and genetic algorithm) inverse folding show that our software generates two orders of magnitude more solutions, thus allowing ample exploration of the space of solutions. Subsequently, solutions can be prioritized by computing various measures, including probability of target structure in the ensemble, melting temperature, etc. Using this strategy, we rationally designed two thermosensor internal ribosome entry site (thermo-IRES) elements, whose normalized cap-independent translation efficiency is approximately 50% greater at 42 °C than 30 °C, when tested in reticulocyte lysates. Translation efficiency is lower than that of the wild-type IRES element, which on the other hand is fully resistant to temperature shift-up. This appears to be the first purely computational design of functional RNA thermoswitches, and certainly the first purely computational design of functional thermo-IRES elements. RNAiFold2T is publicly available as part of the new release RNAiFold3.0 at https://github.com/clotelab/RNAiFold and http://bioinformatics.bc.edu/clotelab/RNAiFold, which latter has a web server as well. The software is written in C ++ and uses OR-Tools CP search engine. clote@bc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Zhang, Ya-Dong; Zhu, Zhong-Sheng; Zhang, Dong; Zhang, Zhen; Ma, Bin; Zhao, Shi-Chang; Xue, Feng
2017-12-15
This study aimed to investigate the effect of Patched-1 (PTC1) and PTC2 silencing in a rat model, on Hedgehog (Hh) pathway-mediated recovery from spinal cord injury (SCI). An analytical emphasis on the relationship between the sonic hedgehog (Shh) pathway and nerve regeneration was explored. A total of 126 rats were divided into normal, sham, SCI, negative control (NC), PTC1-RNAi, PTC2-RNAi and PTC1/PTC2-RNAi groups. The Basso, Beattie and Bresnahan (BBB) scale was employed to assess hind limb motor function. Quantitative real-time polymerase chain reaction and western blotting were performed to examine the mRNA and protein levels of PTC1, PTC2, Shh, glioma-associated oncogene homolog 1 (Gli-1), Smo and Nestin. Tissue morphology was analyzed using immunohistochemistry, and immunofluorescent staining was conducted to detect neurofilament protein 200 (NF-200) and glial fibrillary acidic protein (GFAP). The PTC1/PTC2-RNAi group displayed higher BBB scores than the SCI and NC groups. Shh, Gli-1, Smo and Nestin expression levels were elevated in the PTC1/PTC2-RNAi group. PTC1 and PTC2 mRNA and protein expression was lower in the PTC1/PTC2-RNAi group than in the normal, sham and SCI groups. Among the seven groups, the PTC1/PTC2-RNAi group had the largest positive area of NF-200 staining, whereas the SCI group exhibited a larger GFAP-positive area than both the normal and the sham groups. The Shh pathway may provide new insights into therapeutic indications and regenerative recovery tools for the treatment of SCI. Activation of the Hh signaling pathway by silencing PTC1 and PTC2 may reduce inflammation and may ultimately promote SCI recovery.
Kamijho, Yuki; Shiozaki, Yayoi; Sakurai, Eiki; Hanaoka, Kazunori; Watanabe, Daisuke
2014-01-01
In this study we generated RNA interference (RNAi)-mediated gene knockdown transgenic mice (transgenic RNAi mice) against the functional Inv gene. Inv mutant mice show consistently reversed internal organs (situs inversus), multiple renal cysts and neonatal lethality. The Inv::GFP-rescue mice, which introduced the Inv::GFP fusion gene, can rescue inv mutant mice phenotypes. This indicates that the Inv::GFP gene is functional in vivo. To analyze the physiological functions of the Inv gene, and to demonstrate the availability of transgenic RNAi mice, we introduced a short hairpin RNA expression vector against GFP mRNA into Inv::GFP-rescue mice and analyzed the gene silencing effects and Inv functions by examining phenotypes. Transgenic RNAi mice with the Inv::GFP-rescue gene (Inv-KD mice) down-regulated Inv::GFP fusion protein and showed hypomorphic phenotypes of inv mutant mice, such as renal cyst development, but not situs abnormalities or postnatal lethality. This indicates that shRNAi-mediated gene silencing systems that target the tag sequence of the fusion gene work properly in vivo, and suggests that a relatively high level of Inv protein is required for kidney development in contrast to left/right axis determination. Inv::GFP protein was significantly down-regulated in the germ cells of Inv-KD mice testis compared with somatic cells, suggesting the existence of a testicular germ cell-specific enhanced RNAi system that regulates germ cell development. The Inv-KD mouse is useful for studying Inv gene functions in adult tissue that are unable to be analyzed in inv mutant mice showing postnatal lethality. In addition, the shRNA-based gene silencing system against the tag sequence of the fusion gene can be utilized as a new technique to regulate gene expression in either in vitro or in vivo experiments. PMID:24586938
Ribonucleic acid interference (RNAi) Technology for control of Asian citrus psyllid - You Tube
USDA-ARS?s Scientific Manuscript database
RNAi, Ribonucleic acid interference, function and application are described to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control to the citrus industry....
Biosafety research for non-target organism risk assessment of RNAi-based GE plants
Roberts, Andrew F.; Devos, Yann; Lemgo, Godwin N. Y.; Zhou, Xuguo
2015-01-01
RNA interference, or RNAi, refers to a set of biological processes that make use of conserved cellular machinery to silence genes. Although there are several variations in the source and mechanism, they are all triggered by double stranded RNA (dsRNA) which is processed by a protein complex into small, single stranded RNA, referred to as small interfering RNAs (siRNA) with complementarity to sequences in genes targeted for silencing. The use of the RNAi mechanism to develop new traits in plants has fueled a discussion about the environmental safety of the technology for these applications, and this was the subject of a symposium session at the 13th ISBGMO in Cape Town, South Africa. This paper continues that discussion by proposing research areas that may be beneficial for future environmental risk assessments of RNAi-based genetically modified plants, with a particular focus on non-target organism assessment. PMID:26594220
Steiner, Florian A; Okihara, Kristy L; Hoogstrate, Suzanne W; Sijen, Titia; Ketting, René F
2009-02-01
RNA interference (RNAi) is a process in which double-stranded RNA is cleaved into small interfering RNAs (siRNAs) that induce the destruction of homologous single-stranded mRNAs. Argonaute proteins are essential components of this silencing process; they bind siRNAs directly and can cleave RNA targets using a conserved RNase H motif. In Caenorhabditis elegans, the Argonaute protein RDE-1 has a central role in RNAi. In animals lacking RDE-1, the introduction of double-stranded RNA does not trigger any detectable level of RNAi. Here we show that RNase H activity of RDE-1 is required only for efficient removal of the passenger strand of the siRNA duplex and not for triggering the silencing response at the target-mRNA level. These results uncouple the role of the RDE-1 RNase H activity in small RNA maturation from its role in target-mRNA silencing in vivo.
Chin, Wei-Xin; Ang, Swee Kim; Chu, Justin Jang Hann
2017-01-01
In invertebrate eukaryotes and prokaryotes, respectively, the RNAi and clustered regularly interspaced short palindromic repeats-CRISPR-associated (CRISPR-Cas) pathways are highly specific and efficient RNA and DNA interference systems, and are well characterised as potent antiviral systems. It has become possible to recruit or reconstitute these pathways in mammalian cells, where they can be directed against desired host or viral targets. The RNAi and CRISPR-Cas systems can therefore yield ideal antiviral therapeutics, capable of specific and efficient viral inhibition with minimal off-target effects, but development of such therapeutics can be slow. This review covers recent advances made towards developing RNAi or CRISPR-Cas strategies for clinical use. These studies address the delivery, toxicity or target design issues that typically plague the in vivo or clinical use of these technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Male ejaculate proteins, including both sperm and seminal fluid proteins, play an important role in mediating reproductive biology. The function of ejaculate proteins can include enabling sperm-egg interactions, enhancing sperm storage, mediating female attractiveness, and even regulating female lif...
MYC RNAi-Pt Combination Nanotherapy for Metastatic Prostate Cancer Treatment
2017-10-01
RNAseq data analysis and gene signatures. All trainees also have access to a number of lectures on cancer including our Fall Course on Cancer Biology ...given in the oncology department that meets twice per week and covers major topics related to cancer biology and treatment. Dr. Bieberich holds
Induction and suppression of antiviral RNA interference by influenza A virus in mammalian cells.
Li, Yang; Basavappa, Megha; Lu, Jinfeng; Dong, Shuwei; Cronkite, D Alexander; Prior, John T; Reinecker, Hans-Christian; Hertzog, Paul; Han, Yanhong; Li, Wan-Xiang; Cheloufi, Sihem; Karginov, Fedor V; Ding, Shou-Wei; Jeffrey, Kate L
2016-12-05
Influenza A virus (IAV) causes annual epidemics and occasional pandemics, and is one of the best-characterized human RNA viral pathogens 1 . However, a physiologically relevant role for the RNA interference (RNAi) suppressor activity of the IAV non-structural protein 1 (NS1), reported over a decade ago 2 , remains unknown 3 . Plant and insect viruses have evolved diverse virulence proteins to suppress RNAi as their hosts produce virus-derived small interfering RNAs (siRNAs) that direct specific antiviral defence 4-7 by an RNAi mechanism dependent on the slicing activity of Argonaute proteins (AGOs) 8,9 . Recent studies have documented induction and suppression of antiviral RNAi in mouse embryonic stem cells and suckling mice 10,11 . However, it is still under debate whether infection by IAV or any other RNA virus that infects humans induces and/or suppresses antiviral RNAi in mature mammalian somatic cells 12-21 . Here, we demonstrate that mature human somatic cells produce abundant virus-derived siRNAs co-immunoprecipitated with AGOs in response to IAV infection. We show that the biogenesis of viral siRNAs from IAV double-stranded RNA (dsRNA) precursors in infected cells is mediated by wild-type human Dicer and potently suppressed by both NS1 of IAV as well as virion protein 35 (VP35) of Ebola and Marburg filoviruses. We further demonstrate that the slicing catalytic activity of AGO2 inhibits IAV and other RNA viruses in mature mammalian cells, in an interferon-independent fashion. Altogether, our work shows that IAV infection induces and suppresses antiviral RNAi in differentiated mammalian somatic cells.
Advances in genome-wide RNAi cellular screens: a case study using the Drosophila JAK/STAT pathway
2012-01-01
Background Genome-scale RNA-interference (RNAi) screens are becoming ever more common gene discovery tools. However, whilst every screen identifies interacting genes, less attention has been given to how factors such as library design and post-screening bioinformatics may be effecting the data generated. Results Here we present a new genome-wide RNAi screen of the Drosophila JAK/STAT signalling pathway undertaken in the Sheffield RNAi Screening Facility (SRSF). This screen was carried out using a second-generation, computationally optimised dsRNA library and analysed using current methods and bioinformatic tools. To examine advances in RNAi screening technology, we compare this screen to a biologically very similar screen undertaken in 2005 with a first-generation library. Both screens used the same cell line, reporters and experimental design, with the SRSF screen identifying 42 putative regulators of JAK/STAT signalling, 22 of which verified in a secondary screen and 16 verified with an independent probe design. Following reanalysis of the original screen data, comparisons of the two gene lists allows us to make estimates of false discovery rates in the SRSF data and to conduct an assessment of off-target effects (OTEs) associated with both libraries. We discuss the differences and similarities between the resulting data sets and examine the relative improvements in gene discovery protocols. Conclusions Our work represents one of the first direct comparisons between first- and second-generation libraries and shows that modern library designs together with methodological advances have had a significant influence on genome-scale RNAi screens. PMID:23006893
Gu, Keyu; Tian, Dongsheng; Mao, Huizhu; Wu, Lifang; Yin, Zhongchao
2015-10-08
Jatropha curcas L. is a potential biofuel plant and its seed oil is suitable for biodiesel production. Despite this promising application, jatropha seeds contain two major toxic components, namely phorbol esters and curcins. These compounds would reduce commercial value of seed cake and raise safety and environment concerns on jatropha plantation and processing. Curcins are Type I ribosome inactivating proteins. Several curcin genes have been identified in the jatropha genome. Among which, the Curcin 1 (C1) gene is identified to be specifically expressed in endosperm, whereas the Curcin 2A (C2A) is mainly expressed in young leaves. A marker-free RNAi construct carrying a β-estradiol-regulated Cre/loxP system and a C1 promoter-driven RNAi cassette for C1 gene was made and used to generate marker-free transgenic RNAi plants to specifically silence the C1 gene in the endosperm of J. curcas. Plants of transgenic line L1, derived from T0-1, carry two copies of marker-free RNAi cassette, whereas plants of L35, derived from T0-35, harbored one copy of marker-free RNAi cassette and three copies of closely linked and yet truncated Hpt genes. The C1 protein content in endosperm of L1 and L35 seeds was greatly reduced or undetectable, while the C2A proteins in young leaves of T0-1 and T0-35 plants were unaffected. In addition, the C1 mRNA transcripts were undetectable in the endosperm of T3 seeds of L1 and L35. The results demonstrated that the expression of the C1 gene was specifically down-regulated or silenced by the double-stranded RNA-mediated RNA interference generated from the RNAi cassette. The C1 promoter-driven RNAi cassette for the C1 gene in transgenic plants was functional and heritable. Both C1 transcripts and C1 proteins were greatly down-regulated or silenced in the endosperm of transgenic J. curcas. The marker-free transgenic plants and curcin-deficient seeds developed in this study provided a solution for the toxicity of curcins in jatropha seeds and addressed the safety concerns of the marker genes in transgenic plants on the environments.
Bertram, Catharina; Hass, Ralf
2009-10-01
The extracellular matrix (ECM) and a complex interplay of cell-to-cell and cell-to-matrix (ECM) interactions provide important platforms to determine cellular senescence and a potentially tumorigenic transformation of normal human mammary epithelial cells (HMEC). An enhanced formation of extracellular filaments, consisting of elastin-like structures, in senescent post-selection HMEC populations was paralleled by a significantly increased expression of its precursor protein tropoelastin and matched with a markedly elevated activity of the cross-linking enzyme family of lysyl oxidases (LOX). RNAi experiments revealed both the ECM metalloproteinase MMP-7 and the growth factor HB-EGF as potential effectors of an increased tropoelastin expression. Moreover, co-localization of MMP-7 and HB-EGF as well as a concomittant downstream signaling via Fra-1 indicated a possible association between the reduced MMP-7 enzyme activity and an impaired HB-EGF processing, resulting in an enhanced tropoelastin synthesis during senescence of HMEC. In agreement with previous work, these findings suggested an important influence of the extracellular proteinase MMP-7 on the aging process of HMEC, affecting both extracellular remodeling as well as intracellular signaling pathways.
Kennedy, Lisa M; Grishok, Alla
2014-05-01
Endogenous short RNAs and the conserved plant homeodomain (PHD) zinc-finger protein ZFP-1/AF10 regulate overlapping sets of genes in Caenorhabditis elegans, which suggests that they control common biological pathways. We have shown recently that the RNAi factor RDE-4 and ZFP-1 negatively modulate transcription of the insulin/PI3 signaling-dependent kinase PDK-1 to promote C. elegans fitness. Moreover, we have demonstrated that the insulin/IGF-1-PI3K-signaling pathway regulates the activity of the DAF-16/FOXO transcription factor in the hypodermis to nonautonomously promote the anterior migrations of the hermaphrodite-specific neurons (HSNs) during embryogenesis of C. elegans. In this study, we implicate the PHD-containing isoform of ZFP-1 and endogenous RNAi in the regulation of HSN migration. ZFP-1 affects HSN migration in part through its negative effect on pdk-1 transcription and modulation of downstream DAF-16 activity. We also identify a novel role for ZFP-1 and RNAi pathway components, including RDE-4, in the regulation of HSN migration in parallel with DAF-16. Therefore, the coordinated activities of DAF-16, ZFP-1, and endogenous RNAi contribute to gene regulation during development to ensure proper neuronal positioning.
Kennedy, Lisa M.; Grishok, Alla
2014-01-01
Endogenous short RNAs and the conserved plant homeodomain (PHD) zinc-finger protein ZFP-1/AF10 regulate overlapping sets of genes in Caenorhabditis elegans, which suggests that they control common biological pathways. We have shown recently that the RNAi factor RDE-4 and ZFP-1 negatively modulate transcription of the insulin/PI3 signaling-dependent kinase PDK-1 to promote C. elegans fitness. Moreover, we have demonstrated that the insulin/IGF-1-PI3K-signaling pathway regulates the activity of the DAF-16/FOXO transcription factor in the hypodermis to nonautonomously promote the anterior migrations of the hermaphrodite-specific neurons (HSNs) during embryogenesis of C. elegans. In this study, we implicate the PHD-containing isoform of ZFP-1 and endogenous RNAi in the regulation of HSN migration. ZFP-1 affects HSN migration in part through its negative effect on pdk-1 transcription and modulation of downstream DAF-16 activity. We also identify a novel role for ZFP-1 and RNAi pathway components, including RDE-4, in the regulation of HSN migration in parallel with DAF-16. Therefore, the coordinated activities of DAF-16, ZFP-1, and endogenous RNAi contribute to gene regulation during development to ensure proper neuronal positioning. PMID:24558261
The impact of HIV-1 genetic diversity on the efficacy of a combinatorial RNAi-based gene therapy.
Herrera-Carrillo, E; Berkhout, B
2015-06-01
A hurdle for human immunodeficiency virus (HIV-1) therapy is the genomic diversity of circulating viruses and the possibility that drug-resistant virus variants are selected. Although RNA interference (RNAi) is a powerful tool to stably inhibit HIV-1 replication by the expression of antiviral short hairpin RNAs (shRNAs) in transduced T cells, this approach is also vulnerable to pre-existing genetic variation and the development of viral resistance through mutation. To prevent viral escape, we proposed to combine multiple shRNAs against important regions of the HIV-1 RNA genome, which should ideally be conserved in all HIV-1 subtypes. The vulnerability of RNAi therapy to viral escape has been studied for a single subtype B strain, but it is unclear whether the antiviral shRNAs can inhibit diverse virus isolates and subtypes, including drug-resistant variants that could be present in treated patients. To determine the breadth of the RNAi gene therapy approach, we studied the susceptibility of HIV-1 subtypes A-E and drug-resistant variants. In addition, we monitored the evolution of HIV-1 escape variants. We demonstrate that the combinatorial RNAi therapy is highly effective against most isolates, supporting the future testing of this gene therapy in appropriate in vivo models.
Khatoon, Sameena; Kumar, Abhinav; Sarin, Neera B; Khan, Jawaid A
2016-08-01
Cotton leaf curl disease (CLCuD) is caused by several distinct begomovirus species in association with disease-specific betasatellite essential for induction of disease symptoms. CLCuD is a serious threat for the cultivation of cotton (Gossypium sp.) and several species in the family Malvaceae. In this study, RNAi-based approach was applied to generate transgenic cotton (Gossypium hirsutum) plants resistant to Cotton leaf curl Rajasthan virus (CLCuRV). An intron hairpin (ihp) RNAi construct capable of expressing dsRNA homologous to the intergenic region (IR) of CLCuRV was designed and developed. Following Agrobacterium tumefaciens-mediated transformation of cotton (G. hirsutum cv. Narasimha) plants with the designed ihpRNAi construct, a total of 9 independent lines of transformed cotton were obtained. The presence of the potential stretch of IR in the transformed cotton was confirmed by PCR coupled with Southern hybridization. Upon inoculation with viruliferous whiteflies, the transgenic plants showed high degree of resistance. None of them displayed any CLCuD symptoms even after 90 days post inoculation. The transformed cotton plants showed the presence of siRNAs. The present study demonstrated that ihp dsRNA-mediated resistance strategy of RNAi is an effective means to combat the CLCuD infection in cotton.
The Sheffield RNAi Screening Facility (SRSF): portfolio growth and technology development.
Brown, Stephen
2014-05-01
The Sheffield RNAi Screening Facility (SRSF) (www.rnai.group.shef.ac.uk) was established in 2008 with Wellcome Trust and University of Sheffield funding, with the task to provide the first UK RNAi screening resource for academic groups interested in identifying genes required in a diverse range of biological processes using Drosophila cell culture. The SRSF has carried out a wide range of screens varying in sizes from bespoke small-scale libraries, targeting a few hundred genes, to high-throughput, genome-wide studies. The SRSF has grown and improved with a dedicated partnership of its academic customers based mainly in the UK. We are part of the UK Academics Functional Genomics Network, participating in organizing an annual meeting in London and are part of the University of Sheffield's D3N (www.d3n.org.uk), connecting academics, biotech and pharmaceutical companies with a multidisciplinary network in Drug Discovery and Development. Recently, the SRSF has been funded by the Yorkshire Cancer Research Fund to perform genome-wide RNAi screens using human cells as part of a core facility for regional Yorkshire Universities and screens are now underway. Overall the SRSF has carried out more than 40 screens from Drosophila and human cell culture experiments.
Rouhana, Labib; Weiss, Jennifer A.; Forsthoefel, David J.; Lee, Hayoung; King, Ryan S.; Inoue, Takeshi; Shibata, Norito; Agata, Kiyokazu; Newmark, Phillip A.
2013-01-01
Background The ability to assess gene function is essential for understanding biological processes. Currently, RNA interference (RNAi) is the only technique available to assess gene function in planarians, in which it has been induced via injection of double-stranded RNA (dsRNA), soaking, or ingestion of bacteria expressing dsRNA. Results We describe a simple and robust RNAi protocol, involving in vitro synthesis of dsRNA that is fed to the planarians. Advantages of this protocol include the ability to produce dsRNA from any vector without subcloning, resolution of ambiguities in quantity and quality of input dsRNA, as well as time, and ease of application. We have evaluated the logistics of inducing RNAi in planarians using this methodology in careful detail, from the ingestion and processing of dsRNA in the intestine, to timing and efficacy of knockdown in neoblasts, germline, and soma. We also present systematic comparisons of effects of amount, frequency, and mode of dsRNA delivery. Conclusions This method gives robust and reproducible results and is amenable to high-throughput studies. Overall, this RNAi methodology provides a significant advance by combining the strengths of current protocols available for dsRNA delivery in planarians and has the potential to benefit RNAi methods in other systems. PMID:23441014
Logic integration of mRNA signals by an RNAi-based molecular computer.
Xie, Zhen; Liu, Siyuan John; Bleris, Leonidas; Benenson, Yaakov
2010-05-01
Synthetic in vivo molecular 'computers' could rewire biological processes by establishing programmable, non-native pathways between molecular signals and biological responses. Multiple molecular computer prototypes have been shown to work in simple buffered solutions. Many of those prototypes were made of DNA strands and performed computations using cycles of annealing-digestion or strand displacement. We have previously introduced RNA interference (RNAi)-based computing as a way of implementing complex molecular logic in vivo. Because it also relies on nucleic acids for its operation, RNAi computing could benefit from the tools developed for DNA systems. However, these tools must be harnessed to produce bioactive components and be adapted for harsh operating environments that reflect in vivo conditions. In a step toward this goal, we report the construction and implementation of biosensors that 'transduce' mRNA levels into bioactive, small interfering RNA molecules via RNA strand exchange in a cell-free Drosophila embryo lysate, a step beyond simple buffered environments. We further integrate the sensors with our RNAi 'computational' module to evaluate two-input logic functions on mRNA concentrations. Our results show how RNA strand exchange can expand the utility of RNAi computing and point toward the possibility of using strand exchange in a native biological setting.
Logic integration of mRNA signals by an RNAi-based molecular computer
Xie, Zhen; Liu, Siyuan John; Bleris, Leonidas; Benenson, Yaakov
2010-01-01
Synthetic in vivo molecular ‘computers’ could rewire biological processes by establishing programmable, non-native pathways between molecular signals and biological responses. Multiple molecular computer prototypes have been shown to work in simple buffered solutions. Many of those prototypes were made of DNA strands and performed computations using cycles of annealing-digestion or strand displacement. We have previously introduced RNA interference (RNAi)-based computing as a way of implementing complex molecular logic in vivo. Because it also relies on nucleic acids for its operation, RNAi computing could benefit from the tools developed for DNA systems. However, these tools must be harnessed to produce bioactive components and be adapted for harsh operating environments that reflect in vivo conditions. In a step toward this goal, we report the construction and implementation of biosensors that ‘transduce’ mRNA levels into bioactive, small interfering RNA molecules via RNA strand exchange in a cell-free Drosophila embryo lysate, a step beyond simple buffered environments. We further integrate the sensors with our RNAi ‘computational’ module to evaluate two-input logic functions on mRNA concentrations. Our results show how RNA strand exchange can expand the utility of RNAi computing and point toward the possibility of using strand exchange in a native biological setting. PMID:20194121
RNA interference mediated in human primary cells via recombinant baculoviral vectors.
Nicholson, Linda J; Philippe, Marie; Paine, Alan J; Mann, Derek A; Dolphin, Colin T
2005-04-01
The success of RNA interference (RNAi) in mammalian cells, mediated by siRNAs or shRNA-generating plasmids, is dependent, to an extent, upon transfection efficiency. This is a particular problem with primary cells, which are often difficult to transfect using cationic lipid vehicles. Effective RNAi in primary cells is thus best achieved with viral vectors, and retro-, adeno-, and lentivirus RNAi systems have been described. However, the use of such human viral vectors is inherently problematic, e.g., Class 2 status and requirement of secondary helper functions. Although insect cells are their natural host, baculoviruses also transduce a range of vertebrate cell lines and primary cells with high efficiency. The inability of baculoviral vectors to replicate in mammalian cells, their Class 1 status, and the simplicity of their construction make baculovirus an attractive alternative gene delivery vector. We have developed a baculoviral-based RNAi system designed to express shRNAs and GFP from U6 and CMV promoters, respectively. Transduction of Saos2, HepG2, Huh7, and primary human hepatic stellate cells with a baculoviral construct expressing shRNAs targeting lamin A/C resulted in effective knockdown of the corresponding mRNA and protein. Development of this baculoviral-based system provides an additional shRNA delivery option for RNAi-based investigations in mammalian cells.
Seinen, Erwin; Burgerhof, Johannes G. M.; Jansen, Ritsert C.; Sibon, Ody C. M.
2010-01-01
Background RNAi technology is widely used to downregulate specific gene products. Investigating the phenotype induced by downregulation of gene products provides essential information about the function of the specific gene of interest. When RNAi is applied in Drosophila melanogaster or Caenorhabditis elegans, often large dsRNAs are used. One of the drawbacks of RNAi technology is that unwanted gene products with sequence similarity to the gene of interest can be down regulated too. To verify the outcome of an RNAi experiment and to avoid these unwanted off-target effects, an additional non-overlapping dsRNA can be used to down-regulate the same gene. However it has never been tested whether this approach is sufficient to reduce the risk of off-targets. Methodology We created a novel tool to analyse the occurance of off-target effects in Drosophila and we analyzed 99 randomly chosen genes. Principal Findings Here we show that nearly all genes contain non-overlapping internal sequences that do show overlap in a common off-target gene. Conclusion Based on our in silico findings, off-target effects should not be ignored and our presented on-line tool enables the identification of two RNA interference constructs, free of overlapping off-targets, from any gene of interest. PMID:20957038
Han, Wang; Sundaram, Prema; Kenjale, Himanshu; Grantham, James; Timmons, Lisa
2008-04-01
In Caenorhabditis elegans, exogenous dsRNA can elicit systemic RNAi, a process that requires the function of many genes. Considering that the activities of many of these genes are also required for normal development, it is surprising that exposure to high concentrations of dsRNA does not elicit adverse consequences to animals. Here, we report inducible phenotypes in attenuated C. elegans strains reared in environments that include nonspecific dsRNA and elevated temperature. Under these conditions, chromosome integrity is compromised in RNAi-defective strains harboring mutations in rsd-2 or rsd-6. Specifically, rsd-2 mutants display defects in transposon silencing, while meiotic chromosome disjunction is affected in rsd-6 mutants. RSD-2 proteins localize to multiple cellular compartments, including the nucleolus and cytoplasmic compartments that, in part, are congruent with calreticulin and HAF-6. We considered that the RNAi defects in rsd-2 mutants might have relevance to membrane-associated functions; however, endomembrane compartmentalization and endocytosis/exocytosis markers in rsd-2 and rsd-6 mutants appear normal. The mutants also possess environmentally sensitive defects in cell-autonomous RNAi elicited from transgene-delivered dsRNAs. Thus, the ultimate functions of rsd-2 and rsd-6 in systemic RNAi are remarkably complex and environmentally responsive.
Wallace, Lindsay M; Saad, Nizar Y; Pyne, Nettie K; Fowler, Allison M; Eidahl, Jocelyn O; Domire, Jacqueline S; Griffin, Danielle A; Herman, Adam C; Sahenk, Zarife; Rodino-Klapac, Louise R; Harper, Scott Q
2018-03-16
RNAi emerged as a prospective molecular therapy nearly 15 years ago. Since then, two major RNAi platforms have been under development: oligonucleotides and gene therapy. Oligonucleotide-based approaches have seen more advancement, with some promising therapies that may soon reach market. In contrast, vector-based approaches for RNAi therapy have remained largely in the pre-clinical realm, with limited clinical safety and efficacy data to date. We are developing a gene therapy approach to treat the autosomal-dominant disorder facioscapulohumeral muscular dystrophy. Our strategy involves silencing the myotoxic gene DUX4 using adeno-associated viral vectors to deliver targeted microRNA expression cassettes (miDUX4s). We previously demonstrated proof of concept for this approach in mice, and we are now taking additional steps here to assess safety issues related to miDUX4 overexpression and sequence-specific off-target silencing. In this study, we describe improvements in vector design and expansion of our miDUX4 sequence repertoire and report differential toxicity elicited by two miDUX4 sequences, of which one was toxic and the other was not. This study provides important data to help advance our goal of translating RNAi gene therapy for facioscapulohumeral muscular dystrophy.
RNAiFold: a web server for RNA inverse folding and molecular design.
Garcia-Martin, Juan Antonio; Clote, Peter; Dotu, Ivan
2013-07-01
Synthetic biology and nanotechnology are poised to make revolutionary contributions to the 21st century. In this article, we describe a new web server to support in silico RNA molecular design. Given an input target RNA secondary structure, together with optional constraints, such as requiring GC-content to lie within a certain range, requiring the number of strong (GC), weak (AU) and wobble (GU) base pairs to lie in a certain range, the RNAiFold web server determines one or more RNA sequences, whose minimum free-energy secondary structure is the target structure. RNAiFold provides access to two servers: RNA-CPdesign, which applies constraint programming, and RNA-LNSdesign, which applies the large neighborhood search heuristic; hence, it is suitable for larger input structures. Both servers can also solve the RNA inverse hybridization problem, i.e. given a representation of the desired hybridization structure, RNAiFold returns two sequences, whose minimum free-energy hybridization is the input target structure. The web server is publicly accessible at http://bioinformatics.bc.edu/clotelab/RNAiFold, which provides access to two specialized servers: RNA-CPdesign and RNA-LNSdesign. Source code for the underlying algorithms, implemented in COMET and supported on linux, can be downloaded at the server website.
The Role of Exosomal VP40 in Ebola Virus Disease.
Pleet, Michelle L; DeMarino, Catherine; Lepene, Benjamin; Aman, M Javad; Kashanchi, Fatah
2017-04-01
Ebola virus (EBOV) can cause a devastating hemorrhagic disease, leading to death in a short period of time. After infection, the resulting EBOV disease results in high levels of circulating cytokines, endothelial dysfunction, coagulopathy, and bystander lymphocyte apoptosis in humans and nonhuman primates. The VP40 matrix protein of EBOV is essential for viral assembly and budding from the host cell. Recent data have shown that VP40 exists in the extracellular environment, including in exosomes, and exosomal VP40 can impact the viability of recipient immune cells, including myeloid and T cells, through the regulation of the RNAi and endosomal sorting complexes required for transport pathways. In this study, we discuss the latest findings of the impact of exosomal VP40 on immune cells in vitro and its potential implications for pathogenesis in vivo.
Targeting Prostate Cancer with Multifunctional Nanoparticles
2015-10-01
duplexes using Lipofectamine RNAiMAX (Invitrogen) as well as the appropriate controls including vehicle, non-targeting siRNA (siSC5) (negative...independent claudin-3 and claudin-4 siRNA duplexes using Lipofectamine RNAiMAX (Invitrogen). For these experiments we also included the appropriate
RNAi at work: Targeting invertebrate pests and beneficial organisms' diseases
USDA-ARS?s Scientific Manuscript database
Invertebrates present two types of large scale RNAi application opportunities: pest control and beneficial insect health. The former involves the introduction of sustainable applications to keep pest populations low, and the latter represents the challenge of keeping beneficial organisms healthy. RN...
Ribonucleic acid interference (RNAi) technology for control of Asian citrus psyllid
USDA-ARS?s Scientific Manuscript database
Ribonucleic acid interference, RNAi, applications and function are described for the non-scientist to bring a better understanding of how this emerging technology is providing environmentally friendly, non-transgenic, insect pest control to the citrus industry. Two part Video presentation....
ColE1-Plasmid Production in Escherichia coli: Mathematical Simulation and Experimental Validation.
Freudenau, Inga; Lutter, Petra; Baier, Ruth; Schleef, Martin; Bednarz, Hanna; Lara, Alvaro R; Niehaus, Karsten
2015-01-01
Plasmids have become very important as pharmaceutical gene vectors in the fields of gene therapy and genetic vaccination in the past years. In this study, we present a dynamic model to simulate the ColE1-like plasmid replication control, once for a DH5α-strain carrying a low copy plasmid (DH5α-pSUP 201-3) and once for a DH5α-strain carrying a high copy plasmid (DH5α-pCMV-lacZ) by using ordinary differential equations and the MATLAB software. The model includes the plasmid replication control by two regulatory RNA molecules (RNAI and RNAII) as well as the replication control by uncharged tRNA molecules. To validate the model, experimental data like RNAI- and RNAII concentration, plasmid copy number (PCN), and growth rate for three different time points in the exponential phase were determined. Depending on the sampled time point, the measured RNAI- and RNAII concentrations for DH5α-pSUP 201-3 reside between 6 ± 0.7 and 34 ± 7 RNAI molecules per cell and 0.44 ± 0.1 and 3 ± 0.9 RNAII molecules per cell. The determined PCNs averaged between 46 ± 26 and 48 ± 30 plasmids per cell. The experimentally determined data for DH5α-pCMV-lacZ reside between 345 ± 203 and 1086 ± 298 RNAI molecules per cell and 22 ± 2 and 75 ± 10 RNAII molecules per cell with an averaged PCN of 1514 ± 1301 and 5806 ± 4828 depending on the measured time point. As the model was shown to be consistent with the experimentally determined data, measured at three different time points within the growth of the same strain, we performed predictive simulations concerning the effect of uncharged tRNA molecules on the ColE1-like plasmid replication control. The hypothesis is that these tRNA molecules would have an enhancing effect on the plasmid production. The in silico analysis predicts that uncharged tRNA molecules would indeed increase the plasmid DNA production.
Rioualen, Claire; Da Costa, Quentin; Chetrit, Bernard; Charafe-Jauffret, Emmanuelle; Ginestier, Christophe
2017-01-01
High-throughput RNAi screenings (HTS) allow quantifying the impact of the deletion of each gene in any particular function, from virus-host interactions to cell differentiation. However, there has been less development for functional analysis tools dedicated to RNAi analyses. HTS-Net, a network-based analysis program, was developed to identify gene regulatory modules impacted in high-throughput screenings, by integrating transcription factors-target genes interaction data (regulome) and protein-protein interaction networks (interactome) on top of screening z-scores. HTS-Net produces exhaustive HTML reports for results navigation and exploration. HTS-Net is a new pipeline for RNA interference screening analyses that proves better performance than simple gene rankings by z-scores, by re-prioritizing genes and replacing them in their biological context, as shown by the three studies that we reanalyzed. Formatted input data for the three studied datasets, source code and web site for testing the system are available from the companion web site at http://htsnet.marseille.inserm.fr/. We also compared our program with existing algorithms (CARD and hotnet2). PMID:28949986
Li, Xinxin; Zhang, Yonggen; Hannoufa, Abdelali; Yu, Peiqiang
2015-11-04
Lignin, a phenylpropanoid polymer present in secondary cell walls, has a negative impact on feed digestibility. TT8 and HB12 genes were shown to have low expression levels in low-lignin tissues of alfalfa, but to date, there has been no study on the effect of down-regulation of these two genes in alfalfa on nutrient chemical profiles and availability in ruminant livestock systems. The objectives of this study were to investigate the effect of transformation of alfalfa with TT8 and HB12 RNAi constructs on carbohydrate (CHO) structure and CHO nutritive value in ruminant livestock systems. The results showed that transformation with TT8 and HB12 RNAi constructs reduced rumen, rapidly degraded CHO fractions (RDCA4, P = 0.06; RDCB1, P < 0.01) and totally degraded CHO fraction (TRDCHO, P = 0.08). Both HB12 and TT8 populations had significantly higher in vitro digestibility of neutral detergent fiber (NDF) at 30 h of incubation (ivNDF30) compared to the control (P < 0.01). The TT8 populations had highest ivDM30 and ivNDF240. Transformation of alfalfa with TT8 and HB12 RNAi constructs induced molecular structure changes. Different CHO functional groups had different sensitivities and different responses to the transformation. The CHO molecular structure changes induced by the transformation were associated with predicted CHO availability. Compared with HB12 RNAi, transformation with TT8 RNAi could improve forage quality by increasing the availability of both NDF and DM. Further study is needed on the relationship between the transformation-induced structure changes at a molecular level and nutrient utilization in ruminant livestock systems when lignification is much higher.
Frost, Christopher J; Nyamdari, Batbayar; Tsai, Chung-Jui; Harding, Scott A
2012-01-01
The Populus sucrose (Suc) transporter 4 (PtaSUT4), like its orthologs in other plant taxa, is tonoplast localized and thought to mediate Suc export from the vacuole into the cytosol. In source leaves of Populus, SUT4 is the predominantly expressed gene family member, with transcript levels several times higher than those of plasma membrane SUTs. A hypothesis is advanced that SUT4-mediated tonoplast sucrose fluxes contribute to the regulation of osmotic gradients between cellular compartments, with the potential to mediate both sink provisioning and drought tolerance in Populus. Here, we describe the effects of PtaSUT4-RNA interference (RNAi) on sucrose levels and raffinose family oligosaccharides (RFO) induction, photosynthesis, and water uptake, retention and loss during acute and chronic drought stresses. Under normal water-replete growing conditions, SUT4-RNAi plants had generally higher shoot water contents than wild-type plants. In response to soil drying during a short-term, acute drought, RNAi plants exhibited reduced rates of water uptake and delayed wilting relative to wild-type plants. SUT4-RNAi plants had larger leaf areas and lower photosynthesis rates than wild-type plants under well-watered, but not under chronic water-limiting conditions. Moreover, the magnitude of shoot water content, height growth, and photosynthesis responses to contrasting soil moisture regimes was greater in RNAi than wild-type plants. The concentrations of stress-responsive RFOs increased in wild-type plants but were unaffected in SUT4-RNAi plants under chronically dry conditions. We discuss a model in which the subcellular compartmentalization of sucrose mediated by PtaSUT4 is regulated in response to both sink demand and plant water status in Populus.
Nagy, Peter D.
2017-01-01
Reconstituted antiviral defense pathway in surrogate host yeast is used as an intracellular probe to further our understanding of virus-host interactions and the role of co-opted host factors in formation of membrane-bound viral replicase complexes in protection of the viral RNA against ribonucleases. The inhibitory effect of the RNA interference (RNAi) machinery of S. castellii, which only consists of the two-component DCR1 and AGO1 genes, was measured against tomato bushy stunt virus (TBSV) in wild type and mutant yeasts. We show that deletion of the co-opted ESCRT-I (endosomal sorting complexes required for transport I) or ESCRT-III factors makes TBSV replication more sensitive to the RNAi machinery in yeast. Moreover, the lack of these pro-viral cellular factors in cell-free extracts (CFEs) used for in vitro assembly of the TBSV replicase results in destruction of dsRNA replication intermediate by a ribonuclease at the 60 min time point when the CFE from wt yeast has provided protection for dsRNA. In addition, we demonstrate that co-opted oxysterol-binding proteins and membrane contact sites, which are involved in enrichment of sterols within the tombusvirus replication compartment, are required for protection of viral dsRNA. We also show that phosphatidylethanolamine level influences the formation of RNAi-resistant replication compartment. In the absence of peroxisomes in pex3Δ yeast, TBSV subverts the ER membranes, which provide as good protection for TBSV dsRNA against RNAi or ribonucleases as the peroxisomal membranes in wt yeast. Altogether, these results demonstrate that co-opted protein factors and usurped lipids are exploited by tombusviruses to build protective subcellular environment against the RNAi machinery and possibly other cellular ribonucleases. PMID:28759634
Panwar, Vinay; Jordan, Mark; McCallum, Brent; Bakkeren, Guus
2018-05-01
Leaf rust, caused by the pathogenic fungus Puccinia triticina (Pt), is one of the most serious biotic threats to sustainable wheat production worldwide. This obligate biotrophic pathogen is prevalent worldwide and is known for rapid adaptive evolution to overcome resistant wheat varieties. Novel disease control approaches are therefore required to minimize the yield losses caused by Pt. Having shown previously the potential of host-delivered RNA interference (HD-RNAi) in functional screening of Pt genes involved in pathogenesis, we here evaluated the use of this technology in transgenic wheat plants as a method to achieve protection against wheat leaf rust (WLR) infection. Stable expression of hairpin RNAi constructs with sequence homology to Pt MAP-kinase (PtMAPK1) or a cyclophilin (PtCYC1) encoding gene in susceptible wheat plants showed efficient silencing of the corresponding genes in the interacting fungus resulting in disease resistance throughout the T 2 generation. Inhibition of Pt proliferation in transgenic lines by in planta-induced RNAi was associated with significant reduction in target fungal transcript abundance and reduced fungal biomass accumulation in highly resistant plants. Disease protection was correlated with the presence of siRNA molecules specific to targeted fungal genes in the transgenic lines harbouring the complementary HD-RNAi construct. This work demonstrates that generating transgenic wheat plants expressing RNAi-inducing transgenes to silence essential genes in rust fungi can provide effective disease resistance, thus opening an alternative way for developing rust-resistant crops. © 2017 Her Majesty the Queen in Right of Canada. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
RNA interference technology in crop protection against arthropod pests, pathogens and nematodes.
Zotti, Moises; Dos Santos, Ericmar Avila; Cagliari, Deise; Christiaens, Olivier; Taning, Clauvis Nji Tizi; Smagghe, Guy
2018-06-01
Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi-based products are already available for farmers and more are expected to reach the market soon. Tailor-made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest-insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide-resistant weeds and insects. Finally, this review reports on the advances in non-transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Deinlein, Ulrich; Weber, Michael; Schmidt, Holger; Rensch, Stefan; Trampczynska, Aleksandra; Hansen, Thomas H; Husted, Søren; Schjoerring, Jan K; Talke, Ina N; Krämer, Ute; Clemens, Stephan
2012-02-01
Zn deficiency is among the leading health risk factors in developing countries. Breeding of Zn-enriched crops is expected to be facilitated by molecular dissection of plant Zn hyperaccumulation (i.e., the ability of certain plants to accumulate Zn to levels >100-fold higher than normal plants). The model hyperaccumulators Arabidopsis halleri and Noccaea caerulescens share elevated nicotianamine synthase (NAS) expression relative to nonaccumulators among a core of alterations in metal homeostasis. Suppression of Ah-NAS2 by RNA interference (RNAi) resulted in strongly reduced root nicotianamine (NA) accumulation and a concomitant decrease in root-to-shoot translocation of Zn. Speciation analysis by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry showed that the dominating Zn ligands in roots were NA and thiols. In NAS2-RNAi plants, a marked increase in Zn-thiol species was observed. Wild-type A. halleri plants cultivated on their native soil showed elemental profiles very similar to those found in field samples. Leaf Zn concentrations in NAS2-RNAi lines, however, did not reach the Zn hyperaccumulation threshold. Leaf Cd accumulation was also significantly reduced. These results demonstrate a role for NAS2 in Zn hyperaccumulation also under near-natural conditions. We propose that NA forms complexes with Zn(II) in root cells and facilitates symplastic passage of Zn(II) toward the xylem.
Deinlein, Ulrich; Weber, Michael; Schmidt, Holger; Rensch, Stefan; Trampczynska, Aleksandra; Hansen, Thomas H.; Husted, Søren; Schjoerring, Jan K.; Talke, Ina N.; Krämer, Ute; Clemens, Stephan
2012-01-01
Zn deficiency is among the leading health risk factors in developing countries. Breeding of Zn-enriched crops is expected to be facilitated by molecular dissection of plant Zn hyperaccumulation (i.e., the ability of certain plants to accumulate Zn to levels >100-fold higher than normal plants). The model hyperaccumulators Arabidopsis halleri and Noccaea caerulescens share elevated nicotianamine synthase (NAS) expression relative to nonaccumulators among a core of alterations in metal homeostasis. Suppression of Ah-NAS2 by RNA interference (RNAi) resulted in strongly reduced root nicotianamine (NA) accumulation and a concomitant decrease in root-to-shoot translocation of Zn. Speciation analysis by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry showed that the dominating Zn ligands in roots were NA and thiols. In NAS2-RNAi plants, a marked increase in Zn-thiol species was observed. Wild-type A. halleri plants cultivated on their native soil showed elemental profiles very similar to those found in field samples. Leaf Zn concentrations in NAS2-RNAi lines, however, did not reach the Zn hyperaccumulation threshold. Leaf Cd accumulation was also significantly reduced. These results demonstrate a role for NAS2 in Zn hyperaccumulation also under near-natural conditions. We propose that NA forms complexes with Zn(II) in root cells and facilitates symplastic passage of Zn(II) toward the xylem. PMID:22374395
Galdeano, Diogo Manzano; Breton, Michèle Claire; Lopes, João Roberto Spotti; Falk, Bryce W; Machado, Marcos Antonio
2017-01-01
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most important citrus pests. ACP is the vector of the phloem-limited bacteria Candidatus Liberibacter americanus and Candidatus Liberibacter asiaticus, the causal agents of the devastating citrus disease huanglongbing (HLB). The management of HLB is based on the use of healthy young plants, eradication of infected plants and chemical control of the vector. RNA interference (RNAi) has proven to be a promising tool to control pests and explore gene functions. Recently, studies have reported that target mRNA knockdown in many insects can be induced through feeding with double-stranded RNA (dsRNA). In the current study, we targeted the cathepsin D, chitin synthase and inhibitor of apoptosis genes of adult and nymph ACP by feeding artificial diets mixed with dsRNAs and Murraya paniculata leaves placed in dsRNAs solutions, respectively. Adult ACP mortality was positively correlated with the amount of dsRNA used. Both nymphs and adult ACP fed dsRNAs exhibited significantly increased mortality over time compared with that of the controls. Moreover, qRT-PCR analysis confirmed the dsRNA-mediated RNAi effects on target mRNAs. These results showed that RNAi can be a powerful tool for gene function studies in ACP and perhaps for HLB control.
Mao, Dandan; Chen, Jian; Tian, Lianfu; Liu, Zhenhua; Yang, Lei; Tang, Renjie; Li, Jian; Lu, Changqing; Yang, Yonghua; Shi, Jisen; Chen, Liangbi; Li, Dongping; Luan, Sheng
2014-01-01
Although magnesium (Mg2+) is the most abundant divalent cation in plant cells, little is known about the mechanism of Mg2+ uptake by plant roots. Here, we report a key function of Magnesium Transport6 (MGT6)/Mitochondrial RNA Splicing2-4 in Mg2+ uptake and low-Mg2+ tolerance in Arabidopsis thaliana. MGT6 is expressed mainly in plant aerial tissues when Mg2+ levels are high in the soil or growth medium. Its expression is highly induced in the roots during Mg2+ deficiency, suggesting a role for MGT6 in response to the low-Mg2+ status in roots. Silencing of MGT6 in transgenic plants by RNA interference (RNAi) resulted in growth retardation under the low-Mg2+ condition, and the phenotype was restored to normal growth after RNAi plants were transferred to Mg2+-sufficient medium. RNAi plants contained lower levels of Mg2+ compared with wild-type plants under low Mg2+ but not under Mg2+-sufficient conditions. Further analysis indicated that MGT6 was localized in the plasma membrane and played a key role in Mg2+ uptake by roots under Mg2+ limitation. We conclude that MGT6 mediates Mg2+ uptake in roots and is required for plant adaptation to a low-Mg2+ environment. PMID:24794135
Meliopoulos, Victoria A.; Andersen, Lauren E.; Birrer, Katherine F.; Simpson, Kaylene J.; Lowenthal, John W.; Bean, Andrew G. D.; Stambas, John; Stewart, Cameron R.; Tompkins, S. Mark; van Beusechem, Victor W.; Fraser, Iain; Mhlanga, Musa; Barichievy, Samantha; Smith, Queta; Leake, Devin; Karpilow, Jon; Buck, Amy; Jona, Ghil; Tripp, Ralph A.
2012-01-01
Influenza virus encodes only 11 viral proteins but replicates in a broad range of avian and mammalian species by exploiting host cell functions. Genome-wide RNA interference (RNAi) has proven to be a powerful tool for identifying the host molecules that participate in each step of virus replication. Meta-analysis of findings from genome-wide RNAi screens has shown influenza virus to be dependent on functional nodes in host cell pathways, requiring a wide variety of molecules and cellular proteins for replication. Because rapid evolution of the influenza A viruses persistently complicates the effectiveness of vaccines and therapeutics, a further understanding of the complex host cell pathways coopted by influenza virus for replication may provide new targets and strategies for antiviral therapy. RNAi genome screening technologies together with bioinformatics can provide the ability to rapidly identify specific host factors involved in resistance and susceptibility to influenza virus, allowing for novel disease intervention strategies.—Meliopoulos, V. A., Andersen, L. E., Birrer, K. F., Simpson, K. J., Lowenthal, J. W., Bean, A. G. D., Stambas, J., Stewart, C. R., Tompkins, S. M., van Beusechem, V. W., Fraser, I., Mhlanga, M., Barichievy, S., Smith, Q., Leake, D., Karpilow, J., Buck, A., Jona, G., Tripp, R. A. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. PMID:22247330
Wang, Yunshu; Hu, Zongli; Zhang, Jianling; Yu, XiaoHui; Guo, Jun-E; Liang, Honglian; Liao, Changguang; Chen, Guoping
2018-02-19
Mediator complex, a conserved multi-protein, is necessary for controlling RNA polymerase II (Pol II) transcription in eukaryotes. Given little is known about them in tomato, a tomato Mediator subunit 18 gene was isolated and named SlMED18. To further explore the function of SlMED18, the transgenic tomato plants targeting SlMED18 by RNAi-mediated gene silencing were generated. The SlMED18-RNAi lines exhibited multiple developmental defects, including smaller size and slower growth rate of plant and significantly smaller compound leaves. The contents of endogenous bioactive GA 3 in SlMED18 silenced lines were slightly less than that in wild type. Furthermore, qRT-PCR analysis indicated that expression of gibberellins biosynthesis genes such as SlGACPS and SlGA20x2, auxin transport genes (PIN1, PIN4, LAX1 and LAX2) and several key regulators, KNOX1, KNOX2, PHAN and LANCEOLATE(LA), which involved in the leaf morphogenesis were significantly down-regulated in SlMED18-RNAi lines. These results illustrated that SlMED18 plays an essential role in regulating plant internode elongation and leaf expansion in tomato plants and it acts as a key positive regulator of gibberellins biosynthesis and signal transduction as well as auxin proper transport signalling. These findings are the basis for understanding the function of the individual Mediator subunits in tomato.
Chen, B W; Xiao, Y F; Li, J J; Liu, H L; Qin, Z H; Gai, Y; Jiang, X N
2016-12-02
Cinnamyl alcohol dehydrogenase (CAD) catalyzes the final step in lignin biosynthesis. The genus Eucalyptus belongs to the family Myrtaceae, which is the main cultivated species in China. Eucalyptus urophylla GLU4 (GLU4) is widely grown in Guangxi. It is preferred for pulping because of its excellent cellulose content and fiber length. Based on GLU4 and CAD gene expression, a Eucalyptus variety low in lignin content should be obtained using transgenic technology, which could reduce the cost of pulp and improve the pulping rate, and have favorable prospects for application. However, the role and function of CAD in GLU4 is still unclear. In the present study, EuCAD was cloned from GLU4 and identified using bioinformatic tools. Subsequently, in order to evaluate its impact on lignin synthesis, a full-length EuCAD RNAi vector was constructed, and transgenic tobacco was obtained via Agrobacterium-mediated transformation. A significant decrease in CAD expression and lignin content in transgenic tobacco demonstrated a key role for EuCAD in lignin biosynthesis and established a regulatory role for RNAi. In our study, the direct molecular basis of EuCAD expression was determined, and the potential regulatory effects of this RNAi vector on lignin biosynthesis in E. urophylla GLU4 were demonstrated. Our results provide a theoretical basis for the study of lignin biosynthesis in Eucalyptus.
Tian, Lihong; Dai, Ling Ling; Yin, Zhi Jie; Fukuda, Masako; Kumamaru, Toshihiro; Dong, Xiang Bai; Xu, Xiu Ping; Qu, Le Qing
2013-07-01
Rice seed storage proteins glutelin and α-globulin are synthesized in the endoplasmic reticulum (ER) and deposited in protein storage vacuoles (PSVs). Sar1, a small GTPase, acts as a molecular switch to regulate the assembly of coat protein complex II, which exports secretory protein from the ER to the Golgi apparatus. To reveal the route by which glutelin and α-globulin exit the ER, four putative Sar1 genes (OsSar1a/b/c/d) were cloned from rice, and transgenic rice were generated with Sar1 overexpressed or suppressed by RNA interference (RNAi) specifically in the endosperm under the control of the rice glutelin promoter. Overexpression or suppression of any OsSar1 did not alter the phenotype. However, simultaneous knockdown of OsSar1a/b/c resulted in floury and shrunken seeds, with an increased level of glutelin precursor and decreased level of the mature α- and β-subunit. OsSar1abc RNAi endosperm generated numerous, spherical, novel protein bodies with highly electron-dense matrixes containing both glutelin and α-globulin. Notably, the novel protein bodies were surrounded by ribosomes, showing that they were derived from the ER. Some of the ER-derived dense protein bodies were attached to a blebbing structure containing prolamin. These results indicated that OsSar1a/b/c play a crucial role in storage proteins exiting from the ER, with functional redundancy in rice endosperm, and glutelin and α-globulin transported together from the ER to the Golgi apparatus by a pathway mediated by coat protein complex II.
Ex vitro composite plants: an inexpensive, rapid method for root biology.
Collier, Ray; Fuchs, Beth; Walter, Nathalie; Kevin Lutke, William; Taylor, Christopher G
2005-08-01
Plant transformation technology is frequently the rate-limiting step in gene function analysis in non-model plants. An important tool for root biologists is the Agrobacterium rhizogenes-derived composite plant, which has made possible genetic analyses in a wide variety of transformation recalcitrant dicotyledonous plants. The novel, rapid and inexpensive ex vitro method for producing composite plants described in this report represents a significant advance over existing composite plant induction protocols, which rely on expensive and time-consuming in vitro conditions. The utility of the new system is validated by expression and RNAi silencing of GFP in transgenic roots of composite plants, and is bolstered further by experimental disruption, via RNAi silencing, of endogenous plant resistance to the plant parasitic nematode Meloidogyne incognita in transgenic roots of Lycopersicon esculentum cv. Motelle composite plants. Critical parameters of the method are described and discussed herein.
Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools
Laganà, Alessandro; Shasha, Dennis; Croce, Carlo Maria
2014-01-01
The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis, and the evaluation of RNAi agents such as small-interfering RNA (siRNA), short-hairpin RNA (shRNA), artificial microRNA (a-miR), and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats), was shown to have the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches. PMID:25566532
Novel Methods for Mosquito Control using RNAi.
USDA-ARS?s Scientific Manuscript database
The discovery and development of novel insecticides for vector control is a primary focus of toxicology research conducted at the Mosquito and Fly Research Unit, Gainesville, FL. Targeting critical genes/proteins in mosquitoes using RNA interference (RNAi) is being investigated as a method to devel...
Non-transgenic RNAi technology to control insects on citrus
USDA-ARS?s Scientific Manuscript database
This research demonstrated a non-transgenic delivery method for ribonucleic acid interference, RNAi, that reduced fitness as measured in increased mortality over time, of two insect pests of citrus, ie. psyllids and leafhoppers. The Asian citrus psyllid transmits a deadly plant-infecting bacterium o...
RNAi-mediated resistance to viruses in genetically engineered plants.
Ibrahim, Abdulrazak B; Aragão, Francisco J L
2015-01-01
RNA interference (RNAi) has emerged as a leading technology in designing genetically modified crops engineered to resist viral infection. The last decades have seen the development of a large number of crops whose inherent posttranscriptional gene silencing mechanism has been exploited to target essential viral genes through the production of dsRNA that triggers an endogenous RNA-induced silencing complex (RISC), leading to gene silencing in susceptible viruses conferring them with resistance even before the onset of infection. Selection and breeding events have allowed for establishing this highly important agronomic trait in diverse crops. With improved techniques and the availability of new data on genetic diversity among several viruses, significant progress is being made in engineering plants using RNAi with the release of a number of commercially available crops. Biosafety concerns with respect to consumption of RNAi crops, while relevant, have been addressed, given the fact that experimental evidence using miRNAs associated with the crops shows that they do not pose any health risk to humans and animals.
In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus.
Watanabe, Tsunamasa; Hatakeyama, Hiroto; Matsuda-Yasui, Chiho; Sato, Yusuke; Sudoh, Masayuki; Takagi, Asako; Hirata, Yuichi; Ohtsuki, Takahiro; Arai, Masaaki; Inoue, Kazuaki; Harashima, Hideyoshi; Kohara, Michinori
2014-04-23
The development of RNA interference (RNAi)-based therapy faces two major obstacles: selecting small interfering RNA (siRNA) sequences with strong activity, and identifying a carrier that allows efficient delivery to target organs. Additionally, conservative region at nucleotide level must be targeted for RNAi in applying to virus because hepatitis C virus (HCV) could escape from therapeutic pressure with genome mutations. In vitro preparation of Dicer-generated siRNAs targeting a conserved, highly ordered HCV 5' untranslated region are capable of inducing strong RNAi activity. By dissecting the 5'-end of an RNAi-mediated cleavage site in the HCV genome, we identified potent siRNA sequences, which we designate as Dicer-hunting siRNAs (dh-siRNAs). Furthermore, formulation of the dh-siRNAs in an optimized multifunctional envelope-type nano device inhibited ongoing infectious HCV replication in human hepatocytes in vivo. Our efforts using both identification of optimal siRNA sequences and delivery to human hepatocytes suggest therapeutic potential of siRNA for a virus.
Swevers, Luc; Liu, Jisheng; Huvenne, Hanneke; Smagghe, Guy
2011-01-01
RNA interference (RNAi), an RNA-dependent gene silencing process that is initiated by double-stranded RNA (dsRNA) molecules, has been applied with variable success in lepidopteran insects, in contrast to the high efficiency achieved in the coleopteran Tribolium castaneum. To gain insight into the factors that determine the efficiency of RNAi, a survey was carried out to check the expression of factors that constitute the machinery of the small interfering RNA (siRNA) and microRNA (miRNA) pathways in different tissues and stages of the silkmoth, Bombyx mori. It was found that the dsRNA-binding protein R2D2, an essential component in the siRNA pathway in Drosophila, was expressed at minimal levels in silkmoth tissues. The silkmoth-derived Bm5 cell line was also deficient in expression of mRNA encoding full-length BmTranslin, an RNA-binding factor that has been shown to stimulate the efficiency of RNAi. However, despite the lack of expression of the RNA-binding proteins, silencing of a luciferase reporter gene was observed by co-transfection of luc dsRNA using a lipophilic reagent. In contrast, gene silencing was not detected when the cells were soaked in culture medium supplemented with dsRNA. The introduction of an expression construct for Tribolium R2D2 (TcR2D2) did not influence the potency of luc dsRNA to silence the luciferase reporter. Immunostaining experiments further showed that both TcR2D2 and BmTranslin accumulated at defined locations within the cytoplasm of transfected cells. Our results offer a first evaluation of the expression of the RNAi machinery in silkmoth tissues and Bm5 cells and provide evidence for a functional RNAi response to intracellular dsRNA in the absence of R2D2 and Translin. The failure of TcR2D2 to stimulate the intracellular RNAi pathway in Bombyx cells is discussed. PMID:21637842
DeVincenzo, John P
2009-10-01
A revolution in the understanding of RNA biological processing and control is leading to revolutionary new concepts in human therapeutics. It has become increasingly clear that the so called "non-coding RNA" exerts specific and profound functional control on regulation of protein production and indeed controls the expression of all genes. Harnessing this naturally-occurring RNA-mediated regulation of protein production has immense human therapeutic potential. These processes are collectively known as RNA interference (RNAi). RNAi is a recently discovered, naturally-occurring intracellular process that regulates gene expression through the silencing of specific mRNAs. Methods of harnessing this natural pathway are being developed that allow the catalytic degradation of targeted mRNAs using specifically designed complementary small inhibitory RNAs (siRNA). siRNAs are being chemically modified to acquire drug-like properties. Numerous recent high profile publications have provided proofs of concept that RNA interference may be useful therapeutically. Much of the design of these siRNAs can be accomplished bioinformatically, thus potentially expediting drug discovery and opening new avenues of therapy for many uncommon, orphan, or emerging diseases. This makes this approach very attractive for developing therapies targeting orphan diseases including neonatal diseases. Theoretically, any disease that can be ameliorated through knockdown of any endogenous or exogenous protein is a potential therapeutic target for RNAi-based therapeutics. Lung diseases are particularly attractive targets for RNAi therapeutics since the affected cells' location increases their accessibility to topical administration of siRNA, for example by aerosol. Respiratory viral infections and chronic lung disease are examples of such diseases. RNAi therapeutics have been shown to be active against RSV, parainfluenza and human metapneumoviruses in vitro and in vivo resulting in profound antiviral effects. The first proof of concept test of efficacy of an RNAi-based therapeutic in man has been initiated. A discussion of the science behind RNA interference is followed by a presentation of the potential practical issues in applying this technology to neonatal respiratory viral diseases. RNAi may offer new strategies for the treatment of a variety of orphan diseases including neonatal diseases, RSV infections, and other respiratory viruses.
Vyas, Meenal; Raza, Amir; Ali, Muhammad Yousaf; Ashraf, Muhammad Aleem; Mansoor, Shahid; Shahid, Ahmad Ali; Brown, Judith K
2017-01-01
Control of the whitefly Bemisia tabaci (Genn.) agricultural pest and plant virus vector relies on the use of chemical insecticides. RNA-interference (RNAi) is a homology-dependent innate immune response in eukaryotes, including insects, which results in degradation of the corresponding transcript following its recognition by a double-stranded RNA (dsRNA) that shares 100% sequence homology. In this study, six whitefly 'gut' genes were selected from an in silico-annotated transcriptome library constructed from the whitefly alimentary canal or 'gut' of the B biotype of B. tabaci, and tested for knock down efficacy, post-ingestion of dsRNAs that share 100% sequence homology to each respective gene target. Candidate genes were: Acetylcholine receptor subunit α, Alpha glucosidase 1, Aquaporin 1, Heat shock protein 70, Trehalase1, and Trehalose transporter1. The efficacy of RNAi knock down was further tested in a gene-specific functional bioassay, and mortality was recorded in 24 hr intervals, six days, post-treatment. Based on qPCR analysis, all six genes tested showed significantly reduced gene expression. Moderate-to-high whitefly mortality was associated with the down-regulation of osmoregulation, sugar metabolism and sugar transport-associated genes, demonstrating that whitefly survivability was linked with RNAi results. Silenced Acetylcholine receptor subunit α and Heat shock protein 70 genes showed an initial low whitefly mortality, however, following insecticide or high temperature treatments, respectively, significantly increased knockdown efficacy and death was observed, indicating enhanced post-knockdown sensitivity perhaps related to systemic silencing. The oral delivery of gut-specific dsRNAs, when combined with qPCR analysis of gene expression and a corresponding gene-specific bioassay that relates knockdown and mortality, offers a viable approach for functional genomics analysis and the discovery of prospective dsRNA biopesticide targets. The approach can be applied to functional genomics analyses to facilitate, species-specific dsRNA-mediated control of other non-model hemipterans.
siRNA Delivery to the Lung: What’s New?
Merkel, Olivia M.; Rubinstein, Israel; Kissel, Thomas
2014-01-01
RNA interference (RNAi) has been thought of as the general answer to many unmet medical needs. After the first success stories, it soon became obvious that short interfering RNA (siRNA) is not suitable for systemic administration due to its poor pharmacokinetics. Therefore local administration routes have been adopted for more successful in vivo RNAi. This paper reviews nucleic acid modifications, nanocarrier chemistry, animal models used in successful pulmonary siRNA delivery, as well as clinical translation approaches. We summarize what has been published recently and conclude with the potential problems that may still hamper the efficient clinical application of RNAi in the lung. PMID:24907426
Choosing the Right Tool for the Job: RNAi, TALEN or CRISPR
Boettcher, Michael; McManus, Michael T.
2015-01-01
The most widely used approach for defining a genes’ function is to reduce or completely disrupt its normal expression. For over a decade, RNAi has ruled the lab, offering a magic bullet to disrupt gene expression in many organisms. However, new biotechnological tools - specifically CRISPR-based technologies - have become available and are squeezing out RNAi dominance in mammalian cell studies. These seemingly competing technologies leave research investigators with the question: ‘Which technology should I use in my experiment?’ This review offers a practical resource to compare and contrast these technologies, guiding the investigator when and where to use this fantastic array of powerful tools. PMID:26000843
Rodriguez, Elena M; Dunham, Elizabeth E; Martin, G Steven
2009-10-01
Atypical protein kinase C (aPKC) isoforms have been shown to mediate Src-dependent signaling in response to growth factor stimulation. To determine if aPKC activity contributes to the transformed phenotype of cells expressing oncogenic Src, we have examined the activity and function of aPKCs in 3T3 cells expressing viral Src (v-Src). aPKC activity and tyrosine phosphorylation were found to be elevated in some but not all clones of mouse fibroblasts expressing v-Src. aPKC activity was inhibited either by addition of a membrane-permeable pseudosubstrate, by expression of a dominant-negative aPKC, or by RNAi-mediated knockdown of specific aPKC isoforms. aPKC activity contributes to morphological transformation and stress fiber disruption, and is required for migration of Src-transformed cells and for their ability to polarize at the edge of a monolayer. The lambda isoform of aPKC is specifically required for invasion through extracellular matrix in Boyden chamber assays and for degradation of the extracellular matrix in in situ zymography assays. Tyrosine phosphorylation of aPKClambda is required for its ability to promote cell invasion. The defect in invasion upon aPKC inhibition appears to result from a defect in the assembly and/or function of podosomes, invasive adhesions on the ventral surface of the cell that are sites of protease secretion. aPKC was also found to localize to podosomes of v-Src transformed cells, suggesting a direct role for aPKC in podosome assembly and/or function. We conclude that basal or elevated aPKC activity is required for the ability of Src-transformed cells to degrade and invade the extracellular matrix. Copyright 2009 Wiley-Liss, Inc.
Kolliopoulou, Anna; Van Nieuwerburgh, Filip; Stravopodis, Dimitrios J.; Deforce, Dieter; Swevers, Luc; Smagghe, Guy
2015-01-01
Many insects can be persistently infected with viruses but do not show any obvious adverse effects with respect to physiology, development or reproduction. Here, Bombyx mori strain Daizo, persistently infected with cytoplasmic polyhedrosis virus (BmCPV), was used to study the host’s transcriptional response after pathogenic infection with the same virus in midgut tissue of larvae persistently and pathogenically infected as 2nd and 4th instars. Next generation sequencing revealed that from 13,769 expressed genes, 167 were upregulated and 141 downregulated in both larval instars following pathogenic infection. Several genes that could possibly be involved in B. mori immune response against BmCPV or that may be induced by the virus in order to increase infectivity were identified, whereas classification of differentially expressed transcripts (confirmed by qRT-PCR) resulted in gene categories related to physical barriers, immune responses, proteolytic / metabolic enzymes, heat-shock proteins, hormonal signaling and uncharacterized proteins. Comparison of our data with the available literature (pathogenic infection of persistently vs. non-persistently infected larvae) unveiled various similarities of response in both cases, which suggests that pre-existing persistent infection does not affect in a major way the transcriptome response against pathogenic infection. To investigate the possible host’s RNAi response against BmCPV challenge, the differential expression of RNAi-related genes and the accumulation of viral small RNAs (vsRNAs) were studied. During pathogenic infection, siRNA-like traces like the 2-fold up-regulation of the core RNAi genes Ago-2 and Dcr-2 as well as a peak of 20 nt small RNAs were observed. Interestingly, vsRNAs of the same size were detected at lower rates in persistently infected larvae. Collectively, our data provide an initial assessment of the relative significance of persistent infection of silkworm larvae on the host response following pathogenic infection with CPV, while they also highlight the relative importance of RNAi as an antiviral mechanism. PMID:25816294
Wagaba, Henry; Beyene, Getu; Aleu, Jude; Odipio, John; Okao-Okuja, Geoffrey; Chauhan, Raj Deepika; Munga, Theresia; Obiero, Hannington; Halsey, Mark E.; Ilyas, Muhammad; Raymond, Peter; Bua, Anton; Taylor, Nigel J.; Miano, Douglas; Alicai, Titus
2017-01-01
Cassava brown streak disease (CBSD) presents a serious threat to cassava production in East and Central Africa. Currently, no cultivars with high levels of resistance to CBSD are available to farmers. Transgenic RNAi technology was employed to combat CBSD by fusing coat protein (CP) sequences from Ugandan cassava brown streak virus (UCBSV) and Cassava brown streak virus (CBSV) to create an inverted repeat construct (p5001) driven by the constitutive Cassava vein mosaic virus promoter. Twenty-five plant lines of cultivar TME 204 expressing varying levels of small interfering RNAs (siRNAs) were established in confined field trials (CFTs) in Uganda and Kenya. Within an initial CFT at Namulonge, Uganda, non-transgenic TME 204 plants developed foliar and storage root CBSD incidences at 96–100% by 12 months after planting. In contrast, 16 of the 25 p5001 transgenic lines showed no foliar symptoms and had less than 8% of their storage roots symptomatic for CBSD. A direct positive correlation was seen between levels of resistance to CBSD and expression of transgenic CP-derived siRNAs. A subsequent CFT was established at Namulonge using stem cuttings from the initial trial. All transgenic lines established remained asymptomatic for CBSD, while 98% of the non-transgenic TME 204 stake-derived plants developed storage roots symptomatic for CBSD. Similarly, very high levels of resistance to CBSD were demonstrated by TME 204 p5001 RNAi lines grown within a CFT over a full cropping cycle at Mtwapa, coastal Kenya. Sequence analysis of CBSD causal viruses present at the trial sites showed that the transgenic lines were exposed to both CBSV and UCBSV, and that the sequenced isolates shared >90% CP identity with transgenic CP sequences expressed by the p5001 inverted repeat expression cassette. These results demonstrate very high levels of field resistance to CBSD conferred by the p5001 RNAi construct at diverse agro-ecological locations, and across the vegetative cropping cycle. PMID:28127301
Gayen, Dipak; Ali, Nusrat; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi
2015-07-01
Down-regulation of lipoxygenase enzyme activity reduces degradation of carotenoids of bio-fortified rice seeds which would be an effective tool to reduce huge post-harvest and economic losses of bio-fortified rice seeds during storage. Bio-fortified provitamin A-enriched rice line (golden rice) expressing higher amounts of β-carotene in the rice endosperm provides vitamin A for human health. However, it is already reported that degradation of carotenoids during storage is a major problem. The gene responsible for degradation of carotenoids during storage has remained largely unexplored till now. In our previous study, it has been shown that r9-LOX1 gene is responsible for rice seed quality deterioration. In the present study, we attempted to investigate if r9-LOX1 gene has any role in degradation of carotenoids in rice seeds during storage. To establish our hypothesis, the endogenous lipoxygenase (LOX) activity of high-carotenoid golden indica rice seed was silenced by RNAi technology using aleurone layer and embryo-specific Oleosin-18 promoter. To check the storage stability, LOX enzyme down-regulated high-carotenoid T3 transgenic rice seeds were subjected to artificial aging treatment. The results obtained from biochemical assays (MDA, ROS) also indicated that after artificial aging, the deterioration of LOX-RNAi lines was considerably lower compared to β-carotene-enriched transgenic rice which had higher LOX activity in comparison to LOX-RNAi lines. Furthermore, it was also observed by HPLC analysis that down-regulation of LOX gene activity decreases co-oxidation of β-carotene in LOX-RNAi golden rice seeds as compared to the β-carotene-enriched transgenic rice, after artificial aging treatment. Therefore, our study substantially establishes and verifies that LOX is a key enzyme for catalyzing co-oxidation of β-carotene and has a significant role in deterioration of β-carotene levels in the carotenoid-enriched golden rice.
Selective gene silencing by viral delivery of short hairpin RNA
2010-01-01
RNA interference (RNAi) technology has not only become a powerful tool for functional genomics, but also allows rapid drug target discovery and in vitro validation of these targets in cell culture. Furthermore, RNAi represents a promising novel therapeutic option for treating human diseases, in particular cancer. Selective gene silencing by RNAi can be achieved essentially by two nucleic acid based methods: i) cytoplasmic delivery of short double-stranded (ds) interfering RNA oligonucleotides (siRNA), where the gene silencing effect is only transient in nature, and possibly not suitable for all applications; or ii) nuclear delivery of gene expression cassettes that express short hairpin RNA (shRNA), which are processed like endogenous interfering RNA and lead to stable gene down-regulation. Both processes involve the use of nucleic acid based drugs, which are highly charged and do not cross cell membranes by free diffusion. Therefore, in vivo delivery of RNAi therapeutics must use technology that enables the RNAi therapeutic to traverse biological membrane barriers in vivo. Viruses and the vectors derived from them carry out precisely this task and have become a major delivery system for shRNA. Here, we summarize and compare different currently used viral delivery systems, give examples of in vivo applications, and indicate trends for new developments, such as replicating viruses for shRNA delivery to cancer cells. PMID:20858246
Schuster, Susan; Tholen, Lotte E; Overheul, Gijs J; van Kuppeveld, Frank J M; van Rij, Ronald P
2017-01-01
Antiviral immunity in insects and plants is mediated by the RNA interference (RNAi) pathway in which viral long double-stranded RNA (dsRNA) is processed into small interfering RNAs (siRNAs) by Dicer enzymes. Although this pathway is evolutionarily conserved, its involvement in antiviral defense in mammals is the subject of debate. In vertebrates, recognition of viral RNA induces a sophisticated type I interferon (IFN)-based immune response, and it has been proposed that this response masks or inhibits antiviral RNAi. To test this hypothesis, we analyzed viral small RNA production in differentiated cells deficient in the cytoplasmic RNA sensors RIG-I and MDA5. We did not detect 22-nucleotide (nt) viral siRNAs upon infection with three different positive-sense RNA viruses. Our data suggest that the depletion of cytoplasmic RIG-I-like sensors is not sufficient to uncover viral siRNAs in differentiated cells. IMPORTANCE The contribution of the RNA interference (RNAi) pathway in antiviral immunity in vertebrates has been widely debated. It has been proposed that RNAi possesses antiviral activity in mammalian systems but that its antiviral effect is masked by the potent antiviral interferon response in differentiated mammalian cells. In this study, we show that inactivation of the interferon response is not sufficient to uncover antiviral activity of RNAi in human epithelial cells infected with three wild-type positive-sense RNA viruses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong Junmei; Wei Na; Chalk, Alistair
RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5' end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests thatmore » the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5' end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi.« less
Spit, Jornt; Philips, Annelies; Wynant, Niels; Santos, Dulce; Plaetinck, Geert; Vanden Broeck, Jozef
2017-02-01
The responsiveness towards orally delivered dsRNA and the potency of a subsequent environmental RNA interference (RNAi) response strongly differs between different insect species. While some species are very sensitive to dsRNA delivery through the diet, others are not. The underlying reasons for this may vary, but degradation of dsRNA by nucleases in the gut lumen is believed to play a crucial role. The Colorado potato beetle, Leptinotarsa decemlineata, is a voracious defoliator of potato crops worldwide, and is currently under investigation for novel control methods based on dsRNA treatments. Here we describe the identification and characterization of two nuclease genes exclusively expressed in the gut of this pest species. Removal of nuclease activity in adults increased the sensitivity towards dsRNA and resulted in improved protection of potato plants. A similar strategy in the desert locust, Schistocerca gregaria, for which we show a far more potent nuclease activity in the gut juice, did however not lead to an improvement of the RNAi response. Possible reasons for this are discussed. Taken together, the present data confirm a negative effect of nucleases in the gut on the environmental RNAi response, and further suggest that interfering with this activity is a strategy worth pursuing for improving RNAi efficacy in insect pest control applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Focusing on RISC assembly in mammalian cells.
Hong, Junmei; Wei, Na; Chalk, Alistair; Wang, Jue; Song, Yutong; Yi, Fan; Qiao, Ren-Ping; Sonnhammer, Erik L L; Wahlestedt, Claes; Liang, Zicai; Du, Quan
2008-04-11
RISC (RNA-induced silencing complex) is a central protein complex in RNAi, into which a siRNA strand is assembled to become effective in gene silencing. By using an in vitro RNAi reaction based on Drosophila embryo extract, an asymmetric model was recently proposed for RISC assembly of siRNA strands, suggesting that the strand that is more loosely paired at its 5' end is selectively assembled into RISC and results in target gene silencing. However, in the present study, we were unable to establish such a correlation in cell-based RNAi assays, as well as in large-scale RNAi data analyses. This suggests that the thermodynamic stability of siRNA is not a major determinant of gene silencing in mammalian cells. Further studies on fork siRNAs showed that mismatch at the 5' end of the siRNA sense strand decreased RISC assembly of the antisense strand, but surprisingly did not increase RISC assembly of the sense strand. More interestingly, measurements of melting temperature showed that the terminal stability of fork siRNAs correlated with the positions of the mismatches, but not gene silencing efficacy. In summary, our data demonstrate that there is no definite correlation between siRNA stability and gene silencing in mammalian cells, which suggests that instead of thermodynamic stability, other features of the siRNA duplex contribute to RISC assembly in RNAi.
Börner, Kathleen; Niopek, Dominik; Cotugno, Gabriella; Kaldenbach, Michaela; Pankert, Teresa; Willemsen, Joschka; Zhang, Xian; Schürmann, Nina; Mockenhaupt, Stefan; Serva, Andrius; Hiet, Marie-Sophie; Wiedtke, Ellen; Castoldi, Mirco; Starkuviene, Vytaute; Erfle, Holger; Gilbert, Daniel F.; Bartenschlager, Ralf; Boutros, Michael; Binder, Marco; Streetz, Konrad; Kräusslich, Hans-Georg; Grimm, Dirk
2013-01-01
As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems. PMID:24049077
Therapeutic Potency of Nanoformulations of siRNAs and shRNAs in Animal Models of Cancers.
Karim, Md Emranul; Tha, Kyi Kyi; Othman, Iekhsan; Borhan Uddin, Mohammad; Chowdhury, Ezharul Hoque
2018-05-26
RNA Interference (RNAi) has brought revolutionary transformations in cancer management in the past two decades. RNAi-based therapeutics including siRNA and shRNA have immense scope to silence the expression of mutant cancer genes specifically in a therapeutic context. Although tremendous progress has been made to establish catalytic RNA as a new class of biologics for cancer management, a lot of extracellular and intracellular barriers still pose a long-lasting challenge on the way to clinical approval. A series of chemically suitable, safe and effective viral and non-viral carriers have emerged to overcome physiological barriers and ensure targeted delivery of RNAi. The newly invented carriers, delivery techniques and gene editing technology made current treatment protocols stronger to fight cancer. This review has provided a platform about the chronicle of siRNA development and challenges of RNAi therapeutics for laboratory to bedside translation focusing on recent advancement in siRNA delivery vehicles with their limitations. Furthermore, an overview of several animal model studies of siRNA- or shRNA-based cancer gene therapy over the past 15 years has been presented, highlighting the roles of genes in multiple cancers, pharmacokinetic parameters and critical evaluation. The review concludes with a future direction for the development of catalytic RNA vehicles and design strategies to make RNAi-based cancer gene therapy more promising to surmount cancer gene delivery challenges.
Tangudu, Naveen K; Verma, Vinod K; Clemons, Tristan D; Beevi, Syed S; Hay, Trevor; Mahidhara, Ganesh; Raja, Meera; Nair, Rekha A; Alexander, Liza E; Patel, Anant B; Jose, Jedy; Smith, Nicole M; Zdyrko, Bogdan; Bourdoncle, Anne; Luzinov, Igor; Iyer, K Swaminathan; Clarke, Alan R; Dinesh Kumar, Lekha
2015-05-01
In this article, we report the development and preclinical validation of combinatorial therapy for treatment of cancers using RNA interference (RNAi). RNAi technology is an attractive approach to silence genes responsible for disease onset and progression. Currently, the critical challenge facing the clinical success of RNAi technology is in the difficulty of delivery of RNAi inducers, due to low transfection efficiency, difficulties of integration into host DNA and unstable expression. Using the macromolecule polyglycidal methacrylate (PGMA) as a platform to graft multiple polyethyleneimine (PEI) chains, we demonstrate effective delivery of small oligos (anti-miRs and mimics) and larger DNAs (encoding shRNAs) in a wide variety of cancer cell lines by successful silencing/activation of their respective target genes. Furthermore, the effectiveness of this therapy was validated for in vivo tumor suppression using two transgenic mouse models; first, tumor growth arrest and increased animal survival was seen in mice bearing Brca2/p53-mutant mammary tumors following daily intratumoral treatment with nanoparticles conjugated to c-Myc shRNA. Second, oral delivery of the conjugate to an Apc-deficient crypt progenitor colon cancer model increased animal survival and returned intestinal tissue to a non-wnt-deregulated state. This study demonstrates, through careful design of nonviral nanoparticles and appropriate selection of therapeutic gene targets, that RNAi technology can be made an affordable and amenable therapy for cancer. ©2015 American Association for Cancer Research.
Tchurikov, Nickolai A; Fedoseeva, Daria M; Gashnikova, Natalya M; Sosin, Dmitri V; Gorbacheva, Maria A; Alembekov, Ildar R; Chechetkin, Vladimir R; Kravatsky, Yuri V; Kretova, Olga V
2016-05-25
Highly active antiretroviral therapy has greatly reduced the morbidity and mortality of AIDS. However, many of the antiretroviral drugs are toxic with long-term use, and all currently used anti-HIV agents generate drug-resistant mutants. Therefore, there is a great need for new approaches to AIDS therapy. RNAi is a powerful means of inhibiting HIV-1 production in human cells. We propose to use RNAi for gene therapy of HIV/AIDS. Previously we identified a number of new biologically active siRNAs targeting several moderately conserved regions in HIV-1 transcripts. Here we analyze the heterogeneity of nucleotide sequences in three RNAi targets in sequences encoding the reverse transcriptase and integrase domains of current isolates of HIV-1 subtype A in Russia. These data were used to generate genetic constructs expressing short hairpin RNAs 28-30-bp in length that could be processed in cells into siRNAs. After transfection of the constructs we observed siRNAs that efficiently attacked the selected targets. We expect that targeting several viral genes important for HIV-1 reproduction will help overcome the problem of viral adaptation and will prevent the appearance of RNAi escape mutants in current virus strains, an important feature of gene therapy of HIV/AIDS. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of transient high temperature treatment on the intestinal flora of the silkworm Bombyx mori.
Sun, Zhenli; Kumar, Dhiraj; Cao, Guangli; Zhu, Liyuan; Liu, Bo; Zhu, Min; Liang, Zi; Kuang, Sulan; Chen, Fei; Feng, Yongjie; Hu, Xiaolong; Xue, Renyu; Gong, Chengliang
2017-06-13
The silkworm Bombyx mori is a poikilotherm and is therefore sensitive to various climatic conditions. The influence of temperature on the intestinal flora and the relationship between the intestinal flora and gene expression in the silkworm remain unknown. In the present study, changes of the intestinal flora at 48, 96 and 144 h following transient high temperature treatment (THTT) of 37 °C for 8 h were investigated. According to principal component analysis, the abundances of Enterococcus and Staphylococcus showed a negative correlation with other dominant genera. After THTT, the gene expression levels of spatzle-1 and dicer-2 were increased and decreased, respectively, which suggested that the Toll and RNAi pathways were activated and suppressed, respectively. The species-gene expression matrix confirmed that the spatzle-1 and dicer-2 gene expression levels were negatively and positively correlated, respectively, with the abundance of Enterococcus and Staphylococcus in the control. The abundance of Variovorax post-THTT was positively correlated with the spatzle-1 gene expression level, whereas the community richness of Enterococcus was negatively correlated with the spatzle-1 gene expression level and positively correlated with the dicer-2. The results of the present investigation provide new evidence for understanding the relationships among THTT, intestinal flora and host gene expression.
RNA interference tools for the western flower thrips, Frankliniella occidentalis.
Badillo-Vargas, Ismael E; Rotenberg, Dorith; Schneweis, Brandi A; Whitfield, Anna E
2015-05-01
The insect order Thysanoptera is exclusively comprised of small insects commonly known as thrips. The western flower thrips, Frankliniella occidentalis, is an economically important pest amongst thysanopterans due to extensive feeding damage and tospovirus transmission to hundreds of plant species worldwide. Geographically-distinct populations of F. occidentalis have developed resistance against many types of traditional chemical insecticides, and as such, management of thrips and tospoviruses are a persistent challenge in agriculture. Molecular methods for defining the role(s) of specific genes in thrips-tospovirus interactions and for assessing their potential as gene targets in thrips management strategies is currently lacking. The goal of this work was to develop an RNA interference (RNAi) tool that enables functional genomic assays and to evaluate RNAi for its potential as a biologically-based approach for controlling F. occidentalis. Using a microinjection system, we delivered double-stranded RNA (dsRNA) directly to the hemocoel of female thrips to target the vacuolar ATP synthase subunit B (V-ATPase-B) gene of F. occidentalis. Gene expression analysis using real-time quantitative reverse transcriptase-PCR (qRT-PCR) revealed significant reductions of V-ATPase-B transcripts at 2 and 3 days post-injection (dpi) with dsRNA of V-ATPase-B compared to injection with dsRNA of GFP. Furthermore, the effect of knockdown of the V-ATPase-B gene in females at these two time points was mirrored by the decreased abundance of V-ATPase-B protein as determined by quantitative analysis of Western blots. Reduction in V-ATPase-B expression in thrips resulted in increased female mortality and reduced fertility, i.e., number of viable offspring produced. Survivorship decreased significantly by six dpi compared to the dsRNA-GFP control group, which continued decreasing significantly until the end of the bioassay. Surviving female thrips injected with dsRNA-V-ATPase-B produced significantly fewer offspring compared to those in the dsRNA-GFP control group. Our findings indicate that an RNAi-based strategy to study gene function in thrips is feasible, can result in quantifiable phenotypes, and provides a much-needed tool for investigating the molecular mechanisms of thrips-tospovirus interactions. To our knowledge, this represents the first report of RNAi for any member of the insect order Thysanoptera and demonstrates the potential for translational research in the area of thrips pest control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Preventing bee mortality with RNA interference
USDA-ARS?s Scientific Manuscript database
We present a real world example of the successful use of an RNAi product for disease control. RNAi increased bee health in the presence of the bee viral pathogen, IAPV. The importance of honey bees to the world economy far surpasses their contribution in terms of honey production; they are responsib...
USDA-ARS?s Scientific Manuscript database
Modern molecular biological techniques allow for the design of molecules of ribonucleic acid capable of disrupting key biological processes of pests and diseases. A major requirement for the practical application of ribonucleic acid interference (RNAi) against insect pests is an efficient entry path...
Yu, Jisuk; Lee, Kyung-Mi; Cho, Won Kyong; Park, Ju Yeon; Kim, Kook-Hyung
2018-05-01
The mechanisms of RNA interference (RNAi) as a defense response against viruses remain unclear in many plant-pathogenic fungi. In this study, we used reverse genetics and virus-derived small RNA profiling to investigate the contributions of RNAi components to the antiviral response against Fusarium graminearum viruses 1 to 3 (FgV1, -2, and -3). Real-time reverse transcription-quantitative PCR (qRT-PCR) indicated that infection of Fusarium graminearum by FgV1, -2, or -3 differentially induces the gene expression of RNAi components in F. graminearum Transcripts of the DICER-2 and AGO-1 genes of F. graminearum ( FgDICER-2 and FgAGO-1 ) accumulated at lower levels following FgV1 infection than following FgV2 or FgV3 infection. We constructed gene disruption and overexpression mutants for each of the Argonaute and dicer genes and for two RNA-dependent RNA polymerase (RdRP) genes and generated virus-infected strains of each mutant. Interestingly, mycelial growth was significantly faster for the FgV1-infected FgAGO-1 overexpression mutant than for the FgV1-infected wild type, while neither FgV2 nor FgV3 infection altered the colony morphology of the gene deletion and overexpression mutants. FgV1 RNA accumulation was significantly decreased in the FgAGO-1 overexpression mutant. Furthermore, the levels of induction of FgAGO-1 , FgDICER-2 , and some of the FgRdRP genes caused by FgV2 and FgV3 infection were similar to those caused by hairpin RNA-induced gene silencing. Using small RNA sequencing analysis, we documented different patterns of virus-derived small interfering RNA (vsiRNA) production in strains infected with FgV1, -2, and -3. Our results suggest that the Argonaute protein encoded by FgAGO-1 is required for RNAi in F. graminearum , that FgAGO-1 induction differs in response to FgV1, -2, and -3, and that FgAGO-1 might contribute to the accumulation of vsiRNAs in FgV1-infected F. graminearum IMPORTANCE To increase our understanding of how RNAi components in Fusarium graminearum react to mycovirus infections, we characterized the role(s) of RNAi components involved in the antiviral defense response against Fusarium graminearum viruses (FgVs). We observed differences in the levels of induction of RNA silencing-related genes, including FgDICER-2 and FgAGO-1 , in response to infection by three different FgVs. FgAGO-1 can efficiently induce a robust RNAi response against FgV1 infection, but FgDICER genes might be relatively redundant to FgAGO-1 with respect to antiviral defense. However, the contribution of this gene in the response to the other FgV infections might be small. Compared to previous studies of Cryphonectria parasitica , which showed dicer-like protein 2 and Argonaute-like protein 2 to be important in antiviral RNA silencing, our results showed that F. graminearum developed a more complex and robust RNA silencing system against mycoviruses and that FgDICER-1 and FgDICER-2 and FgAGO-1 and FgAGO-2 had redundant roles in antiviral RNA silencing. Copyright © 2018 American Society for Microbiology.
Induction of RNA interference in dendritic cells.
Li, Mu; Qian, Hua; Ichim, Thomas E; Ge, Wei-Wen; Popov, Igor A; Rycerz, Katarzyna; Neu, John; White, David; Zhong, Robert; Min, Wei-Ping
2004-01-01
Dendritic cells (DC) reside at the center of the immunological universe, possessing the ability both to stimulate and inhibit various types of responses. Tolerogenic/regulatory DC with therapeutic properties can be generated through various means of manipulations in vitro and in vivo. Here we describe several attractive strategies for manipulation of DC using the novel technique of RNA interference (RNAi). Additionally, we overview some of our data regarding yet undescribed characteristics of RNAi in DC such as specific transfection strategies, persistence of gene silencing, and multi-gene silencing. The advantages of using RNAi for DC genetic manipulation gives rise to the promise of generating tailor-made DC that can be used effectively to treat a variety of immunologically mediated diseases.
A quantitative assay for mitochondrial fusion using Renilla luciferase complementation
Huang, Huiyan; Choi, Seok-Yong; Frohman, Michael A.
2010-01-01
Mitochondria continuously undergo fusion and fission, the relative rates of which define their morphology. Large mitochondria produce energy more efficiently, whereas small mitochondria translocate better to subcellular sites where local production of ATP is acutely required. Mitochondrial fusion is currently assayed by fusing together cells expressing GFP or RFP in their mitochondria and then scoring the frequency of cells with yellow mitochondria (representing fused green and red mitochondria). However, this assay is labor-intensive and only semi-quantitative. We describe here a reporter system consisting of split fragments of Renilla luciferase and YFP fused to mitochondrial matrix-targeting sequences and to leucine zippers to trigger dimerization. The assay enables fusion to be quantitated both visually for individual cells and on a population level using chemiluminescence, laying the foundation for high throughput small molecule and RNAi screens for modulators of mitochondrial fusion. We use the assay to examine cytoskeletal roles in fusion progression. PMID:20488258
Berberine exposure triggers developmental effects on planarian regeneration
Balestrini, Linda; Isolani, Maria Emilia; Pietra, Daniele; Borghini, Alice; Bianucci, Anna Maria; Deri, Paolo; Batistoni, Renata
2014-01-01
The mechanisms of action underlying the pharmacological properties of the natural alkaloid berberine still need investigation. Planarian regeneration is instrumental in deciphering developmental responses following drug exposure. Here we report the effects of berberine on regeneration in the planarian Dugesia japonica. Our findings demonstrate that this compound perturbs the regenerative pattern. By real-time PCR screening for the effects of berberine exposure on gene expression, we identified alterations in the transcriptional profile of genes representative of different tissues, as well as of genes involved in extracellular matrix (ECM) remodeling. Although berberine does not influence cell proliferation/apoptosis, our experiments prove that this compound causes abnormal regeneration of the planarian visual system. Potential berberine-induced cytotoxic effects were noticed in the intestine. Although we were unable to detect abnormalities in other structures, our findings, sustained by RNAi-based investigations, support the possibility that berberine effects are critically linked to anomalous ECM remodeling in treated planarians. PMID:24810466
Zhang, Yong Sheng; Du, Ying Chun; Sun, Li Rong; Wang, Xu Hai; Liu, Shuai Bing; Xi, Ji Feng; Li, Chao Cheng; Ying, Rui Wen; Jiang, Song; Wang, Xiang Zu; Shen, Hong; Jia, Bin
2018-03-06
The mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene on the Y chromosome have not been completely elucidated, due, in part, to difficulties in gene targeting analysis of the Y chromosome. The zinc finger protein, Y-linked (ZFY) gene was first proposed to be a sex determination factor, although its function in spermatogenesis has recently been elucidated. Nevertheless, ZFY gene targeting analysis has not been performed to date. In the present study, RNA interference (RNAi) was used to generate ZFY-interrupted Hu sheep by injecting short hairpin RNA (shRNA) into round spermatids. The resulting spermatozoa exhibited abnormal sperm morphology, including spermatozoa without tails and others with head and tail abnormalities. Quantitative real-time polymerase chain reaction analysis showed that ZFY mRNA expression was decreased significantly in Hu sheep with interrupted ZFY compared with wild-type Hu sheep. The sex ratio of lambs also exhibited a bias towards females. Together, the experimental strategy and findings of the present study reveal that ZFY also functions in spermatogenesis in Hu sheep and facilitate the use of RNAi in the control of sex in Hu sheep.
USDA-ARS?s Scientific Manuscript database
Development of Ribonucleic acid interference, RNAi against insect pests needs to show species target specificity so that beneficial insects remain unharmed, as many pest insects are a food source for predatory insects like lady beetles. We evaluated an RNAi product specific to Asian citrus psyllid f...
Core RNAi machinery and gene knockdown in the emerald ash borer (Agrilus planipennis)
Chaoyang Zhao; Miguel A. Alvarez Gonzales; Therese M. Poland; Omprakash Mittapalli
2015-01-01
The RNA interference (RNAi) technology has been widely used in insect functional genomics research and provides an alternative approach for insect pest management. To understand whether the emerald ash borer (Agrilus planipennis), an invasive and destructive coleopteran insect pest of ash tree (Fraxinus spp.), possesses a strong...
USDA-ARS?s Scientific Manuscript database
Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive ex...
RNA Interference for improving the Outcome of Islet Transplantation
Li, Feng; Mahato, Ram I
2010-01-01
Islet transplantation has the potential to cure type 1 diabetes. Despite recent therapeutic success, it is still not common because a large number of transpanted islets get damaged by multiple challenges including instant blood mediated inflammatory reaction, hypoxia/reperfusion injury, inflammatory cytokines, and immune rejection. RNA interference (RNAi) is an novel strategy to selectively degrade target mRNA. The use of RNAi technologies to downregulate the expression of harmful genes has the potential to improve the outcome of islet transplantation. The aim of this review is to gain a thorough understanding of biological obstacles to islet transplantation and discuss how to overcome these barriers using different RNAi technologies. This eventually will help improve islet survival and function post transplantaion. Chemically synthesized small interferring RNA (siRNA), vector based short haripin RNA (shRNA), and their critical design elements (such as sequences, promoters, backbone) are discussed. The application of combinatorial RNAi in islet transplantation is also discussed. Last but not the least, several delivery strategies for enhanced gene silencing are discussed, including chemical modification of siRNA, complex formation, bioconjugation, and viral vectors. PMID:21156190
Jin, Xin; Sun, Tingting; Zhao, Chuanke; Zheng, Yongxiang; Zhang, Yufan; Cai, Weijing; He, Qiuchen; Taira, Kaz; Zhang, Lihe; Zhou, Demin
2012-01-01
Strategies to regulate gene function frequently use small interfering RNAs (siRNAs) that can be made from their shRNA precursors via Dicer. However, when the duplex components of these siRNA effectors are expressed from their respective coding genes, the RNA interference (RNAi) activity is much reduced. Here, we explored the mechanisms of action of shRNA and siRNA and found the expressed siRNA, in contrast to short hairpin RNA (shRNA), exhibits strong strand antagonism, with the sense RNA negatively and unexpectedly regulating RNAi. Therefore, we altered the relative levels of strands of siRNA duplexes during their expression, increasing the level of the antisense component, reducing the level of the sense component, or both and, in this way we were able to enhance the potency of the siRNA. Such vector-delivered siRNA attacked its target effectively. These findings provide new insight into RNAi and, in particular, they demonstrate that strand antagonism is responsible for making siRNA far less potent than shRNA. PMID:22039150
Liu, Ying; Tan, Huiling; Tian, Hui; Liang, Chunyang; Chen, She; Liu, Qinghua
2011-01-01
SUMMARY The effector of RNA interference (RNAi) is the RNA-induced silencing complex (RISC). C3PO promotes the activation of RISC by degrading Argonaute2 (Ago2)-nicked passenger strand of duplex siRNA. Active RISC is a multiple-turnover enzyme that uses the guide strand of siRNA to direct Ago2-mediated sequence-specific cleavage of complementary mRNA. How this effector step of RNAi is regulated is currently unknown. Here, we used human Ago2 minimal RISC system to purify Sjögren’s syndrome antigen B (SSB)/autoantigen La as an activator of the RISC-mediated mRNA cleavage activity. Our reconstitution studies showed that La could promote multiple-turnover RISC catalysis by facilitating the release of cleaved mRNA from RISC. Moreover, we demonstrated that La was required for efficient RNAi, antiviral defense, and transposon silencing in vivo. Taken together, the findings of C3PO and La reveal a general concept that regulatory factors are required to remove Ago2-cleaved products to assemble or restore active RISC. PMID:22055194
Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei
2017-01-01
RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3, a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA-HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing dsHaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera. Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls. PMID:28867769
DNA replication machinery is required for development in Drosophila.
Kohzaki, Hidetsugu; Asano, Maki; Murakami, Yota
2018-01-01
In Drosophila , some factors involved in chromosome replication seem to be involved in gene amplification and endoreplication, which are actively utilized in particular tissue development, but direct evidence has not been shown. Therefore, we examined the effect of depletion of replication factors on these processes. First, we confirmed RNAi knockdown can be used for the depletion of replication factors by comparing the phenotypes of RNAi knockdown and deletion or point mutants of the components of DNA licensing factor, MCM2, MCM4 and Cdt1. Next, we found that tissue-specific RNAi knockdown of replication factors caused tissue-specific defects, probably due to defects in DNA replication. In particular, we found that depletion inhibited gene amplification of the chorion gene in follicle cells and endoreplication in salivary glands, showing that chromosomal DNA replication factors are required for these processes. Finally, using RNAi, we screened the genes for chromosomal DNA replication that affected tissue development. Interestingly, wing specific knockdown of Mcm10 induced wing formation defects. These results suggest that some components of chromosomal replication machinery are directly involved in tissue development.
RNAi-mediated gene silencing as a principle of action of venoms and poisons.
Pereira, Tiago Campos; Lopes-Cendes, Iscia
2008-01-01
RNA interference (RNAi) is a natural phenomenon in which double-stranded RNA molecules (dsRNAs) promote silencing of genes with similar sequence. It is noteworthy that in some instances the effects of gene silencing are similar to those caused by venoms and natural poisons (e.g., hemorrhage and low blood pressure). This observation raises the possibility that venomous/poisonous species in fact produce dsRNAs in their venoms/poisons and leading to the deleterious effects in the victim by RNAi-mediated gene silencing. Two approaches could be used to test this hypothesis, first, the neutralization of the dsRNAs and comparing to a non-treated venom sample; and second, to identify the dsRNA present in the venom and attempt to artificially reproduce its effects in the laboratory. In addition, we present three innovative treatment strategies for accidental interactions with venomous or poisonous species. RNAi has several roles in biological systems: gene regulation, antiviral defense, transposon silencing and heterochromatin formation. The hypothesis presented here provides a new role: a natural attack mechanism.
Yang, R; Castriota, G; Chen, Y; Cleary, M A; Ellsworth, K; Shin, M K; Tran, J-Lv; Vogt, T F; Wu, M; Xu, S; Yang, X; Zhang, B B; Berger, J P; Qureshi, S A
2011-02-01
To investigate the impact of reduced adipocyte fatty acid-binding protein 4 (FABP4) in control of body weight, glucose and lipid homeostasis in diet-induced obese (DIO) mice. We applied RNA interference (RNAi) technology to generate FABP4 germline knockdown mice to investigate their metabolic phenotype. RNAi-mediated knockdown reduced FABP4 mRNA expression and protein levels by almost 90% in adipocytes of standard chow-fed mice. In adipocytes of DIO mice, RNAi reduced FABP4 expression and protein levels by 70 and 80%, respectively. There was no increase in adipocyte FABP5 expression in FABP4 knockdown mice. The knockdown of FABP4 significantly increased body weight and fat mass in DIO mice. However, FABP4 knockdown did not affect plasma glucose and lipid homeostasis in DIO mice; nor did it improve their insulin sensitivity. Our data indicate that robust knockdown of FABP4 increases body weight and fat mass without improving glucose and lipid homeostasis in DIO mice.
Escamez, Sacha; André, Domenique; Zhang, Bo; Bollhöner, Benjamin; Pesquet, Edouard; Tuominen, Hannele
2016-01-01
ABSTRACT We uncovered that the level of autophagy in plant cells undergoing programmed cell death determines the fate of the surrounding cells. Our approach consisted of using Arabidopsis thaliana cell cultures capable of differentiating into two different cell types: vascular tracheary elements (TEs) that undergo programmed cell death (PCD) and protoplast autolysis, and parenchymatic non-TEs that remain alive. The TE cell type displayed higher levels of autophagy when expression of the TE-specific METACASPASE9 (MC9) was reduced using RNAi (MC9-RNAi). Misregulation of autophagy in the MC9-RNAi TEs coincided with ectopic death of the non-TEs, implying the existence of an autophagy-dependent intercellular signalling from within the TEs towards the non-TEs. Viability of the non-TEs was restored when AUTOPHAGY2 (ATG2) was downregulated specifically in MC9-RNAi TEs, demonstrating the importance of autophagy in the spatial confinement of cell death. Our results suggest that other eukaryotic cells undergoing PCD might also need to tightly regulate their level of autophagy to avoid detrimental consequences for the surrounding cells. PMID:26740571
Thukral, Vandana; Varshney, Bhavna; Ramly, Rimatulhana B; Ponia, Sanket S; Mishra, Sumona Karjee; Olsen, Christel M; Banerjea, Akhil C; Mukherjee, Sunil K; Zaidi, Rana; Rimstad, Espen; Lal, Sunil K
2018-04-01
The infectious salmon anaemia virus (ISAV) is a piscine virus, a member of Orthomyxoviridae family. It encodes at least 10 proteins from eight negative-strand RNA segments. Since ISAV belongs to the same virus family as Influenza A virus, with similarities in protein functions, they may hence be characterised by analogy. Like NS1 protein of Influenza A virus, s8ORF2 of ISAV is implicated in interferon antagonism and RNA-binding functions. In this study, we investigated the role of s8ORF2 in RNAi suppression in a well-established Agrobacterium transient suppression assay in stably silenced transgenic Nicotiana xanthi. In addition, s8ORF2 was identified as a novel interactor with SsMov10, a key molecule responsible for RISC assembly and maturation in the RNAi pathway. This study thus sheds light on a novel route undertaken by viral proteins in promoting viral growth, using the host RNAi machinery.
Kaulich, Manuel; Lee, Yeon J; Lönn, Peter; Springer, Aaron D; Meade, Bryan R; Dowdy, Steven F
2015-04-20
Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Maxwell, Michele M.; Pasinelli, Piera; Kazantsev, Aleksey G.; Brown, Robert H.
2004-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disorder resulting from selective death of motor neurons in the brain and spinal cord. In ≈25% of familial ALS cases, the disease is caused by dominantly acting point mutations in the gene encoding cytosolic Cu,Zn superoxide dismutase (SOD1). In cell culture and in rodent models of ALS, mutant SOD1 proteins exhibit dose-dependent toxicity; thus, agents that reduce mutant protein expression would be powerful therapeutic tools. A wealth of recent evidence has demonstrated that the mechanism of RNA-mediated interference (RNAi) can be exploited to achieve potent and specific gene silencing in vitro and in vivo. We have evaluated the utility of RNAi for selective silencing of mutant SOD1 expression in cultured cells and have identified small interfering RNAs capable of specifically inhibiting expression of ALS-linked mutant, but not wild-type, SOD1. We have investigated the functional effects of RNAi-mediated silencing of mutant SOD1 in cultured murine neuroblastoma cells. In this model, stable expression of mutant, but not wild-type, human SOD1 sensitizes cells to cytotoxic stimuli. We find that silencing of mutant SOD1 protects these cells against cyclosporin A-induced cell death. These results demonstrate a positive physiological effect caused by RNAi-mediated silencing of a dominant disease allele. The present study further supports the therapeutic potential of RNAi-based methods for the treatment of inherited human diseases, including ALS. PMID:14981234
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugimoto, Tomoko; Mori, Chihiro; Takanami, Takako
2008-01-01
DNA polymerase {gamma} and mtSSB are key components of the mtDNA replication machinery. To study the biological influences of defects in mtDNA replication, we used RNAi to deplete the gene for a putative mtSSB, par2.1, in Caenorhabditis elegans. In previous systematic RNAi screens, downregulation of this gene has not caused any clearly defective phenotypes. Here, we continuously fed a dsRNA targeting par2.1 to C. elegans over generations. Seventy-nine percent of F1 progeny produced 60-72 h after feeding grew to adulthood but were completely sterile, with an arrest of germline cell proliferation. Analyses of mtDNA copy number and cell cytology indicatedmore » that the sterile hermaphrodites had fewer mitochondria. These results indicated that par2.1 essentially functions for germline cell proliferation through mtDNA replication; we therefore termed it mtssb-1. Comprehensive transcriptional alterations including hypoxia response induction dependent on and independent of hif-1 function, occurred by RNAi depletion of mtssb-1. Treatment with ethidium bromide, which impairs mtDNA replication and transcription, caused similar transcriptional alterations. In addition, the frequency of apoptosis in the germline cells was reduced in fertile progeny with a partial RNAi effect. These suggest that RNAi depletion of C. elegans mtssb-1 is useful as a model system of mitochondrial dysfunction.« less
Powell, Michelle E; Bradish, Hannah M; Gatehouse, John A; Fitches, Elaine C
2017-01-01
Aethina tumida is a serious pest of the European honey bee (Apis mellifera) in North America and Australia. Here we investigate whether Laccase 2, the phenoloxidase gene essential for cuticle sclerotisation and pigmentation in many insects, and vacuolar-ATPase V-type subunit A, vital for the generation of proton gradients used to drive a range of transport processes, could be potential targets for RNAi-mediated control of A. tumida. Injection of V-ATPase subunit A (5 ng) and Laccase 2 (12.5 ng) dsRNAs resulted in 100% larval mortality, and qPCR confirmed significant decreases and enhanced suppression of transcript levels over time. Oral delivery of V-ATPase subunit A dsRNA in solutions resulted in 50% mortality; however, gene suppression could not be verified. We suggest that the inconsistent RNAi effect was a consequence of dsRNA degradation within the gut owing to the presence of extracellular nucleases. Target specificity was confirmed by a lack of effect on survival or gene expression in honey bees injected with A. tumida dsRNAs. This is the first study to show evidence for systemic RNAi in A. tumida in response to injected dsRNA, but further research is required to develop methods to induce RNAi effects via ingestion. © 2016 Crown copyright. Pest Management Science © 2016 Society of Chemical Industry. © 2016 Crown copyright. Pest Management Science © 2016 Society of Chemical Industry.
The interaction of fungi with the environment orchestrated by RNAi.
Villalobos-Escobedo, José Manuel; Herrera-Estrella, Alfredo; Carreras-Villaseñor, Nohemí
2016-01-01
The fungal kingdom has been key in the investigation of the biogenesis and function of small RNAs (sRNAs). The discovery of phenomena such as quelling in Neurospora crassa represents pioneering work in the identification of the main elements of the RNA interference (RNAi) machinery. Recent discoveries in the regulatory mechanisms in some yeast and filamentous fungi are helping us reach a deeper understanding of the transcriptional and post-transcriptional gene-silencing mechanisms involved in genome protection against viral infections, DNA damage and transposon activity. Although most of these mechanisms are reasonably well understood, their role in the physiology, response to the environment and interaction of fungi with other organisms had remained elusive. Nevertheless, studies in fungi such as Mucor circinelloides, Magnaporthe oryzae, Cryptococcus neoformans, Trichoderma atroviride, Botrytis cinerea and others have started to shed light on the relevance of the RNAi pathway. In these fungi gene regulation by RNAi is important for growth, reproduction, control of viral infections and transposon activity, as well as in the development of antibiotic resistance and interactions with their hosts. Moreover, the increasing number of reports of the discovery of microRNA-like RNAs in fungi under different conditions highlights the importance of fungi as models for understanding adaptation to the environment using regulation by sRNAs. The goal of this review is to provide the reader with an up-to-date overview of the importance of RNAi in the interaction of fungi with their environment. © 2016 by The Mycological Society of America.
RNAi: a potential new class of therapeutic for human genetic disease.
Seyhan, Attila A
2011-11-01
Dominant negative genetic disorders, in which a mutant allele of a gene causes disease in the presence of a second, normal copy, have been challenging since there is no cure and treatments are only to alleviate the symptoms. Current therapies involving pharmacological and biological drugs are not suitable to target mutant genes selectively due to structural indifference of the normal variant of their targets from the disease-causing mutant ones. In instances when the target contains single nucleotide polymorphism (SNP), whether it is an enzyme or structural or receptor protein are not ideal for treatment using conventional drugs due to their lack of selectivity. Therefore, there is a need to develop new approaches to accelerate targeting these previously inaccessible targets by classical therapeutics. Although there is a cooling trend by the pharmaceutical industry for the potential of RNA interference (RNAi), RNAi and other RNA targeting drugs (antisense, ribozyme, etc.) still hold their promise as the only drugs that provide an opportunity to target genes with SNP mutations found in dominant negative disorders, genes specific to pathogenic tumor cells, and genes that are critical for mediating the pathology of various other diseases. Because of its exquisite specificity and potency, RNAi has attracted a considerable interest as a new class of therapeutic for genetic diseases including amyotrophic lateral sclerosis, Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), spinocerebellar ataxia, dominant muscular dystrophies, and cancer. In this review, progress and challenges in developing RNAi therapeutics for genetic diseases will be discussed.
RNAi-mediated resistance to rice black-streaked dwarf virus in transgenic rice.
Ahmed, Mohamed M S; Bian, Shiquan; Wang, Muyue; Zhao, Jing; Zhang, Bingwei; Liu, Qiaoquan; Zhang, Changquan; Tang, Shuzhu; Gu, Minghong; Yu, Hengxiu
2017-04-01
Rice black-streaked dwarf virus (RBSDV), a member of the genus Fijivirus in the family Reoviridae, causes significant economic losses in rice production in China and many other Asian countries. Development of resistant varieties by using conventional breeding methods is limited, as germplasm with high level of resistance to RBSDV have not yet been found. One of the most promising methods to confer resistance against RBSDV is the use of RNA interference (RNAi) technology. RBSDV non-structural protein P7-2, encoded by S7-2 gene, is a potential F-box protein and involved in the plant-virus interaction through the ubiquitination pathway. P8, encoded by S8 gene, is the minor core protein that possesses potent active transcriptional repression activity. In this study, we transformed rice calli using a mini-twin T-DNA vector harboring RNAi constructs of the RBSDV genes S7-2 or S8, and obtained plants harboring the target gene constructs and the selectable marker gene, hygromycin phosphotransferase (HPT). From the offspring of these transgenic plants, we obtained selectable marker (HPT gene)-free plants. Homozygous T 5 transgenic lines which harbored either S7-2-RNAi or S8-RNAi exhibited high level resistance against RBSDV under field infection pressure from indigenous viruliferous small brown planthoppers. Thus, our results showed that RNA interference with the expression of S7-2 or S8 genes seemed an effective way to induce high level resistance in rice against RBSD disease.
Toll immune signal activates cellular immune response via eicosanoids.
Shafeeq, Tahir; Ahmed, Shabbir; Kim, Yonggyun
2018-07-01
Upon immune challenge, insects recognize nonself. The recognition signal will propagate to nearby immune effectors. It is well-known that Toll signal pathway induces antimicrobial peptide (AMP) gene expression. Eicosanoids play crucial roles in mediating the recognition signal to immune effectors by enhancing humoral immune response through activation of AMP synthesis as well as cellular immune responses, suggesting a functional cross-talk between Toll and eicosanoid signals. This study tested a cross-talk between these two signals. Two signal transducing factors (MyD88 and Pelle) of Toll immune pathway were identified in Spodoptera exigua. RNA interference (RNAi) of either SeMyD88 or SePelle expression interfered with the expression of AMP genes under Toll signal pathway. Bacterial challenge induced PLA 2 enzyme activity. However, RNAi of these two immune factors significantly suppressed the induction of PLA 2 enzyme activity. Furthermore, RNAi treatment prevented gene expression of cellular PLA 2 . Inhibition of PLA 2 activity reduced phenoloxidase activity and subsequent suppression in cellular immune response measured by hemocyte nodule formation. However, immunosuppression induced by RNAi of Toll signal molecules was significantly reversed by addition of arachidonic acid (AA), a catalytic product of PLA 2 . The addition also significantly reduced the enhanced fungal susceptibility of S. exigua treated by RNAi against two Toll signal molecules. These results indicate that there is a cross-talk between Toll and eicosanoid signals in insect immunity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Blood-brain barrier transport of non-viral gene and RNAi therapeutics.
Boado, Ruben J
2007-09-01
The development of gene- and RNA interference (RNAi)-based therapeutics represents a challenge for the drug delivery field. The global brain distribution of DNA genes, as well as the targeting of specific regions of the brain, is even more complicated because conventional delivery systems, i.e. viruses, have poor diffusion in brain when injected in situ and do not cross the blood-brain barrier (BBB), which is only permeable to lipophilic molecules of less than 400 Da. Recent advances in the "Trojan Horse Liposome" (THL) technology applied to the transvascular non-viral gene therapy of brain disorders presents a promising solution to the DNA/RNAi delivery obstacle. The THL is comprised of immunoliposomes carrying either a gene for protein replacement or small hairpin RNA (shRNA) expression plasmids for RNAi effect, respectively. The THL is engineered with known lipids containing polyethyleneglycol (PEG), which stabilizes its structure in vivo in circulation. The tissue target specificity of THL is given by conjugation of approximately 1% of the PEG residues to peptidomimetic monoclonal antibodies (MAb) that bind to specific endogenous receptors (i.e. insulin and transferrin receptors) located on both the BBB and the brain cellular membranes, respectively. These MAbs mediate (a) receptor-mediated transcytosis of the THL complex through the BBB, (b) endocytosis into brain cells and (c) transport to the brain cell nuclear compartment. The present review presents an overview of the THL technology and its current application to gene therapy and RNAi, including experimental models of Parkinson's disease and brain tumors.
Lv, Sulian; Jiang, Ping; Tai, Fang; Wang, Duoliya; Feng, Juanjuan; Fan, Pengxiang; Bao, Hexigeduleng; Li, Yinxin
2017-12-01
The V-ATPase subunit A participates in vacuolar Na + compartmentalization in Salicornia europaea regulating V-ATPase and V-PPase activities. Na + sequestration into the vacuole is an efficient strategy in response to salinity in many halophytes. However, it is not yet fully understood how this process is achieved. Particularly, the role of vacuolar H + -ATPase (V-ATPase) in this process is controversial. Our previous proteomic investigation in the euhalophyte Salicornia europaea L. found a significant increase of the abundance of V-ATPase subunit A under salinity. Here, the gene encoding this subunit named SeVHA-A was characterized, and its role in salt tolerance was demonstrated by RNAi directed downregulation in suspension-cultured cells of S. europaea. The transcripts of genes encoding vacuolar H + -PPase (V-PPase) and vacuolar Na + /H + antiporter (SeNHX1) also decreased significantly in the RNAi cells. Knockdown of SeVHA-A resulted in a reduction in both V-ATPase and vacuolar H + -PPase (V-PPase) activities. Accordingly, the SeVHA-A-RNAi cells showed increased vacuolar pH and decreased cell viability under different NaCl concentrations. Further Na + staining showed the reduced vacuolar Na + sequestration in RNAi cells. Taken together, our results evidenced that SeVHA-A participates in vacuolar Na + sequestration regulating V-ATPase and V-PPase activities and thereby vacuolar pH in S. europaea. The possible mechanisms underlying the reduction of vacuolar V-PPase activity in SeVHA-A-RNAi cells were also discussed.
The MtDMI2-MtPUB2 Negative Feedback Loop Plays a Role in Nodulation Homeostasis1[OPEN
Deng, Jie; Zhu, Fugui; Lu, Zheng
2018-01-01
DOES NOT MAKE INFECTION 2 (MtDMI2) is a Leu rich repeat-type receptor kinase required for signal transduction in the Medicago truncatula/Sinorhizobium meliloti symbiosis pathway. However, the mechanisms through which MtDMI2 participates in nodulation homeostasis are poorly understood. In this study, we identified MtPUB2—a novel plant U-box (PUB)–type E3 ligase—and showed that it interacts with MtDMI2. MtDMI2 and MtPUB2 accumulation were shown to be similar in various tissues. Roots of plants in which MtPUB2 was silenced by RNAi (MtPUB2-RNAi plants) exhibited impaired infection threads, fewer nodules, and shorter primary root lengths compared to those of control plants transformed with empty vector. Using liquid chromatography-tandem mass spectrometry, we showed that MtDMI2 phosphorylates MtPUB2 at Ser-316, Ser-421, and Thr-488 residues. When MtPUB2-RNAi plants were transformed with MtPUB2S421D, which mimics the phosphorylated state, MtDMI2 was persistently ubiquitinated and degraded by MtPUB2S421D, resulting in fewer nodules than observed in MtPUB2/MtPUB2-RNAi-complemented plants. However, MtPUB2S421A/MtPUB2-RNAi-complemented plants showed no MtPUB2 ubiquitination activity, and their nodulation phenotype was similar to that of MtPUB2-RNAi plants transformed with empty vector. Further studies demonstrated that these proteins form a negative feedback loop of the prey (MtDMI2)-predator (MtPUB2) type. Our results suggest that the MtDMI2-MtPUB2 negative feedback loop, which displays crosstalk with the long-distance autoregulation of nodulation via MtNIN, plays an important role in nodulation homeostasis. PMID:29440269
Xiong, Zhiyong; Chen, Chunli; Wang, Lijun; Yu, Jingyin; Lu, Changming; Wei, Wenhui
2012-01-01
BnAP2, an APETALA2 (AP2)-like gene, has been isolated from Brassica napus cultivar Zhongshuang 9. The cDNA of BnAP2, with 1, 299 bp in length, encoded a transcription factor comprising of 432 amino acid residues. Results from complementary experiment indicated that BnAP2 was completely capable of restoring the phenotype of Arabidopsis ap2-11 mutant. Together with the sequence and expression data, the complementation data suggested that BnAP2 encodes the ortholog of AtAP2. To address the transcriptional activation of BnAP2, we performed transactivation assays in yeast. Fusion protein of BnAP2 with GAL4 DNA binding domain strongly activated transcription in yeast, and the transactivating activity of BnAP2 was localized to the N-terminal 100 amino acids. To further study the function of BnAP2 involved in the phenotype of B. napus, we used a transgenic approach that involved targeted RNA interference (RNAi) repression induced by ihp-RNA. Floral various phenotype defectives and reduced female fertility were observed in B. napus BnAP2-RNAi lines. Loss of the function of BnAP2 gene also resulted in delayed sepal abscission and senescence with the ethylene-independent pathway. In the strong BnAP2-RNAi lines, seeds showed defects in shape, structure and development and larger size. Strong BnAP2-RNAi and wild-type seeds initially did not display a significant difference in morphology at 10 DAF, but the development of BnAP2-RNAi seeds was slower than that of wild type at 20 DAF, and further at 30 DAF, wild-type seeds were essentially at their final size, whereas BnAP2-RNAi seeds stopped growing and developing and gradually withered. PMID:22479468
Yan, Xiaohong; Zhang, Lei; Chen, Bo; Xiong, Zhiyong; Chen, Chunli; Wang, Lijun; Yu, Jingyin; Lu, Changming; Wei, Wenhui
2012-01-01
BnAP2, an APETALA2 (AP2)-like gene, has been isolated from Brassica napus cultivar Zhongshuang 9. The cDNA of BnAP2, with 1, 299 bp in length, encoded a transcription factor comprising of 432 amino acid residues. Results from complementary experiment indicated that BnAP2 was completely capable of restoring the phenotype of Arabidopsis ap2-11 mutant. Together with the sequence and expression data, the complementation data suggested that BnAP2 encodes the ortholog of AtAP2. To address the transcriptional activation of BnAP2, we performed transactivation assays in yeast. Fusion protein of BnAP2 with GAL4 DNA binding domain strongly activated transcription in yeast, and the transactivating activity of BnAP2 was localized to the N-terminal 100 amino acids. To further study the function of BnAP2 involved in the phenotype of B. napus, we used a transgenic approach that involved targeted RNA interference (RNAi) repression induced by ihp-RNA. Floral various phenotype defectives and reduced female fertility were observed in B. napus BnAP2-RNAi lines. Loss of the function of BnAP2 gene also resulted in delayed sepal abscission and senescence with the ethylene-independent pathway. In the strong BnAP2-RNAi lines, seeds showed defects in shape, structure and development and larger size. Strong BnAP2-RNAi and wild-type seeds initially did not display a significant difference in morphology at 10 DAF, but the development of BnAP2-RNAi seeds was slower than that of wild type at 20 DAF, and further at 30 DAF, wild-type seeds were essentially at their final size, whereas BnAP2-RNAi seeds stopped growing and developing and gradually withered.
Wuriyanghan, Hada; Falk, Bryce W.
2013-01-01
The potato/tomato psyllid, Bactericera cockerelli (B. cockerelli), is an important plant pest and the vector of the phloem-limited bacterium Candidatus Liberibacter psyllaurous (solanacearum), which is associated with the zebra chip disease of potatoes. Previously, we reported induction of RNA interference effects in B. cockerelli via in vitro-prepared dsRNA/siRNAs after intrathoracic injection, and after feeding of artificial diets containing these effector RNAs. In order to deliver RNAi effectors via plant hosts and to rapidly identify effective target sequences in plant-feeding B. cockerelli, here we developed a plant virus vector-based in planta system for evaluating candidate sequences. We show that recombinant Tobacco mosaic virus (TMV) containing B. cockerelli sequences can efficiently infect and generate small interfering RNAs in tomato (Solanum lycopersicum), tomatillo (Physalis philadelphica) and tobacco (Nicotiana tabacum) plants, and more importantly delivery of interfering sequences via TMV induces RNAi effects, as measured by actin and V-ATPase mRNA reductions, in B. cockerelli feeding on these plants. RNAi effects were primarily detected in the B. cockerelli guts. In contrast to our results with TMV, recombinant Potato virus X (PVX) and Tobacco rattle virus (TRV) did not give robust infections in all plants and did not induce detectable RNAi effects in B. cockerelli. The greatest RNA interference effects were observed when B. cockerelli nymphs were allowed to feed on leaf discs collected from inoculated or lower expanded leaves from corresponding TMV-infected plants. Tomatillo plants infected with recombinant TMV containing B. cockerelli actin or V-ATPase sequences also showed phenotypic effects resulting in decreased B. cockerelli progeny production as compared to plants infected by recombinant TMV containing GFP. These results showed that RNAi effects can be achieved in plants against the phloem feeder, B. cockerelli, and the TMV-plant system will provide a faster and more convenient method for screening of suitable RNAi target sequences in planta. PMID:23824081
Ammara, Um e; Mansoor, Shahid; Saeed, Muhammad; Amin, Imran; Briddon, Rob W; Al-Sadi, Abdullah Mohammed
2015-03-04
Tomato yellow leaf curl virus (TYLCV), a monopartite begomovirus (family Geminiviridae) is responsible for heavy yield losses for tomato production around the globe. In Oman at least five distinct begomoviruses cause disease in tomato, including TYLCV. Unusually, TYLCV infections in Oman are sometimes associated with a betasatellite (Tomato leaf curl betasatellite [ToLCB]; a symptom modulating satellite). RNA interference (RNAi) can be used to develop resistance against begomoviruses at either the transcriptional or post-transcriptional levels. A hairpin RNAi (hpRNAi) construct to express double-stranded RNA homologous to sequences of the intergenic region, coat protein gene, V2 gene and replication-associated gene of Tomato yellow leaf curl virus-Oman (TYLCV-OM) was produced. Initially, transient expression of the hpRNAi construct at the site of virus inoculation was shown to reduce the number of plants developing symptoms when inoculated with either TYLCV-OM or TYLCV-OM with ToLCB-OM to Nicotiana benthamiana or tomato. Solanum lycopersicum L. cv. Pusa Ruby was transformed with the hpRNAi construct and nine confirmed transgenic lines were obtained and challenged with TYLCV-OM and ToLCB-OM by Agrobacterium-mediated inoculation. For all but one line, for which all plants remained symptomless, inoculation with TYLCV-OM led to a proportion (≤25%) of tomato plants developing symptoms of infection. For inoculation with TYLCV-OM and ToLCB-OM all lines showed a proportion of plants (≤45%) symptomatic. However, for all infected transgenic plants the symptoms were milder and virus titre in plants was lower than in infected non-transgenic tomato plants. These results show that RNAi can be used to develop resistance against geminiviruses in tomato. The resistance in this case is not immunity but does reduce the severity of infections and virus titer. Also, the betasatellite may compromise resistance, increasing the proportion of plants which ultimately show symptoms.
Trypanosoma brucei RNA Editing Complex
O'Hearn, Sean F.; Huang, Catherine E.; Hemann, Mike; Zhelonkina, Alevtina; Sollner-Webb, Barbara
2003-01-01
Maturation of Trypanosoma brucei mitochondrial mRNA involves massive posttranscriptional insertion and deletion of uridine residues. This RNA editing utilizes an enzymatic complex with seven major proteins, band I through band VII. We here use RNA interference (RNAi) to examine the band II and band V proteins. Band II is found essential for viability; it is needed to maintain the normal structure of the editing complex and to retain the band V ligase protein. Previously, band III was found essential for certain activities, including maintenance of the editing complex and retention of the band IV ligase protein. Thus, band II and band V form a protein pair with features analogous to the band III/band IV ligase pair. Since band V is specific for U insertion and since band IV is needed for U deletion, their parallel organization suggests that the editing complex has a pseudosymmetry. However, unlike the essential band IV ligase, RNAi to band V has only a morphological but no growth rate effect, suggesting that it is stimulatory but nonessential. Indeed, in vitro analysis of band V RNAi cell extract demonstrates that band IV can seal U insertion when band V is lacking. Thus, band IV ligase is the first activity of the basic editing complex shown able to serve in both forms of editing. Our studies also indicate that the U insertional portion may be less central in the editing complex than the corresponding U deletional portion. PMID:14560033
Suppressing tawny crazy ant (Nylanderia fulva) by RNAi technology.
Meng, Jia; Lei, Jiaxin; Davitt, Andrew; Holt, Jocelyn R; Huang, Jian; Gold, Roger; Vargo, Edward L; Tarone, Aaron M; Zhu-Salzman, Keyan
2018-05-22
The tawny crazy ant (Nylanderia fulva) is a new invasive pest in the United States. At present, its management mainly relies on the use of synthetic insecticides, which are generally ineffective at producing lasting control of the pest, necessitating alternative environmentally friendly measures. In this study, we evaluated the feasibility of gene silencing to control this ant species. Six housekeeping genes encoding actin (NfActin), coatomer subunit β (NfCOPβ), arginine kinase (NfArgK), and V-type proton ATPase subunits A (NfvATPaseA), B (NfvATPaseB) and E (NfvATPaseE) were cloned. Phylogenetic analysis revealed high sequence similarity to homologs from other ant species, particularly the Florida carpenter ant (Camponotus floridanus). To silence these genes, vector L4440 was used to generate 6 specific RNAi constructs for bacterial expression. Heat-inactivated, dsRNA-expressing Escherichia coli were incorporated into artificial diet. Worker ants exhibited reduced endogenous gene expression after feeding on such diet for 9 days. However, only ingestion of dsRNAs of NfCOPβ (a gene involved in protein trafficking) and NfArgK (a cellular energy reserve regulatory gene in invertebrates) caused modest but significantly higher ant mortality than the control. These results suggest that bacterially expressed dsRNA can be orally delivered to ant cells as a mean to target its vulnerabilities. Improved efficacy is necessary for the RNAi-based approach to be useful in tawny crazy ant management. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
web cellHTS2: a web-application for the analysis of high-throughput screening data.
Pelz, Oliver; Gilsdorf, Moritz; Boutros, Michael
2010-04-12
The analysis of high-throughput screening data sets is an expanding field in bioinformatics. High-throughput screens by RNAi generate large primary data sets which need to be analyzed and annotated to identify relevant phenotypic hits. Large-scale RNAi screens are frequently used to identify novel factors that influence a broad range of cellular processes, including signaling pathway activity, cell proliferation, and host cell infection. Here, we present a web-based application utility for the end-to-end analysis of large cell-based screening experiments by cellHTS2. The software guides the user through the configuration steps that are required for the analysis of single or multi-channel experiments. The web-application provides options for various standardization and normalization methods, annotation of data sets and a comprehensive HTML report of the screening data analysis, including a ranked hit list. Sessions can be saved and restored for later re-analysis. The web frontend for the cellHTS2 R/Bioconductor package interacts with it through an R-server implementation that enables highly parallel analysis of screening data sets. web cellHTS2 further provides a file import and configuration module for common file formats. The implemented web-application facilitates the analysis of high-throughput data sets and provides a user-friendly interface. web cellHTS2 is accessible online at http://web-cellHTS2.dkfz.de. A standalone version as a virtual appliance and source code for platforms supporting Java 1.5.0 can be downloaded from the web cellHTS2 page. web cellHTS2 is freely distributed under GPL.
Elalayli, Maggie; Hall, Jacklyn D; Fakhouri, Mazen; Neiswender, Hannah; Ellison, Tambrea T; Han, Zhe; Roon, Penny; LeMosy, Ellen K
2008-07-15
The innermost layer of the Drosophila eggshell, the vitelline membrane, provides structural support and positional information to the embryo. It is assembled in an incompletely understood manner from four major proteins to form a homogeneous, transparent extracellular matrix. Here we show that RNAi knockdown or genetic deletion of a minor constituent of this matrix, Palisade, results in structural disruptions during the initial synthesis of the vitelline membrane by somatic follicle cells surrounding the oocyte, including wide size variation among the precursor vitelline bodies and disorganization of follicle cell microvilli. Loss of Palisade or the microvillar protein Cad99C results in abnormal uptake into the oocyte of sV17, a major vitelline membrane protein, and defects in non-disulfide cross-linking of sV17 and sV23, while loss of Palisade has additional effects on processing and disulfide cross-linking of these proteins. Embryos surrounded by the abnormal vitelline membranes synthesized when Palisade is reduced are fertilized but undergo developmental arrest, usually during the first 13 nuclear divisions, with a nuclear phenotype of chromatin margination similar to that described for wild-type embryos subjected to anoxia. Our results demonstrate that Palisade is involved in coordinating assembly of the vitelline membrane and is required for functional properties of the eggshell.
Elalayli, Maggie; Hall, Jacklyn D.; Fakhouri, Mazen; Neiswender, Hannah; Ellison, Tambrea T.; Han, Zhe; Roon, Penny; LeMosy, Ellen K.
2008-01-01
The innermost layer of the Drosophila eggshell, the vitelline membrane, provides structural support and positional information to the embryo. It is assembled in an incompletely understood manner from four major proteins to form a homogeneous, transparent extracellular matrix. Here we show that RNAi knockdown or genetic deletion of a minor constituent of this matrix, Palisade, results in structural disruptions during the initial synthesis of the vitelline membrane by somatic follicle cells surrounding the oocyte, including wide size variation among the precursor vitelline bodies and disorganization of follicle cell microvilli. Loss of Palisade or the microvillar protein Cad99C results in abnormal uptake into the oocyte of sV17, a major vitelline membrane protein, and defects in non-disulfide cross-linking of sV17 and sV23, while loss of Palisade has additional effects on processing and disulfide cross-linking of these proteins. Embryos surrounded by the abnormal vitelline membranes synthesized when Palisade is reduced are fertilized but undergo developmental arrest, usually during the first 13 nuclear divisions, with a nuclear phenotype of chromatin margination similar to that described for wild-type embryos subjected to anoxia. Our results demonstrate that Palisade is involved in coordinating assembly of the vitelline membrane and is required for functional properties of the eggshell. PMID:18514182
Functional genomics (FG) screens, using RNAi or CRISPR technology, have become a standard tool for systematic, genome-wide loss-of-function studies for therapeutic target discovery. As in many large-scale assays, however, off-target effects, variable reagents' potency and experimental noise must be accounted for appropriately control for false positives.
Hu, Qiping; Fu, Jun; Luo, Bin; Huang, Miao; Guo, Wenwen; Lin, Yongda; Xie, Xiaoxun; Xiao, Shaowen
2015-04-01
Given its tumor-specific expression, including liver cancer, OY-TES-1 is a potential molecular marker for the diagnosis and immunotherapy of liver cancers. However, investigations of the mechanisms and the role of OY-TES-1 in liver cancer are rare. In the present study, based on a comprehensive bioinformatic analysis combined with RNA interference (RNAi) and oligonucleotide microarray, we report for the first time that downregulation of OY-TES-1 resulted in significant changes in expression of NANOG, CD9, CCND2 and CDCA3 in the liver cancer cell line BEL-7404. NANOG, CD9, CCND2 and CDCA3 may be involved in cell proliferation, migration, invasion and apoptosis, yet also may be functionally related to each other and OY-TES-1. Among these molecules, we identified that NANOG, containing a Kazal-2 binding motif and homeobox, may be the most likely candidate protein interacting with OY-TES-1 in liver cancer. Thus, the present study may provide important information for further investigation of the roles of OY-TES-1 in liver cancer.
Pistón, Fernando; Gil-Humanes, Javier; Rodríguez-Quijano, Marta; Barro, Francisco
2011-01-01
Background Gliadins are a major component of gluten proteins but their role in the mixing of dough is not well understood because their contribution to wheat flour functional properties are not as clear as for the glutenin fraction. Methodology/Principal Findings Transgenic lines of bread wheat with γ-gliadins suppressed by RNAi are reported. The effects on the gluten protein composition and on technological properties of flour were analyzed by RP-HPLC, by sodium dodecyl sulfate sedimentation (SDSS) test and by Mixograph analysis. The silencing of γ-gliadins by RNAi in wheat lines results in an increase in content of all other gluten proteins. Despite the gluten proteins compensation, in silico analysis of amino acid content showed no difference in the γ-gliadins silenced lines. The SDSS test and Mixograph parameters were slightly affected by the suppression of γ-gliadins. Conclusions/Significance Therefore, it is concluded that γ-gliadins do not have an essential functional contribution to the bread-making quality of wheat dough, and their role can be replaced by other gluten proteins. PMID:21935456
USDA-ARS?s Scientific Manuscript database
The whitefly Bemisia tabaci (Genn.) is a pest and vector of plant viruses affecting plants worldwide. Using RNA interference (RNAi) to downregulate whitefly genes by expressing their homologous double stranded RNAs in plants has great potential for management of whiteflies to reduce plant virus dise...
USDA-ARS?s Scientific Manuscript database
RNA interference (RNAi) has gained popularity in several fields of research, silencing targeted genes by degradation of RNA. The objective of this study was to develop RNAi for use as a molecular tool in the control of the invasive pest Lymantria dispar (Lepidoptera: Erebidae), gypsy moth, which ha...
USDA-ARS?s Scientific Manuscript database
Silencing phytochrome A1 gene (PHYA1) by RNA interference in Upland cotton (Gossypium hirsutum L. cv. Coker 312) had generated PHYA1 RNAi lines with simultaneously improved fiber quality (longer, stronger and finer fiber) and other key agronomic traits. Comparative analyses of altered molecular proc...
USDA-ARS?s Scientific Manuscript database
Ecdysteroids play a critical role in coordinating insect growth, development, and reproduction. A suite of cytochrome P450 monooxygenases coded by what are collectively termed Halloween genes mediate ecdysteroid biosynthesis. In this study, we describe cloning and RNAi-mediated knockdown of the CYP3...
USDA-ARS?s Scientific Manuscript database
RNA interference (RNAi) is one of the most powerful and extraordinarily-specific means by which to silence genes. The ability of RNAi to silence genes makes it possible to ascertain function from genomic data, thereby making it an excellent choice for target-site screening. To test the efficacy of...
Delivery of RNA interference therapeutics using polycation-based nanoparticles.
Howard, Kenneth Alan
2009-07-25
RNAi-based therapies are dependent on extracellular and intracellular delivery of RNA molecules for enabling target interaction. Polycation-based nanoparticles (or polyplexes) formed by self-assembly with RNA can be used to modulate pharmacokinetics and intracellular trafficking to improve the therapeutic efficacy of RNAi-based therapeutics. This review describes the application of polyplexes for extracellular and intracellular delivery of synthetic RNA molecules. Focus is given to routes of administration and silencing effects in animal disease models. The inclusion of functional components into the nanoparticle for controlling cellular trafficking and RNA release is discussed. This work highlights the versatile nature of polycation-based nanoparticles to fulfil the delivery requirements for RNA molecules with flexibility in design to evolve alongside an expanding repertoire of RNAi-based drugs.
Silence of the transcripts: RNA interference in medicine.
Barik, Sailen
2005-10-01
Silencing of gene expression by ribonucleic acid (RNA), known as RNA interference (RNAi), is now recognized as a major means of gene regulation in biology. In this mechanism, small noncoding double-stranded RNA molecules knock down gene expression through a variety of mechanisms that include messenger RNA (mRNA) degradation, inhibition of mRNA translation, or chromatin remodeling. The posttranscriptional mechanism of RNAi has been embraced by researchers as a powerful tool for generating deficient phenotypes without mutating the gene. In parallel, exciting recent results have promised its application in disease therapy. This review aims to summarize the current knowledge in this area and provide a roadmap that may eventually launch RNAi from the research bench to the medicine chest.
Ihlow, Alexander; Schweizer, Patrick; Seiffert, Udo
2008-01-23
To find candidate genes that potentially influence the susceptibility or resistance of crop plants to powdery mildew fungi, an assay system based on transient-induced gene silencing (TIGS) as well as transient over-expression in single epidermal cells of barley has been developed. However, this system relies on quantitative microscopic analysis of the barley/powdery mildew interaction and will only become a high-throughput tool of phenomics upon automation of the most time-consuming steps. We have developed a high-throughput screening system based on a motorized microscope which evaluates the specimens fully automatically. A large-scale double-blind verification of the system showed an excellent agreement of manual and automated analysis and proved the system to work dependably. Furthermore, in a series of bombardment experiments an RNAi construct targeting the Mlo gene was included, which is expected to phenocopy resistance mediated by recessive loss-of-function alleles such as mlo5. In most cases, the automated analysis system recorded a shift towards resistance upon RNAi of Mlo, thus providing proof of concept for its usefulness in detecting gene-target effects. Besides saving labor and enabling a screening of thousands of candidate genes, this system offers continuous operation of expensive laboratory equipment and provides a less subjective analysis as well as a complete and enduring documentation of the experimental raw data in terms of digital images. In general, it proves the concept of enabling available microscope hardware to handle challenging screening tasks fully automatically.
Yin, Zheng; Zhou, Xiaobo; Bakal, Chris; Li, Fuhai; Sun, Youxian; Perrimon, Norbert; Wong, Stephen TC
2008-01-01
Background The recent emergence of high-throughput automated image acquisition technologies has forever changed how cell biologists collect and analyze data. Historically, the interpretation of cellular phenotypes in different experimental conditions has been dependent upon the expert opinions of well-trained biologists. Such qualitative analysis is particularly effective in detecting subtle, but important, deviations in phenotypes. However, while the rapid and continuing development of automated microscope-based technologies now facilitates the acquisition of trillions of cells in thousands of diverse experimental conditions, such as in the context of RNA interference (RNAi) or small-molecule screens, the massive size of these datasets precludes human analysis. Thus, the development of automated methods which aim to identify novel and biological relevant phenotypes online is one of the major challenges in high-throughput image-based screening. Ideally, phenotype discovery methods should be designed to utilize prior/existing information and tackle three challenging tasks, i.e. restoring pre-defined biological meaningful phenotypes, differentiating novel phenotypes from known ones and clarifying novel phenotypes from each other. Arbitrarily extracted information causes biased analysis, while combining the complete existing datasets with each new image is intractable in high-throughput screens. Results Here we present the design and implementation of a novel and robust online phenotype discovery method with broad applicability that can be used in diverse experimental contexts, especially high-throughput RNAi screens. This method features phenotype modelling and iterative cluster merging using improved gap statistics. A Gaussian Mixture Model (GMM) is employed to estimate the distribution of each existing phenotype, and then used as reference distribution in gap statistics. This method is broadly applicable to a number of different types of image-based datasets derived from a wide spectrum of experimental conditions and is suitable to adaptively process new images which are continuously added to existing datasets. Validations were carried out on different dataset, including published RNAi screening using Drosophila embryos [Additional files 1, 2], dataset for cell cycle phase identification using HeLa cells [Additional files 1, 3, 4] and synthetic dataset using polygons, our methods tackled three aforementioned tasks effectively with an accuracy range of 85%–90%. When our method is implemented in the context of a Drosophila genome-scale RNAi image-based screening of cultured cells aimed to identifying the contribution of individual genes towards the regulation of cell-shape, it efficiently discovers meaningful new phenotypes and provides novel biological insight. We also propose a two-step procedure to modify the novelty detection method based on one-class SVM, so that it can be used to online phenotype discovery. In different conditions, we compared the SVM based method with our method using various datasets and our methods consistently outperformed SVM based method in at least two of three tasks by 2% to 5%. These results demonstrate that our methods can be used to better identify novel phenotypes in image-based datasets from a wide range of conditions and organisms. Conclusion We demonstrate that our method can detect various novel phenotypes effectively in complex datasets. Experiment results also validate that our method performs consistently under different order of image input, variation of starting conditions including the number and composition of existing phenotypes, and dataset from different screens. In our findings, the proposed method is suitable for online phenotype discovery in diverse high-throughput image-based genetic and chemical screens. PMID:18534020
Dcdc2 knockout mice display exacerbated developmental disruptions following knockdown of Dcx
Wang, Yu; Yin, Xiuyin; Rosen, Glenn; Gabel, Lisa; Guadiana, Sarah M.; Sarkisian, Matthew R; Galaburda, Albert M.; LoTurco, Joseph J.
2011-01-01
The dyslexia-associated gene DCDC2 is a member of the DCX family of genes known to play roles in neurogenesis, neuronal migration and differentiation. Here we report the first phenotypic analysis of a Dcdc2 knockout mouse. Comparisons between Dcdc2 knockout mice and wild type littermates revealed no significant differences in neuronal migration, neocortical lamination, neuronal cilliogenesis or dendritic differentiation. Considering previous studies showing genetic interactions and potential functional redundancy among members of the DCX family, we tested whether decreasing Dcx expression by RNAi would differentially impair neurodevelopment in Dcdc2 knockouts and wild type mice. Consistent with this hypothesis, we found that deficits in neuronal migration, and dendritic growth caused by RNAi of Dcx were more severe in Dcdc2 knockouts than in wild type mice with the same transfection. These results indicate that Dcdc2 is not required for neurogenesis, neuronal migration or differentiation in mice, but may have partial functional redundancy with Dcx. PMID:21689730
Synthetic RNAs for Gene Regulation: Design Principles and Computational Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laganà, Alessandro, E-mail: alessandro.lagana@osumc.edu; Shasha, Dennis; Croce, Carlo Maria
The use of synthetic non-coding RNAs for post-transcriptional regulation of gene expression has not only become a standard laboratory tool for gene functional studies but it has also opened up new perspectives in the design of new and potentially promising therapeutic strategies. Bioinformatics has provided researchers with a variety of tools for the design, the analysis, and the evaluation of RNAi agents such as small-interfering RNA (siRNA), short-hairpin RNA (shRNA), artificial microRNA (a-miR), and microRNA sponges. More recently, a new system for genome engineering based on the bacterial CRISPR-Cas9 system (Clustered Regularly Interspaced Short Palindromic Repeats), was shown to havemore » the potential to also regulate gene expression at both transcriptional and post-transcriptional level in a more specific way. In this mini review, we present RNAi and CRISPRi design principles and discuss the advantages and limitations of the current design approaches.« less
Comparative Analysis of Argonaute-dependent Small RNA Pathways in Drosophila
Zhou, Rui; Hotta, Ikuko; Denli, Ahmet M.; Hong, Pengyu; Perrimon, Norbert; Hannon, Gregory J.
2008-01-01
Summary The specificity of RNAi pathways is determined by several classes of small RNAs, which include siRNAs, piRNAs, endo-siRNAs, and microRNAs (miRNAs). These small RNAs are invariably incorporated into large Argonaute (Ago)-containing effector complexes known as RNA-induced silencing complexes (RISCs), which they guide to silencing targets. Both genetic and biochemical strategies have yielded conserved molecular components of small RNA biogenesis and effector machineries. However, given the complexity of these pathways, there are likely to be additional components and regulators that remain to be uncovered. We have undertaken a comparative and comprehensive RNAi screen to identify genes that impact three major Ago-dependent small RNA pathways that operate in Drosophila S2 cells. We identify subsets of candidates that act positively or negatively in siRNA, endo-siRNA and miRNA pathways. Our studies indicate that many components are shared among all three Argonaute-dependent silencing pathways, though each is also impacted by discrete sets of genes. PMID:19026789
Hippo signaling controls cell cycle and restricts cell plasticity in planarians
de Sousa, Nídia; Rodríguez-Esteban, Gustavo; Rojo-Laguna, Jose Ignacio; Saló, Emili
2018-01-01
The Hippo pathway plays a key role in regulating cell turnover in adult tissues, and abnormalities in this pathway are consistently associated with human cancers. Hippo was initially implicated in the control of cell proliferation and death, and its inhibition is linked to the expansion of stem cells and progenitors, leading to larger organ size and tumor formation. To understand the mechanism by which Hippo directs cell renewal and promotes stemness, we studied its function in planarians. These stem cell–based organisms are ideal models for the analysis of the complex cellular events underlying tissue renewal in the whole organism. hippo RNA interference (RNAi) in planarians decreased apoptotic cell death, induced cell cycle arrest, and could promote the dedifferentiation of postmitotic cells. hippo RNAi resulted in extensive undifferentiated areas and overgrowths, with no effect on body size or cell number. We propose an essential role for hippo in controlling cell cycle, restricting cell plasticity, and thereby preventing tumoral transformation. PMID:29357350
Axon Regeneration Genes Identified by RNAi Screening in C. elegans
Nix, Paola; Hammarlund, Marc; Hauth, Linda; Lachnit, Martina; Jorgensen, Erik M.
2014-01-01
Axons of the mammalian CNS lose the ability to regenerate soon after development due to both an inhibitory CNS environment and the loss of cell-intrinsic factors necessary for regeneration. The complex molecular events required for robust regeneration of mature neurons are not fully understood, particularly in vivo. To identify genes affecting axon regeneration in Caenorhabditis elegans, we performed both an RNAi-based screen for defective motor axon regeneration in unc-70/β-spectrin mutants and a candidate gene screen. From these screens, we identified at least 50 conserved genes with growth-promoting or growth-inhibiting functions. Through our analysis of mutants, we shed new light on certain aspects of regeneration, including the role of β-spectrin and membrane dynamics, the antagonistic activity of MAP kinase signaling pathways, and the role of stress in promoting axon regeneration. Many gene candidates had not previously been associated with axon regeneration and implicate new pathways of interest for therapeutic intervention. PMID:24403161
Suppression of Bedbug’s Reproduction by RNA Interference of Vitellogenin
Moriyama, Minoru; Hosokawa, Takahiro; Tanahashi, Masahiko; Nikoh, Naruo; Fukatsu, Takema
2016-01-01
Recent resurgence of the bedbug Cimex lectularius is a global problem on the public health. On account of the worldwide rise of insecticide-resistant bedbug populations, exploration of new approaches to the bedbug control and management is anticipated. In this context, gene silencing by RNA interference (RNAi) has been considered for its potential application to pest control and management, because RNAi enables specific suppression of target genes and thus flexible selection of target traits to be disrupted. In this study, in an attempt to develop a control strategy targeting reproduction of the bedbug, we investigated RNAi-mediated gene silencing of vitellogenin (Vg), a major yolk protein precursor essential for oogenesis. From the bedbug transcriptomes, we identified a typical Vg gene and a truncated Vg gene, which were designated as ClVg and ClVg-like, respectively. ClVg gene was highly expressed mainly in the fat body of adult females, which was more than 100 times higher than the expression level of ClVg-like gene, indicating that ClVg gene is the primary functional Vg gene in the bedbug. RNAi-mediated suppression of ClVg gene expression in adult females resulted in drastically reduced egg production, atrophied ovaries, and inflated abdomen due to hypertrophied fat bodies. These phenotypic consequences are expected not only to suppress the bedbug reproduction directly but also to deteriorate its feeding and survival indirectly via behavioral modifications. These results suggest the potential of ClVg gene as a promising target for RNAi-based population management of the bedbug. PMID:27096422
Distinct roles for RDE-1 and RDE-4 during RNA interference in Caenorhabditis elegans.
Parrish, S; Fire, A
2001-10-01
RNA interference (RNAi) is a cellular defense mechanism that uses double-stranded RNA (dsRNA) as a sequence-specific trigger to guide the degradation of homologous single-stranded RNAs. RNAi is a multistep process involving several proteins and at least one type of RNA intermediate, a population of small 21-25 nt RNAs (called siRNAs) that are initially derived from cleavage of the dsRNA trigger. Genetic screens in Caenorhabditis elegans have identified numerous mutations that cause partial or complete loss of RNAi. In this work, we analyzed cleavage of injected dsRNA to produce the initial siRNA population in animals mutant for rde-1 and rde-4, two genes that are essential for RNAi but that are not required for organismal viability or fertility. Our results suggest distinct roles for RDE-1 and RDE-4 in the interference process. Although null mutants lacking rde-1 show no phenotypic response to dsRNA, the amount of siRNAs generated from an injected dsRNA trigger was comparable to that of wild-type. By contrast, mutations in rde-4 substantially reduced the population of siRNAs derived from an injected dsRNA trigger. Injection of chemically synthesized 24- or 25-nt siRNAs could circumvent RNAi resistance in rde-4 mutants, whereas no bypass was observed in rde-1 mutants. These results support a model in which RDE-4 is involved before or during production of siRNAs, whereas RDE-1 acts after the siRNAs have been formed.