Science.gov

Sample records for matrix subunit compaction

  1. Elongated polyproline motifs facilitate enamel evolution through matrix subunit compaction.

    PubMed

    Jin, Tianquan; Ito, Yoshihiro; Luan, Xianghong; Dangaria, Smit; Walker, Cameron; Allen, Michael; Kulkarni, Ashok; Gibson, Carolyn; Braatz, Richard; Liao, Xiubei; Diekwisch, Thomas G H

    2009-12-01

    Vertebrate body designs rely on hydroxyapatite as the principal mineral component of relatively light-weight, articulated endoskeletons and sophisticated tooth-bearing jaws, facilitating rapid movement and efficient predation. Biological mineralization and skeletal growth are frequently accomplished through proteins containing polyproline repeat elements. Through their well-defined yet mobile and flexible structure polyproline-rich proteins control mineral shape and contribute many other biological functions including Alzheimer's amyloid aggregation and prolamine plant storage. In the present study we have hypothesized that polyproline repeat proteins exert their control over biological events such as mineral growth, plaque aggregation, or viscous adhesion by altering the length of their central repeat domain, resulting in dramatic changes in supramolecular assembly dimensions. In order to test our hypothesis, we have used the vertebrate mineralization protein amelogenin as an exemplar and determined the biological effect of the four-fold increased polyproline tandem repeat length in the amphibian/mammalian transition. To study the effect of polyproline repeat length on matrix assembly, protein structure, and apatite crystal growth, we have measured supramolecular assembly dimensions in various vertebrates using atomic force microscopy, tested the effect of protein assemblies on crystal growth by electron microscopy, generated a transgenic mouse model to examine the effect of an abbreviated polyproline sequence on crystal growth, and determined the structure of polyproline repeat elements using 3D NMR. Our study shows that an increase in PXX/PXQ tandem repeat motif length results (i) in a compaction of protein matrix subunit dimensions, (ii) reduced conformational variability, (iii) an increase in polyproline II helices, and (iv) promotion of apatite crystal length. Together, these findings establish a direct relationship between polyproline tandem repeat fragment

  2. Elongated Polyproline Motifs Facilitate Enamel Evolution through Matrix Subunit Compaction

    PubMed Central

    Luan, Xianghong; Dangaria, Smit; Walker, Cameron; Allen, Michael; Kulkarni, Ashok; Gibson, Carolyn; Braatz, Richard; Liao, Xiubei; Diekwisch, Thomas G. H.

    2009-01-01

    Vertebrate body designs rely on hydroxyapatite as the principal mineral component of relatively light-weight, articulated endoskeletons and sophisticated tooth-bearing jaws, facilitating rapid movement and efficient predation. Biological mineralization and skeletal growth are frequently accomplished through proteins containing polyproline repeat elements. Through their well-defined yet mobile and flexible structure polyproline-rich proteins control mineral shape and contribute many other biological functions including Alzheimer's amyloid aggregation and prolamine plant storage. In the present study we have hypothesized that polyproline repeat proteins exert their control over biological events such as mineral growth, plaque aggregation, or viscous adhesion by altering the length of their central repeat domain, resulting in dramatic changes in supramolecular assembly dimensions. In order to test our hypothesis, we have used the vertebrate mineralization protein amelogenin as an exemplar and determined the biological effect of the four-fold increased polyproline tandem repeat length in the amphibian/mammalian transition. To study the effect of polyproline repeat length on matrix assembly, protein structure, and apatite crystal growth, we have measured supramolecular assembly dimensions in various vertebrates using atomic force microscopy, tested the effect of protein assemblies on crystal growth by electron microscopy, generated a transgenic mouse model to examine the effect of an abbreviated polyproline sequence on crystal growth, and determined the structure of polyproline repeat elements using 3D NMR. Our study shows that an increase in PXX/PXQ tandem repeat motif length results (i) in a compaction of protein matrix subunit dimensions, (ii) reduced conformational variability, (iii) an increase in polyproline II helices, and (iv) promotion of apatite crystal length. Together, these findings establish a direct relationship between polyproline tandem repeat fragment

  3. Squeeze flow and compaction behavior of toughened polyimide matrix composites

    NASA Technical Reports Server (NTRS)

    Lee, Byung Lip; Pater, R.; Soucek, M. D.

    1991-01-01

    The main emphasis was placed upon the squeeze flow and compaction behavior of the Lewis Research Center (LaRC) research project series polyimide matrix composites. The measurement of squeeze film flow behavior was performed by a plastometer which monitors the change of thickness of a prepreg specimen laid between two parallel plates under the specified temperature and pressure history. A critical evaluation of the plastometer data was attempted by examining the morphology of the specimen at various points during the squeeze flow. The effects of crosslinks (Mc) of resin, imidization (B-ataging) condition, and pressure on the squeeze flow behavior were examined. Results are given.

  4. Chondrites: The Compaction of Fine Matrix and Matrix-like Chondrule Rims

    NASA Astrophysics Data System (ADS)

    Wasson, J. T.

    1995-09-01

    Primitive chondritic meteorites mainly consist of chondrules, sulfide+/-metal, and fine-grained matrix. The most unequilibrated chondrites preserve in their phase compositions and, to a lesser degree, their textures, many details about processes that occurred in the solar nebula. On the other hand, much of the textural evidence records processes that occurred in or on the parent body. I suggest that the low-porosity of chondrule matrix and matrix-like rims reflects compaction processes that occurred in asteroid-size bodies, and that neither matrix lumps nor compact matrix-like rims on chondrules could have achieved their observed low porosities in the solar nebula. Recent theoretical studies by Donn and Meakin (1) and Chokshi et al. (2) have concluded that grain-grain sticking in the solar nebula mainly produces fluffy structures having very high porosities (probably >>50%). If these structures grow large enough, they can provide an aerogel-like matrix that can trap chondrules as well as metal and sulfide grains, and thus form suitable precursors of chondritic meteorites. However, the strength of any such structure formed in the solar nebula must be a trivial fraction of that required to survive passage through the Earth's atmosphere in order to fall as a meteorite. The best evidence of accretionary structures appears to be that reported by Metzler et al. (3). They made SEM images of entire thin sections of CM chondrites, and showed that, in the best preserved chondrites, rims are present on all entitities--on chondrules, chondrule fragments, refractory inclusions, etc. A study by Krot and Wasson (4) shows a more complex situation in ordinary chondrites. Although matrix is common, a sizable fraction of chondrules are not surrounded by matrix-like rims. As summarized by Rubin and Krot (1995), there are reports of small textural and compositional differences between matrix lumps and mean matrix-like chondrule rims, but there is so much overlap in properties between

  5. Evaluation of roll compaction as a preparation method for hydroxypropyl cellulose-based matrix tablets

    PubMed Central

    Jeon, Imjak; Gilli, Tiziana; Betz, Gabriele

    2011-01-01

    Roll compaction was applied for the preparation of hydroxypropyl cellulose (HPC)-based sustained-release matrix tablets. Matrix tablets made via roll compaction exhibited higher dosage uniformity and faster drug release than direct-compacted tablets. HPC viscosity grade, roll pressure, and milling speed affected tablet properties significantly. Roll compaction seems to be an adequate granulation method for the preparation of HPC-based matrix tablets due to the simplicity of the process, less handling difficulty from HPC tackiness as well as easier particle size targeting. Selecting the optimum ratio of plastic excipients and the particle size of starting materials can however be critical issues in this method. PMID:21687348

  6. T Cell Receptor Engagement Triggers Its CD3ε and CD3ζ Subunits to Adopt a Compact, Locked Conformation

    PubMed Central

    Risueño, Ruth M.; Schamel, Wolfgang W. A.; Alarcón, Balbino

    2008-01-01

    How the T cell antigen receptor (TCR) discriminates between molecularly related peptide/Major Histocompatibility Complex (pMHC) ligands and converts this information into different possible signaling outcomes is still not understood. One current model proposes that strong pMHC ligands, but not weak ones, induce a conformational change in the TCR. Evidence supporting this comes from a pull-down assay that detects ligand-induced binding of the TCR to the N-terminal SH3 domain of the adapter protein Nck, and also from studies with a neoepitope-specific antibody. Both methods rely on the exposure of a polyproline sequence in the CD3ε subunit of the TCR, and neither indicates whether the conformational change is transmitted to other CD3 subunits. Using a protease-sensitivity assay, we now show that the cytoplasmic tails of CD3ε and CD3ζ subunits become fully protected from degradation upon TCR triggering. These results suggest that the TCR conformational change is transmitted to the tails of CD3ε and CD3ζ, and perhaps all CD3 subunits. Furthermore, the resistance to protease digestion suggests that CD3 cytoplasmic tails adopt a compact structure in the triggered TCR. These results are consistent with a model in which transduction of the conformational change induced upon TCR triggering promotes condensation and shielding of the CD3 cytoplasmic tails. PMID:18320063

  7. Compression and compaction properties of plasticised high molecular weight hydroxypropylmethylcellulose (HPMC) as a hydrophilic matrix carrier.

    PubMed

    Hardy, I J; Cook, W G; Melia, C D

    2006-03-27

    The compression and compaction properties of plasticised high molecular weight USP2208 HPMC were investigated with the aim of improving tablet formation in HPMC matrices. Experiments were conducted on binary polymer-plasticiser mixtures containing 17 wt.% plasticiser, and on a model hydrophilic matrix formulation. A selection of common plasticisers, propylene glycol (PG) glycerol (GLY), dibutyl sebacate (DBS) and triacetin (TRI), were chosen to provide a range of plasticisation efficiencies. T(g) values of binary mixtures determined by Dynamic Mechanical Thermal Analysis (DMTA) were in rank order PG>GLY>DBS>TRI>unplasticised HPMC. Mean yield pressure, strain rate sensitivity (SRS) and plastic compaction energy were measured during the compression process, and matrix properties were monitored by tensile strength and axial expansion post-compression. Compression of HPMC:PG binary mixtures resulted in a marked reduction in mean yield pressure and a significant increase in SRS, suggesting a classical plasticisation of HPMC analogous to that produced by water. The effect of PG was also reflected in matrix properties. At compression pressures below 70 MPa, compacts had greater tensile strength than those from native polymer, and over the range 35 and 70 MPa, lower plastic compaction values showed that less energy was required to produce the compacts. Axial expansion was also reduced. Above 70 MPa tensile strength was limited to 3 MPa. These results suggest a useful improvement of HPMC compaction and matrix properties by PG plasticisation, with lowering of T(g) resulting in improved deformation and internal bonding. These effects were also detectable in the model formulation containing a minimal polymer content for an HPMC matrix. Other plasticisers were largely ineffective, matrix strength was poor and axial expansion high. The hydrophobic plasticisers (DBS, TRI) reduced yield pressure substantially, but were poor plasticisers and showed compaction mechanisms that could

  8. Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix

    NASA Astrophysics Data System (ADS)

    Han, Bin

    2003-06-01

    Tight wavelet frames and orthonormal wavelet bases with a general dilation matrix have applications in many areas. In this paper, for any d×d dilation matrix M, we demonstrate in a constructive way that we can construct compactly supported tight M-wavelet frames and orthonormal M-wavelet bases in of exponential decay, which are derived from compactly supported M-refinable functions, such that they can have both arbitrarily high smoothness and any preassigned order of vanishing moments. This paper improves several results in Battle (Comm. Math. Phys. 110 (1987) 601), Bownik (J. Fourier Anal. Appl. 7(2001) 489), Gröchenig and Ron (Proc. Amer. Math. Soc. 126 (1998) 1101), Lemarie (J. Math. Pures Appl. 67 (1988) 227), and Strichartz (Constr. Approx. 9 (1993) 327).

  9. Adjuvant effect of the human metapneumovirus (HMPV) matrix protein in HMPV subunit vaccines.

    PubMed

    Aerts, Laetitia; Rhéaume, Chantal; Carbonneau, Julie; Lavigne, Sophie; Couture, Christian; Hamelin, Marie-Ève; Boivin, Guy

    2015-04-01

    The human metapneumovirus (HMPV) fusion (F) protein is the most immunodominant protein, yet subunit vaccines containing only this protein do not confer complete protection. The HMPV matrix (M) protein induces the maturation of antigen-presenting cells in vitro. The inclusion of the M protein into an F protein subunit vaccine might therefore provide an adjuvant effect. We administered the F protein twice intramuscularly, adjuvanted with alum, the M protein or both, to BALB/c mice at 3 week intervals. Three weeks after the boost, mice were infected with HMPV and monitored for 14 days. At day 5 post-challenge, pulmonary viral titres, histopathology and cytokine levels were analysed. Mice immunized with F+alum and F+M+alum generated significantly more neutralizing antibodies than mice immunized with F only [titres of 47 ± 7 (P<0.01) and 147 ± 13 (P<0.001) versus 17 ± 2]. Unlike F only [1.6 ± 0.5 × 10(3) TCID50 (g lung)(-1)], pulmonary viral titres in mice immunized with F+M and F+M+alum were undetectable. Mice immunized with F+M presented the most important reduction in pulmonary inflammation and the lowest T-helper Th2/Th1 cytokine ratio. In conclusion, addition of the HMPV-M protein to an F protein-based vaccine modulated both humoral and cellular immune responses to subsequent infection, thereby increasing the protection conferred by the vaccine.

  10. SEPARATION OF NEWLY FORMED BONE FROM OLDER COMPACT BONE REVEALS CLEAR COMPOSITIONAL DIFFERENCES IN BONE MATRIX

    PubMed Central

    Midura, Ronald J.; Midura, Sharon B.; Su, Xiaowei; Gorski, Jeffrey P.

    2011-01-01

    In long bone diaphyses, woven bone forms first and then transitions into a more mineralized compact bone tissue. Prior evidence suggests that the non-collagenous protein composition of woven bone may be distinct from that of more mature bone tissue, particularly with respect to a diverse group of phosphorylated, extracellular matrix proteins. To critically test this hypothesis, we developed an in situ approach to isolate newly formed bone from more mature bone within the same long bone, and combine this anatomical approach with Western blotting to make relative comparisons of 7 phosphorylated matrix proteins important for bone physiology and biomineralization. Interestingly, 75 kDa bone sialoprotein (BSP), 63 kDa osteopontin, and the 75 kDa form of bone acidic glycoprotein-75 (BAG-75) were enriched in primary bone as opposed to more mature cortical bone, while osteonectin, fetuin A, matrix extracellular phosphoglycoprotein (MEPE) and dentin matrix protein-1 (DMP-1) appeared to be equally distributed between these two bone tissue compartments. Analyses also revealed the presence of larger sized forms of osteopontin (and to a lesser degree BSP) mostly in newly formed bone, while larger forms of BAG-75 were mostly detected in more mature cortical bone. Smaller sized forms of DMP-1 and BAG-75 were detected in both newly formed and more mature bone tissue extracts, and they are likely the result of proteolytic processing in vivo. Intact DMP-1 (97 kDa) was only detected in unmineralized matrix extracts. These findings indicate that newly formed bone exhibits a non-collagenous matrix protein composition distinct from that of more mature compact bone even within the same long bone, and suggest that the temporal fate of individual non-collagenous proteins is variable in growing bone. PMID:21958842

  11. Analysis of Natural Graphite, Synthetic Graphite, and Thermosetting Resin Candidates for Use in Fuel Compact Matrix

    SciTech Connect

    Trammell, Michael P; Pappano, Peter J

    2011-09-01

    The AGR-1 and AGR-2 compacting process involved overcoating TRISO particles and compacting them in a steel die. The overcoating step is the process of applying matrix to the OPyC layer of TRISO particles in a rotating drum in order to build up an overcoat layer of desired thickness. The matrix used in overcoating is a mixture of natural graphite, synthetic graphite, and thermosetting resin in the ratio, by weight, of 64:16:20. A wet mixing process was used for AGR-1 and AGR-2, in that the graphites and resin were mixed in the presence of ethyl alcohol. The goal of the wet mixing process was to 'resinate' the graphite particles, or coat each individual graphite particle with a thin layer of resin. This matrix production process was similar to the German, Chinese, Japanese, and South African methods, which also use various amount of solvent during mixing. See Appendix 1 for information on these countries matrix production techniques. The resin used for AGR-1 and AGR-2 was provided by Hexion, specifically Hexion grade Durite SC1008. Durite SC1008 is a solvated (liquid) resole phenolic resin. A resole resin does not typically have a hardening agent added. The major constituent of SC1008 is phenol, with minor amounts of formaldehyde. Durite SC1008 is high viscosity, so additional ethyl alcohol was added during matrix production in order to reduce its viscosity and enhance graphite particle resination. The current compacting scale up plan departs from a wet mixing process. The matrix production method specified in the scale up plan is a co-grinding jet mill process where powdered phenolic resin and graphite are all fed into a jet mill at the same time. Because of the change in matrix production style, SC1008 cannot be used in the jet milling process because it is a liquid. The jet milling/mixing process requires that a suite of solid or powdered resins be investigated. The synthetic graphite used in AGR-1 and AGR-2 was provided by SGL Carbon, grade KRB2000. KRB2000 is a

  12. Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants.

    PubMed

    Sunderhaus, Stephanie; Dudkina, Natalya V; Jänsch, Lothar; Klodmann, Jennifer; Heinemeyer, Jesco; Perales, Mariano; Zabaleta, Eduardo; Boekema, Egbert J; Braun, Hans-Peter

    2006-03-10

    Complex I of Arabidopsis includes five structurally related subunits representing gamma-type carbonic anhydrases termed CA1, CA2, CA3, CAL1, and CAL2. The position of these subunits within complex I was investigated. Direct analysis of isolated subcomplexes of complex I by liquid chromatography linked to tandem mass spectrometry allowed the assignment of the CA subunits to the membrane arm of complex I. Carbonate extraction experiments revealed that CA2 is an integral membrane protein that is protected upon protease treatment of isolated mitoplasts, indicating a location on the matrix-exposed side of the complex. A structural characterization by single particle electron microscopy of complex I from the green alga Polytomella and a previous analysis from Arabidopsis indicate a plant-specific spherical extra-domain of about 60 A in diameter, which is attached to the central part of the membrane arm of complex I on its matrix face. This spherical domain is proposed to contain a heterotrimer of three CA subunits, which are anchored with their C termini to the hydrophobic arm of complex I. Functional implications of the complex I-integrated CA subunits are discussed.

  13. Matrix Proteins of Nipah and Hendra Viruses Interact with Beta Subunits of AP-3 Complexes

    PubMed Central

    Sun, Weina; McCrory, Thomas S.; Khaw, Wei Young; Petzing, Stephanie; Myers, Terrell

    2014-01-01

    ABSTRACT Paramyxoviruses and other negative-strand RNA viruses encode matrix proteins that coordinate the virus assembly process. The matrix proteins link the viral glycoproteins and the viral ribonucleoproteins at virus assembly sites and often recruit host machinery that facilitates the budding process. Using a co-affinity purification strategy, we have identified the beta subunit of the AP-3 adapter protein complex, AP3B1, as a binding partner for the M proteins of the zoonotic paramyxoviruses Nipah virus and Hendra virus. Binding function was localized to the serine-rich and acidic Hinge domain of AP3B1, and a 29-amino-acid Hinge-derived polypeptide was sufficient for M protein binding in coimmunoprecipitation assays. Virus-like particle (VLP) production assays were used to assess the relationship between AP3B1 binding and M protein function. We found that for both Nipah virus and Hendra virus, M protein expression in the absence of any other viral proteins led to the efficient production of VLPs in transfected cells, and this VLP production was potently inhibited upon overexpression of short M-binding polypeptides derived from the Hinge region of AP3B1. Both human and bat (Pteropus alecto) AP3B1-derived polypeptides were highly effective at inhibiting the production of VLPs. VLP production was also impaired through small interfering RNA (siRNA)-mediated depletion of AP3B1 from cells. These findings suggest that AP-3-directed trafficking processes are important for henipavirus particle production and identify a new host protein-virus protein binding interface that could become a useful target in future efforts to develop small molecule inhibitors to combat paramyxoviral infections. IMPORTANCE Henipaviruses cause deadly infections in humans, with a mortality rate of about 40%. Hendra virus outbreaks in Australia, all involving horses and some involving transmission to humans, have been a continuing problem. Nipah virus caused a large outbreak in Malaysia in 1998

  14. Esf2p, a U3-Associated Factor Required for Small-Subunit Processome Assembly and Compaction

    PubMed Central

    Hoang, Tran; Peng, Wen-Tao; Vanrobays, Emmanuel; Krogan, Nevan; Hiley, Shawna; Beyer, Ann L.; Osheim, Yvonne N.; Greenblatt, Jack; Hughes, Timothy R.; Lafontaine, Denis L. J.

    2005-01-01

    Esf2p is the Saccharomyces cerevisiae homolog of mouse ABT1, a protein previously identified as a putative partner of the TATA-element binding protein. However, large-scale studies have indicated that Esf2p is primarily localized to the nucleolus and that it physically associates with pre-rRNA processing factors. Here, we show that Esf2p-depleted cells are defective for pre-rRNA processing at the early nucleolar cleavage sites A0 through A2 and consequently are inhibited for 18S rRNA synthesis. Esf2p was stably associated with the 5′ external transcribed spacer (ETS) and the box C+D snoRNA U3, as well as additional box C+D snoRNAs and proteins enriched within the small-subunit (SSU) processome/90S preribosomes. Esf2p colocalized on glycerol gradients with 90S preribosomes and slower migrating particles containing 5′ ETS fragments. Strikingly, upon Esf2p depletion, chromatin spreads revealed that SSU processome assembly and compaction are inhibited and glycerol gradient analysis showed that U3 remains associated within 90S preribosomes. This suggests that in the absence of proper SSU processome assembly, early pre-rRNA processing is inhibited and U3 is not properly released from the 35S pre-rRNAs. The identification of ABT1 in a large-scale analysis of the human nucleolar proteome indicates that its role may also be conserved in mammals. PMID:15964808

  15. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor

    PubMed Central

    Lee, KyeoReh; Park, YongKeun

    2016-01-01

    The word ‘holography' means a drawing that contains all of the information for light—both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor. PMID:27796290

  16. Compact, Lightweight, Ceramic Matrix Composite (CMC) Based Acoustic Liners for Reducing Subsonic Jet Aircraft Engine Noise

    NASA Technical Reports Server (NTRS)

    Kiser, J. Douglas; Grady, Joseph E.; Miller, Christopher J.; Hultgren, Lennart S.; Jones, Michael G.

    2016-01-01

    Recent developments have reduced fan and jet noise contributions to overall subsonic aircraft jet-engine noise. Now, aircraft designers are turning their attention toward reducing engine core noise. The NASA Glenn Research Center and NASA Langley Research Center have teamed to investigate the development of a compact, lightweight acoustic liner based on oxide/oxide ceramic matrix composite (CMC) materials. The NASA team has built upon an existing oxide/oxide CMC sandwich structure concept that provides monotonal noise reduction. Oxide/oxide composites have good high temperature strength and oxidation resistance, which could allow them to perform as core liners at temperatures up to 1000C (1832F), and even higher depending on the selection of the composite constituents. NASA has initiated the evaluation of CMC-based liners that use cells of different lengths (variable-depth channels) or effective lengths to achieve broadband noise reduction. Reducing the overall liner thickness is also a major goal, to minimize the volume occupied by the liner. As a first step toward demonstrating the feasibility of our concepts, an oxide/oxide CMC acoustic testing article with different channel lengths was tested. Our approach, summary of test results, current status, and goals for the future are reported.

  17. Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor

    NASA Astrophysics Data System (ADS)

    Lee, Kyeoreh; Park, Yongkeun

    2016-10-01

    The word `holography' means a drawing that contains all of the information for light--both amplitude and wavefront. However, because of the insufficient bandwidth of current electronics, the direct measurement of the wavefront of light has not yet been achieved. Though reference-field-assisted interferometric methods have been utilized in numerous applications, introducing a reference field raises several fundamental and practical issues. Here we demonstrate a reference-free holographic image sensor. To achieve this, we propose a speckle-correlation scattering matrix approach; light-field information passing through a thin disordered layer is recorded and retrieved from a single-shot recording of speckle intensity patterns. Self-interference via diffusive scattering enables access to impinging light-field information, when light transport in the diffusive layer is precisely calibrated. As a proof-of-concept, we demonstrate direct holographic measurements of three-dimensional optical fields using a compact device consisting of a regular image sensor and a diffusor.

  18. Quasi-disjoint pentadiagonal matrix systems for the parallelization of compact finite-difference schemes and filters

    NASA Astrophysics Data System (ADS)

    Kim, Jae Wook

    2013-05-01

    This paper proposes a novel systematic approach for the parallelization of pentadiagonal compact finite-difference schemes and filters based on domain decomposition. The proposed approach allows a pentadiagonal banded matrix system to be split into quasi-disjoint subsystems by using a linear-algebraic transformation technique. As a result the inversion of pentadiagonal matrices can be implemented within each subdomain in an independent manner subject to a conventional halo-exchange process. The proposed matrix transformation leads to new subdomain boundary (SB) compact schemes and filters that require three halo terms to exchange with neighboring subdomains. The internode communication overhead in the present approach is equivalent to that of standard explicit schemes and filters based on seven-point discretization stencils. The new SB compact schemes and filters demand additional arithmetic operations compared to the original serial ones. However, it is shown that the additional cost becomes sufficiently low by choosing optimal sizes of their discretization stencils. Compared to earlier published results, the proposed SB compact schemes and filters successfully reduce parallelization artifacts arising from subdomain boundaries to a level sufficiently negligible for sophisticated aeroacoustic simulations without degrading parallel efficiency. The overall performance and parallel efficiency of the proposed approach are demonstrated by stringent benchmark tests.

  19. A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability

    NASA Astrophysics Data System (ADS)

    Morency, Christina; Huismans, Ritske S.; Beaumont, Christopher; Fullsack, Philippe

    2007-10-01

    A model is developed which couples fully saturated porous compaction to the viscous-plastic deformation of the skeleton matrix. The Darcy fluid flow during compaction is described by an advection-diffusion equation for the excess pressure with two source/sink terms that depend on the mechanical compressibility and viscous compaction of the pore space, the latter representing the effect of pressure solution. The incompressible deformation of the composite medium is described by a force balance equation and its rheology can be viscous, plastic, or viscoplastic (Bingham material). For the plastic and viscoplastic cases, the coupling between the compacting and plastically deforming parts of the system is through the Drucker-Prager frictional-plastic yield criterion modified by Terzaghi's principle, so that the yield strength depends on the effective dynamical pressure. The coupled system is solved using a two-dimensional (2-D) finite element method. Two problems are solved to demonstrate the behavior of our theory. The first considers compaction of a uniform sediment layer. The numerical results agree with the predictions of the nondimensional control parameters and previously published results. The second problem concerns 2-D kinematic progradation of deltaic sediments. Substratum and delta sediments have the same compaction properties and a Bingham rheology during deviatoric deformation, such that the delta undergoes linear postyield viscous flow. For certain depositional regimes, overpressure is generated. When pore pressures approach critical values, yielding occurs and the delta front fails and becomes unstable, spreading gravitationally under its own weight. The flow velocity is limited to geological rates by the Bingham viscosity. For the range of parameter values considered, pressure solution is the most effective mechanism for generating near-lithostatic fluid pressures that lead to initial failure, and it appears that mechanical compaction hardly contributes

  20. Gastro-intestinal delivery of influenza subunit vaccine formulation adjuvanted with Gram-positive enhancer matrix (GEM) particles.

    PubMed

    Saluja, V; Visser, M R; van Roosmalen, M L; Leenhouts, K; Huckriede, A; Hinrichs, W L J; Frijlink, H W

    2010-11-01

    In this study, a liquid formulation of influenza subunit vaccine admixed with Gram-positive enhancer matrix (GEM) particles as adjuvant was delivered to upper and lower parts of intestinal tract. The aim was to determine the most effective immunization site in the intestines. Mice were vaccinated with a liquid formulation of GEM and influenza subunit vaccine orally and rectally. The oral administration of the vaccine with GEM particles induced a better systemic and mucosal immune response than oral (vaccine only) and rectal (with and without adjuvant) immunizations. Rectal administration elicited high IgG1 responses but little IgG2a, indicating a Th2 dominated immune response. In contrast, the oral immunization with GEM particles elicited a balanced IgG1 and IgG2a response. In conclusion, our results demonstrate that GEM-adjuvanted influenza vaccine should be targeted to the upper part of the intestinal tract. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. The PB2 Subunit of the Influenza A Virus RNA Polymerase Is Imported into the Mitochondrial Matrix

    PubMed Central

    Long, Joshua C. D.

    2016-01-01

    ABSTRACT The polymerase basic 2 (PB2) subunit of the RNA polymerase complex of seasonal human influenza A viruses has been shown to localize to the mitochondria. Various roles, including the regulation of apoptosis and innate immune responses to viral infection, have been proposed for mitochondrial PB2. In particular, PB2 has been shown to inhibit interferon expression by associating with the mitochondrial antiviral signaling (MAVS) protein, which acts downstream of RIG-I and MDA-5 in the interferon induction pathway. However, in spite of a growing body of literature on the potential roles of mitochondrial PB2, the exact location of PB2 in mitochondria has not been determined. Here, we used enhanced ascorbate peroxidase (APEX)-tagged PB2 proteins and electron microscopy to study the localization of PB2 in mitochondria. We found that PB2 is imported into mitochondria, where it localizes to the mitochondrial matrix. We also demonstrated that MAVS is not required for the import of PB2 into mitochondria by showing that PB2 associates with mitochondria in MAVS knockout mouse embryo fibroblasts. Instead, we found that amino acid residue 9 in the N-terminal mitochondrial targeting sequence is a determinant of the mitochondrial import of PB2, differentiating the localization of PB2 of human from that of avian influenza A virus strains. We also showed that a virus encoding nonmitochondrial PB2 is attenuated in mouse embryonic fibroblasts (MEFs) compared with an isogenic virus encoding mitochondrial PB2, in a MAVS-independent manner, suggesting a role for PB2 within the mitochondrial matrix. This work extends our understanding of the interplay between influenza virus and mitochondria. IMPORTANCE The PB2 subunit of the influenza virus RNA polymerase is a major determinant of viral pathogenicity. However, the molecular mechanisms of how PB2 determines pathogenicity remain poorly understood. PB2 associates with mitochondria and inhibits the function of the mitochondrial

  2. Matrix Extension Study: Validation of the Compact Dry TC Method for Enumeration of Total Aerobic Bacteria in Selected Foods.

    PubMed

    Mizuochi, Shingo; Nelson, Maria; Baylis, Chris; Jewell, Keith; Green, Becky; Limbum, Rob; Fernandez, Maria Cristina; Salfinger, Yvonne; Chen, Yi

    2016-01-01

    A validation study was conducted to extend the matrix claim for the Nissui Compact Dry Total Count (TC), Performance Tested Method(s)(SM) (PTM) Certification No. 010404, to cooked chicken, lettuce, frozen fish, milk powder, and pasteurized whole milk. The method was originally certified by the AOAC Research Institute Performance Tested Method(s)(SM) Program for raw meat products. The Compact Dry TC is a ready-to-use dry media sheet that is rehydrated by adding 1 mL of diluted sample. A total aerobic colony count can be determined in the sample following 48 h of incubation. Matrix extension studies were conducted by Campden BRI (formerly Campden and Chorleywood Food Research Association Technology Limited), Chipping Campden, UK. Single-laboratory data were collected for cooked chicken, lettuce, frozen fish, and milk powder, whereas a multilaboratory study was conducted on pasteurized milk. Fourteen laboratories participated in the collaborative study. The Compact Dry TC was tested at two time points, 48 ± 3 h and 72 ± 3 h and compared with the current International Organization for Standardization (ISO) method at the time of the study, ISO 4833:2003 (this standard is withdrawn and has been replaced by: ISO 4833-1:2013 and ISO 4833-2:2013), Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of microorganisms-Colony-count technique at 30°C. The data were logarithmically transformed and evaluated for repeatability (plus reproducibility for pasteurized milk), RSD of repeatability (plus RSD of reproducibility for milk), r(2), and mean difference between methods with 95% confidence interval (CI). A CI outside of (-0.5 to 0.5) on the log10 mean difference was used as the criterion to establish significant statistical difference between methods. No significant differences were found between the Compact Dry TC 48 and 72 h time points, with the exception of one contamination level of cooked chicken and one contamination level of dry milk

  3. Matrix Extension Study: Validation of the Compact Dry CF Method for Enumeration of Total Coliform Bacteria in Selected Foods.

    PubMed

    Mizuochi, Shingo; Nelson, Maria; Baylis, Chris; Green, Becky; Jewell, Keith; Monadjemi, Farinaz; Chen, Yi; Salfinger, Yvonne; Fernandez, Maria Cristina

    2016-01-01

    The Compact Dry "Nissui" CF method, Performance Tested Method(SM) 110401, was originally certified for enumeration of coliform bacteria by the AOAC Research Institute Performance Tested Methods(SM) program for raw meat products. Compact Dry CF is a ready-to-use dry media sheet, containing a cold-soluble gelling agent, a chromogenic medium, and selective agents, which are rehydrated by adding 1 mL of diluted sample. Coliform bacteria produce blue/blue-green colonies on the Compact Dry CF, allowing a coliform colony count to be determined in the sample after 24 ± 2 h incubation. A validation study was organized by Campden BRI (formerly Campden and Chorleywood Food Research Association Technology, Ltd), Chipping Campden, United Kingdom, to extend the method's claim to include cooked chicken, fresh bagged prewashed shredded iceberg lettuce, frozen fish, milk powder, and pasteurized 2% milk. Campden BRI collected single-laboratory data for cooked chicken, lettuce, frozen fish, and milk powder, whereas a multilaboratory study was conducted on pasteurized milk. Thirteen laboratories participated in the interlaboratory study. The Compact Dry CF method was compared to ISO 4832:2006 "Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of coliforms-Colony-count technique," the current version at the time this study was conducted. Each matrix was evaluated at either four or five contamination levels of coliform bacteria (including an uncontaminated level). After logarithmic transformation of counts at each level, the data for pasteurized whole milk were analyzed for sr, sR, RSDr, and RSDR. Regression analysis was also performed and r(2) was reported. Mean difference between methods with 95% confidence interval (CI) was calculated. A log10 range of -0.5 to 0.5 for the CI was used as the acceptance criterion to establish significant statistical difference between methods. In the single-laboratory evaluation (for cooked chicken, lettuce, frozen

  4. Matrix Extension Study: Validation of Compact Dry YM for Enumeration of Yeast and Mold in Selected Foods.

    PubMed

    2016-04-05

    Nissui Compact Dry YM was originally certified by the AOAC Research Institute Performance Tested Methods (SM) (PTM) program (PTM No. 100401) for enumeration of yeasts and molds in fruit products after 7 days of incubation. A matrix extension study, organized by Campden BRI (Chipping Campden, United Kingdom), was conducted to extend the method's claim to cooked deli turkey, fresh whole tomatoes, cheese (Wensleydale), sliced white bread, and mayonnaise. In addition, the method was evaluated at 3 and 7 days to validate the 3 day incubation period. Compact Dry YM is a ready-to-use dry media sheet, containing a cold-soluble gelling agent, selective agents, and chromogenic medium, which are rehydrated by adding 1 mL diluted sample. Yeasts and molds appear as blue colonies, while molds can also have a cottony appearance and the color may vary. Users can obtain total yeast and mold count following 3-7 days of incubation at 25 ± 1°C. Method comparison data for cooked deli turkey, fresh whole tomatoes, cheese (Wensleydale), sliced white bread, and mayonnaise were collected in a single-laboratory evaluation by Campden BRI. A multilaboratory study was conducted on orange juice with 10 laboratories participating including the organizing laboratory. Compact Dry YM was compared to ISO 21527-1:2008, Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of yeasts and molds - Part 1: Colony count technique in products with water activity greater than 0.95, the current standard at the time of this study. Each matrix was evaluated for total yeasts and molds at each contamination level (including an uncontaminated level). In the single-laboratory evaluation (cooked deli turkey, fresh whole tomatoes, cheese, sliced white bread, and mayonnaise), colony counts were logarithmically transformed, and then the data were analyzed at each level for repeatability (sr), RSD of repeatability (RSDr), and mean difference between methods with a 95% confidence interval

  5. Characterization of B- and C-type low molecular weight glutenin subunits by electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Muccilli, Vera; Cunsolo, Vincenzo; Saletti, Rosaria; Foti, Salvatore; Masci, Stefania; Lafiandra, Domenico

    2005-02-01

    Low molecular weight glutenin subunits (LMW-GS) are typically subdivided into three groups, according to their molecular weights and isoelectric points, namely the B-, C-, and D groups. Enriched B- and C-type LMW-GS fractions extracted from the bread wheat cultivar Chinese Spring were characterized using high performance liquid chromatography (HPLC) directly interfaced with electrospray ionization mass spectrometry and HPLC coupled off-line with matrix-assisted laser desorption/ionization mass spectrometry, in order to ascertain the number and relative molecular masses of the components present in each fraction and determine the number of cysteine residues. About 70 components were detected in each of the fractions examined by the combined use of these two techniques, with 18 components common to both fractions. Analysis of the fractions after alkylation with 4-vinylpyridine allowed determination of the number of the cysteines present in about 40 subunits. The proteins detected were tentatively classified based on the relative molecular masses and number of cysteine residues. Cross-contamination was found in both B- and C- fractions, along with the presence of D-type LMW-GS. The two fractions also contained unexpected components, probably lipid transfer proteins and omega-gliadins. The presence of extensive microheterogeneity was suggested by the detection of several co-eluting proteins with minor differences in their molecular masses.

  6. Subunit analysis of bovine heart complex I by reversed-phase high-performance liquid chromatography, electrospray ionization-tandem mass spectrometry, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry.

    PubMed

    Lemma-Gray, Patrizia; Valusová, Eva; Carroll, Christopher A; Weintraub, Susan T; Musatov, Andrej; Robinson, Neal C

    2008-11-15

    An effective method was developed for isolation and analysis of bovine heart complex I subunits. The method uses C18 reversed-phase high-performance liquid chromatography (HPLC) and a water/acetonitrile gradient containing 0.1% trifluoroacetic acid. Employing this system, 36 of the 45 complex I subunits elute in 28 distinct chromatographic peaks. The 9 subunits that do not elute are B14.7, MLRQ, and the 7 mitochondrial-encoded subunits. The method, with ultraviolet (UV) detection, is suitable for either analytical (<50 microg protein) or preparative (>250 microg protein) applications. Subunits eluting in each chromatographic peak were initially determined by matrix-assisted laser desorption/ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS) with subsequent positive identification by reversed-phase HPLC-electrospray ionization (ESI)/tandem mass spectrometry (MS/MS) analysis of tryptic digests. In the latter case, subunits were identified with a 99% probability using Mascot for database searching and Scaffold for assessment of protein identification probabilities. The reversed-phase HPLC subunit analysis method represents a major improvement over previous separation methods with respect to resolution, simplicity, and ease of application.

  7. Near-infrared spectroscopic analysis of the breaking force of extended-release matrix tablets prepared by roller-compaction: influence of plasticizer levels and sintering temperature.

    PubMed

    Dave, Vivek S; Fahmy, Raafat M; Hoag, Stephen W

    2015-06-01

    The aim of this study was to investigate the feasibility of near-infrared (NIR) spectroscopy for the determination of the influence of sintering temperature and plasticizer levels on the breaking force of extended-release matrix tablets prepared via roller-compaction. Six formulations using theophylline as a model drug, Eudragit® RL PO or Eudragit® RS PO as a matrix former and three levels of TEC (triethyl citrate) as a plasticizer were prepared. The powder blend was roller compacted using a fixed roll-gap of 1.5 mm, feed screw speed to roller speed ratio of 5:1 and roll pressure of 4 MPa. The granules, after removing fines, were compacted into tablets on a Stokes B2 rotary tablet press at a compression force of 7 kN. The tablets were thermally treated at different temperatures (Room Temperature, 50, 75 and 100 °C) for 5 h. These tablets were scanned in reflectance mode in the wavelength range of 400-2500 nm and were evaluated for breaking force. Tablet breaking force significantly increased with increasing plasticizer levels and with increases in the sintering temperature. An increase in tablet hardness produced an upward shift (increase in absorbance) in the NIR spectra. The principle component analysis (PCA) of the spectra was able to distinguish samples with different plasticizer levels and sintering temperatures. In addition, a 9-factor partial least squares (PLS) regression model for tablets containing Eudragit® RL PO had an r(2) of 0.9797, a standard error of calibration of 0.6255 and a standard error of cross validation (SECV) of 0.7594. Similar analysis of tablets containing Eudragit® RS PO showed an r(2) of 0.9831, a standard error of calibration of 0.9711 and an SECV of 1.192.

  8. Role of the Emp Pilus Subunits of Enterococcus faecium in Biofilm Formation, Adherence to Host Extracellular Matrix Components, and Experimental Infection

    PubMed Central

    Montealegre, Maria Camila; Singh, Kavindra V.; Somarajan, Sudha R.; Yadav, Puja; Chang, Chungyu; Spencer, Robert; Sillanpää, Jouko; Ton-That, Hung

    2016-01-01

    Enterococcus faecium is an important cause of hospital-associated infections, including urinary tract infections (UTIs), bacteremia, and infective endocarditis. Pili have been shown to play a role in the pathogenesis of Gram-positive bacteria, including E. faecium. We previously demonstrated that a nonpiliated ΔempABC::cat derivative of E. faecium TX82 was attenuated in biofilm formation and in a UTI model. Here, we studied the contributions of the individual pilus subunits EmpA, EmpB, and EmpC to pilus architecture, biofilm formation, adherence to extracellular matrix (ECM) proteins, and infection. We identified EmpA as the tip of the pili and found that deletion of empA reduced biofilm formation to the same level as deletion of the empABC operon, a phenotype that was restored by reconstituting in situ the empA gene. Deletion of empB also caused a reduction in biofilm, while EmpC was found to be dispensable. Significant reductions in adherence to fibrinogen and collagen type I were observed with deletion of empA and empB, while deletion of empC had no adherence defect. Furthermore, we showed that each deletion mutant was significantly attenuated in comparison to the isogenic parental strain, TX82, in a mixed-inoculum UTI model (P < 0.001 to 0.048), that reconstitution of empA restored virulence in the UTI model, and that deletion of empA also resulted in attenuation in an infective endocarditis model (P = 0.0088). Our results indicate that EmpA and EmpB, but not EmpC, contribute to biofilm and adherence to ECM proteins; however, all the Emp pilins are important for E. faecium to cause infection in the urinary tract. PMID:26930703

  9. Efficacy of a non-updated, Matrix-C-based equine influenza subunit-tetanus vaccine following Florida sublineage clade 2 challenge

    PubMed Central

    Pouwels, H. G. W.; Van de Zande, S. M. A.; Horspool, L. J. I.; Hoeijmakers, M. J. H.

    2014-01-01

    Assessing the ability of current equine influenza vaccines to provide cross-protection against emerging strains is important. Horses not vaccinated previously and seronegative for equine influenza based on haemagglutination inhibition (HI) assay were assigned at random to vaccinated (n=7) or non-vaccinated (control, n=5) groups. Vaccination was performed twice four weeks apart with a 1 ml influenza subunit (A/eq/Prague/1/56, A/eq/Newmarket/1/93, A/eq/Newmarket/2/93), tetanus toxoid vaccine with Matrix-C adjuvant (EquilisPrequenza Te). All the horses were challenged individually by aerosol with A/eq/Richmond/1/07 three weeks after the second vaccination. Rectal temperature, clinical signs, serology and virus excretion were monitored for 14 days after challenge. There was no pain at the injection site or increases in rectal temperature following vaccination. Increases in rectal temperature and characteristic clinical signs were recorded in the control horses. Clinical signs were minimal in vaccinated horses. Clinical (P=0.0345) and total clinical scores (P=0.0180) were significantly lower in the vaccinated than in the control horses. Vaccination had a significant effect on indicators of viraemia – the extent (P=0.0006) and duration (P=<0.0001) of virus excretion and the total amount of virus excreted (AUC, P=0.0006). Vaccination also had a significant effect (P=0.0017) on whether a horse was positive or negative for virus excretion during the study. Further research is needed to fully understand the specific properties of this vaccine that may contribute to its cross-protective capacity. PMID:24795071

  10. Role of the Emp Pilus Subunits of Enterococcus faecium in Biofilm Formation, Adherence to Host Extracellular Matrix Components, and Experimental Infection.

    PubMed

    Montealegre, Maria Camila; Singh, Kavindra V; Somarajan, Sudha R; Yadav, Puja; Chang, Chungyu; Spencer, Robert; Sillanpää, Jouko; Ton-That, Hung; Murray, Barbara E

    2016-05-01

    Enterococcus faecium is an important cause of hospital-associated infections, including urinary tract infections (UTIs), bacteremia, and infective endocarditis. Pili have been shown to play a role in the pathogenesis of Gram-positive bacteria, including E. faecium We previously demonstrated that a nonpiliated ΔempABC::cat derivative of E. faecium TX82 was attenuated in biofilm formation and in a UTI model. Here, we studied the contributions of the individual pilus subunits EmpA, EmpB, and EmpC to pilus architecture, biofilm formation, adherence to extracellular matrix (ECM) proteins, and infection. We identified EmpA as the tip of the pili and found that deletion of empA reduced biofilm formation to the same level as deletion of the empABC operon, a phenotype that was restored by reconstituting in situ the empA gene. Deletion of empB also caused a reduction in biofilm, while EmpC was found to be dispensable. Significant reductions in adherence to fibrinogen and collagen type I were observed with deletion of empA and empB, while deletion of empC had no adherence defect. Furthermore, we showed that each deletion mutant was significantly attenuated in comparison to the isogenic parental strain, TX82, in a mixed-inoculum UTI model (P < 0.001 to 0.048), that reconstitution of empA restored virulence in the UTI model, and that deletion of empA also resulted in attenuation in an infective endocarditis model (P = 0.0088). Our results indicate that EmpA and EmpB, but not EmpC, contribute to biofilm and adherence to ECM proteins; however, all the Emp pilins are important for E. faecium to cause infection in the urinary tract. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Efficacy of a non-updated, Matrix-C-based equine influenza subunit-tetanus vaccine following Florida sublineage clade 2 challenge.

    PubMed

    Pouwels, H G W; Van de Zande, S M A; Horspool, L J I; Hoeijmakers, M J H

    2014-06-21

    Assessing the ability of current equine influenza vaccines to provide cross-protection against emerging strains is important. Horses not vaccinated previously and seronegative for equine influenza based on haemagglutination inhibition (HI) assay were assigned at random to vaccinated (n=7) or non-vaccinated (control, n=5) groups. Vaccination was performed twice four weeks apart with a 1 ml influenza subunit (A/eq/Prague/1/56, A/eq/Newmarket/1/93, A/eq/Newmarket/2/93), tetanus toxoid vaccine with Matrix-C adjuvant (EquilisPrequenza Te). All the horses were challenged individually by aerosol with A/eq/Richmond/1/07 three weeks after the second vaccination. Rectal temperature, clinical signs, serology and virus excretion were monitored for 14 days after challenge. There was no pain at the injection site or increases in rectal temperature following vaccination. Increases in rectal temperature and characteristic clinical signs were recorded in the control horses. Clinical signs were minimal in vaccinated horses. Clinical (P=0.0345) and total clinical scores (P=0.0180) were significantly lower in the vaccinated than in the control horses. Vaccination had a significant effect on indicators of viraemia - the extent (P=0.0006) and duration (P=<0.0001) of virus excretion and the total amount of virus excreted (AUC, P=0.0006). Vaccination also had a significant effect (P=0.0017) on whether a horse was positive or negative for virus excretion during the study. Further research is needed to fully understand the specific properties of this vaccine that may contribute to its cross-protective capacity.

  12. Matrix Extension Study: Validation of the Compact Dry EC Method for Enumeration of Escherichia coli and non-E. coli Coliform Bacteria in Selected Foods.

    PubMed

    Mizuochi, Shingo; Nelson, Maria; Baylis, Chris; Green, Becky; Jewell, Keith; Monadjemi, Farinaz; Chen, Yi; Salfinger, Yvonne; Fernandez, Maria Cristina

    2016-01-01

    The Compact Dry "Nissui" EC method, originally certified by the AOAC Research Institute Performance Test Method(SM) program for enumeration of Escherichia coli and non-E. coli coliforms in raw meat products (Performance Tested Method(SM) 110402), has undergone an evaluation to extend the method's claim to cooked chicken, prewashed bagged shredded iceberg lettuce, frozen cod filets, instant nonfat dry milk powder, and pasteurized milk (2% fat). Compact Dry EC is a ready-to-use dry media sheet containing a cold-soluble gelling agent, selective agents, and a chromogenic medium, which are rehydrated by adding 1 mL diluted sample. E. coli form blue/blue-purple colonies, whereas other coliform bacteria form red/pink colonies. Users can obtain an E. coli count (blue/blue-purple colonies only) and a total coliform count (red/pink plus blue/blue-purple colonies) after 24 ± 2 h of incubation at 37 ± 1°C. The matrix extension study was organized by Campden BRI (formerly Campden and Chorleywood Food Research Association Technology, Ltd), Chipping Campden, United Kingdom. Method comparison data for cooked chicken, prewashed bagged shredded iceberg lettuce, frozen cod filets, and instant nonfat dry milk powder were collected in a single-laboratory evaluation by Campden BRI. A multilaboratory study was conducted on pasteurized milk (2% fat), with 13 laboratories participating. The Compact Dry EC method was compared to ISO 16649-2:2001 "Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli-Part 2: Colony-count technique at 44 degrees C using 5-bromo-4-chloro-3-indolyl beta-D-glucuronide" and to ISO 4832:2006 "Microbiology of food and animal feeding stuffs-Horizontal method for the enumeration of coliforms-Colony-count technique," the current standards at the time of this study. Each matrix was evaluated separately for E. coli and non-E. coli coliforms at each contamination level (including an

  13. Mrd1p binds to pre-rRNA early during transcription independent of U3 snoRNA and is required for compaction of the pre-rRNA into small subunit processomes.

    PubMed

    Segerstolpe, Asa; Lundkvist, Pär; Osheim, Yvonne N; Beyer, Ann L; Wieslander, Lars

    2008-08-01

    In Saccharomyces cerevisiae, synthesis of the small ribosomal subunit requires assembly of the 35S pre-rRNA into a 90S preribosomal complex. SnoRNAs, including U3 snoRNA, and many trans-acting proteins are required for the ordered assembly and function of the 90S preribosomal complex. Here, we show that the conserved protein Mrd1p binds to the pre-rRNA early during transcription and is required for compaction of the pre-18S rRNA into SSU processome particles. We have exploited the fact that an Mrd1p-GFP fusion protein is incorporated into the 90S preribosomal complex, where it acts as a partial loss-of-function mutation. When associated with the pre-rRNA, Mrd1p-GFP functionally interacts with the essential Pwp2, Mpp10 and U3 snoRNP subcomplexes that are functionally interconnected in the 90S preribosomal complex. The fusion protein can partially support 90S preribosome-mediated cleavages at the A(0)-A(2) sites. At the same time, on a substantial fraction of transcripts, the composition and/or structure of the 90S preribosomal complex is perturbed by the fusion protein in such a way that cleavage of the 35S pre-rRNA is either blocked or shifted to aberrant sites. These results show that Mrd1p is required for establishing productive structures within the 90S preribosomal complex.

  14. Mrd1p binds to pre-rRNA early during transcription independent of U3 snoRNA and is required for compaction of the pre-rRNA into small subunit processomes

    PubMed Central

    Segerstolpe, Åsa; Lundkvist, Pär; Osheim, Yvonne N.; Beyer, Ann L.; Wieslander, Lars

    2008-01-01

    In Saccharomyces cerevisiae, synthesis of the small ribosomal subunit requires assembly of the 35S pre-rRNA into a 90S preribosomal complex. SnoRNAs, including U3 snoRNA, and many trans-acting proteins are required for the ordered assembly and function of the 90S preribosomal complex. Here, we show that the conserved protein Mrd1p binds to the pre-rRNA early during transcription and is required for compaction of the pre-18S rRNA into SSU processome particles. We have exploited the fact that an Mrd1p-GFP fusion protein is incorporated into the 90S preribosomal complex, where it acts as a partial loss-of-function mutation. When associated with the pre-rRNA, Mrd1p-GFP functionally interacts with the essential Pwp2, Mpp10 and U3 snoRNP subcomplexes that are functionally interconnected in the 90S preribosomal complex. The fusion protein can partially support 90S preribosome-mediated cleavages at the A0–A2 sites. At the same time, on a substantial fraction of transcripts, the composition and/or structure of the 90S preribosomal complex is perturbed by the fusion protein in such a way that cleavage of the 35S pre-rRNA is either blocked or shifted to aberrant sites. These results show that Mrd1p is required for establishing productive structures within the 90S preribosomal complex. PMID:18586827

  15. Structural studies of the allelic wheat glutenin subunits 1Bx7 and 1Bx20 by matrix-assisted laser desorption/ionization mass spectrometry and high-performance liquid chromatography/electrospray ionization mass spectrometry.

    PubMed

    Cunsolo, Vincenzo; Foti, Salvatore; Saletti, Rosaria; Gilbert, Simon; Tatham, Arthur S; Shewry, Peter R

    2004-01-01

    Structural studies of the high molecular mass (HMM) glutenin subunits 1Bx7 (from cvs Hereward and Galatea) and 1Bx20 (from cv. Bidi17) of bread wheat were conducted using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and reversed-phase high-performance liquid chromatography/electrospray ionization mass spectrometry (RP-HPLC/ESI-MS). For all three proteins, MALDI-TOFMS analysis showed that the isolated fractions contained a second component with a mass about 650 Da lower than the major component. The testing and correction of the gene-derived amino acid sequences of the three proteins were performed by direct MALDI-TOFMS analysis of their tryptic peptide mixture. Analysis of the digest was performed by recording several MALDI mass spectra of the mixture at low, medium and high mass ranges, optimizing the matrix and the acquisition parameters for each mass range. Complementary data were obtained by RP-HPLC/ESI-MS analysis of the tryptic digest. This resulted in coverage of about 98% of the sequences. In contrast to the gene-derived data, the results obtained demonstrate the insertion of the sequence QPGQGQ between Trp716 and Gln717 of subunit 1Bx7 (cv. Galatea) and a possible single amino acid substitution within the T20 peptide of subunit 1Bx20. Moreover, the mass spectrometric data demonstrated that the lower mass components present in all the fractions correspond to the major components but lack about six amino acid residues, which are probably lost from the protein C-terminus. Finally, the results obtained provide evidence for the lack of glycosylation or other post-translational modifications of these subunits. Copyright 2004 John Wiley & Sons, Ltd.

  16. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  17. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  18. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry in the subunit stoichiometry study of high-mass non-covalent complexes

    NASA Astrophysics Data System (ADS)

    Moniatte, M.; Lesieur, C.; Vecsey-Semjen, B.; Buckley, J. T.; Pattus, F.; van der Goot, F. G.; van Dorsselaer, A.

    1997-12-01

    This study explores the potential of MALDI-TOF MS for the mass measurement of large non-covalent protein complexes. The following non-covalent complexes have been investigated: aerolysin from Aeromonas hydrophila (335 kDa) and [alpha]-haemolysin from Staphylococcus aureus (233 kDa) which are both cytolytic toxins, three enzymes known to be homotetramers in solution: bovine liver catalase (235 kDa), rabbit muscle pyruvate kinase (232 kDa), yeast alcohol dehydrogenase (147 kDa) and finally a lectin, concanavalin A (102 kDa). Three different matrix preparations were systematically tested under various conditions: ferulic acid dissolved in THF, 2,6-dihydroxyacetophenone in 20 mM aqueous ammonium citrate and a two-step sample preparation with sinapinic acid. It was possible to find a suitable combination of matrix and preparation type which allowed the molecularity of all complexes tested to be deduced from the MALDI mass spectrum. Trimeric and tetrameric intermediates accumulating during the formation of the active heptameric aerolysin complex were also identified, this allowing a formation mechanism to be proposed. The observation of large specific non-covalent complexes has been found to be dependent on the choice of matrix, the type of sample preparation used, the solvent evaporation speed, the pH of the resulting matrix-sample mixture and the number of shots acquired on a given area. From this set of experiments, some useful guidelines for the observation of large complexes by MALDI could therefore be deduced. Fast evaporation of the solvent is particularly necessary in the case of pH sensitive complexes. An ESMS study on the same non-covalent complexes indicated that, rather surprisingly, reliable results could be obtained by MALDI-TOF MS on several very large complexes (above 200 kDa) for which ESMS yielded no clear spectra.

  19. Adhesion of T and B lymphocytes to extracellular matrix and endothelial cells can be regulated through the beta subunit of VLA

    PubMed Central

    1992-01-01

    Investigating the regulation of very late antigen (VLA)-mediated functions, we found that TS2/16, a mAb directed against the beta chain of the VLA group of integrins, can induce binding of resting peripheral blood lymphocytes, cloned T lymphocytes, and Epstein Barr virus- transformed B cells to extracellular matrix components, fibronectin, laminin, and collagen, but not to fibrinogen. The antibody stimulates VLA-4-, VLA-5-, and VLA-6-mediated binding. Furthermore, it induces VLA- 4-mediated binding to vascular cell adhesion molecule-1 expressed by rTNF-alpha-stimulated endothelial cells, but it does not stimulate homotypic aggregation of cells as described for a number of anti-VLA-4 alpha antibodies (Bednarczyk, J.L., and B. W. McIntyre. 1990. J. Immunol. 144: 777-784; Campanero, M. R., R. Pulido, M. A. Ursa, M. Rodriguez-Moya, M. O. de Landazuri, and F. Sanchez-Madrid. 1990. J. Cell Biol. 110:2157-2165). Therefore, the stimulating activity of this anti-beta 1 antibody clearly contrasts with that of the anti-VLA-4 alpha antibodies, which induce homotypic cell aggregation, but not binding of cells to extracellular matrix components or endothelial cells, indicating that TS2/16 may generate different signals. The observation that also F(ab')2 or Fab fragments of this anti-beta 1 antibody stimulate binding to extracellular matrix components and endothelial cells excludes the possibility that binding requires receptor crosslinking, or is Fc receptor mediated. Induction of this adhesion is cation and energy dependent and requires an intact cytoskeleton. Although changes in the conformation of VLA integrins induced by this antibody may regulate their functional activity, the dependence on metabolic energy indicates that intracellular processes may also play a role. PMID:1560035

  20. Eudragit(®) RS PO/RL PO as rate-controlling matrix-formers via roller compaction: Influence of formulation and process variables on functional attributes of granules and tablets.

    PubMed

    Dave, Vivek S; Fahmy, Raafat M; Bensley, Dennis; Hoag, Stephen W

    2012-10-01

    The influence of plasticizer level, roll pressure and sintering temperature was investigated on the granule properties, tablet breaking force and theophylline release from tablets. Nine formulations using theophylline as a model drug, Eudragit(®) RL PO, Eudragit(®) RS PO, or both as a matrix former and triethyl citrate (TEC) as a plasticizer were prepared. The formulations were roller compacted and the granules obtained were evaluated for particle size distribution and flowability. These granules were compacted into tablets at a compression force of 7 kN. The tablets were thermally treated at different temperatures (50 and 75°C) for 5 h and were evaluated for breaking force and dissolution. Increase in roll pressure and TEC levels resulted in a progressive increase in the mean particle size of the granules. The flowability of the granules also improved with increasing roll pressures and TEC levels. Tablet breaking force increased with an increase in TEC levels and sintering temperatures. But these effects were significant only at the highest level of plasticizer and sintering temperature respectively. For the tablets containing Eudragit(®) RS PO, theophylline release decreased proportionately with increase in TEC levels and sintering temperatures. Tablets containing either Eudragit(®) RL PO or a mixture of RS PO and RL PO failed to impart an extended-release property to the tablets at the studied variables i.e. roll pressure, TEC levels and sintering temperature. It was clearly demonstrated that with suitable optimization of these parameters, the release-rate of a water soluble drug from the matrix tablets prepared via roller compaction can be finely controlled.

  1. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  2. Single and compact ESD device Beta-Matrix solution based on bidirectional SCR Network in advanced 28/32 nm technology node

    NASA Astrophysics Data System (ADS)

    Bourgeat, Johan; Galy, Philippe

    2013-09-01

    Advanced CMOS technologies, like CMOS32 nm high K metal gate, become more and more sensitive to electrostatic discharge (ESD) phenomenon particularly because of their low overvoltage robustness. In this context, we develop a Beta-Matrix concept [1] which merges six silicon controlled rectifier (SCR) in a same structure and having one single triggering gate N (GN) for a high integration and high flexibility in IO frame. This device is the center of a new protection strategy which combined both local and global protection approach [1]. Also, a specific trigger circuit has been developed to turn-on Beta-Matrix whatever stressed pins during an ESD event and to keep it off when IC is in normal operation mode and is presented in [2]. Both, Beta-Matrix and trigger circuit, make a robust and very efficient ESD network which allows removing all IO placement constraint and power IO [3]. Also, this study is a synthesis of both previous work and a development of new Beta-Matrix topology to improve the device behavior, particularly by improving the uniformity of activation and decreasing triggering voltage of the structure. This work presents results of 3 dimensional TCAD simulations and measurements of transmission line pulse (TLP) and very fast-TLP.

  3. Evaluation of Matrix Tablets Based on Eudragit®E100/Carbopol®971P Combinations for Controlled Release and Improved Compaction Properties of Water Soluble Model Drug Paracetamol.

    PubMed

    Obeidat, Wasfy M; Nokhodchi, Ali; Alkhatib, Hatim

    2015-10-01

    The purpose of this work was to investigate the influence of Eudragit®E100 polymer in modifying the release rates and compaction properties of water soluble model drug paracetamol from Carbopol®971P NF polymer matrix tablets prepared by direct compression. The effects of the ratio of the two polymers, the total polymeric content, and the tablets mechanical strength on paracetamol release rates were investigated. Dissolution studies were conducted using USP XX Π rotating paddle apparatus at 50 rpm and 37°C at three different stages (pH 1.2, 4.8, and 6.8). Results showed that the polymers combination improved significantly the compaction properties of paracetamol tablets as evident by the higher crushing strengths (8.3 ± 0.4 Kp) compared to polymer-free tablets (3.4 ± 0.2 Kp) at intermediate compression pressure of 490 MPa. When combined with Carbopol®971P NF, Eudragit®E100 was found to be capable of extending paracetamol release for more than 12 h compared to 1 h for polymers-free tablets. The combined polymers were able to control paracetamol release in a pH independent pattern. The f2 (similarity factor) analysis showed that the ratio between the polymers and the total polymer concentration exhibited significant impact on drug release rates. In conclusion, Eudragit®E100 when combined with Carbopol®971P NF was capable of improving the compaction and sustained release properties of paracetamol. Korsmeyer-Peppas model was found to be the most suitable for fitting drug release data. The polymer combinations can potentially be used to control the release rates of highly water soluble drugs.

  4. Ureilite compaction

    NASA Astrophysics Data System (ADS)

    Walker, D.; Agee, C. B.

    1988-03-01

    Ureilite meteorites show the simple mineralogy and compact recrystallized textures of adcumulate rock or melting residues. A certain amount of controversy exists about whether they are in fact adcumulate rocks or melting residues and about the nature of the precursor liquid or solid assemblage. The authors undertook a limited experimental study which made possible the evaluation of the potential of the thermal migration mechanism (diffusion on a saturation gradient) for forming ureilite-like aggregates from carbonaceous chondrite precursors. They find that the process can produce compact recrystallized aggregates of silicate crystals which do resemble the ureilities and other interstitial-liquid-free adcumulate rocks in texture.

  5. Compact vortices

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.; Zafalan, I.

    2017-02-01

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane.

  6. Compact HPD

    SciTech Connect

    Suyama, M.; Kawai, Y.; Kimura, S.

    1996-12-31

    In order to be utilized in such application fields as high energy physics or medical imaging, where a huge number of photodetectors are assembled in designated small area, the world`s smallest HPD, the compact BFD, has been developed. The overall diameter and the length of the tube are 16mm and 15mm, respectively. The effective photocathode area is 8mm in diameter. At applied voltage of -8kV to the photocathode, the electron multiplication gain of a PD incorporated HPD (PD-BPD) is 1,600, and that of an APD (APD-BPD) is 65,000. In the pulse height distribution measurement, photoelectron peaks up to 6 photoelectrons are clearly distinguishable with the APD-BPD. Experiments established that there was no degradation of gain in magnetic fields up to 1.5T, an important performance characteristic of the compact BPD for application in high energy physics.

  7. Compact accelerator

    DOEpatents

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  8. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  9. Sodium channel auxiliary subunits.

    PubMed

    Tseng, Tsai-Tien; McMahon, Allison M; Johnson, Victoria T; Mangubat, Erwin Z; Zahm, Robert J; Pacold, Mary E; Jakobsson, Eric

    2007-01-01

    Voltage-gated ion channels are well known for their functional roles in excitable tissues. Excitable tissues rely on voltage-gated ion channels and their auxiliary subunits to achieve concerted electrical activity in living cells. Auxiliary subunits are also known to provide functional diversity towards the transport and biogenesis properties of the principal subunits. Recent interests in pharmacological properties of these auxiliary subunits have prompted significant amounts of efforts in understanding their physiological roles. Some auxiliary subunits can potentially serve as drug targets for novel analgesics. Three families of sodium channel auxiliary subunits are described here: beta1 and beta3, beta2 and beta4, and temperature-induced paralytic E (TipE). While sodium channel beta-subunits are encoded in many animal genomes, TipE has only been found exclusively in insects. In this review, we present phylogenetic analyses, discuss potential evolutionary origins and functional data available for each of these subunits. For each family, we also correlate the functional specificity with the history of evolution for the individual auxiliary subunits.

  10. Technology Selections for Cylindrical Compact Fabrication

    SciTech Connect

    Jeffrey A. Phillips

    2010-10-01

    A variety of process approaches are available and have been used historically for manufacture of cylindrical fuel compacts. The jet milling, fluid bed overcoating, and hot press compacting approach being adopted in the U.S. AGR Fuel Development Program for scale-up of the compacting process involves significant paradigm shifts from historical approaches. New methods are being pursued because of distinct advantages in simplicity, yield, and elimination of process mixed waste. Recent advances in jet milling technology allow simplified dry matrix powder preparation. The matrix preparation method is well matched with patented fluid bed powder overcoating technology recently developed for the pharmaceutical industry and directly usable for high density fuel particle matrix overcoating. High density overcoating places fuel particles as close as possible to their final position in the compact and is matched with hot press compacting which fully fluidizes matrix resin to achieve die fill at low compacting pressures and without matrix end caps. Overall the revised methodology provides a simpler process that should provide very high yields, improve homogeneity, further reduce defect fractions, eliminate intermediate grading and QC steps, and allow further increases in fuel packing fractions.

  11. Compact torus

    SciTech Connect

    Furth, H.P.

    1980-10-01

    The objective of the compact torus approach is to provide toroidal magnetic-field configurations that are based primarily on plasma currents and can be freed from closely surrounding mechanical structures. Some familiar examples are the current-carrying plasma rings of reversed-field theta pinches and relativistic-electron smoke ring experiments. The spheromak concept adds an internal toroidal magnetic field component, in order to enhance MHD stability. In recent experiments, three different approaches have been used to generate spheromak plasmas: (1) the reversed-field theta pinch; (2) the coaxial plasma gun; (3) a new quasi-static method, based on the initial formation of a toroidal plasma sleeve around a mechanical ring that generates poloidal and toroidal fluxes, followed by field-line reconnection to form a detached spheromak plasma. The theoretical and experimental MHD stability results for the spheromak configuration are found to have common features.

  12. Compaction behavior of roller compacted ibuprofen.

    PubMed

    Patel, Sarsvatkumar; Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-06-01

    The effect of roller compaction pressure on the bulk compaction of roller compacted ibuprofen was investigated using instrumented rotary tablet press. Three different roller pressures were utilized to prepare granules and Heckel analysis, Walker analysis, compressibility, and tabletability were performed to derive densification, deformation, course of volume reduction and bonding phenomenon of different pressure roller compacted granules. Nominal single granule fracture strength was obtained by micro tensile testing. Heckel analysis indicated that granules prepared using lower pressure during roller compaction showed lower yield strength. The reduction in tabletability was observed for higher pressure roller compacted granules. The reduction in tabletability supports the results of granule size enlargement theory. Apart from the granule size enlargement theory, the available fines and relative fragmentation during compaction is responsible for higher bonding strength and provide larger areas for true particle contact at constant porosity for lower pressure roller compacted granules. Overall bulk compaction parameters indicated that granules prepared by lower roller compaction pressure were advantageous in terms of tabletability and densification. Overall results suggested that densification during roller compaction affects the particle level properties of specific surface area, nominal fracture strength, and compaction behavior.

  13. Compact Reactor

    NASA Astrophysics Data System (ADS)

    Williams, Pharis E.

    2007-01-01

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  14. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  15. Diversity of insect nicotinic acetylcholine receptor subunits.

    PubMed

    Jones, Andrew K; Sattelle, David B

    2010-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. They consist of five subunits arranged around a central ion channeL Since the subunit composition determines the functional and pharmacological properties of the receptor the presence of nAChR families comprising several subunit-encodinggenes provides a molecular basis for broad functional diversity. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their nematode andvertebrate counterparts. Thus, the fruit fly (Drosophila melanogaster), malaria mosquito (Anopheles gambiae), honey bee (Apis mellifera), silk worm (Bombyx mon) and the red flour beetle (Tribolium castaneum) possess 10-12 nAChR genes while human and the nematode Caenorhabditis elegans have 16 and 29 respectively. Although insect nAChRgene families are amongst the smallest known, receptor diversity can be considerably increased by the posttranscriptional processes alternative splicing and mRNA A-to-I editingwhich can potentially generate protein products which far outnumber the nAChR genes. These two processes can also generate species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit which may perform species-specific functions. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that target specific pest insects while sparing beneficial species.

  16. Compact Process Development at Babcock & Wilcox

    SciTech Connect

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  17. Grassmann matrix quantum mechanics

    DOE PAGES

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-21

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit.more » In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.« less

  18. Grassmann matrix quantum mechanics

    SciTech Connect

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-21

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit. In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.

  19. The Compact for Education.

    ERIC Educational Resources Information Center

    Harrington, Fred Harvey

    The Compact for Education is not yet particularly significant either for good or evil. Partly because of time and partly because of unreasonable expectations, the Compact is not yet a going concern. Enthusiasts have overestimated Compact possibilities and opponents have overestimated its dangers, so if the organization has limited rather than…

  20. Recent Advances in Subunit Vaccine Carriers

    PubMed Central

    Vartak, Abhishek; Sucheck, Steven J.

    2016-01-01

    The lower immunogenicity of synthetic subunit antigens, compared to live attenuated vaccines, is being addressed with improved vaccine carriers. Recent reports indicate that the physio-chemical properties of these carriers can be altered to achieve optimal antigen presentation, endosomal escape, particle bio-distribution, and cellular trafficking. The carriers can be modified with various antigens and ligands for dendritic cells targeting. They can also be modified with adjuvants, either covalently or entrapped in the matrix, to improve cellular and humoral immune responses against the antigen. As a result, these multi-functional carrier systems are being explored for use in active immunotherapy against cancer and infectious diseases. Advancing technology, improved analytical methods, and use of computational methodology have also contributed to the development of subunit vaccine carriers. This review details recent breakthroughs in the design of nano-particulate vaccine carriers, including liposomes, polymeric nanoparticles, and inorganic nanoparticles. PMID:27104575

  1. Localization of alpha integrin subunits in the neural retina of the tiger salamander.

    PubMed

    Sherry, D M; Proske, P A

    2001-04-01

    Integrin receptors mediate cell-extracellular matrix interactions and regulate many events, including cell growth, proliferation, and differentiation. Retinal integrins are incompletely understood, although these receptors are potentially important factors in normal retinal function and pathology. Immunocytochemistry was used to localize alpha integrin subunits 1-6 in the neural retina. Each alpha integrin subunit had a unique distribution in the retina, although there was considerable overlap among subunits. The alpha 1 subunit was broadly distributed throughout the retina, with some presumptive ganglion cells showing enriched labeling. The alpha 2 subunit was present on all retinal cell bodies, but was reduced in synaptic layers. The alpha 3 subunit was present in synaptic layers, Müller cells, and some cone and amacrine cells. The alpha 4 subunit was broadly distributed in the nuclear layers but was reduced in synaptic layers. The alpha 5 subunit was broadly expressed in the nuclear and synaptic layers with enriched labeling in the outer plexiform layer. Labeling for the alpha 6 subunit was restricted to the outer limiting membrane and some cone outer segments. Double-labeling studies indicated that photoreceptor terminals may exhibit alpha 1 and alpha 5 subunits, while processes from second-order neurons may exhibit alpha 1, alpha 3, and alpha 5 subunits. Integrin receptors containing the alpha 1, alpha 3, and alpha 5 subunits may have important functions at retinal synapses, in addition to roles in the nuclear layers. Integrin receptors containing alpha 2, alpha 4, and alpha 6 subunits probably serve non-synaptic functions.

  2. Petrochemical variation of Topopah Spring tuff matrix with depth (stratigraphic level), drill hole USW G-4, Yucca Mountain, Nevada

    SciTech Connect

    Byers, F.M. Jr.

    1985-12-01

    This study describes and interprets petrochemical variation of the matrix (excluding fractures and large gas cavities) of the Topopah Spring Member of the Paintbrush Tuff. This tuff includes the candidate host rock for a high-level nuclear waste repository at Yucca Mountain on the Nevada Test Site. Cored hole USW G-4, near the site of a potential exploratory shaft at Yucca Mountain, penetrated 359.4 m (1179 ft) of the member within the unsaturated zone. This study shows that petrographic textures and chemistry of the matrix vary systematically within recognizable lithologic subunits related to crystallization (cooling) zones, welding (compaction) zones, and compositional zones (rhyolite versus quartz latite). The methods used for this study include petrographic modal thin section analysis using an automated counter and electron microprobe analysis of the groundmass. Distinctive textural categories are defined, and they can be ranked from finest to coarsest as vitrophyre (glass), cryptocrystalline groundmass, spherulites, granophyre, lithic fragments, and phenocrysts. The two main groundmass compositions are also defined: rhyolite high silica) and quartz latite. The value of these petrochemical studies lies in providing microscopic criteria for recognizing the zonal subunits where they may have greatly limited exposure, as in mined drifts and in core from horizontal drill holes. For example, the lower nonlithophysal zone can be distinguished microscopically from the middle nonlithophysal zone by (1) degree of compaction, (2) amount of quartz, and (3) amount of lithic fragments. The variability between these textural categories should also be considered in designing physical and chemical tests of the Topopah Spring.

  3. Compact Polarimetry Potentials

    NASA Technical Reports Server (NTRS)

    Truong-Loi, My-Linh; Dubois-Fernandez, Pascale; Pottier, Eric

    2011-01-01

    The goal of this study is to show the potential of a compact-pol SAR system for vegetation applications. Compact-pol concept has been suggested to minimize the system design while maximize the information and is declined as the ?/4, ?/2 and hybrid modes. In this paper, the applications such as biomass and vegetation height estimates are first presented, then, the equivalence between compact-pol data simulated from full-pol data and compact-pol data processed from raw data as such is shown. Finally, a calibration procedure using external targets is proposed.

  4. Stabilization of compactible waste

    SciTech Connect

    Franz, E.M.; Heiser, J.H. III; Colombo, P.

    1990-09-01

    This report summarizes the results of series of experiments performed to determine the feasibility of stabilizing compacted or compactible waste with polymers. The need for this work arose from problems encountered at disposal sites attributed to the instability of this waste in disposal. These studies are part of an experimental program conducted at Brookhaven National Laboratory (BNL) investigating methods for the improved solidification/stabilization of DOE low-level wastes. The approach taken in this study was to perform a series of survey type experiments using various polymerization systems to find the most economical and practical method for further in-depth studies. Compactible dry bulk waste was stabilized with two different monomer systems: styrene-trimethylolpropane trimethacrylate (TMPTMA) and polyester-styrene, in laboratory-scale experiments. Stabilization was accomplished by wetting or soaking compactible waste (before or after compaction) with monomers, which were subsequently polymerized. Three stabilization methods are described. One involves the in-situ treatment of compacted waste with monomers in which a vacuum technique is used to introduce the binder into the waste. The second method involves the alternate placement and compaction of waste and binder into a disposal container. In the third method, the waste is treated before compaction by wetting the waste with the binder using a spraying technique. A series of samples stabilized at various binder-to-waste ratios were evaluated through water immersion and compression testing. Full-scale studies were conducted by stabilizing two 55-gallon drums of real compacted waste. The results of this preliminary study indicate that the integrity of compacted waste forms can be readily improved to ensure their long-term durability in disposal environments. 9 refs., 10 figs., 2 tabs.

  5. Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant

    SciTech Connect

    Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

    2012-10-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

  6. Modelling dynamic compaction of porous materials with the overstress approach

    NASA Astrophysics Data System (ADS)

    Partom, Y.

    2014-05-01

    To model compaction of a porous material we need 1) an equation of state of the porous material in terms of the equation of state of its matrix, and 2) a compaction law. For an equation of state it is common to use Herrmann's suggestion, as in his Pα model. For a compaction law it is common to use a quasi-static compaction relation obtained from 1) a meso-scale model (as in Carroll and Holt's spherical shell model), or from 2) quasi-static tests. Here we are interested in dynamic compaction, like in a planar impact test. In dynamic compaction the state may change too fast for the state point to follow the quasi-static compaction curve. We therefore get an overstress situation. The state point moves out of the quasi-static compaction boundary, and only with time collapses back towards it at a certain rate. In this way the dynamic compaction event becomes rate dependent. In the paper we first write down the rate equations for dynamic compaction according to the overstress approach. We then implement these equations in a hydro-code and run some examples. We show how the overstress rate parameter can be calibrated from tests.

  7. Modeling Dynamic Compaction of Porous Materials with the Overstress Approach

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2013-06-01

    To model compaction of a porous material (PM) we need 1) an equation of state (EOS) of the PM in terms of the EOS of its matrix, and 2) a compaction law. For the EOS it is common to use Herrmann's suggestion, as in his P α model. For a compaction law it is common to use a quasi-static compaction relation obtained from 1) a mezzo-scale model (as in Carroll and Holt's spherical shell model), or from 2) quasi-static tests. Here we are interested in dynamic compaction, like in a planar impact test. In dynamic compaction, the state may change too fast for the state point to follow the quasi-static compaction curve. We therefore get an overstress situation. The state point moves out of the quasi-static compaction boundary, and only with time collapses back towards it at a certain rate. In this way the dynamic compaction event becomes rate dependent. In the paper we first write down the rate equations for dynamic compaction according to this overstress approach. We then implement these equations in a hydro-code, and run some examples. We show how the overstress rate parameter can be calibrated from tests.

  8. Structure of subcomplex Iβ of mammalian respiratory complex I leads to new supernumerary subunit assignments

    PubMed Central

    Zhu, Jiapeng; King, Martin S.; Yu, Minmin; Klipcan, Liron; Leslie, Andrew G. W.; Hirst, Judy

    2015-01-01

    Mitochondrial complex I (proton-pumping NADH:ubiquinone oxidoreductase) is an essential respiratory enzyme. Mammalian complex I contains 45 subunits: 14 conserved “core” subunits and 31 “supernumerary” subunits. The structure of Bos taurus complex I, determined to 5-Å resolution by electron cryomicroscopy, described the structure of the mammalian core enzyme and allowed the assignment of 14 supernumerary subunits. Here, we describe the 6.8-Å resolution X-ray crystallography structure of subcomplex Iβ, a large portion of the membrane domain of B. taurus complex I that contains two core subunits and a cohort of supernumerary subunits. By comparing the structures and composition of subcomplex Iβ and complex I, supported by comparisons with Yarrowia lipolytica complex I, we propose assignments for eight further supernumerary subunits in the structure. Our new assignments include two CHCH-domain containing subunits that contain disulfide bridges between CX9C motifs; they are processed by the Mia40 oxidative-folding pathway in the intermembrane space and probably stabilize the membrane domain. We also assign subunit B22, an LYR protein, to the matrix face of the membrane domain. We reveal that subunit B22 anchors an acyl carrier protein (ACP) to the complex, replicating the LYR protein–ACP structural module that was identified previously in the hydrophilic domain. Thus, we significantly extend knowledge of how the mammalian supernumerary subunits are arranged around the core enzyme, and provide insights into their roles in biogenesis and regulation. PMID:26371297

  9. Interactions among rice ORC subunits.

    PubMed

    Tan, Deyong; Lv, Qundan; Chen, Xinai; Shi, Jianghua; Ren, Meiyan; Wu, Ping; Mao, Chuanzao

    2013-08-01

    The origin recognition complex (ORC) is composed of six subunits and plays an important role in DNA replication in all eukaryotes. The ORC subunits OsORC6 as well as the other five ORC subunits in rice were experimentally isolated and sequenced. It indicated that there also exist six ORC subunits in rice. Results of RT-PCR indicated that expression of all the rice ORC genes are no significant difference under 26°C and 34°C. Yeast two hybridization indicated that OsORC2, -3, -5 interact with each other. OsORC5 can then bind OsORC4 to form the OsORC2, -3,-4,-5 core complex. It suggested that the basic interactions have been conserved through evolution. No binding of OsORC1 and OsORC6 with the other subunits were observed. A model of ORC complex in rice is proposed.

  10. Mouse Embryo Compaction.

    PubMed

    White, M D; Bissiere, S; Alvarez, Y D; Plachta, N

    2016-01-01

    Compaction is a critical first morphological event in the preimplantation development of the mammalian embryo. Characterized by the transformation of the embryo from a loose cluster of spherical cells into a tightly packed mass, compaction is a key step in the establishment of the first tissue-like structures of the embryo. Although early investigation of the mechanisms driving compaction implicated changes in cell-cell adhesion, recent work has identified essential roles for cortical tension and a compaction-specific class of filopodia. During the transition from 8 to 16 cells, as the embryo is compacting, it must also make fundamental decisions regarding cell position, polarity, and fate. Understanding how these and other processes are integrated with compaction requires further investigation. Emerging imaging-based techniques that enable quantitative analysis from the level of cell-cell interactions down to the level of individual regulatory molecules will provide a greater understanding of how compaction shapes the early mammalian embryo. © 2016 Elsevier Inc. All rights reserved.

  11. Advancements in the development of subunit influenza vaccines

    PubMed Central

    Zhang, Naru; Zheng, Bo-Jian; Lu, Lu; Zhou, Yusen; Jiang, Shibo; Du, Lanying

    2014-01-01

    The ongoing threat of influenza epidemics and pandemics has emphasized the importance of developing safe and effective vaccines against infections from divergent influenza viruses. In this review, we first introduce the structure and life cycle of influenza A viruses, describing major influenza A virus-caused pandemics. We then compare different types of influenza vaccines and discuss current advancements in the development of subunit influenza vaccines, particularly those based on nucleoprotein (NP), extracellular domain of matrix protein 2 (M2e) and hemagglutinin (HA) proteins. We also illustrate potential strategies for improving the efficacy of subunit influenza vaccines. PMID:25529753

  12. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    PubMed

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  13. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  14. Physically detached 'compact groups'

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Katz, Neal; Weinberg, David H.

    1995-01-01

    A small fraction of galaxies appear to reside in dense compact groups, whose inferred crossing times are much shorter than a Hubble time. These short crossing times have led to considerable disagreement among researchers attempting to deduce the dynamical state of these systems. In this paper, we suggest that many of the observed groups are not physically bound but are chance projections of galaxies well separated along the line of sight. Unlike earlier similar proposals, ours does not require that the galaxies in the compact group be members of a more diffuse, but physically bound entity. The probability of physically separated galaxies projecting into an apparent compact group is nonnegligible if most galaxies are distributed in thin filaments. We illustrate this general point with a specific example: a simulation of a cold dark matter universe, in which hydrodynamic effects are included to identify galaxies. The simulated galaxy distribution is filamentary and end-on views of these filaments produce apparent galaxy associations that have sizes and velocity dispersions similar to those of observed compact groups. The frequency of such projections is sufficient, in principle, to explain the observed space density of groups in the Hickson catalog. We discuss the implications of our proposal for the formation and evolution of groups and elliptical galaxies. The proposal can be tested by using redshift-independent distance estimators to measure the line-of-sight spatial extent of nearby compact groups.

  15. On the Development of MMCS Containing Copper with Silicon Carbide Reinforcement using Nanomaterials and Dynamic Compaction

    SciTech Connect

    Popov, V A; Lesuer, D R; Kotov, I A; Ivanov, V V; Smirnov, O M; Marmulev, A V; Zayats, S V; Beketov, I V

    2002-04-10

    Metal matrix composites (MMCs) are promising engineering materials for a wide spectrum of applications. There are many possible matrix-reinforcement combinations including MMCs containing copper or copper alloy matrices [1-3]. The present study is concerned with copper reinforced with SiC particles. The materials studied here were processed from nano-scale matrix powders and consolidated using dynamic compaction.

  16. Compact fringe projection profilometer

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Chng, Sian Shing; Lee, Cheok Peng; Chua, Patrick S. K.; Asundi, A.

    2010-03-01

    A compact fringe projection profilometer is recently developed for profiling small objects. A handphone-size microprojector with LED illumination is assembled into our system to minimize the size optical 3D sensor. In our compact 3D shape measurement system, the approaches of phase shifting, temporal phase unwrapping and modified least-squares calibration are utilized to achieve high precision and an easy procedure. The portable system allows for easy and convenient 3D profile measurement to meet the requirements under diverse application conditions, such as profiling small turbine blades in aerospace workshop. Experimental results testify to the robust and reliable performance of this LED micro-projector based FPP system.

  17. Compact fringe projection profilometer

    NASA Astrophysics Data System (ADS)

    Huang, Lei; Chng, Sian Shing; Lee, Cheok Peng; Chua, Patrick S. K.; Asundi, A.

    2009-12-01

    A compact fringe projection profilometer is recently developed for profiling small objects. A handphone-size microprojector with LED illumination is assembled into our system to minimize the size optical 3D sensor. In our compact 3D shape measurement system, the approaches of phase shifting, temporal phase unwrapping and modified least-squares calibration are utilized to achieve high precision and an easy procedure. The portable system allows for easy and convenient 3D profile measurement to meet the requirements under diverse application conditions, such as profiling small turbine blades in aerospace workshop. Experimental results testify to the robust and reliable performance of this LED micro-projector based FPP system.

  18. Inhomogeneous compact extra dimensions

    NASA Astrophysics Data System (ADS)

    Bronnikov, K. A.; Budaev, R. I.; Grobov, A. V.; Dmitriev, A. E.; Rubin, Sergey G.

    2017-10-01

    We show that an inhomogeneous compact extra space possesses two necessary features— their existence does not contradict the observable value of the cosmological constant Λ4 in pure f(R) theory, and the extra dimensions are stable relative to the "radion mode" of perturbations, the only mode considered. For a two-dimensional extra space, both analytical and numerical solutions for the metric are found, able to provide a zero or arbitrarily small Λ4. A no-go theorem has also been proved, that maximally symmetric compact extra spaces are inconsistent with 4D Minkowski space in the framework of pure f(R) gravity.

  19. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid.

    PubMed

    Sanamrad, Arash; Persson, Fredrik; Lundius, Ebba G; Fange, David; Gynnå, Arvid H; Elf, Johan

    2014-08-05

    Biochemical and genetic data show that ribosomes closely follow RNA polymerases that are transcribing protein-coding genes in bacteria. At the same time, electron and fluorescence microscopy have revealed that ribosomes are excluded from the Escherichia coli nucleoid, which seems to be inconsistent with fast translation initiation on nascent mRNA transcripts. The apparent paradox can be reconciled if translation of nascent mRNAs can start throughout the nucleoid before they relocate to the periphery. However, this mechanism requires that free ribosomal subunits are not excluded from the nucleoid. Here, we use single-particle tracking in living E. coli cells to determine the fractions of free ribosomal subunits, classify individual subunits as free or mRNA-bound, and quantify the degree of exclusion of bound and free subunits separately. We show that free subunits are not excluded from the nucleoid. This finding strongly suggests that translation of nascent mRNAs can start throughout the nucleoid, which reconciles the spatial separation of DNA and ribosomes with cotranscriptional translation. We also show that, after translation inhibition, free subunit precursors are partially excluded from the compacted nucleoid. This finding indicates that it is active translation that normally allows ribosomal subunits to assemble on nascent mRNAs throughout the nucleoid and that the effects of translation inhibitors are enhanced by the limited access of ribosomal subunits to nascent mRNAs in the compacted nucleoid.

  20. Preliminary results of post-irradiation examination of the AGR-1 TRISO fuel compacts

    SciTech Connect

    Paul Demkowicz; John Hunn; Robert Morris; Jason Harp; Philip Winston; Charles Baldwin; Fred Montgomery; Scott Ploger; Isabella van Rooyen

    2012-10-01

    Five irradiated fuel compacts from the AGR-1 experiment have been examined in detail in order to assess in-pile fission product release behavior. Compacts were electrolytically deconsolidated and analyzed using the leach-burn-leach technique to measure fission product inventory in the compact matrix and identify any particles with a defective SiC layer. Loose particles were then gamma counted to measure the fission product inventory. One particle with a defective SiC layer was found in the five compacts examined. The fractional release of Ag 110m from the particles was significant. The total fraction of silver released from all the particles within a compact ranged from 0-0.63 and individual particles within a single compact often exhibited a very wide range of silver release. The average fractional release of Eu-154 from all particles in a compact was 2.4×10-4—1.3×10-2, which is indicative of release through intact coatings. The fractional Cs-134 inventory in the compact matrix was <2×10-5 when all coatings remained intact, indicating good cesium retention. Approximately 1% of the palladium inventory was found in the compact matrix for two of the compacts, indicating significant release through intact coatings.

  1. Magnetized Compact Stars

    NASA Astrophysics Data System (ADS)

    Pérez Martínez, Aurora; González Felipe, Ricardo; Manreza Paret, Daryel

    2015-01-01

    The magnetized color flavor locked matter phase can be more stable than the unpaired phase, thus becoming the ground state inside neutron stars. In the presence of a strong magnetic field, there exist an anisotropy in the pressures. We estimate the mass-radius relation of magnetized compact stars taking into account the parallel and perpendicular (to the magnetic field) pressure components.

  2. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  3. Compact Information Representations

    DTIC Science & Technology

    2016-08-02

    detections (e.g., DDoS attacks), machine learning, databases, and search. Fundamentally, compact data representations are highly beneficial because they...Blessing of Dimensionality: Recovering Mixture Data via Dictionary Pursuit, to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence... Machine Learning (ICML), 2016 11. Ping Li, One Scan 1-Bit Compressed Sensing, in International Conference on Artificial Intelligence and Statistics

  4. Compact rotating cup anemometer

    NASA Technical Reports Server (NTRS)

    Wellman, J. B.

    1968-01-01

    Compact, collapsible rotating cup anemometer is used in remote locations where portability and durability are factors in the choice of equipment. This lightweight instrument has a low wind-velocity threshold, is capable of withstanding large mechanical shocks while in its stowed configuration, and has fast response to wind fluctuations.

  5. Granular compaction by fluidization

    NASA Astrophysics Data System (ADS)

    Tariot, Alexis; Gauthier, Georges; Gondret, Philippe

    2017-06-01

    How to arrange a packing of spheres is a scientific question that aroused many fundamental works since a long time from Kepler's conjecture to Edward's theory (S. F. Edwards and R.B.S Oakeshott. Theory of powders. Physica A, 157: 1080-1090, 1989), where the role traditionally played by the energy in statistical problems is replaced by the volume for athermal grains. We present experimental results on the compaction of a granular pile immersed in a viscous fluid when submited to a continuous or bursting upward flow. An initial fluidized bed leads to a well reproduced initial loose packing by the settling of grains when the high enough continuous upward flow is turned off. When the upward flow is then turned on again, we record the dynamical evolution of the bed packing. For a low enough continuous upward flow, below the critical velocity of fluidization, a slow compaction dynamics is observed. Strikingly, a slow compaction can be also observed in the case of "fluidization taps" with bursts of fluid velocity higher than the critical fluidization velocity. The different compaction dynamics is discussed when varying the different control parameters of these "fluidization taps".

  6. Compact, Integrated Photoelectron Linacs

    NASA Astrophysics Data System (ADS)

    Yu, David

    2000-12-01

    The innovative compact high energy iniector which has been developed by DULY Research Inc., will have wide scientific industrial and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injector and the linac. By focusing the beam with solenoid or permanent magnets, and producing high current with low emittance, extremely high brightness is achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerance and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. DULY Research is also presently engaged in the development of an X-band photoelectron linear accelerator in another SBIR project. The higher frequency structure when completed will be approximately three times smaller, and capable of a beam brightness ten times higher than the S-band structure.

  7. Compact optical transconductance varistor

    SciTech Connect

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  8. Compact Solar Camera.

    ERIC Educational Resources Information Center

    Juergens, Albert

    1980-01-01

    Describes a compact solar camera built as a one-semester student project. This camera is used for taking pictures of the sun and moon and for direct observation of the image of the sun on a screen. (Author/HM)

  9. Compact Pinch Welder

    NASA Technical Reports Server (NTRS)

    Starck, Thomas F.; Brennan, Andrew D.

    1990-01-01

    Compact resistance-welding pinch gun lets one operator do jobs formerly needing two workers. Light in weight and produces repeatable, high-quality weld joints. Welding-electrode head rotates for easy positioning. Lever at top of handle activates spring to pinch electrodes together at preset welding force. Button at bottom of handle activates welding current. Cables supply electrical power.

  10. COMPACT SCHOOL AND $$ SAVINGS.

    ERIC Educational Resources Information Center

    BAIR, W.G.

    A REVIEW OF THE CRITERIA FOR CONSIDERING THE USE OF A TOTAL ENERGY SYSTEM WITHIN A SCHOOL BUILDING STATES THE WINDOWLESS, COMPACT SCHOOL OFFERS MORE EFFICIENT SPACE UTILIZATION WITH LESS AREA REQUIRED FOR GIVEN STUDENT POPULATION AND LOWER OPERATION COSTS. THE AUTHOR RECOMMENDS THAT THESE BUILDINGS BE WINDOWLESS TO REDUCE HEAT COSTS, HOWEVER, AT…

  11. Limestone compaction: an enigma

    USGS Publications Warehouse

    Shinn, Eugene A.; Halley, Robert B.; Hudson, J. Harold; Lidz, Barbara H.

    1977-01-01

    Compression of an undisturbed carbonate sediment core under a pressure of 556 kg/cm2 produced a “rock” with sedimentary structures similar to typical ancient fine-grained limestones. Surprisingly, shells, foraminifera, and other fossils were not noticeably crushed, which indicates that absence of crushed fossils in ancient limestones can no longer be considered evidence that limestones do not compact.

  12. Ductile compaction of partially molten rocks: the effect of non-linear viscous rheology on instability and segregation

    NASA Astrophysics Data System (ADS)

    Veveakis, E.; Regenauer-Lieb, K.; Weinberg, R. F.

    2015-01-01

    The segregation of melt from a linear viscous matrix is traditionally described by McKenzie's compaction theory. This classical solution overlooks instabilities that arise when non-linear solid matrix behaviour is considered. Here we report a closed form 1-D solution obtained by extending McKenzie's theory to non-linear matrix behaviours. The new solution provides periodic stress singularities, acting as high porosity melt channels, to be the fundamental response of the compacted matrix. The characteristic length controlling the periodicity is still McKenzie's compaction length bar{δ}_c, adjusted for non-linear rheologies.

  13. Progress in Compact Toroid Experiments

    SciTech Connect

    Dolan, Thomas James

    2002-09-01

    The term "compact toroids" as used here means spherical tokamaks, spheromaks, and field reversed configurations, but not reversed field pinches. There are about 17 compact toroid experiments under construction or operating, with approximate parameters listed in Table 1.

  14. Experimental Measurement and Numerical Modeling of the Effective Thermal Conductivity of TRISO Fuel Compacts

    SciTech Connect

    Folsom, Charles; Xing, Changhu; Jensen, Colby; Ban, Heng; Marshall, Douglas W.

    2015-03-01

    Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC of the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50 and 30 W m-1 K-1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.

  15. The ribosomal subunit assembly line

    PubMed Central

    Dlakić, Mensur

    2005-01-01

    Recent proteomic studies in Saccharomyces cerevisiae have identified nearly 200 proteins, other than the structural ribosomal proteins, that participate in the assembly of ribosomal subunits and their transport from the nucleus. In a separate line of research, proteomic studies of mature plant ribosomes have revealed considerable variability in the protein composition of individual ribosomes. PMID:16207363

  16. Compact Optical Correlators

    NASA Astrophysics Data System (ADS)

    Gregory, Don A.; Kirsch, James C.

    1989-02-01

    In the past 15 years, a dozen or so designs have been proposed for compact optical correlators. Of these, maybe one-third of them have actually been built and only a few of those tested. This paper will give an overview of some of the systems that have been built as well as mention some promising early and current designs that have not been built. The term compact, as used in the title of this paper, will be applied very loosely; to mean smaller than a laboratory size optical table. To date, only one correlator has been built and tested that actually can be called miniature. This softball size correlator was built by the Perkin-Elmer Corporation for the U. S. Army Missile Command at Redstone Arsenal, Alabama. More will be said about this correlator in following sections.

  17. Compact Spreader Schemes

    SciTech Connect

    Placidi, M.; Jung, J. -Y.; Ratti, A.; Sun, C.

    2014-07-25

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  18. Super-Compact Laser

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Microcosm, Inc. produced the portable Farfield-2 laser for field applications that require high power pulsed illumination. The compact design was conceived through research at Goddard Space Flight Center on laser instruments for space missions to carry out geoscience studies of Earth. An exclusive license to the key NASA patent for the compact laser design was assigned to Microcosm. The FarField-2 is ideal for field applications, has low power consumption, does not need water cooling or gas supplies, and produces nearly ideal beam quality. The properties of the laser also make it effective over long distances, which is one reason why NASA developed the technology for laser altimeters that can be toted aboard spacecraft. Applications for the FarField-2 include medicine, biology, and materials science and processing, as well as diamond marking, semiconductor line-cutting, chromosome surgery, and fluorescence microscopy.

  19. Compact spreader schemes

    NASA Astrophysics Data System (ADS)

    Placidi, M.; Jung, J.-Y.; Ratti, A.; Sun, C.

    2014-12-01

    This paper describes beam distribution schemes adopting a novel implementation based on low amplitude vertical deflections combined with horizontal ones generated by Lambertson-type septum magnets. This scheme offers substantial compactness in the longitudinal layouts of the beam lines and increased flexibility for beam delivery of multiple beam lines on a shot-to-shot basis. Fast kickers (FK) or transverse electric field RF Deflectors (RFD) provide the low amplitude deflections. Initially proposed at the Stanford Linear Accelerator Center (SLAC) as tools for beam diagnostics and more recently adopted for multiline beam pattern schemes, RFDs offer repetition capabilities and a likely better amplitude reproducibility when compared to FKs, which, in turn, offer more modest financial involvements both in construction and operation. Both solutions represent an ideal approach for the design of compact beam distribution systems resulting in space and cost savings while preserving flexibility and beam quality.

  20. Analysis of laboratory compaction methods of roller compacted concrete

    NASA Astrophysics Data System (ADS)

    Trtík, Tomáš; Chylík, Roman; Bílý, Petr; Fládr, Josef

    2017-09-01

    Roller-Compacted Concrete (RCC) is an ordinary concrete poured and compacted with machines typically used for laying of asphalt road layers. One of the problems connected with this technology is preparation of representative samples in the laboratory. The aim of this work was to analyse two methods of preparation of RCC laboratory samples with bulk density as the comparative parameter. The first method used dynamic compaction by pneumatic hammer. The second method of compaction had a static character. The specimens were loaded by precisely defined force in laboratory loading machine to create the same conditions as during static rolling (in the Czech Republic, only static rolling is commonly used). Bulk densities obtained by the two compaction methods were compared with core drills extracted from real RCC structure. The results have shown that the samples produced by pneumatic hammer tend to overestimate the bulk density of the material. For both compaction methods, immediate bearing index test was performed to verify the quality of compaction. A fundamental difference between static and dynamic compaction was identified. In static compaction, initial resistance to penetration of the mandrel was higher, after exceeding certain limit the resistance was constant. This means that the samples were well compacted just on the surface. Specimens made by pneumatic hammer actively resisted throughout the test, the whole volume was uniformly compacted.

  1. Compact Torsatron configurations

    SciTech Connect

    Carreras, B. A.; Dominguez, N.; Garcia, L.; Lynch, V. E.; Lyon, J. F.; Cary, J. R.; Hanson, J. D.; Navarro, A. P.

    1987-09-01

    Low-aspect-ratio stellarator configurations can be realized by using torsatron winding. Plasmas with aspect ratios in the range of 3.5 to 5 can be confined by these Compact Torsatron configurations. Stable operation at high BETA should be possible in these devices, if a vertical field coil system is adequately designed to avoid breaking of the magnetic surfaces at finite BETA. 17 refs., 21 figs., 1 tab.

  2. Compact power reactor

    DOEpatents

    Wetch, Joseph R.; Dieckamp, Herman M.; Wilson, Lewis A.

    1978-01-01

    There is disclosed a small compact nuclear reactor operating in the epithermal neutron energy range for supplying power at remote locations, as for a satellite. The core contains fuel moderator elements of Zr hydride with 7 w/o of 93% enriched uranium alloy. The core has a radial beryllium reflector and is cooled by liquid metal coolant such as NaK. The reactor is controlled and shut down by moving portions of the reflector.

  3. Compact optical isolator.

    PubMed

    Sansalone, F J

    1971-10-01

    This paper describes a compact Faraday rotation isolator using terbium aluminum garnet (TAG) as the Faraday rotation material and small high field permanent magnets made of copper-rare earth alloys. The nominal isolation is 26 dB with a 0.4-dB forward loss. The present isolator can be adjusted to provide effective isolation from 4880 A to 5145 A. Details of the design, fabrication, and performance of the isolator are presented.

  4. Compact Pinch Welder

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Thomas, Clark S.

    1991-01-01

    Spot welder designed for bonding insulated metal strips together. Compact, measuring only about 33.5 cm in its largest linear dimension. Pinch welder clamps electrodes on weldments with strong, repeatable force. Compressed air supplied through fitting on one handle. Small switch on same handle starts welding process when operator presses it with trigger. Provides higher, more repeatable clamping force than manually driven gun and thus produces weld joints of higher quality. Light in weight and therefore positioned precisely by operator.

  5. Ribosomal small subunit domains radiate from a central core

    NASA Astrophysics Data System (ADS)

    Gulen, Burak; Petrov, Anton S.; Okafor, C. Denise; Vander Wood, Drew; O'Neill, Eric B.; Hud, Nicholas V.; Williams, Loren Dean

    2016-02-01

    The domain architecture of a large RNA can help explain and/or predict folding, function, biogenesis and evolution. We offer a formal and general definition of an RNA domain and use that definition to experimentally characterize the rRNA of the ribosomal small subunit. Here the rRNA comprising a domain is compact, with a self-contained system of molecular interactions. A given rRNA helix or stem-loop must be allocated uniquely to a single domain. Local changes such as mutations can give domain-wide effects. Helices within a domain have interdependent orientations, stabilities and interactions. With these criteria we identify a core domain (domain A) of small subunit rRNA. Domain A acts as a hub, linking the four peripheral domains and imposing orientational and positional restraints on the other domains. Experimental characterization of isolated domain A, and mutations and truncations of it, by methods including selective 2‧OH acylation analyzed by primer extension and circular dichroism spectroscopy are consistent with our architectural model. The results support the utility of the concept of an RNA domain. Domain A, which exhibits structural similarity to tRNA, appears to be an essential core of the small ribosomal subunit.

  6. Ribosomal small subunit domains radiate from a central core

    PubMed Central

    Gulen, Burak; Petrov, Anton S.; Okafor, C. Denise; Vander Wood, Drew; O’Neill, Eric B.; Hud, Nicholas V.; Williams, Loren Dean

    2016-01-01

    The domain architecture of a large RNA can help explain and/or predict folding, function, biogenesis and evolution. We offer a formal and general definition of an RNA domain and use that definition to experimentally characterize the rRNA of the ribosomal small subunit. Here the rRNA comprising a domain is compact, with a self-contained system of molecular interactions. A given rRNA helix or stem-loop must be allocated uniquely to a single domain. Local changes such as mutations can give domain-wide effects. Helices within a domain have interdependent orientations, stabilities and interactions. With these criteria we identify a core domain (domain A) of small subunit rRNA. Domain A acts as a hub, linking the four peripheral domains and imposing orientational and positional restraints on the other domains. Experimental characterization of isolated domain A, and mutations and truncations of it, by methods including selective 2′OH acylation analyzed by primer extension and circular dichroism spectroscopy are consistent with our architectural model. The results support the utility of the concept of an RNA domain. Domain A, which exhibits structural similarity to tRNA, appears to be an essential core of the small ribosomal subunit. PMID:26876483

  7. Rotating proton pumping ATPases: subunit/subunit interactions and thermodynamics.

    PubMed

    Nakanishi-Matsui, Mayumi; Sekiya, Mizuki; Futai, Masamitsu

    2013-03-01

    In this article, we discuss single molecule observation of rotational catalysis by E. coli ATP synthase (F-ATPase) using small gold beads. Studies involving a low viscous drag probe showed the stochastic properties of the enzyme in alternating catalytically active and inhibited states. The importance of subunit interaction between the rotor and the stator, and thermodynamics of the catalysis are also discussed. "Single Molecule Enzymology" is a new trend for understanding enzyme mechanisms in biochemistry and physiology.

  8. Hydraulic conductivity of compacted zeolites.

    PubMed

    Oren, A Hakan; Ozdamar, Tuğçe

    2013-06-01

    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  9. All three subunits of soybean beta-conglycinin are potential food allergens.

    PubMed

    Krishnan, Hari B; Kim, Won-Seok; Jang, Sungchan; Kerley, Monty S

    2009-02-11

    Soybeans are recognized as one of the "big 8" food allergens. IgE antibodies from soybean-sensitive patients recognize more than 15 soybean proteins. Among these proteins only the alpha-subunit of beta-conglycinin, but not the highly homologous alpha'- and beta-subunits, has been shown to be a major allergenic protein. The objective of this study was to examine if the alpha'- and beta-subunits of beta-conglycinin can also serve as potential allergens. Immunoblot analysis using sera collected from soybean-allergic patients revealed the presence of IgE antibodies that recognized several soy proteins including 72, 70, 52, 34, and 21 kDa proteins. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) analysis of trypsin-digested 72, 70, and 52 kDa proteins indicated that these proteins were the alpha'-, alpha-, and beta-subunits of beta-conglycinin, respectively. Additionally, purified alpha'-, alpha-, and beta-subunits of beta-conglycinin were recognized by IgE antibodies present in the soybean-allergic patients. The IgE reactivity to the beta-subunit of beta-conglycinin was not abolished when this glycoprotein was either deglycosylated using glycosidases or expressed as a recombinant protein in Escherichia coli . The results suggest that in addition to the previously recognized alpha-subunit of beta-conglycinin, the alpha'- and beta-subunits of beta-conglycinin also are potential food allergens.

  10. A Compact Formula for Rotations as Spin Matrix Polynomials

    DOE PAGES

    Curtright, Thomas L.; Fairlie, David B.; Zachos, Cosmas K.

    2014-08-12

    Group elements of SU(2) are expressed in closed form as finite polynomials of the Lie algebra generators, for all definite spin representations of the rotation group. Here, the simple explicit result exhibits connections between group theory, combinatorics, and Fourier analysis, especially in the large spin limit. Salient intuitive features of the formula are illustrated and discussed.

  11. Compact gate valve

    DOEpatents

    Bobo, Gerald E.

    1977-01-01

    This invention relates to a double-disc gate valve which is compact, comparatively simple to construct, and capable of maintaining high closing pressures on the valve discs with low frictional forces. The valve casing includes axially aligned ports. Mounted in the casing is a sealed chamber which is pivotable transversely of the axis of the ports. The chamber contains the levers for moving the valve discs axially, and an actuator for the levers. When an external drive means pivots the chamber to a position where the discs are between the ports and axially aligned therewith, the actuator for the levers is energized to move the discs into sealing engagement with the ports.

  12. COMPACT CASCADE IMPACTS

    DOEpatents

    Lippmann, M.

    1964-04-01

    A cascade particle impactor capable of collecting particles and distributing them according to size is described. In addition the device is capable of collecting on a pair of slides a series of different samples so that less time is required for the changing of slides. Other features of the device are its compactness and its ruggedness making it useful under field conditions. Essentially the unit consists of a main body with a series of transverse jets discharging on a pair of parallel, spaced glass plates. The plates are capable of being moved incremental in steps to obtain the multiple samples. (AEC)

  13. [Non-compaction cardiomyopathy].

    PubMed

    Wieneke, Heinrich; Neumann, Till; Breuckmann, Frank; Hunold, Peter; Fries, Jochen W U; Dirsch, Olaf; Erbel, Raimund

    2005-09-01

    Isolated non-compaction of the ventricular myocardium (INVM), also known as left ventricular hypertrabeculation or spongy myocardium, belongs to the "unclassified" cardiomyopathies according to the World Health Organization. The main characteristic of this entity is a prominent trabeculation of the left ventricle with deep intertrabecular recesses communicating with the ventricular cavity. The pathomechanism of INVM is thought to be an arrest in cardiac myogenesis with persistence of embryonic myocardial morphology. The most frequent clinical manifestations include congestive heart failure, ventricular arrhythmias and systemic thromboembolic events. The therapy of INVM comprises standard medical therapy for heart failure.

  14. Compact Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    A plasma accelerator has been conceived for both material-processing and spacecraft-propulsion applications. This accelerator generates and accelerates ions within a very small volume. Because of its compactness, this accelerator could be nearly ideal for primary or station-keeping propulsion for spacecraft having masses between 1 and 20 kg. Because this accelerator is designed to generate beams of ions having energies between 50 and 200 eV, it could also be used for surface modification or activation of thin films.

  15. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  16. Oil shale compaction experimental results

    SciTech Connect

    Fahy, L.J.

    1985-11-01

    Oil shale compaction reduces the void volume available for gas flow in vertical modified in situ (VMIS) retorts. The mechanical forces caused by the weight of the overlying shale can equal 700 kPa near the bottom of commercial retorts. Clear evidence of shale compaction was revealed during postburn investigation of the Rio Blanco retorts at the C-a lease tract in Colorado. Western Research Institute conducted nine laboratory experiments to measure the compaction of Green River oil shale rubble during retorting. The objectives of these experiments were (1) to determine the effects of particle size, (2) to measure the compaction of different shale grades with 12 to 25 percent void volume and (3) to study the effects of heating rate on compaction. The compaction recorded in these experiments can be separated into the compaction that occurred during retorting and the compaction that occurred as the retort cooled down. The leaner oil shale charges compacted about 3 to 4 percent of the bed height at the end of retorting regardless of the void volume or heating rate. The richer shale charges compacted by 6.6 to 22.9 percent of the bed height depending on the shale grade and void volume used. Additional compaction of approximately 1.5 to 4.3 percent of the bed height was measured as the oil shale charges cooled down. Compaction increased with an increase in void volume for oil shale grades greater than 125 l/Mg. The particle size of the oil shale brick and the heating rate did not have a significant effect on the amount of compaction measured. Kerogen decomposition is a major factor in the compaction process. The compaction may be influenced by the bitumen intermediate acting as a lubricant, causing compaction to occur over a narrow temperature range between 315 and 430/sup 0/C. While the majority of the compaction occurs early in the retorting phase, mineral carbonate decomposition may also increase the amount of compaction. 14 refs., 12 figs., 4 tabs.

  17. Matrix superpotentials

    NASA Astrophysics Data System (ADS)

    Nikitin, Anatoly G.; Karadzhov, Yuri

    2011-07-01

    We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.

  18. Scalable Nonlinear Compact Schemes

    SciTech Connect

    Ghosh, Debojyoti; Constantinescu, Emil M.; Brown, Jed

    2014-04-01

    In this work, we focus on compact schemes resulting in tridiagonal systems of equations, specifically the fifth-order CRWENO scheme. We propose a scalable implementation of the nonlinear compact schemes by implementing a parallel tridiagonal solver based on the partitioning/substructuring approach. We use an iterative solver for the reduced system of equations; however, we solve this system to machine zero accuracy to ensure that no parallelization errors are introduced. It is possible to achieve machine-zero convergence with few iterations because of the diagonal dominance of the system. The number of iterations is specified a priori instead of a norm-based exit criterion, and collective communications are avoided. The overall algorithm thus involves only point-to-point communication between neighboring processors. Our implementation of the tridiagonal solver differs from and avoids the drawbacks of past efforts in the following ways: it introduces no parallelization-related approximations (multiprocessor solutions are exactly identical to uniprocessor ones), it involves minimal communication, the mathematical complexity is similar to that of the Thomas algorithm on a single processor, and it does not require any communication and computation scheduling.

  19. Compaction of Titanium Powders

    SciTech Connect

    Gerdemann, Stephen,J; Jablonski, Paul, J

    2011-05-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines<150 {micro}m,<75 {micro}m, and<45 {micro}m; two different sizes of a hydride-dehydride [HDH]<75 {micro}m and<45 {micro}m; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  20. Lacunarity for compact groups.

    PubMed

    Edwards, R E; Hewitt, E; Ross, K A

    1971-01-01

    Let G be a compact Abelian group with character group X. A subset Delta of X is called a [unk](q) set (1 < q < infinity) if for all trigonometric polynomials f = [unk](k=1) (n) alpha(k)chi(k) (chi(1),...,chi(n) [unk] Delta) an inequality parallelf parallel(q) [unk] [unk] parallelf parallel(1) obtains, where [unk] is a positive constant depending only on Delta. The subset Delta is called a Sidon set if every bounded function on Delta can be matched by a Fourier-Stieltjes transform. It is known that every Sidon set is a [unk](q) set for all q. For G = T, X = Z, Rudin (J. Math. Mech., 9, 203 (1960)) has found a set that is [unk](q) for all q but not Sidon. We extend this result to all infinite compact Abelian groups G: the character group X contains a subset Delta that is [unk](q) for all q, 1 < q < infinity, but Delta is not a Sidon set.

  1. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  2. Compact Infrasonic Windscreen

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Shams, Qamar A.; Sealey, Bradley S.; Comeaux, Toby

    2005-01-01

    A compact windscreen has been conceived for a microphone of a type used outdoors to detect atmospheric infrasound from a variety of natural and manmade sources. Wind at the microphone site contaminates received infrasonic signals (defined here as sounds having frequencies <20 Hz), because a microphone cannot distinguish between infrasonic pressures (which propagate at the speed of sound) and convective pressure fluctuations generated by wind turbulence. Hence, success in measurement of outdoor infrasound depends on effective screening of the microphone from the wind. The present compact windscreen is based on a principle: that infrasound at sufficiently large wavelength can penetrate any barrier of practical thickness. Thus, a windscreen having solid, non-porous walls can block convected pressure fluctuations from the wind while transmitting infrasonic acoustic waves. The transmission coefficient depends strongly upon the ratio between the acoustic impedance of the windscreen and that of air. Several materials have been found to have impedance ratios that render them suitable for use in constructing walls that have practical thicknesses and are capable of high transmission of infrasound. These materials (with their impedance ratios in parentheses) are polyurethane foam (222), space shuttle tile material (332), balsa (323), cedar (3,151), and pine (4,713).

  3. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  4. Dynamic Compaction of Porous Beds

    DTIC Science & Technology

    1985-12-26

    NSWVC TR 83-246 00 00 SDYNAMIC COMPACTION OF POROUS B3EDS BY H. W. SANDUSKY T. P. LIDDIARD RESEARCH AND TECHNOLOGY DEPARTMENT D I 26 DECEMBER 1985...RIOBA4313 11. TITLE (Include Security Classfication3 Dynamic Compaction of Porous Beds 12. PERSONAL AUTHOR(S) Sandusky, H. W., and Liddiard, T. P. 13a... Porous Bed Compaction Wave Velocity Oeflaaration-to-Detonation Transition Particle Velocity ABSTRACT (Continue on reverse if necessary and identify

  5. METHOD OF FORMING ELONGATED COMPACTS

    DOEpatents

    Larson, H.F.

    1959-05-01

    A powder compacting procedure and apparatus which produces elongated compacts of Be is described. The powdered metal is placed in a thin metal tube which is chemically compatible to lubricant, powder, atmosphere, and die material and will undergo a high degree of plastic deformation and have intermediate hardness. The tube is capped and placed in the die, and punches are applied to the ends. During the compacting stroke the powder seizes the tube and a thickening and shortening of the tube occurs. The tube is easily removed from the die, split, and peeled from the compact. (T.R.H.)

  6. Chemical synthesis of yeast mitochondrial ATP synthase membranous subunit 8.

    PubMed

    Goetz, M; Schmitter, J M; Geoffre, S; Dufourc, E J

    1999-06-01

    Chemical synthesis of highly hydrophobic peptides and proteins remains a challenging problem. Strong interchain associations within the peptide-resin matrix have to be overcome. A synthetic strategy for solid phase peptide synthesis is proposed, mainly based on prolonged coupling time using aprotic polar solvent mixtures. A tailored chromatographic purification was required to obtain a sample sufficiently pure for structural analysis. In this work, the total chemical synthesis of the membrane-embedded yeast mitochondrial ATP synthase subunit 8 is described. The quality of the synthetic protein was checked by electrospray mass spectrometry, its tendency to adopt alpha-helical secondary structure is evidenced by circular dichroism spectroscopy.

  7. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  8. Compact vacuum insulation embodiments

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  9. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1993-01-01

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially "point" or "line" contacts with the metal wall sheets. In the case of monolithic spacers that form "line" contacts, two such spacers with the line contacts running perpendicular to each other form effectively "point" contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  10. Compact vacuum insulation embodiments

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  11. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  12. Compact photonic spin filters

    NASA Astrophysics Data System (ADS)

    Ke, Yougang; Liu, Zhenxing; Liu, Yachao; Zhou, Junxiao; Shu, Weixing; Luo, Hailu; Wen, Shuangchun

    2016-10-01

    In this letter, we propose and experimentally demonstrate a compact photonic spin filter formed by integrating a Pancharatnam-Berry phase lens (focal length of ±f ) into a conventional plano-concave lens (focal length of -f). By choosing the input port of the filter, photons with a desired spin state, such as the right-handed component or the left-handed one, propagate alone its original propagation direction, while the unwanted spin component is quickly diverged after passing through the filter. One application of the filter, sorting the spin-dependent components of vector vortex beams on higher-order Poincaré sphere, is also demonstrated. Our scheme provides a simple method to manipulate light, and thereby enables potential applications for photonic devices.

  13. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  14. Compact SAW aerosol generator.

    PubMed

    Winkler, A; Harazim, S; Collins, D J; Brünig, R; Schmidt, H; Menzel, S B

    2017-03-01

    In this work, we discuss and demonstrate the principle features of surface acoustic wave (SAW) aerosol generation, based on the properties of the fluid supply, the acoustic wave field and the acoustowetting phenomena. Furthermore, we demonstrate a compact SAW-based aerosol generator amenable to mass production fabricated using simple techniques including photolithography, computerized numerical control (CNC) milling and printed circuit board (PCB) manufacturing. Using this device, we present comprehensive experimental results exploring the complexity of the acoustic atomization process and the influence of fluid supply position and geometry, SAW power and fluid flow rate on the device functionality. These factors in turn influence the droplet size distribution, measured here, that is important for applications including liquid chromatography, pulmonary therapies, thin film deposition and olfactory displays.

  15. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  16. Multipurpose Compact Spectrometric Unit

    SciTech Connect

    Bocarov, Viktor; Cermak, Pavel; Mamedov, Fadahat; Stekl, Ivan

    2009-11-09

    A new standalone compact spectrometer was developed. The device consists of analog (peamplifier, amplifier) and digital parts. The digital part is based on the 160 MIPS Digital Signal Processor. It contains 20 Msps Flash-ADC, 1 MB RAM for spectra storage, 128 KB Flash/ROM for firmware storage, Real Time Clock and several voltage regulators providing the power for user peripherals (e.g. amplifier, temperature sensors, etc.). Spectrometer is connected with a notebook via high-speed USB 2.0 bus. The spectrometer is multipurpose device, which is planned to be used for measurements of Rn activities, energy of detected particles by CdTe pixel detector or for coincidence measurements.

  17. Compact artificial hand

    NASA Technical Reports Server (NTRS)

    Wiker, G. A.; Mann, W. A. (Inventor)

    1979-01-01

    A relatively simple, compact artificial hand, is described which includes hooks pivotally mounted on first frame to move together and apart. The first frame is rotatably mounted on a second frame to enable "turning at the wrist" movement without limitation. The second frame is pivotally mounted on a third frame to permit 'flexing at the wrist' movement. A hook-driving motor is fixed to the second frame but has a shaft that drives a speed reducer on the first frame which, in turn, drives the hooks. A second motor mounted on the second frame, turns a gear on the first frame to rotate the first frame and the hooks thereon. A third motor mounted on the third frame, turns a gear on a second frame to pivot it.

  18. Matrix thermalization

    NASA Astrophysics Data System (ADS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  19. Stoichiometry of δ subunit containing GABAA receptors

    PubMed Central

    Patel, B; Mortensen, M; Smart, T G

    2014-01-01

    Background and Purpose Although the stoichiometry of the major synaptic αβγ subunit-containing GABAA receptors has consensus support for 2α:2β:1γ, a clear view of the stoichiometry of extrasynaptic receptors containing δ subunits has remained elusive. Here we examine the subunit stoichiometry of recombinant α4β3δ receptors using a reporter mutation and a functional electrophysiological approach. Experimental Approach Using site-directed mutagenesis, we inserted a highly characterized 9′ serine to leucine mutation into the second transmembrane (M2) region of α4, β3 and δ subunits that increases receptor sensitivity to GABA. Whole-cell, GABA-activated currents were recorded from HEK-293 cells co-expressing different combinations of wild-type (WT) and/or mutant α4(L297S), β3(L284S) and δ(L288S) subunits. Key Results Recombinant receptors containing one or more mutant subunits showed increased GABA sensitivity relative to WT receptors by approximately fourfold, independent of the subunit class (α, β or δ) carrying the mutation. GABA dose–response curves of cells co-expressing WT subunits with their respective L9′S mutants exhibited multiple components, with the number of discernible components enabling a subunit stoichiometry of 2α, 2β and 1δ to be deduced for α4β3δ receptors. Varying the cDNA transfection ratio by 10-fold had no significant effect on the number of incorporated δ subunits. Conclusions and Implications Subunit stoichiometry is an important determinant of GABAA receptor function and pharmacology, and δ subunit-containing receptors are important mediators of tonic inhibition in several brain regions. Here we demonstrate a preferred subunit stoichiometry for α4β3δ receptors of 2α, 2β and 1δ. PMID:24206220

  20. Secondary compaction after secondary porosity: Can it form a pressure seal

    SciTech Connect

    Weedman, S.D.; Brantley, S.L.; Albrecht, W. )

    1992-04-01

    Petrographic analysis of sandstones from the vicinity of a pressure seal (transition from normal to overpressure) at 5.5-km depth in the lower Tuscaloosa Formation in Louisiana documents local, high porosity above and below the seal. Packing analysis shows that compaction is greater in normally pressured, high-porosity sandstones than in overpressured, high-porosity sandstones; compaction in overpressured, high-porosity sandstones is similar to that in normally pressured, well-cemented sandstones. The authors propose that focused corrosive fluids created a zone of high secondary porosity, allowing further compaction that they call 'secondary compaction.' Secondary compaction is greater above the seal than below, suggesting that high-pressure fluid below the seal has preserved porosity and that the pressure seal became effective soon after dissolution of cement. Cuttings from the pressure-seal zone reveal an unusual texture of fragmented, pressure-solved grains and matrix, which may be a result of extensive secondary compaction.

  1. Compaction with Automatic Jog Introduction,

    DTIC Science & Technology

    1985-10-01

    The compaction algorithm This section defines mathematically the problem of compaction with auto- matk jog introduction, and presents a practical...t(5) of potential cuts of S, and usng their mutability cmndi to constrain the positiokn of modulo in S. The proof that this technique gen - erates a

  2. The Meaning of a Compact

    ERIC Educational Resources Information Center

    Wasescha, Anna

    2016-01-01

    To mark the 30th anniversary of "Campus Compact," leaders from across the network came together in the summer of 2015 to reaffirm a shared commitment to the public purposes of higher education. Campus Compact's 30th Anniversary Action Statement of Presidents and Chancellors is the product of that collective endeavor. In signing the…

  3. Compost improves compacted urban soil

    USDA-ARS?s Scientific Manuscript database

    Urban construction sites usually result in compacted soils that limit infiltration and root growth. The purpose of this study was to determine if compost, aeration, and/or prairie grasses can remediate a site setup as a simulated post-construction site (compacted). Five years after establishing the ...

  4. Sync Matrix

    SciTech Connect

    Metz, William C.; Metz, W. Chris; Mitrani, Jacques E.; Hewett, Jr., Paul L.; Jones, Christopher A.

    2004-12-31

    Sync Matrix provides a graphic display of the relationships among all of the response activities of each jurisdiction. This is accomplished through software that organizes and displays the activities by jurisdiction, function, and time for easy review and analysis. The software can also integrate the displays of multiple jurisdictions to allow examination of the total response.

  5. Hand-Held Ultrasonic Instrument for Reading Matrix Symbols

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kula, John P.; Gurney, John W.; Lior, Ephraim D.

    2008-01-01

    A hand-held instrument that would include an ultrasonic camera has been proposed as an efficient means of reading matrix symbols. The proposed instrument could be operated without mechanical raster scanning. All electronic functions from excitation of ultrasonic pulses through final digital processing for decoding matrix symbols would be performed by dedicated circuitry within the single, compact instrument housing.

  6. Letter-Matrix of Compact Representation of two-Dimensional Data Multitude for Visualization of Modal Parameters' Time-History With Implication to Seismic Survey of Life-Time and Characteristics of Excited Modal States of a Wide Range of Dynamic Structures

    NASA Astrophysics Data System (ADS)

    Zaurov, D.

    2013-12-01

    The PSWT technique assumes definition of modal parameters on the basis of modal differential equation by processing of a segment of seismic response with stationary properties by a set of modulate functions. Thus, calculating necessary convolution integrals in the limits of the time-window with a modulate function and its claimed derivatives fixed within the window with zero values on its edges and having a limited transparent spectral window, a system of algebraic equation regard to looking for parameters can be formed. Leading correct conception of moving window analysis, total parametric scanning of the records in both time and frequency domains when the time-window should be moving by a certain step while varying its width in some boundaries that corresponds to shifting the spectral window in frequency domain allowing to find dominant filtration of the fundamental mode, should be proceeded. Revealed time segments with steady series of parameters' estimations are evidence of stationary of the modal state and that trial estimations are true, otherwise, non-stationary of dynamic properties and, or ill-filtration on some segments are the cause of the series of estimations to be dispersed. Final numeric output of the scanning require a vast storage paper space and it is time consuming of its graphic representation and interpretation. But the following idea allows the representation to be a completely formalized one. Thus, the numeric multitude of estimations should be grouping for each parameter and represented by corresponding compact symbolic, letter fields. Symbolic conform representation can be accomplished by assuming a quantum symbolic scale limited by accepted set of 53 symbols: +ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!?#$%&@(/{<|>})*- which is coherent to appropriate domain of continuous numeric measure scale of each parameter estimations' multitude. A certain step is admitted for quantization, and a respective symbol is assigned in sequence to each quantum

  7. The Subunit Structure of Benzylsuccinate Synthase†

    PubMed Central

    Li, Lei; Patterson, Dustin P.; Fox, Christel C.; Lin, Brian; Coschigano, Peter W.; Marsh, E. Neil G.

    2010-01-01

    Benzylsuccinate synthase is a member of the glycyl radical family of enzymes. It catalyzes the addition of toluene to fumarate to form benzylsuccinate as the first step in the anaerobic pathway of toluene fermentation. The enzyme comprises three subunits α, β and γ that in Thauera Aromatica T1 strain are encoded by the tutD, tutG and tutF genes respectively. The large α-subunit contains the essential glycine and cysteine residues that are conserved in all glycyl radical enzymes. However, the function of the small β- and γ-subunits has remained unclear. We have over-expressed all three subunits of benzylsuccinate synthase in E. coli, both individually and in combination. Co-expression of the γ-subunit (but not the β-subunit) is essential for efficient expression of the α-subunit. The benzylsuccinate synthase complex lacking the glycyl radical could be purified as an α2β2γ2 hexamer by nickel-affinity chromatography through a ‘His6’ affinity tag engineered onto the C-terminus of the α-subunit. Unexpectedly, BSS was found to contain two iron-sulfur clusters, one associated with the β-subunit and the other with the γ-subunit that appear to be necessary for the structural integrity of the complex. The spectroscopic properties of these clusters suggest that they are most likely [4Fe-4S] clusters. Removal of iron with chelating agents results in dissociation of the complex; similarly a mutant γ-subunit lacking the [4Fe-4S] cluster is unable to stabilize the α-subunit when the proteins are co-expressed. PMID:19159265

  8. A Compact Ring Design with Tunable Momentum Compaction

    SciTech Connect

    Sun, Y.; /SLAC

    2012-05-17

    A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and predamping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while maintaining a large dynamic aperture.

  9. Fabric analysis of Allende matrix using EBSD

    NASA Astrophysics Data System (ADS)

    Watt, Lauren E.; Bland, Phil A.; Prior, Dave J.; Russell, Sara S.

    Fabric analysis of the interstitial matrix material in primitive meteorites offers a novel window on asteroid formation and evolution. Electron backscatter diffraction (EBSD) has allowed fabrics in these fine-grained materials to be visualized in detail for the first time. Our data reveal that Allende, a CV3 chondrite, possesses a uniform, planar, short-axis alignment fabric that is pervasive on a broad scale and is probably the result of deformational shortening related to impact or gravitational compaction. Interference between this matrix fabric and the larger, more rigid components, such as dark inclusions (DIs) and calcium-aluminium-rich inclusions (CAIs), has lead to the development of locally oriented and intensified matrix fabrics. In addition, DIs possess fabrics that are conformable with the broader matrix fabric. These results suggest that DIs were in situ prior to the deformational shortening event responsible for these fabrics, thus providing an argument against dark inclusions being fragments from another lithified part of the asteroid (Kojima and Tomeoka 1996; Fruland et al. 1978). Moreover, both DIs and Allende matrix are highly porous (˜25%) (Corrigan et al. 1997). Mobilizing a highly porous DI during impact-induced brecciation without imposing a fabric and incorporating it into a highly porous matrix without significantly compacting these materials is improbable. We favor a model that involves Allende DIs, CAIs, and matrix accreting together and experiencing the same deformation events.

  10. Compact Dexterous Robotic Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)

    2001-01-01

    A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.

  11. Compact vacuum insulation

    DOEpatents

    Benson, D.K.; Potter, T.F.

    1992-10-27

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases there between are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and various laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels. 35 figs.

  12. Compact vacuum insulation

    DOEpatents

    Benson, David K.; Potter, Thomas F.

    1992-01-01

    Improved compact insulation panel is provided which is comprised of two adjacent metal sheets spaced close together with a plurality of spherical, or other discretely shaped, glass or ceramic beads optimally positioned between the sheets to provide support and maintain the spacing between the metal sheets when the gases therebetween are evacuated to form a vacuum. These spherical glass beads provide the maximum support while minimizing thermal conductance. In its preferred embodiment; these two metal sheets are textured with ribs or concave protrusions in conjunction with the glass beads to maximize the structural integrity of the panels while increasing the spacing between beads, thereby reducing the number of beads and the number of thermal conduction paths. Glass or porcelain-enameled liners in combination with the glass spacers and metal sidewalls effectively decrease thermal conductivity, and variious laminates, including wood, porcelain-enameled metal, and others effectively increase the strength and insulation capabilities of the panels. Also, a metal web is provided to hold the spacers in place, and strategic grooves are shown to accommodate expansion and contraction or shaping of the panels.

  13. Compact neutron generator

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  14. Compact plasma accelerator

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2004-01-01

    A compact plasma accelerator having components including a cathode electron source, an anodic ionizing gas source, and a magnetic field that is cusped. The components are held by an electrically insulating body having a central axis, a top axial end, and a bottom axial end. The cusped magnetic field is formed by a cylindrical magnet having an axis of rotation that is the same as the axis of rotation of the insulating body, and magnetized with opposite poles at its two axial ends; and an annular magnet coaxially surrounding the cylindrical magnet, magnetized with opposite poles at its two axial ends such that a top axial end has a magnetic polarity that is opposite to the magnetic polarity of a top axial end of the cylindrical magnet. The ionizing gas source is a tubular plenum that has been curved into a substantially annular shape, positioned above the top axial end of the annular magnet such that the plenum is centered in a ring-shaped cusp of the magnetic field generated by the magnets. The plenum has one or more capillary-like orifices spaced around its top such that an ionizing gas supplied through the plenum is sprayed through the one or more orifices. The plenum is electrically conductive and is positively charged relative to the cathode electron source such that the plenum functions as the anode; and the cathode is positioned above and radially outward relative to the plenum.

  15. Compact photoacoustic tomography system

    NASA Astrophysics Data System (ADS)

    Kalva, Sandeep Kumar; Pramanik, Manojit

    2017-03-01

    Photoacoustic tomography (PAT) is a non-ionizing biomedical imaging modality which finds applications in brain imaging, tumor angiogenesis, monitoring of vascularization, breast cancer imaging, monitoring of oxygen saturation levels etc. Typical PAT systems uses Q-switched Nd:YAG laser light illumination, single element large ultrasound transducer (UST) as detector. By holding the UST in horizontal plane and moving it in a circular motion around the sample in full 2π radians photoacoustic data is collected and images are reconstructed. The horizontal positioning of the UST make the scanning radius large, leading to larger water tank and also increases the load on the motor that rotates the UST. To overcome this limitation, we present a compact photoacoustic tomographic (ComPAT) system. In this ComPAT system, instead of holding the UST in horizontal plane, it is held in vertical plane and the photoacoustic waves generated at the sample are detected by the UST after it is reflected at 45° by an acoustic reflector attached to the transducer body. With this we can reduce the water tank size and load on the motor, thus overall PAT system size can be reduced. Here we show that with the ComPAT system nearly similar PA images (phantom and in vivo data) can be obtained as that of the existing PAT systems using both flat and cylindrically focused transducers.

  16. Matrix Algebra.

    DTIC Science & Technology

    1998-06-01

    on courses being taught at NPS. LIST OF REFERENCES [1] Anton , Howard , Elementary Linear Algebra , John Wiley and Sons, New York, New York, 1994...and computational techniques for solving systems of linear equations. The goal is to enhance current matrix algebra textbooks and help the beginning... algebra is the study of algebraic operations on matrices and of their applications, primarily for solving systems of linear equations. Systems of

  17. Expression, purification and subunit-binding properties of cohesins 2 and 3 of the Clostridium thermocellum cellulosome.

    PubMed

    Yaron, S; Morag, E; Bayer, E A; Lamed, R; Shoham, Y

    1995-02-27

    The enzymatic subunits of the cellulosome of Clostridium thermocellum are integrated into the complex by a major non-catalytic polypeptide, called scaffoldin. Its numerous functional domains include a single cellulose-binding domain (CBD) and nine subunit-binding domains, or cohesin domains. Two of the cohesin domains, together with the adjacent CBD, have been cloned and expressed in Escherichia coli, and the recombinant constructs were purified by affinity chromatography on a cellulosic matrix. Both cohesin domains, which differ by about 30% in their primary structure, showed a similar binding profile to the cellulosomal subunits. Calcium ions enhanced dramatically this binding. Under the conditions of the assay, only one major catalytic subunit of the cellulosome failed to bind to either cohesin domain. The results indicate a lack of selectivity in the binding of cohesin domains to the catalytic subunits and also suggest that additional mechanisms may be involved in cellulosome assembly.

  18. Bubble migration in a compacting crystal-liquid mush

    NASA Astrophysics Data System (ADS)

    Boudreau, Alan

    2016-04-01

    Recent theoretical models have suggested that bubbles are unlikely to undergo significant migration in a compaction crystal mush by capillary invasion while the system remains partly molten. To test this, experiments of bubble migration during compaction in a crystal-liquid mush were modeled using deformable foam crystals in corn syrup in a volumetric burette, compacted with rods of varying weights. A bubble source was provided by sodium bicarbonate (Alka-Seltzer®). Large bubbles (>several crystal sizes) are pinched by the compacting matrix and become overpressured and deformed as the bubbles experience a load change from hydrostatic to lithostatic. Once they begin to move, they move much faster than the compaction-driven liquid. Bubbles that are about the same size as the crystals but larger than the narrower pore throats move by deformation or breaking into smaller bubbles as they are forced through pore restrictions. Bubbles that are less than the typical pore diameter generally move with the liquid: The liquid + bubble mixture behaves as a single phase with a lower density than the bubble-free liquid, and as a consequence it rises faster than bubble-free liquid and allows for faster compaction. The overpressure required to force a bubble through the matrix (max grain size = 5 mm) is modest, about 5 %, and it is estimated that for a grain size of 1 mm, the required overpressure would be about 25 %. Using apatite distribution in a Stillwater olivine gabbro as an analog for bubble nucleation and growth, it is suggested that relatively large bubbles initially nucleate and grow in liquid-rich channels that develop late in the compaction history. Overpressure from compaction allows bubbles to rise higher into hotter parts of the crystal pile, where they redissolve and increase the volatile content of the liquid over what it would have without the bubble migration, leading to progressively earlier vapor saturation during crystallization of the interstitial liquid

  19. Compactness of lateral shearing interferometers

    NASA Astrophysics Data System (ADS)

    Ferrec, Yann; Taboury, Jean; Sauer, Hervé; Chavel, Pierre

    2011-08-01

    Imaging lateral shearing interferometers are good candidates for airborne or spaceborne Fourier-transform spectral imaging. For such applications, compactness is one key parameter. In this article, we compare the size of four mirror-based interferometers, the Michelson interferometer with roof-top (or corner-cube) mirrors, and the cyclic interferometers with two, three, and four mirrors, focusing more particularly on the last two designs. We give the expression of the translation they induce between the two exiting rays. We then show that the cyclic interferometer with three mirrors can be made quite compact. Nevertheless, the Michelson interferometer is the most compact solution, especially for highly diverging beams.

  20. Compactness of lateral shearing interferometers.

    PubMed

    Ferrec, Yann; Taboury, Jean; Sauer, Hervé; Chavel, Pierre

    2011-08-10

    Imaging lateral shearing interferometers are good candidates for airborne or spaceborne Fourier-transform spectral imaging. For such applications, compactness is one key parameter. In this article, we compare the size of four mirror-based interferometers, the Michelson interferometer with roof-top (or corner-cube) mirrors, and the cyclic interferometers with two, three, and four mirrors, focusing more particularly on the last two designs. We give the expression of the translation they induce between the two exiting rays. We then show that the cyclic interferometer with three mirrors can be made quite compact. Nevertheless, the Michelson interferometer is the most compact solution, especially for highly diverging beams.

  1. Compaction managed mirror bend achromat

    DOEpatents

    Douglas, David [Yorktown, VA

    2005-10-18

    A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.

  2. Role of the Rubisco Small Subunit

    SciTech Connect

    Spreitzer, Robert Joseph

    2016-11-05

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis. However, it is a slow enzyme, and O2 competes with CO2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO2. If carboxylation could be increased or oxygenation decreased, an increase in net CO2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants, and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO2/O2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a

  3. Compact, Reliable EEPROM Controller

    NASA Technical Reports Server (NTRS)

    Katz, Richard; Kleyner, Igor

    2010-01-01

    A compact, reliable controller for an electrically erasable, programmable read-only memory (EEPROM) has been developed specifically for a space-flight application. The design may be adaptable to other applications in which there are requirements for reliability in general and, in particular, for prevention of inadvertent writing of data in EEPROM cells. Inadvertent writes pose risks of loss of reliability in the original space-flight application and could pose such risks in other applications. Prior EEPROM controllers are large and complex and do not provide all reasonable protections (in many cases, few or no protections) against inadvertent writes. In contrast, the present controller provides several layers of protection against inadvertent writes. The controller also incorporates a write-time monitor, enabling determination of trends in the performance of an EEPROM through all phases of testing. The controller has been designed as an integral subsystem of a system that includes not only the controller and the controlled EEPROM aboard a spacecraft but also computers in a ground control station, relatively simple onboard support circuitry, and an onboard communication subsystem that utilizes the MIL-STD-1553B protocol. (MIL-STD-1553B is a military standard that encompasses a method of communication and electrical-interface requirements for digital electronic subsystems connected to a data bus. MIL-STD- 1553B is commonly used in defense and space applications.) The intent was to both maximize reliability while minimizing the size and complexity of onboard circuitry. In operation, control of the EEPROM is effected via the ground computers, the MIL-STD-1553B communication subsystem, and the onboard support circuitry, all of which, in combination, provide the multiple layers of protection against inadvertent writes. There is no controller software, unlike in many prior EEPROM controllers; software can be a major contributor to unreliability, particularly in fault

  4. Compact Holographic Data Storage

    NASA Technical Reports Server (NTRS)

    Chao, T. H.; Reyes, G. F.; Zhou, H.

    2001-01-01

    NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.

  5. Compact Star Time Scales

    NASA Astrophysics Data System (ADS)

    Swank, J. H.

    1996-12-01

    A major goal of RXTE is to investigate the fastest timing signals from compact stars, especially neutron stars and black holes. Signals have now been found from many (at least nine) low mass X-ray binaries containing neutron stars in the frequency range (100-1200 Hz) expected for the rotation period of the neutron star after being spun up by accretion over a long period. The kilohertz frequency domain for these sources is simpler than the domain of oscillations below about 50 Hz in that a few isolated features can dominate over white noise. However there are three main features to consider (not all present at the same time) and at least two are quasiperiodic with varying widths and frequencies. Several models are pitting their predictions against the behavior of these features, but the bursters, especially, appear to be revealing the neutron stars's spin. It is consistent with our beliefs that no black hole candidate has shown the same complex of signals, although at least one QPO frequency of a few hundred Hz could be expected in black hole candidates by analogy to the 67 Hz observed from GRS 1915+105. The observations also provide critical tests of the interpretions of the lower frequency (5-50 Hz) QPO and the variable noise seen in both low magnetic field neutron stars and black hole candidates. The kilohertz features have not been seen from the accreting pulsars with relatively high magnetic fields, but high luminosity pulsars (such as last year's transient, GRO J1744-28) reveal signatures of the dynamic interaction between the accretion flow, the magnetic field, and perhaps the neutron star surface in addition to their coherent pulsations.

  6. Meltwater percolation and refreezing in compacting snow

    NASA Astrophysics Data System (ADS)

    Meyer, Colin; Hewitt, Ian

    2016-11-01

    Meltwater is produced on the surface of glaciers and ice sheets when the seasonal surface energy forcing warms the ice above its melting temperature. This meltwater percolates through the porous snow matrix and potentially refreezes, thereby warming the surrounding ice by the release of latent heat. Here we model this process from first principles using a continuum model. We determine the internal ice temperature and glacier surface height based on the surface forcing and the accumulation of snow. When the surface temperature exceeds the melting temperature, we compute the amount of meltwater produced and lower the glacier surface accordingly. As the meltwater is produced, we solve for its percolation through the snow. Our model results in traveling regions of meltwater with sharp fronts where refreezing occurs. We also allow the snow to compact mechanically and we analyze the interplay of compaction with meltwater percolation. We compare these models to observations of the temperature and porosity structure of the surface of glaciers and ice sheets and find excellent agreement. Our models help constrain the role that meltwater percolation and refreezing will have on ice-sheet mass balance and hence sea level. Thanks to the 2016 WHOI GFD Program, which is supported by the National Science Foundation and the Office of Naval Research.

  7. Improving compact gravity inversion based on new weighting functions

    NASA Astrophysics Data System (ADS)

    Ghalehnoee, Mohammad Hossein; Ansari, Abdolhamid; Ghorbani, Ahmad

    2016-11-01

    We have developed a method to estimate the geometry, location and densities of anomalies coming from two-dimensional gravity data based on compact gravity inversion technique. Compact gravity inversion is simple, fast and user friendly but severely depends on the number of model parameters, i.e. by increasing the model parameters, the anomalies tend to concentrate near the surface. To overcome this ambiguity new weighting functions based on density contrast, depth, and compactness models have been introduced. Variable compactness factors have been defined here to get either a sharp or a smooth model based on the depth of the source or existence of prior information. Depth weighting derived from one station of gravity data whereas the effect of gravity data is two- and three-dimensional. To compensate this limitation an innovating weighting function namely kernel function has been introduced which multiplies with weight and compactness matrixes to yield a general model weighting function. The method is tested using three different sets of synthetic examples: a body at various depths (20, 40, 80 and 140 m), two bodies at the same depth but various distances to estimate lateral resolution and three bodies with negative and positive density contrast in different depths. The method is also applied to three real gravity data of Woodlawn massive sulfide body, sulfides mineralization of British Colombia and iron ore body of Missouri. The method produces solutions consistent with the known geologic attributes of the gravity sources, illustrating its potential practicality.

  8. Improving compact gravity inversion using new weighting functions

    NASA Astrophysics Data System (ADS)

    Ghalehnoee, Mohammad Hossein; Ansari, Abdolhamid; Ghorbani, Ahmad

    2017-01-01

    We have developed a method to estimate the geometry, location and densities of anomalies coming from 2-D gravity data based on compact gravity inversion technique. Compact gravity inversion is simple, fast and user friendly but severely depends on the number of model parameters, that is, by increasing the model parameters, the anomalies tend to concentrate near the surface. To overcome this ambiguity new weighting functions based on density contrast, depth, and compactness models have been introduced. Variable compactness factors have been defined here to get either a sharp or a smooth model based on the depth of the source or existence of prior information. Depth weighting derived from one station of gravity data whereas the effect of gravity data is 2-D and 3-D. To compensate this limitation an innovating weighting function namely kernel function has been introduced which multiplies with weight and compactness matrixes to yield a general model weighting function. The method is tested using three different sets of synthetic examples: a body at various depths (20, 40, 80 and 140 m), two bodies at the same depth but various distances to estimate lateral resolution and three bodies with negative and positive density contrast in different depths. The method is also applied to three real gravity data of Woodlawn massive sulphide body, sulphides mineralization of British Colombia and iron ore body of Missouri. The method produces solutions consistent with the known geologic attributes of the gravity sources, illustrating its potential practicality.

  9. 28 CFR 51.6 - Political subunits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All...

  10. What Is Business's Social Compact?

    ERIC Educational Resources Information Center

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  11. What Is Business's Social Compact?

    ERIC Educational Resources Information Center

    Avishai, Bernard

    1994-01-01

    Under the "new" social compact, businesses must focus on continuous learning and thus have both an obligation to support teaching and an opportunity to profit from it. Learning organizations must also be teaching organizations. (SK)

  12. An isolated compact galaxy triplet

    NASA Astrophysics Data System (ADS)

    Feng, Shuai; Shao, Zheng-Yi; Shen, Shi-Yin; Argudo-Fernández, Maria; Wu, Hong; Lam, Man-I.; Yang, Ming; Yuan, Fang-Ting

    2016-05-01

    We report the discovery of an isolated compact galaxy triplet SDSS J084843.45+164417.3, which is first detected by the LAMOST spectral survey and then confirmed by a spectroscopic observation of the BFOSC mounted on the 2.16 meter telescope located at Xinglong Station, which is administered by National Astronomical Observatories, Chinese Academy of Sciences. It is found that this triplet is an isolated and extremely compact system, which has an aligned configuration and very small radial velocity dispersion. The member galaxies have similar colors and show marginal star formation activities. These results support the opinion that the compact triplets are well-evolved systems rather than hierarchically forming structures. This serendipitous discovery reveals the limitations of fiber spectral redshift surveys in studying such a compact system, and demonstrates the necessity of additional observations to complete the current redshift sample.

  13. Compact Shelving Ten Years Later.

    ERIC Educational Resources Information Center

    Morris, Leslie R.

    1998-01-01

    Discusses experiences at the Niagara University Library with compact shelving. Highlights include citations to other relevant articles; patron use; selection of vendor; reliability; possible problems; and installation considerations, such as floor-load requirements. (LRW)

  14. A compact rotary vane attenuator

    NASA Technical Reports Server (NTRS)

    Nixon, D. L.; Otosh, T. Y.; Stelzried, C. T.

    1969-01-01

    Rotary vane attenuator, when used as a front end attenuator, introduces an insertion loss that is proportional to the angle of rotation. New technique allows the construction of a shortened compact unit suitable for most installations.

  15. Compact Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1988-01-01

    Longitudinal pumping by laser diodes increases efficiency. Improved holmium:yttrium lithium fluoride laser radiates as much as 56 mW of power at wavelength of 2.1 micrometer. New Ho:YLF laser more compact and efficient than older, more powerful devices of this type. Compact, efficient Ho:YLF laser based on recent successes in use of diode lasers to pump other types of solid-state lasers.

  16. Spectroscopic properties of Callinectes sapidus hemocyanin subunits

    NASA Astrophysics Data System (ADS)

    Stoeva, Stanka; Dolashka, Pavlina; Bankov, Banko; Voelter, Wolfgang; Salvato, Benedeto; Genov, Nicolay

    1995-10-01

    The two major subunits of the Callinectes sapidus hemocyanin were isolated and characterized by spectroscopic techniques. They consist of 641 and 652 residues, respectively. Circular dichroism spectra showed that the structural integrity of the isolated polypeptide chains is preserved. Tryptophan fluorescence parameters were determined for the hemocyanin aggregates and for the subunits Cs1 and Cs2. The emitting tryptophyl fluorophores in the native hemocyanin are deeply buried in hydrophobic regions and are shielded from the solvent by the quaternary structure of the protein aggregates. In two subunits, obtained after dissociation of the aggregates, these residues become "exposed". It is concluded that the tryptophyl side chains in Cs1 and Cs2 are located in subunit interfaces (contact regions) in a negatively charged environment when the polypeptide chains are aggregated. Most probably they participate in hydrophobic protein-protein interactions. The environment of these fluorophores is more negatively charged after the dissociation of the aggregates to subunits.

  17. Ricin and Ricinus communis agglutinin subunits are all derived from a single-size polypeptide precursor.

    PubMed

    Butterworth, A G; Lord, J M

    1983-12-01

    Antibodies have been raised in rabbits against the individually purified A and B subunits of the toxic castor bean lectin, ricin, and against the A' and B' subunits of Ricinus communis agglutinin type I. Each of the antisera recognised a single polypeptide species of Mr 60 500 when maturing castor bean endosperm mRNA was translated in vitro in a rabbit-reticulocyte-derived system. When dog pancreatic microsomal vesicles were included in the translational system, each subunit antiserum precipitated a group of 66 000-68 000-Mr core-glycosylated polypeptides which had been translocated into the lumen of the vesicles. The 60 500-Mr polypeptide appeared to be a common precursor to all four individual lectin subunits since (a) its glycosylated (66 000-68 000-Mr) forms were readily detected in the endoplasmic reticulum fraction isolated from maturing castor bean endosperm and (b) pulse-chase studies showed that the glycosylated precursors disappeared from the endoplasmic reticulum fraction with the concomittant appearance of authentic lectin subunits in a soluble protein fraction which included protein body matrix components. Antiserum prepared against whole R. communis agglutinin, type I, also precipitated the 65 000-Mr precursor in vitro and in vivo, but in addition precipitated a non-glycosylated 34 000-Mr polypeptide. This smaller protein is not a lectin subunit precursor, contradicting an earlier suggestion. It is most probably a precursor to the 2-S albumin storage proteins found in castor bean endosperm protein bodies.

  18. Wheat gluten: high molecular weight glutenin subunits--structure, genetics, and relation to dough elasticity.

    PubMed

    Anjum, Faqir Muhammad; Khan, Moazzam Rafiq; Din, Ahmad; Saeed, Muhammad; Pasha, Imran; Arshad, Muhammad Umair

    2007-04-01

    Gluten proteins, representing the major protein fraction of the starchy endosperm, are predominantly responsible for the unique position of wheat amongst cereals. These form a continuous proteinaceous matrix in the cells of the mature dry grain and form a continuous viscoelastic network during the mixing process of dough development. These viscoelastic properties underline the utilization of wheat to prepare bread and other wheat flour based foodstuffs. One group of gluten proteins is glutenin, which consists of high molecular weight (HMW) and low molecular weight (LMW) subunits. The HMW glutenin subunits (HMW-GS) are particularly important for determining dough elasticity. The common wheat possesses 3 to 5 HMW subunits encoded at the Glu-1 loci on the long arms of group 1 chromosomes (1A, 1B, and 1D). The presence of certain HMW subunits is positively correlated with good bread-making quality. Glutamine-rich repetitive sequences that comprise the central part of the HMW subunits are actually responsible for the elastic properties due to extensive arrays of interchain hydrogen bonds. Genetic engineering can be used to manipulate the amount and composition of the HMW subunits, leading to either increased dough strength or more drastic changes in gluten structure and properties.

  19. Compaction with automatic jog introduction

    NASA Astrophysics Data System (ADS)

    Maley, F. M.

    1985-10-01

    A novel polynomial-time algorithm for compacting a VLSI layout is presented. Compared to previous algorithms, the algorithm promises to produce higher quality output while reducing the need for designer intervention. The performance gain is realized by converting wires into constraints on the positions of the active devices. These constraints can be solved by graph-theoretic techniques to yield optimal positions for chip components. A single-layer router is then used to restore the wires to the layout, using as many as jogs as necessary. An automated compaction procedure is an effective tool for cutting production costs of a VLSI circuit at low cost to the designer, because the yield of fabricated chips is strongly dependent on the total circuit area. Sect 1 is an introduction. Sect 2 states the definitions and theoretical results that underlie the new compaction method. Sect 3 shows how the circuit layout is converted to a data structure appropriate for compaction, and Sect 4 details the body of the compaction algorithm. Sect 5 covers several improvements to the algorithm that should make it run considerably faster. Sect 6 comments on the algorithms of results, and a discussion of the practical value of the compaction algorithm.

  20. Compact Optoelectronic Compass

    NASA Technical Reports Server (NTRS)

    Christian, Carl

    2004-01-01

    A compact optoelectronic sensor unit measures the apparent motion of the Sun across the sky. The data acquired by this chip are processed in an external processor to estimate the relative orientation of the axis of rotation of the Earth. Hence, the combination of this chip and the external processor finds the direction of true North relative to the chip: in other words, the combination acts as a solar compass. If the compass is further combined with a clock, then the combination can be used to establish a threeaxis inertial coordinate system. If, in addition, an auxiliary sensor measures the local vertical direction, then the resulting system can determine the geographic position. This chip and the software used in the processor are based mostly on the same design and operation as those of the unit described in Micro Sun Sensor for Spacecraft (NPO-30867) elsewhere in this issue of NASA Tech Briefs. Like the unit described in that article, this unit includes a small multiple-pinhole camera comprising a micromachined mask containing a rectangular array of microscopic pinholes mounted a short distance in front of an image detector of the active-pixel sensor (APS) type (see figure). Further as in the other unit, the digitized output of the APS in this chip is processed to compute the centroids of the pinhole Sun images on the APS. Then the direction to the Sun, relative to the compass chip, is computed from the positions of the centroids (just like a sundial). In the operation of this chip, one is interested not only in the instantaneous direction to the Sun but also in the apparent path traced out by the direction to the Sun as a result of rotation of the Earth during an observation interval (during which the Sun sensor must remain stationary with respect to the Earth). The apparent path of the Sun across the sky is projected on a sphere. The axis of rotation of the Earth lies at the center of the projected circle on the sphere surface. Hence, true North (not magnetic

  1. The herpes zoster subunit vaccine.

    PubMed

    Cunningham, Anthony L

    2016-01-01

    Herpes zoster (HZ) causes severe pain and rash in older people and may be complicated by prolonged pain (postherpetic neuralgia; PHN). HZ results from reactivation of latent varicella-zoster virus (VZV) infection, often associated with age related or other causes of decreased T cell immunity. A concentrated live attenuated vaccine boosts this immunity and provides partial protection against HZ, but this decreases with age and declines over 5-8 years. The new HZ subunit (HZ/su or Shingrix) vaccine combines a key surface VZV glycoprotein (E) with T cell boosting adjuvant (AS01B). It is highly efficacious in protection (97%) against HZ in immunocompetent subjects, with no decline in advancing age and protection maintained for >3 years. Phase I-II trials showed safety and similar immunogenicity in severely immunocompromised patients. Local injection site pain and swelling can be severe in a minority (9.5%) but is transient (2 days). The HZ/su vaccine appears very promising in immunocompetent patients in the ZoE-50 controlled trial. The unblinding of the current ZoE-50 trial and publication of results from the accompanying ZoE-70 trial will reveal more about its mechanism of action and its efficacy against PHN, particularly in subjects >70 years. Phase III trial results in immunocompromised patients are eagerly awaited.

  2. High strength-high conductivity Cu--Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, John D.; Spitzig, William A.; Gibson, Edwin D.; Anderson, Iver E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.

  3. High strength-high conductivity Cu-Fe composites produced by powder compaction/mechanical reduction

    DOEpatents

    Verhoeven, J.D.; Spitzig, W.A.; Gibson, E.D.; Anderson, I.E.

    1991-08-27

    A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an ''in-situ'' Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite. 5 figures.

  4. [Co-expression of beta-subunit with other subunits of Qbeta replicase].

    PubMed

    Wang, Dong

    2004-12-01

    In researches involving in vitro protein synthesis and self-replication system, Qbeta replicase is one of the key enzymes, which are demanded for the high availability. Qbeta replicase is a RNA-dependent RNA polymerase of Qbeta coliphage. It consists of four subunits (alpha, beta, gamma, and delta subunit), where the beta-subunit is encoded by the viral genome, while the other three subunits are host proteins normally involved in protein synthesis, namely, ribosomal protein S1 (alpha), elongation factors EF-Tu (gamma) and EF-Ts (delta). To increase the production of the Qbeta replicase holoenzyme, several types of expression vectors, including pKK, pET and others, were employed to produce Qbeta replicase. However, the beta-subunit was almost in the precipitate fraction. Considering that the four subunits of Qbeta replicase holoenzyme are in equivalent molar ratio and the amount of the subunits, ribosomal S1 and EF-Ts, being produced by the host cells is relatively low, co-expression of beta-subunit with the other three subunits was performed to know whether the availability of the host subunits is the contributing factor for the solubility of the Qbeta replicase. pBAD33-rep was constructed by cloning the beta-subunit gene into pBAD 33, a pACYC derivative, and pET21a(+) was employed as expression vector for the three other subunits. Among the different combinations of co-expression experiments, solubility was found to slightly increase by SDS-PAGE analysis when the beta-subunit was co-expressed with EF-Tu-Ts. And the replicase activity assay showed this soluble enzyme is in active form. The expression of beta-subunit was enhanced by decreasing the level of inducer IPTG in co-expression, and more soluble enzyme were obtained.

  5. Natural examples of Valdivia compact spaces

    NASA Astrophysics Data System (ADS)

    Kalenda, Ondrej F. K.

    2008-04-01

    We collect examples of Valdivia compact spaces, their continuous images and associated classes of Banach spaces which appear naturally in various branches of mathematics. We focus on topological constructions generating Valdivia compact spaces, linearly ordered compact spaces, compact groups, L1 spaces, Banach lattices and noncommutative L1 spaces.

  6. Subunit mass analysis for monitoring antibody oxidation

    PubMed Central

    Sokolowska, Izabela; Mo, Jingjie; Dong, Jia; Lewis, Michael J.; Hu, Ping

    2017-01-01

    ABSTRACT Methionine oxidation is a common posttranslational modification (PTM) of monoclonal antibodies (mAbs). Oxidation can reduce the in-vivo half-life, efficacy and stability of the product. Peptide mapping is commonly used to monitor the levels of oxidation, but this is a relatively time-consuming method. A high-throughput, automated subunit mass analysis method was developed to monitor antibody methionine oxidation. In this method, samples were treated with IdeS, EndoS and dithiothreitol to generate three individual IgG subunits (light chain, Fd’ and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit were quantitated based on the deconvoluted mass spectra using the UNIFI software. The oxidation results obtained by subunit mass analysis correlated well with the results obtained by peptide mapping. Method qualification demonstrated that this subunit method had excellent repeatability and intermediate precision. In addition, UNIFI software used in this application allows automated data acquisition and processing, which makes this method suitable for high-throughput process monitoring and product characterization. Finally, subunit mass analysis revealed the different patterns of Fc methionine oxidation induced by chemical and photo stress, which makes it attractive for investigating the root cause of oxidation. PMID:28106519

  7. Subunit mass analysis for monitoring antibody oxidation.

    PubMed

    Sokolowska, Izabela; Mo, Jingjie; Dong, Jia; Lewis, Michael J; Hu, Ping

    2017-04-01

    Methionine oxidation is a common posttranslational modification (PTM) of monoclonal antibodies (mAbs). Oxidation can reduce the in-vivo half-life, efficacy and stability of the product. Peptide mapping is commonly used to monitor the levels of oxidation, but this is a relatively time-consuming method. A high-throughput, automated subunit mass analysis method was developed to monitor antibody methionine oxidation. In this method, samples were treated with IdeS, EndoS and dithiothreitol to generate three individual IgG subunits (light chain, Fd' and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit were quantitated based on the deconvoluted mass spectra using the UNIFI software. The oxidation results obtained by subunit mass analysis correlated well with the results obtained by peptide mapping. Method qualification demonstrated that this subunit method had excellent repeatability and intermediate precision. In addition, UNIFI software used in this application allows automated data acquisition and processing, which makes this method suitable for high-throughput process monitoring and product characterization. Finally, subunit mass analysis revealed the different patterns of Fc methionine oxidation induced by chemical and photo stress, which makes it attractive for investigating the root cause of oxidation.

  8. Compact intracloud discharges

    NASA Astrophysics Data System (ADS)

    Smith, David Adam

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackbeard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackbeard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackbeard observations. On two occasions, the ground-based systems and Blackbeard even recorded emissions that were produced by the same exact events. From the ground-based observations, it has been determined that TIPP events are produced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDs, an acronym for compact intracloud discharges. During the summer of 1996, ground- based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDs. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDs were recorded from three

  9. Compact Intracloud Discharges

    SciTech Connect

    Smith, David A.

    1998-11-01

    In November of 1993, mysterious signals recorded by a satellite-borne broadband VHF radio science experiment called Blackboard led to a completely unexpected discovery. Prior to launch of the ALEXIS satellite, it was thought that its secondary payload, Blackboard, would most often detect the radio emissions from lightning when its receiver was not overwhelmed by noise from narrowband communication carriers. Instead, the vast majority of events that triggered the instrument were isolated pairs of pulses that were one hundred times more energetic than normal thunderstorm electrical emissions. The events, which came to be known as TIPPs (for transionospheric pulse pairs), presented a true mystery to the geophysics community. At the time, it was not even known whether the events had natural or anthropogenic origins. After two and one half years of research into the unique signals, two ground-based receiver arrays in New Mexico first began to detect and record thunderstorm radio emissions that were consistent with the Blackboard observations. On two occasions, the ground-based systems and Blackboard even recorded emissions that were produced by the same exact events. From the ground based observations, it has been determined that TIPP events areproduced by brief, singular, isolated, intracloud electrical discharges that occur in intense regions of thunderstorms. These discharges have been dubbed CIDS, an acronym for compact intracloud discharges. During the summer of 1996, ground-based receiver arrays were used to record the electric field change signals and broadband HF emissions from hundreds of CIDS. Event timing that was accurate to within a few microseconds made possible the determination of source locations using methods of differential time of arrival. Ionospheric reflections of signals were recorded in addition to groundwave/line-of-sight signals and were used to determine accurate altitudes for the discharges. Twenty-four CIDS were recorded from three

  10. Mechanical and microstructural characterization of Al7075/SiC nanocomposites fabricated by dynamic compaction

    NASA Astrophysics Data System (ADS)

    Atrian, A.; Majzoobi, G. H.; Enayati, M. H.; Bakhtiari, H.

    2014-03-01

    This paper describes the synthesis of Al7075 metal matrix composites reinforced with SiC, and the characterization of their microstructure and mechanical behavior. The mechanically milled Al7075 micron-sized powder and SiC nanoparticles are dynamically compacted using a drop hammer device. This compaction is performed at different temperatures and for various volume fractions of SiC nanoparticles. The relative density is directly related to the compaction temperature rise and indirectly related to the content of SiC nanoparticle reinforcement, respectively. Furthermore, increasing the amount of SiC nanoparticles improves the strength, stiffness, and hardness of the compacted specimens. The increase in hardness and strength may be attributed to the inherent hardness of the nanoparticles, and other phenomena such as thermal mismatch and crack shielding. Nevertheless, clustering of the nanoparticles at aluminum particle boundaries make these regions become a source of concentrated stress, which reduces the load carrying capacity of the compacted nanocomposite.

  11. Coupled compaction driven fluid flow and mechanical deformation in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Huismans, R. S.

    2012-12-01

    Model experiments will be presented where compaction driven fluid flow is coupled to the viscous-plastic deformation of the skeleton matrix. The Darcy fluid flow during compaction is described by an advection-diffusion equation for the excess pressure with two source/sink terms that depend on the mechanical compressibility and viscous compaction of the pore space, the latter representing the effect of pressure solution. The coupling between the compacting and plastically deforming parts of the system is through the Drucker-Prager frictional-plastic yield criterion, so that the yield strength depends on the effective dynamical pressure. The coupled system is solved using a two-dimensional (2-D) finite element method. Several problems are solved to demonstrate the coupling between compaction driven fluid flow and mechanical deformation.

  12. Viral RNAs Are Unusually Compact

    PubMed Central

    Gopal, Ajaykumar; Egecioglu, Defne E.; Yoffe, Aron M.; Ben-Shaul, Avinoam; Rao, Ayala L. N.; Knobler, Charles M.; Gelbart, William M.

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly. PMID:25188030

  13. Viral RNAs are unusually compact.

    PubMed

    Gopal, Ajaykumar; Egecioglu, Defne E; Yoffe, Aron M; Ben-Shaul, Avinoam; Rao, Ayala L N; Knobler, Charles M; Gelbart, William M

    2014-01-01

    A majority of viruses are composed of long single-stranded genomic RNA molecules encapsulated by protein shells with diameters of just a few tens of nanometers. We examine the extent to which these viral RNAs have evolved to be physically compact molecules to facilitate encapsulation. Measurements of equal-length viral, non-viral, coding and non-coding RNAs show viral RNAs to have among the smallest sizes in solution, i.e., the highest gel-electrophoretic mobilities and the smallest hydrodynamic radii. Using graph-theoretical analyses we demonstrate that their sizes correlate with the compactness of branching patterns in predicted secondary structure ensembles. The density of branching is determined by the number and relative positions of 3-helix junctions, and is highly sensitive to the presence of rare higher-order junctions with 4 or more helices. Compact branching arises from a preponderance of base pairing between nucleotides close to each other in the primary sequence. The density of branching represents a degree of freedom optimized by viral RNA genomes in response to the evolutionary pressure to be packaged reliably. Several families of viruses are analyzed to delineate the effects of capsid geometry, size and charge stabilization on the selective pressure for RNA compactness. Compact branching has important implications for RNA folding and viral assembly.

  14. The elastic behavior of ductile and compacted graphite cast irons

    NASA Astrophysics Data System (ADS)

    Metzloff, Kyle Eric

    The elastic modulus of ductile iron and compacted graphite iron is difficult to measure due to a non-linear stress/strain relationship. The elastic region of the stress/strain diagram may not be linear as in Hooke's law, though the specimen exhibits pure elasticity. The curvature in the stress-strain relationship is caused by energy loss in the complex interaction between the graphite nodule and the matrix. The non-linear nature of the stress strain diagram of ductile and compacted graphite iron is explained by the mechanism of solid friction, which has been developed for gray cast iron. A method for accurately determining the zero modulus is proposed, investigated, and correlated to the microstructure. Multi-factor linear regression analysis was used to correlate microstructure, physical, and chemical properties to the elastic modulus; therefore, the elastic modulus can be predicted from microstructural, physical, and chemical data. The significant factors in the regression equation were density, nodularity percentage, and copper content. The effect of copper was found to play a role in determining the elastic modulus and this is contrary to the literature available. The exact mechanism by which the modulus is decreased is not fully understood, but the elastic modulus of the iron was lowered by up to 1 x 106 psi due to the effect of copper. The hysteresis loop of the stress/strain diagram was studied for tension-compression relationships considering the microstructure, stress level, and heat treatment. The surface area in contact with the nodule/matrix interface is proportional to the hysteresis width and this in turn is proportional to the damping capacity of the iron. The data supported the solid friction mechanism for the non-linear stress/strain relationship of ductile and compacted graphite iron. The effects of heat treatment on the density and the nodule/matrix interface were studied in detail. When normalizing ductile or compacted graphite iron the transfer

  15. Structural organization of mitochondrial human complex I: role of the ND4 and ND5 mitochondria-encoded subunits and interaction with prohibitin.

    PubMed

    Bourges, Ingrid; Ramus, Claire; Mousson de Camaret, Bénédicte; Beugnot, Réjane; Remacle, Claire; Cardol, Pierre; Hofhaus, Götz; Issartel, Jean-Paul

    2004-11-01

    Mitochondria-encoded ND (NADH dehydrogenase) subunits, as components of the hydrophobic part of complex I, are essential for NADH:ubiquinone oxidoreductase activity. Mutations or lack of expression of these subunits have significant pathogenic consequences in humans. However, the way these events affect complex I assembly is poorly documented. To understand the effects of particular mutations in ND subunits on complex I assembly, we studied four human cell lines: ND4 non-expressing cells, ND5 non-expressing cells, and rho degrees cells that do not express any ND subunits, in comparison with normal complex I control cells. In control cells, all the seven analysed nuclear-encoded complex I subunits were found to be attached to the mitochondrial inner membrane, except for the 24 kDa subunit, which was nearly equally partitioned between the membranes and the matrix. Absence of a single ND subunit, or even all the seven ND subunits, caused no major changes in the nuclear-encoded complex I subunit content of mitochondria. However, in cells lacking ND4 or ND5, very low amounts of 24 kDa subunit were found associated with the membranes, whereas most of the other nuclear-encoded subunits remained attached. In contrast, membrane association of most of the nuclear subunits was significantly reduced in the absence of all seven ND proteins. Immunopurification detected several subcomplexes. One of these, containing the 23, 30 and 49 kDa subunits, also contained prohibitin. This is the first description of prohibitin interaction with complex I subunits and suggests that this protein might play a role in the assembly or degradation of mitochondrial complex I.

  16. Structural organization of mitochondrial human complex I: role of the ND4 and ND5 mitochondria-encoded subunits and interaction with prohibitin

    PubMed Central

    2004-01-01

    Mitochondria-encoded ND (NADH dehydrogenase) subunits, as components of the hydrophobic part of complex I, are essential for NADH:ubiquinone oxidoreductase activity. Mutations or lack of expression of these subunits have significant pathogenic consequences in humans. However, the way these events affect complex I assembly is poorly documented. To understand the effects of particular mutations in ND subunits on complex I assembly, we studied four human cell lines: ND4 non-expressing cells, ND5 non-expressing cells, and rho° cells that do not express any ND subunits, in comparison with normal complex I control cells. In control cells, all the seven analysed nuclear-encoded complex I subunits were found to be attached to the mitochondrial inner membrane, except for the 24 kDa subunit, which was nearly equally partitioned between the membranes and the matrix. Absence of a single ND subunit, or even all the seven ND subunits, caused no major changes in the nuclear-encoded complex I subunit content of mitochondria. However, in cells lacking ND4 or ND5, very low amounts of 24 kDa subunit were found associated with the membranes, whereas most of the other nuclear-encoded subunits remained attached. In contrast, membrane association of most of the nuclear subunits was significantly reduced in the absence of all seven ND proteins. Immunopurification detected several subcomplexes. One of these, containing the 23, 30 and 49 kDa subunits, also contained prohibitin. This is the first description of prohibitin interaction with complex I subunits and suggests that this protein might play a role in the assembly or degradation of mitochondrial complex I. PMID:15250827

  17. Functional and structural properties of ion channels at the nerve terminal depends on compact myelin.

    PubMed

    Berret, Emmanuelle; Kim, Sei Eun; Lee, Seul Yi; Kushmerick, Christopher; Kim, Jun Hee

    2016-10-01

    In the present study, we document the role of compact myelin in regulating the structural and functional properties of ion channels at the nerve terminals, using electrophysiology, dynamic Na(+) imaging and immunohistochemistry. The subcellular segregation of Na(+) channel expression and intracellular Na(+) dynamics at the heminode and terminal was lost in the dysmyelinated axon from Long-Evans shaker rats, which lack compact myelin. In Long-Evans shaker rats, loss of the Nav β4 subunit specifically at the heminode reduced resurgent and persistent Na(+) currents, whereas K(+) channel expression and currents were increased. The results of the present study suggest that there is a specific role for compact myelin in dictating protein expression and function at the axon heminode and in regulating excitability of the nerve terminal. Axon myelination increases the conduction velocity and precision of action potential propagation. Although the negative effects of demyelination are generally attributed to conduction failure, accumulating evidence suggests that myelination also regulates the structural properties and molecular composition of the axonal membrane. In the present study, we investigated how myelination affects ion channel expression and function, particularly at the last axon heminode before the nerve terminal, which regulates the presynaptic excitability of the nerve terminal. We compared the structure and physiology of normal axons and those of the Long-Evans shaker (LES) rat, which lacks compact myelin. The normal segregation of Na(+) channel expression and dynamics at the heminode and terminal was lost in the LES rat. Specifically, NaV -α subunits were dispersed and NaV β4 subunit was absent, whereas the density of K(+) channels was increased at the heminode. Correspondingly, resurgent and persistent Na(+) currents were reduced and K(+) current was increased. Taken together, these data suggest a specific role for compact myelin in the orchestration of

  18. Functional and structural properties of ion channels at the nerve terminal depends on compact myelin

    PubMed Central

    Berret, Emmanuelle; Kim, Sei Eun; Lee, Seul Yi; Kushmerick, Christopher

    2016-01-01

    Key points In the present study, we document the role of compact myelin in regulating the structural and functional properties of ion channels at the nerve terminals, using electrophysiology, dynamic Na+ imaging and immunohistochemistry.The subcellular segregation of Na+ channel expression and intracellular Na+ dynamics at the heminode and terminal was lost in the dysmyelinated axon from Long–Evans shaker rats, which lack compact myelin.In Long–Evans shaker rats, loss of the Navβ4 subunit specifically at the heminode reduced resurgent and persistent Na+ currents, whereas K+ channel expression and currents were increased.The results of the present study suggest that there is a specific role for compact myelin in dictating protein expression and function at the axon heminode and in regulating excitability of the nerve terminal. Abstract Axon myelination increases the conduction velocity and precision of action potential propagation. Although the negative effects of demyelination are generally attributed to conduction failure, accumulating evidence suggests that myelination also regulates the structural properties and molecular composition of the axonal membrane. In the present study, we investigated how myelination affects ion channel expression and function, particularly at the last axon heminode before the nerve terminal, which regulates the presynaptic excitability of the nerve terminal. We compared the structure and physiology of normal axons and those of the Long–Evans shaker (LES) rat, which lacks compact myelin. The normal segregation of Na+ channel expression and dynamics at the heminode and terminal was lost in the LES rat. Specifically, NaV‐α subunits were dispersed and NaVβ4 subunit was absent, whereas the density of K+ channels was increased at the heminode. Correspondingly, resurgent and persistent Na+ currents were reduced and K+ current was increased. Taken together, these data suggest a specific role for compact myelin in the orchestration

  19. Compaction Stress in Fine Powders

    SciTech Connect

    Hurd, A.J.; Kenkre, V.M.; Pease, E.A.; Scott, J.E.

    1999-04-01

    A vexing feature in granular materials compaction is density extrema interior to a compacted shape. Such inhomogeneities can lead to weaknesses and loss of dimensional control in ceramic parts, unpredictable dissolution of pharmaceuticals, and undesirable stress concentration in load-bearing soil. As an example, the centerline density in a cylindrical compact often does not decrease monotonically from the pressure source but exhibits local maxima and minima. Two lines of thought in the literature predict, respectively, diffusive and wavelike propagation of stress. Here, a general memory function approach has been formulated that unifies these previous treatments as special cases; by analyzing a convenient intermediate case, the telegrapher's equation, one sees that local density maxima arise via semidiffusive stress waves reflecting from the die walls and adding constructively at the centerline.

  20. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  1. Gene targeting of CK2 catalytic subunits

    PubMed Central

    Lou, David Y.; Toselli, Paul; Landesman-Bollag, Esther; Dominguez, Isabel

    2013-01-01

    Protein kinase CK2 is a highly conserved and ubiquitous serine–threonine kinase. It is a tetrameric enzyme that is made up of two regulatory CK2β subunits and two catalytic subunits, either CK2α/CK2α, CK2α/ CK2α′, or CK2α′/CK2α′. Although the two catalytic subunits diverge in their C termini, their enzymatic activities are similar. To identify the specific function of the two catalytic subunits in development, we have deleted them individually from the mouse genome by homologous recombination. We have previously reported that CK2α′is essential for male germ cell development, and we now demonstrate that CK2α has an essential role in embryogenesis, as mice lacking CK2α die in mid-embryogenesis, with cardiac and neural tube defects. PMID:18594950

  2. Multipass matrix systems for diode laser spectroscope

    NASA Astrophysics Data System (ADS)

    Chernin, Semen M.

    1996-02-01

    Several modifications of multipass matrix systems (MMS) with a large relative aperture have been developed to be applied in diode laser spectroscopy. In these systems the images are formed on the field mirrors as compact rectangular matrices with a controlled amount of lines and columns. The number of passes may reach 600-1000 for mirrors with high-reflectivity layers (in three- and four-objective systems, respectively). In four-objective systems the error arising in the position of the previous odd image is compensated each time when images with even numbers are formed in the matrix. Moreover, four-objective systems provide the double superimposition of images in the matrix, resulting in a longer path length. Having a simple construction matrix systems ensure high optical and performance parameters. To improve performance characteristics of a matrix system operating under high vibration conditions (systems installed on aircraft or helicopter, etc.) a new promising variation of a four-objective matrix system was developed. Exit images of this modification are totally insensitive to vibrations. Matrix systems with a large angular aperture were developed for special applications with high resolution IR diode laser spectrometers. In view of their capacities, matrix systems are the new generation multipass systems.

  3. Compact monolithic capacitive discharge unit

    DOEpatents

    Roesler, Alexander W.; Vernon, George E.; Hoke, Darren A.; De Marquis, Virginia K.; Harris, Steven M.

    2007-06-26

    A compact monolithic capacitive discharge unit (CDU) is disclosed in which a thyristor switch and a flyback charging circuit are both sandwiched about a ceramic energy storage capacitor. The result is a compact rugged assembly which provides a low-inductance current discharge path. The flyback charging circuit preferably includes a low-temperature co-fired ceramic transformer. The CDU can further include one or more ceramic substrates for enclosing the thyristor switch and for holding various passive components used in the flyback charging circuit. A load such as a detonator can also be attached directly to the CDU.

  4. Compact accelerator for medical therapy

    DOEpatents

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  5. Compact Chern-Simons vortices

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.

    2017-09-01

    We introduce and investigate new models of the Chern-Simons type in the three-dimensional spacetime, focusing on the existence of compact vortices. The models are controlled by potentials driven by a single real parameter that can be used to change the profile of the vortex solutions as they approach their boundary values. One of the models unveils an interesting new behavior, the tendency to make the vortex compact, as the parameter increases to larger and larger values. We also investigate the behavior of the energy density and calculate the total energy numerically.

  6. Compact intermediates in RNA folding

    SciTech Connect

    Woodson, S.A.

    2011-12-14

    Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.

  7. Compressibility Characteristics of Compacted Snow

    DTIC Science & Technology

    1976-06-01

    Cornpressibility characteristics 7Jj i C’p of compacted snowifAG2� 004 t Cover: ~ ~ ~ ~ ~ ~ ~ ~ a - Thn***o htgrp fpoyrsaliekAmgife i ote rm...nwcmrse to7 asa 10 Phtgahb nhn Gow1 CRREL Report 76-21 Compressibility characteristics of compacted snow %i" Gunars Abele and Anthony J. Cow I ~ June 1976 A ...c , I fu. A AD,:j ly M3rs CORPS OF ENGINEERS, U.S. ARMY COLD REGIONS RESEARCH AND ENGINEERZ]NG LABORATORY HANOVER, NEW HAMPSHIRE Approved for public

  8. Anthranilate synthase subunit organization in Chromobacterium violaceum.

    PubMed

    Carminatti, C A; Oliveira, I L; Recouvreux, D O S; Antônio, R V; Porto, L M

    2008-09-16

    Tryptophan is an aromatic amino acid used for protein synthesis and cellular growth. Chromobacterium violaceum ATCC 12472 uses two tryptophan molecules to synthesize violacein, a secondary metabolite of pharmacological interest. The genome analysis of this bacterium revealed that the genes trpA-F and pabA-B encode the enzymes of the tryptophan pathway in which the first reaction is the conversion of chorismate to anthranilate by anthranilate synthase (AS), an enzyme complex. In the present study, the organization and structure of AS protein subunits from C. violaceum were analyzed using bioinformatics tools available on the Web. We showed by calculating molecular masses that AS in C. violaceum is composed of alpha (TrpE) and beta (PabA) subunits. This is in agreement with values determined experimentally. Catalytic and regulatory sites of the AS subunits were identified. The TrpE and PabA subunits contribute to the catalytic site while the TrpE subunit is involved in the allosteric site. Protein models for the TrpE and PabA subunits were built by restraint-based homology modeling using AS enzyme, chains A and B, from Salmonella typhimurium (PDB ID 1I1Q).

  9. Compaction dynamics of crunchy granular material

    NASA Astrophysics Data System (ADS)

    Guillard, François; Golshan, Pouya; Shen, Luming; Valdès, Julio R.; Einav, Itai

    2017-06-01

    Compaction of brittle porous material leads to a wide variety of densification patterns. Static compaction bands occurs naturally in rocks or bones, and have important consequences in industry for the manufacturing of powder tablets or metallic foams for example. Recently, oscillatory compaction bands have been observed in brittle porous media like snow or cereals. We will discuss the great variety of densification patterns arising during the compaction of puffed rice, including erratic compaction at low velocity, one or several travelling compaction bands at medium velocity and homogeneous compaction at larger velocity. The conditions of existence of each pattern are studied thanks to a numerical spring lattice model undergoing breakage and is mapped to the phase diagram of the patterns based on dimensionless characteristic quantities. This also allows to rationalise the evolution of the compaction behaviour during a single test. Finally, the localisation of compaction bands is linked to the strain rate sensitivity of the material.

  10. Classification of radiating compact stars

    NASA Technical Reports Server (NTRS)

    Coppi, B.; Treves, A.

    1971-01-01

    A classification of compact stars, depending on the electron distribution in velocity space and the density profiles characterizing their magnetospheric plasma, is proposed. Fast pulsars, such as NP 0532, X-ray sources such as Sco-X1, and slow pulsars are suggested as possible evolutionary stages of similar objects. The heating mechanism of Sco-X1 is discussed in some detail.

  11. Compact Photon Source Conceptual Design

    SciTech Connect

    Degtyarenko, Pavel V.; Wojtsekhowski, Bogdan B.

    2016-04-01

    We describe options for the production of an intense photon beam at the CEBAF Hall D Tagger facility, needed for creating a high-quality secondary K 0 L delivered to the Hall D detector. The conceptual design for the Compact Photon Source apparatus is presented.

  12. The Compact Project: Final Report.

    ERIC Educational Resources Information Center

    National Alliance of Business, Inc., Washington, DC.

    The National Alliance of Business (NAB) surveyed the 12 sites that participated in the Compact Project to develop and implement programs of business-education collaboration. NAB studied start-up activities, key players, conditions for collaboration, accomplishments, challenges, and future plans. Program outcomes indicated that building successful…

  13. Upwind Compact Finite Difference Schemes

    NASA Astrophysics Data System (ADS)

    Christie, I.

    1985-07-01

    It was shown by Ciment, Leventhal, and Weinberg ( J. Comput. Phys.28 (1978), 135) that the standard compact finite difference scheme may break down in convection dominated problems. An upwinding of the method, which maintains the fourth order accuracy, is suggested and favorable numerical results are found for a number of test problems.

  14. Compact CFB: The next generation CFB boiler

    SciTech Connect

    Utt, J.

    1996-12-31

    The next generation of compact circulating fluidized bed (CFB) boilers is described in outline form. The following topics are discussed: compact CFB = pyroflow + compact separator; compact CFB; compact separator is a breakthrough design; advantages of CFB; new design with substantial development history; KUHMO: successful demo unit; KUHMO: good performance over load range with low emissions; KOKKOLA: first commercial unit and emissions; KOKKOLA: first commercial unit and emissions; compact CFB installations; next generation CFB boiler; grid nozzle upgrades; cast segmented vortex finders; vortex finder installation; ceramic anchors; pre-cast vertical bullnose; refractory upgrades; and wet gunning.

  15. Crystal structure of the C-terminal domain of the RAP74 subunit of human transcription factor IIF

    SciTech Connect

    Kamada, Katsuhiko; De Angelis, Jacqueline; Roeder, Robert G.; Burley, Stephen K.

    2012-12-13

    The x-ray structure of a C-terminal fragment of the RAP74 subunit of human transcription factor (TF) IIF has been determined at 1.02-{angstrom} resolution. The {alpha}/{beta} structure is strikingly similar to the globular domain of linker histone H5 and the DNA-binding domain of hepatocyte nuclear factor 3{gamma} (HNF-3{gamma}), making it a winged-helix protein. The surface electrostatic properties of this compact domain differ significantly from those of bona fide winged-helix transcription factors (HNF-3{gamma} and RFX1) and from the winged-helix domains found within the RAP30 subunit of TFIIF and the {beta} subunit of TFIIE. RAP74 has been shown to interact with the TFIIF-associated C-terminal domain phosphatase FCP1, and a putative phosphatase binding site has been identified within the RAP74 winged-helix domain.

  16. Comment on: `Improving compact gravity inversion based on new weighting functions', by Mohammad Hossein Ghalehnoee, Abdolhamid Ansari and Ahmad Ghorbani

    NASA Astrophysics Data System (ADS)

    Vatankhah, Saeed; Renaut, Rosemary A.

    2017-10-01

    The recent paper of Ghalehnoee et al., `Improving compact gravity inversion based on new weighting functions', discusses weighting functions for the compact inversion of gravity data. We studied the paper with great interest but deduced that the paper presents minor changes to already published methods. In the manuscript, the model weighting function is the product of three diagonal matrices, that is, a depth weighting matrix, a compactness constraint and a scaling matrix. The authors claim that the scaling matrix is new and introduce the notation `kernel weighting'. Based on our knowledge and understanding of the ideas, not only all the matrix weighting matrices have been used before but also their combination has been used in many published research papers. Here we explain why we believe that the ideas in Ghalehnoee et al. are not new.

  17. Protein synthesis by ribosomes with tethered subunits.

    PubMed

    Orelle, Cédric; Carlson, Erik D; Szal, Teresa; Florin, Tanja; Jewett, Michael C; Mankin, Alexander S

    2015-08-06

    The ribosome is a ribonucleoprotein machine responsible for protein synthesis. In all kingdoms of life it is composed of two subunits, each built on its own ribosomal RNA (rRNA) scaffold. The independent but coordinated functions of the subunits, including their ability to associate at initiation, rotate during elongation, and dissociate after protein release, are an established model of protein synthesis. Furthermore, the bipartite nature of the ribosome is presumed to be essential for biogenesis, since dedicated assembly factors keep immature ribosomal subunits apart and prevent them from translation initiation. Free exchange of the subunits limits the development of specialized orthogonal genetic systems that could be evolved for novel functions without interfering with native translation. Here we show that ribosomes with tethered and thus inseparable subunits (termed Ribo-T) are capable of successfully carrying out protein synthesis. By engineering a hybrid rRNA composed of both small and large subunit rRNA sequences, we produced a functional ribosome in which the subunits are covalently linked into a single entity by short RNA linkers. Notably, Ribo-T was not only functional in vitro, but was also able to support the growth of Escherichia coli cells even in the absence of wild-type ribosomes. We used Ribo-T to create the first fully orthogonal ribosome-messenger RNA system, and demonstrate its evolvability by selecting otherwise dominantly lethal rRNA mutations in the peptidyl transferase centre that facilitate the translation of a problematic protein sequence. Ribo-T can be used for exploring poorly understood functions of the ribosome, enabling orthogonal genetic systems, and engineering ribosomes with new functions.

  18. Compaction measurements on cores from the Pleasant Bayou wells

    SciTech Connect

    Jogi, P.N.; Gray, K.E.; Ashman, T.R.; Thompson, T.W.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    Additional measurements of compressibility, compaction coefficients, porosities, permeabilities, and resistivities have been conducted on cores from Pleasant Bayou wells No. 1 and No. 2. All rock parameters show non-linear behavior with changing reservoir or pore pressure, which is of interest in modelling reservoir performance and subsidence. Compressibilities and uniaxial compaction coefficients decline by a factor of 2 to 3 as reservoir pressure declines from geopressured to normal hydrostatic conditions. Porosity reductions are 6 to 8% while permeability reductions are on the order of 10 to 30% over that reservoir pressure range. Measured formation factors were 2 to 4 times log derived values for F. Matrix compressibilities were not insignificant relative to bulk compressibilities.

  19. Drosophila laminin: sequence of B2 subunit and expression of all three subunits during embryogenesis

    PubMed Central

    1989-01-01

    In a previous study, we described the cloning of the genes encoding the three subunits of Drosophila laminin, a substrate adhesion molecule, and the cDNA sequence of the B1 subunit (Montell and Goodman, 1988). This analysis revealed the similarity of Drosophila laminin with the mouse and human complexes in subunit composition, domain structure, and amino acid sequence. In this paper, we report the deduced amino acid sequence of the B2 subunit. We then describe the expression and tissue distribution of the three subunits of laminin during Drosophila embryogenesis using both in situ hybridization and immunolocalization techniques, with particular emphasis on its expression in and around the developing nervous system. PMID:2808533

  20. Invariant distributions on compact homogeneous spaces

    SciTech Connect

    Gorbatsevich, V V

    2013-12-31

    In this paper, we study distributions on compact homogeneous spaces, including invariant distributions and also distributions admitting a sub-Riemannian structure. We first consider distributions of dimension 1 and 2 on compact homogeneous spaces. After this, we study the cases of compact homogeneous spaces of dimension 2, 3, and 4 in detail. Invariant distributions on simply connected compact homogeneous spaces are also treated. Bibliography: 18 titles.

  1. On the spline-based wavelet differentiation matrix

    NASA Technical Reports Server (NTRS)

    Jameson, Leland

    1993-01-01

    The differentiation matrix for a spline-based wavelet basis is constructed. Given an n-th order spline basis it is proved that the differentiation matrix is accurate of order 2n + 2 when periodic boundary conditions are assumed. This high accuracy, or superconvergence, is lost when the boundary conditions are no longer periodic. Furthermore, it is shown that spline-based bases generate a class of compact finite difference schemes.

  2. High-Accuracy Compact MacCormack-Type Schemes for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Turkel, E.

    1998-01-01

    Using MacCormack-type methods, a new class of highly accurate compact MacCormack-type schemes is derived which does not require a tridiagonal matrix inversion to obtain the spatial derivatives. Two examples are shown, and results of these schemes for three linear and nonlinear CAA Benchmark Problems are presented.

  3. Heat-Transfer and Friction Factor Design Data for All-Metal Compact Heat Exchangers

    DTIC Science & Technology

    1989-03-01

    modeled as a "matrix," similar to a porous media , but the correlation parameters generated didn’t describe the system correctly. Finally, the plate...40. 3. WI.M. Kays, and A.L. London, Compact Heat Exchangers, ?nd Edition, McGraw Hill, New York, 1964. 4. McAdams, Heat Transmision , 3rd Edition

  4. Compact Ocean Models Enable Onboard AUV Autonomy and Decentralized Adaptive Sampling

    DTIC Science & Technology

    2010-09-30

    observed variables and state variable in an NPZD model of Monterey Bay. Multivariate coupling was characterized by the state covariance matrix computed...large phytoplankton stocks in a numerical model . Our analysis also highlighted the need to better characterize zooplankton stocks in an NPZD model ...DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Compact Ocean Models Enable Onboard AUV Autonomy and

  5. Compact lanthanum hexaboride hollow cathode.

    PubMed

    Goebel, Dan M; Watkins, Ronald M

    2010-08-01

    A compact lanthanum hexaboride hollow cathode has been developed for space applications where size and mass are important and research and industrial applications where access for implementation might be limited. The cathode design features a refractory metal cathode tube that is easily manufactured, mechanically captured orifice and end plates to eliminate expensive e-beam welding, graphite sleeves to provide a diffusion boundary to protect the LaB6 insert from chemical reactions with the refractory metal tube, and several heater designs to provide long life. The compact LaB(6) hollow cathode assembly including emitter, support tube, heater, and keeper electrode is less than 2 cm in diameter and has been fabricated in lengths of 6-15 cm for different applications. The cathode has been operated continuously at discharge currents of 5-60 A in xenon. Slightly larger diameter versions of this design have operated at up to 100 A of discharge current.

  6. Marginally compact hyperbranched polymer trees.

    PubMed

    Dolgushev, M; Wittmer, J P; Johner, A; Benzerara, O; Meyer, H; Baschnagel, J

    2017-03-29

    Assuming Gaussian chain statistics along the chain contour, we generate by means of a proper fractal generator hyperbranched polymer trees which are marginally compact. Static and dynamical properties, such as the radial intrachain pair density distribution ρpair(r) or the shear-stress relaxation modulus G(t), are investigated theoretically and by means of computer simulations. We emphasize that albeit the self-contact density diverges logarithmically with the total mass N, this effect becomes rapidly irrelevant with increasing spacer length S. In addition to this it is seen that the standard Rouse analysis must necessarily become inappropriate for compact objects for which the relaxation time τp of mode p must scale as τp ∼ (N/p)(5/3) rather than the usual square power law for linear chains.

  7. Rapid compaction during RNA folding

    NASA Astrophysics Data System (ADS)

    Russell, Rick; Millett, Ian S.; Tate, Mark W.; Kwok, Lisa W.; Nakatani, Bradley; Gruner, Sol M.; Mochrie, Simon G. J.; Pande, Vijay; Doniach, Sebastian; Herschlag, Daniel; Pollack, Lois

    2002-04-01

    We have used small angle x-ray scattering and computer simulations with a coarse-grained model to provide a time-resolved picture of the global folding process of the Tetrahymena group I RNA over a time window of more than five orders of magnitude. A substantial phase of compaction is observed on the low millisecond timescale, and the overall compaction and global shape changes are largely complete within one second, earlier than any known tertiary contacts are formed. This finding indicates that the RNA forms a nonspecifically collapsed intermediate and then searches for its tertiary contacts within a highly restricted subset of conformational space. The collapsed intermediate early in folding of this RNA is grossly akin to molten globule intermediates in protein folding.

  8. Dynamics of compact homogeneous universes

    SciTech Connect

    Tanimoto, M.; Koike, T.; Hosoya, A.

    1997-01-01

    A complete description of dynamics of compact locally homogeneous universes is given, which, in particular, includes explicit calculations of Teichm{umlt u}ller deformations and careful counting of dynamical degrees of freedom. We regard each of the universes as a simply connected four-dimensional space{endash}time with identifications by the action of a discrete subgroup of the isometry group. We then reduce the identifications defined by the space{endash}time isometries to ones in a homogeneous section, and find a condition that such spatial identifications must satisfy. This is essential for explicit construction of compact homogeneous universes. Some examples are demonstrated for Bianchi II, VI{sub 0}, VII{sub 0}, and I universal covers. {copyright} {ital 1997 American Institute of Physics.}

  9. Cold compaction of water ice

    NASA Astrophysics Data System (ADS)

    Durham, William B.; McKinnon, William B.; Stern, Laura A.

    2005-09-01

    Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (~0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering.

  10. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  11. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, Vance A.; Ward, Michael B.

    1989-01-01

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observation means including film and video cameras may be used to view and record the resultant fringe patterns.

  12. Compact magnetic energy storage module

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

  13. COMB: Compact embedded object simulations

    NASA Astrophysics Data System (ADS)

    McEwen, Jason D.

    2016-06-01

    COMB supports the simulation on the sphere of compact objects embedded in a stochastic background process of specified power spectrum. Support is provided to add additional white noise and convolve with beam functions. Functionality to support functions defined on the sphere is provided by the S2 code (ascl:1606.008); HEALPix (ascl:1107.018) and CFITSIO (ascl:1010.001) are also required.

  14. Compact magnetic energy storage module

    DOEpatents

    Prueitt, M.L.

    1994-12-20

    A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

  15. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  16. Compaction of Global Data Fields

    DTIC Science & Technology

    1990-05-01

    AD- A225 856 Naval Oceanographic and Technical Note 27 Atmospheric Research Laboratory May 1990 nC II FILF Copy Compaction of Global Data Fields A. H...IU 0 Ij P\\ I -’ as - -O - - YrŘ 5/ ii Ch Cc I 4" IIJ /1 1 att, 14 o c qu 0 in 64 low Ln u Ln U Ln LLJ KA E0 U-j u odd LD x 0 LL- cr - -1 Ap 0 Ln 00

  17. Nuclear Physics for Compact Stars

    SciTech Connect

    Baldo, M.

    2009-05-04

    A brief overview is given of the different lines of research developed under the INFN project 'Compact Stellar Objects and Dense Hadronic Matter' (acronym CT51). The emphasis of the project is on the structure of Neutron Stars (NS) and related objects. Starting from crust, the different Nuclear Physics problems are described which are encountered going inside a NS down to its inner core. The theoretical challenges and the observational inputs are discussed in some detail.

  18. Compact optical microfiber phase modulator.

    PubMed

    Zhang, Xueliang; Belal, M; Chen, G Y; Song, Zhangqi; Brambilla, G; Newson, T P

    2012-02-01

    A compact optical microfiber phase modulator with MHz bandwidth is presented. A micrometer-diameter microfiber is wound on a millimeter-diameter piezoelectric ceramic rod with two electrodes. When a voltage is applied to the piezoelectric ceramic, the rod is strained, leading to a phase change along the microfiber; because of the small size, the optical microfiber phase modulator can have as high as a few MHz bandwidth response.

  19. Compact portable diffraction moire interferometer

    DOEpatents

    Deason, V.A.; Ward, M.B.

    1988-05-23

    A compact and portable moire interferometer used to determine surface deformations of an object. The improved interferometer is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent wave splitters, and collimating lenses directing the split beam at one or more specimen gratings. Observations means including film and video cameras may be used to view and record the resultant fringe patterns. 7 figs.

  20. Optimized subunit vaccine protects against experimental leishmaniasis

    PubMed Central

    Bertholet, Sylvie; Goto, Yasuyuki; Carter, Lauren; Bhatia, Ajay; Howard, Randall F.; Carter, Darrick; Coler, Rhea N.; Vedvick, Thomas S.; Reed, Steven G.

    2009-01-01

    Development of a protective subunit vaccine against Leishmania spp. depends on antigens and adjuvants that induce appropriate immune responses. We evaluated a second generation polyprotein antigen (Leish-110f) in different adjuvant formulations for immunogenicity and protective efficacy against Leishmania spp. challenges. Vaccine-induced protection was associated with antibody and T cell responses to Leish-110f. CD4 T cells were the source of IFN-γ, TNF, and IL-2 double and triple positive populations. This study establishes the immunogenicity and protective efficacy of the improved Leish-110f subunit vaccine antigen adjuvanted with natural (MPL-SE) or synthetic (EM005) Toll-like receptor 4 agonists. PMID:19786136

  1. Optimized subunit vaccine protects against experimental leishmaniasis.

    PubMed

    Bertholet, Sylvie; Goto, Yasuyuki; Carter, Lauren; Bhatia, Ajay; Howard, Randall F; Carter, Darrick; Coler, Rhea N; Vedvick, Thomas S; Reed, Steven G

    2009-11-23

    Development of a protective subunit vaccine against Leishmania spp. depends on antigens and adjuvants that induce appropriate immune responses. We evaluated a second generation polyprotein antigen (Leish-110f) in different adjuvant formulations for immunogenicity and protective efficacy against Leishmania spp. challenges. Vaccine-induced protection was associated with antibody and T cell responses to Leish-110f. CD4 T cells were the source of IFN-gamma, TNF, and IL-2 double- and triple-positive populations. This study establishes the immunogenicity and protective efficacy of the improved Leish-110f subunit vaccine antigen adjuvanted with natural (MPL-SE) or synthetic (EM005) Toll-like receptor 4 agonists.

  2. Compaction with automatic jog introduction

    NASA Astrophysics Data System (ADS)

    Maley, F. M.

    1986-05-01

    This thesis presents an algorithm for one-dimensional compaction of VLSI layouts. It differs from older methods in treating wires not as objects to be moved, but as constraints on the positions of other circuit components. These constraints are determined for each wiring layer using the theory of planar routing. Assuming that the wiring layers can be treated independently, the algorithm minimizes the width of a layout, automatically inserting as many jogs in wires as necessary. It runs in time 0(n4) on input of size n. Several heuristics are suggested for improving the algorithm's practical performance. The compaction algorithm takes as input a data structure called a sketch, which explicitly distinguishes between flexible components (wires) and rigid components (modules). The algorithm first finds constraints on the positions of modules that ensure enough space is left for wires. Next, it solves the system of constraints by a standard graph-theoretic technique, obtaining a placement for the modules. It then relies on a single-layer router to restore the wires to each circuit layer. An efficient single-layer router is already known; it is able to minimize the length of every wire, though not the number of jogs. As given, the compaction algorithm applies only to a VLSI model that requires wires to run a rectilinear grid. This restriction is needed only because the theory of planar routing (and single-layer routers) has not yet been extended to other models.

  3. Compact Stellarator Path to DEMO

    NASA Astrophysics Data System (ADS)

    Lyon, J. F.

    2007-11-01

    Issues for a DEMO reactor are sustaining an ignited/high-Q plasma in steady state, avoiding disruptions and large variations in power flux to the wall, adequate confinement of thermal plasma and alpha-particles, control of a burning plasma, particle and power handling, etc. Compact stellarators have key advantages -- steady-state high-plasma-density operation without external current drive or disruptions, stability without a close conducting wall or active feedback systems, and low recirculating power -- in addition to moderate plasma aspect ratio, good confinement, and high-beta potential. The ARIES-CS study established that compact stellarators can be competitive with tokamaks as reactors. Many of the issues for a compact stellarator DEMO can be answered using results from large tokamaks, ITER D-T experiments and fusion materials, technology and component development programs, in addition to stellarators in operation, under construction or in development. However, a large next-generation stellarator will be needed to address some physics issues: size scaling and confinement at higher parameters, burning plasma issues, and operation with a strongly radiative divertor. Technology issues include simpler coils, structure, and divertor fabrication, and better cost information.

  4. Molecular dynamics studies of the P pilus rod subunit PapA.

    PubMed

    Vitagliano, Luigi; Ruggiero, Alessia; Pedone, Carlo; Berisio, Rita

    2009-03-01

    Adhesion of uropathogenic Escherichia coli to host tissues is mediated by pili, which extend from the outer cell membrane of the bacterium. Here we report molecular dynamics (MD) characterizations of the major constituent of P pili from the uropathogenic E. coli, PapA, in unliganded state and in complex with the G1 strand of the chaperone PapD. To mimic the PapA response to the gradual dissociation of the PapD G1 strand and to evaluate the role of PapA chaperone recognition sites, we also carried out MD simulations of complexes of PapA with fragments of PapD G1 strand, that leave either the P4 or both P3 and P4 sites unoccupied. Data on the unbound form of PapA indicate that, upon release of the chaperone, PapA evolves toward compact states that are likely not prone to subunit-subunit association. In line with recent experimental reports, this finding implies that chaperone release and subunit-subunit association must be concerted. Our data also indicated that the gradual unbinding of the chaperone from the PapA groove has increasingly strong structural consequences. Indeed, the release of the chaperone from the site P4, which is closest to the initiation site (P5), does not have dramatic effects on the domain structure, whereas its release from both the P4 and the adjacent P3 sites induces a quick structural transition toward a collapsed state, where the subunit groove is obstructed.

  5. Subunits of phycoerythrin from Fremyella diplosiphon: chemical and immunochemical characterization.

    PubMed

    Takemoto, J; Bogorad, L

    1975-03-25

    The alpha and beta subunits of the phycobiliprotein, phycoerythrin, isolated from the filamentous blue-green alga, Fremyella diplosiphon, have been separated by chromatography on Bio-Rex 70 ion exchange resin. Analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis shows no detectable cross-contamination of these subunit preparations. The molar extinction coefficients at 552 nm of the alpha and beta subunits in 8 M urea are 25,549 and 48,456, respectively. The amino acid compositions of the subunits are very similar. Molecular weights of the alpha and beta subunits are 19,500 and 21,700, respectively, based on the amino acid composition analyses. Antisera prepared against the alpha subunit reacts with the beta subunit, and vice versa. Tryptic peptide maps reveal that the subunits share share at least eight common tryptic peptides. These results indicate that the phycoerythrin subunits are chemically very similar.

  6. Fluorescently tagged laminin subunits facilitate analyses of the properties, assembly and processing of laminins in live and fixed lung epithelial cells and keratinocytes.

    PubMed

    Hopkinson, Susan B; DeBiase, Phillip J; Kligys, Kristina; Hamill, Kevin; Jones, Jonathan C R

    2008-09-01

    Recent analyses of collagen, elastin and fibronectin matrix assembly, organization and remodeling have been facilitated by the use of tagged proteins that can be visualized without the need for antibody labeling. Here, we report the generation of C-terminal tagged, full-length and "processed" (alpha3DeltaLG4-5) human alpha3 as well as C-terminal tagged, full-length human beta3 laminin subunits in adenoviral vectors. Human epidermal keratinocytes (HEKs) and human bronchial epithelial (BEP2D) cells, which assemble laminin-332-rich matrices, as well as primary rat lung alveolar type II (ATII) cells, which elaborate a fibrous network rich in laminin-311, were infected with adenovirus encoding the tagged human laminin subunits. In HEKs and BEP2D cells, tagged, full-length alpha3, alpha3DeltaLG4-5 and beta3 laminin subunits incorporate into arrays of matrix organized into patterns that are comparable to those observed when such cells are stained using laminin-332 subunit antibody probes. Moreover, HEKs and BEP2Ds move over these tagged, laminin-332-rich matrix arrays. We have also used the tagged beta3 laminin subunit-containing matrices to demonstrate that assembled laminin-332 arrays influence laminin matrix secretion and/or assembly. In the case of rat ATII cells, although tagged alpha3 laminin subunits are not detected in the matrix of rat ATII cells infected with virus encoding full-length human alpha3 laminin protein, processed human alpha3 laminin subunits are incorporated into an extracellular fibrous array. We discuss how these novel laminin reagents can be used to study the organization, processing and assembly of laminin matrices and how they provide new insights into the potential functional importance of laminin fragments.

  7. Conditions for compaction bands in porous rock

    NASA Astrophysics Data System (ADS)

    Issen, K. A.; Rudnicki, J. W.

    2000-09-01

    Reexamination of the results of Rudnicki and Rice for shear localization reveals that solutions for compaction bands are possible in a range of parameters typical of porous rock. Compaction bands are narrow planar zones of localized compressive deformation perpendicular to the maximum compressive stress, which have been observed in high-porosity rocks in the laboratory and field. Solutions for compaction bands, as an alternative to homogenous deformation, are possible when the inelastic volume deformation is compactive and is associated with stress states on a yield surface "cap." The cap implies that the shear stress required for further inelastic deformation decreases with increasing compressive mean stress. While the expressions for the critical hardening modulus for compaction and shear bands differ, in both cases, deviations from normality promote band formation. Inelastic compaction deformation associated with mean stress (suggested by Aydin and Johnson) promotes localization by decreasing the magnitude of the critical hardening modulus. Axisymmetric compression is the most favorable deviatoric stress state for formation of compaction bands. Predictions for compaction bands suggest that they could form on the "shelf" typically observed in axisymmetric compression stress strain curves of porous rock at high confining stress. Either shear or compaction bands may occur depending on the stress path and confining stress. If the increase in local density and decrease in grain size associated with compaction band formation result in strengthening rather than weakening of the band material, formation of a compaction band may not preclude later formation of a shear band.

  8. Graphite matrix materials for nuclear waste isolation

    SciTech Connect

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept.

  9. Assignment of the gene encoding the [beta]-subunit of the electron-transfer flavoprotein (ETFB) to human chromosome 19q13. 3

    SciTech Connect

    Antonacci, R. ); Colombo, I.; Volta, M.; DiDonato, S.; Finocchiaro, G. ); Archidiacono, N.; Rocchi, M. )

    1994-01-01

    The electron-transfer flavoprotein (ETF), located in the mitochondrial matrix, is a nuclear-encoded enzyme delivering to the respiratory chain electrons by straight-chain acyl-CoA dehydrogenases and other dehydrogenases. ETF is composed of a 35-kDa [alpha]-subunit that is cleaved to a 32-kDa protein during mitochondrial import (ETFA) and a [beta]-subunit that reaches the mitochondrion unmodified (ETFB). The cDNA encoding both these subunits has been cloned and sequenced. 14 refs., 1 fig.

  10. Evaluation of Revised Manual Compaction Rammers and Laboratory Compaction Procedures.

    DTIC Science & Technology

    1983-09-01

    the test, however, the procedure was changed to allow the rammer to free-fall from 12 in. above the soil surface . 2. The American Association of State...1964 that ASTM revised their Methods D 698 and D 1557 to specifically provide for the use of a sector-shaped striking surface on mechanical compactors...to permit complete coverage of the soil surface when compacting in a 6-in.-diam mold. Objections to the use of the sector-shaped foot within the Corps

  11. The gamma subunit of transducin is farnesylated.

    PubMed Central

    Lai, R K; Perez-Sala, D; Cañada, F J; Rando, R R

    1990-01-01

    Protein prenylation with farnesyl or geranylgeranyl moieties is an important posttranslational modification that affects the activity of such diverse proteins as the nuclear lamins, the yeast mating factor mata, and the ras oncogene products. In this article, we show that whole retinal cultures incorporate radioactive mevalonic acid into proteins of 23-26 kDa and one of 8 kDa. The former proteins are probably the "small" guanine nucleotide-binding regulatory proteins (G proteins) and the 8-kDa protein is the gamma subunit of the well-studied retinal heterotrimeric G protein (transducin). After deprenylating purified transducin and its subunits with Raney nickel or methyl iodide/base, the adducted prenyl group can be identified as an all-trans-farnesyl moiety covalently linked to a cysteine residue. Thus far, prenylation reactions have been found to occur at cysteine in a carboxyl-terminal consensus CAAX sequence, where C is the cysteine, A is an aliphatic amino acid, and X is undefined. Both the alpha and gamma subunits of transducin have this consensus sequence, but only the gamma subunit is prenylated. Therefore, the CAAX motif is not necessary and sufficient to direct prenylation. Finally, since transducin is the best understood G protein, both structurally and mechanistically, the discovery that it is farnesylated should allow for a quantitative understanding of this post-translational modification. Images PMID:2217200

  12. Detection of constitutive heterodimerization of the integrin Mac-1 subunits by fluorescence resonance energy transfer in living cells

    SciTech Connect

    Fu Guo; Yang Huayan; Wang Chen; Zhang Feng; You Zhendong; Wang Guiying; He Cheng; Chen Yizhang . E-mail: yzchen0928@yahoo.com; Xu Zhihan . E-mail: zzxu@mail.shcnc.ac.cn

    2006-08-04

    Macrophage differentiation antigen associated with complement three receptor function (Mac-1) belongs to {beta}{sub 2} subfamily of integrins that mediate important cell-cell and cell-extracellular matrix interactions. Biochemical studies have indicated that Mac-1 is a constitutive heterodimer in vitro. Here, we detected the heterodimerization of Mac-1 subunits in living cells by means of two fluorescence resonance energy transfer (FRET) techniques (fluorescence microscopy and fluorescence spectroscopy) and our results demonstrated that there is constitutive heterodimerization of the Mac-1 subunits and this constitutive heterodimerization of the Mac-1 subunits is cell-type independent. Through FRET imaging, we found that heterodimers of Mac-1 mainly localized in plasma membrane, perinuclear, and Golgi area in living cells. Furthermore, through analysis of the estimated physical distances between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to Mac-1 subunits, we suggested that the conformation of Mac-1 subunits is not affected by the fusion of CFP or YFP and inferred that Mac-1 subunits take different conformation when expressed in Chinese hamster ovary (CHO) and human embryonic kidney (HEK) 293T cells, respectively.

  13. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  14. Compaction of Space Mission Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Pisharody, Suresh; Wignarajah, K.

    2004-01-01

    The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.

  15. The compact conformation of fibronectin is determined by intramolecular ionic interactions.

    PubMed

    Johnson, K J; Sage, H; Briscoe, G; Erickson, H P

    1999-05-28

    Fibronectin exists in a compact or extended conformation, depending upon environmental pH and salt concentration. Using recombinant fragments expressed in bacteria and baculovirus, we determined the domains responsible for producing fibronectin's compact conformation. Our velocity and equilibrium sedimentation data show that FN2-14 (a protein containing FN-III domains 2 through 14) forms dimers in low salt. Experiments with smaller fragments indicates that the compact conformation is produced by binding of FN12-14 of one subunit to FN2-3 of the other subunit in the dimer. The binding is weakened at higher salt concentrations, implying an electrostatic interaction. Furthermore, segment FN7-14+A, which contains the alternatively spliced A domain between FN11 and 12, forms dimers, whereas FN7-14 without A does not. Segment FN12-14+A also forms dimers, but the isolated A domain does not. These data imply an association of domain A with FN12-14, and the presence of A may favor an open conformation by competing with FN2-3 for binding to FN12-14.

  16. Comparison of Obturation Quality in Modified Continuous Wave Compaction, Continuous Wave Compaction, Lateral Compaction and Warm Vertical Compaction Techniques

    PubMed Central

    Aminsobhani, Mohsen; Ghorbanzadeh, Abdollah; Sharifian, Mohammad Reza; Namjou, Sara; Kharazifard, Mohamad Javad

    2015-01-01

    Objectives: The aim of this study was to introduce modified continuous wave compaction (MCWC) technique and compare its obturation quality with that of lateral compaction (LC), warm vertical compaction (WVC) and continuous wave compaction techniques (CWC). The obturation time was also compared among the four techniques. Materials and Methods: Sixty-four single-rooted teeth with 0–5° root canal curve and 64 artificially created root canals with 15° curves in acrylic blocks were evaluated. The teeth and acrylic specimens were each divided into four subgroups of 16 for testing the obturation quality of four techniques namely LC, WVC, CWC and MCWC. Canals were prepared using the Mtwo rotary system and filled with respect to their group allocation. Obturation time was recorded. On digital radiographs, the ratio of area of voids to the total area of filled canals was calculated using the Image J software. Adaptation of the filling materials to the canal walls was assessed at three cross-sections under a stereomicroscope (X30). Data were statistically analyzed using ANOVA, Tukey’s post hoc HSD test, the Kruskal Wallis test and t-test. Results: No significant difference existed in adaptation of filling materials to canal walls among the four subgroups in teeth samples (P ≥ 0.139); but, in artificially created canals in acrylic blocks, the frequency of areas not adapted to the canal walls was significantly higher in LC technique compared to MCWC (P ≤ 0.02). The void areas were significantly more in the LC technique than in other techniques in teeth (P < 0.001). The longest obturation time belonged to WVC technique followed by LC, CW and MCWC techniques (P<0.05). The difference between the artificially created canals in blocks and teeth regarding the obturation time was not significant (P = 0.41). Conclusion: Within the limitations of this in vitro study, MCWC technique resulted in better adaptation of gutta-percha to canal walls than LC at all cross-sections with

  17. Two Piece Compaction Die Design

    SciTech Connect

    Coffey, Ethan N

    2010-03-01

    Compaction dies used to create europium oxide and tantalum control plates were modeled using ANSYS 11.0. Two-piece designs were considered in order to make the dies easier to assemble than the five-piece dies that were previously used. The two areas of concern were the stresses at the interior corner of the die cavity and the distortion of the cavity wall due to the interference fit between the two pieces and the pressure exerted on the die during the compaction process. A successful die design would have stresses less than the yield stress of the material and a maximum wall distortion on the order of 0.0001 in. Design factors that were investigated include the inner corner radius, the value of the interference fit, the compaction force, the size of the cavity, and the outer radius and geometry of the outer ring. The results show that for the europium oxide die, a 0.01 in. diameter wire can be used to create the cavity, leading to a 0.0055 in. radius corner, if the radial interference fit is 0.003 in. For the tantalum die, the same wire can be used with a radial interference fit of 0.001 in. Also, for the europium oxide die with a 0.003 in. interference fit, it is possible to use a wire with a diameter of 0.006 in. for the wire burning process. Adding a 10% safety factor to the compaction force tends to lead to conservative estimates of the stresses but not for the wall distortion. However, when the 10% safety factor is removed, the wall distortion is not affected enough to discard the design. Finally, regarding the europium oxide die, when the cavity walls are increased by 0.002 in. per side or the outer ring is made to the same geometry as the tantalum die, all the stresses and wall distortions are within the desired range. Thus, the recommendation is to use a 0.006 in. diameter wire and a 0.003 in. interference fit for the europium oxide die and a 0.01 in. diameter wire and a 0.001 in. interference fit for the tantalum die. The dies can also be made to have the

  18. Compact objects in Horndeski gravity

    NASA Astrophysics Data System (ADS)

    Silva, Hector O.; Maselli, Andrea; Minamitsuji, Masato; Berti, Emanuele

    2016-04-01

    Horndeski gravity holds a special position as the most general extension of Einstein’s theory of general relativity (GR) with a single scalar degree of freedom and second-order field equations. Because of these features, Horndeski gravity is an attractive phenomenological playground to investigate the consequences of modifications of GR in cosmology and astrophysics. We present a review of the progress made so far in the study of compact objects (black holes (BHs) and neutron stars (NSs)) within Horndeski gravity. In particular, we review our recent work on slowly rotating BHs and present some new results on slowly rotating NSs.

  19. Compact Airborne Spectral Sensor (COMPASS)

    NASA Astrophysics Data System (ADS)

    Simi, Christopher G.; Winter, Edwin M.; Williams, Mary M.; Driscoll, David C.

    2001-08-01

    The COMPACT Airborne Spectral Sensor (COMPASS) design is intended to demonstrate a new design concept for solar reflective hyper spectral systems for the Government. Capitalizing from recent focal plane developments, the COMPASS system utilizes a single FPA to cover the 0.4-2.35micrometers spectral region. This system also utilizes an Offner spectrometer design as well as an electron etched lithography curved grating technology pioneered by NASA/JPL. This paper also discusses the technical trades, which drove the design selection of COMPASS. When completed, the core COMPASS spectrometer design could be used in a large variety of configurations on a variety of aircraft.

  20. Compact Radiometers Expand Climate Knowledge

    NASA Technical Reports Server (NTRS)

    2010-01-01

    To gain a better understanding of Earth's water, energy, and carbon cycles, NASA plans to embark on the Soil Moisture Active and Passive mission in 2015. To prepare, Goddard Space Flight Center provided Small Business Innovation Research (SBIR) funding to ProSensing Inc., of Amherst, Massachusetts, to develop a compact ultrastable radiometer for sea surface salinity and soil moisture mapping. ProSensing incorporated small, low-cost, high-performance elements into just a few circuit boards and now offers two lightweight radiometers commercially. Government research agencies, university research groups, and large corporations around the world are using the devices for mapping soil moisture, ocean salinity, and wind speed.

  1. Shock compaction of molybdenum powder

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  2. Exceptionally bright, compact starburst nucleus

    SciTech Connect

    Margon, B.; Anderson, S.F.; Mateo, M.; Fich, M.; Massey, P.

    1988-11-01

    Observations are reported of a remarkably bright (V about 13) starburst nucleus, 0833 + 652, which has been detected at radio, infrared, optical, ultraviolet, and X-ray wavelengths. Despite an observed flux at each of these wavelengths which is comparable to that of NGC 7714, often considered the 'prototypical' example of the starburst phenomenon, 0833 + 652 appears to be a previously uncataloged object. Its ease of detectability throughout the electromagnetic spectrum should make it useful for a variety of problems in the study of compact emission-line galaxies. 30 references.

  3. Compact inline optical electron polarimeter.

    PubMed

    Pirbhai, M; Ryan, D M; Richards, G; Gay, T J

    2013-05-01

    A compact optical electron polarimeter using a helium target is described. It offers a maximum fluorescence detection efficiency of ~20 Hz/nA, which is an order of magnitude higher than that of earlier designs. With an argon target, this device is expected to have a polarimetric figure-of-merit of 270 Hz/nA. By relying on a magnetic field to guide a longitudinally spin-polarized electron beam, the present instrument employs fewer electrodes. It also uses a commercially available integrated photon counting module. These features allow it to occupy a smaller volume and make it easier to operate.

  4. Homodimerization of the p51 Subunit of HIV-1 Reverse Transcriptase

    SciTech Connect

    Zheng, X.; Mueller, G; Cuneo, M; DeRose, E; London, R

    2010-01-01

    The dimerization of HIV reverse transcriptase (RT), required to obtain the active form of the enzyme, is influenced by mutations, non-nucleoside reverse transcriptase inhibitors (NNRTIs), nucleotide substrates, Mg ions, temperature, and specifically designed dimerization inhibitors. In this study, we have utilized nuclear magnetic resonance (NMR) spectroscopy of the [methyl-{sup 13}C]methionine-labeled enzyme and small-angle X-ray scattering (SAXS) to investigate how several of these factors influence the dimerization behavior of the p51 subunit. The {sup 1}H-{sup 13}C HSQC spectrum of p51 obtained at micromolar concentrations indicates that a significant fraction of the p51 adopts a 'p66-like' conformation. SAXS data obtained for p51 samples were used to determine the fractions of monomer and dimer in the sample and to evaluate the conformation of the fingers/thumb subdomain. All of the p51 monomer observed was found to adopt the compact, 'p51C' conformation observed for the p51 subunit in the RT heterodimer. The NMR and SAXS data indicate that the p51 homodimer adopts a structure that is similar to the p66/p51 heterodimer, with one p51C subunit and a second p51 subunit in an extended, 'p51E' conformation that resembles the p66 subunit of the heterodimer. The fractional dimer concentration and the fingers/thumb orientation are found to depend strongly on the experimental conditions and exhibit a qualitative dependence on nevirapine and ionic strength (KCl) that is similar to the behavior reported for the heterodimer and the p66 homodimer. The L289K mutation interferes with p51 homodimer formation as it does with formation of the heterodimer, despite its location far from the dimer interface. This effect is readily interpreted in terms of a conformational selection model, in which p51{sub L289K} has a much greater preference for the compact, p51C conformation. A reduced level of dimer formation then results from the reduced ratio of the p51E{sub L289K} to p51C

  5. Cell compaction influences the regenerative potential of passaged bovine articular chondrocytes in an ex vivo cartilage defect model.

    PubMed

    Schmutzer, Michael; Aszodi, Attila

    2017-04-01

    The loss and degradation of articular cartilage tissue matrix play central roles in the process of osteoarthritis (OA). New models for evaluating cartilage repair/regeneration are thus of great value for transferring various culture systems into clinically relevant situations. The repair process can be better monitored in ex vivo systems than in in vitro cell cultures. I have therefore established an ex vivo defect model prepared from bovine femoral condyles for evaluating cartilage repair by the implantation of cells cultured in various ways, e.g., monolayer-cultured cells or suspension or pellet cultures of articular bovine chondrocytes representing different cell compactions with variable densities of chondrocytes. I report that the integrin subunit α10 was significantly upregulated in suspension-cultured bovine chondrocytes at passage P2 compared with monolayer-cultured cells at P1 (p = 0.0083) and P2 (p < 0.05). Suspension-cultured cells did not promote cartilage repair when compared with implanted monolayer-cultured chondrocytes and pellets: 24.0 ± 0.66% for suspension cells, 46.4 ± 2.9% for monolayer cells, and 127.64 ± 0.90% for pellets (p < 0.0001) of the original defect volume (percentage of defect). Additional cultivation with chondrogenesis-promoting growth factors TGF-β1 and BMP-2 revealed an enhancing effect on cartilage repair in all settings. The advantage and innovation of this system over in vitro differentiation (e.g., micromass, pellet) assays is the possibility of examining and evaluating cartilage regeneration in an environment in which implanted cells are embedded within native surrounding tissue at the defect site. Such ex vivo explants might serve as a better model system to mimic clinical situations.

  6. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore.

    PubMed

    Alavian, Kambiz N; Beutner, Gisela; Lazrove, Emma; Sacchetti, Silvio; Park, Han-A; Licznerski, Pawel; Li, Hongmei; Nabili, Panah; Hockensmith, Kathryn; Graham, Morven; Porter, George A; Jonas, Elizabeth A

    2014-07-22

    Mitochondria maintain tight regulation of inner mitochondrial membrane (IMM) permeability to sustain ATP production. Stressful events cause cellular calcium (Ca(2+)) dysregulation followed by rapid loss of IMM potential known as permeability transition (PT), which produces osmotic shifts, metabolic dysfunction, and cell death. The molecular identity of the mitochondrial PT pore (mPTP) was previously unknown. We show that the purified reconstituted c-subunit ring of the FO of the F1FO ATP synthase forms a voltage-sensitive channel, the persistent opening of which leads to rapid and uncontrolled depolarization of the IMM in cells. Prolonged high matrix Ca(2+) enlarges the c-subunit ring and unhooks it from cyclophilin D/cyclosporine A binding sites in the ATP synthase F1, providing a mechanism for mPTP opening. In contrast, recombinant F1 beta-subunit applied exogenously to the purified c-subunit enhances the probability of pore closure. Depletion of the c-subunit attenuates Ca(2+)-induced IMM depolarization and inhibits Ca(2+) and reactive oxygen species-induced cell death whereas increasing the expression or single-channel conductance of the c-subunit sensitizes to death. We conclude that a highly regulated c-subunit leak channel is a candidate for the mPTP. Beyond cell death, these findings also imply that increasing the probability of c-subunit channel closure in a healthy cell will enhance IMM coupling and increase cellular metabolic efficiency.

  7. Involvement of proteasomal subunits zeta and iota in RNA degradation.

    PubMed Central

    Petit, F; Jarrousse, A S; Dahlmann, B; Sobek, A; Hendil, K B; Buri, J; Briand, Y; Schmid, H P

    1997-01-01

    We have identified two distinct subunits of 20 S proteasomes that are associated with RNase activity. Proteasome subunits zeta and iota, eluted from two-dimensional Western blots, hydrolysed tobacco mosaic virus RNA, whereas none of the other subunits degraded this substrate under the same conditions. Additionally, proteasomes were dissociated by 6 M urea, and subunit zeta, containing the highest RNase activity, was isolated by anion-exchange chromatography and gel filtration. Purified subunit zeta migrated as a single spot on two-dimensional PAGE with a molecular mass of approx. 28 kDa. Addition of anti-(subunit zeta) antibodies led to the co-precipitation of this proteasome subunit and nuclease activity. This is the first evidence that proteasomal alpha-type subunits are associated with an enzymic activity, and our results provide further evidence that proteasomes may be involved in cellular RNA metabolism. PMID:9337855

  8. Hydrostatic compaction of Microtherm HT.

    SciTech Connect

    Broome, Scott Thomas; Bauer, Stephen J.

    2010-09-01

    Two samples of jacketed Microtherm{reg_sign}HT were hydrostatically pressurized to maximum pressures of 29,000 psi to evaluate both pressure-volume response and change in bulk modulus as a function of density. During testing, each of the two samples exhibited large irreversible compactive volumetric strains with only small increases in pressure; however at volumetric strains of approximately 50%, the Microtherm{reg_sign}HT stiffened noticeably at ever increasing rates. At the maximum pressure of 29,000 psi, the volumetric strains for both samples were approximately 70%. Bulk modulus, as determined from hydrostatic unload/reload loops, increased by more than two-orders of magnitude (from about 4500 psi to over 500,000 psi) from an initial material density of {approx}0.3 g/cc to a final density of {approx}1.1 g/cc. An empirical fit to the density vs. bulk modulus data is K = 492769{rho}{sup 4.6548}, where K is the bulk modulus in psi, and {rho} is the material density in g/cm{sup 3}. The porosity decreased from 88% to {approx}20% indicating that much higher pressures would be required to compact the material fully.

  9. Compaction with automatic jog introduction

    NASA Astrophysics Data System (ADS)

    Maley, E. M.

    1986-11-01

    This thesis presents an algorithm for one-dimensional compaction of VLSI layouts. It differs from older methods in treating wires not as objects to be moved, but as constraints on the positions of other circuit components. These constraints are determined for each wiring layer using the theory of planar routing. Assuming that the wiring layers can be treated independently, the algorithm minimizes the width of a layout, automatically inserting as many jogs in wires as necessary. It runs in time O(n4) on input of size n. Several heuristics are suggested for improving the algorithm's practical performance. The compaction algorithm takes as input a data structure called a sketch, which explicitly distinguished between flexible components (wires) and rigid components (modules). The algorithms first finds constraints on the positions of modules that ensure enough space is left for wires. Next, it solves the system of constraints by a standard graph-theoretic technique, obtaining a placement for the modules. It then relies on a single-layer router to restore the wires to each circuit layer.

  10. Structural properties of compact groups

    NASA Technical Reports Server (NTRS)

    De Carvalho, R. R.; Ribeiro, A. L. B.; Zepf, Stephen E.

    1994-01-01

    We report the results of a systematic study of galaxies in the regions of Hickson compact groups. Our sample is composed of the 22 Hickson groups which are located in the southern hemisphere and have cz less than 9000 km/s. Making use of digitized images of IIIa-J plates that cover an area of 0.5 x 0.5 deg around each group, we were able to detect and classify images down to a magnitude limit of 19.5 in the B band. This limit is typically three magnitudes fainter than previous studies. Most groups show a statistically significant excess of fainter galaxies compared to the background. These fainter galaxies typically have a somewhat more extended spatial distribution than the brighter galaxies originally classified by Hickson. Our data suggest that Hickson groups have a wide range in density and radius, ranging from very compact structures with overdensities of the order of 10(exp 2) and crossing times of roughly 0.01 H(sub 0 sup -1), to much more diffuse structures, similar to loose groups, with overdensities of about 3 and crossing times of roughly 0.5 H(sub 0 sup -1).

  11. Compact Microscope Imaging System Developed

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2001-01-01

    The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.

  12. Compact sources for eyesafe illumination

    NASA Astrophysics Data System (ADS)

    Baranova, N.; Pu, R.; Stebbins, K.; Bystryak, I.; Rayno, M.; Ezzo, K.; DePriest, C.

    2017-02-01

    Q-Peak has demonstrated a novel, compact, pulsed eyesafe laser architecture operating with <10 mJ pulse energies at repetition rates as high as 160 Hz. The design leverages an end-pumped solid-state laser geometry to produce adequate eyesafe beam quality (M2 4), while also providing a path towards higher-density laser architectures for pulsed eyesafe applications. The baseline discussed in this paper has shown a unique capability for high pulse repetition rates in a compact package, and offers additional potential for power scaling based on birefringence compensation. The laser consists of an actively Q-switched oscillator cavity producing pulse-widths <30 ns, and utilizing an end-pumped Nd: YAG gain medium with a Rubidium Titanyl Phosphate (RTP) electro-optical crystal. The oscillator provides an effective front-end-seed for an optical parametric oscillator (OPO), which utilizes Potassium Titanyl Arsenate (KTA) in a linear OPO geometry. This laser efficiently operates in the eyesafe band, and has been designed to fit within a volume of 3760 cm3. We will discuss details of the optical system design, modeled thermal effects and stress-induced birefringence, as well as experimental advantages of the end-pumped laser geometry, along with proposed paths to higher eyesafe pulse energies.

  13. A compact THz imaging system

    NASA Astrophysics Data System (ADS)

    Sešek, Aleksander; Å vigelj, Andrej; Trontelj, Janez

    2015-03-01

    The objective of this paper is the development of a compact low cost imaging THz system, usable for observation of the objects near to the system and also for stand-off detection. The performance of the system remains at the high standard of more expensive and bulkiest system on the market. It is easy to operate as it is not dependent on any fine mechanical adjustments. As it is compact and it consumes low power, also a portable system was developed for stand-off detection of concealed objects under textile or inside packages. These requirements rule out all optical systems like Time Domain Spectroscopy systems which need fine optical component positioning and requires a large amount of time to perform a scan and the image capture pixel-by-pixel. They are also almost not suitable for stand-off detection due to low output power. In the paper the antenna - bolometer sensor microstructure is presented and the THz system described. Analysis and design guidelines for the bolometer itself are discussed. The measurement results for both near and stand-off THz imaging are also presented.

  14. Incompletely compacted equilibrated ordinary chondrites

    SciTech Connect

    Sasso, M.R.; Macke, R.J.; Boesenberg, J.S.; Britt, D.T.; Rovers, M.L.; Ebel, D.S.; Friedrich, J.M.

    2010-01-22

    We document the size distributions and locations of voids present within five highly porous equilibrated ordinary chondrites using high-resolution synchrotron X-ray microtomography ({mu}CT) and helium pycnometry. We found total porosities ranging from {approx}10 to 20% within these chondrites, and with {mu}CT we show that up to 64% of the void space is located within intergranular voids within the rock. Given the low (S1-S2) shock stages of the samples and the large voids between mineral grains, we conclude that these samples experienced unusually low amounts of compaction and shock loading throughout their entire post accretionary history. With Fe metal and FeS metal abundances and grain size distributions, we show that these chondrites formed naturally with greater than average porosities prior to parent body metamorphism. These materials were not 'fluffed' on their parent body by impact-related regolith gardening or events caused by seismic vibrations. Samples of all three chemical types of ordinary chondrites (LL, L, H) are represented in this study and we conclude that incomplete compaction is common within the asteroid belt.

  15. Compacted carbon for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1997-10-14

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (1) an x-ray density of at least 2.00 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 47%; and (b) graphite having the following properties: (1) an x-ray density of at least 2.20 grams per cubic centimeters, (2) a closed porosity of no greater than 5%, and (3) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counter electrode. 10 figs.

  16. Compacted carbon for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1997-01-01

    This invention provides compacted carbon that is useful in the electrode of an alkali metal/carbon electrochemical cell of improved capacity selected from the group consisting of: (a) coke having the following properties: (i) an x-ray density of at least 2.00 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 47%; and (b) graphite having the following properties: (i) an x-ray density of at least 2.20 grams per cubic centimeters, (ii) a closed porosity of no greater than 5%, and (iii) an open porosity of no greater than 25%. This invention also relates to an electrode for an alkali metal/carbon electrochemical cell comprising compacted carbon as described above and a binder. This invention further provides an alkali metal/carbon electrochemical cell comprising: (a) an electrode as described above, (b) a non-aqueous electrolytic solution comprising an organic aprotic solvent and an electrolytically conductive salt and an alkali metal, and (c) a counterelectrode.

  17. High flux compact neutron generators

    SciTech Connect

    Reijonen, J.; Lou, T.-P.; Tolmachoff, B.; Leung, K.-N.; Verbeke, J.; Vujic, J.

    2001-06-15

    Compact high flux neutron generators are developed at the Lawrence Berkeley National Laboratory. The neutron production is based on D-D or D-T reaction. The deuterium or tritium ions are produced from plasma using either a 2 MHz or 13.56 MHz radio frequency (RF) discharge. RF-discharge yields high fraction of atomic species in the beam which enables higher neutron output. In the first tube design, the ion beam is formed using a multiple hole accelerator column. The beam is accelerated to energy of 80 keV by means of a three-electrode extraction system. The ion beam then impinges on a titanium target where either the 2.4 MeV D-D or 14 MeV D-T neutrons are generated. The MCNP computation code has predicted a neutron flux of {approximately}10{sup 11} n/s for the D-D reaction at beam intensity of 1.5 A at 150 kV. The neutron flux measurements of this tube design will be presented. Recently new compact high flux tubes are being developed which can be used for various applications. These tubes also utilize RF-discharge for plasma generation. The design of these tubes and the first measurements will be discussed in this presentation.

  18. Manufacturability of compact synchrotron mirrors

    NASA Astrophysics Data System (ADS)

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  19. Cold compaction of water ice

    USGS Publications Warehouse

    Durham, W.B.; McKinnon, W.B.; Stern, L.A.

    2005-01-01

    Hydrostatic compaction of granulated water ice was measured in laboratory experiments at temperatures 77 K to 120 K. We performed step-wise hydrostatic pressurization tests on 5 samples to maximum pressures P of 150 MPa, using relatively tight (0.18-0.25 mm) and broad (0.25-2.0 mm) starting grain-size distributions. Compaction change of volume is highly nonlinear in P, typical for brittle, granular materials. No time-dependent creep occurred on the lab time scale. Significant residual porosity (???0.10) remains even at highest P. Examination by scanning electron microscopy (SEM) reveals a random configuration of fractures and broad distribution of grain sizes, again consistent with brittle behavior. Residual porosity appears as smaller, well-supported micropores between ice fragments. Over the interior pressures found in smaller midsize icy satellites and Kuiper Belt objects (KBOs), substantial porosity can be sustained over solar system history in the absence of significant heating and resultant sintering. Copyright 2005 by the American Geophysical Union.

  20. Dense and Homogeneous Compaction of Fine Ceramic and Metallic Powders: High-Speed Centrifugal Compaction Process

    SciTech Connect

    Suzuki, Hiroyuki Y.

    2008-02-15

    High-Speed Centrifugal Compaction Process (HCP) is a variation of colloidal compacting method, in which the powders sediment under huge centrifugal force. Compacting mechanism of HCP differs from conventional colloidal process such as slip casting. The unique compacting mechanism of HCP leads to a number of characteristics such as a higher compacting speed, wide applicability for net shape formation, flawless microstructure of the green compacts, etc. However, HCP also has several deteriorative characteristics that must be overcome to fully realize this process' full potential.

  1. Compact Solid State Cooling Systems: Compact MEMS Electrocaloric Module

    SciTech Connect

    2010-10-01

    BEETIT Project: UCLA is developing a novel solid-state cooling technology to translate a recent scientific discovery of the so-called giant electrocaloric effect into commercially viable compact cooling systems. Traditional air conditioners use noisy, vapor compression systems that include a polluting liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the environment. Electrocaloric materials achieve the same result by heating up when placed within an electric field and cooling down when removed—effectively pumping heat out from a cooler to warmer environment. This electrocaloric-based solid state cooling system is quiet and does not use liquid refrigerants. The innovation includes developing nano-structured materials and reliable interfaces for heat exchange. With these innovations and advances in micro/nano-scale manufacturing technologies pioneered by semiconductor companies, UCLA is aiming to extend the performance/reliability of the cooling module.

  2. PKA regulatory subunit expression in tooth development.

    PubMed

    de Sousa, Sílvia Ferreira; Kawasaki, Katsushige; Kawasaki, Maiko; Volponi, Ana Angelova; Gomez, Ricardo Santiago; Gomes, Carolina Cavaliéri; Sharpe, Paul T; Ohazama, Atsushi

    2014-05-01

    Protein kinase A (PKA) plays critical roles in many biological processes including cell proliferation, cell differentiation, cellular metabolism and gene regulation. Mutation in PKA regulatory subunit, PRKAR1A has previously been identified in odontogenic myxomas, but it is unclear whether PKA is involved in tooth development. The aim of the present study was to assess the expression of alpha isoforms of PKA regulatory subunit (Prkar1a and Prkar2a) in mouse and human odontogenesis by in situ hybridization. PRKAR1A and PRKAR2A mRNA transcription was further confirmed in a human deciduous germ by qRT-PCR. Mouse Prkar1a and human PRKAR2A exhibited a dynamic spatio-temporal expression in tooth development, whereas neither human PRKAR1A nor mouse Prkar2a showed their expression in odontogenesis. These isoforms thus showed different expression pattern between human and mouse tooth germs. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Rapid Sintering of Nano-Diamond Compacts

    SciTech Connect

    Osipov, A.; Nauyoks, S; Zerda, T; Zaporozhets, O

    2009-01-01

    Diamond compacts were sintered from nano-size diamond crystals at high pressure, 8 GPa, and temperature above 1500 degrees C for very short times ranging from 5 to 11 s. Structure and mechanical properties of the compacts have been characterized. Although we have not completely avoided graphitization of diamonds, the amount of graphite produced was low, less than 2%, and despite relatively high porosity, the compacts were characterized by high hardness, bulk and Young moduli.

  4. Effect of slash on forwarder soil compaction

    Treesearch

    Timothy P. McDonald; Fernando Seixas

    1997-01-01

    A study of the effect of slash on forwarder soil compaction was carried out. The level of soil compaction at two soil moisture contents, three slash densities (0, 10, and 20 kg/m2), and two levels of traffic (one and five passes) were measured. Results indicated that, on dry, loamy sand soils, the presence of slash did not decrease soil compaction after one forwarder...

  5. Quantitative Homogeneity and In-Contact Particles of High Temperature Reactors (htr) Compacts Determination via X-Ray Tomography

    NASA Astrophysics Data System (ADS)

    Lecomte, G.; Tisseur, D.; Létang, J. M.; Banchet, J.; Vitali, M. P.

    2008-02-01

    In AREVA Nuclear Power's High Temperature Reactor (HTR) design called ANTARES, fuel consists of compacts composed of few thousands millimetric quasi-spherical particles dispersed in a graphite matrix. Compact homogeneity, defined as the homogeneous particles spatial distribution in the matrix, as well as the possibility of obtaining particles in contact, need to be assessed since they condition the thermo-mechanical behavior of the nuclear fuel under irradiation. In this paper, image and data processing algorithms are developed to do so, based on X-Ray tomographic images.

  6. Charge-state dependent compaction and dissociation of protein complexes: insights from ion mobility and molecular dynamics.

    PubMed

    Hall, Zoe; Politis, Argyris; Bush, Matthew F; Smith, Lorna J; Robinson, Carol V

    2012-02-22

    Collapse to compact states in the gas phase, with smaller collision cross sections than calculated for their native-like structure, has been reported previously for some protein complexes although not rationalized. Here we combine experimental and theoretical studies to investigate the gas-phase structures of four multimeric protein complexes during collisional activation. Importantly, using ion mobility-mass spectrometry (IM-MS), we find that all four macromolecular complexes retain their native-like topologies at low energy. Upon increasing the collision energy, two of the four complexes adopt a more compact state. This collapse was most noticeable for pentameric serum amyloid P (SAP) which contains a large central cavity. The extent of collapse was found to be highly correlated with charge state, with the surprising observation that the lowest charge states were those which experience the greatest degree of compaction. We compared these experimental results with in vacuo molecular dynamics (MD) simulations of SAP, during which the temperature was increased. Simulations showed that low charge states of SAP exhibited compact states, corresponding to collapse of the ring, while intermediate and high charge states unfolded to more extended structures, maintaining their ring-like topology, as observed experimentally. To simulate the collision-induced dissociation (CID) of different charge states of SAP, we used MS to measure the charge state of the ejected monomer and assigned this charge to one subunit, distributing the residual charges evenly among the remaining four subunits. Under these conditions, MD simulations captured the unfolding and ejection of a single subunit for intermediate charge states of SAP. The highest charge states recapitulated the ejection of compact monomers and dimers, which we observed in CID experiments of high charge states of SAP, accessed by supercharging. This strong correlation between theory and experiment has implications for further

  7. Subunit organization in cytoplasmic dynein subcomplexes

    PubMed Central

    King, Stephen J.; Bonilla, Myriam; Rodgers, Michael E.; Schroer, Trina A.

    2002-01-01

    Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain–binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo. PMID:11967380

  8. Observations on infiltration of silicon carbide compacts with an aluminium alloy

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    The melt infiltration of ceramic particulates permits an opportunity to observe such fundamental materials phenomena as nucleation, dynamic wetting and growth in constrained environments. Experimental observations are presented on the infiltration behavior and matrix microstructures that form when porous compacts of platelet-shaped single crystals of alpha- (hexagonal) silicon carbide are infiltrated with a liquid 2014 Al alloy. The infiltration process involved counter gravity infiltration of suitably tamped and preheated compacts of silicon carbide platelets under an external pressure in a special pressure chamber for a set period, then by solidification of the infiltrant metal in the interstices of the bed at atmospheric pressure.

  9. Algebraic construction of the Darboux matrix revisited

    NASA Astrophysics Data System (ADS)

    Cieśliński, Jan L.

    2009-10-01

    We present algebraic construction of Darboux matrices for 1+1-dimensional integrable systems of nonlinear partial differential equations with a special stress on the nonisospectral case. We discuss different approaches to the Darboux-Bäcklund transformation, based on different λ-dependences of the Darboux matrix: polynomial, sum of partial fractions or the transfer matrix form. We derive symmetric N-soliton formulae in the general case. The matrix spectral parameter and dressing actions in loop groups are also discussed. We describe reductions to twisted loop groups, unitary reductions, the matrix Lax pair for the KdV equation and reductions of chiral models (harmonic maps) to SU(n) and to Grassmann spaces. We show that in the KdV case the nilpotent Darboux matrix generates the binary Darboux transformation. The paper is intended as a review of known results (usually presented in a novel context) but some new results are included as well, e.g., general compact formulae for N-soliton surfaces and linear and bilinear constraints on the nonisospectral Lax pair matrices which are preserved by Darboux transformations.

  10. DNA sequences, recombinant DNA molecules and processes for producing the A and B subunits of cholera toxin and preparations containing so-obtained subunit or subunits

    SciTech Connect

    Harford, N.; De Wilde, M.

    1987-05-19

    A recombinant DNA molecule is described comprising at least a portion coding for subunits A and B of cholera toxin, or a fragment or derivative of the portion wherein the fragment or derivative codes for a polypeptide have an activity which can induce an immune response to subunit A; can induce an immune response to subunit A and cause epithelial cell penetration and the enzymatic effect leading to net loss of fluid into the gut lumen; can bind to the membrane receptor for the B subunit of cholera toxin; can induce an immune response to subunit B; can induce an immune response to subunit B and bind to the membrane receptor; or has a combination of the activities.

  11. Compact high-voltage structures

    SciTech Connect

    Wilson, M. J.; Goerz, D.A.

    1997-06-09

    A basic understanding of the critical issues limiting the compactness of high-voltage systems is required for the next generation of impulse generators. In the process of optimizing the design of a highly reliable solid-dielectric over-voltage switch, an understanding of the limiting factors found are shown. Results of a l3O kV operating switch, having a modest field enhancement of 16% above the average field stress in the switching region, are reported. The resulting high reliability is obtained by reducing the standard deviation of the switch to 6.8%. The total height of the switch is 1 mm. The resulting operating parameters are obtained by controlling field distribution across the entire switch package and field shaping the desired point of switch closure. The disclosed field management technique provides an approach to improve other highly stressed components and structures.

  12. Compact torus compression of microwaves

    SciTech Connect

    Hewett, D.W.; Langdon, A.B.

    1985-05-17

    The possibility that a compact torus (CT) might be accelerated to large velocities has been suggested by Hartman and Hammer. If this is feasible one application of these moving CTs might be to compress microwaves. The proposed mechanism is that a coaxial vacuum region in front of a CT is prefilled with a number of normal electromagnetic modes on which the CT impinges. A crucial assumption of this proposal is that the CT excludes the microwaves and therefore compresses them. Should the microwaves penetrate the CT, compression efficiency is diminished and significant CT heating results. MFE applications in the same parameters regime have found electromagnetic radiation capable of penetrating, heating, and driving currents. We report here a cursory investigation of rf penetration using a 1-D version of a direct implicit PIC code.

  13. Compact anti-radon facility

    SciTech Connect

    Fajt, L.; Kouba, P.; Mamedov, F.; Smolek, K.; Štekl, I.

    2015-08-17

    Suppression of radon background is one of main tasks in ultra-low background experiments. The most promising technique for suppression of radon is its adsorption on charcoal. Within the frame of the NEMO-3 experiment, radon trapping facility (RTF) was installed in Modane underground laboratory in 2004. Based on long-term experience with this facility a new compact transportable anti-radon facility was constructed in cooperation among IEAP CTU, SÚRO and ATEKO company. The device provides 20m{sup 3}/h of purified air (air radon activity at the output ∼10mBq/m{sup 3}). The basic features and preliminary results of anti-radon device testing are presented.

  14. Compact oleic acid in HAMLET.

    PubMed

    Fast, Jonas; Mossberg, Ann-Kristin; Nilsson, Hanna; Svanborg, Catharina; Akke, Mikael; Linse, Sara

    2005-11-07

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex between alpha-lactalbumin and oleic acid that induces apoptosis in tumor cells, but not in healthy cells. Heteronuclear nuclear magnetic resonance (NMR) spectroscopy was used to determine the structure of 13C-oleic acid in HAMLET, and to study the 15N-labeled protein. Nuclear Overhauser enhancement spectroscopy shows that the two ends of the fatty acid are in close proximity and close to the double bond, indicating that the oleic acid is bound to HAMLET in a compact conformation. The data further show that HAMLET is a partly unfolded/molten globule-like complex under physiological conditions.

  15. Magnetohydodynamics stability of compact stellarators

    SciTech Connect

    Fu, G.Y.; Ku, L.P.; Cooper, W.A.; Hirshman, S.H.

    2000-01-03

    Recent stability results of external kink modes and vertical modes in compact stellarators are presented. The vertical mode is found to be stabilized by externally generated poloidal flux. A simple stability criterion is derived in the limit of large aspect ratio and constant current density. For a wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by Fi = (k2 {minus} k)=(k2 + 1), where k is the axisymmetric elongation and Fi is the fraction of the external rotational transform. A systematic parameter study shows that the external kink mode in QAS can be stabilized at high beta ({approximately} 5%) without a conducting wall by magnetic shear via 3D shaping. It is found that external kinks are driven by both parallel current and pressure gradient. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current.

  16. Compact Hermitian Young projection operators

    NASA Astrophysics Data System (ADS)

    Alcock-Zeilinger, J.; Weigert, H.

    2017-05-01

    In this paper, we describe a compact and practical algorithm to construct Hermitian Young projection operators for irreducible representations of the special unitary group 𝖲𝖴 (N ) and discuss why ordinary non-Hermitian Young projection operators are unsuitable for physics applications. The proof of this construction algorithm uses the iterative method described by Keppeler and Sjödahl [J. Math. Phys. 55, 021702 (2014)]. We further show that Hermitian Young projection operators share desirable properties with Young tableaux, namely, a nested hierarchy when "adding a particle." We close by exhibiting the enormous advantage of the Hermitian Young projection operators constructed in this paper over those given by Keppeler and Sjödahl.

  17. Experimental studies of compact toroids

    SciTech Connect

    Not Available

    1991-01-01

    The Berkeley Compact Toroid Experiment (BCTX) device is a plasma device with a Marshall-gun generated, low aspect ratio toroidal plasma. The device is capable of producing spheromak-type discharges and may, with some modification, produce low-aspect ratio tokamak configurations. A unique aspect of this experimenal devie is its large lower hybrid (LH) heating system, which consists of two 450MHz klystron tubes generating 20 megawatts each into a brambilla-type launching structure. Successful operation with one klystron at virtually full power (18 MW) has been accomplished with 110 {mu}s pulse length. A second klystron is currently installed in its socket and magnet but has not been added to the RF drive system. This report describes current activities and accomplishments and describes the anticipated results of next year's activity.

  18. Saloplastics: processing compact polyelectrolyte complexes.

    PubMed

    Schaaf, Pierre; Schlenoff, Joseph B

    2015-04-17

    Polyelectrolyte complexes (PECs) are prepared by mixing solutions of oppositely charged polyelectrolytes. These diffuse, amorphous precipitates may be compacted into dense materials, CoPECs, by ultracentrifugation (ucPECs) or extrusion (exPECs). The presence of salt water is essential in plasticizing PECs to allow them to be reformed and fused. When hydrated, CoPECs are versatile, rugged, biocompatible, elastic materials with applications including bioinspired materials, supports for enzymes and (nano)composites. In this review, various methods for making CoPECs are described, as well as fundamental responses of CoPEC mechanical properties to salt concentration. Possible applications as synthetic cartilage, enzymatically active biocomposites, self-healing materials, and magnetic nanocomposites are presented.

  19. Gravitational waves from compact objects

    NASA Astrophysics Data System (ADS)

    de Freitas Pacheco, José Antonio

    2010-11-01

    Large ground-based laser beam interferometers are presently in operation both in the USA (LIGO) and in Europe (VIRGO) and potential sources that might be detected by these instruments are revisited. The present generation of detectors does not have a sensitivity high enough to probe a significant volume of the universe and, consequently, predicted event rates are very low. The planned advanced generation of interferometers will probably be able to detect, for the first time, a gravitational signal. Advanced LIGO and EGO instruments are expected to detect few (some): binary coalescences consisting of either two neutron stars, two black holes or a neutron star and a black hole. In space, the sensitivity of the planned LISA spacecraft constellation will allow the detection of the gravitational signals, even within a “pessimistic" range of possible signals, produced during the capture of compact objects by supermassive black holes, at a rate of a few tens per year.

  20. Compact Microwave Fourier Spectrum Analyzer

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry

    2009-01-01

    A compact photonic microwave Fourier spectrum analyzer [a Fourier-transform microwave spectrometer, (FTMWS)] with no moving parts has been proposed for use in remote sensing of weak, natural microwave emissions from the surfaces and atmospheres of planets to enable remote analysis and determination of chemical composition and abundances of critical molecular constituents in space. The instrument is based on a Bessel beam (light modes with non-zero angular momenta) fiber-optic elements. It features low power consumption, low mass, and high resolution, without a need for any cryogenics, beyond what is achievable by the current state-of-the-art in space instruments. The instrument can also be used in a wide-band scatterometer mode in active radar systems.

  1. Low-power SXGA active matrix OLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2009-05-01

    This paper presents the design and first evaluation of a full-color 1280×3×1024 pixel, active matrix organic light emitting diode (AMOLED) microdisplay that operates at a low power of 200mW under typical operating conditions of 35fL, and offers a precision 30-bit RGB digital interface in a compact size (0.78-inch diagonal active area). The new system architecture developed by eMagin for the SXGA microdisplay, based on a separate FPGA driver and AMOLED display chip, offers several benefits, including better power efficiency, cost-effectiveness, more features for improved performance, and increased system flexibility.

  2. Carbonate fuel cell matrix

    DOEpatents

    Farooque, Mohammad; Yuh, Chao-Yi

    1996-01-01

    A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

  3. Carbonate fuel cell matrix

    DOEpatents

    Farooque, M.; Yuh, C.Y.

    1996-12-03

    A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

  4. Physics of Compact Advanced Stellarators

    SciTech Connect

    M.C. Zarnstorff; L.A. Berry; A. Brooks; E. Fredrickson; G.-Y. Fu; S. Hirshman; S. Hudson; L.-P. Ku; E. Lazarus; D. Mikkelsen; D. Monticello; G.H. Neilson; N. Pomphrey; A. Reiman; D. Spong; D. Strickler; A. Boozer; W.A. Cooper; R. Goldston; R. Hatcher; M. Isaev; C. Kessel; J. Lewandowski; J. Lyon; P. Merkel; H. Mynick; B.E. Nelson; C. Nuehrenberg; M. Redi; W. Reiersen; P. Rutherford; R. Sanchez; J. Schmidt; R.B. White

    2001-08-14

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties.

  5. General Relativity&Compact Stars

    SciTech Connect

    Glendenning, Norman K.

    2005-08-16

    Compact stars--broadly grouped as neutron stars and white dwarfs--are the ashes of luminous stars. One or the other is the fate that awaits the cores of most stars after a lifetime of tens to thousands of millions of years. Whichever of these objects is formed at the end of the life of a particular luminous star, the compact object will live in many respects unchanged from the state in which it was formed. Neutron stars themselves can take several forms--hyperon, hybrid, or strange quark star. Likewise white dwarfs take different forms though only in the dominant nuclear species. A black hole is probably the fate of the most massive stars, an inaccessible region of spacetime into which the entire star, ashes and all, falls at the end of the luminous phase. Neutron stars are the smallest, densest stars known. Like all stars, neutron stars rotate--some as many as a few hundred times a second. A star rotating at such a rate will experience an enormous centrifugal force that must be balanced by gravity or else it will be ripped apart. The balance of the two forces informs us of the lower limit on the stellar density. Neutron stars are 10{sup 14} times denser than Earth. Some neutron stars are in binary orbit with a companion. Application of orbital mechanics allows an assessment of masses in some cases. The mass of a neutron star is typically 1.5 solar masses. They can therefore infer their radii: about ten kilometers. Into such a small object, the entire mass of our sun and more, is compressed.

  6. Hidden secrets of deformation: Impact-induced compaction within a CV chondrite

    NASA Astrophysics Data System (ADS)

    Forman, L. V.; Bland, P. A.; Timms, N. E.; Collins, G. S.; Davison, T. M.; Ciesla, F. J.; Benedix, G. K.; Daly, L.; Trimby, P. W.; Yang, L.; Ringer, S. P.

    2016-10-01

    The CV3 Allende is one of the most extensively studied meteorites in worldwide collections. It is currently classified as S1-essentially unshocked-using the classification scheme of Stöffler et al. (1991), however recent modelling suggests the low porosity observed in Allende indicates the body should have undergone compaction-related deformation. In this study, we detail previously undetected evidence of impact through use of Electron Backscatter Diffraction mapping to identify deformation microstructures in chondrules, AOAs and matrix grains. Our results demonstrate that forsterite-rich chondrules commonly preserve crystal-plastic microstructures (particularly at their margins); that low-angle boundaries in deformed matrix grains of olivine have a preferred orientation; and that disparities in deformation occur between chondrules, surrounding and non-adjacent matrix grains. We find heterogeneous compaction effects present throughout the matrix, consistent with a highly porous initial material. Given the spatial distribution of these crystal-plastic deformation microstructures, we suggest that this is evidence that Allende has undergone impact-induced compaction from an initially heterogeneous and porous parent body. We suggest that current shock classifications (Stöffler et al., 1991) relying upon data from chondrule interiors do not constrain the complete shock history of a sample.

  7. Matrix with Prescribed Eigenvectors

    ERIC Educational Resources Information Center

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  8. Matrix with Prescribed Eigenvectors

    ERIC Educational Resources Information Center

    Ahmad, Faiz

    2011-01-01

    It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…

  9. 77 FR 60475 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation, DOJ. ACTION: Meeting notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council...

  10. 75 FR 62568 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation. ACTION: Meeting notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council...

  11. 76 FR 20044 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation. ACTION: Meeting Notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council...

  12. 78 FR 20355 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation. ACTION: Meeting Notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council...

  13. 78 FR 61384 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation, DOJ. ACTION: Meeting notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council...

  14. 76 FR 66326 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation. ACTION: Meeting notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council...

  15. 75 FR 17161 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation, Justice. ACTION: Meeting notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact...

  16. 77 FR 20051 - Meeting of the Compact Council for the National Crime Prevention and Privacy Compact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... Federal Bureau of Investigation Meeting of the Compact Council for the National Crime Prevention and Privacy Compact AGENCY: Federal Bureau of Investigation. ACTION: Meeting notice. SUMMARY: The purpose of this notice is to announce a meeting of the National Crime Prevention and Privacy Compact Council...

  17. Differential accumulation of ribonucleotide reductase subunits in clam oocytes: the large subunit is stored as a polypeptide, the small subunit as untranslated mRNA

    PubMed Central

    1986-01-01

    Within minutes of fertilization of clam oocytes, translation of a set of maternal mRNAs is activated. One of the most abundant of these stored mRNAs encodes the small subunit of ribonucleotide reductase (Standart, N. M., S. J. Bray, E. L. George, T. Hunt, and J. V. Ruderman, 1985, J. Cell Biol., 100:1968-1976). Unfertilized oocytes do not contain any ribonucleotide reductase activity; such activity begins to appear shortly after fertilization. In virtually all organisms, this enzyme is composed of two dissimilar subunits with molecular masses of approximately 44 and 88 kD, both of which are required for activity. This paper reports the identification of the large subunit of clam ribonucleotide reductase isolated by dATP-Sepharose chromatography as a relatively abundant 86-kD polypeptide which is already present in oocytes, and whose level remains constant during early development. The enzyme activity of this large subunit was established in reconstitution assays using the small subunit isolated from embryos by virtue of its binding to the anti-tubulin antibody YL 1/2. Thus the two components of clam ribonucleotide reductase are differentially stored in the oocyte: the small subunit in the form of untranslated mRNA and the large subunit as protein. When fertilization triggers the activation of translation of the maternal mRNA, the newly synthesized small subunit combines with the preformed large subunit to generate active ribonucleotide reductase. PMID:3536960

  18. AGR-1 Fuel Compact 6-3-2 Post-Irradiation Examination Results

    SciTech Connect

    Paul demkowicz; jason Harp; Scott Ploger

    2012-12-01

    Destructive post-irradiation examination was performed on fuel Compact 6-3-2, which was irradiated in the AGR-1 experiment to a final compact average burnup of 11.3% FIMA and a time-average, volume-average temperature of 1070°C. The analysis of this compact was focused on characterizing the extent of fission product release from the particles and examining particles to determine the condition of the kernels and coating layers. The work included deconsolidation of the compact and leach-burn-leach analysis, visual inspection and gamma counting of individual particles, measurement of fuel burnup by several methods, metallurgical preparation of selected particles, and examination of particle cross-sections with optical microscopy. A single particle with a defective SiC layer was identified during deconsolidation-leach-burn-leach analysis, which is in agreement with previous measurements showing elevated cesium in the Capsule 6 graphite fuel holder associated with this fuel compact. The fraction of the compact europium inventory released from the particles and retained in the matrix was relatively high (approximately 6E-3), indicating release from intact particle coatings. The Ag-110m inventory in individual particles exhibited a very broad distribution, with some particles retaining =80% of the predicted inventory and others retaining less than 25%. The average degree of Ag-110m retention in 60 gamma counted particles was approximately 50%. This elevated silver release is in agreement with analysis of silver on the Capsule 6 components, which indicated an average release of 38% of the Capsule 6 inventory from the fuel compacts. In spite of the relatively high degree of silver release from the particles, virtually none of the Ag-110m released was found in the compact matrix, and presumably migrated out of the compact and was deposited on the irradiation capsule components. Release of all other fission products from the particles appears to be less than a single

  19. Prefoldin Subunits Are Protected from Ubiquitin-Proteasome System-mediated Degradation by Forming Complex with Other Constituent Subunits*

    PubMed Central

    Miyazawa, Makoto; Tashiro, Erika; Kitaura, Hirotake; Maita, Hiroshi; Suto, Hiroo; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2011-01-01

    The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation. PMID:21478150

  20. Prefoldin subunits are protected from ubiquitin-proteasome system-mediated degradation by forming complex with other constituent subunits.

    PubMed

    Miyazawa, Makoto; Tashiro, Erika; Kitaura, Hirotake; Maita, Hiroshi; Suto, Hiroo; Iguchi-Ariga, Sanae M M; Ariga, Hiroyoshi

    2011-06-03

    The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation.

  1. 7 CFR 51.608 - Fairly compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Consumer Standards for Celery Stalks Definitions § 51.608 Fairly compact. Fairly compact means that...

  2. 7 CFR 51.572 - Compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946... Standards for Celery Definitions § 51.572 Compact. Compact means that the branches on the stalk are...

  3. Li-S batteries: Firing for compactness

    NASA Astrophysics Data System (ADS)

    Li, Yanguang; Chen, Fengjiao

    2017-07-01

    Conventional Li-S batteries have a non-compact cathode structure containing low areal loading of active materials. Now, a strategy of burning Li foils in a CS2 vapour is presented, which leads to the formation of highly compact Li2S nanoparticles as a lithiated sulfur cathode, offering promising battery performance.

  4. Ultrasonic compaction of granular geological materials.

    PubMed

    Feeney, Andrew; Sikaneta, Sakalima; Harkness, Patrick; Lucas, Margaret

    2017-04-01

    It has been shown that the compaction of granular materials for applications such as pharmaceutical tableting and plastic moulding can be enhanced by ultrasonic vibration of the compaction die. Ultrasonic vibrations can reduce the compaction pressure and increase particle fusion, leading to higher strength products. In this paper, the potential benefits of ultrasonics in the compaction of geological granular materials in downhole applications are explored, to gain insight into the effects of ultrasonic vibrations on compaction of different materials commonly encountered in sub-sea drilling. Ultrasonic vibrations are applied, using a resonant 20kHz compactor, to the compaction of loose sand and drill waste cuttings derived from oolitic limestone, clean quartz sandstone, and slate-phyllite. For each material, a higher strain for a given compaction pressure was achieved, with higher sample density compared to that in the case of an absence of ultrasonics. The relationships between the operational parameters of ultrasonic vibration amplitude and true strain rate are explored and shown to be dependent on the physical characteristics of the compacting materials.

  5. Inherent conformational flexibility of F1-ATPase α-subunit.

    PubMed

    Hahn-Herrera, Otto; Salcedo, Guillermo; Barril, Xavier; García-Hernández, Enrique

    2016-09-01

    The core of F1-ATPase consists of three catalytic (β) and three noncatalytic (α) subunits, forming a hexameric ring in alternating positions. A wealth of experimental and theoretical data has provided a detailed picture of the complex role played by catalytic subunits. Although major conformational changes have only been seen in β-subunits, it is clear that α-subunits have to respond to these changes in order to be able to transmit information during the rotary mechanism. However, the conformational behavior of α-subunits has not been explored in detail. Here, we have combined unbiased molecular dynamics (MD) simulations and calorimetrically measured thermodynamic signatures to investigate the conformational flexibility of isolated α-subunits, as a step toward deepening our understanding of its function inside the α3β3 ring. The simulations indicate that the open-to-closed conformational transition of the α-subunit is essentially barrierless, which is ideal to accompany and transmit the movement of the catalytic subunits. Calorimetric measurements of the recombinant α-subunit from Geobacillus kaustophilus indicate that the isolated subunit undergoes no significant conformational changes upon nucleotide binding. Simulations confirm that the nucleotide-free and nucleotide-bound subunits show average conformations similar to that observed in the F1 crystal structure, but they reveal an increased conformational flexibility of the isolated α-subunit upon MgATP binding, which might explain the evolutionary conserved capacity of α-subunits to recognize nucleotides with considerable strength. Furthermore, we elucidate the different dependencies that α- and β-subunits show on Mg(II) for recognizing ATP.

  6. Conformational changes in the C terminus of Shaker K+ channel bound to the rat Kvβ2-subunit

    PubMed Central

    Sokolova, Olga; Accardi, Alessio; Gutierrez, David; Lau, Adrian; Rigney, Mike; Grigorieff, Nikolaus

    2003-01-01

    We studied the structure of the C terminus of the Shaker potassium channel. The 3D structures of the full-length and a C-terminal deletion (ΔC) mutant of Shaker were determined by electron microscopy and single-particle analysis. The difference map between the full-length and the truncated channels clearly shows a compact density, located on the sides of the T1 domain, that corresponds to a large part of the C terminus. We also expressed and purified both WT and ΔC Shaker, assembled with the rat Kvβ2-subunit. By using a difference map between the full-length and truncated Shaker α–β complexes, a conformational change was identified that shifts a large part of the C terminus away from the membrane domain and into close contact with the β-subunit. This conformational change, induced by the binding of the Kvβ2-subunit, suggests a possible mechanism for the modulation of the K+ voltage-gated channel function by its β-subunit. PMID:14569011

  7. Self-subunit swapping chaperone needed for the maturation of multimeric metalloenzyme nitrile hydratase by a subunit exchange mechanism also carries out the oxidation of the metal ligand cysteine residues and insertion of cobalt.

    PubMed

    Zhou, Zhemin; Hashimoto, Yoshiteru; Kobayashi, Michihiko

    2009-05-29

    The incorporation of cobalt into low molecular mass nitrile hydratase (L-NHase) of Rhodococcus rhodochrous J1 has been found to depend on the alpha-subunit exchange between cobalt-free L-NHase (apo-L-NHase lacking oxidized cysteine residues) and its cobalt-containing mediator (holo-NhlAE containing Cys-SO(2)(-) and Cys-SO(-) metal ligands), this novel mode of post-translational maturation having been named self-subunit swapping, and NhlE having been recognized as a self-subunit swapping chaperone (Zhou, Z., Hashimoto, Y., Shiraki, K., and Kobayashi, M. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 14849-14854). We discovered here that cobalt was inserted into both the cobalt-free NhlAE (apo-NhlAE) and the cobalt-free alpha-subunit (apo-alpha-subunit) in an NhlE-dependent manner in the presence of cobalt and dithiothreitol in vitro. Matrix-assisted laser desorption ionization time-of-flight mass spectroscopy analysis revealed that the non-oxidized cysteine residues in apo-NhlAE were post-translationally oxidized after cobalt insertion. These findings suggested that NhlE has two activities, i.e. cobalt insertion and cysteine oxidation. NhlE not only functions as a self-subunit swapping chaperone but also a metallochaperone that includes a redox function. Cobalt insertion and cysteine oxidation occurred under both aerobic and anaerobic conditions when Co(3+) was used as a cobalt donor, suggesting that the oxygen atoms in the oxidized cysteines were derived from water molecules but not from dissolved oxygen. Additionally, we isolated apo-NhlAE after the self-subunit swapping event and found that it was recycled for cobalt transfer into L-NHase.

  8. Modeling of oil shale compaction during retorting

    SciTech Connect

    Schreiber, J.D.

    1986-06-01

    A model of oil shale compacting during retorting has been developed and incorporated into a one-dimensional retorting model. The model calculates the vertical stress distribution in a column of oil shale rubble and the degree of compaction that these stresses cause. A correlation was developed that relates shale grade, initial void volume, and vertical stress to the final compaction of the shale bed. The model then determines the gas pressure drip through the retort and the effects of the varying pressure on the retorting process. The model has been tested by simulating the Rio Blanco Oil Shale Company's Tract C-a Retort 1. The model calculates 8.1% compaction, whereas 12 to 16 compaction was measured in the retort; causes of the discrepancy between calculated and measured values are discussed. 14 refs., 10 figs., 2 tabs.

  9. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  10. Phylogenetic position of the genus Perkinsus (Protista, Apicomplexa) based on small subunit ribosomal RNA.

    PubMed

    Goggin, C L; Barker, S C

    1993-07-01

    Parasites of the genus Perkinsus destroy marine molluscs worldwide. Their phylogenetic position within the kingdom Protista is controversial. Nucleotide sequence data (1792 bp) from the small subunit rRNA gene of Perkinsus sp. from Anadara trapezia (Mollusca: Bivalvia) from Moreton Bay, Queensland, was used to examine the phylogenetic affinities of this enigmatic genus. These data were aligned with nucleotide sequences from 6 apicomplexans, 3 ciliates, 3 flagellates, a dinoflagellate, 3 fungi, maize and human. Phylogenetic trees were constructed after analysis with maximum parsimony and distance matrix methods. Our analyses indicate that Perkinsus is phylogenetically closer to dinoflagellates and to coccidean and piroplasm apicomplexans than to fungi or flagellates.

  11. The mitochondrial-encoded subunits of respiratory complex I (NADH:ubiquinone oxidoreductase): identifying residues important in mechanism and disease.

    PubMed

    Bridges, Hannah R; Birrell, James A; Hirst, Judy

    2011-06-01

    Complex I (NADH:ubiquinone oxidoreductase) is crucial to respiration in many aerobic organisms. The hydrophilic domain of complex I, containing nine or more redox cofactors, and comprising seven conserved core subunits, protrudes into the mitochondrial matrix or bacterial cytoplasm. The α-helical membrane-bound hydrophobic domain contains a further seven core subunits that are mitochondrial-encoded in eukaryotes and named the ND subunits (ND1-ND6 and ND4L). Complex I couples the oxidation of NADH in the hydrophilic domain to ubiquinone reduction and proton translocation in the hydrophobic domain. Although the mechanisms of NADH oxidation and intramolecular electron transfer are increasingly well understood, the mechanisms of ubiquinone reduction and proton translocation remain only poorly defined. Recently, an α-helical model of the hydrophobic domain of bacterial complex I [Efremov, Baradaran and Sazanov (2010) Nature 465, 441-447] revealed how the 63 transmembrane helices of the seven core subunits are arranged, and thus laid a foundation for the interpretation of functional data and the formulation of mechanistic proposals. In the present paper, we aim to correlate information from sequence analyses, site-directed mutagenesis studies and mutations that have been linked to human diseases, with information from the recent structural model. Thus we aim to identify and discuss residues in the ND subunits of mammalian complex I which are important in catalysis and for maintaining the enzyme's structural and functional integrity.

  12. [Nose surgical anatomy in six aesthetic subunits].

    PubMed

    Chaput, B; Lauwers, F; Lopez, R; Saboye, J; André, A; Grolleau, J-L; Chavoin, J-P

    2013-04-01

    The nose is a complex entity, combining aesthetic and functional roles. Descriptive anatomy is a fundamental science that it can be difficult to relate directly to our daily surgical activity. Reasoning in terms of aesthetic subunits to decide on his actions appeared to us so obvious. The aim of this paper is to resume the anatomical bases relevant to our daily practice in order to fully apprehend the restorative or cosmetic procedures. We discuss the limits of the systematization of these principles in nasal oncology. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking*

    PubMed Central

    Lee, Jennifer; Ding, ShuJing; Walpole, Thomas B.; Holding, Andrew N.; Montgomery, Martin G.; Fearnley, Ian M.; Walker, John E.

    2015-01-01

    The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase. PMID:25851905

  14. β-Subunit Binding Is Sufficient for Ligands to Open the Integrin αIIbβ3 Headpiece.

    PubMed

    Lin, Fu-Yang; Zhu, Jianghai; Eng, Edward T; Hudson, Nathan E; Springer, Timothy A

    2016-02-26

    The platelet integrin αIIbβ3 binds to a KQAGDV motif at the fibrinogen γ-chain C terminus and to RGD motifs present in loops in many extracellular matrix proteins. These ligands bind in a groove between the integrin α and β-subunits; the basic Lys or Arg side chain hydrogen bonds to the αIIb-subunit, and the acidic Asp side chain coordinates to a metal ion held by the β3-subunit. Ligand binding induces headpiece opening, with conformational change in the β-subunit. During this opening, RGD slides in the ligand-binding pocket toward αIIb, with movement of the βI-domain β1-α1 loop toward αIIb, enabling formation of direct, charged hydrogen bonds between the Arg side chain and αIIb. Here we test whether ligand interactions with β3 suffice for stable ligand binding and headpiece opening. We find that the AGDV tetrapeptide from KQAGDV binds to the αIIbβ3 headpiece with affinity comparable with the RGDSP peptide from fibronectin. AGDV induced complete headpiece opening in solution as shown by increase in hydrodynamic radius. Soaking of AGDV into closed αIIbβ3 headpiece crystals induced intermediate states similarly to RGDSP. AGDV has very little contact with the α-subunit. Furthermore, as measured by epitope exposure, AGDV, like the fibrinogen γ C-terminal peptide and RGD, caused integrin extension on the cell surface. Thus, pushing by the β3-subunit on Asp is sufficient for headpiece opening and ligand sliding, and no pulling by the αIIb subunit on Arg is required.

  15. β-Subunit Binding Is Sufficient for Ligands to Open the Integrin αIIbβ3 Headpiece*

    PubMed Central

    Lin, Fu-Yang; Zhu, Jianghai; Eng, Edward T.; Hudson, Nathan E.; Springer, Timothy A.

    2016-01-01

    The platelet integrin αIIbβ3 binds to a KQAGDV motif at the fibrinogen γ-chain C terminus and to RGD motifs present in loops in many extracellular matrix proteins. These ligands bind in a groove between the integrin α and β-subunits; the basic Lys or Arg side chain hydrogen bonds to the αIIb-subunit, and the acidic Asp side chain coordinates to a metal ion held by the β3-subunit. Ligand binding induces headpiece opening, with conformational change in the β-subunit. During this opening, RGD slides in the ligand-binding pocket toward αIIb, with movement of the βI-domain β1-α1 loop toward αIIb, enabling formation of direct, charged hydrogen bonds between the Arg side chain and αIIb. Here we test whether ligand interactions with β3 suffice for stable ligand binding and headpiece opening. We find that the AGDV tetrapeptide from KQAGDV binds to the αIIbβ3 headpiece with affinity comparable with the RGDSP peptide from fibronectin. AGDV induced complete headpiece opening in solution as shown by increase in hydrodynamic radius. Soaking of AGDV into closed αIIbβ3 headpiece crystals induced intermediate states similarly to RGDSP. AGDV has very little contact with the α-subunit. Furthermore, as measured by epitope exposure, AGDV, like the fibrinogen γ C-terminal peptide and RGD, caused integrin extension on the cell surface. Thus, pushing by the β3-subunit on Asp is sufficient for headpiece opening and ligand sliding, and no pulling by the αIIb subunit on Arg is required. PMID:26631735

  16. Proliferation, angiogenesis and differentiation related markers in compact and follicular-compact thyroid carcinomas in dogs

    PubMed Central

    Pessina, P.; Castillo, V.A.; César, D.; Sartore, I.; Meikle, A.

    2016-01-01

    Immunohistochemical markers (IGF-1, IGF-1R, VEGF, FGF-2, RARα and RXR) were evaluated in healthy canine thyroid glands (n=8) and in follicular-compact (n=8) and compact thyroid carcinomas (n=8). IGF-1, IGF-1R and VEGF expression was higher in fibroblasts and endothelial cells of compact carcinoma than in healthy glands (P < 0.05). Compared to follicular-compact carcinoma, compact carcinoma had higher IGF-1R expression in fibroblasts, and higher FGF-2 expression in endothelial cells (P < 0.05). RARα expression was higher in endothelial cells of compact carcinoma than in those of other groups (P < 0.05). The upregulation of these proliferation- and angiogenesis-related factors in endothelial cells and/or fibroblasts and not in follicular cells of compact carcinoma compared to healthy glands supports the relevance of stromal cells in cancer progression. PMID:28116249

  17. Proliferation, angiogenesis and differentiation related markers in compact and follicular-compact thyroid carcinomas in dogs.

    PubMed

    Pessina, P; Castillo, V A; César, D; Sartore, I; Meikle, A

    2016-01-01

    Immunohistochemical markers (IGF-1, IGF-1R, VEGF, FGF-2, RARα and RXR) were evaluated in healthy canine thyroid glands (n=8) and in follicular-compact (n=8) and compact thyroid carcinomas (n=8). IGF-1, IGF-1R and VEGF expression was higher in fibroblasts and endothelial cells of compact carcinoma than in healthy glands (P < 0.05). Compared to follicular-compact carcinoma, compact carcinoma had higher IGF-1R expression in fibroblasts, and higher FGF-2 expression in endothelial cells (P < 0.05). RARα expression was higher in endothelial cells of compact carcinoma than in those of other groups (P < 0.05). The upregulation of these proliferation- and angiogenesis-related factors in endothelial cells and/or fibroblasts and not in follicular cells of compact carcinoma compared to healthy glands supports the relevance of stromal cells in cancer progression.

  18. Enhancement of anion-exchange chromatography of DNA using compaction agents

    NASA Technical Reports Server (NTRS)

    Murphy, Jason C.; Fox, George E.; Willson, Richard C.

    2003-01-01

    The use of adsorptive chromatography for preparative nucleic acid separations is often limited by low capacity. The possibility that the adsorbent surface area sterically accessible to nucleic acid molecules could be increased by reducing their radius of gyration with compaction agents has been investigated. The equilibrium adsorption capacity of Q Sepharose anion-exchange matrix for plasmid DNA at 600 mM NaCl was enhanced by up to ca. 40% in the presence of 2.5 mM spermine. In addition, compaction agent selectivity has been demonstrated. Spermine, for example, enhances the adsorption of both plasmid and genomic DNA, spermidine enhances binding only of plasmid, and hexamine cobalt enhances only the binding of genomic DNA. Compaction may be generally useful for enhancing adsorptive separations of nucleic acids.

  19. Enhancement of anion-exchange chromatography of DNA using compaction agents

    NASA Technical Reports Server (NTRS)

    Murphy, Jason C.; Fox, George E.; Willson, Richard C.

    2003-01-01

    The use of adsorptive chromatography for preparative nucleic acid separations is often limited by low capacity. The possibility that the adsorbent surface area sterically accessible to nucleic acid molecules could be increased by reducing their radius of gyration with compaction agents has been investigated. The equilibrium adsorption capacity of Q Sepharose anion-exchange matrix for plasmid DNA at 600 mM NaCl was enhanced by up to ca. 40% in the presence of 2.5 mM spermine. In addition, compaction agent selectivity has been demonstrated. Spermine, for example, enhances the adsorption of both plasmid and genomic DNA, spermidine enhances binding only of plasmid, and hexamine cobalt enhances only the binding of genomic DNA. Compaction may be generally useful for enhancing adsorptive separations of nucleic acids.

  20. Amino-terminal truncations of the ribulose-bisphosphate carboxylase small subunit influence catalysis and subunit interactions.

    PubMed Central

    Paul, K; Morell, M K; Andrews, T J

    1993-01-01

    The first 20 residues at the amino terminus of the small subunit of spinach ribulose-1,5-bisphosphate carboxylase form an irregular arm that makes extensive contacts with the large subunit and also with another small subunit (S. Knight, I. Andersson, and C.-I. Brändén [1990] J Mol Biol 215: 113-160). The influence of these contacts on subunit binding and, indirectly, on catalysis was investigated by constructing truncations from the amino terminus of the small subunit of the highly homologous enzyme from Synechococcus PCC 6301 expressed in Escherichia coli. Removal of the first six residues (and thus the region of contact with a neighboring small subunit) affected neither the affinity with which the small subunits bound to the large subunits nor the catalytic properties of the assembled holoenzyme. Extending the truncation to include the first 12 residues (which encroaches into a highly conserved region that interacts with the large subunit) also did not weaken intersubunit binding appreciably, but it reduced the catalytic activity of the holoenzyme nearly 5-fold. Removal of an additional single residue (i.e. removal of a total of 13 residues) weakened intersubunit binding approximately 80-fold. Paradoxically, this partially restored catalytic activity to approximately 40% of that of the wild-type holoenzyme. None of these truncations materially affected the Km values for ribulose-1,5-bisphosphate or CO2. Removal of all 20 residues of the irregular arm (thereby deleting the conserved region of contact with large subunits) totally abolished the small subunit's ability to bind to large subunits to form a stable holoenzyme. However, this truncated small subunit was still synthesized by the E. coli cells. These data are interpreted in terms of the role of the amino-terminal arm of the small subunit in maintaining the structure of the holoenzyme. PMID:8278544

  1. Glycine receptor subunits expression in the developing rat retina.

    PubMed

    Sánchez-Chávez, Gustavo; Velázquez-Flores, Miguel Ángel; Ruiz Esparza-Garrido, Ruth; Salceda, Rocío

    2017-09-01

    Glycine receptor (GlyR) consists of two α (1-4) and three β subunits. Considerable evidence indicates that the adult retina expresses the four types of α subunits; however, the proportion of these subunits in adult and immature retina is almost unknown. In this report we have studied mRNA and the protein expression of GlyR subunits in the retina during postnatal rat development by Real-Time qRT-PCR and western blot. mRNA and protein expression indicated a gradual increase of the α1, α3, α4 and β GlyR subunits during postnatal ages tested. The mRNA β subunit showed higher expression levels (∼3 fold) than those observed for the α1 and α3 subunits. Very interestingly, the α2 GlyR subunit had the highest expression in the retina, even in the adult. These results revealed the expression of GlyR at early postnatal ages, supporting its role in retina development. In addition, our results indicated that the adult retina expressed a high proportion of the α2 subunit, suggesting the expression of monomeric and/or heteromeric receptors. A variety of studies are needed to further characterize the role of the specific subunits in both adult and immature retina. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Rheology Analysis of Thermosetting Resin Candidates for Use in Fuel Compacting

    SciTech Connect

    Trammell, Michael P.

    2012-06-01

    The AGR-1 and AGR-2 overcoating and compacting method utilized a wet mixing process where liquid resin (Hexion Durite SC-1008) was blended with natural and synthetic graphite to produce a graphite/resin matrix for overcoating. The matrix production method specified in the scale-up plan is a co-grinding jet mill process where powdered resin and graphite are fed at the same time into a jet mill. Because of the change in matrix production style, SC-1008 cannot be used in the jet milling process because it is a liquid. Also, attempts to dry out matrix made with SC-1008 for use in the overcoating process at B&W had mixed results. The SC-1008 resin became tacky when dried which caused the matrix to build up inside the overcoater. The scale- up jet milling/mixing and overcoating processes required that a suite of solid or powdered resins be identified. Suitable resins candidates were down selected to two resins, specifically Plenco 14838 and Hexion SD-1708. These resins are referred to as novolac or “two-stage” resins because they require the addition of a curing agent such as hexamethylenetetramine (Hexa) to promote an increased level of cross linking. The overcoating matrix is made of 3 components; natural graphite, synthetic graphite, and resin. The most influential component of the compacting process is the resin component and how it behaves with regards to time, temperature, and pressure. The selected scale-up resins are considered fast curing which means that the increase in molecular weight (curing) occurs over a relatively short period of time, ranging from a few seconds to several minutes depending on the temperature. To find the optimal compacting conditions it is useful to quantify this behavior. In this report, rheology is used to investigate viscosity as a function of time at specific temperatures for the previously mentioned resins.

  3. Stoichiometry of δ subunit containing GABA(A) receptors.

    PubMed

    Patel, B; Mortensen, M; Smart, T G

    2014-02-01

    Although the stoichiometry of the major synaptic αβγ subunit-containing GABAA receptors has consensus support for 2α:2β:1γ, a clear view of the stoichiometry of extrasynaptic receptors containing δ subunits has remained elusive. Here we examine the subunit stoichiometry of recombinant α4β3δ receptors using a reporter mutation and a functional electrophysiological approach. Using site-directed mutagenesis, we inserted a highly characterized 9' serine to leucine mutation into the second transmembrane (M2) region of α4, β3 and δ subunits that increases receptor sensitivity to GABA. Whole-cell, GABA-activated currents were recorded from HEK-293 cells co-expressing different combinations of wild-type (WT) and/or mutant α4(L297S), β3(L284S) and δ(L288S) subunits. Recombinant receptors containing one or more mutant subunits showed increased GABA sensitivity relative to WT receptors by approximately fourfold, independent of the subunit class (α, β or δ) carrying the mutation. GABA dose-response curves of cells co-expressing WT subunits with their respective L9'S mutants exhibited multiple components, with the number of discernible components enabling a subunit stoichiometry of 2α, 2β and 1δ to be deduced for α4β3δ receptors. Varying the cDNA transfection ratio by 10-fold had no significant effect on the number of incorporated δ subunits. Subunit stoichiometry is an important determinant of GABAA receptor function and pharmacology, and δ subunit-containing receptors are important mediators of tonic inhibition in several brain regions. Here we demonstrate a preferred subunit stoichiometry for α4β3δ receptors of 2α, 2β and 1δ. © 2013 The British Pharmacological Society.

  4. Compact, harmonic multiplying gyrotron amplifiers

    SciTech Connect

    Guo, H.Z.; Granatstein, V.L.; Antonsen, T.M. Jr.; Levush, B.; Tate, J.; Chen, S.H.

    1995-12-31

    A compact, harmonic multiplying gyrotron traveling wave amplifier is being developed. The device is a three-stage tube with the output section running as a fourth harmonic gyro-TWT, the input section running as a fundamental gyro-TWT, and the middle operating at the second harmonic of the cyclotron frequency. Radiation is suppressed by servers between the sections. The operating beam of the tube is produced by a magnetron injection gun (MIG). A TE{sub 0n} mode selective interaction circuit consisting of mode converters and a filter waveguide is employed for both input and output sections to solve the mode competition problem, which is pervasive in gyro-TWT operation. The input section has an input coupler designed as a TE{sub 0n} mode launcher. It excites a signal at the fundamental cyclotron frequency (17.5 GHz), which is amplified in the first TWT interaction region. So far the device is similar to a two-stage harmonic gyro-TWT. The distinction is that in the three-stage device the second section will be optimized not for output power but for fourth harmonic bunching of the beam. A gyroklystron amplifier has also been designed. The configuration is similar to the gyro-TWT but with the traveling wave interaction structures replaced by mode selective special complex cavities. Cold test results of the wideband input coupler and the TE{sub 0n} mode selective interaction circuit have been obtained.

  5. Dynamic compaction of granular materials

    PubMed Central

    Favrie, N.; Gavrilyuk, S.

    2013-01-01

    An Eulerian hyperbolic multiphase flow model for dynamic and irreversible compaction of granular materials is constructed. The reversible model is first constructed on the basis of the classical Hertz theory. The irreversible model is then derived in accordance with the following two basic principles. First, the entropy inequality is satisfied by the model. Second, the corresponding ‘intergranular stress’ coming from elastic energy owing to contact between grains decreases in time (the granular media behave as Maxwell-type materials). The irreversible model admits an equilibrium state corresponding to von Mises-type yield limit. The yield limit depends on the volume fraction of the solid. The sound velocity at the yield surface is smaller than that in the reversible model. The last one is smaller than the sound velocity in the irreversible model. Such an embedded model structure assures a thermodynamically correct formulation of the model of granular materials. The model is validated on quasi-static experiments on loading–unloading cycles. The experimentally observed hysteresis phenomena were numerically confirmed with a good accuracy by the proposed model. PMID:24353466

  6. Compact IR synchrotron beamline design.

    PubMed

    Moreno, Thierry

    2017-03-01

    Third-generation storage rings are massively evolving due to the very compact nature of the multi-bend achromat (MBA) lattice which allows amazing decreases of the horizontal electron beam emittance, but leaves very little place for infrared (IR) extraction mirrors to be placed, thus prohibiting traditional IR beamlines. In order to circumvent this apparent restriction, an optimized optical layout directly integrated inside a SOLEIL synchrotron dipole chamber that delivers intense and almost aberration-free beams in the near- to mid-IR domain (1-30 µm) is proposed and analyzed, and which can be integrated into space-restricted MBA rings. Since the optics and chamber are interdependent, the feasibility of this approach depends on a large part on the technical ability to assemble mechanically the optics inside the dipole chamber and control their resulting stability and thermo-mechanical deformation. Acquiring this expertise should allow dipole chambers to provide almost aberration-free IR synchrotron sources on current and `ultimate' MBA storage rings.

  7. Compact Structure Patterns in Proteins.

    PubMed

    Chitturi, Bhadrachalam; Shi, Shuoyong; Kinch, Lisa N; Grishin, Nick V

    2016-10-23

    Globular proteins typically fold into tightly packed arrays of regular secondary structures. We developed a model to approximate the compact parallel and antiparallel arrangement of α-helices and β-strands, enumerated all possible topologies formed by up to five secondary structural elements (SSEs), searched for their occurrence in spatial structures of proteins, and documented their frequencies of occurrence in the PDB. The enumeration model grows larger super-secondary structure patterns (SSPs) by combining pairs of smaller patterns, a process that approximates a potential path of protein fold evolution. The most prevalent SSPs are typically present in superfolds such as the Rossmann-like fold, the ferredoxin-like fold, and the Greek key motif, whereas the less frequent SSPs often possess uncommon structure features such as split β-sheets, left-handed connections, and crossing loops. This complete SSP enumeration model, for the first time, allows us to investigate which theoretically possible SSPs are not observed in available protein structures. All SSPs with up to four SSEs occurred in proteins. However, among the SSPs with five SSEs, approximately 20% (218) are absent from existing folds. Of these unobserved SSPs, 80% contain two or more uncommon structure features. To facilitate future efforts in protein structure classification, engineering, and design, we provide the resulting patterns and their frequency of occurrence in proteins at: http://prodata.swmed.edu/ssps/. Copyright © 2016. Published by Elsevier Ltd.

  8. Ultra Compact Imaging Spectrometer (UCIS)

    NASA Astrophysics Data System (ADS)

    Blaney, Diana L.; Green, Robert; Mouroulis, Pantazis; Cable, Morgan; Ehlmann, Bethany; Haag, Justin; Lamborn, Andrew; McKinley, Ian; Rodriguez, Jose; van Gorp, Byron

    2016-10-01

    The Ultra Compact Imaging Spectrometer (UCIS) is a modular visible to short wavelength infrared imaging spectrometer architecture which could be adapted to a variety of mission concepts requiring low mass and low power. Imaging spectroscopy is an established technique to address complex questions of geologic evolution by mapping diagnostic absorption features due to minerals, organics, and volatiles throughout our solar system. At the core of UCIS is an Offner imaging spectrometer using M3 heritage and a miniature pulse tube cryo-cooler developed under the NASA Maturation of Instruments for Solar System Exploration (MatISSE) program to cool the focal plane array. The TRL 6 integrated spectrometer and cryo-cooler provide a basic imaging spectrometer capability that is used with a variety of fore optics to address lunar, mars, and small body science goals. Potential configurations include: remote sensing from small orbiters and flyby spacecraft; in situ panoramic imaging spectroscopy; and in situ micro-spectroscopy. A micro-spectroscopy front end is being developed using MatISSE funding with integration and testing planned this summer.

  9. Compact drilling and sample system

    NASA Technical Reports Server (NTRS)

    Gillis-Smith, Greg R.; Petercsak, Doug

    1998-01-01

    The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.

  10. Peakompactons: Peaked compact nonlinear waves

    DOE PAGES

    Christov, Ivan C.; Kress, Tyler; Saxena, Avadh

    2017-04-20

    This paper is meant as an accessible introduction to/tutorial on the analytical construction and numerical simulation of a class of nonstandard solitary waves termed peakompactons. We present that these peaked compactly supported waves arise as solutions to nonlinear evolution equations from a hierarchy of nonlinearly dispersive Korteweg–de Vries-type models. Peakompactons, like the now-well-known compactons and unlike the soliton solutions of the Korteweg–de Vries equation, have finite support, i.e., they are of finite wavelength. However, unlike compactons, peakompactons are also peaked, i.e., a higher spatial derivative suffers a jump discontinuity at the wave’s crest. Here, we construct such solutions exactly bymore » reducing the governing partial differential equation to a nonlinear ordinary differential equation and employing a phase-plane analysis. Lastly, a simple, but reliable, finite-difference scheme is also designed and tested for the simulation of collisions of peakompactons. In addition to the peakompacton class of solutions, the general physical features of the so-called K#(n,m) hierarchy of nonlinearly dispersive Korteweg–de Vries-type models are discussed as well.« less

  11. Compact stellarators with modular coils.

    PubMed

    Garabedian, P R

    2000-07-18

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan.

  12. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  13. Color Superconductivity in Compact Stars

    NASA Astrophysics Data System (ADS)

    Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna

    After a brief review of the phenomena expected in cold dense quark matter, color superconductivity and color-flavor locking, we sketch some implications of recent developments in our understanding of cold dense quark matter for the physics of compact stars. We give a more detailed summary of our recent work on crystalline color superconductivity and the consequent realization that (some) pulsar glitches may originate in quark matter.We acknowledge helpful discussions with P. Bedaque, J. Berges, D. Blaschke, I. Bombaci, G. Carter, D. Chakrabarty, J. Madsen, C. Nayak, M. Prakash, D. Psaltis, S. Reddy, M. Ruderman, S.-J. Rey, T. Schäfer, A. Sedrakian, E. Shuryak, E. Shuster, D. Son, M. Stephanov, I. Wasserman, F. Weber and F. Wilczek. KR thanks the organizers of the ECT Workshop on Neutron Star Interiors for providing a stimulating environment within which many of the helpful discussions acknowledged above took place. This work is supported in part by the DOE under cooperative research agreement #DF-FC02-94ER40818. The work of JB was supported in part by an NDSEG Fellowship; that of KR was supported in part by a DOE OJI Award and by the A. P. Sloan Foundation.

  14. A compact optical fiber positioner

    NASA Astrophysics Data System (ADS)

    Hu, Hongzhuan; Wang, Jianping; Liu, Zhigang; Zhou, Zengxiang; Zhai, Chao; Chu, Jiaru

    2016-07-01

    In this paper, a compact optical fiber positioner is proposed, which is especially suitable for small scale and high density optical fiber positioning. Based on the positioning principle of double rotation, positioner's center shaft depends on planetary gear drive principle, meshing with the fixed annular gear central motor gear driving device to rotate, and the eccentric shaft rotated driving by a coaxial eccentric motor, both center and the eccentric shaft are supported by a rolling bearings; center and eccentric shaft are both designed with electrical zero as a reference point, and both of them have position-limiting capability to ensure the safety of fiber positioning; both eccentric and center shaft are designed to eliminating clearance with spring structure, and can eliminate the influence of gear gap; both eccentric and center motor and their driving circuit can be installed in the positioner's body, and a favorable heat sink have designed, the heat bring by positioning operation can be effectively transmit to design a focal plane unit through the aluminum component, on sleeve cooling spiral airway have designed, when positioning, the cooling air flow is inlet into install hole on the focal plate, the cooling air flow can effectively take away the positioning's heat, to eliminate the impact of the focus seeing. By measuring position device's sample results show that: the unit accuracy reached 0.01mm, can meet the needs of fiber positioning.

  15. Peakompactons: Peaked compact nonlinear waves

    NASA Astrophysics Data System (ADS)

    Christov, Ivan C.; Kress, Tyler; Saxena, Avadh

    2017-04-01

    This paper is meant as an accessible introduction to/tutorial on the analytical construction and numerical simulation of a class of nonstandard solitary waves termed peakompactons. These peaked compactly supported waves arise as solutions to nonlinear evolution equations from a hierarchy of nonlinearly dispersive Korteweg-de Vries-type models. Peakompactons, like the now-well-known compactons and unlike the soliton solutions of the Korteweg-de Vries equation, have finite support, i.e., they are of finite wavelength. However, unlike compactons, peakompactons are also peaked, i.e., a higher spatial derivative suffers a jump discontinuity at the wave’s crest. Here, we construct such solutions exactly by reducing the governing partial differential equation to a nonlinear ordinary differential equation and employing a phase-plane analysis. A simple, but reliable, finite-difference scheme is also designed and tested for the simulation of collisions of peakompactons. In addition to the peakompacton class of solutions, the general physical features of the so-called K#(n,m) hierarchy of nonlinearly dispersive Korteweg-de Vries-type models are discussed as well.

  16. Foster Wheeler compact CFB boiler with INTREX

    SciTech Connect

    Hyppaenen, T.; Rainio, A.; Kauppinen, K.V.O.; Stone, J.E.

    1997-12-31

    Foster Wheeler has introduced a new COMPACT Circulating Fluidized Bed (CFB) boiler design based on the rectangular hot solids separator. The Compact design also enables easy implementation of new designs for INTREX fluid bed heat exchangers. These new products result in many benefits which affect the boiler economy and operation. After initial development of the Compact CFB design it has been applied in demonstration and industrial scale units. The performance of Compact CFB has been proved to be equivalent to conventional Foster Wheeler CFB has been proved to be equivalent to conventional Foster Wheeler CFB boilers with high availability. Several new Foster Wheeler Compact boilers are being built or already in operation. Operational experiences from different units will be discussed in this paper. There are currently Compact units with 100--150 MW{sub e} capacity under construction. With the scale-up experience with conventional CFB boilers and proven design approach and scale-up steps, Foster Wheeler will have the ability to provide large Compact CFB boilers up to 400--600 MW{sub e} capacity.

  17. The classification of 2 -compact groups

    NASA Astrophysics Data System (ADS)

    Andersen, Kasper K. S.; Grodal, Jesper

    2009-04-01

    We prove that any connected 2 -compact group is classified by its 2 -adic root datum, and in particular the exotic 2 -compact group operatorname{DI}(4) , constructed by Dwyer-Wilkerson, is the only simple 2 -compact group not arising as the 2 -completion of a compact connected Lie group. Combined with our earlier work with Mo/ller and Viruel for p odd, this establishes the full classification of p -compact groups, stating that, up to isomorphism, there is a one-to-one correspondence between connected p -compact groups and root data over the p -adic integers. As a consequence we prove the maximal torus conjecture, giving a one-to-one correspondence between compact Lie groups and finite loop spaces admitting a maximal torus. Our proof is a general induction on the dimension of the group, which works for all primes. It refines the Andersen-Grodal-Mo/ller-Viruel methods by incorporating the theory of root data over the p -adic integers, as developed by Dwyer-Wilkerson and the authors. Furthermore we devise a different way of dealing with the rigidification problem by utilizing obstruction groups calculated by Jackowski-McClure-Oliver in the early 1990s.

  18. Eshelby's solution for ellipsoidal inhomogeneous inclusions with applications to compaction bands

    NASA Astrophysics Data System (ADS)

    Meng, Chunfang; Pollard, David D.

    2014-10-01

    Eshelby's solution for an ellipsoidal inhomogeneous inclusion in an infinite elastic body is applied to compaction and shear-enhanced compaction bands in the Aztec sandstone at Valley of Fire State Park, NV. The inclusion and matrix are linear elastic and isotropic, but have different elastic moduli, and a remote stress represents tectonic loading. A prescribed uniform strain within the inclusion accounts for inelastic compaction for a porosity change from 25 to 10%. Differences in elastic moduli between the matrix and inclusion are based on laboratory data. We generalize earlier results, limited to 2D and axisymmetric geometries, by considering ellipsoids with different intermediate and greatest axial lengths, consistent with field observations. Stiffness contrasts and non-circular tip-line shapes produce modest concentrations of the remote stress, but compaction strains of 1-10% produce significant triaxial compressive stress concentrations, which presumably are responsible for band propagation. The plastic strain is triaxial, but dominated by the normal strain across the inclusion. The stress diminution on the band flank is easily overcome by minor increases in the tectonic loading, enabling bands to be closely spaced. For the shear-enhanced band, if the plastic shear and normal strains are approximately equal, the ratio of shear to normal stress is about 1.3 at the tip.

  19. Crosstalk between primase subunits can act to regulate primersynthesis in trans

    SciTech Connect

    Corn, Jacob E.; Pease, Paul J.; Hura, Greg L.; Berger, James M.

    2005-08-12

    The coordination of primase function within the replisome is an essential but poorly understood feature of lagging strand synthesis. By using crystallography and small-angle X-ray scattering (SAXS), we show that functional elements of bacterial primase transition between two dominant conformations: an extended form that uncouples a regulatory domain from its associated RNA polymerase core and a compact state that sequesters the regulatory region from the site of primer synthesis. FRET studies and priming assays reveal that the regulatory domain of one primase subunit productively associates with nucleic acid that is bound to the polymerase domain of a second protomer in trans. This intersubunit interaction allows primase to select initiation sites on template DNA and implicates the regulatory domain as a 'molecular brake' that restricts primer length. Our data suggest that the replisome may cooperatively use multiple primases and this conformational switch to control initiation frequency, processivity, and ultimately, Okazaki fragment synthesis.

  20. Generalised model for anisotropic compact stars

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Ray, Saibal; Deb, Debabrata

    2016-12-01

    In the present investigation an exact generalised model for anisotropic compact stars of embedding class 1 is sought with a general relativistic background. The generic solutions are verified by exploring different physical aspects, viz. energy conditions, mass-radius relation, stability of the models, in connection to their validity. It is observed that the model presented here for compact stars is compatible with all these physical tests and thus physically acceptable as far as the compact star candidates RXJ 1856-37, SAX J 1808.4-3658 ( SS1) and SAX J 1808.4-3658 ( SS2) are concerned.

  1. Compacting a Kentucky coal for quality logs

    SciTech Connect

    Lin, Y.; Li, Z.; Mao, S.

    1999-07-01

    A Kentucky coal was found more difficult to be compacted into large size strong logs. Study showed that compaction parameters affecting the strength of compacted coal logs could be categorized into three groups. The first group is coal inherent properties such as elasticity and coefficient of friction, the second group is machine properties such as mold geometry, and the third group is the coal mixture preparation parameters such as particle size distribution. Theoretical analysis showed that an appropriate backpressure can reduce surface cracks occurring during ejection. This has been confirmed by the experiments conducted.

  2. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  3. Model building with non-compact cosets

    NASA Astrophysics Data System (ADS)

    Croon, Djuna Lize

    2016-11-01

    We explore Goldstone boson potentials in non-compact cosets of the form SO (n , 1) / SO (n). We employ a geometric approach to find the scalar potential, and focus on the conditions under which it is compact in the large field limit. We show that such a potential is found for a specific misalignment of the vacuum. This result has applications in different contexts, such as in Composite Higgs scenarios and theories for the Early Universe. We work out an example of inflation based on a non-compact coset which makes predictions which are consistent with the current observational data.

  4. Semi-compact skyrmion-like structures

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Rodrigues, E. I. B.

    2017-06-01

    We study three distinct types of planar, spherically symmetric and localized structures, one of them having non-topological behavior and the two others being of topological nature. The non-topological structures have energy density localized in a compact region in the plane, but are unstable against spherically symmetric fluctuations. The topological structures are stable and behave as vortices and skyrmions at larger distances, but they engender interesting compact behavior as one approaches their inner cores. They are semi-compact skyrmion-like spin textures generated from models that allow to control the internal behavior of such topological structures.

  5. Complementation of subunits from different bacterial luciferases. Evidence for the role of the. beta. subunit in the bioluminescent mechanism

    SciTech Connect

    Meighen, E.A.; Bartlet, I.

    1980-12-10

    Complementation of the nonidentical subunits (..cap alpha.. and ..beta..) of luciferases isolated from two different bioluminescent strains, Beneckea harveyi and Photobacterium phosphoreum, has resulted in the formation of a functional hybrid luciferase (..cap alpha../sub h/..beta../sub p/) containing the ..cap alpha.. subunit from B. harveyi luciferase (..cap alpha../sub h/) and the ..beta.. subunit from P. phosphoreum luciferase (..beta../sub p/). The complementation was unidirectional; activity could not be restored by complementing the ..cap alpha.. subunit of P. phosphoreum luciferase with the ..beta.. subunit of B. harveyi luciferase, showing that the subunits from these luciferases were not identical. Kinetic parameters of the hybrid luciferase reflecting the intermediate and later steps of the bioluminescent reaction as well as the overall activity and specificity were essentially identical to the same kinetic parameters for B. harveyi luciferase, the source of the ..cap alpha.. subunit, and quite distinct from those of P. phosphoreum luciferase. However, kinetic parameters that reflected the initial step in the reaction involving interaction of FMNH/sub 2/ and luciferase were altered in the hybrid luciferase compared to both the parental luciferases, the K/sub d/ for FMNH/sub 2/ actually being closer to that observed for the P. phosphoreum luciferase (the source of the ..beta.. subunit). These results provide direct evidence that modification or alteration of the ..beta.. subunit in a dimeric luciferase molecule can affect the kinetic properties and indicates that the ..beta.. subunit plays a functional role in the bioluminescent mechanism. It is proposed that both the ..cap alpha.. and ..beta.. subunits are involved with the initial interaction with FMNH/sub 2/, whereas subsequent steps in the mechanism are dictated exclusively by the ..cap alpha.. subunit and are unaffected by alterations in the ..beta.. subunit.

  6. Automatic switching matrix

    DOEpatents

    Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil

    1982-01-01

    An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.

  7. Formation of active bacterial luciferase between interspecific subunits in vivo.

    PubMed

    Almashanu, S; Tuby, A; Hadar, R; Einy, R; Kuhn, J

    1995-01-01

    Interspecific complementation between luxAs and luxBs from Vibrio harveyi, Vibrio fischeri, Photobacterium leiognathi and Xenorhabdus luminescens was examined in vivo. The individual genes from these species were cloned on different compatible plasmids or amplified by PCR and brought together to yield cis combinations without extraneous DNA. The beta subunits from V. harveyi and X. luminescens form active enzyme only with alpha subunits from one of these species. All other combinations yield active enzymes. The lack of activity of the V. harveyi and X. luminescens beta subunits with the alpha subunits from V. fischeri and P. leiognathi results from a lack of association. This was shown by in vivo competition in which these beta subunits were overproduced in comparison with the beta and alpha of V. fischeri. No reduction in light was found. Overall, the in vivo results parallel those found in vitro using isolated denatured subunits and renaturation by removal of the denaturant.

  8. Sodium channel β subunits: emerging targets in channelopathies

    PubMed Central

    O’Malley, Heather A.; Isom, Lori L.

    2016-01-01

    Voltage-gated sodium channels (VGSCs) are responsible for initiation and propagation of action potentials in excitable cells. VGSCs in mammalian brain are heterotrimeric complexes of α and β subunits. Originally called “auxiliary,” we now know that β subunit proteins are multifunctional signaling molecules that play roles in both excitable and non-excitable cell types, and with or without the pore-forming α subunit present. β subunits function in VGSC and potassium channel modulation, cell adhesion, and gene regulation, with particularly important roles in brain development. Mutations in the genes encoding β subunits are linked to a number of diseases, including epilepsy, sudden death syndromes like SUDEP and SIDS, and cardiac arrhythmia. While VGSC β subunit-specific drugs have not yet been developed, this protein family is an emerging therapeutic target. PMID:25668026

  9. Compactly supported Wannier functions and algebraic K -theory

    NASA Astrophysics Data System (ADS)

    Read, N.

    2017-03-01

    In a tight-binding lattice model with n orbitals (single-particle states) per site, Wannier functions are n -component vector functions of position that fall off rapidly away from some location, and such that a set of them in some sense span all states in a given energy band or set of bands; compactly supported Wannier functions are such functions that vanish outside a bounded region. They arise not only in band theory, but also in connection with tensor-network states for noninteracting fermion systems, and for flat-band Hamiltonians with strictly short-range hopping matrix elements. In earlier work, it was proved that for general complex band structures (vector bundles) or general complex Hamiltonians—that is, class A in the tenfold classification of Hamiltonians and band structures—a set of compactly supported Wannier functions can span the vector bundle only if the bundle is topologically trivial, in any dimension d of space, even when use of an overcomplete set of such functions is permitted. This implied that, for a free-fermion tensor network state with a nontrivial bundle in class A, any strictly short-range parent Hamiltonian must be gapless. Here, this result is extended to all ten symmetry classes of band structures without additional crystallographic symmetries, with the result that in general the nontrivial bundles that can arise from compactly supported Wannier-type functions are those that may possess, in each of d directions, the nontrivial winding that can occur in the same symmetry class in one dimension, but nothing else. The results are obtained from a very natural usage of algebraic K -theory, based on a ring of polynomials in e±i kx,e±i ky,..., which occur as entries in the Fourier-transformed Wannier functions.

  10. Global chromatin fibre compaction in response to DNA damage

    SciTech Connect

    Hamilton, Charlotte; Hayward, Richard L.; Gilbert, Nick

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Robust KAP1 phosphorylation in response to DNA damage in HCT116 cells. Black-Right-Pointing-Pointer DNA repair foci are found in soluble chromatin. Black-Right-Pointing-Pointer Biophysical analysis reveals global chromatin fibre compaction after DNA damage. Black-Right-Pointing-Pointer DNA damage is accompanied by rapid linker histone dephosphorylation. -- Abstract: DNA is protected by packaging it into higher order chromatin fibres, but this can impede nuclear processes like DNA repair. Despite considerable research into the factors required for signalling and repairing DNA damage, it is unclear if there are concomitant changes in global chromatin fibre structure. In human cells DNA double strand break (DSB) formation triggers a signalling cascade resulting in H2AX phosphorylation ({gamma}H2AX), the rapid recruitment of chromatin associated proteins and the subsequent repair of damaged sites. KAP1 is a transcriptional corepressor and in HCT116 cells we found that after DSB formation by chemicals or ionising radiation there was a wave of, predominantly ATM dependent, KAP1 phosphorylation. Both KAP1 and phosphorylated KAP1 were readily extracted from cells indicating they do not have a structural role and {gamma}H2AX was extracted in soluble chromatin indicating that sites of damage are not attached to an underlying structural matrix. After DSB formation we did not find a concomitant change in the sensitivity of chromatin fibres to micrococcal nuclease digestion. Therefore to directly investigate higher order chromatin fibre structures we used a biophysical sedimentation technique based on sucrose gradient centrifugation to compare the conformation of chromatin fibres isolated from cells before and after DNA DSB formation. After damage we found global chromatin fibre compaction, accompanied by rapid linker histone dephosphorylation, consistent with fibres being more regularly folded or fibre deformation being stabilized by

  11. Equilibrium calculations for plasma control in CIT (Compact Ignition Tokamak)

    SciTech Connect

    Strickler, D.J.; Peng, Y-K.M. . Fusion Engineering Design Center); Pomphrey, N.; Jardin, S.C. . Plasma Physics Lab.)

    1990-01-01

    The free-boundary equilibrium code VEQ provides equilibrium data that are used by the Tokamak Simulation Code (TSC) in design and analysis of the poloidal field (PF) system for the Compact Ignition Tokamak (CIT). VEQ serves as an important design tool for locating the PF coils and defining coil current trajectories and control systems for TSC. In this report, VEQ and its role in the TSC analysis of the CIT PF system are described. Equilibrium and coil current calculations are discussed, an overview of the CIT PF system is presented, a set of reference equilibria for modeling a complete discharge in CIT is described, and the concept of a plasma shape control matrix is introduced. 9 refs., 8 figs., 7 tabs.

  12. [Impedance testing of compact bone tissue in hypokinetic rats].

    PubMed

    Berezovs'kyĭ, V Ia; Levashov, O M; Safonov, S L; Levashov, M I; Litovka, I H

    2005-01-01

    The bioelectrical impedance method was used for determination of compact bone status in white rats after 28th days of strong hypokinesia. It was shown that the lowering of mechanical loading leads to disturbances in dielectric properties and changes in electrical impedance parameters. These disturbances had different direction and manifestation. It was distinguished the two typical variants of bone dielectric properties changes. The first variant was more characteristic for early stages of hypokinetic osteodestruction, the second variant was more characteristic for the fully development hypokinetic disturbances. It was determine a correlation between the changes in electrical impedance parameters and mane components of bone matrix. The results of this study show that hyperhydratation of bone tissue play important role in hypokinetic changes of bone dielectric properties. Electroimpedance method may be used for early diagnostic of bone state in clinic and experiments.

  13. Metal matrix composite structures

    SciTech Connect

    Krivov, G.A.; Beletsky, V.M.; Gribkov, A.N.

    1993-12-31

    High strength-weight properties, stiffness and fatigue resistance characteristics together with low sensitivity to stress concentration make metal matrix composites (MMC) rather promising for their use in structures. Metal matrix composites consist of a matrix (aluminum, magnesium, titanium and their alloys are the most frequently used) and reinforcers (carbon and boron fibers, high-strength steel wire, silicon carbide whiskers, etc.). This work considers various types of MMC and their applications in structures. The methods of structure production from metal matrix CM of aluminum-boron system with the help of machining, deformation, part joining by welding and riveting are given.

  14. Lung-specific loss of the laminin α3 subunit confers resistance to mechanical injury.

    PubMed

    Urich, Daniela; Eisenberg, Jessica L; Hamill, Kevin J; Takawira, Desire; Chiarella, Sergio E; Soberanes, Saul; Gonzalez, Angel; Koentgen, Frank; Manghi, Tomas; Hopkinson, Susan B; Misharin, Alexander V; Perlman, Harris; Mutlu, Gokhan M; Budinger, G R Scott; Jones, Jonathan C R

    2011-09-01

    Laminins are heterotrimeric glycoproteins of the extracellular matrix that are secreted by epithelial cells and which are crucial for the normal structure and function of the basement membrane. We have generated a mouse harboring a conditional knockout of α3 laminin (Lama3(fl/fl)), one of the main laminin subunits in the lung basement membrane. At 60 days after intratracheal treatment of adult Lama3(fl/fl) mice with an adenovirus encoding Cre recombinase (Ad-Cre), the protein abundance of α3 laminin in whole lung homogenates was more than 50% lower than that in control-treated mice, suggesting a relatively long half-life for the protein in the lung. Upon exposure to an injurious ventilation strategy (tidal volume of 35 ml per kg of body weight for 2 hours), the mice with a knockdown of the α3 laminin subunit had less severe injury, as shown by lung mechanics, histology, alveolar capillary permeability and survival when compared with Ad-Null-treated mice. Knockdown of the α3 laminin subunit resulted in evidence of lung inflammation. However, this did not account for their resistance to mechanical ventilation. Rather, the loss of α3 laminin was associated with a significant increase in the collagen content of the lungs. We conclude that the loss of α3 laminin in the alveolar epithelium results in an increase in lung collagen, which confers resistance to mechanical injury.

  15. The Integrin β1 Subunit Regulates Paracellular Permeability of Kidney Proximal Tubule Cells*

    PubMed Central

    Elias, Bertha C.; Mathew, Sijo; Srichai, Manakan B.; Palamuttam, Riya; Bulus, Nada; Mernaugh, Glenda; Singh, Amar B.; Sanders, Charles R.; Harris, Raymond C.; Pozzi, Ambra; Zent, Roy

    2014-01-01

    Epithelial cells lining the gastrointestinal tract and kidney have different abilities to facilitate paracellular and transcellular transport of water and solutes. In the kidney, the proximal tubule allows both transcellular and paracellular transport, while the collecting duct primarily facilitates transcellular transport. The claudins and E-cadherin are major structural and functional components regulating paracellular transport. In this study we present the novel finding that the transmembrane matrix receptors, integrins, play a role in regulating paracellular transport of renal proximal tubule cells. Deleting the integrin β1 subunit in these cells converts them from a “loose” epithelium, characterized by low expression of E-cadherin and claudin-7 and high expression of claudin-2, to a “tight” epithelium with increased E-cadherin and claudin-7 expression and decreased claudin-2 expression. This effect is mediated by the integrin β1 cytoplasmic tail and does not entail β1 heterodimerization with an α-subunit or its localization to the cell surface. In addition, we demonstrate that deleting the β1 subunit in the proximal tubule of the kidney results in a major urine-concentrating defect. Thus, the integrin β1 tail plays a key role in regulating the composition and function of tight and adherens junctions that define paracellular transport properties of terminally differentiated renal proximal tubule epithelial cells. PMID:24509849

  16. Redefining the roles of mitochondrial DNA-encoded subunits in respiratory Complex I assembly

    PubMed Central

    Vartak, Rasika; Deng, Janice; Fang, Hezhi; Bai, Yidong

    2015-01-01

    Respiratory Complex I deficiency is implicated in numerous degenerative and metabolic diseases. In particular, mutations in several mitochondrial DNA (mtDNA)-encoded Complex I subunits including ND4, ND5 and ND6 have been identified in several neurological diseases. We previously demonstrated that these subunits played essential roles in Complex I assembly which in turn affected mitochondrial function. Here, we carried out a comprehensive study of the Complex I assembly pathway. We identified a new Complex I intermediate containing both membrane and matrix arms at an early assembly stage. We find that lack of the ND6 subunit does not hinder membrane arm formation; instead it recruits ND1 and ND5 enter the intermediate. While ND4 is important for the formation of the newly identified intermediate, the addition of ND5 stabilizes the complex and is required for the critical transition from Complex I to supercomplexes assembly. As a result, the Complex I assembly pathway has been redefined in this study. PMID:25887158

  17. Compact Ceramic Microchannel Heat Exchangers

    SciTech Connect

    Lewinsohn, Charles

    2016-10-31

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe how this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.

  18. Our compact with tomorrow's doctors.

    PubMed

    Cohen, Jordan J

    2002-06-01

    In recent years, the image of medicine as a caring profession has been badly tarnished by a rash of critical reports in the media. In the face of this negative publicity, do young people still want to be doctors? The author reviews conventional reasons given for the declining applicant pool (e.g., issues of declining income, loss of autonomy, etc.) and posits that an additional reason may be perceptions that doctors no longer command respect and that they are being oppressed by, rather than being guardians of, the health care system. Such views challenge academic medicine to broadcast to the world a realistic picture of the fabulous opportunities and gratifications that lie ahead for the next generation of physicians. However, academic medicine must also address some current realities within medical education, such as the admission process (where at present there is a tendency to overemphasize indices of academic achievement and underemphasize the personal characteristics sought in applicants) and the acculturation process in medical school (which can often dehumanize students and convert idealistic ones into cynics). The author acknowledges that these are tough challenges. He suggests as a first step that leaders of academic medicine prepare and disseminate an explicit statement of their commitments, a kind of compact between teachers and learners of medicine. He outlines these commitments, and states his hope that by fulfilling them, the academic medicine community can make clear that medicine-which at its core is still about the doctor-patient relationship-is a true calling, not just beleaguered occupation.

  19. A compact laser target designator

    NASA Astrophysics Data System (ADS)

    Lee, S. T.; Silver, M.; Barron, A.; Borthwick, A.; Morton, G.; McRae, I.; Coghill, M.; Smith, C.; Scouler, C.; Gardiner, G.; Imlach, N.; McNeill, C.; McSporran, D.; Rodgers, D.; Kerr, D.; Alexander, W.

    2016-05-01

    Lasers intended for application to man-portable and hand-held laser target designators are subject to significant constraints on size, weight, power consumption and cost. These constraints must be met while maintaining adequate performance across a challenging environmental specification. One of the challenges of operating a Nd3+:YAG laser over a broad ambient temperature range is that of diode-pump-tuning. This system is specified to operate over an ambient temperature range of -46°C to +71°C, and the system electrical power consumption requirements preclude active temperature control. As a result the laser must tolerate a 32.8nm pump wavelength range. The optical absorption of Nd3+:YAG varies dramatically over this wavelength range. This paper presents a laser that minimizes the effect of this change on laser output. A folded U-shaped geometry laser resonator is presented, made up of a corner cube at one end and a plane mirror substrate at the other. The action of the corner cube coupled with this configuration of end mirrors results in a resonator that is significantly less sensitive to misalignment of the end mirror and/or the corner cube. This Ushaped resonator is then further folded to fit the laser into a smaller volume. Insensitivity of this compact folded resonator to mirror misalignments was analyzed in Zemax via a Monte-Carlo analysis and the results of this analysis are presented. The resulting laser output energy, pulse duration and beam quality of this athermally pumped, misalignment insensitive folded laser resonator are presented over an ambient temperature range of -46°C to +71°C.

  20. The infiltration of aluminum into silicon carbide compacts

    NASA Astrophysics Data System (ADS)

    Maxwell, P. B.; Martins, G. P.; Olson, D. L.; Edwards, G. R.

    1990-06-01

    Although liquid-metal processing of metal matrix composites offers economic advantages, problems related to the nonwetting nature of the ceramic discontinuous reinforcement create obstacles to its ready implementation. Infiltration can occur only if a threshold pressure is applied to overcome the unfavorable interfacial forces in the system. The research reported in this paper has been devoted primarily to experiments on infiltrating silicon carbide compacts with pure aluminum, aluminum-1 wt pet magnesium, and aluminum-1 wt pet silicon. The major finding has been that an incubation time is necessary before infiltration can proceed, even though the threshold pressure is exceeded. Thus, while the model equations available for predicting the infiltration rate of compacts appear to be adequate, the incubation time can represent the rate-determining step in the process. It is suggested that the mechanism responsible for the incubation phenomenon may be related to a surface modification produced by either reaction of liquid aluminum with an oxide film on the surface of the particles or coverage of the surface by a capillarity-induced aluminum condensate.

  1. Compacted Multiparticulate Systems for Colon-Specific Delivery of Ketoprofen.

    PubMed

    de Alencar, Rodrigo Gomes; de Oliveira, Aline Carlos; Lima, Eliana Martins; da Cunha-Filho, Marcílio Sérgio Soares; Taveira, Stephânia Fleury; Marreto, Ricardo Neves

    2017-01-10

    Pellet-containing tablets for colon-specific drug delivery present higher targeting efficiency and lower costs when compared with monolithic tablets and pellet-filled capsules, respectively. In this study, pellets containing ketoprofen were coated with different acrylic polymers and submitted to compaction. The influence of formulation and process factors on film integrity was then evaluated. Pellets were prepared via extrusion-spheronization and coated using two acrylic polymers (Eudragit® FS 30 D and Opadry® 94 k28327, PMMA and PMA, respectively). The resulting pellets were mixed with placebo granules and compressed in a hydraulic press. Multiple regression showed that ketoprofen release from pellet-containing tablets is predominantly influenced by pellet content, hardness, friability, and disintegration time. PMA-containing tablets prepared under low compaction force or with low pellet content showed rapid disintegration (<1 min) and ketoprofen release similar to those of uncompressed coated pellets (∼30% at 360 min of experiment). On the other hand, PMMA-containing tablets showed a higher rupture level, and those prepared with higher pellet content gave rise to a non-disintegrating matrix. Coated pellets were shown to be able to target ketoprofen to the colonic region. Targeting capacity was dependent on the physicochemical characteristics of the tablets.

  2. Measurements of elastic moduli of pharmaceutical compacts: a new methodology using double compaction on a compaction simulator.

    PubMed

    Mazel, Vincent; Busignies, Virginie; Diarra, Harona; Tchoreloff, Pierre

    2012-06-01

    The elastic properties of pharmaceutical powders play an important role during the compaction process. The elastic behavior can be represented by Young's modulus (E) and Poisson's ratio (v). However, during the compaction, the density of the powder bed changes and the moduli must be determined as a function of the porosity. This study proposes a new methodology to determine E and v as a function of the porosity using double compaction in an instrumented compaction simulator. Precompression is used to form the compact, and the elastic properties are measured during the beginning of the main compaction. By measuring the axial and radial pressure and the powder bed thickness, E and v can be determined as a function of the porosity. Two excipients were studied, microcrystalline cellulose (MCC) and anhydrous calcium phosphate (aCP). The values of E measured are comparable to those obtained using the classical three-point bending test. Poisson's ratio was found to be close to 0.24 for aCP with only small variations with the porosity, and to increase with a decreasing porosity for MCC (0.23-0.38). The classical approximation of a value of 0.3 for ν of pharmaceutical powders should therefore be taken with caution.

  3. Diversity of heterotrimeric G-protein γ subunits in plants.

    PubMed

    Trusov, Yuri; Chakravorty, David; Botella, José Ramón

    2012-10-31

    Heterotrimeric G-proteins, consisting of three subunits Gα, Gβ and Gγ are present in most eukaryotes and mediate signaling in numerous biological processes. In plants, Gγ subunits were shown to provide functional selectivity to G-proteins. Three unconventional Gγ subunits were recently reported in Arabidopsis, rice and soybean but no structural analysis has been reported so far. Their relationship with conventional Gγ subunits and taxonomical distribution has not been yet demonstrated. After an extensive similarity search through plant genomes, transcriptomes and proteomes we assembled over 200 non-redundant proteins related to the known Gγ subunits. Structural analysis of these sequences revealed that most of them lack the obligatory C-terminal prenylation motif (CaaX). According to their C-terminal structures we classified the plant Gγ subunits into three distinct types. Type A consists of Gγ subunits with a putative prenylation motif. Type B subunits lack a prenylation motif and do not have any cysteine residues in the C-terminal region, while type C subunits contain an extended C-terminal domain highly enriched with cysteines. Comparative analysis of C-terminal domains of the proteins, intron-exon arrangement of the corresponding genes and phylogenetic studies suggested a common origin of all plant Gγ subunits. Phylogenetic analyses suggest that types C and B most probably originated independently from type A ancestors. We speculate on a potential mechanism used by those Gγ subunits lacking isoprenylation motifs to anchor the Gβγ dimer to the plasma membrane and propose a new flexible nomenclature for plant Gγ subunits. Finally, in the light of our new classification, we give a word of caution about the interpretation of Gγ research in Arabidopsis and its generalization to other plant species.

  4. Quantifying the cooperative subunit action in a multimeric membrane receptor

    PubMed Central

    Wongsamitkul, Nisa; Nache, Vasilica; Eick, Thomas; Hummert, Sabine; Schulz, Eckhard; Schmauder, Ralf; Schirmeyer, Jana; Zimmer, Thomas; Benndorf, Klaus

    2016-01-01

    In multimeric membrane receptors the cooperative action of the subunits prevents exact knowledge about the operation and the interaction of the individual subunits. We propose a method that permits quantification of ligand binding to and activation effects of the individual binding sites in a multimeric membrane receptor. The power of this method is demonstrated by gaining detailed insight into the subunit action in olfactory cyclic nucleotide-gated CNGA2 ion channels. PMID:26858151

  5. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste.

  6. Graph Regularized Nonnegative Matrix Factorization for Data Representation.

    PubMed

    Cai, Deng; He, Xiaofei; Han, Jiawei; Huang, Thomas S

    2011-08-01

    Matrix factorization techniques have been frequently applied in information retrieval, computer vision, and pattern recognition. Among them, Nonnegative Matrix Factorization (NMF) has received considerable attention due to its psychological and physiological interpretation of naturally occurring data whose representation may be parts based in the human brain. On the other hand, from the geometric perspective, the data is usually sampled from a low-dimensional manifold embedded in a high-dimensional ambient space. One then hopes to find a compact representation,which uncovers the hidden semantics and simultaneously respects the intrinsic geometric structure. In this paper, we propose a novel algorithm, called Graph Regularized Nonnegative Matrix Factorization (GNMF), for this purpose. In GNMF, an affinity graph is constructed to encode the geometrical information and we seek a matrix factorization, which respects the graph structure. Our empirical study shows encouraging results of the proposed algorithm in comparison to the state-of-the-art algorithms on real-world problems.

  7. Genetic analysis of neuronal ionotropic glutamate receptor subunits.

    PubMed

    Granger, Adam J; Gray, John A; Lu, Wei; Nicoll, Roger A

    2011-09-01

    In the brain, fast, excitatory synaptic transmission occurs primarily through AMPA- and NMDA-type ionotropic glutamate receptors. These receptors are composed of subunit proteins that determine their biophysical properties and trafficking behaviour. Therefore, determining the function of these subunits and receptor subunit composition is essential for understanding the physiological properties of synaptic transmission. Here, we discuss and evaluate various genetic approaches that have been used to study AMPA and NMDA receptor subunits. These approaches have demonstrated that the GluA1 AMPA receptor subunit is required for activity-dependent trafficking and contributes to basal synaptic transmission, while the GluA2 subunit regulates Ca(2+) permeability, homeostasis and trafficking to the synapse under basal conditions. In contrast, the GluN2A and GluN2B NMDA receptor subunits regulate synaptic AMPA receptor content, both during synaptic development and plasticity. Ongoing research in this field is focusing on the molecular interactions and mechanisms that control these functions. To accomplish this, molecular replacement techniques are being used, where native subunits are replaced with receptors containing targeted mutations. In this review, we discuss a single-cell molecular replacement approach which should arguably advance our physiological understanding of ionotropic glutamate receptor subunits, but is generally applicable to study of any neuronal protein.

  8. Expression of GABA receptor rho subunits in rat brain.

    PubMed

    Boue-Grabot, E; Roudbaraki, M; Bascles, L; Tramu, G; Bloch, B; Garret, M

    1998-03-01

    The GABA receptor rho1, rho2, and rho3 subunits are expressed in the retina where they form bicuculline-insensitive GABA(C) receptors. We used northern blot, in situ hybridization, and RT-PCR analysis to study the expression of rho subunits in rat brains. In situ hybridization allowed us to detect rho-subunit expression in the superficial gray layer of the superior colliculus and in the cerebellar Purkinje cells. RT-PCR experiments indicated that (a) in retina and in domains that may contain functional GABA(C) receptors, rho2 and rho1 subunits are expressed at similar levels; and (b) in domains and in tissues that are unlikely to contain GABA(C) receptors, rho2 mRNA is enriched relative to rho1 mRNA. These results suggest that both rho1 and rho2 subunits are necessary to form a functional GABA(C) receptor. The use of RT-PCR also showed that, except in the superior colliculus, rho3 is expressed along with rho1 and rho2 subunits. We also raised an antibody against a peptide sequence unique to the rho1 subunit. The use of this antibody on cerebellum revealed the rat rho1 subunit in the soma and dendrites of Purkinje neurons. The allocation of GABA(C) receptor subunits to identified neurons paves the way for future electrophysiological studies.

  9. General expressions for the matrix elements of the tight-binding operator within the Racah-Wigner algebra*

    NASA Astrophysics Data System (ADS)

    Möller, Thomas

    2016-12-01

    General expressions for the matrix elements of the tight-binding operator are presented using the Racah-Wigner algebra, where the wave functions are expressed as coupled multiplet wave functions within a given angular momentum coupling scheme. The knowledge of all possible Slater determinants is not necessary and the matrix elements can be written as compact expressions computable with arbitrary accuracy.

  10. Deep Compaction Control of Sandy Soils

    NASA Astrophysics Data System (ADS)

    Bałachowski, Lech; Kurek, Norbert

    2015-02-01

    Vibroflotation, vibratory compaction, micro-blasting or heavy tamping are typical improvement methods for the cohesionless deposits of high thickness. The complex mechanism of deep soil compaction is related to void ratio decrease with grain rearrangements, lateral stress increase, prestressing effect of certain number of load cycles, water pressure dissipation, aging and other effects. Calibration chamber based interpretation of CPTU/DMT can be used to take into account vertical and horizontal stress and void ratio effects. Some examples of interpretation of soundings in pre-treated and compacted sands are given. Some acceptance criteria for compaction control are discussed. The improvement factors are analysed including the normalised approach based on the soil behaviour type index.

  11. Steady state compact toroidal plasma production

    DOEpatents

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  12. Compact antenna has symmetrical radiation pattern

    NASA Technical Reports Server (NTRS)

    Kuhlman, E. A.; Mckee, E. D.

    1979-01-01

    Compact quadrifilar-helix antenna has exceptionally uniform and axially symmetric radiation pattern. It resists shock and vibration and gives excellent radiation characteristics which make it potentially useful for mobile citizenband radios and other terrestrial communications sytems.

  13. Star Formation in Compact Groups of Galaxies

    NASA Astrophysics Data System (ADS)

    Paramo, Jorge

    We propose to obtain NUV and FUV images of a sample of nearby compact groups and their neighborhoods with the GALEX imaging facility. The main goals for this proposal are: (1) explore whether a relationship between the total star formation rates and the evolutionary state of the group holds, and also to explore the existence of interaction induced nuclear starburst activity in compact group galaxies; (2) study the super star clusters content of the systems in our sample and the relationship to the group properties; (3) search for extended star forming regions in the intragroup medium and (4) perform a morphological multiwavelength study of the sample galaxies in order to quantitatively describe the induced star formation activity with morphological criteria. A sample of field galaxies (already available) will be used to investigate the role of the compact group environment on the UV properties of our sample of compact group galaxies.

  14. Temperature evolution during compaction of pharmaceutical powders.

    PubMed

    Zavaliangos, Antonios; Galen, Steve; Cunningham, John; Winstead, Denita

    2008-08-01

    A numerical approach to the prediction of temperature evolution in tablet compaction is presented here. It is based on a coupled thermomechanical finite element analysis and a calibrated Drucker-Prager Cap model. This approach is capable of predicting transient temperatures during compaction, which cannot be assessed by experimental techniques due to inherent test limitations. Model predictions are validated with infrared (IR) temperature measurements of the top tablet surface after ejection and match well with experiments. The dependence of temperature fields on speed and degree of compaction are naturally captured. The estimated transient temperatures are maximum at the end of compaction at the center of the tablet and close to the die wall next to the powder/die interface.

  15. Analysis of the protective effects of the α2/δ subunit of voltage-gated Ca(2+) channels in brain injury.

    PubMed

    Kim, Tae Yeon; Niimi, Kimie; Takahashi, Eiki

    2017-01-15

    Voltage-gated Ca(2+) channels (VGCCs) are comprised of α1, α2/δ, β, and γ subunits. The pore-forming α1 subunit is essential for the proper functioning of Ca(2+) channels, while the α2/δ subunit interacts with components of the extracellular matrix. The α2/δ subunit is related in many neuropathological symptoms, including epilepsy and cerebellar ataxia. We previously reported that the mutant Cav.2.1α1 subunit has protective effects following brain injury. The present study aimed to investigate the effects of the α2/δ subunit inhibition alone and in combination with the inhibition of the Cav.2.1α1 subunit following brain injury by injecting Gabapentin using Cav.2.1α1 mutant heterozygous rolling Nagoya (rol/+) and wild-type (+/+) mice. Gabapentin binds to the α2/δ subunit and leads to Ca(2+) flow disturbance. A cryogenic method was used to induce brain injury. The mice pretreated with 100mg/kg Gabapentin exhibited a decrease in lesion size, while the 40mg/kg Gabapentin injection was effective in rol/+ mice but not +/+ mice. The administration of 100mg/kg Gabapentin also attenuated reactive astrocyte activity and neuronal degeneration; the pattern of results was similar to that for lesion size. An analysis of phosphorylated p38 (pp38) expression revealed that Gabapentin suppressed the p38 mitogen-activated protein kinase (MAPK) signaling cascade by interrupting glutamate-signaling induced by the inhibition of VGCCs. The present findings demonstrated that the administration of the α2/δ subunit inhibitor, Gabapentin, had neuroprotective effects following brain injury.

  16. Compact Proton Accelerator for Cancer Therapy

    SciTech Connect

    Chen, Y; Paul, A C

    2007-06-12

    An investigation is being made into the feasibility of making a compact proton dielectric wall (DWA) accelerator for medical radiation treatment based on the high gradient insulation (HGI) technology. A small plasma device is used for the proton source. Using only electric focusing fields for transporting and focusing the beam on the patient, the compact DWA proton accelerator m system can deliver wide and independent variable ranges of beam currents, energies and spot sizes.

  17. Rotating compact star with superconducting quark matter

    SciTech Connect

    Panda, P.K.; Nataraj, H.S.

    2006-02-15

    A compact star with a superconducting quark core, a hadron crust, and a mixed phase between the two is considered. The quark-meson coupling model for hadron matter and the color-flavor-locked quark model for quark matter is used to construct the equation of state for the compact star. The effect of pairing of quarks in the color-flavor-locked phase and the mixed phase on the mass, radius, and period of the rotating star is studied.

  18. Development of an optimized compact test range

    NASA Astrophysics Data System (ADS)

    Dudok, Evert; Fasold, Dietmar; Steiner, Hans-Juergen

    A method of measuring the electromagnetic far field characteristics of microwave antennas is introduced by means of compact test ranges. The performances of the front-fed Cassegrain system, which avoids the usually weak cross-polarization performance of the compact range geometries, are established. The chosen manufacturing process, milling of cast-iron reflectors, guaranteed highest achievable surface accuracies, even for very large reflectors. The structural analysis showed that extremely high surface accuracies require well regulated temperature conditions of the experiment.

  19. Vibrating reed experiments on compacted vitreous silica

    NASA Astrophysics Data System (ADS)

    Weiss, G.; Daum, A.; Sohn, M.; Arndt, J.

    1996-02-01

    We have studied the acoustic properties of irreversibly compacted vitreous silica (Suprasil I) at frequencies around 12 kHz between 10 mK and room temperature. At low temperatures up to a few K the compacted glass exhibits acoustic properties similar to those of normal vitreous silica, however, with considerably smaller values of the damping and of the temperature coefficient of the sound velocity. Around 30 K the internal friction is reduced by factor of 6.

  20. CompAction: Integrated compliance management software

    SciTech Connect

    Zipfel, J.M.

    1995-12-31

    CompAction is an integrated compliance management software tool for the solid waste disposal industry. The majority of environmental compliance software packages on the market allow users to access Federal and state regulations without increasing the usability of the information. By contrast, CompAction bridges the gap between regulatory requirements and the actions facilities must complete to ensure continued compliance. CompAction allows environmental compliance management personnel and consultants to schedule compliance assessment activities, verify, and track the related compliance status of the facility. CompAction modules allow facility managers to customize the system for specific Federal, state, local and permit requirements and assign. completion responsibilities to site personnel The system tracks completion of the assignment, the compliance status of the requirement and also an assigned plan of action for the requirements which are found to be deficient. CompAction may also assist facilities in demonstrating compliance with state audit privilege guidelines and is designed to adhere to compliance program requirements outlined by the USEPA and the Department of Justice. CompAction can schedule facility inspections and audits to ensure that the facility maintains an on-going compliance prevention and assessment program. Federal, State, local and permit Environmental, Health and Safety regulations can all be maintained by the system and modified as the requirements change. CompAction is an innovative compliance assessment and monitoring system designed for both public and private facilities. Use of CompAction will facilitate the maintenance of an efficient and effective environmental compliance management program for solid waste disposal facilities.

  1. Tidal deformability of compact boson stars

    NASA Astrophysics Data System (ADS)

    Sennett, Noah; Steinhoff, Jan; Hinderer, Tanja; Buonanno, Alessandra

    2017-01-01

    Gravitational waves can be used to probe the structure of compact objects in coalescing binary systems. This structure enters the pre-merger waveform through tidal interactions between the two bodies, characterized by each object's tidal deformability. We investigate whether these effects can differentiate binary black holes from systems containing compact boson stars. We compute the tidal deformability for various boson star models, including ultracompact non-topological solitonic solutions.

  2. Rubisco small subunit gene family in cassava.

    PubMed

    Yeo, T W; Mak, Y M; Ho, K K

    1999-01-01

    Cassava leaves of two different cultivars, Brazil and Buloh, were used to isolate mRNA. The mRNA isolated was successfully used in the construction of cDNA libraries for each of the cultivars. The cDNA libraries were screened for members of ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit gene family and positive clones were sequenced. A total of seven different SSU genes, of which five were from cultivar Brazil and two were from cultivar Buloh, were isolated. Comparison results show that even though all the sequences are highly similar, they can be classified into three subfamilies. Homology between members of the same subfamily is higher than homology between members from the same cultivar.

  3. Alkaline-extracted influenza subunit vaccine.

    PubMed Central

    Eckert, E A

    1976-01-01

    Treatment of influenza virus concentrates with alkaline solvents releases a major fraction of the viral structural protein content. As determined by polyacrylamide gel electrophoresis, the surface glycoprotein substructures, hemagglutinin and neuraminidase, are the primary solubilized products. Two forms of hemagglutinin antigen are recovered, a 39S active hemagglutinin and a 23S blocking antigen. Dose-response assays in mice demonstrate that hemagglutination-inhibiting and neuraminidase antibodies are induced. Antibody responses are comparable to those resulting from immunization with inactivated whole virus. On the basis of demonstrated purity, high yields of protective antigens, immunogenic potency, and absence of deleterious reagents, alkaline-extracted influenza protein preparations merit consideration as subunit vaccines for human use. PMID:826484

  4. Compilation of small ribosomal subunit RNA structures.

    PubMed Central

    Neefs, J M; Van de Peer, Y; De Rijk, P; Chapelle, S; De Wachter, R

    1993-01-01

    The database on small ribosomal subunit RNA structure contained 1804 nucleotide sequences on April 23, 1993. This number comprises 365 eukaryotic, 65 archaeal, 1260 bacterial, 30 plastidial, and 84 mitochondrial sequences. These are stored in the form of an alignment in order to facilitate the use of the database as input for comparative studies on higher-order structure and for reconstruction of phylogenetic trees. The elements of the postulated secondary structure for each molecule are indicated by special symbols. The database is available on-line directly from the authors by ftp and can also be obtained from the EMBL nucleotide sequence library by electronic mail, ftp, and on CD ROM disk. PMID:8332525

  5. Subunit vaccine efficacy against Botulinum neurotoxin subtypes.

    PubMed

    Henkel, James S; Tepp, William H; Przedpelski, Amanda; Fritz, Robert B; Johnson, Eric A; Barbieri, Joseph T

    2011-10-13

    Botulinum neurotoxins (BoNT) are classified into 7 serotypes (A-G) based upon neutralization by serotype-specific anti-sera. Several recombinant serotype-specific subunit BoNT vaccines have been developed, including a subunit vaccine comprising the receptor binding domain (HCR) of the BoNTs. Sequencing of the genes encoding BoNTs has identified variants (subtypes) that possess up to 32% primary amino acid variation among different BoNT serotypes. Studies were conducted to characterize the ability of the HCR of BoNT/A to protect against challenge by heterologous BoNT/A subtypes (A1-A3). High dose vaccination with HCR/A subtypes A1-A4 protected mice from challenge by heterologous BoNT/A subtype A1-A3, while low dose HCR vaccination yielded partial protection to heterologous BoNT/A subtype challenge. Absolute IgG titers to HCRs correlated to the dose of HCR used for vaccination, where HCR/A1 elicited an A1 subtype-specific IgG response, which was not observed with HCR/A2 vaccination. Survival of mice challenged to heterologous BoNT/A2 following low dose HCR/A1 vaccination correlated with elevated IgG titers directed to the denatured C-terminal sub-domain of HCR/A2, while survival of mice to heterologous BoNT/A1 following low dose HCR/A2 vaccination correlated to elevated IgG titers directed to native HCRc/A1. This implies that low dose vaccinations with HCR/A subtypes elicit unique IgG responses, and provides a basis to define how the host develops a neutralizing immune response to BoNT intoxication. These results may provide a reference for the development of pan-BoNT vaccines.

  6. Compaction and flow rule of oxide nanopowders

    NASA Astrophysics Data System (ADS)

    Boltachev, G. Sh.; Lukyashin, K. E.; Maximenko, A. L.; Maksimov, R. N.; Shitov, V. A.; Shtern, M. B.

    2017-09-01

    Transparent Al2O3 ceramics have attracted considerable interest for use in a wide range of optical, electronic and structural applications. The fabrication of these ceramics using powder metallurgy processes requires the development of theoretical approaches to the compaction of nanopowders. In this work, we investigate the compaction processes of two model granular systems imitating Al2O3 nanosized powders. System I is a loosely aggregated powder, and system II is a powder strongly inclined to agglomeration (for instance, calcined powder). The processes of isostatical (uniform), biaxial, and uniaxial compaction as well as uniaxial compaction with simultaneous shear deformation are studied. The energy parameters of compaction such as the energy change of elastic interparticle interactions and dispersion interactions, dissipative energy losses related to the processes of interparticle friction, and the total work of compaction are calculated for all the processes. The nonapplicability of the associated flow rule to the description of deformation processes of oxide nanopowders is shown and an alternative plastic flow rule is suggested. A complete system of determining the relationship of the flow including analytical approximations of yield surfaces is obtained.

  7. Dynamic compaction of tungsten carbide powder.

    SciTech Connect

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  8. Ceramic granule strength variability and compaction behavior

    SciTech Connect

    Glass, S.J.; Ewsuk, K.G.; Readey, M.J.

    1995-08-01

    Diametral compression strength distributions and the compaction behavior and of irregular shape 150--200 {mu}m ceramic granules and uniform-size 210 {mu}m glass spheres were measured to determine how granule strength variability relates to compaction behavior of granular assemblies. High variability in strength, represented by low Weibull modulus values (m<3) was observed for ceramic granules having a distribution of sizes and shapes, and for uniform-size glass spheres. Compaction pressure data were also analyzed using a Weibull distribution function, and the results were very similar to those obtained from the diametral compression strength tests for the same material. This similarity suggests that it may be possible to model granule compaction using a weakest link theory, whereby an assemblage of granules is viewed as the links of a chain, and failure of the weakest granule (i.e., the weakest link) leads to rearrangement and compaction. Additionally, with the use of Weibull statistics, it appears to be possible to infer the variability in strength of individual granules from a simple pressure compaction test, circumventing the tedious task of testing individual granules.

  9. Compaction of Ductile and Fragile Grains

    NASA Astrophysics Data System (ADS)

    Creissac, S.; Pouliquen, O.; Dalloz-Dubrujeaud, B.

    2009-06-01

    The compaction of powders into tablets is widely used in several industries (cosmetics, food, pharmaceutics…). In all these industries, the composition of the initial powder is complex, and the behaviour under compaction is not well known, also the mechanical behaviour of the tablets. The aim of this paper is to understand the behaviour (pressure vs density) of a simplified media made of fragile and ductile powders, varying the relative ratio of each powder. Some compaction experiments were carried out with glass beads (fragile) and Polyethylen Glycol powder (ductile). We observe two typical behaviours, depending on the relative volumic fraction of each component. A transition is pointed out, observing the evolution of the slope of the curve pressure/density. This transition is explained by geometrical considerations during compaction. A model is proposed, based on the assumption that the studied media can be compare to a diphasic material with a continuous phase (the ductile powder) and a discrete phase (the fragile powder). The result of this model is compare to the experimental results of compaction, and give a good prediction of the behaviour of the different mixing, knowing the behaviour of the ductile and the fragile phase separately. These results were also interpreted in terms of Heckel parameter which characterizes the ability of the powder to deform plastically under compaction. Some mechanical tests were also performed to compare the mechanical resitance of the obtained tablets.

  10. Hacking the Matrix.

    PubMed

    Czerwinski, Michael; Spence, Jason R

    2017-01-05

    Recently in Nature, Gjorevski et al. (2016) describe a fully defined synthetic hydrogel that mimics the extracellular matrix to support in vitro growth of intestinal stem cells and organoids. The hydrogel allows exquisite control over the chemical and physical in vitro niche and enables identification of regulatory properties of the matrix.

  11. Transfer function matrix

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    Given a multivariable system, it is proved that the numerator matrix N(s) of the transfer function evaluated at any system pole either has unity rank or is a null matrix. It is also shown that N(s) evaluated at any transmission zero of the system has rank deficiency. Examples are given for illustration.

  12. Compact fission counter for DANCE

    SciTech Connect

    Wu, C Y; Chyzh, A; Kwan, E; Henderson, R; Gostic, J; Carter, D; Bredeweg, T; Couture, A; Jandel, M; Ullmann, J

    2010-11-06

    and still be able to maintain a stable operation under extreme radioactivity and the ability to separate fission fragments from {alpha}'s. In the following sections, the description is given for the design and performance of this new compact PPAC, for studying the neutron-induced reactions on actinides using DANCE at LANL.

  13. Stylolite compaction and stress models

    NASA Astrophysics Data System (ADS)

    Koehn, D.; Ebner, M.; Renard, F.; Toussaint, R.

    2009-04-01

    Stylolites are rough dissolution seams that develop during pressure solution in the Earth's crust. Especially in limestone quarries they exhibit a spectacular roughness with spikes and large columns. They are visible as dark lines of residual clays and other non-dissolvable components in the white limestone. The roughening phenomena seems to be universal since stylolites can also be found in quarzites, mylonites and all kinds of rocks that undergo pressure solution. The genesis of stylolites is not well understood even though they have been used to estimate compaction and to determine the direction of the main compressive stress. We have developed a numerical model to study the dynamic development of the roughness and its dependence on stress. Based on the model we present estimates of finite strain and depth of burial. The numerical stylolites are studied in two ways: the temporal evolution of the roughness on one hand and the fractal characteristics of the roughness on the other hand. In addition we vary the noise in the model and illustrate the importance of the grain size on the roughening process. Surface energies are dominant for small wavelengths and the initial stylolite growth is non-linear and as slow as a diffusive process. However, once a critical wavelength is reached the elastic regime becomes dominant and the growth is still non-linear but not as strong as in the surface energy dominated case. The growth of the roughness speeds up and teeth structures develop. Depending on the system size the growth will reach a third regime where saturation is reached and the roughness stays constant. We will present a scaling law based on these findings that can be used to estimate finite strain from natural stylolites. The roughness of the stylolite itself is self-affine with two different roughness exponents. The switch from one exponent to the other is dependent on stress. We show how stylolites can thus be used as palaeo-stress-gauges. A variation of the

  14. Fuzzy risk matrix.

    PubMed

    Markowski, Adam S; Mannan, M Sam

    2008-11-15

    A risk matrix is a mechanism to characterize and rank process risks that are typically identified through one or more multifunctional reviews (e.g., process hazard analysis, audits, or incident investigation). This paper describes a procedure for developing a fuzzy risk matrix that may be used for emerging fuzzy logic applications in different safety analyses (e.g., LOPA). The fuzzification of frequency and severity of the consequences of the incident scenario are described which are basic inputs for fuzzy risk matrix. Subsequently using different design of risk matrix, fuzzy rules are established enabling the development of fuzzy risk matrices. Three types of fuzzy risk matrix have been developed (low-cost, standard, and high-cost), and using a distillation column case study, the effect of the design on final defuzzified risk index is demonstrated.

  15. FABRICATION OF URANIUM OXYCARBIDE KERNELS AND COMPACTS FOR HTR FUEL

    SciTech Connect

    Dr. Jeffrey A. Phillips; Eric L. Shaber; Scott G. Nagley

    2012-10-01

    As part of the program to demonstrate tristructural isotropic (TRISO)-coated fuel for the Next Generation Nuclear Plant (NGNP), Advanced Gas Reactor (AGR) fuel is being irradiation tested in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL). This testing has led to improved kernel fabrication techniques, the formation of TRISO fuel particles, and upgrades to the overcoating, compaction, and heat treatment processes. Combined, these improvements provide a fuel manufacturing process that meets the stringent requirements associated with testing in the AGR experimentation program. Researchers at Idaho National Laboratory (INL) are working in conjunction with a team from Babcock and Wilcox (B&W) and Oak Ridge National Laboratory (ORNL) to (a) improve the quality of uranium oxycarbide (UCO) fuel kernels, (b) deposit TRISO layers to produce a fuel that meets or exceeds the standard developed by German researches in the 1980s, and (c) develop a process to overcoat TRISO particles with the same matrix material, but applies it with water using equipment previously and successfully employed in the pharmaceutical industry. A primary goal of this work is to simplify the process, making it more robust and repeatable while relying less on operator technique than prior overcoating efforts. A secondary goal is to improve first-pass yields to greater than 95% through the use of established technology and equipment. In the first test, called “AGR-1,” graphite compacts containing approximately 300,000 coated particles were irradiated from December 2006 to November 2009. The AGR-1 fuel was designed to closely replicate many of the properties of German TRISO-coated particles, thought to be important for good fuel performance. No release of gaseous fission product, indicative of particle coating failure, was detected in the nearly 3-year irradiation to a peak burn up of 19.6% at a time-average temperature of 1038–1121°C. Before fabricating AGR-2 fuel, each

  16. Dynamic regulation of β1 subunit trafficking controls vascular contractility.

    PubMed

    Leo, M Dennis; Bannister, John P; Narayanan, Damodaran; Nair, Anitha; Grubbs, Jordan E; Gabrick, Kyle S; Boop, Frederick A; Jaggar, Jonathan H

    2014-02-11

    Ion channels composed of pore-forming and auxiliary subunits control physiological functions in virtually all cell types. A conventional view is that channels assemble with their auxiliary subunits before anterograde plasma membrane trafficking of the protein complex. Whether the multisubunit composition of surface channels is fixed following protein synthesis or flexible and open to acute and, potentially, rapid modulation to control activity and cellular excitability is unclear. Arterial smooth muscle cells (myocytes) express large-conductance Ca(2+)-activated potassium (BK) channel α and auxiliary β1 subunits that are functionally significant modulators of arterial contractility. Here, we show that native BKα subunits are primarily (∼95%) plasma membrane-localized in human and rat arterial myocytes. In contrast, only a small fraction (∼10%) of total β1 subunits are located at the cell surface. Immunofluorescence resonance energy transfer microscopy demonstrated that intracellular β1 subunits are stored within Rab11A-postive recycling endosomes. Nitric oxide (NO), acting via cGMP-dependent protein kinase, and cAMP-dependent pathways stimulated rapid (≤1 min) anterograde trafficking of β1 subunit-containing recycling endosomes, which increased surface β1 almost threefold. These β1 subunits associated with surface-resident BKα proteins, elevating channel Ca(2+) sensitivity and activity. Our data also show that rapid β1 subunit anterograde trafficking is the primary mechanism by which NO activates myocyte BK channels and induces vasodilation. In summary, we show that rapid β1 subunit surface trafficking controls functional BK channel activity in arterial myocytes and vascular contractility. Conceivably, regulated auxiliary subunit trafficking may control ion channel activity in a wide variety of cell types.

  17. Compact Fuel Element Environment Test

    NASA Technical Reports Server (NTRS)

    Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.

    2012-01-01

    Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.

  18. Structure of the archaeal Cascade subunit Csa5: relating the small subunits of CRISPR effector complexes.

    PubMed

    Reeks, Judith; Graham, Shirley; Anderson, Linzi; Liu, Huanting; White, Malcolm F; Naismith, James H

    2013-05-01

    The Cascade complex for CRISPR-mediated antiviral immunity uses CRISPR RNA (crRNA) to target invading DNA species from mobile elements such as viruses, leading to their destruction. The core of the Cascade effector complex consists of the Cas5 and Cas7 subunits, which are widely conserved in prokaryotes. Cas7 binds crRNA and forms the helical backbone of Cascade. Many archaea encode a version of the Cascade complex (denoted Type I-A) that includes a Csa5 (or small) subunit, which interacts weakly with the core proteins. Here, we report the crystal structure of the Csa5 protein from Sulfolobus solfataricus. Csa5 comprises a conserved α-helical domain with a small insertion consisting of a weakly conserved β-strand domain. In the crystal, the Csa5 monomers have multimerized into infinite helical threads. At each interface is a strictly conserved intersubunit salt bridge, deletion of which disrupts multimerization. Structural analysis indicates a shared evolutionary history among the small subunits of the CRISPR effector complexes. The same α-helical domain is found in the C-terminal domain of Cse2 (from Type I-E Cascade), while the N-terminal domain of Cse2 is found in Cmr5 of the CMR (Type III-B) effector complex. As Cmr5 shares no match with Csa5, two possibilities present themselves: selective domain loss from an ancestral Cse2 to create two new subfamilies or domain fusion of two separate families to create a new Cse2 family. A definitive answer awaits structural studies of further small subunits from other CRISPR effector complexes.

  19. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    PubMed Central

    Tandrup Schmidt, Signe; Foged, Camilla; Smith Korsholm, Karen; Rades, Thomas; Christensen, Dennis

    2016-01-01

    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs) concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs), which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR

  20. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators.

    PubMed

    Tandrup Schmidt, Signe; Foged, Camilla; Korsholm, Karen Smith; Rades, Thomas; Christensen, Dennis

    2016-03-10

    The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs) concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI). Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs), which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR

  1. The diversity of GABA(A) receptor subunit distribution in the normal and Huntington's disease human brain.

    PubMed

    Waldvogel, H J; Faull, R L M

    2015-01-01

    GABA(A) receptors are assembled into pentameric receptor complexes from a total of 19 different subunits derived from a variety of different subunit classes (α1-6, β1-3, γ1-3, δ, ɛ, θ, and π) which surround a central chloride ion channel. GABA(A) receptor complexes are distributed heterogeneously throughout the brain and spinal cord and are activated by the extensive GABAergic inhibitory system. In this chapter, we describe the heterogeneous distribution of six of the most widely distributed subunits (α1, α2, α3, β2,3, and γ2) throughout the human basal ganglia. This review describes the studies we have carried out on the normal and Huntington's disease human basal ganglia using autoradiographic labeling and immunohistochemistry in the human basal ganglia. GABA(A) receptors are known to react to changing conditions in the brain in neurological disorders, especially in Huntington's disease and display a high degree of plasticity which is thought to compensate for loss of function caused by disease. In Huntington's disease, the variable loss of GABAergic medium spiny striatopallidal projection neurons is associated with a loss of GABA(A) receptor subunits in the striosome and/or the matrix compartments of the striatum. By contrast in the globus pallidus, a loss of the GABAergic striatal projection neurons results in a dramatic upregulation of subunits on the large postsynaptic pallidal neurons; this is thought to be a compensatory plastic mechanism resulting from the loss of striatal GABAergic input. Most interestingly, our studies have revealed that the subventricular zone overlying the caudate nucleus contains a variety of proliferating progenitor stem cells that possess a heterogeneity of GABA(A) receptor subunits which may play a role in human brain repair mechanisms.

  2. USE OF COMBUSTION SYNTHESIS IN PREPARING CERAMIC-MATRIX AND METAL-MATRIX COMPOSITE POWDERS

    SciTech Connect

    Weil, K. Scott; Hardy, John S.

    2005-03-01

    A standard combustion-based approach typically used to synthesize nanosize oxide powders has been modified to prepare composite oxide-metal powders for subsequent densification via sintering or hot-pressing into ceramic- or metal-matrix composites. Copper and cerium nitrate salts were dissolved in the appropriate ratio in water and combined with glycine, then heated to cause autoignition. The ratio of glycine-to-total nitrate concentration was found to have the largest effect on the composition, agglomerate size, crystallite size, and dispersivity of phases in the powder product. After consolidation and sintering under reducing conditions, the resulting composite compact consists of a well-dispersed mixture of sub-micron size reinforcement particles in a fine-grained matrix.

  3. Shrinking mechanism of a porous collagen matrix immersed in solution.

    PubMed

    Chen, Po-Yang; Hsieh, Hsyue-Jen; Huang, Lynn L H

    2014-12-01

    The porous structure of collagen-based matrices enables the infiltration of cells both in in vitro and clinical applications. Reconstituted porous collagen matrices often collapse when they are in contact with aqueous solutions; however, the mechanism for the collapse of the pores is not understood. We, therefore, investigated the interactions between the collagen matrix and different solutions, and discuss the mechanisms for the change in microstructure of the matrix on immersing it in solution. When a dried collagen matrix was immersed in aqueous solutions, the matrix shrunk and pores close to the surface closed. The shrinkage ratio and thickness of the compact microstructure close to the superficial area decreased with increasing ethanol content in the solution. The original porous structure of the collagen matrix was preserved when the matrix was immersed in absolute ethanol. The shrinkage of a porous collagen matrix in contact with aqueous solutions was attributed to the liquid/gas interfacial tension. The average pore diameter of the matrix also significantly affected the shrinkage of the matrix. The shrinkage of the matrix, explained using the Young-Laplace equation, was found to result from the pressure drop, and especially in the pores located superficially, leading to the collapse of the matrix microstructure. The integrity of the porous microstructure allows better penetration of cells in medical applications. The numbers of NIH/3T3 fibroblasts penetrated through the hydrated Col/PBS porous collagen matrices pre-immersed in absolute ethanol with subsequent water and DMEM culture medium replacements were significantly higher than those through matrices hydrated directly in DMEM.

  4. Epitopes from two soybean glycinin subunits antigenic in pigs

    USDA-ARS?s Scientific Manuscript database

    Background: Glycinin is a seed storage protein in soybean (Glycine max) that is allergenic in pigs. Glycinin is a hexamer composed of subunits consisting of a basic and acidic portion joined by disulfide bridges. There are 5 glycinin subunits designated Gy1-Gy5. Results: Twenty seven out of 30 pi...

  5. Proteopedia Entry: The Large Ribosomal Subunit of "Haloarcula Marismortui"

    ERIC Educational Resources Information Center

    Decatur, Wayne A.

    2010-01-01

    This article presents a "Proteopedia" page that shows the refined version of the structure of the "Haloarcula" large ribosomal subunit as solved by the laboratories of Thomas Steitz and Peter Moore. The landmark structure is of great impact as it is the first atomic-resolution structure of the highly conserved ribosomal subunit which harbors…

  6. Proteopedia Entry: The Large Ribosomal Subunit of "Haloarcula Marismortui"

    ERIC Educational Resources Information Center

    Decatur, Wayne A.

    2010-01-01

    This article presents a "Proteopedia" page that shows the refined version of the structure of the "Haloarcula" large ribosomal subunit as solved by the laboratories of Thomas Steitz and Peter Moore. The landmark structure is of great impact as it is the first atomic-resolution structure of the highly conserved ribosomal subunit which harbors…

  7. Specific Roles of NMDA Receptor Subunits in Mental Disorders

    PubMed Central

    Yamamoto, H.; Hagino, Y.; Kasai, S.; Ikeda, K.

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed. PMID:25817860

  8. The Development and Institutionalization of Subunit Power in Organizations.

    ERIC Educational Resources Information Center

    Boeker, Warren

    1989-01-01

    Examines the effects of founding events on the evolution of subunit importance in the semiconductor industry from 1958 to 1985. Distributions of power and subunit importance represent not only influences of current conditions, but also vestiges of earlier events, including the institution's founding. Includes 55 references. (MLH)

  9. Evaluating the Swelling, Erosion and Compaction Properties of Cellulose Ethers.

    PubMed

    Ghori, Muhammad U; Grover, Liam M; Asare-Addo, Kofi; Smith, Alan M; Conway, Barbara R

    2017-10-06

    Swelling, erosion, deformation and consolidation properties can affect the performance of cellulose ethers, the most commonly used matrix former in hydrophilic sustained tablet formulations. The present study was designed to comparatively evaluate the swelling, erosion, compression, compaction and relaxation properties of the cellulose ethers in a comprehensive study using standardised conditions. The interrelationship between various compressional models and the inherent deformation and consolidation properties of the polymers on the derived swelling and erosion parameters are consolidated. The impact of swelling (Kw) on erosion rates (KE) and the inter-relationship between Heckel and Kawakita plasticity constants was also investigated. It is evident from the findings that the increases in both substitution and polymer chain length led to higher Kw, but a lower KE; this was also true for all particle size fractions regardless of polymer grade. Smaller particle size and high substitution levels tend to increase the relative density of the matrix but reduce porosity, yield pressure (Py), Kawakita plasticity parameter (b(-1)) and elastic relaxation. Both KW vs KE (R(2) = 0.949-0.980) and Py vs b(-1) correlations (R(2) = 0.820-0.934) were reasonably linear with regards to increasing hydroxypropyl substitution and molecular size. Hence, it can be concluded that the combined knowledge of swelling and erosion kinetics in tandem with the in and out-of-die compression findings can be used to select a specific polymer grade and further to develop and optimise formulations for oral controlled drug delivery applications.

  10. Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly

    PubMed Central

    1990-01-01

    The structural elements required for normal maturation and assembly of the nicotinic acetylcholine receptor alpha subunit were investigated by expression of mutated subunits in transfected fibroblasts. Normally, the wild-type alpha subunit acquires high affinity alpha bungarotoxin binding in a time-dependent manner; however, mutation of the 128 and/or 142 cysteines to either serine or alanine, as well as deletion of the entire 14 amino acids in this region abolished all detectable high affinity binding. Nonglycosylated subunits that had a serine to glycine mutation in the consensus sequence also did not efficiently attain high affinity binding to toxin. In contrast, mutation of the proline at position 136 to glycine or alanine, or a double mutation of the cysteines at position 192 and 193 to serines had no effect on the acquisition of high affinity toxin binding. These data suggest that a disulfide bridge between cysteines 128 and 142 and oligosaccharide addition at asparagine 141 are required for the normal maturation of alpha subunit as assayed by high affinity toxin binding. The unassembled wild-type alpha subunit expressed in fibroblasts is normally degraded with a t1/2 of 2 h; upon assembly with the delta subunit, the degradation rate slows significantly (t1/2 greater than 13 h). All mutated alpha subunits retained the capacity to assemble with a delta subunit coexpressed in fibroblasts; however, mutated alpha subunits that were not glycosylated or did not acquire high affinity toxin binding were rapidly degraded (t1/2 = 20 min to 2 h) regardless of whether or not they assembled with the delta subunit. Assembly and rapid degradation of nonglycosylated acetylcholine receptor (AChR) subunits and subunit complexes were also observed in tunicamycin- treated BC3H-1 cells, a mouse musclelike cell line that normally expresses functional AChR. Hence, rapid degradation may be one form of regulation assuring that only correctly processed and assembled subunits

  11. In vitro and in vivo evaluation of a bondable compact for the prolonged delivery of triamcinolone acetonide to the oral cavity in patients with lichen planus.

    PubMed

    Deasy, P B; Collins, A E; Burke, F M; Shanley, D B

    1989-01-01

    Compacts weighing 40 mg and containing triamcinolone acetonide 70-90% and polyhydroxybutyric acid (PHB) 30-10% or poly (DL-lactic acid) 20% with a diameter of 5 mm were bonded onto the side-wall of molar teeth. In vitro dissolution studies showed the compacts to release 12% of drug in 30 days with an initial burst effect. Drug loading or polymer matrix type had little effect. In vivo studies in dogs showed that compacts containing 80% drug in PHB produced salivary levels of triamcinolone acetonide for 30 days. When evaluated in five patients with lichen planus resistant to conventional therapy, these compacts produce a slight clinical improvement in three subjects. Differential scanning calorimetry studies confirmed that the drug and polymer were present as a physical mix in these compacts.

  12. INTRINSIC REGULATION OF HEMOGLOBIN EXPRESSION BY VARIABLE SUBUNIT INTERFACE STRENGTHS

    PubMed Central

    Manning, James M.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, Lois R.

    2012-01-01

    SUMMARY The expression of the six types of human hemoglobin subunits over time is currently considered to be regulated mainly by transcription factors that bind to upstream control regions of the gene (the “extrinsic” component of regulation). Here we describe how subunit pairing and further assembly to tetramers in the liganded state is influenced by the affinity of subunits for one another (the “intrinsic” component of regulation). The adult hemoglobin dimers have the strongest subunit interfaces and the embryonic hemoglobins are the weakest with fetal hemoglobins of intermediate strength, corresponding to the temporal order of their expression. These variable subunit binding strengths and the attenuating effects of acetylation contribute to the differences with which these hemoglobin types form functional O2-binding tetramers consistent with gene switching. PMID:22129306

  13. [Penicillin acylase from Escherichia coli: catalytically active subunits].

    PubMed

    Kabakov, V E; Kliachko, N L; Levashov, A V

    1995-05-01

    Gel filtration under denaturing conditions was used to isolate the alpha- and beta-subunits of penicillin acylase (PA). Refolded subunits were obtained through removing urea by dialysis. Both renatured subunits were catalytically active during hydrolysis of phenylacetic acid p-nitroanilide; this activity decreased after addition of a serine-specific inhibitor--phenylmethanesulfonyl fluoride. The subunits were also active in reversed micelles of Aerosol OT (AOT) in octane, the optimum hydration degree being 11.9 and 17.5 for the light (alpha) and heavy (beta) subunits, respectively. The positions of the maxima were consistent with both theoretically calculated optimum hydration degrees and the earlier reported profile of enzymatic activity for native PA in reversed micelles.

  14. Geranyl diphosphate synthase large subunit, and methods of use

    DOEpatents

    Croteau, Rodney B.; Burke, Charles C.; Wildung, Mark R.

    2001-10-16

    A cDNA encoding geranyl diphosphate synthase large subunit from peppermint has been isolated and sequenced, and the corresponding amino acid sequence has been determined. Replicable recombinant cloning vehicles are provided which code for geranyl diphosphate synthase large subunit). In another aspect, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding geranyl diphosphate synthase large subunit. In yet another aspect, the present invention provides isolated, recombinant geranyl diphosphate synthase protein comprising an isolated, recombinant geranyl diphosphate synthase large subunit protein and an isolated, recombinant geranyl diphosphate synthase small subunit protein. Thus, systems and methods are provided for the recombinant expression of geranyl diphosphate synthase.

  15. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  16. Faces of matrix models

    NASA Astrophysics Data System (ADS)

    Morozov, A.

    2012-08-01

    Partition functions of eigenvalue matrix models possess a number of very different descriptions: as matrix integrals, as solutions to linear and nonlinear equations, as τ-functions of integrable hierarchies and as special-geometry prepotentials, as result of the action of W-operators and of various recursions on elementary input data, as gluing of certain elementary building blocks. All this explains the central role of such matrix models in modern mathematical physics: they provide the basic "special functions" to express the answers and relations between them, and they serve as a dream model of what one should try to achieve in any other field.

  17. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  18. A revised model for AMP-activated protein kinase structure: The alpha-subunit binds to both the beta- and gamma-subunits although there is no direct binding between the beta- and gamma-subunits.

    PubMed

    Wong, Kelly A; Lodish, Harvey F

    2006-11-24

    The 5'-AMP-activated protein kinase (AMPK) is a master sensor for cellular metabolic energy state. It is activated by a high AMP/ATP ratio and leads to metabolic changes that conserve energy and utilize alternative cellular fuel sources. The kinase is composed of a heterotrimeric protein complex containing a catalytic alpha-subunit, an AMP-binding gamma-subunit, and a scaffolding beta-subunit thought to bind directly both the alpha- and gamma-subunits. Here, we use coimmunoprecipitation of proteins in transiently transfected cells to show that the alpha2-subunit binds directly not only to the beta-subunit, confirming previous work, but also to the gamma1-subunit. Deletion analysis of the alpha2-subunit reveals that the C-terminal 386-552 residues are sufficient to bind to the beta-subunit. The gamma1-subunit binds directly to the alpha2-subunit at two interaction sites, one within the catalytic domain consisting of alpha2 amino acids 1-312 and a second within residues 386-552. Binding of the alpha2 and the gamma1-subunits was not affected by 400 mum AMP or ATP. Furthermore, we show that the beta-subunit C terminus is essential for binding to the alpha2-subunit but, in contrast to previous work, the beta-subunit does not bind directly to the gamma1-subunit. Taken together, this study presents a new model for AMPK heterotrimer structure where through its C terminus the beta-subunit binds to the alpha-subunit that, in turn, binds to the gamma-subunit. There is no direct interaction between the beta- and gamma-subunits.

  19. The subunit composition and function of mammalian cytochrome c oxidase.

    PubMed

    Kadenbach, Bernhard; Hüttemann, Maik

    2015-09-01

    Cytochrome c oxidase (COX) from mammals and birds is composed of 13 subunits. The three catalytic subunits I-III are encoded by mitochondrial DNA, the ten nuclear-coded subunits (IV, Va, Vb, VIa, VIb, VIc, VIIa, VIIb, VIIc, VIII) by nuclear DNA. The nuclear-coded subunits are essentially involved in the regulation of oxygen consumption and proton translocation by COX, since their removal or modification changes the activity and their mutation causes mitochondrial diseases. Respiration, the basis for ATP synthesis in mitochondria, is differently regulated in organs and species by expression of tissue-, developmental-, and species-specific isoforms for COX subunits IV, VIa, VIb, VIIa, VIIb, and VIII, but the holoenzyme in mammals is always composed of 13 subunits. Various proteins and enzymes were shown, e.g., by co-immunoprecipitation, to bind to specific COX subunits and modify its activity, but these interactions are reversible, in contrast to the tightly bound 13 subunits. In addition, the formation of supercomplexes with other oxidative phosphorylation complexes has been shown to be largely variable. The regulatory complexity of COX is increased by protein phosphorylation. Up to now 18 phosphorylation sites have been identified under in vivo conditions in mammals. However, only for a few phosphorylation sites and four nuclear-coded subunits could a specific function be identified. Research on the signaling pathways leading to specific COX phosphorylations remains a great challenge for understanding the regulation of respiration and ATP synthesis in mammalian organisms. This article reviews the function of the individual COX subunits and their isoforms, as well as proteins and small molecules interacting and regulating the enzyme.

  20. Subunit structure of the follitropin receptor

    SciTech Connect

    Shin, J.

    1985-01-01

    Both of the ..cap alpha.. and ..beta.. subunits of intact human follitropin (FSH) were radioiodinated with /sup 125/I-FSH-sodium iodide and chloramine-T, and could be resolved on polyacrylamide gels (SDS-PAGE). The electrophoretic mobility of radioiodinated FSH ..cap alpha.. and ..beta.. subunits as well as the ..cap alpha beta.. dimer changed markedly depending on the concentration of reducing agents. /sup 125/I-FSH (Ka = 1.4 x 10/sup 10/ M/sup -1/), complexes to the receptor on procine granulosa cells or in Triton X-100 extracts, was affinity-crosslinked with a cleavable (nondisulfide) homobifunctional reagent, bis(2-(succinimidooxycarbonyloxy)ethyl)sulfone, solubilized in sodium dodecyl sulfate with or without reducing agents, and electrophoresed. Crosslinked samples revealed three additional bands of slower electrophoretic mobility, corresponding to 65 (unreduced 62), 83 (unreduced 76) and 117 (unreduced 110)kDa, in addition to hormone bands. Formation of the three bands requires the /sup 125/I-FSH hormone to bind specifically to the receptor with subsequent cross-linking. The rate of formation and cleavage of the cross-linked complexes indicated a sequential and incremental addition of 22, 18, and 34 kDa components to the FSH ..cap alpha beta.. dimer. The results of reduction of cross-linked complexes demonstrated the existence of disulfide linkage between the three components. FSH was photoactively derivatized with N-hydroxysuccinimide ester of 4-azidobenzolyl-glycine and radioiodinated for photoaffinity labeling. When derivatized /sup 125/I-FSH (Ka = 1.12 10/sup 10/ M/sup -1/) bound to the cell was photolyzed for cross-linking and resolved on the SDS-PAGE, two new bands (106 and 61 kDa) under reducing condition appeared in addition to the hormone bands. Upon reduction with dithiotheitol and second-dimensional electrophoresis, the unreduced 104 kDa (reduced 106 kDa) band released two small components 31 and 14 kDa.

  1. COMPACT PROTON INJECTOR AND FIRST ACCELERATOR SYSTEM TEST FOR COMPACT PROTON DIELECTRIC WALL CANCER THERAPY ACCELERATOR

    SciTech Connect

    Chen, Y; Guethlein, G; Caporaso, G; Sampayan, S; Blackfield, D; Cook, E; Falabella, S; Harris, J; Hawkins, S; Nelson, S; Poole, B; Richardson, R; Watson, J; Weir, J; Pearson, D

    2009-04-23

    A compact proton accelerator for cancer treatment is being developed by using the high-gradient dielectric insulator wall (DWA) technology [1-4]. We are testing all the essential DWA components, including a compact proton source, on the First Article System Test (FAST). The configuration and progress on the injector and FAST will be presented.

  2. Soil Compaction Investigation. Report No. 3: Compaction Studies on Sand Subgrade

    DTIC Science & Technology

    1949-10-01

    TRACKING After Com.J2actlon ~Dr~) After Com:12action ~Wet) After Grading Prior to Com11action Water Dry Water Dry Water Dry Compaction Number of...Water Dry Water Dry Depth Content Density , Depth Content Density , Ft ; Lb/CuFt Cam;paction Ft ! Lb/CuFt Compaction Before SoeJ.d.ns 5-Min Soaking

  3. Mixing and compaction temperatures for Superpave mixes

    NASA Astrophysics Data System (ADS)

    Yildirim, Yetkin

    According to Superpave mixture design, gyratory specimens are mixed and compacted at equiviscous binder temperatures corresponding to viscosities of 0.17 and 0.28 Pa.s. respectively. These were the values previously used in the Marshal mix design method to determine optimal mixing and compaction temperatures. In order to estimate the appropriate mixing and compaction temperatures for Superpave mixture design, a temperature-viscosity relationship for the binder needs to be developed (ASTM D 2493, Calculation of Mixing and Compaction Temperatures). The current approach is simple and provides reasonable temperatures for unmodified binders. However, some modified binders have exhibited unreasonably high temperatures for mixing and compaction using this technique. These high temperatures can result in construction problems, damage of asphalt, and production of fumes. Heating asphalt binder to very high temperatures during construction oxidizes the binder and separates the polymer from asphalt binder. It is known that polymer modified asphalt binders have many benefits to the roads, such as; increasing rutting resistance, enhancing low temperature cracking resistance, improving traction, better adhesion and cohesion, elevating tensile strength which are directly related to the service life of the pavement. Therefore, oxidation and separation of the polymer from the asphalt binder results in reduction of the service life. ASTM D 2493 was established for unmodified asphalt binders which are Newtonian fluids at high temperatures. For these materials, viscosity does not depend on shear rate. However, most of the modified asphalt binders exhibit a phenomenon known as pseudoplasticity, where viscosity does depend on shear rate. Thus, at the high shear rates occurring during mixing and compaction, it is not necessary to go to very high temperatures. This research was undertaken to determine the shear rate during compaction such that the effect of this parameter could be

  4. Diagnostics of soil compaction in steppe zone

    NASA Astrophysics Data System (ADS)

    Sorokin, Alexey; Kust, German

    2014-05-01

    Land degradation and desertification are among the major challenges in steppe zone, and leads the risks of food security in affected areas. Soil compaction is one of the basic reasons of degradation of arable land. The processes of soil compaction have different genesis. Knowledge of soil compaction mechanisms and their early diagnostics permit to accurately forecast velocity and degree of degradation processes as well as to undertake effective preventive measures and land reclamation activities. Manifestations of soil compaction and degradation of soil structure due to vertic, alkaline and and mechanical (agro-) compaction, as well as caused by combination of these processes in irrigated and rainfed conditions were studied in four model plots in Krasnodar and Saratov regions of Russia. Typic chernozems, solonetz and kashtanozem solonetz, south chernozem and dark-kashtanozem soils were under investigation. Morphological (mesomorphological, micromorphological and microtomographic) features, as well as number of physical (particle size analyses, water-peptizable clays content (WPC), swelling and shrinking, bulk density and moisture), chemical (humus, pH, CAC, EC), and mineralogical (clay fraction) properties were investigated. Method for grouping soil compaction types by morphological features was proposed. It was shown that: - overcompacted chernozems with vertic features has porosity close to natural chernozems (about 40%), but they had the least pore diameter (7-12 micron) among studied soils. Solonetzic soils had the least amount of "pore-opening" (9%). - irrigation did not lead to the degradation of soil structure on micro-level. - "mechanically" (agro-) compacted soils retained an intra-aggregate porosity. - studied soils are characterized by medium and heavy particle size content (silt [<0.1mm] of 30-60%). Subsoil horizons of chernozems with vertic and alkaline features were the heaviest by particle size content. - the share of WPC to clay ratio was 40% in

  5. DNA compaction by azobenzene-containing surfactant

    SciTech Connect

    Zakrevskyy, Yuriy; Kopyshev, Alexey; Lomadze, Nino; Santer, Svetlana

    2011-08-15

    We report on the interaction of cationic azobenzene-containing surfactant with DNA investigated by absorption and fluorescence spectroscopy, dynamic light scattering, and atomic force microscopy. The properties of the surfactant can be controlled with light by reversible switching of the azobenzene unit, incorporated into the surfactant tail, between a hydrophobic trans (visible irradiation) and a hydrophilic cis (UV irradiation) configuration. The influence of the trans-cis isomerization of the azobenzene on the compaction process of DNA molecules and the role of both isomers in the formation and colloidal stability of DNA-surfactant complexes is discussed. It is shown that the trans isomer plays a major role in the DNA compaction process. The influence of the cis isomer on the DNA coil configuration is rather small. The construction of a phase diagram of the DNA concentration versus surfactant/DNA charge ratio allows distancing between three major phases: colloidally stable and unstable compacted globules, and extended coil conformation. There is a critical concentration of DNA above which the compacted globules can be hindered from aggregation and precipitation by adding an appropriate amount of the surfactant in the trans configuration. This is because of the compensation of hydrophobicity of the globules with an increasing amount of the surfactant. Below the critical DNA concentration, the compacted globules are colloidally stable and can be reversibly transferred with light to an extended coil state.

  6. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  7. Counterintuitive compaction behavior of clopidogrel bisulfate polymorphs.

    PubMed

    Khomane, Kailas S; More, Parth K; Bansal, Arvind K

    2012-07-01

    Being a density violator, clopidogrel bisulfate (CLP) polymorphic system (forms I and II) allows us to study individually the impact of molecular packing (true density) and thermodynamic properties such as heat of fusion on the compaction behavior. These two polymorphs of CLP were investigated for in-die and out-of-die compaction behavior using CTC profile, Heckel, and Walker equations. Compaction studies were performed on a fully instrumented rotary tabletting machine. Detailed examinations of the molecular packing of each form revealed that arrangement of the sulfate anion differs significantly in both crystal forms, thus conferring different compaction behavior to two forms. Close cluster packing of molecules in form I offers a rigid structure, which has poor compressibility and hence resists deformation under compaction pressure. This results into lower densification, higher yield strength, and mean yield pressure, as compared with form II at a given pressure. However, by virtue of higher bonding strength, form I showed superior tabletability, despite its poor compressibility and deformation behavior. Form I, having higher true density and lower heat of fusion showed higher bonding strength. Hence, true density and not heat of fusion can be considered predictor of bonding strength of the pharmaceutical powders.

  8. Na, K ATPase beta3 subunit (CD298): association with alpha subunit and expression on peripheral blood cells.

    PubMed

    Chiampanichayakul, S; Khunkaewla, P; Pata, S; Kasinrerk, W

    2006-12-01

    Beta3 subunit is described as one of the Na, K ATPase subunits. Recently, we generated a monoclonal antibody (mAb), termed P-3E10. This mAb was shown to react with the Na, K ATPase beta3 subunit or CD298. By immunofluorescence analysis using mAb P-3E10, it was found that all peripheral blood leukocytes express Na, K ATPase beta3. The presence of beta3 subunit on leukocytes is not in a quantitative polymorphic manner. Upon phytohemagglutinin or phorbol myristate acetate activation, the expression level of the Na, K ATPase beta3 subunit on activated peripheral blood mononuclear cells was not altered in comparison with those of unstimulated cells. Red blood cells (RBCs) of healthy donors showed negative reactivity with mAb P-3E10. However, more than 80% of thalassemic RBCs showed positive reactivity. By immunoprecipitation, moreover, a protein band of 55-65 kDa was precipitated from normal RBC membrane using mAb P-3E10. These results evidenced that the beta3 subunit of Na, K ATPase is expressed on RBC membrane but the epitope recognized by mAb P-3E10 is hidden in normal RBCs. Furthermore, we showed the association of beta3 subunit and alpha subunit of Na, K ATPase. This information is important for further understanding of the functional roles of this molecule.

  9. A zinc-binding site in the largest subunit of DNA-dependent RNA polymerase is involved in enzyme assembly

    PubMed Central

    Markov, Dmitriy; Naryshkina, Tatyana; Mustaev, Arkady; Severinov, Konstantin

    1999-01-01

    All multisubunit DNA-dependent RNA polymerases (RNAP) are zinc metalloenzymes, and at least two zinc atoms are present per enzyme molecule. RNAP residues involved in zinc binding and the functional role of zinc ions in the transcription mechanism or RNAP structure are unknown. Here, we locate four cysteine residues in the Escherichia coli RNAP largest subunit, β′, that coordinate one of the two zinc ions tightly associated with the enzyme. In the absence of zinc, or when zinc binding is prevented by mutation, the in vitro-assembled RNAP retains the proper subunit stoichiometry but is not functional. We demonstrate that zinc acts as a molecular chaperone, converting denatured β′ into a compact conformation that productively associates with other RNAP subunits. The β′ residues coordinating zinc are conserved throughout eubacteria and chloroplasts, but are absent from homologs from eukaryotes and archaea. Thus, the involvement of zinc in the RNAP assembly may be a unique feature of eubacterial-type enzymes. PMID:10500100

  10. Regulation of the primary quinone binding conformation by the H subunit in reaction centers from Rhodobacter sphaeroides.

    PubMed

    Sun, Chang; Taguchi, Alexander T; Beal, Nathan J; O'Malley, Patrick J; Dikanov, Sergei A; Wraight, Colin A

    2015-11-19

    Unlike photosystem II (PSII) in higher plants, bacterial photosynthetic reaction centers (bRCs) from Proteobacteria have an additional peripheral membrane subunit "H". The H subunit is necessary for photosynthetic growth, but can be removed chemically in vitro. The remaining LM dimer retains its activity to perform light-induced charge separation. Here we investigate the influence of the H subunit on interactions between the primary semiquinone and the protein matrix, using a combination of site-specific isotope labeling, pulsed electron paramagnetic resonance (EPR), and density functional theory (DFT) calculations. The data reveal substantially weaker binding interactions between the primary semiquinone and the LM dimer than observed for the intact bRC; the amount of electron spin transferred to the nitrogen hydrogen bond donors is significantly reduced, the methoxy groups are more free to rotate, and the spectra indicate a heterogeneous mixture of bound semiquinone states. These results are consistent with a loosening of the primary quinone binding pocket in the absence of the H subunit.

  11. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    SciTech Connect

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  12. Pesticide-Exposure Matrix

    Cancer.gov

    The "Pesticide-exposure Matrix" was developed to help epidemiologists and other researchers identify the active ingredients to which people were likely exposed when their homes and gardens were treated for pests in past years.

  13. Ultra-Compact Motor Controller

    NASA Technical Reports Server (NTRS)

    Townsend, William T.; Crowell, Adam; Hauptman, Traveler; Pratt, Gill Andrews

    2012-01-01

    knowledge by each motor controller of the state of all the motors in the system at 500 Hz also allows parallel processing of higher-level kinematic matrix calculations.

  14. Composite Matrix Experimental Combustor

    DTIC Science & Technology

    1994-04-01

    Preliminary (Macro) Combustor Design ............................. 28 4.1 Preliminary Design Study-Early Concept Combustion System ............. 28 4.2...provided in Appendix B. 4.1 PRELIMINARY DESIGN STUDY-EARLY CONCEPT COMBUSTION SYSTEM The preliminary design effort resulted in the selection of the early...overall flowpath. The concept I combustor is a compact, annular, reverse-flow design incorporating a single row of primary combustion air holes and a

  15. Functional Polymer Matrix Fibers

    DTIC Science & Technology

    2007-11-02

    the carbon nanofibers led to the deterioration of the polymeric cellulose structure. Extensive research on the surface treatment of carbon nanofibers...1 November 2003 - 14-Mar-05 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA8655-03-1-3042 Functional Polymer Matrix Fibres 5b. GRANT NUMBER 5c. PROGRAM...MARYLABONE RD LONDON NWl 5TH PERFORMANCE REPORT Project title: Functional polymer matrix fibers Period of performance: 1 November 2003 - 31 October 2004

  16. Aluminum Metal Matrix Composites

    SciTech Connect

    Hunt, Warren; Herling, Darrell R.

    2004-02-01

    Metal matrix composites comprise a relatively wide range of materials defined by the metal matrix, reinforcement type, and reinforcement geometry. In the area of the matrix, most metallic systems have been explored for use in metal matrix composites, including Al, Be, Mg, Ti, Fe, Ni, Co, and Ag. By far, the largest usage is in aluminum matrix composites. From a reinforcement perspective, the materials used are typically ceramics since they provide a very desirable combination of stiffness, strength, and relatively low density. Candidate reinforcement materials include SiC, Al2O3, B4C, TiC, TiB2, graphite, and a number of other ceramics. In addition, there has been work on metallic materials as reinforcements, notably W and steel fibers. The morphology of the reinforcement material is another variable of importance in metal matrix composites. The three major classes of reinforcement morphology are continuous fiber, chopped fiber or whisker, and particulate. Typically, the selection of the reinforcement morphology is determined by the desired property/cost combination. Generally, continuous fiber reinforced MMCs provide the highest properties in the direction of the fiber orientation but are the most expensive. Chopped fiber and whisker reinforced materials can produce significant property improvements in the plane or direction of their orientation, at somewhat lower cost. Particulates provide a comparatively more moderate but isotropic increase in properties and are typically available at the lowest cost. By adding to the three variables of metallic matrix, reinforcement material, and reinforcement morphology the further options of reinforcement volume fraction, orientation, and matrix alloy composition and heat treatment, it is apparent that there is a very wide range of available material combinations and resultant properties. This paper will focus on how MMCs have been applied in specific application areas.

  17. [A promoter responsible for over-expression of cholera toxin B subunit in cholera toxin A subunit structure gene].

    PubMed

    Cao, C; Shi, C; Li, P; Ma, Q

    1997-01-01

    A promoter sequence, which promotes the transcription of cholera toxin B subunit gene, was found in cholera toxin A subunit structure gene. The transcription starts at the adenine Located at +833, that is 456bp upstream to the A of the initiation codon ATG of cholera toxin B gene. Under the control of the promoter, cholera toxin B subunit was over-expressed as high as 200 mg/L at an optimized culture condition. The chloramphenicol acetyl transferase gene and beta-galactosidase could also be efficiently expressed under the direction of the promoter. This promoter may be responsible for the 6 fold and 7 fold higher expression level of cholera toxin B subunit than cholera toxin A subunit in V. cholerae and Escheria coli respectively. The over-expression of CTB may be useful in preparing vaccine against cholera and facilitating the construction of peptide-bearing immunogenic hybrid proteins.

  18. Subunit recombinant vaccine protects against monkeypox.

    PubMed

    Heraud, Jean-Michel; Edghill-Smith, Yvette; Ayala, Victor; Kalisz, Irene; Parrino, Janie; Kalyanaraman, Vaniambadi S; Manischewitz, Jody; King, Lisa R; Hryniewicz, Anna; Trindade, Christopher J; Hassett, Meredith; Tsai, Wen-Po; Venzon, David; Nalca, Aysegul; Vaccari, Monica; Silvera, Peter; Bray, Mike; Graham, Barney S; Golding, Hana; Hooper, Jay W; Franchini, Genoveffa

    2006-08-15

    The smallpox vaccine Dryvax, a live vaccinia virus (VACV), protects against smallpox and monkeypox, but is contraindicated in immunocompromised individuals. Because Abs to VACV mediate protection, a live virus vaccine could be substituted by a safe subunit protein-based vaccine able to induce a protective Ab response. We immunized rhesus macaques with plasmid DNA encoding the monkeypox orthologs of the VACV L1R, A27L, A33R, and B5R proteins by the intradermal and i.m. routes, either alone or in combination with the equivalent recombinant proteins produced in Escherichia coli. Animals that received only DNA failed to produce high titer Abs, developed innumerable skin lesions after challenge, and died in a manner similar to placebo controls. By contrast, the animals vaccinated with proteins developed moderate to severe disease (20-155 skin lesions) but survived. Importantly, those immunized with DNA and boosted with proteins had mild disease with 15 or fewer lesions that resolved within days. DNA/protein immunization elicited Th responses and binding Ab titers to all four proteins that correlated negatively with the total lesion number. The sera of the immunized macaques recognized a limited number of linear B cell epitopes that are highly conserved among orthopoxviruses. Their identification may guide future efforts to develop simpler, safer, and more effective vaccines for monkeypox and smallpox.

  19. Compaction Bands Around Unstable Wellbores In Porous Sandstone and Their Dependence On Grain Bonding

    NASA Astrophysics Data System (ADS)

    Haimson, B.; Klaetsch, A.

    porosity Berea and St. Peter sandstones sutured contacts are limited to relatively small areas of the grain surface. Such contacts are readily severed at stress levels lower than quartz-grain strength, yielding debonded but intact compaction bands. On the other hand, sutured contacts in the 12% St. Peter are considerably more extensive, covering most of the grain surfaces, and rendering the strength of the matrix equal to that of individual grains. Hence, the compaction band here contains both debonded and crushed grains.

  20. Investigation of the Capability of Compact Polarimetric SAR Interferometry to Estimate Forest Height

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Xie, Lei; Wang, Chao; Chen, Jiehong

    2013-08-01

    The main objective of this paper is to investigate the capability of compact Polarimetric SAR Interferometry (C-PolInSAR) on forest height estimation. For this, the pseudo fully polarimetric interferomteric (F-PolInSAR) covariance matrix is firstly reconstructed, then the three- stage inversion algorithm, hybrid algorithm, Music and Capon algorithm are applied to both C-PolInSAR covariance matrix and pseudo F-PolInSAR covariance matrix. The availability of forest height estimation is demonstrated using L-band data generated by simulator PolSARProSim and X-band airborne data acquired by East China Research Institute of Electronic Engineering, China Electronics Technology Group Corporation.

  1. Effect of the Compaction Pressure and Ni Content on the Modified Aluminum-Based Perovskite Synthesis Designed to Immobilize the Radioactive Waste in Combustion Mode

    NASA Astrophysics Data System (ADS)

    Tarasova, E. S.; Dolmatov, O. Yu; Isachenko, D. S.; Permikin, A. A.; Semenov, A. O.

    2016-06-01

    The article deals with the synthesis of perovskite-like ceramics matrix material for immobilization of radioactive waste by SHS method. The dependence of the compaction pressure on the synthesis of the samples was established. Synthesis conditions for the matrix with the desired properties of the composition were determined that is acceptable for reliable isolation of radionuclides throughout the long-term storage of waste. The maximum amount of aluminum perovskite is observed when the initial mixture compaction pressure equal to 30 MPa and 25% wt. Nickel.

  2. Optical coherency matrix tomography

    PubMed Central

    Kagalwala, Kumel H.; Kondakci, H. Esat; Abouraddy, Ayman F.; Saleh, Bahaa E. A.

    2015-01-01

    The coherence of an optical beam having multiple degrees of freedom (DoFs) is described by a coherency matrix G spanning these DoFs. This optical coherency matrix has not been measured in its entirety to date—even in the simplest case of two binary DoFs where G is a 4 × 4 matrix. We establish a methodical yet versatile approach—optical coherency matrix tomography—for reconstructing G that exploits the analogy between this problem in classical optics and that of tomographically reconstructing the density matrix associated with multipartite quantum states in quantum information science. Here G is reconstructed from a minimal set of linearly independent measurements, each a cascade of projective measurements for each DoF. We report the first experimental measurements of the 4 × 4 coherency matrix G associated with an electromagnetic beam in which polarization and a spatial DoF are relevant, ranging from the traditional two-point Young’s double slit to spatial parity and orbital angular momentum modes. PMID:26478452

  3. Gel-based chemical cross-linking analysis of 20S proteasome subunit-subunit interactions in breast cancer.

    PubMed

    Song, Hai; Xiong, Hua; Che, Jing; Xi, Qing-Song; Huang, Liu; Xiong, Hui-Hua; Zhang, Peng

    2016-08-01

    The ubiquitin-proteasome system plays a pivotal role in breast tumorigenesis by controlling transcription factors, thus promoting cell cycle growth, and degradation of tumor suppressor proteins. However, breast cancer patients have failed to benefit from proteasome inhibitor treatment partially due to proteasome heterogeneity, which is poorly understood in malignant breast neoplasm. Chemical crosslinking is an increasingly important tool for mapping protein three-dimensional structures and proteinprotein interactions. In the present study, two cross-linkers, bis (sulfosuccinimidyl) suberate (BS(3)) and its water-insoluble analog disuccinimidyl suberate (DSS), were used to map the subunit-subunit interactions in 20S proteasome core particle (CP) from MDA-MB-231 cells. Different types of gel electrophoresis technologies were used. In combination with chemical cross-linking and mass spectrometry, we applied these gel electrophoresis technologies to the study of the noncovalent interactions among 20S proteasome subunits. Firstly, the CP subunit isoforms were profiled. Subsequently, using native/SDSPAGE, it was observed that 0.5 mmol/L BS(3) was a relatively optimal cross-linking concentration for CP subunit-subunit interaction study. 2-DE analysis of the cross-linked CP revealed that α1 might preinteract with α2, and α3 might pre-interact with α4. Moreover, there were different subtypes of α1α2 and α3α4 due to proteasome heterogeneity. There was no significant difference in cross-linking pattern for CP subunits between BS(3) and DSS. Taken together, the gel-based characterization in combination with chemical cross-linking could serve as a tool for the study of subunit interactions within a multi-subunit protein complex. The heterogeneity of 20S proteasome subunit observed in breast cancer cells may provide some key information for proteasome inhibition strategy.

  4. Resist loss in 3D compact modeling

    NASA Astrophysics Data System (ADS)

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-03-01

    An enhancement to compact modeling capability to include photoresist (PR) loss at different heights is developed and discussed. A hypsometric map representing 3-D resist profile was built by applying a first principle approximation to estimate the "energy loss" from the resist top to any other plane of interest as a proportional corresponding change in model threshold, which is analogous to a change in exposure dose. The result is compared and validated with 3D rigorous modeling as well as SEM images. Without increase in computation time, this compact model can construct 3D resist profiles capturing resist profile degradation at any vertical plane. Sidewall angle and standing wave information can also be granted from the vertical profile reconstruction. Since this method does not change any form of compact modeling, it can be integrated to validation and correction without any additional work.

  5. The birthplace of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Diaferio, Antonaldo; Geller, Margaret J.; Huchra, John P.

    1994-01-01

    We use complete redshift surveys to study the redshift neighborhoods of 38 Hickson compact groups (HCGs). Twenty-nine of these HCGs (76%) are embedded in rich looser systems which we call HCG associations. Analysis of the redshift neighborhood of HCGs outside the CfA survey suggests that most HCGs are embedded in more extended physical systems. Rich loose groups extracted from the CfA survey (Ramella et al. (1994)) have physical properties similar to those of the HCG associations. These rich loose groups often contain compact configurations. N-body experiments (Diaferio (1994)) suggest that compact configurations analogous to HCGs form continually during the collapse of rich loose groups. These observational and numerical results suggest that rich loose groups are the birthplace of HCGs.

  6. Detecting compact binary coalescences with seedless clustering

    NASA Astrophysics Data System (ADS)

    Coughlin, M.; Thrane, E.; Christensen, N.

    2014-10-01

    Compact binary coalescences are a promising source of gravitational waves for second-generation interferometric gravitational-wave detectors. Although matched filtering is the optimal search method for well-modeled systems, alternative detection strategies can be used to guard against theoretical errors (e.g., involving new physics and/or assumptions about spin or eccentricity) while providing a measure of redundancy. In a previous paper, we showed how "seedless clustering" can be used to detect long-lived gravitational-wave transients in both targeted and all-sky searches. In this paper, we apply seedless clustering to the problem of low-mass (Mtotal≤10M⊙) compact binary coalescences for both spinning and eccentric systems. We show that seedless clustering provides a robust and computationally efficient method for detecting low-mass compact binaries.

  7. Activation analysis of the compact ignition tokamak

    SciTech Connect

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak.

  8. Hall MHD Equilibrium of Accelerated Compact Toroids

    NASA Astrophysics Data System (ADS)

    Howard, S. J.; Hwang, D. Q.; Horton, R. D.; Evans, R. W.; Brockington, S. J.

    2007-11-01

    We examine the structure and dynamics of the compact toroid's magnetic field. The compact toroid is dramatically accelerated by a large rail-gun Lorentz force density equal to j xB. We use magnetic data from the Compact Toroid Injection Experiment to answer the question of exactly where in the system j xB has nonzero values, and to what extent we can apply the standard model of force-free equilibrium. In particular we present a method of analysis of the magnetic field probe signals that allows direct comparison to the predictions of the Woltjer-Taylor force-free model and Turner's generalization of magnetic relaxation in the presence of a non-zero Hall term and fluid vorticity.

  9. Capability enhancement in compact digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Qu, Weijuan; Wen, Yongfu; Wang, Zhaomin; Yang, Fang; Asundi, Anand

    2015-03-01

    A compact reflection digital holographic microscopy (DHM) system integrated with the light source and optical interferometer is developed for 3D topographic characterization and real-time dynamic inspection for Microelectromechanical systems (MEMS). Capability enhancement methods in lateral resolution, axial resolving range and large field of view for the compact DHM system are presented. To enhance the lateral resolution, the numerical aperture of a reflection DHM system is analyzed and optimum designed. To enhance the axial resolving range, dual wavelengths are used to extend the measuring range. To enable the large field of view, stitching of the measurement results is developed in the user-friendly software. Results from surfaces structures on silicon wafer, micro-optics on fused silica and dynamic inspection of MEMS structures demonstrate applications of this compact reflection digital holographic microscope for technical inspection in material science.

  10. Compaction dynamics of wet granular packings

    NASA Astrophysics Data System (ADS)

    Vandewalle, Nicolas; Ludewig, Francois; Fiscina, Jorge E.; Lumay, Geoffroy

    2013-03-01

    The extremely slow compaction dynamics of wet granular assemblies has been studied experimentally. The cohesion, due to capillary bridges between neighboring grains, has been tuned using different liquids having specific surface tension values. The characteristic relaxation time for compaction τ grows strongly with cohesion. A kinetic model, based on a free volume kinetic equations and the presence of a capillary energy barrier (due to liquid bridges), is able to reproduce quantitatively the experimental curves. This model allows one to describe the cohesion in wet granular packing. The influence of relative humidity (RH) on the extremely slow compaction dynamics of a granular assembly has also been investigated in the range 20 % - 80 % . Triboelectric and capillary condensation effects have been introduced in the kinetic model. Results confirm the existence of an optimal condition at RH ~ 45 % for minimizing cohesive interactions between glass beads.

  11. Impacts by Compact Ultra Dense Objects

    NASA Astrophysics Data System (ADS)

    Birrell, Jeremey; Labun, Lance; Rafelski, Johann

    2012-03-01

    We propose to search for nuclear density or greater compact ultra dense objects (CUDOs), which could constitute a significant fraction of the dark matter [1]. Considering their high density, the gravitational tidal forces are significant and atomic-density matter cannot stop an impacting CUDO, which punctures the surface of the target body, pulverizing, heating and entraining material near its trajectory through the target [2]. Because impact features endure over geologic timescales, the Earth, Moon, Mars, Mercury and large asteroids are well-suited to act as time-integrating CUDO detectors. There are several potential candidates for CUDO structure such as strangelet fragments or more generally dark matter if mechanisms exist for it to form compact objects. [4pt] [1] B. J. Carr, K. Kohri, Y. Sendouda, & J.'i. Yokoyama, Phys. Rev. D81, 104019 (2010). [0pt] [2] L. Labun, J. Birrell, J. Rafelski, Solar System Signatures of Impacts by Compact Ultra Dense Objects, arXiv:1104.4572.

  12. Lacunary Fourier Series for Compact Quantum Groups

    NASA Astrophysics Data System (ADS)

    Wang, Simeng

    2017-02-01

    This paper is devoted to the study of Sidon sets, {Λ(p)}-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, {Λ(p)}-sets and lacunarities for L p -Fourier multipliers, generalizing a previous work by Blendek and Michalic̆ek. We also prove the existence of {Λ(p)}-sets for orthogonal systems in noncommutative L p -spaces, and deduce the corresponding properties for compact quantum groups. Central Sidon sets are also discussed, and it turns out that the compact quantum groups with the same fusion rules and the same dimension functions have identical central Sidon sets. Several examples are also included.

  13. Observational properties of compact groups of galaxies

    NASA Technical Reports Server (NTRS)

    Hickson, Paul

    1990-01-01

    Compact groups are small, relatively isolated, systems of galaxies with projected separations comparable to the diameters of the galaxies themselves. Two well-known examples are Stephan's Quintet (Stephan, 1877) and Seyfert's Sextet (Seyfert 1948a,b). In groups such as these, the apparent space density of galaxies approaches 10(exp 6) Mpc(sub -3), denser even than the cores of rich clusters. The apparent unlikeliness of the chance occurrence of such tight groupings lead Ambartsumyan (1958, 1975) to conclude that compact groups must be physically dense systems. This view is supported by clear signs of galaxy interactions that are seen in many groups. Spectroscopic observations reveal that typical relative velocities of galaxies in the groups are comparable to their internal stellar velocities. This should be conducive to strong gravitational interactions - more so than in rich clusters, where galaxy velocities are typically much higher. This suggests that compact groups could be excellent laboratories in which to study galaxy interactions and their effects. Compact groups often contain one or more galaxies whose redshift differs greatly from those of the other group members. If these galaxies are at the same distance as the other members, either entire galaxies are being ejected at high velocities from these groups, or some new physical phenomena must be occurring. If their redshifts are cosmological, we must explain why so many discordant galaxies are found in compact groups. In recent years much progress has been made in addressing these questions. Here, the author discusses the current observational data on compact groups and their implications.

  14. Explaining compact groups as change alignments

    NASA Technical Reports Server (NTRS)

    Mamon, Gary A.

    1990-01-01

    The physical nature of the apparently densest groups of galaxies, known as compact groups is a topic of some recent controversy, despite the detailed observations of a well-defined catalog of 100 isolated compact groups compiled by Hickson (1982). Whereas many authors have espoused the view that compact groups are bound systems, typically as dense as they appear in projection on the sky (e.g., Williams & Rood 1987; Sulentic 1987; Hickson & Rood 1988), others see them as the result of chance configurations within larger systems, either in 1D (chance alignments: Mamon 1986; Walke & Mamon 1989), or in 3D (transient cores: Rose 1979). As outlined in the companion review to this contribution (Mamon, in these proceedings), the implication of Hickson's compact groups (HCGs) being dense bound systems is that they would then constitute the densest isolated systems of galaxies in the Universe and the privileged site for galaxy interactions. In a previous paper (Mamon 1986), the author reviewed the arguments given for the different theories of compact groups. Since then, a dozen papers have been published on the subject, including a thorough and perceptive review by White (1990), thus more than doubling the amount written on the subject. Here, the author first enumerates the arguments that he brought up in 1986 substantiating the chance alignment hypothesis, then he reviews the current status of the numerous recent arguments arguing against chance alignments and/or for the bound dense group hypothesis (both for the majority of HCGs but not all of them), and finally he reconsiders each one of these anti-chance alignment arguments and shows that, rather than being discredited, the chance alignment hypothesis remains a fully consistent explanation for the nature of compact groups.

  15. Altered 40 S ribosomal subunits in omnipotent suppressors of yeast.

    PubMed

    Eustice, D C; Wakem, L P; Wilhelm, J M; Sherman, F

    1986-03-20

    The five suppressors SUP35, SUP43, SUP44, SUP45 and SUP46, each mapping at a different chromosomal locus in the yeast Saccharomyces cerevisiae, suppress a wide range of mutations, including representatives of all three types of nonsense mutations, UAA, UAG and UGA. We have demonstrated that ribosomes from the four suppressors SUP35, SUP44, SUP45 and SUP46 translate polyuridylate templates in vitro with higher errors than ribosomes from the normal stain, and that this misreading is substantially enhanced by the antibiotic paromomycin. Furthermore, ribosomal subunit mixing experiments established that the 40 S ribosomal subunit, and this subunit only, is responsible for the higher levels of misreading. Thus, the gene products of SUP35, SUP44, SUP45 and SUP46 are components of the 40 S subunit or are enzymes that modify the subunit. In addition, a protein from the 40 S subunit of the SUP35 suppressor has an altered electrophoretic mobility; this protein is distinct from the altered protein previously uncovered in the 40 S subunit of the SUP46 suppressor. In contrast to the ribosomes from the four suppressors SUP35, SUP44, SUP45 and SUP46, the ribosomes from the SUP43 suppressor do not significantly misread polyuridylate templates in vitro, suggesting that this locus may not encode a ribosomal component or that the misreading is highly specific.

  16. Interactions between the human RNA polymerase II subunits.

    PubMed

    Acker, J; de Graaff, M; Cheynel, I; Khazak, V; Kedinger, C; Vigneron, M

    1997-07-04

    As an initial approach to characterizing the molecular structure of the human RNA polymerase II (hRPB), we systematically investigated the protein-protein contacts that the subunits of this enzyme may establish with each other. To this end, we applied a glutathione S-transferase-pulldown assay to extracts from Sf9 insect cells, which were coinfected with all possible combinations of recombinant baculoviruses expressing hRPB subunits, either as untagged polypeptides or as glutathione S-transferase fusion proteins. This is the first comprehensive study of interactions between eukaryotic RNA polymerase subunits; among the 116 combinations of hRPB subunits tested, 56 showed significant to strong interactions, whereas 60 were negative. Within the intricate network of interactions, subunits hRPB3 and hRPB5 play a central role in polymerase organization. These subunits, which are able to homodimerize and to interact, may constitute the nucleation center for polymerase assembly, by providing a large interface to most of the other subunits.

  17. Pilot Kent Rominger compacts trash container

    NASA Image and Video Library

    1995-11-05

    STS073-356-018 (20 October - 5 November 1995) --- Astronaut Kent V. Rominger, pilot, demonstrates an age-old trash-compacting method on the middeck of the Earth-orbiting Space Shuttle Columbia. Following a meal, Rominger had collected the residue wrappers, etc. and filled a plastic bag. Following his compacting maneuvers, Rominger went on to deposit the sack into a temporary trash-stowage area beneath the middeck. Making his first flight into space, Rominger joined four other NASA astronauts and two guest researchers for more than two weeks' research in support of the United States Microgravity Laboratory (USML-2) mission.

  18. Momentum compaction and phase slip factor

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2010-10-01

    Section 2.3.11 of the Handbook of Accelerator Physics and Engineering on Landau damping is updated. The slip factor and its higher orders are given in terms of the various orders of the momentum compaction. With the aid of a simplified FODO lattice, formulas are given for the alteration of the lower orders of the momentum compaction by various higher multipole magnets. The transition to isochronicity is next demonstrated. Formulas are given for the extraction of the first three orders of the slip factor from the measurement of the synchrotron tune while changing the rf frequency. Finally bunch-length compression experiments in semi-isochronous rings are reported.

  19. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  20. Compact Raman Spectrometers Would Detect Hydrogen

    NASA Technical Reports Server (NTRS)

    Helms, William R.; Adler-Golden, Steven

    1993-01-01

    Compact Raman spectrometers developed to measure concentrations of hydrogen as low as hundreds of parts per million in air, nitrogen, or other carrier gases. Advantages include speed, dynamic range, and ease of calibration. Design concept incorporates Raman-scattering apparatus into compact instrument of hydrogen leaking into stream of gas or into gas enclosed in small space. Should hydrogen-fueled cars and trucks come into widespread use, instruments used to detect leaks from vehicles and supply equipment, to help prevent explosions. Similar spectrometers developed to detect other gases emitting characteristic Raman spectra.

  1. COMPACT ACCELERATOR CONCEPT FOR PROTON THERAPY

    SciTech Connect

    Caporaso, G; Sampayan, S; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2006-08-18

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is being developed as a compact flash x-ray radiography source. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be presented.

  2. Compact Focal Plane Assembly for Planetary Science

    NASA Technical Reports Server (NTRS)

    Brown, Ari; Aslam, Shahid; Huang, Wei-Chung; Steptoe-Jackson, Rosalind

    2013-01-01

    A compact radiometric focal plane assembly (FPA) has been designed in which the filters are individually co-registered over compact thermopile pixels. This allows for construction of an ultralightweight and compact radiometric instrument. The FPA also incorporates micromachined baffles in order to mitigate crosstalk and low-pass filter windows in order to eliminate high-frequency radiation. Compact metal mesh bandpass filters were fabricated for the far infrared (FIR) spectral range (17 to 100 microns), a game-changing technology for future planetary FIR instruments. This fabrication approach allows the dimensions of individual metal mesh filters to be tailored with better than 10- micron precision. In contrast, conventional compact filters employed in recent missions and in near-term instruments consist of large filter sheets manually cut into much smaller pieces, which is a much less precise and much more labor-intensive, expensive, and difficult process. Filter performance was validated by integrating them with thermopile arrays. Demonstration of the FPA will require the integration of two technologies. The first technology is compact, lightweight, robust against cryogenic thermal cycling, and radiation-hard micromachined bandpass filters. They consist of a copper mesh supported on a deep reactive ion-etched silicon frame. This design architecture is advantageous when constructing a lightweight and compact instrument because (1) the frame acts like a jig and facilitates filter integration with the FPA, (2) the frame can be designed so as to maximize the FPA field of view, (3) the frame can be simultaneously used as a baffle for mitigating crosstalk, and (4) micron-scale alignment features can be patterned so as to permit high-precision filter stacking and, consequently, increase the filter bandwidth and sharpen the out-of-band rolloff. The second technology consists of leveraging, from another project, compact and lightweight Bi0.87Sb0.13/Sb arrayed thermopiles

  3. Quantization of compact Riemannian symmetric spaces

    NASA Astrophysics Data System (ADS)

    Szőke, Róbert

    2017-09-01

    The phase space of a compact, irreducible, simply connected, Riemannian symmetric space admits a natural family of Kähler polarizations parametrized by the upper half plane S. Using this family, geometric quantization, including the half-form correction, produces the field Hcorr → S of quantum Hilbert spaces. We show that projective flatness of Hcorr implies, that the symmetric space must be isometric to a compact Lie group equipped with a biinvariant metric. In the latter case the flatness of Hcorr was previously established.

  4. Features of the compact photon storage ring

    NASA Astrophysics Data System (ADS)

    Yamada, Hironari; Tsutsui, Hiroshi; Shimoda, Koichi; Mima, Kunioki

    1993-07-01

    The compact photon storage ring (PhSR) is a hybrid machine that features both linac driven FEL and storage ring driven FEL. The lasing condition is determined by the exactly circular electron storage ring, but a continuous electron injection is possible without disturbing the lasing. An effect of coherent synchrotron radiation takes an important role in the lasing. It is found that the compact PhSR is promising in lasing up to a wavelength of less than 10 μm with 10 A accumulated current.

  5. Kepler Observations of Transiting Hot Compact Objects

    NASA Astrophysics Data System (ADS)

    Rowe, Jason; Borucki, W. J.; Koch, D.; Kepler Team

    2010-01-01

    We present Kepler lightcurves of two A spectral class stars which show hot, compact transiting companions. Our analysis of 45 days of high duty cycle, ultra precise photometry show the companions have radii of 40% and 90% that of Jupiter based and effective temperatures greater than 10 000K based on the transit and eclipse lightcurve profiles. These objects have properties similar to white dwarfs as they are compact and hot. The lightcurves also suggest the companions have masses less than 10% of the Sun. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.

  6. Portable compact cold atoms clock topology

    NASA Astrophysics Data System (ADS)

    Pechoneri, R. D.; Müller, S. T.; Bueno, C.; Bagnato, V. S.; Magalhães, D. V.

    2016-07-01

    The compact frequency standard under development at USP Sao Carlos is a cold atoms system that works with a distributed hardware system principle and temporal configuration of the interrogation method of the atomic sample, in which the different operation steps happen in one place: inside the microwave cavity. This type of operation allows us to design a standard much more compact than a conventional one, where different interactions occur in the same region of the apparatus. In this sense, it is necessary to redefine all the instrumentation associated with the experiment. This work gives an overview of the topology we are adopting for the new system.

  7. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  8. Compact, Robust Chips Integrate Optical Functions

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Located in Bozeman, Montana, AdvR Inc. has been an active partner in NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. Langley Research Center engineers partnered with AdvR through the SBIR program to develop new, compact, lightweight electro-optic components for remote sensing systems. While the primary customer for this technology will be NASA, AdvR foresees additional uses for its NASA-derived circuit chip in the fields of academic and industrial research anywhere that compact, low-cost, stabilized single-frequency lasers are needed.

  9. Deficiency of subunits of Complex I and mitochondrial encephalomyopathy.

    PubMed

    Ichiki, T; Tanaka, M; Nishikimi, M; Suzuki, H; Ozawa, T; Kobayashi, M; Wada, Y

    1988-03-01

    Enzymic activities of the respiratory chain and content of immunochemically detectable subunits in NADH-ubiquinone oxidoreductase (Complex I) were measured in mitochondria from the skeletal muscles of 4 patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS). The rotenone-sensitive NADH-cytochrome c reductase activity was extremely decreased, ranging from 0% to 27% of the control value. In all patients, the content of subunits of Complex I was also reduced in parallel with the rotenone-sensitive NADH-cytochrome c reductase activity. It is suggested that the variation in the degree of deficiency of Complex I subunits could explain the clinical heterogeneity of patients with MELAS.

  10. Echinococcus granulosus Antigen B Structure: Subunit Composition and Oligomeric States

    PubMed Central

    Monteiro, Karina M.; Cardoso, Mateus B.; Follmer, Cristian; da Silveira, Nádya P.; Vargas, Daiani M.; Kitajima, Elliot W.; Zaha, Arnaldo; Ferreira, Henrique B.

    2012-01-01

    Background Antigen B (AgB) is the major protein secreted by the Echinococcus granulosus metacestode and is involved in key host-parasite interactions during infection. The full comprehension of AgB functions depends on the elucidation of several structural aspects that remain unknown, such as its subunit composition and oligomeric states. Methodology/Principal Findings The subunit composition of E. granulosus AgB oligomers from individual bovine and human cysts was assessed by mass spectrometry associated with electrophoretic analysis. AgB8/1, AgB8/2, AgB8/3 and AgB8/4 subunits were identified in all samples analyzed, and an AgB8/2 variant (AgB8/2v8) was found in one bovine sample. The exponentially modified protein abundance index (emPAI) was used to estimate the relative abundance of the AgB subunits, revealing that AgB8/1 subunit was relatively overrepresented in all samples. The abundance of AgB8/3 subunit varied between bovine and human cysts. The oligomeric states formed by E. granulosus AgB and recombinant subunits available, rAgB8/1, rAgB8/2 and rAgB8/3, were characterized by native PAGE, light scattering and microscopy. Recombinant subunits showed markedly distinct oligomerization behaviors, forming oligomers with a maximum size relation of rAgB8/3>rAgB8/2>rAgB8/1. Moreover, the oligomeric states formed by rAgB8/3 subunit were more similar to those observed for AgB purified from hydatid fluid. Pressure-induced dissociation experiments demonstrated that the molecular assemblies formed by the more aggregative subunits, rAgB8/2 and rAgB8/3, also display higher structural stability. Conclusions/Significance For the first time, AgB subunit composition was analyzed in samples from single hydatid cysts, revealing qualitative and quantitative differences between samples. We showed that AgB oligomers are formed by different subunits, which have distinct abundances and oligomerization properties. Overall, our findings have significantly contributed to increase the

  11. The effect of shearing on the buoyant migration of melt in compacting-dissolution channels

    NASA Astrophysics Data System (ADS)

    Baltzell, C.; Parmentier, E.; Liang, Y.; Tirupathi, S.

    2013-12-01

    Melt migration in the mantle by porous flow through compacting, high porosity dissolution channels may occur in a variety of settings including both the upwelling mantle beneath spreading centers and the flowing mantle wedge at convergent plate boundaries. Such channels may form by a positive feedback between dissolution and melt percolation. Previous studies [1, 2] have considered the compacting-dissolution channels in the presence of a uniform upwelling mantle flow. In this study the analysis of mantle flow beneath the plate boundaries was extended by introducing a horizontal shearing component. A numerical experiment was formulated using the finite element software deal.II [3] applying a high order Discontinuous Galerkin (DG) method to examine melt flow in a deforming, porous matrix. The conditions are similar to those in [2] except the addition of a prescribed horizontal shear component in the solid matrix. Melt migration occurs within a rectangular domain subject to horizontal periodic boundary conditions. Initially a Gaussian perturbation in the porosity at the base extends vertically through the domain defining a melt channel. By varying the shear and upwelling rates, the porosity and matrix dissolution were examined to determine the behavior of the channel and melt flow. Models of buoyant melt transport through dissolution channels in upwelling mantle sheared on horizontal planes show that shearing deformation introduces several effects that could have important consequences for melt migration. Shearing tends to rotate dissolution channels away from the vertical thus reducing the component of buoyancy acting along the channels and decreasing the stability of the channel. The channels remain more vertical than would be expected if they followed the matrix flow, as determined by the dissolution. Channels thus migrate horizontally relative to the mantle matrix and melt flows horizontally through dissolution channels. Evolution of the channels depends on the

  12. Differential compaction behaviour of roller compacted granules of clopidogrel bisulphate polymorphs.

    PubMed

    Khomane, Kailas S; Bansal, Arvind K

    2014-09-10

    In the present work, in-die and out-of-die compaction behaviour of dry-granulated powders of clopidogrel bisulphate (CLP) polymorphs, form I and form II, was investigated using a fully instrumented rotary tablet press. Each polymorph was compacted at three different roller pressures [70.3 (S1), 105.5 (S2) and 140.6 (S3)kgf/cm(2)], and obtained granules were characterized for their physico-mechanical properties. Compaction data were analyzed for out-of-die compressibility, tabletability and compactibility profiles, and in-die Heckel, Kawakita and Walker analysis. The roller compacted granules of both forms showed markedly different tabletting behaviour. Roller pressure exhibited a trend on compaction behaviour of form I granules, whereas, in case of form II, the effect was insignificant. Tabletability of the six granule batches follows the order; I_S1>I_S2>I_S3>II_S1≈II_S2≈II_S3. In case of form I, the reduced tabletability of the granules compacted at higher roller pressure was attributed to the decreased compressibility and plastic deformation. This was confirmed by compressibility plot and various mathematical parameters derived from Heckel (Py), Kawakita (1/b) and Walker (W) equations. The reduced tabletability of form I granules was due to 'granule hardening' during roller compaction. On the other hand, insignificant effect of roller compaction on tabletting behaviour of form II granules was attributed to brittle fragmentation. The extensive fragmentation of granules offered new 'clean' surfaces and higher contact points that negated the effect of granule hardening.

  13. Soil compaction: a review of past and present techniques for investigating effects on root growth.

    PubMed

    Tracy, Saoirse R; Black, Colin R; Roberts, Jeremy A; Mooney, Sacha J

    2011-07-01

    Soil compaction has been known to affect root growth for millennia. Root growth in natural soils is complex and soil compaction induces several stresses which may interact simultaneously, including increased soil strength, decreased aeration and reduced hydraulic conductivity. Yet, moderate soil compaction offers some benefits to growing roots by increasing root-soil contact so they can extract adequate resources. Until now, improving our understanding of the specific responses of roots to below-ground stimuli has been difficult. However, the advent of new technologies and practices, including X-ray computed tomography, to provide non-destructive, three-dimensional images of root systems throughout the plant's lifecycle now allows the responses of roots encountering changes in their physical, chemical or biotic environment to be established directly and non-invasively. Previous destructive methods, such as root washing, were incapable of identifying and characterising fine root architectural characteristics as these are inextricably linked to the composition of the soil matrix. X-ray computed tomography coupled with genetic approaches will provide a more comprehensive appreciation of the effect of soil compaction on root growth, and the knowledge required to generate improvements in plant breeding programmes and crop husbandry. Copyright © 2011 Society of Chemical Industry.

  14. NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequences compared for members of the genus Taenia (Cestoda).

    PubMed

    Gasser, R B; Zhu, X; McManus, D P

    1999-12-01

    Nine members of the genus Taenia (Taenia taeniaeformis, Taenia hydatigena, Taenia pisiformis, Taenia ovis, Taenia multiceps, Taenia serialis, Taenia saginata, Taenia solium and the Asian Taenia) were characterised by their mitochondrial NADH dehydrogenase subunit 1 gene sequences and their genetic relationships were compared with those derived from the cytochrome c oxidase subunit 1 sequence data. The extent of inter-taxon sequence difference in NADH dehydrogenase subunit 1 (approximately 5.9-30.8%) was usually greater than in cytochrome c oxidase subunit 1 (approximately 2.5-18%). Although topology of the phenograms derived from NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit 1 sequence data differed, there was concordance in that T. multiceps, T. serialis (of canids), T. saginata and the Asian Taenia (of humans) were genetically most similar, and those four members were genetically more similar to T. ovis and T. solium than they were to T. hydatigena and T. pisiformis (of canids) or T. taeniaeformis (of cats). The NADH dehydrogenase subunit 1 sequence data may prove useful in studies of the systematics and population genetic structure of the Taeniidae.

  15. FODO-Supercell Based Compact Ring Design with Tunable Momentum Compaction and Optimized Dynamic Aperture

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-05-11

    A storage ring with tunable momentum compaction has the advantage in achieving different RMS bunch length with similar RF capacity, which is potentially useful for many applications, such as linear collider damping ring and pre-damping ring where injected beam has a large energy spread and a large transverse emittance. A tunable bunch length also makes the commissioning and fine tuning easier in manipulating the single bunch instabilities. In this paper, a compact ring design based on a supercell is presented, which achieves a tunable momentum compaction while maintaining a large dynamic aperture.

  16. Native and subunit molecular mass and quarternary structure of the hemoglobin from the primitive branchiopod crustacean Triops cancriformis.

    PubMed

    Rousselot, Morgane; Jaenicke, Elmar; Lamkemeyer, Tobias; Harris, J Robin; Pirow, Ralph

    2006-09-01

    Many branchiopod crustaceans are endowed with extracellular, high-molecular-weight hemoglobins whose exact structural characteristics have remained a matter of conjecture. By using a broad spectrum of techniques, we provide precise and coherent information on the hemoglobin of one of the phylogenetically 'oldest' extant branchiopods, the tadpole shrimp Triops cancriformis. The hemoglobin dissociated under reducing conditions into two subunits, designated TcHbA and TcHbB, with masses of 35,775+/-4 and 36,055+/-4 Da, respectively, determined by ESI-MS. Nonreducing conditions showed only two disulfide-bridged dimers, a homodimer of TcHbA, designated D1 (71,548+/-5 Da), and the heterodimer D2 (71,828+/-5 Da). Carbamidomethylation of free SH groups revealed the presence of three cysteines per subunit and indicated one intrasubunit and one intersubunit disulfide bridge. Ultracentrifugation and light-scattering experiments under nondenaturating conditions yielded mass estimates that suggested an uneven number of 17 subunits forming the native hemoglobin. This unrealistic number resulted from the presence of two size classes (16-mer and 18-mer), which were recognized by native PAGE and Ferguson plot analysis. ESI-MS revealed three hemoglobin isoforms with masses of 588.1 kDa, 662.0 kDa, and 665.0 kDa. The 16-mer and the smaller 18-mer species are supposed to be composed of TcHbA only, given the dominance of this subunit type in SDS/PAGE. Transmission electron microscopy of negatively stained specimens showed a population of compact molecules with geometrical extensions of 14, 16 and 9 nm. The proposed stoichiometric model of quarternary structure provides the missing link to achieve a mechanistic understanding of the structure-function relationships among the multimeric arthropodan hemoglobins.

  17. Magnetic diagnostic responses for compact stellarators

    SciTech Connect

    Steven P. Hirshman; Edward A. Lazarus; James D. Hanson; Stephen F. Knowlton; Lang L. Lao,

    2004-02-01

    The formulation of magnetic diagnostic response functions for a 3-dimensional stellarator plasma is described. Reciprocity relations are used to compute unique response functions for each type of magnetic diagnostic. Green's function response tables (databases) are generated from which both external and internal plasma current contributions to diagnostic signals can be rapidly computed. Applications to compact stellarators are described.

  18. Compact Tactile Sensors for Robot Fingers

    NASA Technical Reports Server (NTRS)

    Martin, Toby B.; Lussy, David; Gaudiano, Frank; Hulse, Aaron; Diftler, Myron A.; Rodriguez, Dagoberto; Bielski, Paul; Butzer, Melisa

    2004-01-01

    Compact transducer arrays that measure spatial distributions of force or pressure have been demonstrated as prototypes of tactile sensors to be mounted on fingers and palms of dexterous robot hands. The pressure- or force-distribution feedback provided by these sensors is essential for the further development and implementation of robot-control capabilities for humanlike grasping and manipulation.

  19. Materials needs for compact fusion reactors

    SciTech Connect

    Krakowski, R.A.

    1983-01-01

    The economic prospects for magnetic fusion energy can be dramatically improved if for the same total power output the fusion neutron first-wall (FW) loading and the system power density can be increased by factors of 3 to 5 and 10 to 30, respectively. A number of compact fusion reactor embodiments have been proposed, all of which would operate with increased FW loadings, would use thin (0.5 to 0.6 m) blankets, and would confine quasi-steady-state plasma with resistive, water-cooled copper or aluminum coils. Increased system power density (5 to 15 MWt/m/sup 3/ versus 0.3 to 0.5 MW/m/sup 3/), considerably reduced physical size of the fusion power core (FPC), and appreciably reduced economic leverage exerted by the FPC and associated physics result. The unique materials requirements anticipated for these compact reactors are outlined against the well documented backdrop provided by similar needs for the mainline approaches. Surprisingly, no single materials need that is unique to the compact systems is identified; crucial uncertainties for the compact approaches must also be addressed by the mainline approaches, particularly for in-vacuum components (FWs, limiters, divertors, etc.).

  20. Mitotic chromosome compaction via active loop extrusion

    NASA Astrophysics Data System (ADS)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.