Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A
2013-11-05
Mechanisms for performing matrix multiplication operations with data pre-conditioning in a high performance computing architecture are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A load and splat operation is performed to load an element of a second vector operand and replicating the element to each of a plurality of elements of a second target vector register. A multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product of the matrix multiplication operation is accumulated with other partial products of the matrix multiplication operation.
Optical implementation of systolic array processing
NASA Technical Reports Server (NTRS)
Caulfield, H. J.; Rhodes, W. T.; Foster, M. J.; Horvitz, S.
1981-01-01
Algorithms for matrix vector multiplication are implemented using acousto-optic cells for multiplication and input data transfer and using charge coupled devices detector arrays for accumulation and output of the results. No two dimensional matrix mask is required; matrix changes are implemented electronically. A system for multiplying a 50 component nonnegative real vector by a 50 by 50 nonnegative real matrix is described. Modifications for bipolar real and complex valued processing are possible, as are extensions to matrix-matrix multiplication and multiplication of a vector by multiple matrices.
Eichenberger, Alexandre E; Gschwind, Michael K; Gunnels, John A
2014-02-11
Mechanisms for performing a complex matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the complex matrix multiplication operation to a first target vector register. The first vector operand comprises a real and imaginary part of a first complex vector value. A complex load and splat operation is performed to load a second complex vector value of a second vector operand and replicate the second complex vector value within a second target vector register. The second complex vector value has a real and imaginary part. A cross multiply add operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the complex matrix multiplication operation. The partial product is accumulated with other partial products and a resulting accumulated partial product is stored in a result vector register.
Method and apparatus for optimized processing of sparse matrices
Taylor, Valerie E.
1993-01-01
A computer architecture for processing a sparse matrix is disclosed. The apparatus stores a value-row vector corresponding to nonzero values of a sparse matrix. Each of the nonzero values is located at a defined row and column position in the matrix. The value-row vector includes a first vector including nonzero values and delimiting characters indicating a transition from one column to another. The value-row vector also includes a second vector which defines row position values in the matrix corresponding to the nonzero values in the first vector and column position values in the matrix corresponding to the column position of the nonzero values in the first vector. The architecture also includes a circuit for detecting a special character within the value-row vector. Matrix-vector multiplication is executed on the value-row vector. This multiplication is performed by multiplying an index value of the first vector value by a column value from a second matrix to form a matrix-vector product which is added to a previous matrix-vector product.
Matrix multiplication operations using pair-wise load and splat operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichenberger, Alexandre E.; Gschwind, Michael K.; Gunnels, John A.
Mechanisms for performing a matrix multiplication operation are provided. A vector load operation is performed to load a first vector operand of the matrix multiplication operation to a first target vector register. A pair-wise load and splat operation is performed to load a pair of scalar values of a second vector operand and replicate the pair of scalar values within a second target vector register. An operation is performed on elements of the first target vector register and elements of the second target vector register to generate a partial product of the matrix multiplication operation. The partial product is accumulatedmore » with other partial products and a resulting accumulated partial product is stored. This operation may be repeated for a second pair of scalar values of the second vector operand.« less
NASA Astrophysics Data System (ADS)
Murni, Bustamam, A.; Ernastuti, Handhika, T.; Kerami, D.
2017-07-01
Calculation of the matrix-vector multiplication in the real-world problems often involves large matrix with arbitrary size. Therefore, parallelization is needed to speed up the calculation process that usually takes a long time. Graph partitioning techniques that have been discussed in the previous studies cannot be used to complete the parallelized calculation of matrix-vector multiplication with arbitrary size. This is due to the assumption of graph partitioning techniques that can only solve the square and symmetric matrix. Hypergraph partitioning techniques will overcome the shortcomings of the graph partitioning technique. This paper addresses the efficient parallelization of matrix-vector multiplication through hypergraph partitioning techniques using CUDA GPU-based parallel computing. CUDA (compute unified device architecture) is a parallel computing platform and programming model that was created by NVIDIA and implemented by the GPU (graphics processing unit).
A generalized graph-theoretical matrix of heterosystems and its application to the VMV procedure.
Mozrzymas, Anna
2011-12-14
The extensions of generalized (molecular) graph-theoretical matrix and vector-matrix-vector procedure are considered. The elements of the generalized matrix are redefined in order to describe molecules containing heteroatoms and multiple bonds. The adjacency, distance, detour and reciprocal distance matrices of heterosystems, and corresponding vectors are derived from newly defined generalized graph matrix. The topological indices, which are most widely used in predicting physicochemical and biological properties/activities of various compounds, can be calculated from the new generalized vector-matrix-vector invariant. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optical computing and image processing using photorefractive gallium arsenide
NASA Technical Reports Server (NTRS)
Cheng, Li-Jen; Liu, Duncan T. H.
1990-01-01
Recent experimental results on matrix-vector multiplication and multiple four-wave mixing using GaAs are presented. Attention is given to a simple concept of using two overlapping holograms in GaAs to do two matrix-vector multiplication processes operating in parallel with a common input vector. This concept can be used to construct high-speed, high-capacity, reconfigurable interconnection and multiplexing modules, important for optical computing and neural-network applications.
Hypergraph-Based Combinatorial Optimization of Matrix-Vector Multiplication
ERIC Educational Resources Information Center
Wolf, Michael Maclean
2009-01-01
Combinatorial scientific computing plays an important enabling role in computational science, particularly in high performance scientific computing. In this thesis, we will describe our work on optimizing matrix-vector multiplication using combinatorial techniques. Our research has focused on two different problems in combinatorial scientific…
An efficient parallel algorithm for matrix-vector multiplication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, B.; Leland, R.; Plimpton, S.
The multiplication of a vector by a matrix is the kernel computation of many algorithms in scientific computation. A fast parallel algorithm for this calculation is therefore necessary if one is to make full use of the new generation of parallel supercomputers. This paper presents a high performance, parallel matrix-vector multiplication algorithm that is particularly well suited to hypercube multiprocessors. For an n x n matrix on p processors, the communication cost of this algorithm is O(n/[radical]p + log(p)), independent of the matrix sparsity pattern. The performance of the algorithm is demonstrated by employing it as the kernel in themore » well-known NAS conjugate gradient benchmark, where a run time of 6.09 seconds was observed. This is the best published performance on this benchmark achieved to date using a massively parallel supercomputer.« less
Rotman Lens Sidewall Design and Optimization with Hybrid Hardware/Software Based Programming
2015-01-09
conventional MoM and stored in memory. The components of Zfar are computed as needed through a fast matrix vector multiplication ( MVM ), which...V vector. Iterative methods, e.g. BiCGSTAB, are employed for solving the linear equation. The matrix-vector multiplications ( MVMs ), which dominate...most of the computation in the solving phase, consists of calculating near and far MVMs . The far MVM comprises aggregation, translation, and
Sparse matrix-vector multiplication on network-on-chip
NASA Astrophysics Data System (ADS)
Sun, C.-C.; Götze, J.; Jheng, H.-Y.; Ruan, S.-J.
2010-12-01
In this paper, we present an idea for performing matrix-vector multiplication by using Network-on-Chip (NoC) architecture. In traditional IC design on-chip communications have been designed with dedicated point-to-point interconnections. Therefore, regular local data transfer is the major concept of many parallel implementations. However, when dealing with the parallel implementation of sparse matrix-vector multiplication (SMVM), which is the main step of all iterative algorithms for solving systems of linear equation, the required data transfers depend on the sparsity structure of the matrix and can be extremely irregular. Using the NoC architecture makes it possible to deal with arbitrary structure of the data transfers; i.e. with the irregular structure of the sparse matrices. So far, we have already implemented the proposed SMVM-NoC architecture with the size 4×4 and 5×5 in IEEE 754 single float point precision using FPGA.
Acoustic 3D modeling by the method of integral equations
NASA Astrophysics Data System (ADS)
Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.
2018-02-01
This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.
Multi-color incomplete Cholesky conjugate gradient methods for vector computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, E.L.
1986-01-01
This research is concerned with the solution on vector computers of linear systems of equations. Ax = b, where A is a large, sparse symmetric positive definite matrix with non-zero elements lying only along a few diagonals of the matrix. The system is solved using the incomplete Cholesky conjugate gradient method (ICCG). Multi-color orderings are used of the unknowns in the linear system to obtain p-color matrices for which a no-fill block ICCG method is implemented on the CYBER 205 with O(N/p) length vector operations in both the decomposition of A and, more importantly, in the forward and back solvesmore » necessary at each iteration of the method. (N is the number of unknowns and p is a small constant). A p-colored matrix is a matrix that can be partitioned into a p x p block matrix where the diagonal blocks are diagonal matrices. The matrix is stored by diagonals and matrix multiplication by diagonals is used to carry out the decomposition of A and the forward and back solves. Additionally, if the vectors across adjacent blocks line up, then some of the overhead associated with vector startups can be eliminated in the matrix vector multiplication necessary at each conjugate gradient iteration. Necessary and sufficient conditions are given to determine which multi-color orderings of the unknowns correspond to p-color matrices, and a process is indicated for choosing multi-color orderings.« less
Design and experimental verification for optical module of optical vector-matrix multiplier.
Zhu, Weiwei; Zhang, Lei; Lu, Yangyang; Zhou, Ping; Yang, Lin
2013-06-20
Optical computing is a new method to implement signal processing functions. The multiplication between a vector and a matrix is an important arithmetic algorithm in the signal processing domain. The optical vector-matrix multiplier (OVMM) is an optoelectronic system to carry out this operation, which consists of an electronic module and an optical module. In this paper, we propose an optical module for OVMM. To eliminate the cross talk and make full use of the optical elements, an elaborately designed structure that involves spherical lenses and cylindrical lenses is utilized in this optical system. The optical design software package ZEMAX is used to optimize the parameters and simulate the whole system. Finally, experimental data is obtained through experiments to evaluate the overall performance of the system. The results of both simulation and experiment indicate that the system constructed can implement the multiplication between a matrix with dimensions of 16 by 16 and a vector with a dimension of 16 successfully.
NASA Astrophysics Data System (ADS)
Imamura, Seigo; Ono, Kenji; Yokokawa, Mitsuo
2016-07-01
Ensemble computing, which is an instance of capacity computing, is an effective computing scenario for exascale parallel supercomputers. In ensemble computing, there are multiple linear systems associated with a common coefficient matrix. We improve the performance of iterative solvers for multiple vectors by solving them at the same time, that is, by solving for the product of the matrices. We implemented several iterative methods and compared their performance. The maximum performance on Sparc VIIIfx was 7.6 times higher than that of a naïve implementation. Finally, to deal with the different convergence processes of linear systems, we introduced a control method to eliminate the calculation of already converged vectors.
[Orthogonal Vector Projection Algorithm for Spectral Unmixing].
Song, Mei-ping; Xu, Xing-wei; Chang, Chein-I; An, Ju-bai; Yao, Li
2015-12-01
Spectrum unmixing is an important part of hyperspectral technologies, which is essential for material quantity analysis in hyperspectral imagery. Most linear unmixing algorithms require computations of matrix multiplication and matrix inversion or matrix determination. These are difficult for programming, especially hard for realization on hardware. At the same time, the computation costs of the algorithms increase significantly as the number of endmembers grows. Here, based on the traditional algorithm Orthogonal Subspace Projection, a new method called. Orthogonal Vector Projection is prompted using orthogonal principle. It simplifies this process by avoiding matrix multiplication and inversion. It firstly computes the final orthogonal vector via Gram-Schmidt process for each endmember spectrum. And then, these orthogonal vectors are used as projection vector for the pixel signature. The unconstrained abundance can be obtained directly by projecting the signature to the projection vectors, and computing the ratio of projected vector length and orthogonal vector length. Compared to the Orthogonal Subspace Projection and Least Squares Error algorithms, this method does not need matrix inversion, which is much computation costing and hard to implement on hardware. It just completes the orthogonalization process by repeated vector operations, easy for application on both parallel computation and hardware. The reasonability of the algorithm is proved by its relationship with Orthogonal Sub-space Projection and Least Squares Error algorithms. And its computational complexity is also compared with the other two algorithms', which is the lowest one. At last, the experimental results on synthetic image and real image are also provided, giving another evidence for effectiveness of the method.
Matrix-vector multiplication using digital partitioning for more accurate optical computing
NASA Technical Reports Server (NTRS)
Gary, C. K.
1992-01-01
Digital partitioning offers a flexible means of increasing the accuracy of an optical matrix-vector processor. This algorithm can be implemented with the same architecture required for a purely analog processor, which gives optical matrix-vector processors the ability to perform high-accuracy calculations at speeds comparable with or greater than electronic computers as well as the ability to perform analog operations at a much greater speed. Digital partitioning is compared with digital multiplication by analog convolution, residue number systems, and redundant number representation in terms of the size and the speed required for an equivalent throughput as well as in terms of the hardware requirements. Digital partitioning and digital multiplication by analog convolution are found to be the most efficient alogrithms if coding time and hardware are considered, and the architecture for digital partitioning permits the use of analog computations to provide the greatest throughput for a single processor.
Visualization of x-ray computer tomography using computer-generated holography
NASA Astrophysics Data System (ADS)
Daibo, Masahiro; Tayama, Norio
1998-09-01
The theory converted from x-ray projection data to the hologram directly by combining the computer tomography (CT) with the computer generated hologram (CGH), is proposed. The purpose of this study is to offer the theory for realizing the all- electronic and high-speed seeing through 3D visualization system, which is for the application to medical diagnosis and non- destructive testing. First, the CT is expressed using the pseudo- inverse matrix which is obtained by the singular value decomposition. CGH is expressed in the matrix style. Next, `projection to hologram conversion' (PTHC) matrix is calculated by the multiplication of phase matrix of CGH with pseudo-inverse matrix of the CT. Finally, the projection vector is converted to the hologram vector directly, by multiplication of the PTHC matrix with the projection vector. Incorporating holographic analog computation into CT reconstruction, it becomes possible that the calculation amount is drastically reduced. We demonstrate the CT cross section which is reconstituted by He-Ne laser in the 3D space from the real x-ray projection data acquired by x-ray television equipment, using our direct conversion technique.
Brief announcement: Hypergraph parititioning for parallel sparse matrix-matrix multiplication
Ballard, Grey; Druinsky, Alex; Knight, Nicholas; ...
2015-01-01
The performance of parallel algorithms for sparse matrix-matrix multiplication is typically determined by the amount of interprocessor communication performed, which in turn depends on the nonzero structure of the input matrices. In this paper, we characterize the communication cost of a sparse matrix-matrix multiplication algorithm in terms of the size of a cut of an associated hypergraph that encodes the computation for a given input nonzero structure. Obtaining an optimal algorithm corresponds to solving a hypergraph partitioning problem. Furthermore, our hypergraph model generalizes several existing models for sparse matrix-vector multiplication, and we can leverage hypergraph partitioners developed for that computationmore » to improve application-specific algorithms for multiplying sparse matrices.« less
Multitasking 3-D forward modeling using high-order finite difference methods on the Cray X-MP/416
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terki-Hassaine, O.; Leiss, E.L.
1988-01-01
The CRAY X-MP/416 was used to multitask 3-D forward modeling by the high-order finite difference method. Flowtrace analysis reveals that the most expensive operation in the unitasked program is a matrix vector multiplication. The in-core and out-of-core versions of a reentrant subroutine can perform any fraction of the matrix vector multiplication independently, a pattern compatible with multitasking. The matrix vector multiplication routine can be distributed over two to four processors. The rest of the program utilizes the microtasking feature that lets the system treat independent iterations of DO-loops as subtasks to be performed by any available processor. The availability ofmore » the Solid-State Storage Device (SSD) meant the I/O wait time was virtually zero. A performance study determined a theoretical speedup, taking into account the multitasking overhead. Multitasking programs utilizing both macrotasking and microtasking features obtained actual speedups that were approximately 80% of the ideal speedup.« less
DNA melting profiles from a matrix method.
Poland, Douglas
2004-02-05
In this article we give a new method for the calculation of DNA melting profiles. Based on the matrix formulation of the DNA partition function, the method relies for its efficiency on the fact that the required matrices are very sparse, essentially reducing matrix multiplication to vector multiplication and thus making the computer time required to treat a DNA molecule containing N base pairs proportional to N(2). A key ingredient in the method is the result that multiplication by the inverse matrix can also be reduced to vector multiplication. The task of calculating the melting profile for the entire genome is further reduced by treating regions of the molecule between helix-plateaus, thus breaking the molecule up into independent parts that can each be treated individually. The method is easily modified to incorporate changes in the assignment of statistical weights to the different structural features of DNA. We illustrate the method using the genome of Haemophilus influenzae. Copyright 2003 Wiley Periodicals, Inc.
Dual-scale topology optoelectronic processor.
Marsden, G C; Krishnamoorthy, A V; Esener, S C; Lee, S H
1991-12-15
The dual-scale topology optoelectronic processor (D-STOP) is a parallel optoelectronic architecture for matrix algebraic processing. The architecture can be used for matrix-vector multiplication and two types of vector outer product. The computations are performed electronically, which allows multiplication and summation concepts in linear algebra to be generalized to various nonlinear or symbolic operations. This generalization permits the application of D-STOP to many computational problems. The architecture uses a minimum number of optical transmitters, which thereby reduces fabrication requirements while maintaining area-efficient electronics. The necessary optical interconnections are space invariant, minimizing space-bandwidth requirements.
Parallel-vector unsymmetric Eigen-Solver on high performance computers
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.; Jiangning, Qin
1993-01-01
The popular QR algorithm for solving all eigenvalues of an unsymmetric matrix is reviewed. Among the basic components in the QR algorithm, it was concluded from this study, that the reduction of an unsymmetric matrix to a Hessenberg form (before applying the QR algorithm itself) can be done effectively by exploiting the vector speed and multiple processors offered by modern high-performance computers. Numerical examples of several test cases have indicated that the proposed parallel-vector algorithm for converting a given unsymmetric matrix to a Hessenberg form offers computational advantages over the existing algorithm. The time saving obtained by the proposed methods is increased as the problem size increased.
Stochastic determination of matrix determinants
NASA Astrophysics Data System (ADS)
Dorn, Sebastian; Enßlin, Torsten A.
2015-07-01
Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations—matrices—acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.
Stochastic determination of matrix determinants.
Dorn, Sebastian; Ensslin, Torsten A
2015-07-01
Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations-matrices-acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.
A Tensor Product Formulation of Strassen's Matrix Multiplication Algorithm with Memory Reduction
Kumar, B.; Huang, C. -H.; Sadayappan, P.; ...
1995-01-01
In this article, we present a program generation strategy of Strassen's matrix multiplication algorithm using a programming methodology based on tensor product formulas. In this methodology, block recursive programs such as the fast Fourier Transforms and Strassen's matrix multiplication algorithm are expressed as algebraic formulas involving tensor products and other matrix operations. Such formulas can be systematically translated to high-performance parallel/vector codes for various architectures. In this article, we present a nonrecursive implementation of Strassen's algorithm for shared memory vector processors such as the Cray Y-MP. A previous implementation of Strassen's algorithm synthesized from tensor product formulas required working storagemore » of size O(7 n ) for multiplying 2 n × 2 n matrices. We present a modified formulation in which the working storage requirement is reduced to O(4 n ). The modified formulation exhibits sufficient parallelism for efficient implementation on a shared memory multiprocessor. Performance results on a Cray Y-MP8/64 are presented.« less
Solving large sparse eigenvalue problems on supercomputers
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef
1988-01-01
An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.
NASA Astrophysics Data System (ADS)
Ghale, Purnima; Johnson, Harley T.
2018-06-01
We present an efficient sparse matrix-vector (SpMV) based method to compute the density matrix P from a given Hamiltonian in electronic structure computations. Our method is a hybrid approach based on Chebyshev-Jackson approximation theory and matrix purification methods like the second order spectral projection purification (SP2). Recent methods to compute the density matrix scale as O(N) in the number of floating point operations but are accompanied by large memory and communication overhead, and they are based on iterative use of the sparse matrix-matrix multiplication kernel (SpGEMM), which is known to be computationally irregular. In addition to irregularity in the sparse Hamiltonian H, the nonzero structure of intermediate estimates of P depends on products of H and evolves over the course of computation. On the other hand, an expansion of the density matrix P in terms of Chebyshev polynomials is straightforward and SpMV based; however, the resulting density matrix may not satisfy the required constraints exactly. In this paper, we analyze the strengths and weaknesses of the Chebyshev-Jackson polynomials and the second order spectral projection purification (SP2) method, and propose to combine them so that the accurate density matrix can be computed using the SpMV computational kernel only, and without having to store the density matrix P. Our method accomplishes these objectives by using the Chebyshev polynomial estimate as the initial guess for SP2, which is followed by using sparse matrix-vector multiplications (SpMVs) to replicate the behavior of the SP2 algorithm for purification. We demonstrate the method on a tight-binding model system of an oxide material containing more than 3 million atoms. In addition, we also present the predicted behavior of our method when applied to near-metallic Hamiltonians with a wide energy spectrum.
E-beam generated holographic masks for optical vector-matrix multiplication
NASA Technical Reports Server (NTRS)
Arnold, S. M.; Case, S. K.
1981-01-01
An optical vector matrix multiplication scheme that encodes the matrix elements as a holographic mask consisting of linear diffraction gratings is proposed. The binary, chrome on glass masks are fabricated by e-beam lithography. This approach results in a fairly simple optical system that promises both large numerical range and high accuracy. A partitioned computer generated hologram mask was fabricated and tested. This hologram was diagonally separated outputs, compact facets and symmetry about the axis. The resultant diffraction pattern at the output plane is shown. Since the grating fringes are written at 45 deg relative to the facet boundaries, the many on-axis sidelobes from each output are seen to be diagonally separated from the adjacent output signals.
Using a multifrontal sparse solver in a high performance, finite element code
NASA Technical Reports Server (NTRS)
King, Scott D.; Lucas, Robert; Raefsky, Arthur
1990-01-01
We consider the performance of the finite element method on a vector supercomputer. The computationally intensive parts of the finite element method are typically the individual element forms and the solution of the global stiffness matrix both of which are vectorized in high performance codes. To further increase throughput, new algorithms are needed. We compare a multifrontal sparse solver to a traditional skyline solver in a finite element code on a vector supercomputer. The multifrontal solver uses the Multiple-Minimum Degree reordering heuristic to reduce the number of operations required to factor a sparse matrix and full matrix computational kernels (e.g., BLAS3) to enhance vector performance. The net result in an order-of-magnitude reduction in run time for a finite element application on one processor of a Cray X-MP.
Large-region acoustic source mapping using a movable array and sparse covariance fitting.
Zhao, Shengkui; Tuna, Cagdas; Nguyen, Thi Ngoc Tho; Jones, Douglas L
2017-01-01
Large-region acoustic source mapping is important for city-scale noise monitoring. Approaches using a single-position measurement scheme to scan large regions using small arrays cannot provide clean acoustic source maps, while deploying large arrays spanning the entire region of interest is prohibitively expensive. A multiple-position measurement scheme is applied to scan large regions at multiple spatial positions using a movable array of small size. Based on the multiple-position measurement scheme, a sparse-constrained multiple-position vectorized covariance matrix fitting approach is presented. In the proposed approach, the overall sample covariance matrix of the incoherent virtual array is first estimated using the multiple-position array data and then vectorized using the Khatri-Rao (KR) product. A linear model is then constructed for fitting the vectorized covariance matrix and a sparse-constrained reconstruction algorithm is proposed for recovering source powers from the model. The user parameter settings are discussed. The proposed approach is tested on a 30 m × 40 m region and a 60 m × 40 m region using simulated and measured data. Much cleaner acoustic source maps and lower sound pressure level errors are obtained compared to the beamforming approaches and the previous sparse approach [Zhao, Tuna, Nguyen, and Jones, Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (2016)].
Partitioning Rectangular and Structurally Nonsymmetric Sparse Matrices for Parallel Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. Hendrickson; T.G. Kolda
1998-09-01
A common operation in scientific computing is the multiplication of a sparse, rectangular or structurally nonsymmetric matrix and a vector. In many applications the matrix- transpose-vector product is also required. This paper addresses the efficient parallelization of these operations. We show that the problem can be expressed in terms of partitioning bipartite graphs. We then introduce several algorithms for this partitioning problem and compare their performance on a set of test matrices.
Signal processing applications of massively parallel charge domain computing devices
NASA Technical Reports Server (NTRS)
Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)
1999-01-01
The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.
Radiance and polarization of multiple scattered light from haze and clouds.
Kattawar, G W; Plass, G N
1968-08-01
The radiance and polarization of multiple scattered light is calculated from the Stokes' vectors by a Monte Carlo method. The exact scattering matrix for a typical haze and for a cloud whose spherical drops have an average radius of 12 mu is calculated from the Mie theory. The Stokes' vector is transformed in a collision by this scattering matrix and the rotation matrix. The two angles that define the photon direction after scattering are chosen by a random process that correctly simulates the actual distribution functions for both angles. The Monte Carlo results for Rayleigh scattering compare favorably with well known tabulated results. Curves are given of the reflected and transmitted radiances and polarizations for both the haze and cloud models and for several solar angles, optical thicknesses, and surface albedos. The dependence on these various parameters is discussed.
Effective implementation of wavelet Galerkin method
NASA Astrophysics Data System (ADS)
Finěk, Václav; Šimunková, Martina
2012-11-01
It was proved by W. Dahmen et al. that an adaptive wavelet scheme is asymptotically optimal for a wide class of elliptic equations. This scheme approximates the solution u by a linear combination of N wavelets and a benchmark for its performance is the best N-term approximation, which is obtained by retaining the N largest wavelet coefficients of the unknown solution. Moreover, the number of arithmetic operations needed to compute the approximate solution is proportional to N. The most time consuming part of this scheme is the approximate matrix-vector multiplication. In this contribution, we will introduce our implementation of wavelet Galerkin method for Poisson equation -Δu = f on hypercube with homogeneous Dirichlet boundary conditions. In our implementation, we identified nonzero elements of stiffness matrix corresponding to the above problem and we perform matrix-vector multiplication only with these nonzero elements.
NASA Astrophysics Data System (ADS)
Kang, Shouqiang; Ma, Danyang; Wang, Yujing; Lan, Chaofeng; Chen, Qingguo; Mikulovich, V. I.
2017-03-01
To effectively assess different fault locations and different degrees of performance degradation of a rolling bearing with a unified assessment index, a novel state assessment method based on the relative compensation distance of multiple-domain features and locally linear embedding is proposed. First, for a single-sample signal, time-domain and frequency-domain indexes can be calculated for the original vibration signal and each sensitive intrinsic mode function obtained by improved ensemble empirical mode decomposition, and the singular values of the sensitive intrinsic mode function matrix can be extracted by singular value decomposition to construct a high-dimensional hybrid-domain feature vector. Second, a feature matrix can be constructed by arranging each feature vector of multiple samples, the dimensions of each row vector of the feature matrix can be reduced by the locally linear embedding algorithm, and the compensation distance of each fault state of the rolling bearing can be calculated using the support vector machine. Finally, the relative distance between different fault locations and different degrees of performance degradation and the normal-state optimal classification surface can be compensated, and on the basis of the proposed relative compensation distance, the assessment model can be constructed and an assessment curve drawn. Experimental results show that the proposed method can effectively assess different fault locations and different degrees of performance degradation of the rolling bearing under certain conditions.
Multiple sensor fault diagnosis for dynamic processes.
Li, Cheng-Chih; Jeng, Jyh-Cheng
2010-10-01
Modern industrial plants are usually large scaled and contain a great amount of sensors. Sensor fault diagnosis is crucial and necessary to process safety and optimal operation. This paper proposes a systematic approach to detect, isolate and identify multiple sensor faults for multivariate dynamic systems. The current work first defines deviation vectors for sensor observations, and further defines and derives the basic sensor fault matrix (BSFM), consisting of the normalized basic fault vectors, by several different methods. By projecting a process deviation vector to the space spanned by BSFM, this research uses a vector with the resulted weights on each direction for multiple sensor fault diagnosis. This study also proposes a novel monitoring index and derives corresponding sensor fault detectability. The study also utilizes that vector to isolate and identify multiple sensor faults, and discusses the isolatability and identifiability. Simulation examples and comparison with two conventional PCA-based contribution plots are presented to demonstrate the effectiveness of the proposed methodology. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hus, Jean-Christophe; Bruschweiler, Rafael
2002-07-01
A general method is presented for the reconstruction of interatomic vector orientations from nuclear magnetic resonance (NMR) spectroscopic data of tensor interactions of rank 2, such as dipolar coupling and chemical shielding anisotropy interactions, in solids and partially aligned liquid-state systems. The method, called PRIMA, is based on a principal component analysis of the covariance matrix of the NMR parameters collected for multiple alignments. The five nonzero eigenvalues and their eigenvectors efficiently allow the approximate reconstruction of the vector orientations of the underlying interactions. The method is demonstrated for an isotropic distribution of sample orientations as well as for finite sets of orientations and internuclear vectors encountered in protein systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, M. A.; Strelchenko, Alexei; Vaquero, Alejandro
Lattice quantum chromodynamics simulations in nuclear physics have benefited from a tremendous number of algorithmic advances such as multigrid and eigenvector deflation. These improve the time to solution but do not alleviate the intrinsic memory-bandwidth constraints of the matrix-vector operation dominating iterative solvers. Batching this operation for multiple vectors and exploiting cache and register blocking can yield a super-linear speed up. Block-Krylov solvers can naturally take advantage of such batched matrix-vector operations, further reducing the iterations to solution by sharing the Krylov space between solves. However, practical implementations typically suffer from the quadratic scaling in the number of vector-vector operations.more » Using the QUDA library, we present an implementation of a block-CG solver on NVIDIA GPUs which reduces the memory-bandwidth complexity of vector-vector operations from quadratic to linear. We present results for the HISQ discretization, showing a 5x speedup compared to highly-optimized independent Krylov solves on NVIDIA's SaturnV cluster.« less
Efficient solution of parabolic equations by Krylov approximation methods
NASA Technical Reports Server (NTRS)
Gallopoulos, E.; Saad, Y.
1990-01-01
Numerical techniques for solving parabolic equations by the method of lines is addressed. The main motivation for the proposed approach is the possibility of exploiting a high degree of parallelism in a simple manner. The basic idea of the method is to approximate the action of the evolution operator on a given state vector by means of a projection process onto a Krylov subspace. Thus, the resulting approximation consists of applying an evolution operator of a very small dimension to a known vector which is, in turn, computed accurately by exploiting well-known rational approximations to the exponential. Because the rational approximation is only applied to a small matrix, the only operations required with the original large matrix are matrix-by-vector multiplications, and as a result the algorithm can easily be parallelized and vectorized. Some relevant approximation and stability issues are discussed. We present some numerical experiments with the method and compare its performance with a few explicit and implicit algorithms.
NASA Technical Reports Server (NTRS)
Tsang, Leung; Chan, Chi Hou; Kong, Jin AU; Joseph, James
1992-01-01
Complete polarimetric signatures of a canopy of dielectric cylinders overlying a homogeneous half space are studied with the first and second order solutions of the vector radiative transfer theory. The vector radiative transfer equations contain a general nondiagonal extinction matrix and a phase matrix. The energy conservation issue is addressed by calculating the elements of the extinction matrix and the elements of the phase matrix in a manner that is consistent with energy conservation. Two methods are used. In the first method, the surface fields and the internal fields of the dielectric cylinder are calculated by using the fields of an infinite cylinder. The phase matrix is calculated and the extinction matrix is calculated by summing the absorption and scattering to ensure energy conservation. In the second method, the method of moments is used to calculate the elements of the extinction and phase matrices. The Mueller matrix based on the first order and second order multiple scattering solutions of the vector radiative transfer equation are calculated. Results from the two methods are compared. The vector radiative transfer equations, combined with the solution based on method of moments, obey both energy conservation and reciprocity. The polarimetric signatures, copolarized and depolarized return, degree of polarization, and phase differences are studied as a function of the orientation, sizes, and dielectric properties of the cylinders. It is shown that second order scattering is generally important for vegetation canopy at C band and can be important at L band for some cases.
Wang, Yuhao; Li, Xin; Xu, Kai; Ren, Fengbo; Yu, Hao
2017-04-01
Compressive sensing is widely used in biomedical applications, and the sampling matrix plays a critical role on both quality and power consumption of signal acquisition. It projects a high-dimensional vector of data into a low-dimensional subspace by matrix-vector multiplication. An optimal sampling matrix can ensure accurate data reconstruction and/or high compression ratio. Most existing optimization methods can only produce real-valued embedding matrices that result in large energy consumption during data acquisition. In this paper, we propose an efficient method that finds an optimal Boolean sampling matrix in order to reduce the energy consumption. Compared to random Boolean embedding, our data-driven Boolean sampling matrix can improve the image recovery quality by 9 dB. Moreover, in terms of sampling hardware complexity, it reduces the energy consumption by 4.6× and the silicon area by 1.9× over the data-driven real-valued embedding.
Chaibub Neto, Elias
2015-01-01
In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson’s sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling. PMID:26125965
The derivative and tangent operators of a motion in Lorentzian space
NASA Astrophysics Data System (ADS)
Durmaz, Olgun; Aktaş, Buşra; Gündoğan, Hali˙t
In this paper, by using Lorentzian matrix multiplication, L-Tangent operator is obtained in Lorentzian space. The L-Tangent operators related with planar, spherical and spatial motion are computed via special matrix groups. L-Tangent operators are related to vectors. Some illustrative examples for applications of L-Tangent operators are also presented.
Accuracy and speed in computing the Chebyshev collocation derivative
NASA Technical Reports Server (NTRS)
Don, Wai-Sun; Solomonoff, Alex
1991-01-01
We studied several algorithms for computing the Chebyshev spectral derivative and compare their roundoff error. For a large number of collocation points, the elements of the Chebyshev differentiation matrix, if constructed in the usual way, are not computed accurately. A subtle cause is is found to account for the poor accuracy when computing the derivative by the matrix-vector multiplication method. Methods for accurately computing the elements of the matrix are presented, and we find that if the entities of the matrix are computed accurately, the roundoff error of the matrix-vector multiplication is as small as that of the transform-recursion algorithm. Results of CPU time usage are shown for several different algorithms for computing the derivative by the Chebyshev collocation method for a wide variety of two-dimensional grid sizes on both an IBM and a Cray 2 computer. We found that which algorithm is fastest on a particular machine depends not only on the grid size, but also on small details of the computer hardware as well. For most practical grid sizes used in computation, the even-odd decomposition algorithm is found to be faster than the transform-recursion method.
NASA Astrophysics Data System (ADS)
Li, Dan; Xu, Feng; Jiang, Jing Fei; Zhang, Jian Qiu
2017-12-01
In this paper, a biquaternion beamspace, constructed by projecting the original data of an electromagnetic vector-sensor array into a subspace of a lower dimension via a quaternion transformation matrix, is first proposed. To estimate the direction and polarization angles of sources, biquaternion beamspace multiple signal classification (BB-MUSIC) estimators are then formulated. The analytical results show that the biquaternion beamspaces offer us some additional degrees of freedom to simultaneously achieve three goals. One is to save the memory spaces for storing the data covariance matrix and reduce the computation efforts of the eigen-decomposition. Another is to decouple the estimations of the sources' polarization parameters from those of their direction angles. The other is to blindly whiten the coherent noise of the six constituent antennas in each vector-sensor. It is also shown that the existing biquaternion multiple signal classification (BQ-MUSIC) estimator is a specific case of our BB-MUSIC ones. The simulation results verify the correctness and effectiveness of the analytical ones.
Quantitative tissue polarimetry using polar decomposition of 3 x 3 Mueller matrix
NASA Astrophysics Data System (ADS)
Swami, M. K.; Manhas, S.; Buddhiwant, P.; Ghosh, N.; Uppal, A.; Gupta, P. K.
2007-05-01
Polarization properties of any optical system are completely described by a sixteen-element (4 x 4) matrix called Mueller matrix, which transform the Stokes vector describing the polarization properties of incident light to the stokes vector of scattered light. Measurement of all the elements of the matrix requires a minimum of sixteen measurements involving both linear and circularly polarized light. However, for many diagnostic applications, it would be useful if all the polarization parameters of the medium (depolarization (Δ), differential attenuation of two orthogonal polarizations, that is, diattenuation (d), and differential phase retardance of two orthogonal polarizations, i.e., retardance (δ )) can be quantified with linear polarization measurements alone. In this paper we show that for a turbid medium, like biological tissue, where the depolarization of linearly polarized light arises primarily due to the randomization of the field vector's direction by multiple scattering, the polarization parameters of the medium can be obtained from the nine Mueller matrix elements involving linear polarization measurements only. Use of the approach for measurement of polarization parameters (Δ, d and δ) of normal and malignant (squamous cell carcinoma) tissues resected from human oral cavity are presented.
Economical Implementation of a Filter Engine in an FPGA
NASA Technical Reports Server (NTRS)
Kowalski, James E.
2009-01-01
A logic design has been conceived for a field-programmable gate array (FPGA) that would implement a complex system of multiple digital state-space filters. The main innovative aspect of this design lies in providing for reuse of parts of the FPGA hardware to perform different parts of the filter computations at different times, in such a manner as to enable the timely performance of all required computations in the face of limitations on available FPGA hardware resources. The implementation of the digital state-space filter involves matrix vector multiplications, which, in the absence of the present innovation, would ordinarily necessitate some multiplexing of vector elements and/or routing of data flows along multiple paths. The design concept calls for implementing vector registers as shift registers to simplify operand access to multipliers and accumulators, obviating both multiplexing and routing of data along multiple paths. Each vector register would be reused for different parts of a calculation. Outputs would always be drawn from the same register, and inputs would always be loaded into the same register. A simple state machine would control each filter. The output of a given filter would be passed to the next filter, accompanied by a "valid" signal, which would start the state machine of the next filter. Multiple filter modules would share a multiplication/accumulation arithmetic unit. The filter computations would be timed by use of a clock having a frequency high enough, relative to the input and output data rate, to provide enough cycles for matrix and vector arithmetic operations. This design concept could prove beneficial in numerous applications in which digital filters are used and/or vectors are multiplied by coefficient matrices. Examples of such applications include general signal processing, filtering of signals in control systems, processing of geophysical measurements, and medical imaging. For these and other applications, it could be advantageous to combine compact FPGA digital filter implementations with other application-specific logic implementations on single integrated-circuit chips. An FPGA could readily be tailored to implement a variety of filters because the filter coefficients would be loaded into memory at startup.
Fast higher-order MR image reconstruction using singular-vector separation.
Wilm, Bertram J; Barmet, Christoph; Pruessmann, Klaas P
2012-07-01
Medical resonance imaging (MRI) conventionally relies on spatially linear gradient fields for image encoding. However, in practice various sources of nonlinear fields can perturb the encoding process and give rise to artifacts unless they are suitably addressed at the reconstruction level. Accounting for field perturbations that are neither linear in space nor constant over time, i.e., dynamic higher-order fields, is particularly challenging. It was previously shown to be feasible with conjugate-gradient iteration. However, so far this approach has been relatively slow due to the need to carry out explicit matrix-vector multiplications in each cycle. In this work, it is proposed to accelerate higher-order reconstruction by expanding the encoding matrix such that fast Fourier transform can be employed for more efficient matrix-vector computation. The underlying principle is to represent the perturbing terms as sums of separable functions of space and time. Compact representations with this property are found by singular-vector analysis of the perturbing matrix. Guidelines for balancing the accuracy and speed of the resulting algorithm are derived by error propagation analysis. The proposed technique is demonstrated for the case of higher-order field perturbations due to eddy currents caused by diffusion weighting. In this example, image reconstruction was accelerated by two orders of magnitude.
Exact recovery of sparse multiple measurement vectors by [Formula: see text]-minimization.
Wang, Changlong; Peng, Jigen
2018-01-01
The joint sparse recovery problem is a generalization of the single measurement vector problem widely studied in compressed sensing. It aims to recover a set of jointly sparse vectors, i.e., those that have nonzero entries concentrated at a common location. Meanwhile [Formula: see text]-minimization subject to matrixes is widely used in a large number of algorithms designed for this problem, i.e., [Formula: see text]-minimization [Formula: see text] Therefore the main contribution in this paper is two theoretical results about this technique. The first one is proving that in every multiple system of linear equations there exists a constant [Formula: see text] such that the original unique sparse solution also can be recovered from a minimization in [Formula: see text] quasi-norm subject to matrixes whenever [Formula: see text]. The other one is showing an analytic expression of such [Formula: see text]. Finally, we display the results of one example to confirm the validity of our conclusions, and we use some numerical experiments to show that we increase the efficiency of these algorithms designed for [Formula: see text]-minimization by using our results.
Second level semi-degenerate fields in W_3 Toda theory: matrix element and differential equation
NASA Astrophysics Data System (ADS)
Belavin, Vladimir; Cao, Xiangyu; Estienne, Benoit; Santachiara, Raoul
2017-03-01
In a recent study we considered W_3 Toda 4-point functions that involve matrix elements of a primary field with the highest-weight in the adjoint representation of sl_3 . We generalize this result by considering a semi-degenerate primary field, which has one null vector at level two. We obtain a sixth-order Fuchsian differential equation for the conformal blocks. We discuss the presence of multiplicities, the matrix elements and the fusion rules.
Joint Smoothed l₀-Norm DOA Estimation Algorithm for Multiple Measurement Vectors in MIMO Radar.
Liu, Jing; Zhou, Weidong; Juwono, Filbert H
2017-05-08
Direction-of-arrival (DOA) estimation is usually confronted with a multiple measurement vector (MMV) case. In this paper, a novel fast sparse DOA estimation algorithm, named the joint smoothed l 0 -norm algorithm, is proposed for multiple measurement vectors in multiple-input multiple-output (MIMO) radar. To eliminate the white or colored Gaussian noises, the new method first obtains a low-complexity high-order cumulants based data matrix. Then, the proposed algorithm designs a joint smoothed function tailored for the MMV case, based on which joint smoothed l 0 -norm sparse representation framework is constructed. Finally, for the MMV-based joint smoothed function, the corresponding gradient-based sparse signal reconstruction is designed, thus the DOA estimation can be achieved. The proposed method is a fast sparse representation algorithm, which can solve the MMV problem and perform well for both white and colored Gaussian noises. The proposed joint algorithm is about two orders of magnitude faster than the l 1 -norm minimization based methods, such as l 1 -SVD (singular value decomposition), RV (real-valued) l 1 -SVD and RV l 1 -SRACV (sparse representation array covariance vectors), and achieves better DOA estimation performance.
Implementation and Assessment of Advanced Analog Vector-Matrix Processor
NASA Technical Reports Server (NTRS)
Gary, Charles K.; Bualat, Maria G.; Lum, Henry, Jr. (Technical Monitor)
1994-01-01
This paper discusses the design and implementation of an analog optical vecto-rmatrix coprocessor with a throughput of 128 Mops for a personal computer. Vector matrix calculations are inherently parallel, providing a promising domain for the use of optical calculators. However, to date, digital optical systems have proven too cumbersome to replace electronics, and analog processors have not demonstrated sufficient accuracy in large scale systems. The goal of the work described in this paper is to demonstrate a viable optical coprocessor for linear operations. The analog optical processor presented has been integrated with a personal computer to provide full functionality and is the first demonstration of an optical linear algebra processor with a throughput greater than 100 Mops. The optical vector matrix processor consists of a laser diode source, an acoustooptical modulator array to input the vector information, a liquid crystal spatial light modulator to input the matrix information, an avalanche photodiode array to read out the result vector of the vector matrix multiplication, as well as transport optics and the electronics necessary to drive the optical modulators and interface to the computer. The intent of this research is to provide a low cost, highly energy efficient coprocessor for linear operations. Measurements of the analog accuracy of the processor performing 128 Mops are presented along with an assessment of the implications for future systems. A range of noise sources, including cross-talk, source amplitude fluctuations, shot noise at the detector, and non-linearities of the optoelectronic components are measured and compared to determine the most significant source of error. The possibilities for reducing these sources of error are discussed. Also, the total error is compared with that expected from a statistical analysis of the individual components and their relation to the vector-matrix operation. The sufficiency of the measured accuracy of the processor is compared with that required for a range of typical problems. Calculations resolving alloy concentrations from spectral plume data of rocket engines are implemented on the optical processor, demonstrating its sufficiency for this problem. We also show how this technology can be easily extended to a 100 x 100 10 MHz (200 Cops) processor.
Gain in computational efficiency by vectorization in the dynamic simulation of multi-body systems
NASA Technical Reports Server (NTRS)
Amirouche, F. M. L.; Shareef, N. H.
1991-01-01
An improved technique for the identification and extraction of the exact quantities associated with the degrees of freedom at the element as well as the flexible body level is presented. It is implemented in the dynamic equations of motions based on the recursive formulation of Kane et al. (1987) and presented in a matrix form, integrating the concepts of strain energy, the finite-element approach, modal analysis, and reduction of equations. This technique eliminates the CPU intensive matrix multiplication operations in the code's hot spots for the dynamic simulation of the interconnected rigid and flexible bodies. A study of a simple robot with flexible links is presented by comparing the execution times on a scalar machine and a vector-processor with and without vector options. Performance figures demonstrating the substantial gains achieved by the technique are plotted.
NASA Astrophysics Data System (ADS)
Stoykov, S.; Atanassov, E.; Margenov, S.
2016-10-01
Many of the scientific applications involve sparse or dense matrix operations, such as solving linear systems, matrix-matrix products, eigensolvers, etc. In what concerns structural nonlinear dynamics, the computations of periodic responses and the determination of stability of the solution are of primary interest. Shooting method iswidely used for obtaining periodic responses of nonlinear systems. The method involves simultaneously operations with sparse and dense matrices. One of the computationally expensive operations in the method is multiplication of sparse by dense matrices. In the current work, a new algorithm for sparse matrix by dense matrix products is presented. The algorithm takes into account the structure of the sparse matrix, which is obtained by space discretization of the nonlinear Mindlin's plate equation of motion by the finite element method. The algorithm is developed to use the vector engine of Intel Xeon Phi coprocessors. It is compared with the standard sparse matrix by dense matrix algorithm and the one developed by Intel MKL and it is shown that by considering the properties of the sparse matrix better algorithms can be developed.
Subspace aware recovery of low rank and jointly sparse signals
Biswas, Sampurna; Dasgupta, Soura; Mudumbai, Raghuraman; Jacob, Mathews
2017-01-01
We consider the recovery of a matrix X, which is simultaneously low rank and joint sparse, from few measurements of its columns using a two-step algorithm. Each column of X is measured using a combination of two measurement matrices; one which is the same for every column, while the the second measurement matrix varies from column to column. The recovery proceeds by first estimating the row subspace vectors from the measurements corresponding to the common matrix. The estimated row subspace vectors are then used to recover X from all the measurements using a convex program of joint sparsity minimization. Our main contribution is to provide sufficient conditions on the measurement matrices that guarantee the recovery of such a matrix using the above two-step algorithm. The results demonstrate quite significant savings in number of measurements when compared to the standard multiple measurement vector (MMV) scheme, which assumes same time invariant measurement pattern for all the time frames. We illustrate the impact of the sampling pattern on reconstruction quality using breath held cardiac cine MRI and cardiac perfusion MRI data, while the utility of the algorithm to accelerate the acquisition is demonstrated on MR parameter mapping. PMID:28630889
An iterative solver for the 3D Helmholtz equation
NASA Astrophysics Data System (ADS)
Belonosov, Mikhail; Dmitriev, Maxim; Kostin, Victor; Neklyudov, Dmitry; Tcheverda, Vladimir
2017-09-01
We develop a frequency-domain iterative solver for numerical simulation of acoustic waves in 3D heterogeneous media. It is based on the application of a unique preconditioner to the Helmholtz equation that ensures convergence for Krylov subspace iteration methods. Effective inversion of the preconditioner involves the Fast Fourier Transform (FFT) and numerical solution of a series of boundary value problems for ordinary differential equations. Matrix-by-vector multiplication for iterative inversion of the preconditioned matrix involves inversion of the preconditioner and pointwise multiplication of grid functions. Our solver has been verified by benchmarking against exact solutions and a time-domain solver.
Generation of Stationary Non-Gaussian Time Histories with a Specified Cross-spectral Density
Smallwood, David O.
1997-01-01
The paper reviews several methods for the generation of stationary realizations of sampled time histories with non-Gaussian distributions and introduces a new method which can be used to control the cross-spectral density matrix and the probability density functions (pdfs) of the multiple input problem. Discussed first are two methods for the specialized case of matching the auto (power) spectrum, the skewness, and kurtosis using generalized shot noise and using polynomial functions. It is then shown that the skewness and kurtosis can also be controlled by the phase of a complex frequency domain description of the random process. The general casemore » of matching a target probability density function using a zero memory nonlinear (ZMNL) function is then covered. Next methods for generating vectors of random variables with a specified covariance matrix for a class of spherically invariant random vectors (SIRV) are discussed. Finally the general case of matching the cross-spectral density matrix of a vector of inputs with non-Gaussian marginal distributions is presented.« less
Multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials
NASA Astrophysics Data System (ADS)
Odake, Satoru; Sasaki, Ryu
2017-04-01
As the fourth stage of the project multi-indexed orthogonal polynomials, we present the multi-indexed Meixner and little q-Jacobi (Laguerre) polynomials in the framework of ‘discrete quantum mechanics’ with real shifts defined on the semi-infinite lattice in one dimension. They are obtained, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier, from the quantum mechanical systems corresponding to the original orthogonal polynomials by multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of virtual state vectors. The virtual state vectors are the solutions of the matrix Schrödinger equation on all the lattice points having negative energies and infinite norm. This is in good contrast to the (q-)Racah systems defined on a finite lattice, in which the ‘virtual state’ vectors satisfy the matrix Schrödinger equation except for one of the two boundary points.
A high-accuracy optical linear algebra processor for finite element applications
NASA Technical Reports Server (NTRS)
Casasent, D.; Taylor, B. K.
1984-01-01
Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced.
NASA Astrophysics Data System (ADS)
Hutsalyuk, A.; Liashyk, A.; Pakuliak, S. Z.; Ragoucy, E.; Slavnov, N. A.
2016-11-01
We study the scalar products of Bethe vectors in integrable models solvable by the nested algebraic Bethe ansatz and possessing {gl}(2| 1) symmetry. Using explicit formulas of the monodromy matrix entries’ multiple actions onto Bethe vectors we obtain a representation for the scalar product in the most general case. This explicit representation appears to be a sum over partitions of the Bethe parameters. It can be used for the analysis of scalar products involving on-shell Bethe vectors. As a by-product, we obtain a determinant representation for the scalar products of generic Bethe vectors in integrable models with {gl}(1| 1) symmetry. Dedicated to the memory of Petr Petrovich Kulish.
NASA Astrophysics Data System (ADS)
Mao, Deqing; Zhang, Yin; Zhang, Yongchao; Huang, Yulin; Yang, Jianyu
2018-01-01
Doppler beam sharpening (DBS) is a critical technology for airborne radar ground mapping in forward-squint region. In conventional DBS technology, the narrow-band Doppler filter groups formed by fast Fourier transform (FFT) method suffer from low spectral resolution and high side lobe levels. The iterative adaptive approach (IAA), based on the weighted least squares (WLS), is applied to the DBS imaging applications, forming narrower Doppler filter groups than the FFT with lower side lobe levels. Regrettably, the IAA is iterative, and requires matrix multiplication and inverse operation when forming the covariance matrix, its inverse and traversing the WLS estimate for each sampling point, resulting in a notably high computational complexity for cubic time. We propose a fast IAA (FIAA)-based super-resolution DBS imaging method, taking advantage of the rich matrix structures of the classical narrow-band filtering. First, we formulate the covariance matrix via the FFT instead of the conventional matrix multiplication operation, based on the typical Fourier structure of the steering matrix. Then, by exploiting the Gohberg-Semencul representation, the inverse of the Toeplitz covariance matrix is computed by the celebrated Levinson-Durbin (LD) and Toeplitz-vector algorithm. Finally, the FFT and fast Toeplitz-vector algorithm are further used to traverse the WLS estimates based on the data-dependent trigonometric polynomials. The method uses the Hermitian feature of the echo autocorrelation matrix R to achieve its fast solution and uses the Toeplitz structure of R to realize its fast inversion. The proposed method enjoys a lower computational complexity without performance loss compared with the conventional IAA-based super-resolution DBS imaging method. The results based on simulations and measured data verify the imaging performance and the operational efficiency.
Matrix Multiplication Algorithm Selection with Support Vector Machines
2015-05-01
libraries that could intelligently choose the optimal algorithm for a particular set of inputs. Users would be oblivious to the underlying algorithmic...SAT.” J. Artif . Intell. Res.(JAIR), vol. 32, pp. 565–606, 2008. [9] M. G. Lagoudakis and M. L. Littman, “Algorithm selection using reinforcement...Artificial Intelligence , vol. 21, no. 05, pp. 961–976, 2007. [15] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM
CUDAICA: GPU Optimization of Infomax-ICA EEG Analysis
Raimondo, Federico; Kamienkowski, Juan E.; Sigman, Mariano; Fernandez Slezak, Diego
2012-01-01
In recent years, Independent Component Analysis (ICA) has become a standard to identify relevant dimensions of the data in neuroscience. ICA is a very reliable method to analyze data but it is, computationally, very costly. The use of ICA for online analysis of the data, used in brain computing interfaces, results are almost completely prohibitive. We show an increase with almost no cost (a rapid video card) of speed of ICA by about 25 fold. The EEG data, which is a repetition of many independent signals in multiple channels, is very suitable for processing using the vector processors included in the graphical units. We profiled the implementation of this algorithm and detected two main types of operations responsible of the processing bottleneck and taking almost 80% of computing time: vector-matrix and matrix-matrix multiplications. By replacing function calls to basic linear algebra functions to the standard CUBLAS routines provided by GPU manufacturers, it does not increase performance due to CUDA kernel launch overhead. Instead, we developed a GPU-based solution that, comparing with the original BLAS and CUBLAS versions, obtains a 25x increase of performance for the ICA calculation. PMID:22811699
Datta, Asit K; Munshi, Soumika
2002-03-10
Based on the negabinary number representation, parallel one-step arithmetic operations (that is, addition and subtraction), logical operations, and matrix-vector multiplication on data have been optically implemented, by use of a two-dimensional spatial-encoding technique. For addition and subtraction, one of the operands in decimal form is converted into the unsigned negabinary form, whereas the other decimal number is represented in the signed negabinary form. The result of operation is obtained in the mixed negabinary form and is converted back into decimal. Matrix-vector multiplication for unsigned negabinary numbers is achieved through the convolution technique. Both of the operands for logical operation are converted to their signed negabinary forms. All operations are implemented by use of a unique optical architecture. The use of a single liquid-crystal-display panel to spatially encode the input data, operational kernels, and decoding masks have simplified the architecture as well as reduced the cost and complexity.
Singular value description of a digital radiographic detector: Theory and measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyprianou, Iacovos S.; Badano, Aldo; Gallas, Brandon D.
The H operator represents the deterministic performance of any imaging system. For a linear, digital imaging system, this system operator can be written in terms of a matrix, H, that describes the deterministic response of the system to a set of point objects. A singular value decomposition of this matrix results in a set of orthogonal functions (singular vectors) that form the system basis. A linear combination of these vectors completely describes the transfer of objects through the linear system, where the respective singular values associated with each singular vector describe the magnitude with which that contribution to the objectmore » is transferred through the system. This paper is focused on the measurement, analysis, and interpretation of the H matrix for digital x-ray detectors. A key ingredient in the measurement of the H matrix is the detector response to a single x ray (or infinitestimal x-ray beam). The authors have developed a method to estimate the 2D detector shift-variant, asymmetric ray response function (RRF) from multiple measured line response functions (LRFs) using a modified edge technique. The RRF measurements cover a range of x-ray incident angles from 0 deg. (equivalent location at the detector center) to 30 deg. (equivalent location at the detector edge) for a standard radiographic or cone-beam CT geometric setup. To demonstrate the method, three beam qualities were tested using the inherent, Lu/Er, and Yb beam filtration. The authors show that measures using the LRF, derived from an edge measurement, underestimate the system's performance when compared with the H matrix derived using the RRF. Furthermore, the authors show that edge measurements must be performed at multiple directions in order to capture rotational asymmetries of the RRF. The authors interpret the results of the H matrix SVD and provide correlations with the familiar MTF methodology. Discussion is made about the benefits of the H matrix technique with regards to signal detection theory, and the characterization of shift-variant imaging systems.« less
Finding a Hadamard matrix by simulated annealing of spin vectors
NASA Astrophysics Data System (ADS)
Bayu Suksmono, Andriyan
2017-05-01
Reformulation of a combinatorial problem into optimization of a statistical-mechanics system enables finding a better solution using heuristics derived from a physical process, such as by the simulated annealing (SA). In this paper, we present a Hadamard matrix (H-matrix) searching method based on the SA on an Ising model. By equivalence, an H-matrix can be converted into a seminormalized Hadamard (SH) matrix, whose first column is unit vector and the rest ones are vectors with equal number of -1 and +1 called SH-vectors. We define SH spin vectors as representation of the SH vectors, which play a similar role as the spins on Ising model. The topology of the lattice is generalized into a graph, whose edges represent orthogonality relationship among the SH spin vectors. Starting from a randomly generated quasi H-matrix Q, which is a matrix similar to the SH-matrix without imposing orthogonality, we perform the SA. The transitions of Q are conducted by random exchange of {+, -} spin-pair within the SH-spin vectors that follow the Metropolis update rule. Upon transition toward zeroth energy, the Q-matrix is evolved following a Markov chain toward an orthogonal matrix, at which the H-matrix is said to be found. We demonstrate the capability of the proposed method to find some low-order H-matrices, including the ones that cannot trivially be constructed by the Sylvester method.
An Experimental Approach to Mathematical Modeling in Biology
ERIC Educational Resources Information Center
Ledder, Glenn
2008-01-01
The simplest age-structured population models update a population vector via multiplication by a matrix. These linear models offer an opportunity to introduce mathematical modeling to students of limited mathematical sophistication and background. We begin with a detailed discussion of mathematical modeling, particularly in a biological context.…
NASA Technical Reports Server (NTRS)
Habiby, Sarry F.
1987-01-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. The objective is to demonstrate the operation of an optical processor designed to minimize computation time in performing a practical computing application. This is done by using the large array of processing elements in a Hughes liquid crystal light valve, and relying on the residue arithmetic representation, a holographic optical memory, and position coded optical look-up tables. In the design, all operations are performed in effectively one light valve response time regardless of matrix size. The features of the design allowing fast computation include the residue arithmetic representation, the mapping approach to computation, and the holographic memory. In addition, other features of the work include a practical light valve configuration for efficient polarization control, a model for recording multiple exposures in silver halides with equal reconstruction efficiency, and using light from an optical fiber for a reference beam source in constructing the hologram. The design can be extended to implement larger matrix arrays without increasing computation time.
2014-09-01
optimal diagonal loading which minimizes the MSE. The be- havior of optimal diagonal loading when the arrival process is composed of plane waves embedded...observation vectors. The examples of the ensemble correlation matrix corresponding to the input process consisting of a single or multiple plane waves...Y ∗ij is a complex-conjugate of Yij. This result is used in order to evaluate the expectations of different quadratic forms. The Poincare -Nash
Lanczos eigensolution method for high-performance computers
NASA Technical Reports Server (NTRS)
Bostic, Susan W.
1991-01-01
The theory, computational analysis, and applications are presented of a Lanczos algorithm on high performance computers. The computationally intensive steps of the algorithm are identified as: the matrix factorization, the forward/backward equation solution, and the matrix vector multiples. These computational steps are optimized to exploit the vector and parallel capabilities of high performance computers. The savings in computational time from applying optimization techniques such as: variable band and sparse data storage and access, loop unrolling, use of local memory, and compiler directives are presented. Two large scale structural analysis applications are described: the buckling of a composite blade stiffened panel with a cutout, and the vibration analysis of a high speed civil transport. The sequential computational time for the panel problem executed on a CONVEX computer of 181.6 seconds was decreased to 14.1 seconds with the optimized vector algorithm. The best computational time of 23 seconds for the transport problem with 17,000 degs of freedom was on the the Cray-YMP using an average of 3.63 processors.
Song, Xiumei; Wang, Mengfei; Dong, Li
2018-01-01
Peptidoglycan recognition proteins (PGRPs) and commensal microbes mediate pathogen infection outcomes in insect disease vectors. Although PGRP-LD is retained in multiple vectors, its role in host defense remains elusive. Here we report that Anopheles stephensi PGRP-LD protects the vector from malaria parasite infection by regulating gut homeostasis. Specifically, knock down of PGRP-LD (dsLD) increased susceptibility to Plasmodium berghei infection, decreased the abundance of gut microbiota and changed their spatial distribution. This outcome resulted from a change in the structural integrity of the peritrophic matrix (PM), which is a chitinous and proteinaceous barrier that lines the midgut lumen. Reduction of microbiota in dsLD mosquitoes due to the upregulation of immune effectors led to dysregulation of PM genes and PM fragmentation. Elimination of gut microbiota in antibiotic treated mosquitoes (Abx) led to PM loss and increased vectorial competence. Recolonization of Abx mosquitoes with indigenous Enterobacter sp. restored PM integrity and decreased mosquito vectorial capacity. Silencing PGRP-LD in mosquitoes without PM didn’t influence their vector competence. Our results indicate that PGPR-LD protects the gut microbiota by preventing hyper-immunity, which in turn promotes PM structurally integrity. The intact PM plays a key role in limiting P. berghei infection. PMID:29489896
Polarimetry with multiple mirror telescopes
NASA Technical Reports Server (NTRS)
West, S. C.
1986-01-01
The polarizations of multiple mirror telescopes are calculated using Mueller calculus. It is found that the Multiple Mirror Telescope (MMT) produces a constant depolarization that is a function of wavelength and independent of sky position. The efficiency and crosstalk are modeled and experimentally verified. The two- and four-mirror new generation telescopes are found to produce sinusoidal depolarization for which an accurate interpretation of the incident Stokes vector requires inverse matrix calculations. Finally, the depolarization of f/1 paraboloids is calculated and found to be less than 0.1 percent at 3000 A.
Zhao, Yubin; Li, Xiaofan; Zhang, Sha; Meng, Tianhui; Zhang, Yiwen
2016-08-23
In practical localization system design, researchers need to consider several aspects to make the positioning efficiently and effectively, e.g., the available auxiliary information, sensing devices, equipment deployment and the environment. Then, these practical concerns turn out to be the technical problems, e.g., the sequential position state propagation, the target-anchor geometry effect, the Non-line-of-sight (NLOS) identification and the related prior information. It is necessary to construct an efficient framework that can exploit multiple available information and guide the system design. In this paper, we propose a scalable method to analyze system performance based on the Cramér-Rao lower bound (CRLB), which can fuse all of the information adaptively. Firstly, we use an abstract function to represent all of the wireless localization system model. Then, the unknown vector of the CRLB consists of two parts: the first part is the estimated vector, and the second part is the auxiliary vector, which helps improve the estimation accuracy. Accordingly, the Fisher information matrix is divided into two parts: the state matrix and the auxiliary matrix. Unlike the theoretical analysis, our CRLB can be a practical fundamental limit to denote the system that fuses multiple information in the complicated environment, e.g., recursive Bayesian estimation based on the hidden Markov model, the map matching method and the NLOS identification and mitigation methods. Thus, the theoretical results are approaching the real case more. In addition, our method is more adaptable than other CRLBs when considering more unknown important factors. We use the proposed method to analyze the wireless sensor network-based indoor localization system. The influence of the hybrid LOS/NLOS channels, the building layout information and the relative height differences between the target and anchors are analyzed. It is demonstrated that our method exploits all of the available information for the indoor localization systems and serves as an indicator for practical system evaluation.
1996-09-01
Generalized Likelihood Ratio (GLR) and voting techniques. The third class consisted of multiple hypothesis filter detectors, specifically the MMAE. The...vector version, versus a tensor if we use the matrix version of the power spectral density estimate. Using this notation, we will derive an...as MATLAB , have an intrinsic sample covariance computation available, which makes this method quite easy to implement. In practice, the mean for the
Improved parallel data partitioning by nested dissection with applications to information retrieval.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Michael M.; Chevalier, Cedric; Boman, Erik Gunnar
The computational work in many information retrieval and analysis algorithms is based on sparse linear algebra. Sparse matrix-vector multiplication is a common kernel in many of these computations. Thus, an important related combinatorial problem in parallel computing is how to distribute the matrix and the vectors among processors so as to minimize the communication cost. We focus on minimizing the total communication volume while keeping the computation balanced across processes. In [1], the first two authors presented a new 2D partitioning method, the nested dissection partitioning algorithm. In this paper, we improve on that algorithm and show that it ismore » a good option for data partitioning in information retrieval. We also show partitioning time can be substantially reduced by using the SCOTCH software, and quality improves in some cases, too.« less
Integrated optic vector-matrix multiplier
Watts, Michael R [Albuquerque, NM
2011-09-27
A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.
Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery.
Xie, Qi; Zhao, Qian; Meng, Deyu; Xu, Zongben
2017-08-02
It is well known that the sparsity/low-rank of a vector/matrix can be rationally measured by nonzero-entries-number ($l_0$ norm)/nonzero- singular-values-number (rank), respectively. However, data from real applications are often generated by the interaction of multiple factors, which obviously cannot be sufficiently represented by a vector/matrix, while a high order tensor is expected to provide more faithful representation to deliver the intrinsic structure underlying such data ensembles. Unlike the vector/matrix case, constructing a rational high order sparsity measure for tensor is a relatively harder task. To this aim, in this paper we propose a measure for tensor sparsity, called Kronecker-basis-representation based tensor sparsity measure (KBR briefly), which encodes both sparsity insights delivered by Tucker and CANDECOMP/PARAFAC (CP) low-rank decompositions for a general tensor. Then we study the KBR regularization minimization (KBRM) problem, and design an effective ADMM algorithm for solving it, where each involved parameter can be updated with closed-form equations. Such an efficient solver makes it possible to extend KBR to various tasks like tensor completion and tensor robust principal component analysis. A series of experiments, including multispectral image (MSI) denoising, MSI completion and background subtraction, substantiate the superiority of the proposed methods beyond state-of-the-arts.
NASA Astrophysics Data System (ADS)
Lee, M.; Leiter, K.; Eisner, C.; Breuer, A.; Wang, X.
2017-09-01
In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.
Lee, M; Leiter, K; Eisner, C; Breuer, A; Wang, X
2017-09-21
In this work, we investigate a block Jacobi-Davidson (J-D) variant suitable for sparse symmetric eigenproblems where a substantial number of extremal eigenvalues are desired (e.g., ground-state real-space quantum chemistry). Most J-D algorithm variations tend to slow down as the number of desired eigenpairs increases due to frequent orthogonalization against a growing list of solved eigenvectors. In our specification of block J-D, all of the steps of the algorithm are performed in clusters, including the linear solves, which allows us to greatly reduce computational effort with blocked matrix-vector multiplies. In addition, we move orthogonalization against locked eigenvectors and working eigenvectors outside of the inner loop but retain the single Ritz vector projection corresponding to the index of the correction vector. Furthermore, we minimize the computational effort by constraining the working subspace to the current vectors being updated and the latest set of corresponding correction vectors. Finally, we incorporate accuracy thresholds based on the precision required by the Fermi-Dirac distribution. The net result is a significant reduction in the computational effort against most previous block J-D implementations, especially as the number of wanted eigenpairs grows. We compare our approach with another robust implementation of block J-D (JDQMR) and the state-of-the-art Chebyshev filter subspace (CheFSI) method for various real-space density functional theory systems. Versus CheFSI, for first-row elements, our method yields competitive timings for valence-only systems and 4-6× speedups for all-electron systems with up to 10× reduced matrix-vector multiplies. For all-electron calculations on larger elements (e.g., gold) where the wanted spectrum is quite narrow compared to the full spectrum, we observe 60× speedup with 200× fewer matrix-vector multiples vs. CheFSI.
Rotations with Rodrigues' Vector
ERIC Educational Resources Information Center
Pina, E.
2011-01-01
The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…
Mafusire, Cosmas; Krüger, Tjaart P J
2018-06-01
The concept of orthonormal vector circle polynomials is revisited by deriving a set from the Cartesian gradient of Zernike polynomials in a unit circle using a matrix-based approach. The heart of this model is a closed-form matrix equation of the gradient of Zernike circle polynomials expressed as a linear combination of lower-order Zernike circle polynomials related through a gradient matrix. This is a sparse matrix whose elements are two-dimensional standard basis transverse Euclidean vectors. Using the outer product form of the Cholesky decomposition, the gradient matrix is used to calculate a new matrix, which we used to express the Cartesian gradient of the Zernike circle polynomials as a linear combination of orthonormal vector circle polynomials. Since this new matrix is singular, the orthonormal vector polynomials are recovered by reducing the matrix to its row echelon form using the Gauss-Jordan elimination method. We extend the model to derive orthonormal vector general polynomials, which are orthonormal in a general pupil by performing a similarity transformation on the gradient matrix to give its equivalent in the general pupil. The outer form of the Gram-Schmidt procedure and the Gauss-Jordan elimination method are then applied to the general pupil to generate the orthonormal vector general polynomials from the gradient of the orthonormal Zernike-based polynomials. The performance of the model is demonstrated with a simulated wavefront in a square pupil inscribed in a unit circle.
NASA Technical Reports Server (NTRS)
Kosko, Bart
1991-01-01
Mappings between fuzzy cubes are discussed. This level of abstraction provides a surprising and fruitful alternative to the propositional and predicate-calculas reasoning techniques used in expert systems. It allows one to reason with sets instead of propositions. Discussed here are fuzzy and neural function estimators, neural vs. fuzzy representation of structured knowledge, fuzzy vector-matrix multiplication, and fuzzy associative memory (FAM) system architecture.
1979-07-31
3 x 3 t Strain vector a ij,j Space derivative of the stress tensor Fi Force vector per unit volume o Density x CHAPTER III F Total force K Stiffness...matrix 6Vector displacements M Mass matrix B Space operating matrix DO Matrix moduli 2 x 3 DZ Operating matrix in Z direction N Matrix of shape...dissipating medium the deformation of a solid is a function of time, temperature and space . Creep phenomenon is a deformation process in which there is
Effective matrix-free preconditioning for the augmented immersed interface method
NASA Astrophysics Data System (ADS)
Xia, Jianlin; Li, Zhilin; Ye, Xin
2015-12-01
We present effective and efficient matrix-free preconditioning techniques for the augmented immersed interface method (AIIM). AIIM has been developed recently and is shown to be very effective for interface problems and problems on irregular domains. GMRES is often used to solve for the augmented variable(s) associated with a Schur complement A in AIIM that is defined along the interface or the irregular boundary. The efficiency of AIIM relies on how quickly the system for A can be solved. For some applications, there are substantial difficulties involved, such as the slow convergence of GMRES (particularly for free boundary and moving interface problems), and the inconvenience in finding a preconditioner (due to the situation that only the products of A and vectors are available). Here, we propose matrix-free structured preconditioning techniques for AIIM via adaptive randomized sampling, using only the products of A and vectors to construct a hierarchically semiseparable matrix approximation to A. Several improvements over existing schemes are shown so as to enhance the efficiency and also avoid potential instability. The significance of the preconditioners includes: (1) they do not require the entries of A or the multiplication of AT with vectors; (2) constructing the preconditioners needs only O (log N) matrix-vector products and O (N) storage, where N is the size of A; (3) applying the preconditioners needs only O (N) flops; (4) they are very flexible and do not require any a priori knowledge of the structure of A. The preconditioners are observed to significantly accelerate the convergence of GMRES, with heuristical justifications of the effectiveness. Comprehensive tests on several important applications are provided, such as Navier-Stokes equations on irregular domains with traction boundary conditions, interface problems in incompressible flows, mixed boundary problems, and free boundary problems. The preconditioning techniques are also useful for several other problems and methods.
A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations
Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel; ...
2017-06-01
As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using themore » compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.« less
A High Performance Block Eigensolver for Nuclear Configuration Interaction Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aktulga, Hasan Metin; Afibuzzaman, Md.; Williams, Samuel
As on-node parallelism increases and the performance gap between the processor and the memory system widens, achieving high performance in large-scale scientific applications requires an architecture-aware design of algorithms and solvers. We focus on the eigenvalue problem arising in nuclear Configuration Interaction (CI) calculations, where a few extreme eigenpairs of a sparse symmetric matrix are needed. Here, we consider a block iterative eigensolver whose main computational kernels are the multiplication of a sparse matrix with multiple vectors (SpMM), and tall-skinny matrix operations. We then present techniques to significantly improve the SpMM and the transpose operation SpMM T by using themore » compressed sparse blocks (CSB) format. We achieve 3-4× speedup on the requisite operations over good implementations with the commonly used compressed sparse row (CSR) format. We develop a performance model that allows us to correctly estimate the performance of our SpMM kernel implementations, and we identify cache bandwidth as a potential performance bottleneck beyond DRAM. We also analyze and optimize the performance of LOBPCG kernels (inner product and linear combinations on multiple vectors) and show up to 15× speedup over using high performance BLAS libraries for these operations. The resulting high performance LOBPCG solver achieves 1.4× to 1.8× speedup over the existing Lanczos solver on a series of CI computations on high-end multicore architectures (Intel Xeons). We also analyze the performance of our techniques on an Intel Xeon Phi Knights Corner (KNC) processor.« less
Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun
2016-02-09
Previously, we applied basic group theory and related concepts to scales of measurement of clinical disease states and clinical findings (including laboratory data). To gain a more concrete comprehension, we here apply the concept of matrix representation, which was not explicitly exploited in our previous work. Starting with a set of orthonormal vectors, called the basis, an operator Rj (an N-tuple patient disease state at the j-th session) was expressed as a set of stratified vectors representing plural operations on individual components, so as to satisfy the group matrix representation. The stratified vectors containing individual unit operations were combined into one-dimensional square matrices [Rj]s. The [Rj]s meet the matrix representation of a group (ring) as a K-algebra. Using the same-sized matrix of stratified vectors, we can also express changes in the plural set of [Rj]s. The method is demonstrated on simple examples. Despite the incompleteness of our model, the group matrix representation of stratified vectors offers a formal mathematical approach to clinical medicine, aligning it with other branches of natural science.
Multi-indexed (q-)Racah polynomials
NASA Astrophysics Data System (ADS)
Odake, Satoru; Sasaki, Ryu
2012-09-01
As the second stage of the project multi-indexed orthogonal polynomials, we present, in the framework of ‘discrete quantum mechanics’ with real shifts in one dimension, the multi-indexed (q-)Racah polynomials. They are obtained from the (q-)Racah polynomials by the multiple application of the discrete analogue of the Darboux transformations or the Crum-Krein-Adler deletion of ‘virtual state’ vectors, in a similar way to the multi-indexed Laguerre and Jacobi polynomials reported earlier. The virtual state vectors are the ‘solutions’ of the matrix Schrödinger equation with negative ‘eigenvalues’, except for one of the two boundary points.
Parallelization of the Physical-Space Statistical Analysis System (PSAS)
NASA Technical Reports Server (NTRS)
Larson, J. W.; Guo, J.; Lyster, P. M.
1999-01-01
Atmospheric data assimilation is a method of combining observations with model forecasts to produce a more accurate description of the atmosphere than the observations or forecast alone can provide. Data assimilation plays an increasingly important role in the study of climate and atmospheric chemistry. The NASA Data Assimilation Office (DAO) has developed the Goddard Earth Observing System Data Assimilation System (GEOS DAS) to create assimilated datasets. The core computational components of the GEOS DAS include the GEOS General Circulation Model (GCM) and the Physical-space Statistical Analysis System (PSAS). The need for timely validation of scientific enhancements to the data assimilation system poses computational demands that are best met by distributed parallel software. PSAS is implemented in Fortran 90 using object-based design principles. The analysis portions of the code solve two equations. The first of these is the "innovation" equation, which is solved on the unstructured observation grid using a preconditioned conjugate gradient (CG) method. The "analysis" equation is a transformation from the observation grid back to a structured grid, and is solved by a direct matrix-vector multiplication. Use of a factored-operator formulation reduces the computational complexity of both the CG solver and the matrix-vector multiplication, rendering the matrix-vector multiplications as a successive product of operators on a vector. Sparsity is introduced to these operators by partitioning the observations using an icosahedral decomposition scheme. PSAS builds a large (approx. 128MB) run-time database of parameters used in the calculation of these operators. Implementing a message passing parallel computing paradigm into an existing yet developing computational system as complex as PSAS is nontrivial. One of the technical challenges is balancing the requirements for computational reproducibility with the need for high performance. The problem of computational reproducibility is well known in the parallel computing community. It is a requirement that the parallel code perform calculations in a fashion that will yield identical results on different configurations of processing elements on the same platform. In some cases this problem can be solved by sacrificing performance. Meeting this requirement and still achieving high performance is very difficult. Topics to be discussed include: current PSAS design and parallelization strategy; reproducibility issues; load balance vs. database memory demands, possible solutions to these problems.
Multigrid Equation Solvers for Large Scale Nonlinear Finite Element Simulations
1999-01-01
purpose of the second partitioning phase , on each SMP, is to minimize the communication within the SMP; even if a multi - threaded matrix vector product...8.7 Comparison of model with experimental data for send phase of matrix vector product on ne grid...140 8.4 Matrix vector product phase times : : : : : : : : : : : : : : : : : : : : : : : 145 9.1 Flat and
NASA Technical Reports Server (NTRS)
Jandhyala, Vikram (Inventor); Chowdhury, Indranil (Inventor)
2011-01-01
An approach that efficiently solves for a desired parameter of a system or device that can include both electrically large fast multipole method (FMM) elements, and electrically small QR elements. The system or device is setup as an oct-tree structure that can include regions of both the FMM type and the QR type. An iterative solver is then used to determine a first matrix vector product for any electrically large elements, and a second matrix vector product for any electrically small elements that are included in the structure. These matrix vector products for the electrically large elements and the electrically small elements are combined, and a net delta for a combination of the matrix vector products is determined. The iteration continues until a net delta is obtained that is within predefined limits. The matrix vector products that were last obtained are used to solve for the desired parameter.
Photonic Breast Tomography and Tumor Aggressiveness Assessment
2011-07-01
incorporates, in optical domain, the vector subspace classification method, Multiple Signal Classification ( MUSIC ). MUSIC was developed by Devaney...and co-workers for finding the location of scattering targets whose size is smaller than the wavelength of acoustic waves or electromagnetic waves...general area of array processing for acoustic and radar time-reversal imaging [12]. The eigenvalue equation of TR matrix is solved, and the signal and
Optical computation using residue arithmetic.
Huang, A; Tsunoda, Y; Goodman, J W; Ishihara, S
1979-01-15
Using residue arithmetic it is possible to perform additions, subtractions, multiplications, and polynomial evaluation without the necessity for carry operations. Calculations can, therefore, be performed in a fully parallel manner. Several different optical methods for performing residue arithmetic operations are described. A possible combination of such methods to form a matrix vector multiplier is considered. The potential advantages of optics in performing these kinds of operations are discussed.
Strategies for vectorizing the sparse matrix vector product on the CRAY XMP, CRAY 2, and CYBER 205
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry
1987-01-01
Large, randomly sparse matrix vector products are important in a number of applications in computational chemistry, such as matrix diagonalization and the solution of simultaneous equations. Vectorization of this process is considered for the CRAY XMP, CRAY 2, and CYBER 205, using a matrix of dimension of 20,000 with from 1 percent to 6 percent nonzeros. Efficient scatter/gather capabilities add coding flexibility and yield significant improvements in performance. For the CYBER 205, it is shown that minor changes in the IO can reduce the CPU time by a factor of 50. Similar changes in the CRAY codes make a far smaller improvement.
Masuda, Y; Misztal, I; Legarra, A; Tsuruta, S; Lourenco, D A L; Fragomeni, B O; Aguilar, I
2017-01-01
This paper evaluates an efficient implementation to multiply the inverse of a numerator relationship matrix for genotyped animals () by a vector (). The computation is required for solving mixed model equations in single-step genomic BLUP (ssGBLUP) with the preconditioned conjugate gradient (PCG). The inverse can be decomposed into sparse matrices that are blocks of the sparse inverse of a numerator relationship matrix () including genotyped animals and their ancestors. The elements of were rapidly calculated with the Henderson's rule and stored as sparse matrices in memory. Implementation of was by a series of sparse matrix-vector multiplications. Diagonal elements of , which were required as preconditioners in PCG, were approximated with a Monte Carlo method using 1,000 samples. The efficient implementation of was compared with explicit inversion of with 3 data sets including about 15,000, 81,000, and 570,000 genotyped animals selected from populations with 213,000, 8.2 million, and 10.7 million pedigree animals, respectively. The explicit inversion required 1.8 GB, 49 GB, and 2,415 GB (estimated) of memory, respectively, and 42 s, 56 min, and 13.5 d (estimated), respectively, for the computations. The efficient implementation required <1 MB, 2.9 GB, and 2.3 GB of memory, respectively, and <1 sec, 3 min, and 5 min, respectively, for setting up. Only <1 sec was required for the multiplication in each PCG iteration for any data sets. When the equations in ssGBLUP are solved with the PCG algorithm, is no longer a limiting factor in the computations.
Okimoto, Gordon; Zeinalzadeh, Ashkan; Wenska, Tom; Loomis, Michael; Nation, James B; Fabre, Tiphaine; Tiirikainen, Maarit; Hernandez, Brenda; Chan, Owen; Wong, Linda; Kwee, Sandi
2016-01-01
Technological advances enable the cost-effective acquisition of Multi-Modal Data Sets (MMDS) composed of measurements for multiple, high-dimensional data types obtained from a common set of bio-samples. The joint analysis of the data matrices associated with the different data types of a MMDS should provide a more focused view of the biology underlying complex diseases such as cancer that would not be apparent from the analysis of a single data type alone. As multi-modal data rapidly accumulate in research laboratories and public databases such as The Cancer Genome Atlas (TCGA), the translation of such data into clinically actionable knowledge has been slowed by the lack of computational tools capable of analyzing MMDSs. Here, we describe the Joint Analysis of Many Matrices by ITeration (JAMMIT) algorithm that jointly analyzes the data matrices of a MMDS using sparse matrix approximations of rank-1. The JAMMIT algorithm jointly approximates an arbitrary number of data matrices by rank-1 outer-products composed of "sparse" left-singular vectors (eigen-arrays) that are unique to each matrix and a right-singular vector (eigen-signal) that is common to all the matrices. The non-zero coefficients of the eigen-arrays identify small subsets of variables for each data type (i.e., signatures) that in aggregate, or individually, best explain a dominant eigen-signal defined on the columns of the data matrices. The approximation is specified by a single "sparsity" parameter that is selected based on false discovery rate estimated by permutation testing. Multiple signals of interest in a given MDDS are sequentially detected and modeled by iterating JAMMIT on "residual" data matrices that result from a given sparse approximation. We show that JAMMIT outperforms other joint analysis algorithms in the detection of multiple signatures embedded in simulated MDDS. On real multimodal data for ovarian and liver cancer we show that JAMMIT identified multi-modal signatures that were clinically informative and enriched for cancer-related biology. Sparse matrix approximations of rank-1 provide a simple yet effective means of jointly reducing multiple, big data types to a small subset of variables that characterize important clinical and/or biological attributes of the bio-samples from which the data were acquired.
Real-time optical laboratory solution of parabolic differential equations
NASA Technical Reports Server (NTRS)
Casasent, David; Jackson, James
1988-01-01
An optical laboratory matrix-vector processor is used to solve parabolic differential equations (the transient diffusion equation with two space variables and time) by an explicit algorithm. This includes optical matrix-vector nonbase-2 encoded laboratory data, the combination of nonbase-2 and frequency-multiplexed data on such processors, a high-accuracy optical laboratory solution of a partial differential equation, new data partitioning techniques, and a discussion of a multiprocessor optical matrix-vector architecture.
Closed-form integrator for the quaternion (euler angle) kinematics equations
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor)
2000-01-01
The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.
Decoding and optimized implementation of SECDED codes over GF(q)
Ward, H. Lee; Ganti, Anand; Resnick, David R
2013-10-22
A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.
Design, decoding and optimized implementation of SECDED codes over GF(q)
Ward, H Lee; Ganti, Anand; Resnick, David R
2014-06-17
A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.
Decoding and optimized implementation of SECDED codes over GF(q)
Ward, H Lee; Ganti, Anand; Resnick, David R
2014-11-18
A plurality of columns for a check matrix that implements a distance d linear error correcting code are populated by providing a set of vectors from which to populate the columns, and applying to the set of vectors a filter operation that reduces the set by eliminating therefrom all vectors that would, if used to populate the columns, prevent the check matrix from satisfying a column-wise linear independence requirement associated with check matrices of distance d linear codes. One of the vectors from the reduced set may then be selected to populate one of the columns. The filtering and selecting repeats iteratively until either all of the columns are populated or the number of currently unpopulated columns exceeds the number of vectors in the reduced set. Columns for the check matrix may be processed to reduce the amount of logic needed to implement the check matrix in circuit logic.
Optimization of sparse matrix-vector multiplication on emerging multicore platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Samuel; Oliker, Leonid; Vuduc, Richard
2007-01-01
We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD dual-core and Intel quad-core designs, the heterogeneous STI Cell, as well as the first scientificmore » study of the highly multithreaded Sun Niagara2. We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural tradeoffs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less
Holographic implementation of a binary associative memory for improved recognition
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Somnath; Ghosh, Ajay; Datta, Asit K.
1998-03-01
Neural network associate memory has found wide application sin pattern recognition techniques. We propose an associative memory model for binary character recognition. The interconnection strengths of the memory are binary valued. The concept of sparse coding is sued to enhance the storage efficiency of the model. The question of imposed preconditioning of pattern vectors, which is inherent in a sparsely coded conventional memory, is eliminated by using a multistep correlation technique an the ability of correct association is enhanced in a real-time application. A potential optoelectronic implementation of the proposed associative memory is also described. The learning and recall is possible by using digital optical matrix-vector multiplication, where full use of parallelism and connectivity of optics is made. A hologram is used in the experiment as a longer memory (LTM) for storing all input information. The short-term memory or the interconnection weight matrix required during the recall process is configured by retrieving the necessary information from the holographic LTM.
3D Target Localization of Modified 3D MUSIC for a Triple-Channel K-Band Radar.
Li, Ying-Chun; Choi, Byunggil; Chong, Jong-Wha; Oh, Daegun
2018-05-20
In this paper, a modified 3D multiple signal classification (MUSIC) algorithm is proposed for joint estimation of range, azimuth, and elevation angles of K-band radar with a small 2 × 2 horn antenna array. Three channels of the 2 × 2 horn antenna array are utilized as receiving channels, and the other one is a transmitting antenna. The proposed modified 3D MUSIC is designed to make use of a stacked autocorrelation matrix, whose element matrices are related to each other in the spatial domain. An augmented 2D steering vector based on the stacked autocorrelation matrix is proposed for the modified 3D MUSIC, instead of the conventional 3D steering vector. The effectiveness of the proposed modified 3D MUSIC is verified through implementation with a K-band frequency-modulated continuous-wave (FMCW) radar with the 2 × 2 horn antenna array through a variety of experiments in a chamber.
CR-Calculus and adaptive array theory applied to MIMO random vibration control tests
NASA Astrophysics Data System (ADS)
Musella, U.; Manzato, S.; Peeters, B.; Guillaume, P.
2016-09-01
Performing Multiple-Input Multiple-Output (MIMO) tests to reproduce the vibration environment in a user-defined number of control points of a unit under test is necessary in applications where a realistic environment replication has to be achieved. MIMO tests require vibration control strategies to calculate the required drive signal vector that gives an acceptable replication of the target. This target is a (complex) vector with magnitude and phase information at the control points for MIMO Sine Control tests while in MIMO Random Control tests, in the most general case, the target is a complete spectral density matrix. The idea behind this work is to tailor a MIMO random vibration control approach that can be generalized to other MIMO tests, e.g. MIMO Sine and MIMO Time Waveform Replication. In this work the approach is to use gradient-based procedures over the complex space, applying the so called CR-Calculus and the adaptive array theory. With this approach it is possible to better control the process performances allowing the step-by-step Jacobian Matrix update. The theoretical bases behind the work are followed by an application of the developed method to a two-exciter two-axis system and by performance comparisons with standard methods.
Analysis of structural response data using discrete modal filters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Freudinger, Lawrence C.
1991-01-01
The application of reciprocal modal vectors to the analysis of structural response data is described. Reciprocal modal vectors are constructed using an existing experimental modal model and an existing frequency response matrix of a structure, and can be assembled into a matrix that effectively transforms the data from the physical space to a modal space within a particular frequency range. In other words, the weighting matrix necessary for modal vector orthogonality (typically the mass matrix) is contained within the reciprocal model matrix. The underlying goal of this work is mostly directed toward observing the modal state responses in the presence of unknown, possibly closed loop forcing functions, thus having an impact on both operating data analysis techniques and independent modal space control techniques. This study investigates the behavior of reciprocol modal vectors as modal filters with respect to certain calculation parameters and their performance with perturbed system frequency response data.
Elements of the quality management in the materials' industry
NASA Astrophysics Data System (ADS)
Ioana, Adrian; Semenescu, Augustin; Costoiu, Mihnea; Marcu, Dragoş
2017-12-01
The criteria function concept consists of transforming the criteria function (CF) in a quality-economical matrix math MQE. The levels of prescribing the criteria function was obtained by using a composition algorithm for three vectors: T¯ vector - technical parameters' vector (ti); Ē vector - economical parameters' vector (ej) and P¯ vector - weight vector (p1). For each product or service, the area of the circle represents the value of its sales. The BCG Matrix thus offers a very useful map of the organization's service strengths and weaknesses, at least in terms of current profitability, as well as the likely cash flows.
On efficient randomized algorithms for finding the PageRank vector
NASA Astrophysics Data System (ADS)
Gasnikov, A. V.; Dmitriev, D. Yu.
2015-03-01
Two randomized methods are considered for finding the PageRank vector; in other words, the solution of the system p T = p T P with a stochastic n × n matrix P, where n ˜ 107-109, is sought (in the class of probability distributions) with accuracy ɛ: ɛ ≫ n -1. Thus, the possibility of brute-force multiplication of P by the column is ruled out in the case of dense objects. The first method is based on the idea of Markov chain Monte Carlo algorithms. This approach is efficient when the iterative process p {/t+1 T} = p {/t T} P quickly reaches a steady state. Additionally, it takes into account another specific feature of P, namely, the nonzero off-diagonal elements of P are equal in rows (this property is used to organize a random walk over the graph with the matrix P). Based on modern concentration-of-measure inequalities, new bounds for the running time of this method are presented that take into account the specific features of P. In the second method, the search for a ranking vector is reduced to finding the equilibrium in the antagonistic matrix game where S n (1) is a unit simplex in ℝ n and I is the identity matrix. The arising problem is solved by applying a slightly modified Grigoriadis-Khachiyan algorithm (1995). This technique, like the Nazin-Polyak method (2009), is a randomized version of Nemirovski's mirror descent method. The difference is that randomization in the Grigoriadis-Khachiyan algorithm is used when the gradient is projected onto the simplex rather than when the stochastic gradient is computed. For sparse matrices P, the method proposed yields noticeably better results.
NASA Technical Reports Server (NTRS)
Buchholz, Peter; Ciardo, Gianfranco; Donatelli, Susanna; Kemper, Peter
1997-01-01
We present a systematic discussion of algorithms to multiply a vector by a matrix expressed as the Kronecker product of sparse matrices, extending previous work in a unified notational framework. Then, we use our results to define new algorithms for the solution of large structured Markov models. In addition to a comprehensive overview of existing approaches, we give new results with respect to: (1) managing certain types of state-dependent behavior without incurring extra cost; (2) supporting both Jacobi-style and Gauss-Seidel-style methods by appropriate multiplication algorithms; (3) speeding up algorithms that consider probability vectors of size equal to the "actual" state space instead of the "potential" state space.
NASA Astrophysics Data System (ADS)
Zheng, Mingfang; He, Cunfu; Lu, Yan; Wu, Bin
2018-01-01
We presented a numerical method to solve phase dispersion curve in general anisotropic plates. This approach involves an exact solution to the problem in the form of the Legendre polynomial of multiple integrals, which we substituted into the state-vector formalism. In order to improve the efficiency of the proposed method, we made a special effort to demonstrate the analytical methodology. Furthermore, we analyzed the algebraic symmetries of the matrices in the state-vector formalism for anisotropic plates. The basic feature of the proposed method was the expansion of field quantities by Legendre polynomials. The Legendre polynomial method avoid to solve the transcendental dispersion equation, which can only be solved numerically. This state-vector formalism combined with Legendre polynomial expansion distinguished the adjacent dispersion mode clearly, even when the modes were very close. We then illustrated the theoretical solutions of the dispersion curves by this method for isotropic and anisotropic plates. Finally, we compared the proposed method with the global matrix method (GMM), which shows excellent agreement.
Photonic Breast Tomography and Tumor Aggressiveness Assessment
2010-07-01
removal of breast tumours (Specific Aim 4). While the TROT approach [7] has been introduced in other areas, such as, array processing for acoustic and...to the time-reversal matrix used in the general area of array processing for acoustic and radar time-reversal imaging [15]. The eigenvalue equation...spectrum [Eq.(1) in Ref. 8] is calculated directly for all voxels in the sample using the vector subspace method, Multiple Signal Classification ( MUSIC
Progress report on Nuclear Density project with Lawrence Livermore National Lab Year 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C W; Krastev, P; Ormand, W E
2011-03-11
The main goal for year 2010 was to improve parallelization of the configuration interaction code BIGSTICK, co-written by W. Erich Ormand (LLNL) and Calvin W. Johnson (SDSU), with the parallelization carried out primarily by Plamen Krastev, a postdoc at SDSU and funded in part by this grant. The central computational algorithm is the Lanczos algorithm, which consists of a matrix-vector multiplication (matvec), followed by a Gram-Schmidt reorthogonalization.
An Alternative Method for Computing Mean and Covariance Matrix of Some Multivariate Distributions
ERIC Educational Resources Information Center
Radhakrishnan, R.; Choudhury, Askar
2009-01-01
Computing the mean and covariance matrix of some multivariate distributions, in particular, multivariate normal distribution and Wishart distribution are considered in this article. It involves a matrix transformation of the normal random vector into a random vector whose components are independent normal random variables, and then integrating…
Polar decomposition for attitude determination from vector observations
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.
1993-01-01
This work treats the problem of weighted least squares fitting of a 3D Euclidean-coordinate transformation matrix to a set of unit vectors measured in the reference and transformed coordinates. A closed-form analytic solution to the problem is re-derived. The fact that the solution is the closest orthogonal matrix to some matrix defined on the measured vectors and their weights is clearly demonstrated. Several known algorithms for computing the analytic closed form solution are considered. An algorithm is discussed which is based on the polar decomposition of matrices into the closest unitary matrix to the decomposed matrix and a Hermitian matrix. A somewhat longer improved algorithm is suggested too. A comparison of several algorithms is carried out using simulated data as well as real data from the Upper Atmosphere Research Satellite. The comparison is based on accuracy and time consumption. It is concluded that the algorithms based on polar decomposition yield a simple although somewhat less accurate solution. The precision of the latter algorithms increase with the number of the measured vectors and with the accuracy of their measurement.
NASA Astrophysics Data System (ADS)
Pan, Feng; Cao, Yu-Fang
1992-02-01
Vector coherent state (VCS) theory is applied to the group chain SOn+2⊇SOn×SO2. Matrix elements of SOn+2 generators in the SOn+2⊇SOn×SO2 basis are derived. A new formula for the evaluation of some isoscalar factors for SOn+2⊇SOn×SO2 with branching multiplicity is derived in the VCS framework. As a simple example, a new expression of some isoscalar factors for SO5⊇SO3×SO2, which involves only 6j coefficients and K-normalization factors, are obtained by using this formula.
Elastic K-means using posterior probability.
Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris
2017-01-01
The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model.
Calculation of normal modes of the closed waveguides in general vector case
NASA Astrophysics Data System (ADS)
Malykh, M. D.; Sevastianov, L. A.; Tiutiunnik, A. A.
2018-04-01
The article is devoted to the calculation of normal modes of the closed waveguides with an arbitrary filling ɛ, μ in the system of computer algebra Sage. Maxwell equations in the cylinder are reduced to the system of two bounded Helmholtz equations, the notion of weak solution of this system is given and then this system is investigated as a system of ordinary differential equations. The normal modes of this system are an eigenvectors of a matrix pencil. We suggest to calculate the matrix elements approximately and to truncate the matrix by usual way but further to solve the truncated eigenvalue problem exactly in the field of algebraic numbers. This approach allows to keep the symmetry of the initial problem and in particular the multiplicity of the eigenvalues. In the work would be presented some results of calculations.
Quantum Support Vector Machine for Big Data Classification
NASA Astrophysics Data System (ADS)
Rebentrost, Patrick; Mohseni, Masoud; Lloyd, Seth
2014-09-01
Supervised machine learning is the classification of new data based on already classified training examples. In this work, we show that the support vector machine, an optimized binary classifier, can be implemented on a quantum computer, with complexity logarithmic in the size of the vectors and the number of training examples. In cases where classical sampling algorithms require polynomial time, an exponential speedup is obtained. At the core of this quantum big data algorithm is a nonsparse matrix exponentiation technique for efficiently performing a matrix inversion of the training data inner-product (kernel) matrix.
Investigating the Use of the Intel Xeon Phi for Event Reconstruction
NASA Astrophysics Data System (ADS)
Sherman, Keegan; Gilfoyle, Gerard
2014-09-01
The physics goal of Jefferson Lab is to understand how quarks and gluons form nuclei and it is being upgraded to a higher, 12-GeV beam energy. The new CLAS12 detector in Hall B will collect 5-10 terabytes of data per day and will require considerable computing resources. We are investigating tools, such as the Intel Xeon Phi, to speed up the event reconstruction. The Kalman Filter is one of the methods being studied. It is a linear algebra algorithm that estimates the state of a system by combining existing data and predictions of those measurements. The tools required to apply this technique (i.e. matrix multiplication, matrix inversion) are being written using C++ intrinsics for Intel's Xeon Phi Coprocessor, which uses the Many Integrated Cores (MIC) architecture. The Intel MIC is a new high-performance chip that connects to a host machine through the PCIe bus and is built to run highly vectorized and parallelized code making it a well-suited device for applications such as the Kalman Filter. Our tests of the MIC optimized algorithms needed for the filter show significant increases in speed. For example, matrix multiplication of 5x5 matrices on the MIC was able to run up to 69 times faster than the host core. The physics goal of Jefferson Lab is to understand how quarks and gluons form nuclei and it is being upgraded to a higher, 12-GeV beam energy. The new CLAS12 detector in Hall B will collect 5-10 terabytes of data per day and will require considerable computing resources. We are investigating tools, such as the Intel Xeon Phi, to speed up the event reconstruction. The Kalman Filter is one of the methods being studied. It is a linear algebra algorithm that estimates the state of a system by combining existing data and predictions of those measurements. The tools required to apply this technique (i.e. matrix multiplication, matrix inversion) are being written using C++ intrinsics for Intel's Xeon Phi Coprocessor, which uses the Many Integrated Cores (MIC) architecture. The Intel MIC is a new high-performance chip that connects to a host machine through the PCIe bus and is built to run highly vectorized and parallelized code making it a well-suited device for applications such as the Kalman Filter. Our tests of the MIC optimized algorithms needed for the filter show significant increases in speed. For example, matrix multiplication of 5x5 matrices on the MIC was able to run up to 69 times faster than the host core. Work supported by the University of Richmond and the US Department of Energy.
Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons
NASA Astrophysics Data System (ADS)
Chanyal, B. C.
2017-12-01
In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.
Rank-Optimized Logistic Matrix Regression toward Improved Matrix Data Classification.
Zhang, Jianguang; Jiang, Jianmin
2018-02-01
While existing logistic regression suffers from overfitting and often fails in considering structural information, we propose a novel matrix-based logistic regression to overcome the weakness. In the proposed method, 2D matrices are directly used to learn two groups of parameter vectors along each dimension without vectorization, which allows the proposed method to fully exploit the underlying structural information embedded inside the 2D matrices. Further, we add a joint [Formula: see text]-norm on two parameter matrices, which are organized by aligning each group of parameter vectors in columns. This added co-regularization term has two roles-enhancing the effect of regularization and optimizing the rank during the learning process. With our proposed fast iterative solution, we carried out extensive experiments. The results show that in comparison to both the traditional tensor-based methods and the vector-based regression methods, our proposed solution achieves better performance for matrix data classifications.
2000-05-01
a vector , ρ "# represents the set of voxel densities sorted into a vector , and ( )A ρ $# "# represents a 8 mapping of the voxel densities to...density vector in equation (4) suggests that solving for ρ "# by direct inversion is not possible, calling for an iterative technique beginning with...the vector of measured spectra, and D is the diagonal matrix of the inverse of the variances. The diagonal matrix provides weighting terms, which
Attitude determination using vector observations: A fast optimal matrix algorithm
NASA Technical Reports Server (NTRS)
Markley, F. Landis
1993-01-01
The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.
NASA Astrophysics Data System (ADS)
Elkurdi, Yousef; Fernández, David; Souleimanov, Evgueni; Giannacopoulos, Dennis; Gross, Warren J.
2008-04-01
The Finite Element Method (FEM) is a computationally intensive scientific and engineering analysis tool that has diverse applications ranging from structural engineering to electromagnetic simulation. The trends in floating-point performance are moving in favor of Field-Programmable Gate Arrays (FPGAs), hence increasing interest has grown in the scientific community to exploit this technology. We present an architecture and implementation of an FPGA-based sparse matrix-vector multiplier (SMVM) for use in the iterative solution of large, sparse systems of equations arising from FEM applications. FEM matrices display specific sparsity patterns that can be exploited to improve the efficiency of hardware designs. Our architecture exploits FEM matrix sparsity structure to achieve a balance between performance and hardware resource requirements by relying on external SDRAM for data storage while utilizing the FPGAs computational resources in a stream-through systolic approach. The architecture is based on a pipelined linear array of processing elements (PEs) coupled with a hardware-oriented matrix striping algorithm and a partitioning scheme which enables it to process arbitrarily big matrices without changing the number of PEs in the architecture. Therefore, this architecture is only limited by the amount of external RAM available to the FPGA. The implemented SMVM-pipeline prototype contains 8 PEs and is clocked at 110 MHz obtaining a peak performance of 1.76 GFLOPS. For 8 GB/s of memory bandwidth typical of recent FPGA systems, this architecture can achieve 1.5 GFLOPS sustained performance. Using multiple instances of the pipeline, linear scaling of the peak and sustained performance can be achieved. Our stream-through architecture provides the added advantage of enabling an iterative implementation of the SMVM computation required by iterative solution techniques such as the conjugate gradient method, avoiding initialization time due to data loading and setup inside the FPGA internal memory.
Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Samuel; Oliker, Leonid; Vuduc, Richard
2008-10-16
We are witnessing a dramatic change in computer architecture due to the multicore paradigm shift, as every electronic device from cell phones to supercomputers confronts parallelism of unprecedented scale. To fully unleash the potential of these systems, the HPC community must develop multicore specific-optimization methodologies for important scientific computations. In this work, we examine sparse matrix-vector multiply (SpMV) - one of the most heavily used kernels in scientific computing - across a broad spectrum of multicore designs. Our experimental platform includes the homogeneous AMD quad-core, AMD dual-core, and Intel quad-core designs, the heterogeneous STI Cell, as well as one ofmore » the first scientific studies of the highly multithreaded Sun Victoria Falls (a Niagara2 SMP). We present several optimization strategies especially effective for the multicore environment, and demonstrate significant performance improvements compared to existing state-of-the-art serial and parallel SpMV implementations. Additionally, we present key insights into the architectural trade-offs of leading multicore design strategies, in the context of demanding memory-bound numerical algorithms.« less
Computation of optimal output-feedback compensators for linear time-invariant systems
NASA Technical Reports Server (NTRS)
Platzman, L. K.
1972-01-01
The control of linear time-invariant systems with respect to a quadratic performance criterion was considered, subject to the constraint that the control vector be a constant linear transformation of the output vector. The optimal feedback matrix, f*, was selected to optimize the expected performance, given the covariance of the initial state. It is first shown that the expected performance criterion can be expressed as the ratio of two multinomials in the element of f. This expression provides the basis for a feasible method of determining f* in the case of single-input single-output systems. A number of iterative algorithms are then proposed for the calculation of f* for multiple input-output systems. For two of these, monotone convergence is proved, but they involve the solution of nonlinear matrix equations at each iteration. Another is proposed involving the solution of Lyapunov equations at each iteration, and the gradual increase of the magnitude of a penalty function. Experience with this algorithm will be needed to determine whether or not it does, indeed, possess desirable convergence properties, and whether it can be used to determine the globally optimal f*.
Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states
NASA Astrophysics Data System (ADS)
Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.
2018-04-01
We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.
Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brabec, Jiri; Lin, Lin; Shao, Meiyue
We present two iterative algorithms for approximating the absorption spectrum of molecules within linear response of time-dependent density functional theory (TDDFT) framework. These methods do not attempt to compute eigenvalues or eigenvectors of the linear response matrix. They are designed to approximate the absorption spectrum as a function directly. They take advantage of the special structure of the linear response matrix. Neither method requires the linear response matrix to be constructed explicitly. They only require a procedure that performs the multiplication of the linear response matrix with a vector. These methods can also be easily modified to efficiently estimate themore » density of states (DOS) of the linear response matrix without computing the eigenvalues of this matrix. We show by computational experiments that the methods proposed in this paper can be much more efficient than methods that are based on the exact diagonalization of the linear response matrix. We show that they can also be more efficient than real-time TDDFT simulations. We compare the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost.« less
A simple suboptimal least-squares algorithm for attitude determination with multiple sensors
NASA Technical Reports Server (NTRS)
Brozenec, Thomas F.; Bender, Douglas J.
1994-01-01
Three-axis attitude determination is equivalent to finding a coordinate transformation matrix which transforms a set of reference vectors fixed in inertial space to a set of measurement vectors fixed in the spacecraft. The attitude determination problem can be expressed as a constrained optimization problem. The constraint is that a coordinate transformation matrix must be proper, real, and orthogonal. A transformation matrix can be thought of as optimal in the least-squares sense if it maps the measurement vectors to the reference vectors with minimal 2-norm errors and meets the above constraint. This constrained optimization problem is known as Wahba's problem. Several algorithms which solve Wahba's problem exactly have been developed and used. These algorithms, while steadily improving, are all rather complicated. Furthermore, they involve such numerically unstable or sensitive operations as matrix determinant, matrix adjoint, and Newton-Raphson iterations. This paper describes an algorithm which minimizes Wahba's loss function, but without the constraint. When the constraint is ignored, the problem can be solved by a straightforward, numerically stable least-squares algorithm such as QR decomposition. Even though the algorithm does not explicitly take the constraint into account, it still yields a nearly orthogonal matrix for most practical cases; orthogonality only becomes corrupted when the sensor measurements are very noisy, on the same order of magnitude as the attitude rotations. The algorithm can be simplified if the attitude rotations are small enough so that the approximation sin(theta) approximately equals theta holds. We then compare the computational requirements for several well-known algorithms. For the general large-angle case, the QR least-squares algorithm is competitive with all other know algorithms and faster than most. If attitude rotations are small, the least-squares algorithm can be modified to run faster, and this modified algorithm is faster than all but a similarly specialized version of the QUEST algorithm. We also introduce a novel measurement averaging technique which reduces the n-measurement case to the two measurement case for our particular application, a star tracker and earth sensor mounted on an earth-pointed geosynchronous communications satellite. Using this technique, many n-measurement problems reduce to less than or equal to 3 measurements; this reduces the amount of required calculation without significant degradation in accuracy. Finally, we present the results of some tests which compare the least-squares algorithm with the QUEST and FOAM algorithms in the two-measurement case. For our example case, all three algorithms performed with similar accuracy.
The covariance matrix for the solution vector of an equality-constrained least-squares problem
NASA Technical Reports Server (NTRS)
Lawson, C. L.
1976-01-01
Methods are given for computing the covariance matrix for the solution vector of an equality-constrained least squares problem. The methods are matched to the solution algorithms given in the book, 'Solving Least Squares Problems.'
NASA Astrophysics Data System (ADS)
Nemes, Csaba; Barcza, Gergely; Nagy, Zoltán; Legeza, Örs; Szolgay, Péter
2014-06-01
In the numerical analysis of strongly correlated quantum lattice models one of the leading algorithms developed to balance the size of the effective Hilbert space and the accuracy of the simulation is the density matrix renormalization group (DMRG) algorithm, in which the run-time is dominated by the iterative diagonalization of the Hamilton operator. As the most time-dominant step of the diagonalization can be expressed as a list of dense matrix operations, the DMRG is an appealing candidate to fully utilize the computing power residing in novel kilo-processor architectures. In the paper a smart hybrid CPU-GPU implementation is presented, which exploits the power of both CPU and GPU and tolerates problems exceeding the GPU memory size. Furthermore, a new CUDA kernel has been designed for asymmetric matrix-vector multiplication to accelerate the rest of the diagonalization. Besides the evaluation of the GPU implementation, the practical limits of an FPGA implementation are also discussed.
Heading-vector navigation based on head-direction cells and path integration.
Kubie, John L; Fenton, André A
2009-05-01
Insect navigation is guided by heading vectors that are computed by path integration. Mammalian navigation models, on the other hand, are typically based on map-like place representations provided by hippocampal place cells. Such models compute optimal routes as a continuous series of locations that connect the current location to a goal. We propose a "heading-vector" model in which head-direction cells or their derivatives serve both as key elements in constructing the optimal route and as the straight-line guidance during route execution. The model is based on a memory structure termed the "shortcut matrix," which is constructed during the initial exploration of an environment when a set of shortcut vectors between sequential pairs of visited waypoint locations is stored. A mechanism is proposed for calculating and storing these vectors that relies on a hypothesized cell type termed an "accumulating head-direction cell." Following exploration, shortcut vectors connecting all pairs of waypoint locations are computed by vector arithmetic and stored in the shortcut matrix. On re-entry, when local view or place representations query the shortcut matrix with a current waypoint and goal, a shortcut trajectory is retrieved. Since the trajectory direction is in head-direction compass coordinates, navigation is accomplished by tracking the firing of head-direction cells that are tuned to the heading angle. Section 1 of the manuscript describes the properties of accumulating head-direction cells. It then shows how accumulating head-direction cells can store local vectors and perform vector arithmetic to perform path-integration-based homing. Section 2 describes the construction and use of the shortcut matrix for computing direct paths between any pair of locations that have been registered in the shortcut matrix. In the discussion, we analyze the advantages of heading-based navigation over map-based navigation. Finally, we survey behavioral evidence that nonhippocampal, heading-based navigation is used in small mammals and humans. Copyright 2008 Wiley-Liss, Inc.
Exploring and Making Sense of Large Graphs
2015-08-01
and bold) are n × n ; vectors (lower-case bold) are n × 1 column vectors, and scalars (in lower-case plain font) typically correspond to strength of...graph is often denoted as |V| or n . Edges or Links: A finite set E of lines between objects in a graph. The edges represent relationships between the...Adjacency matrix of a simple, unweighted and undirected graph. Adjacency matrix: The adjacency matrix of a graph G is an n × n matrix A, whose element aij
Pan, Yijie; Wang, Yongtian; Liu, Juan; Li, Xin; Jia, Jia
2014-03-01
Previous research [Appl. Opt.52, A290 (2013)] has revealed that Fourier analysis of three-dimensional affine transformation theory can be used to improve the computation speed of the traditional polygon-based method. In this paper, we continue our research and propose an improved full analytical polygon-based method developed upon this theory. Vertex vectors of primitive and arbitrary triangles and the pseudo-inverse matrix were used to obtain an affine transformation matrix representing the spatial relationship between the two triangles. With this relationship and the primitive spectrum, we analytically obtained the spectrum of the arbitrary triangle. This algorithm discards low-level angular dependent computations. In order to add diffusive reflection to each arbitrary surface, we also propose a whole matrix computation approach that takes advantage of the affine transformation matrix and uses matrix multiplication to calculate shifting parameters of similar sub-polygons. The proposed method improves hologram computation speed for the conventional full analytical approach. Optical experimental results are demonstrated which prove that the proposed method can effectively reconstruct three-dimensional scenes.
Elastic K-means using posterior probability
Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris
2017-01-01
The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model. PMID:29240756
Distributed Matrix Completion: Application to Cooperative Positioning in Noisy Environments
2013-12-11
positioning, and a gossip version of low-rank approximation were developed. A convex relaxation for positioning in the presence of noise was shown to...of a large data matrix through gossip algorithms. A new algorithm is proposed that amounts to iteratively multiplying a vector by independent random...sparsification of the original matrix and averaging the resulting normalized vectors. This can be viewed as a generalization of gossip algorithms for
A Perron-Frobenius theory for block matrices associated to a multiplex network
NASA Astrophysics Data System (ADS)
Romance, Miguel; Solá, Luis; Flores, Julio; García, Esther; García del Amo, Alejandro; Criado, Regino
2015-03-01
The uniqueness of the Perron vector of a nonnegative block matrix associated to a multiplex network is discussed. The conclusions come from the relationships between the irreducibility of some nonnegative block matrix associated to a multiplex network and the irreducibility of the corresponding matrices to each layer as well as the irreducibility of the adjacency matrix of the projection network. In addition the computation of that Perron vector in terms of the Perron vectors of the blocks is also addressed. Finally we present the precise relations that allow to express the Perron eigenvector of the multiplex network in terms of the Perron eigenvectors of its layers.
Separable decompositions of bipartite mixed states
NASA Astrophysics Data System (ADS)
Li, Jun-Li; Qiao, Cong-Feng
2018-04-01
We present a practical scheme for the decomposition of a bipartite mixed state into a sum of direct products of local density matrices, using the technique developed in Li and Qiao (Sci. Rep. 8:1442, 2018). In the scheme, the correlation matrix which characterizes the bipartite entanglement is first decomposed into two matrices composed of the Bloch vectors of local states. Then, we show that the symmetries of Bloch vectors are consistent with that of the correlation matrix, and the magnitudes of the local Bloch vectors are lower bounded by the correlation matrix. Concrete examples for the separable decompositions of bipartite mixed states are presented for illustration.
Trentin, Diana; Hall, Heike; Wechsler, Sandra; Hubbell, Jeffrey A
2006-02-21
Hypoxia-inducible factor (HIF) constitutes a target in therapeutic angiogenesis. HIF-1alpha functions as a sensor of hypoxia and induces expression of vascular endothelial growth factor (VEGF), which then induces angiogenesis. To explore the potential of HIF-1alpha gene therapy in stimulating wound healing, we delivered a gene encoding a stabilized form of HIF-1alpha, lacking the oxygen-sensitive degradation domain, namely HIF-1alpha deltaODD, by using a previously characterized peptide-based gene delivery vector in fibrin as a surgical matrix. The peptide vector consisted of multiple domains: (i) A cysteine-flanked lysine hexamer provided DNA interactions that were stable extracellularly but destabilized intracellularly after reduction of the formed disulfide bonds. This DNA-binding domain was fused to either (ii) a fibrin-binding peptide for entrapment within the matrix or (iii) a nuclear localization sequence for efficient nuclear targeting. The HIF-1alpha deltaODD gene was expressed and translocated to the nucleus under normoxic conditions, leading to up-regulation of vascular endothelial growth factor (VEGF)-A165 mRNA and protein levels in vitro. When the peptide-DNA nanoparticles entrapped in fibrin matrices were applied to full-thickness dermal wounds in the mouse (10 microg per wound in 30 microl of fibrin), angiogenesis was increased comparably strongly to that induced by VEGF-A165 protein (1.25 microg per wound in 30 microl of fibrin). However, the maturity of the vessels induced by HIF-1alpha deltaODD was significantly higher than that induced by VEGF-A165 protein, as shown by stabilization of the neovessels with smooth muscle. Nonviral, local administration of this potent angiogenesis-inducing gene by using this peptide vector represents a powerful approach in tissue engineering and therapeutic angiogenesis.
3D tensor-based blind multispectral image decomposition for tumor demarcation
NASA Astrophysics Data System (ADS)
Kopriva, Ivica; Peršin, Antun
2010-03-01
Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).
Li, Fan; Li, Lisha; Cheng, Meijuan; Wang, Xiumin; Hao, Jun; Liu, Shuxia; Duan, Huijun
2017-01-22
Tubular interstitial extracellular matrix accumulation, which plays a key role in the pathogenesis and progression of diabetic kidney disease (DKD), is believed to be mediated by activation of PI3K/Akt signal pathway. However, it is still not clear whether SH2 domain-containing inositol 5'-phosphatase (SHIP), known as a negative regulator of PI3K/Akt pathway is also involved in extracellular matrix metabolism of diabetic kidney. In the present study, decreased SHIP and increased phospho-Akt (Ser 473, Thr 308) were found in renal tubular cells of diabetic mice accompanied by overexpression of connective tissue growth factor (CTGF) and extracellular matrix deposition versus normal mice. Again, high glucose attenuated SHIP expression in a time-dependent manner, concomitant with activation of PI3K/Akt signaling and extracellular matrix production in human renal proximal tubular epithelial cells (HK2) cultured in vitro, which was significantly prevented by transfection of M90-SHIP vector. Furthermore, in vivo delivery of rAd-INPP5D vector (SHIP expression vector) via intraperitoneal injection in diabetic mice increased SHIP expression by 3.36 times followed by 65.26%, 70.38% and 46.71% decreases of phospho-Akt (Ser 473), phospho-Akt (Thr 308) and CTGF expression versus diabetic mice receiving rAd-EGFP vector. Meanwhile, increased renal extracellular matrix accumulation of diabetic mice was also inhibited with intraperitoneal injection of rAd-INPP5D vector. These above data suggested that overexpression of SHIP might be a potent method to lessen renal extracellular matrix accumulation via inactivation of PI3K/Akt pathway and suppression of CTGF expression in DKD. Copyright © 2016 Elsevier Inc. All rights reserved.
Woodward, Carol S.; Gardner, David J.; Evans, Katherine J.
2015-01-01
Efficient solutions of global climate models require effectively handling disparate length and time scales. Implicit solution approaches allow time integration of the physical system with a step size governed by accuracy of the processes of interest rather than by stability of the fastest time scales present. Implicit approaches, however, require the solution of nonlinear systems within each time step. Usually, a Newton's method is applied to solve these systems. Each iteration of the Newton's method, in turn, requires the solution of a linear model of the nonlinear system. This model employs the Jacobian of the problem-defining nonlinear residual, but thismore » Jacobian can be costly to form. If a Krylov linear solver is used for the solution of the linear system, the action of the Jacobian matrix on a given vector is required. In the case of spectral element methods, the Jacobian is not calculated but only implemented through matrix-vector products. The matrix-vector multiply can also be approximated by a finite difference approximation which may introduce inaccuracy in the overall nonlinear solver. In this paper, we review the advantages and disadvantages of finite difference approximations of these matrix-vector products for climate dynamics within the spectral element shallow water dynamical core of the Community Atmosphere Model.« less
Venkatraman, Navin; Anagnostou, Nicholas; Bliss, Carly; Bowyer, Georgina; Wright, Danny; Lövgren-Bengtsson, Karin; Roberts, Rachel; Poulton, Ian; Lawrie, Alison; Ewer, Katie; V S Hill, Adrian
2017-10-27
The use of viral vectors in heterologous prime-boost regimens to induce potent T cell responses in addition to humoral immunity is a promising vaccination strategy in the fight against malaria. We conducted an open-label, first-in-human, controlled Phase I study evaluating the safety and immunogenicity of Matrix-M adjuvanted vaccination with a chimpanzee adenovirus serotype 63 (ChAd63) prime followed by a modified vaccinia Ankara (MVA) boost eight weeks later, both encoding the malaria ME-TRAP antigenic sequence (a multiple epitope string fused to thrombospondin-related adhesion protein). Twenty-two healthy adults were vaccinated intramuscularly with either ChAd63-MVA ME-TRAP alone (n=6) or adjuvanted with 25μg (n=8) or 50μg (n=8) Matrix-M. Vaccinations appeared to be safe and generally well tolerated, with the majority of local and systemic adverse events being mild in nature. The addition of Matrix-M to the vaccine did not increase local reactogenicity; however, systemic adverse events were reported more frequently by volunteers who received adjuvanted vaccine in comparison to the control group. T cell ELISpot responses peaked at 7-days post boost vaccination with MVA ME-TRAP in all three groups. TRAP-specific IgG responses were highest at 28-days post boost with MVA ME-TRAP in all three groups. There were no differences in cellular and humoral immunogenicity at any of the time points between the control group and the adjuvanted groups. We demonstrate that Matrix-M can be safely used in combination with ChAd63-MVA ME-TRAP heterologous prime-boost immunization without any reduction in cellular or humoral immunogenicity. Clinical Trials Registration NCT01669512. Copyright © 2017 Elsevier Ltd. All rights reserved.
A hypothetical learning trajectory for conceptualizing matrices as linear transformations
NASA Astrophysics Data System (ADS)
Andrews-Larson, Christine; Wawro, Megan; Zandieh, Michelle
2017-08-01
In this paper, we present a hypothetical learning trajectory (HLT) aimed at supporting students in developing flexible ways of reasoning about matrices as linear transformations in the context of introductory linear algebra. In our HLT, we highlight the integral role of the instructor in this development. Our HLT is based on the 'Italicizing N' task sequence, in which students work to generate, compose, and invert matrices that correspond to geometric transformations specified within the problem context. In particular, we describe the ways in which the students develop local transformation views of matrix multiplication (focused on individual mappings of input vectors to output vectors) and extend these local views to more global views in which matrices are conceptualized in terms of how they transform a space in a coordinated way.
Collaborative sparse priors for multi-view ATR
NASA Astrophysics Data System (ADS)
Li, Xuelu; Monga, Vishal
2018-04-01
Recent work has seen a surge of sparse representation based classification (SRC) methods applied to automatic target recognition problems. While traditional SRC approaches used l0 or l1 norm to quantify sparsity, spike and slab priors have established themselves as the gold standard for providing general tunable sparse structures on vectors. In this work, we employ collaborative spike and slab priors that can be applied to matrices to encourage sparsity for the problem of multi-view ATR. That is, target images captured from multiple views are expanded in terms of a training dictionary multiplied with a coefficient matrix. Ideally, for a test image set comprising of multiple views of a target, coefficients corresponding to its identifying class are expected to be active, while others should be zero, i.e. the coefficient matrix is naturally sparse. We develop a new approach to solve the optimization problem that estimates the sparse coefficient matrix jointly with the sparsity inducing parameters in the collaborative prior. ATR problems are investigated on the mid-wave infrared (MWIR) database made available by the US Army Night Vision and Electronic Sensors Directorate, which has a rich collection of views. Experimental results show that the proposed joint prior and coefficient estimation method (JPCEM) can: 1.) enable improved accuracy when multiple views vs. a single one are invoked, and 2.) outperform state of the art alternatives particularly when training imagery is limited.
Research on the application of a decoupling algorithm for structure analysis
NASA Technical Reports Server (NTRS)
Denman, E. D.
1980-01-01
The mathematical theory for decoupling mth-order matrix differential equations is presented. It is shown that the decoupling precedure can be developed from the algebraic theory of matrix polynomials. The role of eigenprojectors and latent projectors in the decoupling process is discussed and the mathematical relationships between eigenvalues, eigenvectors, latent roots, and latent vectors are developed. It is shown that the eigenvectors of the companion form of a matrix contains the latent vectors as a subset. The spectral decomposition of a matrix and the application to differential equations is given.
Oryspayev, Dossay; Aktulga, Hasan Metin; Sosonkina, Masha; ...
2015-07-14
In this article, sparse matrix vector multiply (SpMVM) is an important kernel that frequently arises in high performance computing applications. Due to its low arithmetic intensity, several approaches have been proposed in literature to improve its scalability and efficiency in large scale computations. In this paper, our target systems are high end multi-core architectures and we use messaging passing interface + open multiprocessing hybrid programming model for parallelism. We analyze the performance of recently proposed implementation of the distributed symmetric SpMVM, originally developed for large sparse symmetric matrices arising in ab initio nuclear structure calculations. We also study important featuresmore » of this implementation and compare with previously reported implementations that do not exploit underlying symmetry. Our SpMVM implementations leverage the hybrid paradigm to efficiently overlap expensive communications with computations. Our main comparison criterion is the "CPU core hours" metric, which is the main measure of resource usage on supercomputers. We analyze the effects of topology-aware mapping heuristic using simplified network load model. Furthermore, we have tested the different SpMVM implementations on two large clusters with 3D Torus and Dragonfly topology. Our results show that the distributed SpMVM implementation that exploits matrix symmetry and hides communication yields the best value for the "CPU core hours" metric and significantly reduces data movement overheads.« less
An efficient implementation of a high-order filter for a cubed-sphere spectral element model
NASA Astrophysics Data System (ADS)
Kang, Hyun-Gyu; Cheong, Hyeong-Bin
2017-03-01
A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.
Parallel Preconditioning for CFD Problems on the CM-5
NASA Technical Reports Server (NTRS)
Simon, Horst D.; Kremenetsky, Mark D.; Richardson, John; Lasinski, T. A. (Technical Monitor)
1994-01-01
Up to today, preconditioning methods on massively parallel systems have faced a major difficulty. The most successful preconditioning methods in terms of accelerating the convergence of the iterative solver such as incomplete LU factorizations are notoriously difficult to implement on parallel machines for two reasons: (1) the actual computation of the preconditioner is not very floating-point intensive, but requires a large amount of unstructured communication, and (2) the application of the preconditioning matrix in the iteration phase (i.e. triangular solves) are difficult to parallelize because of the recursive nature of the computation. Here we present a new approach to preconditioning for very large, sparse, unsymmetric, linear systems, which avoids both difficulties. We explicitly compute an approximate inverse to our original matrix. This new preconditioning matrix can be applied most efficiently for iterative methods on massively parallel machines, since the preconditioning phase involves only a matrix-vector multiplication, with possibly a dense matrix. Furthermore the actual computation of the preconditioning matrix has natural parallelism. For a problem of size n, the preconditioning matrix can be computed by solving n independent small least squares problems. The algorithm and its implementation on the Connection Machine CM-5 are discussed in detail and supported by extensive timings obtained from real problem data.
NASA Astrophysics Data System (ADS)
Huang, Chengjun; Chen, Xiang; Cao, Shuai; Zhang, Xu
2016-12-01
Objective. Some skeletal muscles can be subdivided into smaller segments called muscle-tendon units (MTUs). The purpose of this paper is to propose a framework to locate the active region of the corresponding MTUs within a single skeletal muscle and to analyze the activation level varieties of different MTUs during a dynamic motion task. Approach. Biceps brachii and gastrocnemius were selected as targeted muscles and three dynamic motion tasks were designed and studied. Eight healthy male subjects participated in the data collection experiments, and 128-channel surface electromyographic (sEMG) signals were collected with a high-density sEMG electrode grid (a grid consists of 8 rows and 16 columns). Then the sEMG envelopes matrix was factorized into a matrix of weighting vectors and a matrix of time-varying coefficients by nonnegative matrix factorization algorithm. Main results. The experimental results demonstrated that the weightings vectors, which represent invariant pattern of muscle activity across all channels, could be used to estimate the location of MTUs and the time-varying coefficients could be used to depict the variation of MTUs activation level during dynamic motion task. Significance. The proposed method provides one way to analyze in-depth the functional state of MTUs during dynamic tasks and thus can be employed on multiple noteworthy sEMG-based applications such as muscle force estimation, muscle fatigue research and the control of myoelectric prostheses. This work was supported by the National Nature Science Foundation of China under Grant 61431017 and 61271138.
Ponnapalli, Sri Priya; Saunders, Michael A.; Van Loan, Charles F.; Alter, Orly
2011-01-01
The number of high-dimensional datasets recording multiple aspects of a single phenomenon is increasing in many areas of science, accompanied by a need for mathematical frameworks that can compare multiple large-scale matrices with different row dimensions. The only such framework to date, the generalized singular value decomposition (GSVD), is limited to two matrices. We mathematically define a higher-order GSVD (HO GSVD) for N≥2 matrices , each with full column rank. Each matrix is exactly factored as Di = UiΣiVT, where V, identical in all factorizations, is obtained from the eigensystem SV = VΛ of the arithmetic mean S of all pairwise quotients of the matrices , i≠j. We prove that this decomposition extends to higher orders almost all of the mathematical properties of the GSVD. The matrix S is nondefective with V and Λ real. Its eigenvalues satisfy λk≥1. Equality holds if and only if the corresponding eigenvector vk is a right basis vector of equal significance in all matrices Di and Dj, that is σi,k/σj,k = 1 for all i and j, and the corresponding left basis vector ui,k is orthogonal to all other vectors in Ui for all i. The eigenvalues λk = 1, therefore, define the “common HO GSVD subspace.” We illustrate the HO GSVD with a comparison of genome-scale cell-cycle mRNA expression from S. pombe, S. cerevisiae and human. Unlike existing algorithms, a mapping among the genes of these disparate organisms is not required. We find that the approximately common HO GSVD subspace represents the cell-cycle mRNA expression oscillations, which are similar among the datasets. Simultaneous reconstruction in the common subspace, therefore, removes the experimental artifacts, which are dissimilar, from the datasets. In the simultaneous sequence-independent classification of the genes of the three organisms in this common subspace, genes of highly conserved sequences but significantly different cell-cycle peak times are correctly classified. PMID:22216090
Refractive index inversion based on Mueller matrix method
NASA Astrophysics Data System (ADS)
Fan, Huaxi; Wu, Wenyuan; Huang, Yanhua; Li, Zhaozhao
2016-03-01
Based on Stokes vector and Jones vector, the correlation between Mueller matrix elements and refractive index was studied with the result simplified, and through Mueller matrix way, the expression of refractive index inversion was deduced. The Mueller matrix elements, under different incident angle, are simulated through the expression of specular reflection so as to analyze the influence of the angle of incidence and refractive index on it, which is verified through the measure of the Mueller matrix elements of polished metal surface. Research shows that, under the condition of specular reflection, the result of Mueller matrix inversion is consistent with the experiment and can be used as an index of refraction of inversion method, and it provides a new way for target detection and recognition technology.
A multiple maximum scatter difference discriminant criterion for facial feature extraction.
Song, Fengxi; Zhang, David; Mei, Dayong; Guo, Zhongwei
2007-12-01
Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.
A fast reconstruction algorithm for fluorescence optical diffusion tomography based on preiteration.
Song, Xiaolei; Xiong, Xiaoyun; Bai, Jing
2007-01-01
Fluorescence optical diffusion tomography in the near-infrared (NIR) bandwidth is considered to be one of the most promising ways for noninvasive molecular-based imaging. Many reconstructive approaches to it utilize iterative methods for data inversion. However, they are time-consuming and they are far from meeting the real-time imaging demands. In this work, a fast preiteration algorithm based on the generalized inverse matrix is proposed. This method needs only one step of matrix-vector multiplication online, by pushing the iteration process to be executed offline. In the preiteration process, the second-order iterative format is employed to exponentially accelerate the convergence. Simulations based on an analytical diffusion model show that the distribution of fluorescent yield can be well estimated by this algorithm and the reconstructed speed is remarkably increased.
An efficient sparse matrix multiplication scheme for the CYBER 205 computer
NASA Technical Reports Server (NTRS)
Lambiotte, Jules J., Jr.
1988-01-01
This paper describes the development of an efficient algorithm for computing the product of a matrix and vector on a CYBER 205 vector computer. The desire to provide software which allows the user to choose between the often conflicting goals of minimizing central processing unit (CPU) time or storage requirements has led to a diagonal-based algorithm in which one of four types of storage is selected for each diagonal. The candidate storage types employed were chosen to be efficient on the CYBER 205 for diagonals which have nonzero structure which is dense, moderately sparse, very sparse and short, or very sparse and long; however, for many densities, no diagonal type is most efficient with respect to both resource requirements, and a trade-off must be made. For each diagonal, an initialization subroutine estimates the CPU time and storage required for each storage type based on results from previously performed numerical experimentation. These requirements are adjusted by weights provided by the user which reflect the relative importance the user places on the two resources. The adjusted resource requirements are then compared to select the most efficient storage and computational scheme.
NASA Astrophysics Data System (ADS)
He, Xingyu; Tong, Ningning; Hu, Xiaowei
2018-01-01
Compressive sensing has been successfully applied to inverse synthetic aperture radar (ISAR) imaging of moving targets. By exploiting the block sparse structure of the target image, sparse solution for multiple measurement vectors (MMV) can be applied in ISAR imaging and a substantial performance improvement can be achieved. As an effective sparse recovery method, sparse Bayesian learning (SBL) for MMV involves a matrix inverse at each iteration. Its associated computational complexity grows significantly with the problem size. To address this problem, we develop a fast inverse-free (IF) SBL method for MMV. A relaxed evidence lower bound (ELBO), which is computationally more amiable than the traditional ELBO used by SBL, is obtained by invoking fundamental property for smooth functions. A variational expectation-maximization scheme is then employed to maximize the relaxed ELBO, and a computationally efficient IF-MSBL algorithm is proposed. Numerical results based on simulated and real data show that the proposed method can reconstruct row sparse signal accurately and obtain clear superresolution ISAR images. Moreover, the running time and computational complexity are reduced to a great extent compared with traditional SBL methods.
Research and simulation of the decoupling transformation in AC motor vector control
NASA Astrophysics Data System (ADS)
He, Jiaojiao; Zhao, Zhongjie; Liu, Ken; Zhang, Yongping; Yao, Tuozhong
2018-04-01
Permanent magnet synchronous motor (PMSM) is a nonlinear, strong coupling, multivariable complex object, and transformation decoupling can solve the coupling problem of permanent magnet synchronous motor. This paper gives a permanent magnet synchronous motor (PMSM) mathematical model, introduces the permanent magnet synchronous motor vector control coordinate transformation in the process of modal matrix inductance matrix transform through the matrix related knowledge of different coordinates of diagonalization, which makes the coupling between the independent, realize the control of motor current and excitation the torque current coupling separation, and derived the coordinate transformation matrix, the thought to solve the coupling problem of AC motor. Finally, in the Matlab/Simulink environment, through the establishment and combination between the PMSM ontology, coordinate conversion module, built the simulation model of permanent magnet synchronous motor vector control, introduces the model of each part, and analyzed the simulation results.
NASA Astrophysics Data System (ADS)
Pan, Xiao-Min; Wei, Jian-Gong; Peng, Zhen; Sheng, Xin-Qing
2012-02-01
The interpolative decomposition (ID) is combined with the multilevel fast multipole algorithm (MLFMA), denoted by ID-MLFMA, to handle multiscale problems. The ID-MLFMA first generates ID levels by recursively dividing the boxes at the finest MLFMA level into smaller boxes. It is specifically shown that near-field interactions with respect to the MLFMA, in the form of the matrix vector multiplication (MVM), are efficiently approximated at the ID levels. Meanwhile, computations on far-field interactions at the MLFMA levels remain unchanged. Only a small portion of matrix entries are required to approximate coupling among well-separated boxes at the ID levels, and these submatrices can be filled without computing the complete original coupling matrix. It follows that the matrix filling in the ID-MLFMA becomes much less expensive. The memory consumed is thus greatly reduced and the MVM is accelerated as well. Several factors that may influence the accuracy, efficiency and reliability of the proposed ID-MLFMA are investigated by numerical experiments. Complex targets are calculated to demonstrate the capability of the ID-MLFMA algorithm.
Design and Implementation of the PALM-3000 Real-Time Control System
NASA Technical Reports Server (NTRS)
Truong, Tuan N.; Bouchez, Antonin H.; Burruss, Rick S.; Dekany, Richard G.; Guiwits, Stephen R.; Roberts, Jennifer E.; Shelton, Jean C.; Troy, Mitchell
2012-01-01
This paper reflects, from a computational perspective, on the experience gathered in designing and implementing realtime control of the PALM-3000 adaptive optics system currently in operation at the Palomar Observatory. We review the algorithms that serve as functional requirements driving the architecture developed, and describe key design issues and solutions that contributed to the system's low compute-latency. Additionally, we describe an implementation of dense matrix-vector-multiplication for wavefront reconstruction that exceeds 95% of the maximum sustained achievable bandwidth on NVIDIA Geforce 8800GTX GPU.
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo
McDaniel, Tyler; D’Azevedo, Ed F.; Li, Ying Wai; ...
2017-11-07
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with applicationmore » of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. Here this procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi- core CPUs and GPUs.« less
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Tyler; D’Azevedo, Ed F.; Li, Ying Wai
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is therefore formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with applicationmore » of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. Here this procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi- core CPUs and GPUs.« less
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo.
McDaniel, T; D'Azevedo, E F; Li, Y W; Wong, K; Kent, P R C
2017-11-07
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.
Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo
NASA Astrophysics Data System (ADS)
McDaniel, T.; D'Azevedo, E. F.; Li, Y. W.; Wong, K.; Kent, P. R. C.
2017-11-01
Within ab initio Quantum Monte Carlo simulations, the leading numerical cost for large systems is the computation of the values of the Slater determinants in the trial wavefunction. Each Monte Carlo step requires finding the determinant of a dense matrix. This is most commonly iteratively evaluated using a rank-1 Sherman-Morrison updating scheme to avoid repeated explicit calculation of the inverse. The overall computational cost is, therefore, formally cubic in the number of electrons or matrix size. To improve the numerical efficiency of this procedure, we propose a novel multiple rank delayed update scheme. This strategy enables probability evaluation with an application of accepted moves to the matrices delayed until after a predetermined number of moves, K. The accepted events are then applied to the matrices en bloc with enhanced arithmetic intensity and computational efficiency via matrix-matrix operations instead of matrix-vector operations. This procedure does not change the underlying Monte Carlo sampling or its statistical efficiency. For calculations on large systems and algorithms such as diffusion Monte Carlo, where the acceptance ratio is high, order of magnitude improvements in the update time can be obtained on both multi-core central processing units and graphical processing units.
Hong-Ping, Xie; Jian-Hui, Jiang; Guo-Li, Shen; Ru-Qin, Yu
2002-01-01
A new approach for estimating the chemical rank of the three-way array called the principal norm vector orthogonal projection method has been proposed. The method is based on the fact that the chemical rank of the three-way data array is equal to one of the column space of the unfolded matrix along the spectral or chromatographic mode. A vector with maximum Frobenius norm is selected among all the column vectors of the unfolded matrix as the principal norm vector (PNV). A transformation is conducted for the column vectors with an orthogonal projection matrix formulated by PNV. The mathematical rank of the column space of the residual matrix thus obtained should decrease by one. Such orthogonal projection is carried out repeatedly till the contribution of chemical species to the signal data is all deleted. At this time the decrease of the mathematical rank would equal that of the chemical rank, and the remaining residual subspace would entirely be due to the noise contribution. The chemical rank can be estimated easily by using an F-test. The method has been used successfully to the simulated HPLC-DAD type three-way data array and two real excitation-emission fluorescence data sets of amino acid mixtures and dye mixtures. The simulation with added relatively high level noise shows that the method is robust in resisting the heteroscedastic noise. The proposed algorithm is simple and easy to program with quite light computational burden.
The Unified Floating Point Vector Coprocessor for Reconfigurable Hardware
NASA Astrophysics Data System (ADS)
Kathiara, Jainik
There has been an increased interest recently in using embedded cores on FPGAs. Many of the applications that make use of these cores have floating point operations. Due to the complexity and expense of floating point hardware, these algorithms are usually converted to fixed point operations or implemented using floating-point emulation in software. As the technology advances, more and more homogeneous computational resources and fixed function embedded blocks are added to FPGAs and hence implementation of floating point hardware becomes a feasible option. In this research we have implemented a high performance, autonomous floating point vector Coprocessor (FPVC) that works independently within an embedded processor system. We have presented a unified approach to vector and scalar computation, using a single register file for both scalar operands and vector elements. The Hybrid vector/SIMD computational model of FPVC results in greater overall performance for most applications along with improved peak performance compared to other approaches. By parameterizing vector length and the number of vector lanes, we can design an application specific FPVC and take optimal advantage of the FPGA fabric. For this research we have also initiated designing a software library for various computational kernels, each of which adapts FPVC's configuration and provide maximal performance. The kernels implemented are from the area of linear algebra and include matrix multiplication and QR and Cholesky decomposition. We have demonstrated the operation of FPVC on a Xilinx Virtex 5 using the embedded PowerPC.
Understanding Singular Vectors
ERIC Educational Resources Information Center
James, David; Botteron, Cynthia
2013-01-01
matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…
NASA Astrophysics Data System (ADS)
Lin, Yongping; Zhang, Xiyang; He, Youwu; Cai, Jianyong; Li, Hui
2018-02-01
The Jones matrix and the Mueller matrix are main tools to study polarization devices. The Mueller matrix can also be used for biological tissue research to get complete tissue properties, while the commercial optical coherence tomography system does not give relevant analysis function. Based on the LabVIEW, a near real time display method of Mueller matrix image of biological tissue is developed and it gives the corresponding phase retardant image simultaneously. A quarter-wave plate was placed at 45 in the sample arm. Experimental results of the two orthogonal channels show that the phase retardance based on incident light vector fixed mode and the Mueller matrix based on incident light vector dynamic mode can provide an effective analysis method of the existing system.
NASA Astrophysics Data System (ADS)
Wei, Xinjiang; Sun, Shixiang
2018-03-01
An elegant anti-disturbance control (EADC) strategy for a class of discrete-time stochastic systems with both nonlinearity and multiple disturbances, which include the disturbance with partially known information and a sequence of random vectors, is proposed in this paper. A stochastic disturbance observer is constructed to estimate the disturbance with partially known information, based on which, an EADC scheme is proposed by combining pole placement and linear matrix inequality methods. It is proved that the two different disturbances can be rejected and attenuated, and the corresponding desired performances can be guaranteed for discrete-time stochastic systems with known and unknown nonlinear dynamics, respectively. Simulation examples are given to demonstrate the effectiveness of the proposed schemes compared with some existing results.
NASA Astrophysics Data System (ADS)
Georgakopoulos, A.; Politopoulos, K.; Georgiou, E.
2018-03-01
A new dynamic-system approach to the problem of radiative transfer inside scattering and absorbing media is presented, directly based on first-hand physical principles. This method, the Dynamic Radiative Transfer System (DRTS), employs a dynamical system formality using a global sparse matrix, which characterizes the physical, optical and geometrical properties of the material-volume of interest. The new system state is generated by the above time-independent matrix, using simple matrix-vector multiplication for each subsequent time step. DRTS is capable of calculating accurately the time evolution of photon propagation in media of complex structure and shape. The flexibility of DRTS allows the integration of time-dependent sources, boundary conditions, different media and several optical phenomena like reflection and refraction in a unified and consistent way. Various examples of DRTS simulation results are presented for ultra-fast light pulse 3-D propagation, demonstrating greatly reduced computational cost and resource requirements compared to other methods.
NASA Astrophysics Data System (ADS)
Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic
2017-03-01
This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.
NASA Astrophysics Data System (ADS)
Pan, Feng; Ding, Xiaoxue; Launey, Kristina D.; Draayer, J. P.
2018-06-01
A simple and effective algebraic isospin projection procedure for constructing orthonormal basis vectors of irreducible representations of O (5) ⊃OT (3) ⊗ON (2) from those in the canonical O (5) ⊃ SUΛ (2) ⊗ SUI (2) basis is outlined. The expansion coefficients are components of null space vectors of the projection matrix with four nonzero elements in each row in general. Explicit formulae for evaluating OT (3)-reduced matrix elements of O (5) generators are derived.
Distance learning in discriminative vector quantization.
Schneider, Petra; Biehl, Michael; Hammer, Barbara
2009-10-01
Discriminative vector quantization schemes such as learning vector quantization (LVQ) and extensions thereof offer efficient and intuitive classifiers based on the representation of classes by prototypes. The original methods, however, rely on the Euclidean distance corresponding to the assumption that the data can be represented by isotropic clusters. For this reason, extensions of the methods to more general metric structures have been proposed, such as relevance adaptation in generalized LVQ (GLVQ) and matrix learning in GLVQ. In these approaches, metric parameters are learned based on the given classification task such that a data-driven distance measure is found. In this letter, we consider full matrix adaptation in advanced LVQ schemes. In particular, we introduce matrix learning to a recent statistical formalization of LVQ, robust soft LVQ, and we compare the results on several artificial and real-life data sets to matrix learning in GLVQ, a derivation of LVQ-like learning based on a (heuristic) cost function. In all cases, matrix adaptation allows a significant improvement of the classification accuracy. Interestingly, however, the principled behavior of the models with respect to prototype locations and extracted matrix dimensions shows several characteristic differences depending on the data sets.
NASA Astrophysics Data System (ADS)
Li, Jinghe; Song, Linping; Liu, Qing Huo
2016-02-01
A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.
Data-driven probability concentration and sampling on manifold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soize, C., E-mail: christian.soize@univ-paris-est.fr; Ghanem, R., E-mail: ghanem@usc.edu
2016-09-15
A new methodology is proposed for generating realizations of a random vector with values in a finite-dimensional Euclidean space that are statistically consistent with a dataset of observations of this vector. The probability distribution of this random vector, while a priori not known, is presumed to be concentrated on an unknown subset of the Euclidean space. A random matrix is introduced whose columns are independent copies of the random vector and for which the number of columns is the number of data points in the dataset. The approach is based on the use of (i) the multidimensional kernel-density estimation methodmore » for estimating the probability distribution of the random matrix, (ii) a MCMC method for generating realizations for the random matrix, (iii) the diffusion-maps approach for discovering and characterizing the geometry and the structure of the dataset, and (iv) a reduced-order representation of the random matrix, which is constructed using the diffusion-maps vectors associated with the first eigenvalues of the transition matrix relative to the given dataset. The convergence aspects of the proposed methodology are analyzed and a numerical validation is explored through three applications of increasing complexity. The proposed method is found to be robust to noise levels and data complexity as well as to the intrinsic dimension of data and the size of experimental datasets. Both the methodology and the underlying mathematical framework presented in this paper contribute new capabilities and perspectives at the interface of uncertainty quantification, statistical data analysis, stochastic modeling and associated statistical inverse problems.« less
Rodrigues, Teresa; Alves, Ana; Lopes, António; Carrondo, Manuel J T; Alves, Paula M; Cruz, Pedro E
2008-10-01
We have investigated the role of the retroviral lipid bilayer and envelope proteins in the adsorption of retroviral vectors (RVs) to a Fractogel DEAE matrix. Intact RVs and their degradation components (envelope protein-free vectors and solubilized vector components) were adsorbed to this matrix and eluted using a linear gradient. Envelope protein-free RVs (Env(-)) and soluble envelope proteins (gp70) eluted in a significantly lower range of conductivities than intact RVs (Env(+)) (13.7-30 mS/cm for Env(-) and gp70 proteins vs. 47-80 mS/cm for Env(+)). The zeta (zeta)-potential of Env(+) and Env(-) vectors was evaluated showing that envelope proteins define the pI of the viral particles (pI (Env(+)) < 2 versus 3 < pI (Env(-)) < 4) and that Env(+) and Env(-) vectors have similar zeta-potentials within pH 5 and 8. The results presented herein indicate that the adsorption of retroviral particles occurs through multi-point interaction of the envelope proteins with the cationic groups on the chromatographic matrix. The strength of this adsorption is thus dependent on the amount of envelope protein present in the viral lipid bilayer. In conclusion, AEXc enables the separation of gp70 proteins as well as envelope protein-free vectors constituting a significant improvement to the quality of retroviral preparations for gene therapy applications.
Cheng, Sibei; Zhang, Qingjun; Bian, Mingming; Hao, Xinhong
2018-02-08
For the conventional FDA-MIMO (frequency diversity array multiple-input-multiple-output) Radar with uniform frequency offset and uniform linear array, the DOFs (degrees of freedom) of the adaptive beamformer are limited by the number of elements. A better performance-for example, a better suppression for strong interferences and a more desirable trade-off between the main lobe and side lobe-can be achieved with a greater number of DOFs. In order to obtain larger DOFs, this paper researches the signal model of the FDA-MIMO Radar with nested frequency offset and nested array, then proposes an improved adaptive beamforming method that uses the augmented matrix instead of the covariance matrix to calculate the optimum weight vectors and can be used to improve the output performances of FDA-MIMO Radar with the same element number or reduce the element number while maintain the approximate output performances such as the received beampattern, the main lobe width, side lobe depths and the output SINR (signal-to-interference-noise ratio). The effectiveness of the proposed scheme is verified by simulations.
Cheng, Sibei; Zhang, Qingjun; Bian, Mingming; Hao, Xinhong
2018-01-01
For the conventional FDA-MIMO (frequency diversity array multiple-input-multiple-output) Radar with uniform frequency offset and uniform linear array, the DOFs (degrees of freedom) of the adaptive beamformer are limited by the number of elements. A better performance—for example, a better suppression for strong interferences and a more desirable trade-off between the main lobe and side lobe—can be achieved with a greater number of DOFs. In order to obtain larger DOFs, this paper researches the signal model of the FDA-MIMO Radar with nested frequency offset and nested array, then proposes an improved adaptive beamforming method that uses the augmented matrix instead of the covariance matrix to calculate the optimum weight vectors and can be used to improve the output performances of FDA-MIMO Radar with the same element number or reduce the element number while maintain the approximate output performances such as the received beampattern, the main lobe width, side lobe depths and the output SINR (signal-to-interference-noise ratio). The effectiveness of the proposed scheme is verified by simulations. PMID:29419814
Equiangular tight frames and unistochastic matrices
NASA Astrophysics Data System (ADS)
Goyeneche, Dardo; Turek, Ondřej
2017-06-01
We demonstrate that a complex equiangular tight frame composed of N vectors in dimension d, denoted ETF (d, N), exists if and only if a certain bistochastic matrix, univocally determined by N and d, belongs to a special class of unistochastic matrices. This connection allows us to find new complex ETFs in infinitely many dimensions and to derive a method to introduce non-trivial free parameters in ETFs. We present an explicit six-parametric family of complex ETF(6,16), which defines a family of symmetric POVMs. Minimal and maximal possible average entanglement of the vectors within this qubit-qutrit family are described. Furthermore, we propose an efficient numerical procedure to compute the unitary matrix underlying a unistochastic matrix, which we apply to find all existing classes of complex ETFs containing up to 20 vectors.
NASA Astrophysics Data System (ADS)
Fiandrotti, Attilio; Fosson, Sophie M.; Ravazzi, Chiara; Magli, Enrico
2018-04-01
Compressive sensing promises to enable bandwidth-efficient on-board compression of astronomical data by lifting the encoding complexity from the source to the receiver. The signal is recovered off-line, exploiting GPUs parallel computation capabilities to speedup the reconstruction process. However, inherent GPU hardware constraints limit the size of the recoverable signal and the speedup practically achievable. In this work, we design parallel algorithms that exploit the properties of circulant matrices for efficient GPU-accelerated sparse signals recovery. Our approach reduces the memory requirements, allowing us to recover very large signals with limited memory. In addition, it achieves a tenfold signal recovery speedup thanks to ad-hoc parallelization of matrix-vector multiplications and matrix inversions. Finally, we practically demonstrate our algorithms in a typical application of circulant matrices: deblurring a sparse astronomical image in the compressed domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, R; Fallone, B; Cross Cancer Institute, Edmonton, AB
Purpose: To develop a Graphic Processor Unit (GPU) accelerated deterministic solution to the Linear Boltzmann Transport Equation (LBTE) for accurate dose calculations in radiotherapy (RT). A deterministic solution yields the potential for major speed improvements due to the sparse matrix-vector and vector-vector multiplications and would thus be of benefit to RT. Methods: In order to leverage the massively parallel architecture of GPUs, the first order LBTE was reformulated as a second order self-adjoint equation using the Least Squares Finite Element Method (LSFEM). This produces a symmetric positive-definite matrix which is efficiently solved using a parallelized conjugate gradient (CG) solver. Themore » LSFEM formalism is applied in space, discrete ordinates is applied in angle, and the Multigroup method is applied in energy. The final linear system of equations produced is tightly coupled in space and angle. Our code written in CUDA-C was benchmarked on an Nvidia GeForce TITAN-X GPU against an Intel i7-6700K CPU. A spatial mesh of 30,950 tetrahedral elements was used with an S4 angular approximation. Results: To avoid repeating a full computationally intensive finite element matrix assembly at each Multigroup energy, a novel mapping algorithm was developed which minimized the operations required at each energy. Additionally, a parallelized memory mapping for the kronecker product between the sparse spatial and angular matrices, including Dirichlet boundary conditions, was created. Atomicity is preserved by graph-coloring overlapping nodes into separate kernel launches. The one-time mapping calculations for matrix assembly, kronecker product, and boundary condition application took 452±1ms on GPU. Matrix assembly for 16 energy groups took 556±3s on CPU, and 358±2ms on GPU using the mappings developed. The CG solver took 93±1s on CPU, and 468±2ms on GPU. Conclusion: Three computationally intensive subroutines in deterministically solving the LBTE have been formulated on GPU, resulting in two orders of magnitude speedup. Funding support from Natural Sciences and Engineering Research Council and Alberta Innovates Health Solutions. Dr. Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization).« less
Quantifying and resolving multiple vector transformants in S. cerevisiae plasmid libraries.
Scanlon, Thomas C; Gray, Elizabeth C; Griswold, Karl E
2009-11-20
In addition to providing the molecular machinery for transcription and translation, recombinant microbial expression hosts maintain the critical genotype-phenotype link that is essential for high throughput screening and recovery of proteins encoded by plasmid libraries. It is known that Escherichia coli cells can be simultaneously transformed with multiple unique plasmids and thusly complicate recombinant library screening experiments. As a result of their potential to yield misleading results, bacterial multiple vector transformants have been thoroughly characterized in previous model studies. In contrast to bacterial systems, there is little quantitative information available regarding multiple vector transformants in yeast. Saccharomyces cerevisiae is the most widely used eukaryotic platform for cell surface display, combinatorial protein engineering, and other recombinant library screens. In order to characterize the extent and nature of multiple vector transformants in this important host, plasmid-born gene libraries constructed by yeast homologous recombination were analyzed by DNA sequencing. It was found that up to 90% of clones in yeast homologous recombination libraries may be multiple vector transformants, that on average these clones bear four or more unique mutant genes, and that these multiple vector cells persist as a significant proportion of library populations for greater than 24 hours during liquid outgrowth. Both vector concentration and vector to insert ratio influenced the library proportion of multiple vector transformants, but their population frequency was independent of transformation efficiency. Interestingly, the average number of plasmids born by multiple vector transformants did not vary with their library population proportion. These results highlight the potential for multiple vector transformants to dominate yeast libraries constructed by homologous recombination. The previously unrecognized prevalence and persistence of multiply transformed yeast cells have important implications for yeast library screens. The quantitative information described herein should increase awareness of this issue, and the rapid sequencing approach developed for these studies should be widely useful for identifying multiple vector transformants and avoiding complications associated with cells that have acquired more than one unique plasmid.
Magaña-Valladares, Laura; Rodríguez, Mario Henry; Betanzos-Reyes, Ángel Francisco; Riojas-Rodríguez, Horacio; Quezada-Jiménez, María Laura; Suárez-Conejero, Juana Elvira; Lamadrid-Figueroa, Héctor
2018-01-01
To design and analyze the efficacy of an Ecohealth competency-based course on the prevention and control of vector-borne-diseases for specific stakeholders. Multiple stakeholders and sectors of the region were consulted to identify Ecohealth group-specific competencies using an adjusted analysis matrix. Eight courses based on the competencies were implemented to train EA tutors. The effectiveness of the course was evaluated through the use of paired- t-tests by intervention group. Strategic, tactical, academia and community stakeholder groups and their competencies were identified. An overall gain of 43 percentage points (p<0.001) was observed in terms of competencies score in trained tutors, which further trained 1 033 people. The identification of the stakeholders and their competencies proved to be useful to guide training courses to significantly improve the initial competencies and create a critical mass to further advance the EA in the region.
On Schrödinger's bridge problem
NASA Astrophysics Data System (ADS)
Friedland, S.
2017-11-01
In the first part of this paper we generalize Georgiou-Pavon's result that a positive square matrix can be scaled uniquely to a column stochastic matrix which maps a given positive probability vector to another given positive probability vector. In the second part we prove that a positive quantum channel can be scaled to another positive quantum channel which maps a given positive definite density matrix to another given positive definite density matrix using Brouwer's fixed point theorem. This result proves the Georgiou-Pavon conjecture for two positive definite density matrices, made in their recent paper. We show that the fixed points are unique for certain pairs of positive definite density matrices. Bibliography: 15 titles.
A T Matrix Method Based upon Scalar Basis Functions
NASA Technical Reports Server (NTRS)
Mackowski, D.W.; Kahnert, F. M.; Mishchenko, Michael I.
2013-01-01
A surface integral formulation is developed for the T matrix of a homogenous and isotropic particle of arbitrary shape, which employs scalar basis functions represented by the translation matrix elements of the vector spherical wave functions. The formulation begins with the volume integral equation for scattering by the particle, which is transformed so that the vector and dyadic components in the equation are replaced with associated dipole and multipole level scalar harmonic wave functions. The approach leads to a volume integral formulation for the T matrix, which can be extended, by use of Green's identities, to the surface integral formulation. The result is shown to be equivalent to the traditional surface integral formulas based on the VSWF basis.
A new implementation of the CMRH method for solving dense linear systems
NASA Astrophysics Data System (ADS)
Heyouni, M.; Sadok, H.
2008-04-01
The CMRH method [H. Sadok, Methodes de projections pour les systemes lineaires et non lineaires, Habilitation thesis, University of Lille1, Lille, France, 1994; H. Sadok, CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm, Numer. Algorithms 20 (1999) 303-321] is an algorithm for solving nonsymmetric linear systems in which the Arnoldi component of GMRES is replaced by the Hessenberg process, which generates Krylov basis vectors which are orthogonal to standard unit basis vectors rather than mutually orthogonal. The iterate is formed from these vectors by solving a small least squares problem involving a Hessenberg matrix. Like GMRES, this method requires one matrix-vector product per iteration. However, it can be implemented to require half as much arithmetic work and less storage. Moreover, numerical experiments show that this method performs accurately and reduces the residual about as fast as GMRES. With this new implementation, we show that the CMRH method is the only method with long-term recurrence which requires not storing at the same time the entire Krylov vectors basis and the original matrix as in the GMRES algorithmE A comparison with Gaussian elimination is provided.
Development of a novel set of Gateway-compatible vectors for live imaging in insect cells.
Maroniche, G A; Mongelli, V C; Alfonso, V; Llauger, G; Taboga, O; del Vas, Mariana
2011-10-01
Insect genomics is a growing area of research. To exploit fully the genomic data that are being generated, high-throughput systems for the functional characterization of insect proteins and their interactomes are required. In this work, a Gateway-compatible vector set for expression of fluorescent fusion proteins in insect cells was developed. The vector set was designed to express a protein of interest fused to any of four different fluorescent proteins [green fluorescent protein (GFP), cyan fluorescent protein (CFP), yellow fluorescent protein (YFP) and mCherry] by either the C-terminal or the N-terminal ends. Additionally, a collection of organelle-specific fluorescent markers was assembled for colocalization with fluorescent recombinant proteins of interest. Moreover, the vector set was proven to be suitable for simultaneously detecting up to three proteins by multiple labelling. The use of the vector set was exemplified by defining the subcellular distribution of Mal de Río Cuarto virus (MRCV) outer coat protein P10 and by analysing the in vivo self-interaction of the MRCV viroplasm matrix protein P9-1 in Förster resonance energy transfer (FRET) experiments. In conclusion, we have developed a valuable tool for high-throughput studies of protein subcellular localization that will aid in the elucidation of the function of newly described insect and virus proteins. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.
A fast pulse design for parallel excitation with gridding conjugate gradient.
Feng, Shuo; Ji, Jim
2013-01-01
Parallel excitation (pTx) is recognized as a crucial technique in high field MRI to address the transmit field inhomogeneity problem. However, it can be time consuming to design pTx pulses which is not desirable. In this work, we propose a pulse design with gridding conjugate gradient (CG) based on the small-tip-angle approximation. The two major time consuming matrix-vector multiplications are substituted by two operators which involves with FFT and gridding only. Simulation results have shown that the proposed method is 3 times faster than conventional method and the memory cost is reduced by 1000 times.
An ultra-wideband microwave tomography system: preliminary results.
Gilmore, Colin; Mojabi, Puyan; Zakaria, Amer; Ostadrahimi, Majid; Kaye, Cam; Noghanian, Sima; Shafai, Lotfollah; Pistorius, Stephen; LoVetri, Joe
2009-01-01
We describe a 2D wide-band multi-frequency microwave imaging system intended for biomedical imaging. The system is capable of collecting data from 2-10 GHz, with 24 antenna elements connected to a vector network analyzer via a 2 x 24 port matrix switch. Through the use of two different nonlinear reconstruction schemes: the Multiplicative-Regularized Contrast Source Inversion method and an enhanced version of the Distorted Born Iterative Method, we show preliminary imaging results from dielectric phantoms where data were collected from 3-6 GHz. The early inversion results show that the system is capable of quantitatively reconstructing dielectric objects.
Confounder Detection in High-Dimensional Linear Models Using First Moments of Spectral Measures.
Liu, Furui; Chan, Laiwan
2018-06-12
In this letter, we study the confounder detection problem in the linear model, where the target variable [Formula: see text] is predicted using its [Formula: see text] potential causes [Formula: see text]. Based on an assumption of a rotation-invariant generating process of the model, recent study shows that the spectral measure induced by the regression coefficient vector with respect to the covariance matrix of [Formula: see text] is close to a uniform measure in purely causal cases, but it differs from a uniform measure characteristically in the presence of a scalar confounder. Analyzing spectral measure patterns could help to detect confounding. In this letter, we propose to use the first moment of the spectral measure for confounder detection. We calculate the first moment of the regression vector-induced spectral measure and compare it with the first moment of a uniform spectral measure, both defined with respect to the covariance matrix of [Formula: see text]. The two moments coincide in nonconfounding cases and differ from each other in the presence of confounding. This statistical causal-confounding asymmetry can be used for confounder detection. Without the need to analyze the spectral measure pattern, our method avoids the difficulty of metric choice and multiple parameter optimization. Experiments on synthetic and real data show the performance of this method.
NASA Technical Reports Server (NTRS)
Habiby, Sarry F.; Collins, Stuart A., Jr.
1987-01-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.
Habiby, S F; Collins, S A
1987-11-01
The design and implementation of a digital (numerical) optical matrix-vector multiplier are presented. A Hughes liquid crystal light valve, the residue arithmetic representation, and a holographic optical memory are used to construct position coded optical look-up tables. All operations are performed in effectively one light valve response time with a potential for a high information density.
DYMAFLEX: DYnamic Manipulation FLight EXperiment
2013-09-03
thrust per nozzle and minimize propellant mass and tank mass. This study compared carbon dioxide, nitrous oxide, and R134-A. These results were...equations of mo- tion of a space manipulator, showing their top- level, matrix- vector representation to be of iden- tical form to those of a fixed-base...the system inertia matrix, q is the po- sition state vector (consisting of the manipulator joint angles θ, spacecraft attitude quaternion, and
Aksoy, Emre; Weiss, Brian L.; Zhao, Xin; Awuoche, Erick O.; Wu, Yineng; Aksoy, Serap
2018-01-01
Arthropod vectors have multiple physical and immunological barriers that impede the development and transmission of parasites to new vertebrate hosts. These barriers include the peritrophic matrix (PM), a chitinous barrier that separates the blood bolus from the midgut epithelia and modulates vector-pathogens interactions. In tsetse flies, a sleeve-like PM is continuously produced by the cardia organ located at the fore- and midgut junction. African trypanosomes, Trypanosoma brucei, must bypass the PM twice; first to colonize the midgut and secondly to reach the salivary glands (SG), to complete their transmission cycle in tsetse. However, not all flies with midgut infections develop mammalian transmissible SG infections—the reasons for which are unclear. Here, we used transcriptomics, microscopy and functional genomics analyses to understand the factors that regulate parasite migration from midgut to SG. In flies with midgut infections only, parasites fail to cross the PM as they are eliminated from the cardia by reactive oxygen intermediates (ROIs)—albeit at the expense of collateral cytotoxic damage to the cardia. In flies with midgut and SG infections, expression of genes encoding components of the PM is reduced in the cardia, and structural integrity of the PM barrier is compromised. Under these circumstances trypanosomes traverse through the newly secreted and compromised PM. The process of PM attrition that enables the parasites to re-enter into the midgut lumen is apparently mediated by components of the parasites residing in the cardia. Thus, a fine-tuned dialogue between tsetse and trypanosomes at the cardia determines the outcome of PM integrity and trypanosome transmission success. PMID:29614112
NASA Astrophysics Data System (ADS)
Zhang, Lei; Yang, Fengbao; Ji, Linna; Lv, Sheng
2018-01-01
Diverse image fusion methods perform differently. Each method has advantages and disadvantages compared with others. One notion is that the advantages of different image methods can be effectively combined. A multiple-algorithm parallel fusion method based on algorithmic complementarity and synergy is proposed. First, in view of the characteristics of the different algorithms and difference-features among images, an index vector-based feature-similarity is proposed to define the degree of complementarity and synergy. This proposed index vector is a reliable evidence indicator for algorithm selection. Second, the algorithms with a high degree of complementarity and synergy are selected. Then, the different degrees of various features and infrared intensity images are used as the initial weights for the nonnegative matrix factorization (NMF). This avoids randomness of the NMF initialization parameter. Finally, the fused images of different algorithms are integrated using the NMF because of its excellent data fusing performance on independent features. Experimental results demonstrate that the visual effect and objective evaluation index of the fused images obtained using the proposed method are better than those obtained using traditional methods. The proposed method retains all the advantages that individual fusion algorithms have.
Forces Associated with Nonlinear Nonholonomic Constraint Equations
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos M.; Hodges, Dewey H.
2010-01-01
A concise method has been formulated for identifying a set of forces needed to constrain the behavior of a mechanical system, modeled as a set of particles and rigid bodies, when it is subject to motion constraints described by nonholonomic equations that are inherently nonlinear in velocity. An expression in vector form is obtained for each force; a direction is determined, together with the point of application. This result is a consequence of expressing constraint equations in terms of dot products of vectors rather than in the usual way, which is entirely in terms of scalars and matrices. The constraint forces in vector form are used together with two new analytical approaches for deriving equations governing motion of a system subject to such constraints. If constraint forces are of interest they can be brought into evidence in explicit dynamical equations by employing the well-known nonholonomic partial velocities associated with Kane's method; if they are not of interest, equations can be formed instead with the aid of vectors introduced here as nonholonomic partial accelerations. When the analyst requires only the latter, smaller set of equations, they can be formed directly; it is not necessary to expend the labor to form the former, larger set first and subsequently perform matrix multiplications.
An ESS maximum principle for matrix games.
Vincent, T L; Cressman, R
2000-11-01
Previous work has demonstrated that for games defined by differential or difference equations with a continuum of strategies, there exists a G-function, related to individual fitness, that must take on a maximum with respect to a virtual variable v whenever v is one of the vectors in the coalition of vectors which make up the evolutionarily stable strategy (ESS). This result, called the ESS maximum principle, is quite useful in determining candidates for an ESS. This principle is reformulated here, so that it may be conveniently applied to matrix games. In particular, we define a matrix game to be one in which fitness is expressed in terms of strategy frequencies and a matrix of expected payoffs. It is shown that the G-function in the matrix game setting must again take on a maximum value at all the strategies which make up the ESS coalition vector. The reformulated maximum principle is applicable to both bilinear and nonlinear matrix games. One advantage in employing this principle to solve the traditional bilinear matrix game is that the same G-function is used to find both pure and mixed strategy solutions by simply specifying an appropriate strategy space. Furthermore we show how the theory may be used to solve matrix games which are not in the usual bilinear form. We examine in detail two nonlinear matrix games: the game between relatives and the sex ratio game. In both of these games an ESS solution is determined. These examples not only illustrate the usefulness of this approach to finding solutions to an expanded class of matrix games, but aids in understanding the nature of the ESS as well.
Optoelectronic Inner-Product Neural Associative Memory
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang
1993-01-01
Optoelectronic apparatus acts as artificial neural network performing associative recall of binary images. Recall process is iterative one involving optical computation of inner products between binary input vector and one or more reference binary vectors in memory. Inner-product method requires far less memory space than matrix-vector method.
NASA Astrophysics Data System (ADS)
Pavlichin, Dmitri S.; Mabuchi, Hideo
2014-06-01
Nanoscale integrated photonic devices and circuits offer a path to ultra-low power computation at the few-photon level. Here we propose an optical circuit that performs a ubiquitous operation: the controlled, random-access readout of a collection of stored memory phases or, equivalently, the computation of the inner product of a vector of phases with a binary selector" vector, where the arithmetic is done modulo 2pi and the result is encoded in the phase of a coherent field. This circuit, a collection of cascaded interferometers driven by a coherent input field, demonstrates the use of coherence as a computational resource, and of the use of recently-developed mathematical tools for modeling optical circuits with many coupled parts. The construction extends in a straightforward way to the computation of matrix-vector and matrix-matrix products, and, with the inclusion of an optical feedback loop, to the computation of a weighted" readout of stored memory phases. We note some applications of these circuits for error correction and for computing tasks requiring fast vector inner products, e.g. statistical classification and some machine learning algorithms.
Calculation of biochemical net reactions and pathways by using matrix operations.
Alberty, R A
1996-01-01
Pathways for net biochemical reactions can be calculated by using a computer program that solves systems of linear equations. The coefficients in the linear equations are the stoichiometric numbers in the biochemical equations for the system. The solution of the system of linear equations is a vector of the stoichiometric numbers of the reactions in the pathway for the net reaction; this is referred to as the pathway vector. The pathway vector gives the number of times the various reactions have to occur to produce the desired net reaction. Net reactions may involve unknown numbers of ATP, ADP, and Pi molecules. The numbers of ATP, ADP, and Pi in a desired net reaction can be calculated in a two-step process. In the first step, the pathway is calculated by solving the system of linear equations for an abbreviated stoichiometric number matrix without ATP, ADP, Pi, NADred, and NADox. In the second step, the stoichiometric numbers in the desired net reaction, which includes ATP, ADP, Pi, NADred, and NADox, are obtained by multiplying the full stoichiometric number matrix by the calculated pathway vector. PMID:8804633
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smallwood, D.O.
In a previous paper Smallwood and Paez (1991) showed how to generate realizations of partially coherent stationary normal time histories with a specified cross-spectral density matrix. This procedure is generalized for the case of multiple inputs with a specified cross-spectral density function and a specified marginal probability density function (pdf) for each of the inputs. The specified pdfs are not required to be Gaussian. A zero memory nonlinear (ZMNL) function is developed for each input to transform a Gaussian or normal time history into a time history with a specified non-Gaussian distribution. The transformation functions have the property that amore » transformed time history will have nearly the same auto spectral density as the original time history. A vector of Gaussian time histories are then generated with the specified cross-spectral density matrix. These waveforms are then transformed into the required time history realizations using the ZMNL function.« less
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Kim, Hye-Young; Junkins, John L.
2003-01-01
A new star pattern recognition method is developed using singular value decomposition of a measured unit column vector matrix in a measurement frame and the corresponding cataloged vector matrix in a reference frame. It is shown that singular values and right singular vectors are invariant with respect to coordinate transformation and robust under uncertainty. One advantage of singular value comparison is that a pairing process for individual measured and cataloged stars is not necessary, and the attitude estimation and pattern recognition process are not separated. An associated method for mission catalog design is introduced and simulation results are presented.
Rational calculation accuracy in acousto-optical matrix-vector processor
NASA Astrophysics Data System (ADS)
Oparin, V. V.; Tigin, Dmitry V.
1994-01-01
The high speed of parallel computations for a comparatively small-size processor and acceptable power consumption makes the usage of acousto-optic matrix-vector multiplier (AOMVM) attractive for processing of large amounts of information in real time. The limited accuracy of computations is an essential disadvantage of such a processor. The reduced accuracy requirements allow for considerable simplification of the AOMVM architecture and the reduction of the demands on its components.
A quantitative model of application slow-down in multi-resource shared systems
Lim, Seung-Hwan; Kim, Youngjae
2016-12-26
Scheduling multiple jobs onto a platform enhances system utilization by sharing resources. The benefits from higher resource utilization include reduced cost to construct, operate, and maintain a system, which often include energy consumption. Maximizing these benefits comes at a price-resource contention among jobs increases job completion time. In this study, we analyze slow-downs of jobs due to contention for multiple resources in a system; referred to as dilation factor. We observe that multiple-resource contention creates non-linear dilation factors of jobs. From this observation, we establish a general quantitative model for dilation factors of jobs in multi-resource systems. A job ismore » characterized by a vector-valued loading statistics and dilation factors of a job set are given by a quadratic function of their loading vectors. We demonstrate how to systematically characterize a job, maintain the data structure to calculate the dilation factor (loading matrix), and calculate the dilation factor of each job. We validate the accuracy of the model with multiple processes running on a native Linux server, virtualized servers, and with multiple MapReduce workloads co-scheduled in a cluster. Evaluation with measured data shows that the D-factor model has an error margin of less than 16%. We extended the D-factor model to capture the slow-down of applications when multiple identical resources exist such as multi-core environments and multi-disks environments. Finally, validation results of the extended D-factor model with HPC checkpoint applications on the parallel file systems show that D-factor accurately captures the slow down of concurrent applications in such environments.« less
A quantitative model of application slow-down in multi-resource shared systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seung-Hwan; Kim, Youngjae
Scheduling multiple jobs onto a platform enhances system utilization by sharing resources. The benefits from higher resource utilization include reduced cost to construct, operate, and maintain a system, which often include energy consumption. Maximizing these benefits comes at a price-resource contention among jobs increases job completion time. In this study, we analyze slow-downs of jobs due to contention for multiple resources in a system; referred to as dilation factor. We observe that multiple-resource contention creates non-linear dilation factors of jobs. From this observation, we establish a general quantitative model for dilation factors of jobs in multi-resource systems. A job ismore » characterized by a vector-valued loading statistics and dilation factors of a job set are given by a quadratic function of their loading vectors. We demonstrate how to systematically characterize a job, maintain the data structure to calculate the dilation factor (loading matrix), and calculate the dilation factor of each job. We validate the accuracy of the model with multiple processes running on a native Linux server, virtualized servers, and with multiple MapReduce workloads co-scheduled in a cluster. Evaluation with measured data shows that the D-factor model has an error margin of less than 16%. We extended the D-factor model to capture the slow-down of applications when multiple identical resources exist such as multi-core environments and multi-disks environments. Finally, validation results of the extended D-factor model with HPC checkpoint applications on the parallel file systems show that D-factor accurately captures the slow down of concurrent applications in such environments.« less
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Plass, G. N.; Hitzfelder, S. J.
1976-01-01
The matrix operator method was used to calculate the polarization of radiation scattered on layers of various optical thicknesses, with results compared for Rayleigh scattering and for scattering from a continental haze. In both cases, there are neutral points arising from the zeros of the polarization of single scattered photons at scattering angles of zero and 180 degrees. The angular position of these Rayleigh-like neutral points (RNP) in the sky shows appreciable variation with the optical thickness of the scattering layer for a Rayleigh phase matrix, but only a small variation for haze L phase matrix. Another type of neutral point exists for non-Rayleigh phase functions that is associated with the zeros of the polarization for single scattering which occurs between the end points of the curve. A comparison of radiances calculated from the complete theory of radiative transfer using Stokes vectors with those obtained from the scalar theory shows that differences of the order of 23% may be obtained for Rayleigh scattering, while the largest difference found for a haze L phase function was of the order of 0.1%.
Li, Qu; Yao, Min; Yang, Jianhua; Xu, Ning
2014-01-01
Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy.
Practical auxiliary basis implementation of Rung 3.5 functionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janesko, Benjamin G., E-mail: b.janesko@tcu.edu; Scalmani, Giovanni; Frisch, Michael J.
2014-07-21
Approximate exchange-correlation functionals for Kohn-Sham density functional theory often benefit from incorporating exact exchange. Exact exchange is constructed from the noninteracting reference system's nonlocal one-particle density matrix γ(r{sup -vector},r{sup -vector}′). Rung 3.5 functionals attempt to balance the strengths and limitations of exact exchange using a new ingredient, a projection of γ(r{sup -vector},r{sup -vector} ′) onto a semilocal model density matrix γ{sub SL}(ρ(r{sup -vector}),∇ρ(r{sup -vector}),r{sup -vector}−r{sup -vector} ′). γ{sub SL} depends on the electron density ρ(r{sup -vector}) at reference point r{sup -vector}, and is closely related to semilocal model exchange holes. We present a practical implementation of Rung 3.5 functionals, expandingmore » the r{sup -vector}−r{sup -vector} ′ dependence of γ{sub SL} in an auxiliary basis set. Energies and energy derivatives are obtained from 3D numerical integration as in standard semilocal functionals. We also present numerical tests of a range of properties, including molecular thermochemistry and kinetics, geometries and vibrational frequencies, and bandgaps and excitation energies. Rung 3.5 functionals typically provide accuracy intermediate between semilocal and hybrid approximations. Nonlocal potential contributions from γ{sub SL} yield interesting successes and failures for band structures and excitation energies. The results enable and motivate continued exploration of Rung 3.5 functional forms.« less
Optical systolic array processor using residue arithmetic
NASA Technical Reports Server (NTRS)
Jackson, J.; Casasent, D.
1983-01-01
The use of residue arithmetic to increase the accuracy and reduce the dynamic range requirements of optical matrix-vector processors is evaluated. It is determined that matrix-vector operations and iterative algorithms can be performed totally in residue notation. A new parallel residue quantizer circuit is developed which significantly improves the performance of the systolic array feedback processor. Results are presented of a computer simulation of this system used to solve a set of three simultaneous equations.
Yata, Teerapong; Lee, Eugene L Q; Suwan, Keittisak; Syed, Nelofer; Asavarut, Paladd; Hajitou, Amin
2015-06-03
Gene therapy has been an attractive paradigm for cancer treatment. However, cancer gene therapy has been challenged by the inherent limitation of vectors that are able to deliver therapeutic genes to tumors specifically and efficiently following systemic administration. Bacteriophage (phage) are viruses that have shown promise for targeted systemic gene delivery. Yet, they are considered poor vectors for gene transfer. Recently, we generated a tumor-targeted phage named adeno-associated virus/phage (AAVP), which is a filamentous phage particle whose genome contains the adeno-associated virus genome. Its effectiveness in delivering therapeutic genes to tumors specifically both in vitro and in vivo has been shown in numerous studies. Despite being a clinically useful vector, a multitude of barriers impede gene transduction to tumor cells. We hypothesized that one such factor is the tumor extracellular matrix (ECM). We used a number of tumor cell lines from different species and histological types in 2D monolayers or 3D multicellular tumor spheroid (MCTS) models. To assess whether the ECM is a barrier to tumor cell targeting by AAVP, we depleted the ECM using collagenase, hyaluronidase, or combination of both. We employed multiple techniques to investigate and quantify the effect of ECM depletion on ECM composition (including collagen type I, hyaluronic acid, fibronectin and laminin), and how AAVP adsorption, internalisation, gene expression and therapeutic efficacy are subsequently affected. Data were analyzed using a student's t test when comparing two groups or one-way ANOVA and post hoc Tukey tests when using more than two groups. We demonstrate that collagenase and hyaluronidase-mediated degradation of tumor ECM affects the composition of collagen, hyaluronic acid and fibronectin. Consequently, AAVP diffusion, internalisation, gene expression and tumor cell killing were enhanced after enzymatic treatment. Our data suggest that enhancement of gene transfer by the AAVP is solely attributed to ECM depletion. We provide substantial evidence that ECM modulation is relevant in clinically applicable settings by using 3D MCTS, which simulates in vivo environments more accurately. Our findings suggest that ECM depletion is an effective strategy to enhance the efficiency of viral vector-guided gene therapy.
Graph theory approach to the eigenvalue problem of large space structures
NASA Technical Reports Server (NTRS)
Reddy, A. S. S. R.; Bainum, P. M.
1981-01-01
Graph theory is used to obtain numerical solutions to eigenvalue problems of large space structures (LSS) characterized by a state vector of large dimensions. The LSS are considered as large, flexible systems requiring both orientation and surface shape control. Graphic interpretation of the determinant of a matrix is employed to reduce a higher dimensional matrix into combinations of smaller dimensional sub-matrices. The reduction is implemented by means of a Boolean equivalent of the original matrices formulated to obtain smaller dimensional equivalents of the original numerical matrix. Computation time becomes less and more accurate solutions are possible. An example is provided in the form of a free-free square plate. Linearized system equations and numerical values of a stiffness matrix are presented, featuring a state vector with 16 components.
Soto-Quiros, Pablo
2015-01-01
This paper presents a parallel implementation of a kind of discrete Fourier transform (DFT): the vector-valued DFT. The vector-valued DFT is a novel tool to analyze the spectra of vector-valued discrete-time signals. This parallel implementation is developed in terms of a mathematical framework with a set of block matrix operations. These block matrix operations contribute to analysis, design, and implementation of parallel algorithms in multicore processors. In this work, an implementation and experimental investigation of the mathematical framework are performed using MATLAB with the Parallel Computing Toolbox. We found that there is advantage to use multicore processors and a parallel computing environment to minimize the high execution time. Additionally, speedup increases when the number of logical processors and length of the signal increase.
Investigation into Text Classification With Kernel Based Schemes
2010-03-01
Document Matrix TDMs Term-Document Matrices TMG Text to Matrix Generator TN True Negative TP True Positive VSM Vector Space Model xxii THIS PAGE...are represented as a term-document matrix, common evaluation metrics, and the software package Text to Matrix Generator ( TMG ). The classifier...AND METRICS This chapter introduces the indexing capabilities of the Text to Matrix Generator ( TMG ) Toolbox. Specific attention is placed on the
Assessing Fit of Item Response Models Using the Information Matrix Test
ERIC Educational Resources Information Center
Ranger, Jochen; Kuhn, Jorg-Tobias
2012-01-01
The information matrix can equivalently be determined via the expectation of the Hessian matrix or the expectation of the outer product of the score vector. The identity of these two matrices, however, is only valid in case of a correctly specified model. Therefore, differences between the two versions of the observed information matrix indicate…
Bubble vector in automatic merging
NASA Technical Reports Server (NTRS)
Pamidi, P. R.; Butler, T. G.
1987-01-01
It is shown that it is within the capability of the DMAP language to build a set of vectors that can grow incrementally to be applied automatically and economically within a DMAP loop that serves to append sub-matrices that are generated within a loop to a core matrix. The method of constructing such vectors is explained.
Implementation of kernels on the Maestro processor
NASA Astrophysics Data System (ADS)
Suh, Jinwoo; Kang, D. I. D.; Crago, S. P.
Currently, most microprocessors use multiple cores to increase performance while limiting power usage. Some processors use not just a few cores, but tens of cores or even 100 cores. One such many-core microprocessor is the Maestro processor, which is based on Tilera's TILE64 processor. The Maestro chip is a 49-core, general-purpose, radiation-hardened processor designed for space applications. The Maestro processor, unlike the TILE64, has a floating point unit (FPU) in each core for improved floating point performance. The Maestro processor runs at 342 MHz clock frequency. On the Maestro processor, we implemented several widely used kernels: matrix multiplication, vector add, FIR filter, and FFT. We measured and analyzed the performance of these kernels. The achieved performance was up to 5.7 GFLOPS, and the speedup compared to single tile was up to 49 using 49 tiles.
A sparse matrix algorithm on the Boolean vector machine
NASA Technical Reports Server (NTRS)
Wagner, Robert A.; Patrick, Merrell L.
1988-01-01
VLSI technology is being used to implement a prototype Boolean Vector Machine (BVM), which is a large network of very small processors with equally small memories that operate in SIMD mode; these use bit-serial arithmetic, and communicate via cube-connected cycles network. The BVM's bit-serial arithmetic and the small memories of individual processors are noted to compromise the system's effectiveness in large numerical problem applications. Attention is presently given to the implementation of a basic matrix-vector iteration algorithm for space matrices of the BVM, in order to generate over 1 billion useful floating-point operations/sec for this iteration algorithm. The algorithm is expressed in a novel language designated 'BVM'.
1-norm support vector novelty detection and its sparseness.
Zhang, Li; Zhou, WeiDa
2013-12-01
This paper proposes a 1-norm support vector novelty detection (SVND) method and discusses its sparseness. 1-norm SVND is formulated as a linear programming problem and uses two techniques for inducing sparseness, or the 1-norm regularization and the hinge loss function. We also find two upper bounds on the sparseness of 1-norm SVND, or exact support vector (ESV) and kernel Gram matrix rank bounds. The ESV bound indicates that 1-norm SVND has a sparser representation model than SVND. The kernel Gram matrix rank bound can loosely estimate the sparseness of 1-norm SVND. Experimental results show that 1-norm SVND is feasible and effective. Copyright © 2013 Elsevier Ltd. All rights reserved.
Algorithms for solving large sparse systems of simultaneous linear equations on vector processors
NASA Technical Reports Server (NTRS)
David, R. E.
1984-01-01
Very efficient algorithms for solving large sparse systems of simultaneous linear equations have been developed for serial processing computers. These involve a reordering of matrix rows and columns in order to obtain a near triangular pattern of nonzero elements. Then an LU factorization is developed to represent the matrix inverse in terms of a sequence of elementary Gaussian eliminations, or pivots. In this paper it is shown how these algorithms are adapted for efficient implementation on vector processors. Results obtained on the CYBER 200 Model 205 are presented for a series of large test problems which show the comparative advantages of the triangularization and vector processing algorithms.
Acceleration of Radiance for Lighting Simulation by Using Parallel Computing with OpenCL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuo, Wangda; McNeil, Andrew; Wetter, Michael
2011-09-06
We report on the acceleration of annual daylighting simulations for fenestration systems in the Radiance ray-tracing program. The algorithm was optimized to reduce both the redundant data input/output operations and the floating-point operations. To further accelerate the simulation speed, the calculation for matrix multiplications was implemented using parallel computing on a graphics processing unit. We used OpenCL, which is a cross-platform parallel programming language. Numerical experiments show that the combination of the above measures can speed up the annual daylighting simulations 101.7 times or 28.6 times when the sky vector has 146 or 2306 elements, respectively.
Using Redundancy To Reduce Errors in Magnetometer Readings
NASA Technical Reports Server (NTRS)
Kulikov, Igor; Zak, Michail
2004-01-01
A method of reducing errors in noisy magnetic-field measurements involves exploitation of redundancy in the readings of multiple magnetometers in a cluster. By "redundancy"is meant that the readings are not entirely independent of each other because the relationships among the magnetic-field components that one seeks to measure are governed by the fundamental laws of electromagnetism as expressed by Maxwell's equations. Assuming that the magnetometers are located outside a magnetic material, that the magnetic field is steady or quasi-steady, and that there are no electric currents flowing in or near the magnetometers, the applicable Maxwell 's equations are delta x B = 0 and delta(raised dot) B = 0, where B is the magnetic-flux-density vector. By suitable algebraic manipulation, these equations can be shown to impose three independent constraints on the values of the components of B at the various magnetometer positions. In general, the problem of reducing the errors in noisy measurements is one of finding a set of corrected values that minimize an error function. In the present method, the error function is formulated as (1) the sum of squares of the differences between the corrected and noisy measurement values plus (2) a sum of three terms, each comprising the product of a Lagrange multiplier and one of the three constraints. The partial derivatives of the error function with respect to the corrected magnetic-field component values and the Lagrange multipliers are set equal to zero, leading to a set of equations that can be put into matrix.vector form. The matrix can be inverted to solve for a vector that comprises the corrected magnetic-field component values and the Lagrange multipliers.
The fourfold way of the genetic code.
Jiménez-Montaño, Miguel Angel
2009-11-01
We describe a compact representation of the genetic code that factorizes the table in quartets. It represents a "least grammar" for the genetic language. It is justified by the Klein-4 group structure of RNA bases and codon doublets. The matrix of the outer product between the column-vector of bases and the corresponding row-vector V(T)=(C G U A), considered as signal vectors, has a block structure consisting of the four cosets of the KxK group of base transformations acting on doublet AA. This matrix, translated into weak/strong (W/S) and purine/pyrimidine (R/Y) nucleotide classes, leads to a code table with mixed and unmixed families in separate regions. A basic difference between them is the non-commuting (R/Y) doublets: AC/CA, GU/UG. We describe the degeneracy in the canonical code and the systematic changes in deviant codes in terms of the divisors of 24, employing modulo multiplication groups. We illustrate binary sub-codes characterizing mutations in the quartets. We introduce a decision-tree to predict the mode of tRNA recognition corresponding to each codon, and compare our result with related findings by Jestin and Soulé [Jestin, J.-L., Soulé, C., 2007. Symmetries by base substitutions in the genetic code predict 2' or 3' aminoacylation of tRNAs. J. Theor. Biol. 247, 391-394], and the rearrangements of the table by Delarue [Delarue, M., 2007. An asymmetric underlying rule in the assignment of codons: possible clue to a quick early evolution of the genetic code via successive binary choices. RNA 13, 161-169] and Rodin and Rodin [Rodin, S.N., Rodin, A.S., 2008. On the origin of the genetic code: signatures of its primordial complementarity in tRNAs and aminoacyl-tRNA synthetases. Heredity 100, 341-355], respectively.
Nonlinear Adjustment with or without Constraints, Applicable to Geodetic Models
1989-03-01
corrections are neglected, resulting in the familiar (linearized) observation equations. In matrix notation, the latter are expressed by V = A X + I...where A is the design matrix, x=X -x is the column-vector of parametric corrections , VzLa-L b is the column-vector of residuals, and L=L -Lb is the...X0 . corresponds to the set ua of model-surface 0 coordinates describing the initial point P. The final set of parametric corrections , X, then
Nucleon matrix elements with Nf=2+1+1 maximally twisted fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon Dinter, Constantia Alexandrou, Martha Constantinou, Vincent Drach, Karl Jansen, Dru Renner
2010-06-01
We present the first lattice calculation of nucleon matrix elements using four dynamical flavors. We use the Nf=2+1+1 maximally twisted mass formulation. The renormalization is performed non-perturbatively in the RI'-MOM scheme and results are given for the vector and axial vector operators with up to one-derivative. Our calculation of the average momentum of the unpolarized non-singlet parton distribution is presented and compared to our previous results obtained from the Nf=2 case.
Molecular Optics Nonlinear Optical Processes in Organic and Polymeric Crystals and Films. Part 1
1991-11-01
Cycio-Octateraene ........... .93 Figure3.3; THG Dispersion Curve for Cyclo-Octateraene .... ......... 94 Figure3.4; Bloch Vector in Pauli Matrix Space... Jung , P. and Hanggi, P, Phys. Rev. Lett. 61, 11 (1989) I [90] Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Sys- tems, and...identity matrix and Pauli matrices. p(t) = 1(1 + fr(t)F * 5) (3.5.6) I where the 3-vector FF is the linear coefficients of the Pauli matrices and is
VON Korff, Modest; Fink, Tobias; Sander, Thomas
2017-01-01
A new computational method is presented to extract disease patterns from heterogeneous and text-based data. For this study, 22 million PubMed records were mined for co-occurrences of gene name synonyms and disease MeSH terms. The resulting publication counts were transferred into a matrix Mdata. In this matrix, a disease was represented by a row and a gene by a column. Each field in the matrix represented the publication count for a co-occurring disease-gene pair. A second matrix with identical dimensions Mrelevance was derived from Mdata. To create Mrelevance the values from Mdata were normalized. The normalized values were multiplied by the column-wise calculated Gini coefficient. This multiplication resulted in a relevance estimator for every gene in relation to a disease. From Mrelevance the similarities between all row vectors were calculated. The resulting similarity matrix Srelevance related 5,000 diseases by the relevance estimators calculated for 15,000 genes. Three diseases were analyzed in detail for the validation of the disease patterns and the relevant genes. Cytoscape was used to visualize and to analyze Mrelevance and Srelevance together with the genes and diseases. Summarizing the results, it can be stated that the relevance estimator introduced here was able to detect valid disease patterns and to identify genes that encoded key proteins and potential targets for drug discovery projects.
NASA Astrophysics Data System (ADS)
Xianqiang, He; Delu, Pan; Yan, Bai; Qiankun, Zhu
2005-10-01
The numerical model of the vector radiative transfer of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. In PCOART, using the Fourier analysis, the vector radiative transfer equation (VRTE) splits up into a set of independent equations with zenith angle as only angular coordinate. Using the Gaussian-Quadrature method, VRTE is finally transferred into the matrix equation, which is calculated by using the adding-doubling method. According to the reflective and refractive properties of the ocean-atmosphere interface, the vector radiative transfer numerical model of ocean and atmosphere is coupled in PCOART. By comparing with the exact Rayleigh scattering look-up-table of MODIS(Moderate-resolution Imaging Spectroradiometer), it is shown that PCOART is an exact numerical calculation model, and the processing methods of the multi-scattering and polarization are correct in PCOART. Also, by validating with the standard problems of the radiative transfer in water, it is shown that PCOART could be used to calculate the underwater radiative transfer problems. Therefore, PCOART is a useful tool to exactly calculate the vector radiative transfer of the coupled ocean-atmosphere system, which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.
Kilosanidze, Barbara
2010-06-01
Generalization of the Jones vector for partially polarized radiation carried out by Kakichashvili is given. Partially polarized light is presented as two noncoherent components of mutually orthogonal polarization. The formal operation of amplitude summation of mutually noncoherent components and the symbol of this operation are introduced. The rules of operating with this symbol are determined. The regularity of the Weigert effect is modified for partial polarization of the inducing light. On this basis the modification of the Jones matrix for partially polarized light is made. The rules for the formation of the resulting matrix from the Jones matrices corresponding to the noncoherent components of partially polarized light are determined.
Ship Detection Based on Multiple Features in Random Forest Model for Hyperspectral Images
NASA Astrophysics Data System (ADS)
Li, N.; Ding, L.; Zhao, H.; Shi, J.; Wang, D.; Gong, X.
2018-04-01
A novel method for detecting ships which aim to make full use of both the spatial and spectral information from hyperspectral images is proposed. Firstly, the band which is high signal-noise ratio in the range of near infrared or short-wave infrared spectrum, is used to segment land and sea on Otsu threshold segmentation method. Secondly, multiple features that include spectral and texture features are extracted from hyperspectral images. Principal components analysis (PCA) is used to extract spectral features, the Grey Level Co-occurrence Matrix (GLCM) is used to extract texture features. Finally, Random Forest (RF) model is introduced to detect ships based on the extracted features. To illustrate the effectiveness of the method, we carry out experiments over the EO-1 data by comparing single feature and different multiple features. Compared with the traditional single feature method and Support Vector Machine (SVM) model, the proposed method can stably achieve the target detection of ships under complex background and can effectively improve the detection accuracy of ships.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. Our paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper also studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases we studied indicate that themore » Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.« less
None, None
2016-11-21
Frequency-dependent correlations, such as the spectral function and the dynamical structure factor, help illustrate condensed matter experiments. Within the density matrix renormalization group (DMRG) framework, an accurate method for calculating spectral functions directly in frequency is the correction-vector method. The correction vector can be computed by solving a linear equation or by minimizing a functional. Our paper proposes an alternative to calculate the correction vector: to use the Krylov-space approach. This paper also studies the accuracy and performance of the Krylov-space approach, when applied to the Heisenberg, the t-J, and the Hubbard models. The cases we studied indicate that themore » Krylov-space approach can be more accurate and efficient than the conjugate gradient, and that the error of the former integrates best when a Krylov-space decomposition is also used for ground state DMRG.« less
Hybrid state vector methods for structural dynamic and aeroelastic boundary value problems
NASA Technical Reports Server (NTRS)
Lehman, L. L.
1982-01-01
A computational technique is developed that is suitable for performing preliminary design aeroelastic and structural dynamic analyses of large aspect ratio lifting surfaces. The method proves to be quite general and can be adapted to solving various two point boundary value problems. The solution method, which is applicable to both fixed and rotating wing configurations, is based upon a formulation of the structural equilibrium equations in terms of a hybrid state vector containing generalized force and displacement variables. A mixed variational formulation is presented that conveniently yields a useful form for these state vector differential equations. Solutions to these equations are obtained by employing an integrating matrix method. The application of an integrating matrix provides a discretization of the differential equations that only requires solutions of standard linear matrix systems. It is demonstrated that matrix partitioning can be used to reduce the order of the required solutions. Results are presented for several example problems in structural dynamics and aeroelasticity to verify the technique and to demonstrate its use. These problems examine various types of loading and boundary conditions and include aeroelastic analyses of lifting surfaces constructed from anisotropic composite materials.
Pu239 Cross-Section Variations Based on Experimental Uncertainties and Covariances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigeti, David Edward; Williams, Brian J.; Parsons, D. Kent
2016-10-18
Algorithms and software have been developed for producing variations in plutonium-239 neutron cross sections based on experimental uncertainties and covariances. The varied cross-section sets may be produced as random samples from the multi-variate normal distribution defined by an experimental mean vector and covariance matrix, or they may be produced as Latin-Hypercube/Orthogonal-Array samples (based on the same means and covariances) for use in parametrized studies. The variations obey two classes of constraints that are obligatory for cross-section sets and which put related constraints on the mean vector and covariance matrix that detemine the sampling. Because the experimental means and covariances domore » not obey some of these constraints to sufficient precision, imposing the constraints requires modifying the experimental mean vector and covariance matrix. Modification is done with an algorithm based on linear algebra that minimizes changes to the means and covariances while insuring that the operations that impose the different constraints do not conflict with each other.« less
Magnusson, Sofia E; Altenburg, Arwen F; Bengtsson, Karin Lövgren; Bosman, Fons; de Vries, Rory D; Rimmelzwaan, Guus F; Stertman, Linda
2018-04-01
Influenza viruses continuously circulate in the human population and escape recognition by virus neutralizing antibodies induced by prior infection or vaccination through accumulation of mutations in the surface proteins hemagglutinin (HA) and neuraminidase (NA). Various strategies to develop a vaccine that provides broad protection against different influenza A viruses are under investigation, including use of recombinant (r) viral vectors and adjuvants. The replication-deficient modified vaccinia virus Ankara (MVA) is a promising vaccine vector that efficiently induces B and T cell responses specific for the antigen of interest. It is assumed that live vaccine vectors do not require an adjuvant to be immunogenic as the vector already mediates recruitment and activation of immune cells. To address this topic, BALB/c mice were vaccinated with either protein- or rMVA-based HA influenza vaccines, formulated with or without the saponin-based Matrix-M™ adjuvant. Co-formulation with Matrix-M significantly increased HA vaccine immunogenicity, resulting in antigen-specific humoral and cellular immune responses comparable to those induced by unadjuvanted rMVA-HA. Of special interest, rMVA-HA immunogenicity was also enhanced by addition of Matrix-M, demonstrated by enhanced HA inhibition antibody titres and cellular immune responses. Matrix-M added to either protein- or rMVA-based HA vaccines mediated recruitment and activation of antigen-presenting cells and lymphocytes to the draining lymph node 24 and 48 h post-vaccination. Taken together, these results suggest that adjuvants can be used not only with protein-based vaccines but also in combination with rMVA to increase vaccine immunogenicity, which may be a step forward to generate new and more effective influenza vaccines.
Improving M-SBL for Joint Sparse Recovery Using a Subspace Penalty
NASA Astrophysics Data System (ADS)
Ye, Jong Chul; Kim, Jong Min; Bresler, Yoram
2015-12-01
The multiple measurement vector problem (MMV) is a generalization of the compressed sensing problem that addresses the recovery of a set of jointly sparse signal vectors. One of the important contributions of this paper is to reveal that the seemingly least related state-of-art MMV joint sparse recovery algorithms - M-SBL (multiple sparse Bayesian learning) and subspace-based hybrid greedy algorithms - have a very important link. More specifically, we show that replacing the $\\log\\det(\\cdot)$ term in M-SBL by a rank proxy that exploits the spark reduction property discovered in subspace-based joint sparse recovery algorithms, provides significant improvements. In particular, if we use the Schatten-$p$ quasi-norm as the corresponding rank proxy, the global minimiser of the proposed algorithm becomes identical to the true solution as $p \\rightarrow 0$. Furthermore, under the same regularity conditions, we show that the convergence to a local minimiser is guaranteed using an alternating minimization algorithm that has closed form expressions for each of the minimization steps, which are convex. Numerical simulations under a variety of scenarios in terms of SNR, and condition number of the signal amplitude matrix demonstrate that the proposed algorithm consistently outperforms M-SBL and other state-of-the art algorithms.
NASA Astrophysics Data System (ADS)
Pullanagari, Reddy; Kereszturi, Gábor; Yule, Ian J.; Ghamisi, Pedram
2017-04-01
Accurate and spatially detailed mapping of complex urban environments is essential for land managers. Classifying high spectral and spatial resolution hyperspectral images is a challenging task because of its data abundance and computational complexity. Approaches with a combination of spectral and spatial information in a single classification framework have attracted special attention because of their potential to improve the classification accuracy. We extracted multiple features from spectral and spatial domains of hyperspectral images and evaluated them with two supervised classification algorithms; support vector machines (SVM) and an artificial neural network. The spatial features considered are produced by a gray level co-occurrence matrix and extended multiattribute profiles. All of these features were stacked, and the most informative features were selected using a genetic algorithm-based SVM. After selecting the most informative features, the classification model was integrated with a segmentation map derived using a hidden Markov random field. We tested the proposed method on a real application of a hyperspectral image acquired from AisaFENIX and on widely used hyperspectral images. From the results, it can be concluded that the proposed framework significantly improves the results with different spectral and spatial resolutions over different instrumentation.
Multi-color incomplete Cholesky conjugate gradient methods for vector computers. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Poole, E. L.
1986-01-01
In this research, we are concerned with the solution on vector computers of linear systems of equations, Ax = b, where A is a larger, sparse symmetric positive definite matrix. We solve the system using an iterative method, the incomplete Cholesky conjugate gradient method (ICCG). We apply a multi-color strategy to obtain p-color matrices for which a block-oriented ICCG method is implemented on the CYBER 205. (A p-colored matrix is a matrix which can be partitioned into a pXp block matrix where the diagonal blocks are diagonal matrices). This algorithm, which is based on a no-fill strategy, achieves O(N/p) length vector operations in both the decomposition of A and in the forward and back solves necessary at each iteration of the method. We discuss the natural ordering of the unknowns as an ordering that minimizes the number of diagonals in the matrix and define multi-color orderings in terms of disjoint sets of the unknowns. We give necessary and sufficient conditions to determine which multi-color orderings of the unknowns correpond to p-color matrices. A performance model is given which is used both to predict execution time for ICCG methods and also to compare an ICCG method to conjugate gradient without preconditioning or another ICCG method. Results are given from runs on the CYBER 205 at NASA's Langley Research Center for four model problems.
Another elementary proof of the Jordan form of a matrix
NASA Astrophysics Data System (ADS)
Budhi, Wono Setya
2012-05-01
In this paper we establish the Jordan Form for a matrix using the elementary concepts of vector differentiation and partial fractions. The idea comes from the resolvent of the operator. For the matrix, the Laurent series is finite and easy to compute through rational representation. We also give a proof of some famous theorems in matrix analysis as consequences from the result.
Three Interpretations of the Matrix Equation Ax = b
ERIC Educational Resources Information Center
Larson, Christine; Zandieh, Michelle
2013-01-01
Many of the central ideas in an introductory undergraduate linear algebra course are closely tied to a set of interpretations of the matrix equation Ax = b (A is a matrix, x and b are vectors): linear combination interpretations, systems interpretations, and transformation interpretations. We consider graphic and symbolic representations for each,…
Introduction to Matrix Algebra, Student's Text, Unit 23.
ERIC Educational Resources Information Center
Allen, Frank B.; And Others
Unit 23 in the SMSG secondary school mathematics series is a student text covering the following topics in matrix algebra: matrix operations, the algebra of 2 X 2 matrices, matrices and linear systems, representation of column matrices as geometric vectors, and transformations of the plane. Listed in the appendix are four research exercises in…
Simple and practical approach for computing the ray Hessian matrix in geometrical optics.
Lin, Psang Dain
2018-02-01
A method is proposed for simplifying the computation of the ray Hessian matrix in geometrical optics by replacing the angular variables in the system variable vector with their equivalent cosine and sine functions. The variable vector of a boundary surface is similarly defined in such a way as to exclude any angular variables. It is shown that the proposed formulations reduce the computation time of the Hessian matrix by around 10 times compared to the previous method reported by the current group in Advanced Geometrical Optics (2016). Notably, the method proposed in this study involves only polynomial differentiation, i.e., trigonometric function calls are not required. As a consequence, the computation complexity is significantly reduced. Five illustrative examples are given. The first three examples show that the proposed method is applicable to the determination of the Hessian matrix for any pose matrix, irrespective of the order in which the rotation and translation motions are specified. The last two examples demonstrate the use of the proposed Hessian matrix in determining the axial and lateral chromatic aberrations of a typical optical system.
NASA Astrophysics Data System (ADS)
Bustamam, A.; Ulul, E. D.; Hura, H. F. A.; Siswantining, T.
2017-07-01
Hierarchical clustering is one of effective methods in creating a phylogenetic tree based on the distance matrix between DNA (deoxyribonucleic acid) sequences. One of the well-known methods to calculate the distance matrix is k-mer method. Generally, k-mer is more efficient than some distance matrix calculation techniques. The steps of k-mer method are started from creating k-mer sparse matrix, and followed by creating k-mer singular value vectors. The last step is computing the distance amongst vectors. In this paper, we analyze the sequences of MERS-CoV (Middle East Respiratory Syndrome - Coronavirus) DNA by implementing hierarchical clustering using k-mer sparse matrix in order to perform the phylogenetic analysis. Our results show that the ancestor of our MERS-CoV is coming from Egypt. Moreover, we found that the MERS-CoV infection that occurs in one country may not necessarily come from the same country of origin. This suggests that the process of MERS-CoV mutation might not only be influenced by geographical factor.
Minimal parameter solution of the orthogonal matrix differential equation
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Markley, F. Landis
1990-01-01
As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed emplying the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.
Minimal parameter solution of the orthogonal matrix differential equation
NASA Technical Reports Server (NTRS)
Baritzhack, Itzhack Y.; Markley, F. Landis
1988-01-01
As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed employing the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.
Genetically modified pigs produced with a nonviral episomal vector
Manzini, Stefano; Vargiolu, Alessia; Stehle, Isa M; Bacci, Maria Laura; Cerrito, Maria Grazia; Giovannoni, Roberto; Zannoni, Augusta; Bianco, Maria Rosaria; Forni, Monica; Donini, Pierluigi; Papa, Michele; Lipps, Hans J; Lavitrano, Marialuisa
2006-01-01
Genetic modification of cells and animals is an invaluable tool for biotechnology and biomedicine. Currently, integrating vectors are used for this purpose. These vectors, however, may lead to insertional mutagenesis and variable transgene expression and can undergo silencing. Scaffold/matrix attachment region-based vectors are nonviral expression systems that replicate autonomously in mammalian cells, thereby making possible safe and reliable genetic modification of higher eukaryotic cells and organisms. In this study, genetically modified pig fetuses were produced with the scaffold/matrix attachment region-based vector pEPI, delivered to embryos by the sperm-mediated gene transfer method. The pEPI vector was detected in 12 of 18 fetuses in the different tissues analyzed and was shown to be retained as an episome. The reporter gene encoded by the pEPI vector was expressed in 9 of 12 genetically modified fetuses. In positive animals, all tissues analyzed expressed the reporter gene; moreover in these tissues, the positive cells were on the average 79%. The high percentage of EGFP-expressing cells and the absence of mosaicism have important implications for biotechnological and biomedical applications. These results are an important step forward in animal transgenesis and can provide the basis for the future development of germ-line gene therapy. PMID:17101993
Cheng, Kung-Shan; Dewhirst, Mark W; Stauffer, Paul R; Das, Shiva
2010-03-01
This paper investigates overall theoretical requirements for reducing the times required for the iterative learning of a real-time image-guided adaptive control routine for multiple-source heat applicators, as used in hyperthermia and thermal ablative therapy for cancer. Methods for partial reconstruction of the physical system with and without model reduction to find solutions within a clinically practical timeframe were analyzed. A mathematical analysis based on the Fredholm alternative theorem (FAT) was used to compactly analyze the existence and uniqueness of the optimal heating vector under two fundamental situations: (1) noiseless partial reconstruction and (2) noisy partial reconstruction. These results were coupled with a method for further acceleration of the solution using virtual source (VS) model reduction. The matrix approximation theorem (MAT) was used to choose the optimal vectors spanning the reduced-order subspace to reduce the time for system reconstruction and to determine the associated approximation error. Numerical simulations of the adaptive control of hyperthermia using VS were also performed to test the predictions derived from the theoretical analysis. A thigh sarcoma patient model surrounded by a ten-antenna phased-array applicator was retained for this purpose. The impacts of the convective cooling from blood flow and the presence of sudden increase of perfusion in muscle and tumor were also simulated. By FAT, partial system reconstruction directly conducted in the full space of the physical variables such as phases and magnitudes of the heat sources cannot guarantee reconstructing the optimal system to determine the global optimal setting of the heat sources. A remedy for this limitation is to conduct the partial reconstruction within a reduced-order subspace spanned by the first few maximum eigenvectors of the true system matrix. By MAT, this VS subspace is the optimal one when the goal is to maximize the average tumor temperature. When more than 6 sources present, the steps required for a nonlinear learning scheme is theoretically fewer than that of a linear one, however, finite number of iterative corrections is necessary for a single learning step of a nonlinear algorithm. Thus, the actual computational workload for a nonlinear algorithm is not necessarily less than that required by a linear algorithm. Based on the analysis presented herein, obtaining a unique global optimal heating vector for a multiple-source applicator within the constraints of real-time clinical hyperthermia treatments and thermal ablative therapies appears attainable using partial reconstruction with minimum norm least-squares method with supplemental equations. One way to supplement equations is the inclusion of a method of model reduction.
MatLab Script and Functional Programming
NASA Technical Reports Server (NTRS)
Shaykhian, Gholam Ali
2007-01-01
MatLab Script and Functional Programming: MatLab is one of the most widely used very high level programming languages for scientific and engineering computations. It is very user-friendly and needs practically no formal programming knowledge. Presented here are MatLab programming aspects and not just the MatLab commands for scientists and engineers who do not have formal programming training and also have no significant time to spare for learning programming to solve their real world problems. Specifically provided are programs for visualization. The MatLab seminar covers the functional and script programming aspect of MatLab language. Specific expectations are: a) Recognize MatLab commands, script and function. b) Create, and run a MatLab function. c) Read, recognize, and describe MatLab syntax. d) Recognize decisions, loops and matrix operators. e) Evaluate scope among multiple files, and multiple functions within a file. f) Declare, define and use scalar variables, vectors and matrices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, J.C.; Leahy, R.M.
A new method for source localization is described that is based on a modification of the well known multiple signal classification (MUSIC) algorithm. In classical MUSIC, the array manifold vector is projected onto an estimate of the signal subspace, but errors in the estimate can make location of multiple sources difficult. Recursively applied and projected (RAP) MUSIC uses each successively located source to form an intermediate array gain matrix, and projects both the array manifold and the signal subspace estimate into its orthogonal complement. The MUSIC projection is then performed in this reduced subspace. Using the metric of principal angles,more » the authors describe a general form of the RAP-MUSIC algorithm for the case of diversely polarized sources. Through a uniform linear array simulation, the authors demonstrate the improved Monte Carlo performance of RAP-MUSIC relative to MUSIC and two other sequential subspace methods, S and IES-MUSIC.« less
Boundary Quantum Knizhnik-Zamolodchikov Equations and Bethe Vectors
NASA Astrophysics Data System (ADS)
Reshetikhin, Nicolai; Stokman, Jasper; Vlaar, Bart
2015-06-01
Solutions to boundary quantum Knizhnik-Zamolodchikov equations are constructed as bilateral sums involving "off-shell" Bethe vectors in case the reflection matrix is diagonal and only the 2-dimensional representation of is involved. We also consider their rational and classical degenerations.
Recognition and defect detection of dot-matrix text via variation-model based learning
NASA Astrophysics Data System (ADS)
Ohyama, Wataru; Suzuki, Koushi; Wakabayashi, Tetsushi
2017-03-01
An algorithm for recognition and defect detection of dot-matrix text printed on products is proposed. Extraction and recognition of dot-matrix text contains several difficulties, which are not involved in standard camera-based OCR, that the appearance of dot-matrix characters is corrupted and broken by illumination, complex texture in the background and other standard characters printed on product packages. We propose a dot-matrix text extraction and recognition method which does not require any user interaction. The method employs detected location of corner points and classification score. The result of evaluation experiment using 250 images shows that recall and precision of extraction are 78.60% and 76.03%, respectively. Recognition accuracy of correctly extracted characters is 94.43%. Detecting printing defect of dot-matrix text is also important in the production scene to avoid illegal productions. We also propose a detection method for printing defect of dot-matrix characters. The method constructs a feature vector of which elements are classification scores of each character class and employs support vector machine to classify four types of printing defect. The detection accuracy of the proposed method is 96.68 %.
Rodgers, Faye H.
2017-01-01
Manipulation of the mosquito gut microbiota can lay the foundations for novel methods for disease transmission control. Mosquito blood feeding triggers a significant, transient increase of the gut microbiota, but little is known about the mechanisms by which the mosquito controls this bacterial growth whilst limiting inflammation of the gut epithelium. Here, we investigate the gut epithelial response to the changing microbiota load upon blood feeding in the malaria vector Anopheles coluzzii. We show that the synthesis and integrity of the peritrophic matrix, which physically separates the gut epithelium from its luminal contents, is microbiota dependent. We reveal that the peritrophic matrix limits the growth and persistence of Enterobacteriaceae within the gut, whilst preventing seeding of a systemic infection. Our results demonstrate that the peritrophic matrix is a key regulator of mosquito gut homeostasis and establish functional analogies between this and the mucus layers of the mammalian gastrointestinal tract. PMID:28545061
Vectorization of linear discrete filtering algorithms
NASA Technical Reports Server (NTRS)
Schiess, J. R.
1977-01-01
Linear filters, including the conventional Kalman filter and versions of square root filters devised by Potter and Carlson, are studied for potential application on streaming computers. The square root filters are known to maintain a positive definite covariance matrix in cases in which the Kalman filter diverges due to ill-conditioning of the matrix. Vectorization of the filters is discussed, and comparisons are made of the number of operations and storage locations required by each filter. The Carlson filter is shown to be the most efficient of the filters on the Control Data STAR-100 computer.
NASA Astrophysics Data System (ADS)
Lesieur, Thibault; Krzakala, Florent; Zdeborová, Lenka
2017-07-01
This article is an extended version of previous work of Lesieur et al (2015 IEEE Int. Symp. on Information Theory Proc. pp 1635-9 and 2015 53rd Annual Allerton Conf. on Communication, Control and Computing (IEEE) pp 680-7) on low-rank matrix estimation in the presence of constraints on the factors into which the matrix is factorized. Low-rank matrix factorization is one of the basic methods used in data analysis for unsupervised learning of relevant features and other types of dimensionality reduction. We present a framework to study the constrained low-rank matrix estimation for a general prior on the factors, and a general output channel through which the matrix is observed. We draw a parallel with the study of vector-spin glass models—presenting a unifying way to study a number of problems considered previously in separate statistical physics works. We present a number of applications for the problem in data analysis. We derive in detail a general form of the low-rank approximate message passing (Low-RAMP) algorithm, that is known in statistical physics as the TAP equations. We thus unify the derivation of the TAP equations for models as different as the Sherrington-Kirkpatrick model, the restricted Boltzmann machine, the Hopfield model or vector (xy, Heisenberg and other) spin glasses. The state evolution of the Low-RAMP algorithm is also derived, and is equivalent to the replica symmetric solution for the large class of vector-spin glass models. In the section devoted to result we study in detail phase diagrams and phase transitions for the Bayes-optimal inference in low-rank matrix estimation. We present a typology of phase transitions and their relation to performance of algorithms such as the Low-RAMP or commonly used spectral methods.
Generalized sidelobe canceller beamforming method for ultrasound imaging.
Wang, Ping; Li, Na; Luo, Han-Wu; Zhu, Yong-Kun; Cui, Shi-Gang
2017-03-01
A modified generalized sidelobe canceller (IGSC) algorithm is proposed to enhance the resolution and robustness against the noise of the traditional generalized sidelobe canceller (GSC) and coherence factor combined method (GSC-CF). In the GSC algorithm, weighting vector is divided into adaptive and non-adaptive parts, while the non-adaptive part does not block all the desired signal. A modified steer vector of the IGSC algorithm is generated by the projection of the non-adaptive vector on the signal space constructed by the covariance matrix of received data. The blocking matrix is generated based on the orthogonal complementary space of the modified steer vector and the weighting vector is updated subsequently. The performance of IGSC was investigated by simulations and experiments. Through simulations, IGSC outperformed GSC-CF in terms of spatial resolution by 0.1 mm regardless there is noise or not, as well as the contrast ratio respect. The proposed IGSC can be further improved by combining with CF. The experimental results also validated the effectiveness of the proposed algorithm with dataset provided by the University of Michigan.
Perendeci, Altinay; Arslan, Sever; Tanyolaç, Abdurrahman; Celebi, Serdar S
2009-10-01
A conceptual neural fuzzy model based on adaptive-network based fuzzy inference system, ANFIS, was proposed using available input on-line and off-line operational variables for a sugar factory anaerobic wastewater treatment plant operating under unsteady state to estimate the effluent chemical oxygen demand, COD. The predictive power of the developed model was improved as a new approach by adding the phase vector and the recent values of COD up to 5-10 days, longer than overall retention time of wastewater in the system. History of last 10 days for COD effluent with two-valued phase vector in the input variable matrix including all parameters had more predictive power. History of 7 days with two-valued phase vector in the matrix comprised of only on-line variables yielded fairly well estimations. The developed ANFIS model with phase vector and history extension has been able to adequately represent the behavior of the treatment system.
Fourier transform inequalities for phylogenetic trees.
Matsen, Frederick A
2009-01-01
Phylogenetic invariants are not the only constraints on site-pattern frequency vectors for phylogenetic trees. A mutation matrix, by its definition, is the exponential of a matrix with non-negative off-diagonal entries; this positivity requirement implies non-trivial constraints on the site-pattern frequency vectors. We call these additional constraints "edge-parameter inequalities". In this paper, we first motivate the edge-parameter inequalities by considering a pathological site-pattern frequency vector corresponding to a quartet tree with a negative internal edge. This site-pattern frequency vector nevertheless satisfies all of the constraints described up to now in the literature. We next describe two complete sets of edge-parameter inequalities for the group-based models; these constraints are square-free monomial inequalities in the Fourier transformed coordinates. These inequalities, along with the phylogenetic invariants, form a complete description of the set of site-pattern frequency vectors corresponding to bona fide trees. Said in mathematical language, this paper explicitly presents two finite lists of inequalities in Fourier coordinates of the form "monomial < or = 1", each list characterizing the phylogenetically relevant semialgebraic subsets of the phylogenetic varieties.
Complex mode indication function and its applications to spatial domain parameter estimation
NASA Astrophysics Data System (ADS)
Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.
1988-10-01
This paper introduces the concept of the Complex Mode Indication Function (CMIF) and its application in spatial domain parameter estimation. The concept of CMIF is developed by performing singular value decomposition (SVD) of the Frequency Response Function (FRF) matrix at each spectral line. The CMIF is defined as the eigenvalues, which are the square of the singular values, solved from the normal matrix formed from the FRF matrix, [ H( jω)] H[ H( jω)], at each spectral line. The CMIF appears to be a simple and efficient method for identifying the modes of the complex system. The CMIF identifies modes by showing the physical magnitude of each mode and the damped natural frequency for each root. Since multiple reference data is applied in CMIF, repeated roots can be detected. The CMIF also gives global modal parameters, such as damped natural frequencies, mode shapes and modal participation vectors. Since CMIF works in the spatial domain, uneven frequency spacing data such as data from spatial sine testing can be used. A second-stage procedure for accurate damped natural frequency and damping estimation as well as mode shape scaling is also discussed in this paper.
Numerical Modeling of Nanoelectronic Devices
NASA Technical Reports Server (NTRS)
Klimeck, Gerhard; Oyafuso, Fabiano; Bowen, R. Chris; Boykin, Timothy
2003-01-01
Nanoelectronic Modeling 3-D (NEMO 3-D) is a computer program for numerical modeling of the electronic structure properties of a semiconductor device that is embodied in a crystal containing as many as 16 million atoms in an arbitrary configuration and that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantummechanical behavior of the device resolved to the atomistic level of granularity. The system of electrons in the device is represented by a sparse Hamiltonian matrix that contains hundreds of millions of terms. NEMO 3-D solves the matrix equation on a Beowulf-class cluster computer, by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. In a recent update of NEMO 3-D, a new strain treatment, parameterized for bulk material properties of GaAs and InAs, was developed for two tight-binding submodels. The utility of the NEMO 3-D was demonstrated in an atomistic analysis of the effects of disorder in alloys and, in particular, in bulk In(x)Ga(l-x)As and in In0.6Ga0.4As quantum dots.
An efficient blocking M2L translation for low-frequency fast multipole method in three dimensions
NASA Astrophysics Data System (ADS)
Takahashi, Toru; Shimba, Yuta; Isakari, Hiroshi; Matsumoto, Toshiro
2016-05-01
We propose an efficient scheme to perform the multipole-to-local (M2L) translation in the three-dimensional low-frequency fast multipole method (LFFMM). Our strategy is to combine a group of matrix-vector products associated with M2L translation into a matrix-matrix product in order to diminish the memory traffic. For this purpose, we first developed a grouping method (termed as internal blocking) based on the congruent transformations (rotational and reflectional symmetries) of M2L-translators for each target box in the FMM hierarchy (adaptive octree). Next, we considered another method of grouping (termed as external blocking) that was able to handle M2L translations for multiple target boxes collectively by using the translational invariance of the M2L translation. By combining these internal and external blockings, the M2L translation can be performed efficiently whilst preservingthe numerical accuracy exactly. We assessed the proposed blocking scheme numerically and applied it to the boundary integral equation method to solve electromagnetic scattering problems for perfectly electrical conductor. From the numerical results, it was found that the proposed M2L scheme achieved a few times speedup compared to the non-blocking scheme.
HO2 rovibrational eigenvalue studies for nonzero angular momentum
NASA Astrophysics Data System (ADS)
Wu, Xudong T.; Hayes, Edward F.
1997-08-01
An efficient parallel algorithm is reported for determining all bound rovibrational energy levels for the HO2 molecule for nonzero angular momentum values, J=1, 2, and 3. Performance tests on the CRAY T3D indicate that the algorithm scales almost linearly when up to 128 processors are used. Sustained performance levels of up to 3.8 Gflops have been achieved using 128 processors for J=3. The algorithm uses a direct product discrete variable representation (DVR) basis and the implicitly restarted Lanczos method (IRLM) of Sorensen to compute the eigenvalues of the polyatomic Hamiltonian. Since the IRLM is an iterative method, it does not require storage of the full Hamiltonian matrix—it only requires the multiplication of the Hamiltonian matrix by a vector. When the IRLM is combined with a formulation such as DVR, which produces a very sparse matrix, both memory and computation times can be reduced dramatically. This algorithm has the potential to achieve even higher performance levels for larger values of the total angular momentum.
Compton, L A; Johnson, W C
1986-05-15
Inverse circular dichroism (CD) spectra are presented for each of the five major secondary structures of proteins: alpha-helix, antiparallel and parallel beta-sheet, beta-turn, and other (random) structures. The fraction of the each secondary structure in a protein is predicted by forming the dot product of the corresponding inverse CD spectrum, expressed as a vector, with the CD spectrum of the protein digitized in the same way. We show how this method is based on the construction of the generalized inverse from the singular value decomposition of a set of CD spectra corresponding to proteins whose secondary structures are known from X-ray crystallography. These inverse spectra compute secondary structure directly from protein CD spectra without resorting to least-squares fitting and standard matrix inversion techniques. In addition, spectra corresponding to the individual secondary structures, analogous to the CD spectra of synthetic polypeptides, are generated from the five most significant CD eigenvectors.
ERIC Educational Resources Information Center
Digital Equipment Corp., Maynard, MA.
The curriculum materials and computer programs in this booklet introduce the idea of a matrix. They go on to discuss matrix operations of addition, subtraction, multiplication by a scalar, and matrix multiplication. The last section covers several contemporary applications of matrix multiplication, including problems of communication…
General MoM Solutions for Large Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasenfest, B; Capolino, F; Wilton, D R
2003-07-22
This paper focuses on a numerical procedure that addresses the difficulties of dealing with large, finite arrays while preserving the generality and robustness of full-wave methods. We present a fast method based on approximating interactions between sufficiently separated array elements via a relatively coarse interpolation of the Green's function on a uniform grid commensurate with the array's periodicity. The interaction between the basis and testing functions is reduced to a three-stage process. The first stage is a projection of standard (e.g., RWG) subdomain bases onto a set of interpolation functions that interpolate the Green's function on the array face. Thismore » projection, which is used in a matrix/vector product for each array cell in an iterative solution process, need only be carried out once for a single cell and results in a low-rank matrix. An intermediate stage matrix/vector product computation involving the uniformly sampled Green's function is of convolutional form in the lateral (transverse) directions so that a 2D FFT may be used. The final stage is a third matrix/vector product computation involving a matrix resulting from projecting testing functions onto the Green's function interpolation functions; the low-rank matrix is either identical to (using Galerkin's method) or similar to that for the bases projection. An effective MoM solution scheme is developed for large arrays using a modification of the AIM (Adaptive Integral Method) method. The method permits the analysis of arrays with arbitrary contours and nonplanar elements. Both fill and solve times within the MoM method are improved with respect to more standard MoM solvers.« less
Polarization rotation locking of vector solitons in a fiber ring laser.
Zhao, L M; Tang, D Y; Zhang, H; Wu, X
2008-07-07
Polarization rotation of vector solitons in a fiber ring laser was experimentally studied. It was observed that the period of vector soliton polarization rotation could be locked to the cavity roundtrip time or multiple of it. We further show that multiple vector solitons can be formed in a fiber laser, and all the vector solitons have the same group velocity in cavity, however, their instantaneous polarization ellipse orientations could be orthogonal.
Parallel solution of the symmetric tridiagonal eigenproblem. Research report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1989-10-01
This thesis discusses methods for computing all eigenvalues and eigenvectors of a symmetric tridiagonal matrix on a distributed-memory Multiple Instruction, Multiple Data multiprocessor. Only those techniques having the potential for both high numerical accuracy and significant large-grained parallelism are investigated. These include the QL method or Cuppen's divide and conquer method based on rank-one updating to compute both eigenvalues and eigenvectors, bisection to determine eigenvalues and inverse iteration to compute eigenvectors. To begin, the methods are compared with respect to computation time, communication time, parallel speed up, and accuracy. Experiments on an IPSC hypercube multiprocessor reveal that Cuppen's method ismore » the most accurate approach, but bisection with inverse iteration is the fastest and most parallel. Because the accuracy of the latter combination is determined by the quality of the computed eigenvectors, the factors influencing the accuracy of inverse iteration are examined. This includes, in part, statistical analysis of the effect of a starting vector with random components. These results are used to develop an implementation of inverse iteration producing eigenvectors with lower residual error and better orthogonality than those generated by the EISPACK routine TINVIT. This thesis concludes with adaptions of methods for the symmetric tridiagonal eigenproblem to the related problem of computing the singular value decomposition (SVD) of a bidiagonal matrix.« less
Econo-ESA in semantic text similarity.
Rahutomo, Faisal; Aritsugi, Masayoshi
2014-01-01
Explicit semantic analysis (ESA) utilizes an immense Wikipedia index matrix in its interpreter part. This part of the analysis multiplies a large matrix by a term vector to produce a high-dimensional concept vector. A similarity measurement between two texts is performed between two concept vectors with numerous dimensions. The cost is expensive in both interpretation and similarity measurement steps. This paper proposes an economic scheme of ESA, named econo-ESA. We investigate two aspects of this proposal: dimensional reduction and experiments with various data. We use eight recycling test collections in semantic text similarity. The experimental results show that both the dimensional reduction and test collection characteristics can influence the results. They also show that an appropriate concept reduction of econo-ESA can decrease the cost with minor differences in the results from the original ESA.
Use of digital control theory state space formalism for feedback at SLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Himel, T.; Hendrickson, L.; Rouse, F.
The algorithms used in the database-driven SLC fast-feedback system are based on the state space formalism of digital control theory. These are implemented as a set of matrix equations which use a Kalman filter to estimate a vector of states from a vector of measurements, and then apply a gain matrix to determine the actuator settings from the state vector. The matrices used in the calculation are derived offline using Linear Quadratic Gaussian minimization. For a given noise spectrum, this procedure minimizes the rms of the states (e.g., the position or energy of the beam). The offline program also allowsmore » simulation of the loop's response to arbitrary inputs, and calculates its frequency response. 3 refs., 3 figs.« less
NASA Astrophysics Data System (ADS)
Manojlović, N.; Salom, I.
2017-10-01
The implementation of the algebraic Bethe ansatz for the XXZ Heisenberg spin chain in the case, when both reflection matrices have the upper-triangular form is analyzed. The general form of the Bethe vectors is studied. In the particular form, Bethe vectors admit the recurrent procedure, with an appropriate modification, used previously in the case of the XXX Heisenberg chain. As expected, these Bethe vectors yield the strikingly simple expression for the off-shell action of the transfer matrix of the chain as well as the spectrum of the transfer matrix and the corresponding Bethe equations. As in the XXX case, the so-called quasi-classical limit gives the off-shell action of the generating function of the corresponding trigonometric Gaudin Hamiltonians with boundary terms.
Recent Selected Papers of Northwestern Polytechnical University in Two Parts, Part II.
1981-08-28
OF CONTENTS Page Dual Properties of Elastic Structures 1 Matrix Analysis of Wings 76 On a Method for the Determination of Plane Stress Fracture...I= Ea]{(x, v,z) j l~i l’m mini The equation above means that the cisplacement function vector determines the strain function vector. (Assumption II...means that the distributed load function vector is determined by the stress function vector. In Section 1, there was an analysis of a three
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Yaosuo
The matrix converter solid state transformer (MC-SST), formed from the back-to-back connection of two three-to-single-phase matrix converters, is studied for use in the interconnection of two ac grids. The matrix converter topology provides a light weight and low volume single-stage bidirectional ac-ac power conversion without the need for a dc link. Thus, the lifetime limitations of dc-bus storage capacitors are avoided. However, space vector modulation of this type of MC-SST requires to compute vectors for each of the two MCs, which must be carefully coordinated to avoid commutation failure. An additional controller is also required to control power exchange betweenmore » the two ac grids. In this paper, model predictive control (MPC) is proposed for an MC-SST connecting two different ac power grids. The proposed MPC predicts the circuit variables based on the discrete model of MC-SST system and the cost function is formulated so that the optimal switch vector for the next sample period is selected, thereby generating the required grid currents for the SST. Simulation and experimental studies are carried out to demonstrate the effectiveness and simplicity of the proposed MPC for such MC-SST-based grid interfacing systems.« less
Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography
NASA Astrophysics Data System (ADS)
Khaleghi, Morteza; Furlong, Cosme; Ravicz, Mike; Cheng, Jeffrey Tao; Rosowski, John J.
2015-05-01
The eardrum or tympanic membrane (TM) transforms acoustic energy at the ear canal into mechanical motions of the ossicles. The acousto-mechanical transformer behavior of the TM is determined by its shape, three-dimensional (3-D) motion, and mechanical properties. We have developed an optoelectronic holographic system to measure the shape and 3-D sound-induced displacements of the TM. The shape of the TM is measured with dual-wavelength holographic contouring using a tunable near IR laser source with a central wavelength of 780 nm. 3-D components of sound-induced displacements of the TM are measured with the method of multiple sensitivity vectors using stroboscopic holographic interferometry. To accurately obtain sensitivity vectors, a new technique is developed and used in which the sensitivity vectors are obtained from the images of a specular sphere that is being illuminated from different directions. Shape and 3-D acoustically induced displacement components of cadaveric human TMs at several excitation frequencies are measured at more than one million points on its surface. A numerical rotation matrix is used to rotate the original Euclidean coordinate of the measuring system in order to obtain in-plane and out-of-plane motion components. Results show that in-plane components of motion are much smaller (<20%) than the out-of-plane motions' components.
Blockwise conjugate gradient methods for image reconstruction in volumetric CT.
Qiu, W; Titley-Peloquin, D; Soleimani, M
2012-11-01
Cone beam computed tomography (CBCT) enables volumetric image reconstruction from 2D projection data and plays an important role in image guided radiation therapy (IGRT). Filtered back projection is still the most frequently used algorithm in applications. The algorithm discretizes the scanning process (forward projection) into a system of linear equations, which must then be solved to recover images from measured projection data. The conjugate gradients (CG) algorithm and its variants can be used to solve (possibly regularized) linear systems of equations Ax=b and linear least squares problems minx∥b-Ax∥2, especially when the matrix A is very large and sparse. Their applications can be found in a general CT context, but in tomography problems (e.g. CBCT reconstruction) they have not widely been used. Hence, CBCT reconstruction using the CG-type algorithm LSQR was implemented and studied in this paper. In CBCT reconstruction, the main computational challenge is that the matrix A usually is very large, and storing it in full requires an amount of memory well beyond the reach of commodity computers. Because of these memory capacity constraints, only a small fraction of the weighting matrix A is typically used, leading to a poor reconstruction. In this paper, to overcome this difficulty, the matrix A is partitioned and stored blockwise, and blockwise matrix-vector multiplications are implemented within LSQR. This implementation allows us to use the full weighting matrix A for CBCT reconstruction without further enhancing computer standards. Tikhonov regularization can also be implemented in this fashion, and can produce significant improvement in the reconstructed images. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
FPGA implementation of sparse matrix algorithm for information retrieval
NASA Astrophysics Data System (ADS)
Bojanic, Slobodan; Jevtic, Ruzica; Nieto-Taladriz, Octavio
2005-06-01
Information text data retrieval requires a tremendous amount of processing time because of the size of the data and the complexity of information retrieval algorithms. In this paper the solution to this problem is proposed via hardware supported information retrieval algorithms. Reconfigurable computing may adopt frequent hardware modifications through its tailorable hardware and exploits parallelism for a given application through reconfigurable and flexible hardware units. The degree of the parallelism can be tuned for data. In this work we implemented standard BLAS (basic linear algebra subprogram) sparse matrix algorithm named Compressed Sparse Row (CSR) that is showed to be more efficient in terms of storage space requirement and query-processing timing over the other sparse matrix algorithms for information retrieval application. Although inverted index algorithm is treated as the de facto standard for information retrieval for years, an alternative approach to store the index of text collection in a sparse matrix structure gains more attention. This approach performs query processing using sparse matrix-vector multiplication and due to parallelization achieves a substantial efficiency over the sequential inverted index. The parallel implementations of information retrieval kernel are presented in this work targeting the Virtex II Field Programmable Gate Arrays (FPGAs) board from Xilinx. A recent development in scientific applications is the use of FPGA to achieve high performance results. Computational results are compared to implementations on other platforms. The design achieves a high level of parallelism for the overall function while retaining highly optimised hardware within processing unit.
Kimura, Tetsuya; Nakao, Akihide; Murata, Sachiko; Kobayashi, Yasuyuki; Tanaka, Yuji; Shibahara, Kenta; Kawazu, Tetsu; Nakagawa, Tsuyoshi
2013-01-01
We developed the Gateway recycling cloning system, which allows multiple linking of expression cassettes by multiple rounds of the Gateway LR reaction. Employing this system, the recycling donor vector pRED419 was subjected to the first LR reaction with an attR1-attR2 type destination vector. Then conversion vector pCON was subjected to an LR reaction to restore the attR1-attR2 site on the destination vector for the next cloning cycle. By repetition of these two simple steps, we linked four expression cassettes of a reporter gene in Gateway binary vector pGWB1, introduced the constructs into tobacco BY-2 cells, and observed the expression of transgenes.
NASA Astrophysics Data System (ADS)
Aghamaleki, Javad Abbasi; Behrad, Alireza
2018-01-01
Double compression detection is a crucial stage in digital image and video forensics. However, the detection of double compressed videos is challenging when the video forger uses the same quantization matrix and synchronized group of pictures (GOP) structure during the recompression history to conceal tampering effects. A passive approach is proposed for detecting double compressed MPEG videos with the same quantization matrix and synchronized GOP structure. To devise the proposed algorithm, the effects of recompression on P frames are mathematically studied. Then, based on the obtained guidelines, a feature vector is proposed to detect double compressed frames on the GOP level. Subsequently, sparse representations of the feature vectors are used for dimensionality reduction and enrich the traces of recompression. Finally, a support vector machine classifier is employed to detect and localize double compression in temporal domain. The experimental results show that the proposed algorithm achieves the accuracy of more than 95%. In addition, the comparisons of the results of the proposed method with those of other methods reveal the efficiency of the proposed algorithm.
Shi, Yingzhong; Chung, Fu-Lai; Wang, Shitong
2015-09-01
Recently, a time-adaptive support vector machine (TA-SVM) is proposed for handling nonstationary datasets. While attractive performance has been reported and the new classifier is distinctive in simultaneously solving several SVM subclassifiers locally and globally by using an elegant SVM formulation in an alternative kernel space, the coupling of subclassifiers brings in the computation of matrix inversion, thus resulting to suffer from high computational burden in large nonstationary dataset applications. To overcome this shortcoming, an improved TA-SVM (ITA-SVM) is proposed using a common vector shared by all the SVM subclassifiers involved. ITA-SVM not only keeps an SVM formulation, but also avoids the computation of matrix inversion. Thus, we can realize its fast version, that is, improved time-adaptive core vector machine (ITA-CVM) for large nonstationary datasets by using the CVM technique. ITA-CVM has the merit of asymptotic linear time complexity for large nonstationary datasets as well as inherits the advantage of TA-SVM. The effectiveness of the proposed classifiers ITA-SVM and ITA-CVM is also experimentally confirmed.
NASA Astrophysics Data System (ADS)
Wang, Xiao-Gang; Carrington, Tucker
2018-02-01
We compute numerically exact rovibrational levels of water dimer, with 12 vibrational coordinates, on the accurate CCpol-8sf ab initio flexible monomer potential energy surface [C. Leforestier et al., J. Chem. Phys. 137, 014305 (2012)]. It does not have a sum-of-products or multimode form and therefore quadrature in some form must be used. To do the calculation, it is necessary to use an efficient basis set and to develop computational tools, for evaluating the matrix-vector products required to calculate the spectrum, that obviate the need to store the potential on a 12D quadrature grid. The basis functions we use are products of monomer vibrational wavefunctions and standard rigid-monomer basis functions (which involve products of three Wigner functions). Potential matrix-vector products are evaluated using the F matrix idea previously used to compute rovibrational levels of 5-atom and 6-atom molecules. When the coupling between inter- and intra-monomer coordinates is weak, this crude adiabatic type basis is efficient (only a few monomer vibrational wavefunctions are necessary), although the calculation of matrix elements is straightforward. It is much easier to use than an adiabatic basis. The product structure of the basis is compatible with the product structure of the kinetic energy operator and this facilitates computation of matrix-vector products. Compared with the results obtained using a [6 + 6]D adiabatic approach, we find good agreement for the inter-molecular levels and larger differences for the intra-molecular water bend levels.
Wang, Xiao-Gang; Carrington, Tucker
2018-02-21
We compute numerically exact rovibrational levels of water dimer, with 12 vibrational coordinates, on the accurate CCpol-8sf ab initio flexible monomer potential energy surface [C. Leforestier et al., J. Chem. Phys. 137, 014305 (2012)]. It does not have a sum-of-products or multimode form and therefore quadrature in some form must be used. To do the calculation, it is necessary to use an efficient basis set and to develop computational tools, for evaluating the matrix-vector products required to calculate the spectrum, that obviate the need to store the potential on a 12D quadrature grid. The basis functions we use are products of monomer vibrational wavefunctions and standard rigid-monomer basis functions (which involve products of three Wigner functions). Potential matrix-vector products are evaluated using the F matrix idea previously used to compute rovibrational levels of 5-atom and 6-atom molecules. When the coupling between inter- and intra-monomer coordinates is weak, this crude adiabatic type basis is efficient (only a few monomer vibrational wavefunctions are necessary), although the calculation of matrix elements is straightforward. It is much easier to use than an adiabatic basis. The product structure of the basis is compatible with the product structure of the kinetic energy operator and this facilitates computation of matrix-vector products. Compared with the results obtained using a [6 + 6]D adiabatic approach, we find good agreement for the inter-molecular levels and larger differences for the intra-molecular water bend levels.
Deploy Nalu/Kokkos algorithmic infrastructure with performance benchmarking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domino, Stefan P.; Ananthan, Shreyas; Knaus, Robert C.
The former Nalu interior heterogeneous algorithm design, which was originally designed to manage matrix assembly operations over all elemental topology types, has been modified to operate over homogeneous collections of mesh entities. This newly templated kernel design allows for removal of workset variable resize operations that were formerly required at each loop over a Sierra ToolKit (STK) bucket (nominally, 512 entities in size). Extensive usage of the Standard Template Library (STL) std::vector has been removed in favor of intrinsic Kokkos memory views. In this milestone effort, the transition to Kokkos as the underlying infrastructure to support performance and portability onmore » many-core architectures has been deployed for key matrix algorithmic kernels. A unit-test driven design effort has developed a homogeneous entity algorithm that employs a team-based thread parallelism construct. The STK Single Instruction Multiple Data (SIMD) infrastructure is used to interleave data for improved vectorization. The collective algorithm design, which allows for concurrent threading and SIMD management, has been deployed for the core low-Mach element- based algorithm. Several tests to ascertain SIMD performance on Intel KNL and Haswell architectures have been carried out. The performance test matrix includes evaluation of both low- and higher-order methods. The higher-order low-Mach methodology builds on polynomial promotion of the core low-order control volume nite element method (CVFEM). Performance testing of the Kokkos-view/SIMD design indicates low-order matrix assembly kernel speed-up ranging between two and four times depending on mesh loading and node count. Better speedups are observed for higher-order meshes (currently only P=2 has been tested) especially on KNL. The increased workload per element on higher-order meshes bene ts from the wide SIMD width on KNL machines. Combining multiple threads with SIMD on KNL achieves a 4.6x speedup over the baseline, with assembly timings faster than that observed on Haswell architecture. The computational workload of higher-order meshes, therefore, seems ideally suited for the many-core architecture and justi es further exploration of higher-order on NGP platforms. A Trilinos/Tpetra-based multi-threaded GMRES preconditioned by symmetric Gauss Seidel (SGS) represents the core solver infrastructure for the low-Mach advection/diffusion implicit solves. The threaded solver stack has been tested on small problems on NREL's Peregrine system using the newly developed and deployed Kokkos-view/SIMD kernels. fforts are underway to deploy the Tpetra-based solver stack on NERSC Cori system to benchmark its performance at scale on KNL machines.« less
Combined group ECC protection and subgroup parity protection
Gara, Alan G.; Chen, Dong; Heidelberger, Philip; Ohmacht, Martin
2013-06-18
A method and system are disclosed for providing combined error code protection and subgroup parity protection for a given group of n bits. The method comprises the steps of identifying a number, m, of redundant bits for said error protection; and constructing a matrix P, wherein multiplying said given group of n bits with P produces m redundant error correction code (ECC) protection bits, and two columns of P provide parity protection for subgroups of said given group of n bits. In the preferred embodiment of the invention, the matrix P is constructed by generating permutations of m bit wide vectors with three or more, but an odd number of, elements with value one and the other elements with value zero; and assigning said vectors to rows of the matrix P.
A Spectral Algorithm for Envelope Reduction of Sparse Matrices
NASA Technical Reports Server (NTRS)
Barnard, Stephen T.; Pothen, Alex; Simon, Horst D.
1993-01-01
The problem of reordering a sparse symmetric matrix to reduce its envelope size is considered. A new spectral algorithm for computing an envelope-reducing reordering is obtained by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. This Laplacian eigenvector solves a continuous relaxation of a discrete problem related to envelope minimization called the minimum 2-sum problem. The permutation vector computed by the spectral algorithm is a closest permutation vector to the specified Laplacian eigenvector. Numerical results show that the new reordering algorithm usually computes smaller envelope sizes than those obtained from the current standard algorithms such as Gibbs-Poole-Stockmeyer (GPS) or SPARSPAK reverse Cuthill-McKee (RCM), in some cases reducing the envelope by more than a factor of two.
Rational approximations from power series of vector-valued meromorphic functions
NASA Technical Reports Server (NTRS)
Sidi, Avram
1992-01-01
Let F(z) be a vector-valued function, F: C yields C(sup N), which is analytic at z = 0 and meromorphic in a neighborhood of z = 0, and let its Maclaurin series be given. In this work we developed vector-valued rational approximation procedures for F(z) by applying vector extrapolation methods to the sequence of partial sums of its Maclaurin series. We analyzed some of the algebraic and analytic properties of the rational approximations thus obtained, and showed that they were akin to Pade approximations. In particular, we proved a Koenig type theorem concerning their poles and a de Montessus type theorem concerning their uniform convergence. We showed how optical approximations to multiple poles and to Laurent expansions about these poles can be constructed. Extensions of the procedures above and the accompanying theoretical results to functions defined in arbitrary linear spaces was also considered. One of the most interesting and immediate applications of the results of this work is to the matrix eigenvalue problem. In a forthcoming paper we exploited the developments of the present work to devise bona fide generalizations of the classical power method that are especially suitable for very large and sparse matrices. These generalizations can be used to approximate simultaneously several of the largest distinct eigenvalues and corresponding eigenvectors and invariant subspaces of arbitrary matrices which may or may not be diagonalizable, and are very closely related with known Krylov subspace methods.
Improved detection of DNA-binding proteins via compression technology on PSSM information.
Wang, Yubo; Ding, Yijie; Guo, Fei; Wei, Leyi; Tang, Jijun
2017-01-01
Since the importance of DNA-binding proteins in multiple biomolecular functions has been recognized, an increasing number of researchers are attempting to identify DNA-binding proteins. In recent years, the machine learning methods have become more and more compelling in the case of protein sequence data soaring, because of their favorable speed and accuracy. In this paper, we extract three features from the protein sequence, namely NMBAC (Normalized Moreau-Broto Autocorrelation), PSSM-DWT (Position-specific scoring matrix-Discrete Wavelet Transform), and PSSM-DCT (Position-specific scoring matrix-Discrete Cosine Transform). We also employ feature selection algorithm on these feature vectors. Then, these features are fed into the training SVM (support vector machine) model as classifier to predict DNA-binding proteins. Our method applys three datasets, namely PDB1075, PDB594 and PDB186, to evaluate the performance of our approach. The PDB1075 and PDB594 datasets are employed for Jackknife test and the PDB186 dataset is used for the independent test. Our method achieves the best accuracy in the Jacknife test, from 79.20% to 86.23% and 80.5% to 86.20% on PDB1075 and PDB594 datasets, respectively. In the independent test, the accuracy of our method comes to 76.3%. The performance of independent test also shows that our method has a certain ability to be effectively used for DNA-binding protein prediction. The data and source code are at https://doi.org/10.6084/m9.figshare.5104084.
Exact simulation of polarized light reflectance by particle deposits
NASA Astrophysics Data System (ADS)
Ramezan Pour, B.; Mackowski, D. W.
2015-12-01
The use of polarimetric light reflection measurements as a means of identifying the physical and chemical characteristics of particulate materials obviously relies on an accurate model of predicting the effects of particle size, shape, concentration, and refractive index on polarized reflection. The research examines two methods for prediction of reflection from plane parallel layers of wavelength—sized particles. The first method is based on an exact superposition solution to Maxwell's time harmonic wave equations for a deposit of spherical particles that are exposed to a plane incident wave. We use a FORTRAN-90 implementation of this solution (the Multiple Sphere T Matrix (MSTM) code), coupled with parallel computational platforms, to directly simulate the reflection from particle layers. The second method examined is based upon the vector radiative transport equation (RTE). Mie theory is used in our RTE model to predict the extinction coefficient, albedo, and scattering phase function of the particles, and the solution of the RTE is obtained from adding—doubling method applied to a plane—parallel configuration. Our results show that the MSTM and RTE predictions of the Mueller matrix elements converge when particle volume fraction in the particle layer decreases below around five percent. At higher volume fractions the RTE can yield results that, depending on the particle size and refractive index, significantly depart from the exact predictions. The particle regimes which lead to dependent scattering effects, and the application of methods to correct the vector RTE for particle interaction, will be discussed.
Adenoviral transduction supports matrix expression of alginate cultured articular chondrocytes.
Pohle, D; Kasch, R; Herlyn, P; Bader, R; Mittlmeier, T; Pützer, B M; Müller-Hilke, B
2012-09-01
The present study examines the effects of adenoviral (Ad) transduction of human primary chondrocyte on transgene expression and matrix production. Primary chondrocytes were isolated from healthy articular cartilage and from cartilage with mild osteoarthritis (OA), transduced with an Ad vector and either immediately cultured in alginate or expanded in monolayer before alginate culture. Proteoglycan production was measured using dimethylmethylene blue (DMMB) assay and matrix gene expression was quantified by real-time PCR. Viral infection of primary chondrocytes results in a stable long time transgene expression for up to 13 weeks. Ad transduction does not significantly alter gene expression and matrix production if chondrocytes are immediately embedded in alginate. However, if expanded prior to three dimension (3D) culture in alginate, chondrocytes produce not only more proteoglycans compared to non-transduced controls, but also display an increased anabolic and decreased catabolic activity compared to non-transduced controls. We therefore suggest that successful autologous chondrocyte transplantation (ACT) should combine adenoviral transduction of primary chondrocytes with expansion in monolayer followed by 3D culture. Future studies will be needed to investigate whether the subsequent matrix production can be further improved by using Ad vectors bearing genes encoding matrix proteins. Copyright © 2012 Wiley Periodicals, Inc.
Optimization of the Brillouin operator on the KNL architecture
NASA Astrophysics Data System (ADS)
Dürr, Stephan
2018-03-01
Experiences with optimizing the matrix-times-vector application of the Brillouin operator on the Intel KNL processor are reported. Without adjustments to the memory layout, performance figures of 360 Gflop/s in single and 270 Gflop/s in double precision are observed. This is with Nc = 3 colors, Nv = 12 right-hand-sides, Nthr = 256 threads, on lattices of size 323 × 64, using exclusively OMP pragmas. Interestingly, the same routine performs quite well on Intel Core i7 architectures, too. Some observations on the much harderWilson fermion matrix-times-vector optimization problem are added.
NASA Technical Reports Server (NTRS)
Bown, R. L.; Christofferson, A.; Lardas, M.; Flanders, H.
1980-01-01
A lambda matrix solution technique is being developed to perform an open loop frequency analysis of a high order dynamic system. The procedure evaluates the right and left latent vectors corresponding to the respective latent roots. The latent vectors are used to evaluate the partial fraction expansion formulation required to compute the flexible body open loop feedback gains for the Space Shuttle Digital Ascent Flight Control System. The algorithm is in the final stages of development and will be used to insure that the feedback gains meet the design specification.
Efficient Kriging via Fast Matrix-Vector Products
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Raykar, Vikas C.; Duraiswami, Ramani; Mount, David M.
2008-01-01
Interpolating scattered data points is a problem of wide ranging interest. Ordinary kriging is an optimal scattered data estimator, widely used in geosciences and remote sensing. A generalized version of this technique, called cokriging, can be used for image fusion of remotely sensed data. However, it is computationally very expensive for large data sets. We demonstrate the time efficiency and accuracy of approximating ordinary kriging through the use of fast matrixvector products combined with iterative methods. We used methods based on the fast Multipole methods and nearest neighbor searching techniques for implementations of the fast matrix-vector products.
NASA Technical Reports Server (NTRS)
Battin, R. H.; Croopnick, S. R.; Edwards, J. A.
1977-01-01
The formulation of a recursive maximum likelihood navigation system employing reference position and velocity vectors as state variables is presented. Convenient forms of the required variational equations of motion are developed together with an explicit form of the associated state transition matrix needed to refer measurement data from the measurement time to the epoch time. Computational advantages accrue from this design in that the usual forward extrapolation of the covariance matrix of estimation errors can be avoided without incurring unacceptable system errors. Simulation data for earth orbiting satellites are provided to substantiate this assertion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter
In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less
Rouet, François-Henry; Li, Xiaoye S.; Ghysels, Pieter; ...
2016-06-30
In this paper, we present a distributed-memory library for computations with dense structured matrices. A matrix is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with low numerical rank. Here, we use Hierarchically Semi-Separable (HSS) representations. Such matrices appear in many applications, for example, finite-element methods, boundary element methods, and so on. Exploiting this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. The compression algorithm that we use, that computes the HSS form of an input dense matrix, reliesmore » on randomized sampling with a novel adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the parallelization of structured matrix-vector product, structured factorization, and solution routines. The efficiency of the approach is demonstrated on large problems from different academic and industrial applications, on up to 8,000 cores. Finally, this work is part of a more global effort, the STRUctured Matrices PACKage (STRUMPACK) software package for computations with sparse and dense structured matrices. Hence, although useful on their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.« less
Effect of cross-correlation on track-to-track fusion
NASA Astrophysics Data System (ADS)
Saha, Rajat K.
1994-07-01
Since the advent of target tracking systems employing a diverse mixture of sensors, there has been increasing recognition by air defense system planners and other military system analysts of the need to integrate these tracks so that a clear air picture can be obtained in a command center. A popular methodology to achieve this goal is to perform track-to-track fusion, which performs track-to-track association as well as kinematic state vector fusion. This paper seeks to answer analytically the extent of improvement achievable by means of kinetic state vector fusion when the tracks are obtained from dissimilar sensors (e.g., Radar/ESM/IRST/IFF). It is well known that evaluation of the performance of state vector fusion algorithms at steady state must take into account the effects of cross-correlation between eligible tracks introduced by the input noise which, unfortunately, is often neglected because of added computational complexity. In this paper, an expression for the steady-state cross-covariance matrix for a 2D state vector track-to-track fusion is obtained. This matrix is shown to be a function of the parameters of the Kalman filters associated with the candidate tracks being fused. Conditions for positive definiteness of the cross-covariance matrix have been derived and the effect of positive definiteness on performance of track-to-track fusion is also discussed.
Progress on adenovirus-vectored universal influenza vaccines.
Xiang, Kui; Ying, Guan; Yan, Zhou; Shanshan, Yan; Lei, Zhang; Hongjun, Li; Maosheng, Sun
2015-01-01
Influenza virus (IFV) infection causes serious health problems and heavy financial burdens each year worldwide. The classical inactivated influenza virus vaccine (IIVV) and live attenuated influenza vaccine (LAIV) must be updated regularly to match the new strains that evolve due to antigenic drift and antigenic shift. However, with the discovery of broadly neutralizing antibodies that recognize conserved antigens, and the CD8(+) T cell responses targeting viral internal proteins nucleoprotein (NP), matrix protein 1 (M1) and polymerase basic 1 (PB1), it is possible to develop a universal influenza vaccine based on the conserved hemagglutinin (HA) stem, NP, and matrix proteins. Recombinant adenovirus (rAd) is an ideal influenza vaccine vector because it has an ideal stability and safety profile, induces balanced humoral and cell-mediated immune responses due to activation of innate immunity, provides 'self-adjuvanting' activity, can mimic natural IFV infection, and confers seamless protection against mucosal pathogens. Moreover, this vector can be developed as a low-cost, rapid-response vaccine that can be quickly manufactured. Therefore, an adenovirus vector encoding conserved influenza antigens holds promise in the development of a universal influenza vaccine. This review will summarize the progress in adenovirus-vectored universal flu vaccines and discuss future novel approaches.
Multiple polarization states of vector soliton in fiber laser
NASA Astrophysics Data System (ADS)
Chen, Weicheng; Xu, Wencheng; Cao, Hui; Han, Dingan
2007-11-01
Vector soliton is obtained in erbium-doped fiber laser via nonlinear polarization rotation techniques. In experiment, we observe the every 4- and 7-pulse sinusoidal peak modulation. Temporal pulse sinusoidal peak modulation owes to evolution behavior of vector solitons in multiple polarization states. The polarizer in the laser modulates the mode-locked pulses with different polarization states into periodical pulse train intensities modulation. Moreover, the increasing pumping power lead to the appearance of the harmonic pulses and change the equivalent beat length to accelerate the polarization rotation. When the laser cavity length is the n-th multiple ratios to the beat length to maintain the mode-locking, the mode-locked vector soliton is in n-th multiple polarization states, exhibiting every n-pulse sinusoidal peak modulation.
A Vector Representation for Thermodynamic Relationships
ERIC Educational Resources Information Center
Pogliani, Lionello
2006-01-01
The existing vector formalism method for thermodynamic relationship maintains tractability and uses accessible mathematics, which can be seen as a diverting and entertaining step into the mathematical formalism of thermodynamics and as an elementary application of matrix algebra. The method is based on ideas and operations apt to improve the…
Piechaczek, C; Fetzer, C; Baiker, A; Bode, J; Lipps, H J
1999-01-01
We have developed an episomal replicating expression vector in which the SV40 gene coding for the large T-antigen was replaced by chromosomal scaffold/matrix attached regions. Southern analysis as well as vector rescue experiments in CHO cells and in Escherichia coli demonstrate that the vector replicates episomally in CHO cells. It occurs in a very low copy number in the cells and is stably maintained over more than 100 generations without selection pressure. PMID:9862961
Vector nature of multi-soliton patterns in a passively mode-locked figure-eight fiber laser.
Ning, Qiu-Yi; Liu, Hao; Zheng, Xu-Wu; Yu, Wei; Luo, Ai-Ping; Huang, Xu-Guang; Luo, Zhi-Chao; Xu, Wen-Cheng; Xu, Shan-Hui; Yang, Zhong-Min
2014-05-19
The vector nature of multi-soliton dynamic patterns was investigated in a passively mode-locked figure-eight fiber laser based on the nonlinear amplifying loop mirror (NALM). By properly adjusting the cavity parameters such as the pump power level and intra-cavity polarization controllers (PCs), in addition to the fundamental vector soliton, various vector multi-soliton regimes were observed, such as the random static distribution of vector multiple solitons, vector soliton cluster, vector soliton flow, and the state of vector multiple solitons occupying the whole cavity. Both the polarization-locked vector solitons (PLVSs) and the polarization-rotating vector solitons (PRVSs) were observed for fundamental soliton and each type of multi-soliton patterns. The obtained results further reveal the fundamental physics of multi-soliton patterns and demonstrate that the figure-eight fiber lasers are indeed a good platform for investigating the vector nature of different soliton types.
NASA Astrophysics Data System (ADS)
Kanaun, S.; Markov, A.
2017-06-01
An efficient numerical method for solution of static problems of elasticity for an infinite homogeneous medium containing inhomogeneities (cracks and inclusions) is developed. Finite number of heterogeneous inclusions and planar parallel cracks of arbitrary shapes is considered. The problem is reduced to a system of surface integral equations for crack opening vectors and volume integral equations for stress tensors inside the inclusions. For the numerical solution of these equations, a class of Gaussian approximating functions is used. The method based on these functions is mesh free. For such functions, the elements of the matrix of the discretized system are combinations of explicit analytical functions and five standard 1D-integrals that can be tabulated. Thus, the numerical integration is excluded from the construction of the matrix of the discretized problem. For regular node grids, the matrix of the discretized system has Toeplitz's properties, and Fast Fourier Transform technique can be used for calculation matrix-vector products of such matrices.
Shepard, Jaclyn A.; Huang, Alyssa; Shikanova, Ariella; Shea, Lonnie D.
2010-01-01
In regenerative medicine, hydrogels are employed to fill defects and support the infiltration of cells that can ultimately regenerate tissue. Gene delivery within hydrogels targeting infiltrating cells has the potential to promote tissue formation, but the delivery efficiency of nonviral vectors within hydrogels is low hindering their applicability in tissue regeneration. To improve their functionality, we have conducted a mechanistic study to investigate the contribution of cell migration and matrix degradation on gene delivery. In this report, lipoplexes were entrapped within hydrogels based on poly(ethylene glycol) (PEG) crosslinked with peptides containing matrix metalloproteinase degradable sequences. The mesh size of these hydrogels is substantially less than the size of the entrapped lipoplexes, which can function to retain vectors. Cell migration and transfection were simultaneously measured within hydrogels with varying density of cell adhesion sites (Arg-Gly-Asp peptides) and solids content. Increasing RGD density increased expression levels up to 100-fold, while greater solids content sustained expression levels for 16 days. Increasing RGD density and decreasing solids content increased cell migration, which indicates expression levels increase with increased cell migration. Initially exposing cells to vector resulted in transient expression that declined after 2 days, verifying the requirement of migration to sustain expression. Transfected cells were predominantly located within the population of migrating cells for hydrogels that supported cell migration. Although the small mesh size retained at least 70% of the lipoplexes in the absence of cells after 32 days, the presence of cells decreased retention to 10% after 16 days. These results indicate that vectors retained within hydrogels contact migrating cells, and that persistent cell migration can maintain elevated expression levels. Thus matrix degradation and cell migration are fundamental design parameters for maximizing gene delivery from hydrogels. PMID:20450944
Study on diagnosis of micro-biomechanical structure using optical coherence tomography
NASA Astrophysics Data System (ADS)
Saeki, Souichi; Hashimoto, Youhei; Saito, Takashi; Hiro, Takafumi; Matsuzaki, Masunori
2007-02-01
Acute coronary syndromes, e.g. myocardial infarctions, are caused by the rupture of unstable plaques on coronary arteries. The stability of plaque, which depends on biomechanical properties of fibrous cap, should be diagnosed crucially. Recently, Optical Coherence Tomography (OCT) has been developed as a cross-sectional imaging method of microstructural biological tissue with high resolution 1~10 μm. Multi-functional OCT system has been promising, e.g. an estimator of biomechanical characteristics. It has been, however, difficult to estimate biomechanical characteristics, because OCT images have just speckle patterns by back-scattering light from tissue. In this study, presented is Optical Coherence Straingraphy (OCS) on the basis of OCT system, which can diagnose tissue strain distribution. This is basically composed of Recursive Cross-correlation technique (RC), which can provide a displacement vector distribution with high resolution. Furthermore, Adjacent Cross-correlation Multiplication (ACM) is introduced as a speckle noise reduction method. Multiplying adjacent correlation maps can eliminate anomalies from speckle noise, and then can enhance S/N in the determination of maximum correlation coefficient. Error propagation also can be further prevented by introducing to the recursive algorithm (RC). In addition, the spatial vector interpolation by local least square method is introduced to remove erroneous vectors and smooth the vector distribution. This was numerically applied to compressed elastic heterogeneous tissue samples to carry out the accuracy verifications. Consequently, it was quantitatively confirmed that its accuracy of displacement vectors and strain matrix components could be enhanced, comparing with the conventional method. Therefore, the proposed method was validated by the identification of different elastic objects with having nearly high resolution for that defined by optical system.
Tank, Juliane; Lindner, Diana; Wang, Xiaomin; Stroux, Andrea; Gilke, Leona; Gast, Martina; Zietsch, Christin; Skurk, Carsten; Scheibenbogen, Carmen; Klingel, Karin; Lassner, Dirk; Kühl, Uwe; Schultheiss, Heinz-Peter; Westermann, Dirk; Poller, Wolfgang
2014-01-01
Therapeutic targets of broad relevance are likely located in pathogenic pathways common to disorders of various etiologies. Screening for targets of this type revealed CCN genes to be consistently upregulated in multiple cardiomyopathies. We developed RNA interference (RNAi) to silence CCN2 and found this single-target approach to block multiple proinflammatory and profibrotic pathways in activated primary cardiac fibroblasts (PCFBs). The RNAi-strategy was developed in murine PCFBs and then investigated in "individual" human PCFBs grown from human endomyocardial biopsies (EMBs). Screening of short hairpin RNA (shRNA) sequences for high silencing efficacy and specificity yielded RNAi adenovectors silencing CCN2 in murine or human PCFBs, respectively. Comparison of RNAi with CCN2-modulating microRNA (miR) vectors expressing miR-30c or miR-133b showed higher efficacy of RNAi. In murine PCFBs, CCN2 silencing resulted in strongly reduced expression of stretch-induced chemokines (Ccl2, Ccl7, Ccl8), matrix metalloproteinases (MMP2, MMP9), extracellular matrix (Col3a1), and a cell-to-cell contact protein (Cx43), suggesting multiple signal pathways to be linked to CCN2. Immune cell chemotaxis towards CCN2-depleted PCFBs was significantly reduced. We demonstrate here that this RNAi strategy is technically applicable to "individual" human PCFBs, too, but that these display individually strikingly different responses to CCN2 depletion. Either genomically encoded factors or stable epigenetic modification may explain different responses between individual PCFBs. The new RNAi approach addresses a key regulator protein induced in cardiomyopathies. Investigation of this and other molecular therapies in individual human PCBFs may help to dissect differential pathogenic processes between otherwise similar disease entities and individuals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Combined group ECC protection and subgroup parity protection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gara, Alan; Cheng, Dong; Heidelberger, Philip
A method and system are disclosed for providing combined error code protection and subgroup parity protection for a given group of n bits. The method comprises the steps of identifying a number, m, of redundant bits for said error protection; and constructing a matrix P, wherein multiplying said given group of n bits with P produces m redundant error correction code (ECC) protection bits, and two columns of P provide parity protection for subgroups of said given group of n bits. In the preferred embodiment of the invention, the matrix P is constructed by generating permutations of m bit widemore » vectors with three or more, but an odd number of, elements with value one and the other elements with value zero; and assigning said vectors to rows of the matrix P.« less
Shatokhina, Iuliia; Obereder, Andreas; Rosensteiner, Matthias; Ramlau, Ronny
2013-04-20
We present a fast method for the wavefront reconstruction from pyramid wavefront sensor (P-WFS) measurements. The method is based on an analytical relation between pyramid and Shack-Hartmann sensor (SH-WFS) data. The algorithm consists of two steps--a transformation of the P-WFS data to SH data, followed by the application of cumulative reconstructor with domain decomposition, a wavefront reconstructor from SH-WFS measurements. The closed loop simulations confirm that our method provides the same quality as the standard matrix vector multiplication method. A complexity analysis as well as speed tests confirm that the method is very fast. Thus, the method can be used on extremely large telescopes, e.g., for eXtreme adaptive optics systems.
Framework to trade optimality for local processing in large-scale wavefront reconstruction problems.
Haber, Aleksandar; Verhaegen, Michel
2016-11-15
We show that the minimum variance wavefront estimation problems permit localized approximate solutions, in the sense that the wavefront value at a point (excluding unobservable modes, such as the piston mode) can be approximated by a linear combination of the wavefront slope measurements in the point's neighborhood. This enables us to efficiently compute a wavefront estimate by performing a single sparse matrix-vector multiplication. Moreover, our results open the possibility for the development of wavefront estimators that can be easily implemented in a decentralized/distributed manner, and in which the estimate optimality can be easily traded for computational efficiency. We numerically validate our approach on Hudgin wavefront sensor geometries, and the results can be easily generalized to Fried geometries.
New-Sum: A Novel Online ABFT Scheme For General Iterative Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Dingwen; Song, Shuaiwen; Krishnamoorthy, Sriram
Emerging high-performance computing platforms, with large component counts and lower power margins, are anticipated to be more susceptible to soft errors in both logic circuits and memory subsystems. We present an online algorithm-based fault tolerance (ABFT) approach to efficiently detect and recover soft errors for general iterative methods. We design a novel checksum-based encoding scheme for matrix-vector multiplication that is resilient to both arithmetic and memory errors. Our design decouples the checksum updating process from the actual computation, and allows adaptive checksum overhead control. Building on this new encoding mechanism, we propose two online ABFT designs that can effectively recovermore » from errors when combined with a checkpoint/rollback scheme.« less
Frozen orbit realization using LQR analogy
NASA Astrophysics Data System (ADS)
Nagarajan, N.; Rayan, H. Reno
In the case of remote sensing orbits, the Frozen Orbit concept minimizes altitude variations over a given region using passive means. This is achieved by establishing the mean eccentricity vector at the orbital poles i.e., by fixing the mean argument of perigee at 90 deg with an appropriate eccentricity to balance the perturbations due to zonal harmonics J2 and J3 of the Earth's potential. Eccentricity vector is a vector whose magnitude is the eccentricity and direction is the argument of perigee. The launcher dispersions result in an eccentricity vector which is away from the frozen orbit values. The objective is then to formulate an orbit maneuver strategy to optimize the fuel required to achieve the frozen orbit in the presence of visibility and impulse constraints. It is shown that the motion of the eccentricity vector around the frozen perigee can be approximated as a circle. Combining the circular motion of the eccentricity vector around the frozen point and the maneuver equation, the following discrete equation is obtained. X(k+1) = AX(k) + Bu(k), where X is the state (i.e. eccentricity vector components), A the state transition matrix, u the scalar control force (i.e. dV in this case) and B the control matrix which transforms dV into eccentricity vector change. Based on this, it is shown that the problem of optimizing the fuel can be treated as a Linear Quadratic Regulator (LQR) problem in which the maneuver can be solved by using control system design tools like MATLAB by deriving an analogy LQR design.
Optical implementation of inner product neural associative memory
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor)
1995-01-01
An optical implementation of an inner-product neural associative memory is realized with a first spatial light modulator for entering an initial two-dimensional N-tuple vector and for entering a thresholded output vector image after each iteration until convergence is reached, and a second spatial light modulator for entering M weighted vectors of inner-product scalars multiplied with each of the M stored vectors, where the inner-product scalars are produced by multiplication of the initial input vector in the first iterative cycle (and thresholded vectors in subsequent iterative cycles) with each of the M stored vectors, and the weighted vectors are produced by multiplication of the scalars with corresponding ones of the stored vectors. A Hughes liquid crystal light valve is used for the dual function of summing the weighted vectors and thresholding the sum vector. The thresholded vector is then entered through the first spatial light modulator for reiteration of the process cycle until convergence is reached.
On the computer analysis of structures and mechanical systems
NASA Technical Reports Server (NTRS)
Bennett, B. E.
1984-01-01
The governing equations for the analysis of open branch-chain mechanical systems are developed in a form suitable for implementation in a general purpose finite element computer program. Lagrange's form of d'Alembert's principle is used to derive the system mass matrix and force vector. The generalized coordinates are selected as the unconstrained relative degrees of freedom giving the position and orientation of each slave link with respect to their master link. Each slave link may have from zero to six degrees of freedom relative to the reference frames of its master link. A strategy for automatic generation of the system mass matrix and force vector is described.
A feedforward artificial neural network based on quantum effect vector-matrix multipliers.
Levy, H J; McGill, T C
1993-01-01
The vector-matrix multiplier is the engine of many artificial neural network implementations because it can simulate the way in which neurons collect weighted input signals from a dendritic arbor. A new technology for building analog weighting elements that is theoretically capable of densities and speeds far beyond anything that conventional VLSI in silicon could ever offer is presented. To illustrate the feasibility of such a technology, a small three-layer feedforward prototype network with five binary neurons and six tri-state synapses was built and used to perform all of the fundamental logic functions: XOR, AND, OR, and NOT.
Solving large-scale dynamic systems using band Lanczos method in Rockwell NASTRAN on CRAY X-MP
NASA Technical Reports Server (NTRS)
Gupta, V. K.; Zillmer, S. D.; Allison, R. E.
1986-01-01
The improved cost effectiveness using better models, more accurate and faster algorithms and large scale computing offers more representative dynamic analyses. The band Lanczos eigen-solution method was implemented in Rockwell's version of 1984 COSMIC-released NASTRAN finite element structural analysis computer program to effectively solve for structural vibration modes including those of large complex systems exceeding 10,000 degrees of freedom. The Lanczos vectors were re-orthogonalized locally using the Lanczos Method and globally using the modified Gram-Schmidt method for sweeping rigid-body modes and previously generated modes and Lanczos vectors. The truncated band matrix was solved for vibration frequencies and mode shapes using Givens rotations. Numerical examples are included to demonstrate the cost effectiveness and accuracy of the method as implemented in ROCKWELL NASTRAN. The CRAY version is based on RPK's COSMIC/NASTRAN. The band Lanczos method was more reliable and accurate and converged faster than the single vector Lanczos Method. The band Lanczos method was comparable to the subspace iteration method which was a block version of the inverse power method. However, the subspace matrix tended to be fully populated in the case of subspace iteration and not as sparse as a band matrix.
A three-dimensional nonlinear Timoshenko beam based on the core-congruential formulation
NASA Technical Reports Server (NTRS)
Crivelli, Luis A.; Felippa, Carlos A.
1992-01-01
A three-dimensional, geometrically nonlinear two-node Timoshenkoo beam element based on the total Larangrian description is derived. The element behavior is assumed to be linear elastic, but no restrictions are placed on magnitude of finite rotations. The resulting element has twelve degrees of freedom: six translational components and six rotational-vector components. The formulation uses the Green-Lagrange strains and second Piola-Kirchhoff stresses as energy-conjugate variables and accounts for the bending-stretching and bending-torsional coupling effects without special provisions. The core-congruential formulation (CCF) is used to derived the discrete equations in a staged manner. Core equations involving the internal force vector and tangent stiffness matrix are developed at the particle level. A sequence of matrix transformations carries these equations to beam cross-sections and finally to the element nodal degrees of freedom. The choice of finite rotation measure is made in the next-to-last transformation stage, and the choice of over-the-element interpolation in the last one. The tangent stiffness matrix is found to retain symmetry if the rotational vector is chosen to measure finite rotations. An extensive set of numerical examples is presented to test and validate the present element.
Technique for Solving Electrically Small to Large Structures for Broadband Applications
NASA Technical Reports Server (NTRS)
Jandhyala, Vikram; Chowdhury, Indranil
2011-01-01
Fast iterative algorithms are often used for solving Method of Moments (MoM) systems, having a large number of unknowns, to determine current distribution and other parameters. The most commonly used fast methods include the fast multipole method (FMM), the precorrected fast Fourier transform (PFFT), and low-rank QR compression methods. These methods reduce the O(N) memory and time requirements to O(N log N) by compressing the dense MoM system so as to exploit the physics of Green s Function interactions. FFT-based techniques for solving such problems are efficient for spacefilling and uniform structures, but their performance substantially degrades for non-uniformly distributed structures due to the inherent need to employ a uniform global grid. FMM or QR techniques are better suited than FFT techniques; however, neither the FMM nor the QR technique can be used at all frequencies. This method has been developed to efficiently solve for a desired parameter of a system or device that can include both electrically large FMM elements, and electrically small QR elements. The system or device is set up as an oct-tree structure that can include regions of both the FMM type and the QR type. The system is enclosed with a cube at a 0- th level, splitting the cube at the 0-th level into eight child cubes. This forms cubes at a 1st level, recursively repeating the splitting process for cubes at successive levels until a desired number of levels is created. For each cube that is thus formed, neighbor lists and interaction lists are maintained. An iterative solver is then used to determine a first matrix vector product for any electrically large elements as well as a second matrix vector product for any electrically small elements that are included in the structure. These matrix vector products for the electrically large and small elements are combined, and a net delta for a combination of the matrix vector products is determined. The iteration continues until a net delta is obtained that is within the predefined limits. The matrix vector products that were last obtained are used to solve for the desired parameter. The solution for the desired parameter is then presented to a user in a tangible form; for example, on a display.
A Bayesian method for detecting pairwise associations in compositional data
Ventz, Steffen; Huttenhower, Curtis
2017-01-01
Compositional data consist of vectors of proportions normalized to a constant sum from a basis of unobserved counts. The sum constraint makes inference on correlations between unconstrained features challenging due to the information loss from normalization. However, such correlations are of long-standing interest in fields including ecology. We propose a novel Bayesian framework (BAnOCC: Bayesian Analysis of Compositional Covariance) to estimate a sparse precision matrix through a LASSO prior. The resulting posterior, generated by MCMC sampling, allows uncertainty quantification of any function of the precision matrix, including the correlation matrix. We also use a first-order Taylor expansion to approximate the transformation from the unobserved counts to the composition in order to investigate what characteristics of the unobserved counts can make the correlations more or less difficult to infer. On simulated datasets, we show that BAnOCC infers the true network as well as previous methods while offering the advantage of posterior inference. Larger and more realistic simulated datasets further showed that BAnOCC performs well as measured by type I and type II error rates. Finally, we apply BAnOCC to a microbial ecology dataset from the Human Microbiome Project, which in addition to reproducing established ecological results revealed unique, competition-based roles for Proteobacteria in multiple distinct habitats. PMID:29140991
NASA Technical Reports Server (NTRS)
Sirlin, Samuel W.
1993-01-01
Eight-page report describes systems of notation used most commonly to represent tensors of various ranks, with emphasis on tensors in Cartesian coordinate systems. Serves as introductory or refresher text for scientists, engineers, and others familiar with basic concepts of coordinate systems, vectors, and partial derivatives. Indicial tensor, vector, dyadic, and matrix notations, and relationships among them described.
Solid-state lighting life prediction using extended Kalman filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall, Pradeep; Wei, Junchao; Davis, Lynn
2013-07-16
Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. The U.S. Department of Energy has made a long term commitment to advance the efficiency, understandingmore » and development of solid-state lighting (SSL) and is making a strong push for the acceptance and use of SSL products to reduce overall energy consumption attributable to lighting. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is defined by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of SSL Luminaires from LM-80 test data. The TM-21 model uses an Arrhenius Equation with an Activation Energy, Pre-decay factor and Decay Rates. Several failure mechanisms may be active in a luminaire at a single time causing lumen depreciation. The underlying TM-21 Arrhenius Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, a Kalman Filter and Extended Kalman Filters have been used to develop a 70% Lumen Maintenance Life Prediction Model for a LEDs used in SSL luminaires. This model can be used to calculate acceleration factors, evaluate failure-probability and identify ALT methodologies for reducing test time. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state has been described in state space form using the measurement of the feature vector, velocity of feature vector change and the acceleration of the feature vector change. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. The measured state variable has been related to the underlying damage using physics-based models. Life prediction of L70 life for the LEDs used in SSL luminaires from KF and EKF based models have been compared with the TM-21 model predictions and experimental data.« less
Compressed Continuous Computation v. 12/20/2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorodetsky, Alex
2017-02-17
A library for performing numerical computation with low-rank functions. The (C3) library enables performing continuous linear and multilinear algebra with multidimensional functions. Common tasks include taking "matrix" decompositions of vector- or matrix-valued functions, approximating multidimensional functions in low-rank format, adding or multiplying functions together, integrating multidimensional functions.
A matrix equation solution by an optimization technique
NASA Technical Reports Server (NTRS)
Johnson, M. J.; Mittra, R.
1972-01-01
The computer solution of matrix equations is often difficult to accomplish due to an ill-conditioned matrix or high noise levels. Two methods of solution are compared for matrices of various degrees of ill-conditioning and for various noise levels in the right hand side vector. One method employs the usual Gaussian elimination. The other solves the equation by an optimization technique and employs a function minimization subroutine.
Tensor manifold-based extreme learning machine for 2.5-D face recognition
NASA Astrophysics Data System (ADS)
Chong, Lee Ying; Ong, Thian Song; Teoh, Andrew Beng Jin
2018-01-01
We explore the use of the Gabor regional covariance matrix (GRCM), a flexible matrix-based descriptor that embeds the Gabor features in the covariance matrix, as a 2.5-D facial descriptor and an effective means of feature fusion for 2.5-D face recognition problems. Despite its promise, matching is not a trivial problem for GRCM since it is a special instance of a symmetric positive definite (SPD) matrix that resides in non-Euclidean space as a tensor manifold. This implies that GRCM is incompatible with the existing vector-based classifiers and distance matchers. Therefore, we bridge the gap of the GRCM and extreme learning machine (ELM), a vector-based classifier for the 2.5-D face recognition problem. We put forward a tensor manifold-compliant ELM and its two variants by embedding the SPD matrix randomly into reproducing kernel Hilbert space (RKHS) via tensor kernel functions. To preserve the pair-wise distance of the embedded data, we orthogonalize the random-embedded SPD matrix. Hence, classification can be done using a simple ridge regressor, an integrated component of ELM, on the random orthogonal RKHS. Experimental results show that our proposed method is able to improve the recognition performance and further enhance the computational efficiency.
NASA Astrophysics Data System (ADS)
Shi, X.; Utada, H.; Jiaying, W.
2009-12-01
The vector finite-element method combined with divergence corrections based on the magnetic field H, referred to as VFEH++ method, is developed to simulate the magnetotelluric (MT) responses of 3-D conductivity models. The advantages of the new VFEH++ method are the use of edge-elements to eliminate the vector parasites and the divergence corrections to explicitly guarantee the divergence-free conditions in the whole modeling domain. 3-D MT topographic responses are modeling using the new VFEH++ method, and are compared with those calculated by other numerical methods. The results show that MT responses can be modeled highly accurate using the VFEH+ +method. The VFEH++ algorithm is also employed for the 3-D MT data inversion incorporating topography. The 3-D MT inverse problem is formulated as a minimization problem of the regularized misfit function. In order to avoid the huge memory requirement and very long time for computing the Jacobian sensitivity matrix for Gauss-Newton method, we employ the conjugate gradient (CG) approach to solve the inversion equation. In each iteration of CG algorithm, the cost computation is the product of the Jacobian sensitivity matrix with a model vector x or its transpose with a data vector y, which can be transformed into two pseudo-forwarding modeling. This avoids the full explicitly Jacobian matrix calculation and storage which leads to considerable savings in the memory required by the inversion program in PC computer. The performance of CG algorithm will be illustrated by several typical 3-D models with horizontal earth surface and topographic surfaces. The results show that the VFEH++ and CG algorithms can be effectively employed to 3-D MT field data inversion.
Sehgal, Lalit; Budnar, Srikanth; Bhatt, Khyati; Sansare, Sneha; Mukhopadhaya, Amitabha; Kalraiya, Rajiv D; Dalal, Sorab N
2012-10-01
The study of protein-protein interactions, protein localization, protein organization into higher order structures and organelle dynamics in live cells, has greatly enhanced the understanding of various cellular processes. Live cell imaging experiments employ plasmid or viral vectors to express the protein/proteins of interest fused to a fluorescent protein. Unlike plasmid vectors, lentiviral vectors can be introduced into both dividing and non dividing cells, can be pseudotyped to infect a broad or narrow range of cells, and can be used to generate transgenic animals. However, the currently available lentiviral vectors are limited by the choice of fluorescent protein tag, choice of restriction enzyme sites in the Multiple Cloning Sites (MCS) and promoter choice for gene expression. In this report, HIV-1 based bi-cistronic lentiviral vectors have been generated that drive the expression of multiple fluorescent tags (EGFP, mCherry, ECFP, EYFP and dsRed), using two different promoters. The presence of a unique MCS with multiple restriction sites allows the generation of fusion proteins with the fluorescent tag of choice, allowing analysis of multiple fusion proteins in live cell imaging experiments. These novel lentiviral vectors are improved delivery vehicles for gene transfer applications and are important tools for live cell imaging in vivo.
Large Electroweak Corrections to Vector-Boson Scattering at the Large Hadron Collider.
Biedermann, Benedikt; Denner, Ansgar; Pellen, Mathieu
2017-06-30
For the first time full next-to-leading-order electroweak corrections to off-shell vector-boson scattering are presented. The computation features the complete matrix elements, including all nonresonant and off-shell contributions, to the electroweak process pp→μ^{+}ν_{μ}e^{+}ν_{e}jj and is fully differential. We find surprisingly large corrections, reaching -16% for the fiducial cross section, as an intrinsic feature of the vector-boson-scattering processes. We elucidate the origin of these large electroweak corrections upon using the double-pole approximation and the effective vector-boson approximation along with leading-logarithmic corrections.
NASA Astrophysics Data System (ADS)
Padhee, Varsha
Common Mode Voltage (CMV) in any power converter has been the major contributor to premature motor failures, bearing deterioration, shaft voltage build up and electromagnetic interference. Intelligent control methods like Space Vector Pulse Width Modulation (SVPWM) techniques provide immense potential and flexibility to reduce CMV, thereby targeting all the afore mentioned problems. Other solutions like passive filters, shielded cables and EMI filters add to the volume and cost metrics of the entire system. Smart SVPWM techniques therefore, come with a very important advantage of being an economical solution. This thesis discusses a modified space vector technique applied to an Indirect Matrix Converter (IMC) which results in the reduction of common mode voltages and other advanced features. The conventional indirect space vector pulse-width modulation (SVPWM) method of controlling matrix converters involves the usage of two adjacent active vectors and one zero vector for both rectifying and inverting stages of the converter. By suitable selection of space vectors, the rectifying stage of the matrix converter can generate different levels of virtual DC-link voltage. This capability can be exploited for operation of the converter in different ranges of modulation indices for varying machine speeds. This results in lower common mode voltage and improves the harmonic spectrum of the output voltage, without increasing the number of switching transitions as compared to conventional modulation. To summarize it can be said that the responsibility of formulating output voltages with a particular magnitude and frequency has been transferred solely to the rectifying stage of the IMC. Estimation of degree of distortion in the three phase output voltage is another facet discussed in this thesis. An understanding of the SVPWM technique and the switching sequence of the space vectors in detail gives the potential to estimate the RMS value of the switched output voltage of any converter. This conceivably aids the sizing and design of output passive filters. An analytical estimation method has been presented to achieve this purpose for am IMC. Knowledge of the fundamental component in output voltage can be utilized to calculate its Total Harmonic Distortion (THD). The effectiveness of the proposed SVPWM algorithms and the analytical estimation technique is substantiated by simulations in MATLAB / Simulink and experiments on a laboratory prototype of the IMC. Proper comparison plots have been provided to contrast the performance of the proposed methods with the conventional SVPWM method. The behavior of output voltage distortion and CMV with variation in operating parameters like modulation index and output frequency has also been analyzed.
Detection of LSB+/-1 steganography based on co-occurrence matrix and bit plane clipping
NASA Astrophysics Data System (ADS)
Abolghasemi, Mojtaba; Aghaeinia, Hassan; Faez, Karim; Mehrabi, Mohammad Ali
2010-01-01
Spatial LSB+/-1 steganography changes smooth characteristics between adjoining pixels of the raw image. We present a novel steganalysis method for LSB+/-1 steganography based on feature vectors derived from the co-occurrence matrix in the spatial domain. We investigate how LSB+/-1 steganography affects the bit planes of an image and show that it changes more least significant bit (LSB) planes of it. The co-occurrence matrix is derived from an image in which some of its most significant bit planes are clipped. By this preprocessing, in addition to reducing the dimensions of the feature vector, the effects of embedding were also preserved. We compute the co-occurrence matrix in different directions and with different dependency and use the elements of the resulting co-occurrence matrix as features. This method is sensitive to the data embedding process. We use a Fisher linear discrimination (FLD) classifier and test our algorithm on different databases and embedding rates. We compare our scheme with the current LSB+/-1 steganalysis methods. It is shown that the proposed scheme outperforms the state-of-the-art methods in detecting the LSB+/-1 steganographic method for grayscale images.
Zhang, Ying-Hui; Wang, Juan-Juan; Li, Min; Zheng, Han-Xi; Xu, Lan; Chen, You-Guo
2016-03-01
The objectives of this study were to investigate the functional effect of matrix metallopeptidase 14 (MMP14) on cell invasion in cervical cancer cells (HeLa line) and to study the underlying molecular mechanisms. Expression vector of short hairpin RNA targeting MMP14 was treated in HeLa cells, and then, transfection efficiency was verified by a florescence microscope. Transwell assay was used to investigate cell invasion ability in HeLa cells. Quantitative polymerase chain reaction and Western blotting analysis were used to detect the expression of MMP14 and relative factors in messenger RNA and protein levels, respectively. Matrix metallopeptidase 14 short hairpin RNA expression vector transfection obviously decreased MMP14 expression in messenger RNA and protein levels. Down-regulation of MMP14 suppressed invasion ability of HeLa cells and reduced transforming growth factor β1 and vascular endothelial growth factor B expressions. Furthermore, MMP14 knockdown decreased bone sialoprotein and enhanced forkhead box protein L2 expression in both RNA and protein levels. Matrix metallopeptidase 14 plays an important role in regulating invasion of HeLa cells. Matrix metallopeptidase 14 knockdown contributes to attenuating the malignant phenotype of cervical cancer cell.
Efficient Implementations of the Quadrature-Free Discontinuous Galerkin Method
NASA Technical Reports Server (NTRS)
Lockard, David P.; Atkins, Harold L.
1999-01-01
The efficiency of the quadrature-free form of the dis- continuous Galerkin method in two dimensions, and briefly in three dimensions, is examined. Most of the work for constant-coefficient, linear problems involves the volume and edge integrations, and the transformation of information from the volume to the edges. These operations can be viewed as matrix-vector multiplications. Many of the matrices are sparse as a result of symmetry, and blocking and specialized multiplication routines are used to account for the sparsity. By optimizing these operations, a 35% reduction in total CPU time is achieved. For nonlinear problems, the calculation of the flux becomes dominant because of the cost associated with polynomial products and inversion. This component of the work can be reduced by up to 75% when the products are approximated by truncating terms. Because the cost is high for nonlinear problems on general elements, it is suggested that simplified physics and the most efficient element types be used over most of the domain.
Precoded spatial multiplexing MIMO system with spatial component interleaver.
Gao, Xiang; Wu, Zhanji
In this paper, the performance of precoded bit-interleaved coded modulation (BICM) spatial multiplexing multiple-input multiple-output (MIMO) system with spatial component interleaver is investigated. For the ideal precoded spatial multiplexing MIMO system with spatial component interleaver based on singular value decomposition (SVD) of the MIMO channel, the average pairwise error probability (PEP) of coded bits is derived. Based on the PEP analysis, the optimum spatial Q-component interleaver design criterion is provided to achieve the minimum error probability. For the limited feedback precoded proposed scheme with linear zero forcing (ZF) receiver, in order to minimize a bound on the average probability of a symbol vector error, a novel effective signal-to-noise ratio (SNR)-based precoding matrix selection criterion and a simplified criterion are proposed. Based on the average mutual information (AMI)-maximization criterion, the optimal constellation rotation angles are investigated. Simulation results indicate that the optimized spatial multiplexing MIMO system with spatial component interleaver can achieve significant performance advantages compared to the conventional spatial multiplexing MIMO system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebis, Joseph; Oliker, Leonid; Shalf, John
The disparity between microprocessor clock frequencies and memory latency is a primary reason why many demanding applications run well below peak achievable performance. Software controlled scratchpad memories, such as the Cell local store, attempt to ameliorate this discrepancy by enabling precise control over memory movement; however, scratchpad technology confronts the programmer and compiler with an unfamiliar and difficult programming model. In this work, we present the Virtual Vector Architecture (ViVA), which combines the memory semantics of vector computers with a software-controlled scratchpad memory in order to provide a more effective and practical approach to latency hiding. ViVA requires minimal changesmore » to the core design and could thus be easily integrated with conventional processor cores. To validate our approach, we implemented ViVA on the Mambo cycle-accurate full system simulator, which was carefully calibrated to match the performance on our underlying PowerPC Apple G5 architecture. Results show that ViVA is able to deliver significant performance benefits over scalar techniques for a variety of memory access patterns as well as two important memory-bound compact kernels, corner turn and sparse matrix-vector multiplication -- achieving 2x-13x improvement compared the scalar version. Overall, our preliminary ViVA exploration points to a promising approach for improving application performance on leading microprocessors with minimal design and complexity costs, in a power efficient manner.« less
Three-dimensional vibrometry of the human eardrum with stroboscopic lensless digital holography
Khaleghi, Morteza; Furlong, Cosme; Ravicz, Mike; Cheng, Jeffrey Tao; Rosowski, John J.
2015-01-01
Abstract. The eardrum or tympanic membrane (TM) transforms acoustic energy at the ear canal into mechanical motions of the ossicles. The acousto-mechanical transformer behavior of the TM is determined by its shape, three-dimensional (3-D) motion, and mechanical properties. We have developed an optoelectronic holographic system to measure the shape and 3-D sound-induced displacements of the TM. The shape of the TM is measured with dual-wavelength holographic contouring using a tunable near IR laser source with a central wavelength of 780 nm. 3-D components of sound-induced displacements of the TM are measured with the method of multiple sensitivity vectors using stroboscopic holographic interferometry. To accurately obtain sensitivity vectors, a new technique is developed and used in which the sensitivity vectors are obtained from the images of a specular sphere that is being illuminated from different directions. Shape and 3-D acoustically induced displacement components of cadaveric human TMs at several excitation frequencies are measured at more than one million points on its surface. A numerical rotation matrix is used to rotate the original Euclidean coordinate of the measuring system in order to obtain in-plane and out-of-plane motion components. Results show that in-plane components of motion are much smaller (<20%) than the out-of-plane motions’ components. PMID:25652791
Stage-Structured Population Dynamics of AEDES AEGYPTI
NASA Astrophysics Data System (ADS)
Yusoff, Nuraini; Budin, Harun; Ismail, Salemah
Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.
Prototype Automatic Target Screener.
1980-05-19
JLIST OF TABLES I Table Page 1 PATS Modules 4 2 Vector Read/Write Command Format ( SEL4 ) 29 1 3 Read Vector Data Command Format ( SEL4 ) 30 J 4 Use Matrix...VECTOR READ/WRITE COMMAND FORMAT ( SEL4 ) S 1,4A Output 15 14 1:3 12 11 10 9 8 7 6 5 4 3 2 1 0 Da taI To VNUM VDIR V LEN InterfaceIT TNT = 1 Intensify...elements ! | 29 I TABLE 3. READ VECTOR DATA COMMAND FORMAT ( SEL4 ) SEL4 Read Vector Data Input 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Da ta D D V To 0 A D
Statistics of partially-polarized fields: beyond the Stokes vector and coherence matrix
NASA Astrophysics Data System (ADS)
Charnotskii, Mikhail
2017-08-01
Traditionally, the partially-polarized light is characterized by the four Stokes parameters. Equivalent description is also provided by correlation tensor of the optical field. These statistics specify only the second moments of the complex amplitudes of the narrow-band two-dimensional electric field of the optical wave. Electric field vector of the random quasi monochromatic wave is a nonstationary oscillating two-dimensional real random variable. We introduce a novel statistical description of these partially polarized waves: the Period-Averaged Probability Density Function (PA-PDF) of the field. PA-PDF contains more information on the polarization state of the field than the Stokes vector. In particular, in addition to the conventional distinction between the polarized and depolarized components of the field PA-PDF allows to separate the coherent and fluctuating components of the field. We present several model examples of the fields with identical Stokes vectors and very distinct shapes of PA-PDF. In the simplest case of the nonstationary, oscillating normal 2-D probability distribution of the real electrical field and stationary 4-D probability distribution of the complex amplitudes, the newly-introduced PA-PDF is determined by 13 parameters that include the first moments and covariance matrix of the quadrature components of the oscillating vector field.
Modeling of Mean-VaR portfolio optimization by risk tolerance when the utility function is quadratic
NASA Astrophysics Data System (ADS)
Sukono, Sidi, Pramono; Bon, Abdul Talib bin; Supian, Sudradjat
2017-03-01
The problems of investing in financial assets are to choose a combination of weighting a portfolio can be maximized return expectations and minimizing the risk. This paper discusses the modeling of Mean-VaR portfolio optimization by risk tolerance, when square-shaped utility functions. It is assumed that the asset return has a certain distribution, and the risk of the portfolio is measured using the Value-at-Risk (VaR). So, the process of optimization of the portfolio is done based on the model of Mean-VaR portfolio optimization model for the Mean-VaR done using matrix algebra approach, and the Lagrange multiplier method, as well as Khun-Tucker. The results of the modeling portfolio optimization is in the form of a weighting vector equations depends on the vector mean return vector assets, identities, and matrix covariance between return of assets, as well as a factor in risk tolerance. As an illustration of numeric, analyzed five shares traded on the stock market in Indonesia. Based on analysis of five stocks return data gained the vector of weight composition and graphics of efficient surface of portfolio. Vector composition weighting weights and efficient surface charts can be used as a guide for investors in decisions to invest.
Universal influenza vaccines: Shifting to better vaccines.
Berlanda Scorza, Francesco; Tsvetnitsky, Vadim; Donnelly, John J
2016-06-03
Influenza virus causes acute upper and lower respiratory infections and is the most likely, among known pathogens, to cause a large epidemic in humans. Influenza virus mutates rapidly, enabling it to evade natural and vaccine-induced immunity. Furthermore, influenza viruses can cross from animals to humans, generating novel, potentially pandemic strains. Currently available influenza vaccines induce a strain specific response and may be ineffective against new influenza viruses. The difficulty in predicting circulating strains has frequently resulted in mismatch between the annual vaccine and circulating viruses. Low-resource countries remain mostly unprotected against seasonal influenza and are particularly vulnerable to future pandemics, in part, because investments in vaccine manufacturing and stockpiling are concentrated in high-resource countries. Antibodies that target conserved sites in the hemagglutinin stalk have been isolated from humans and shown to confer protection in animal models, suggesting that broadly protective immunity may be possible. Several innovative influenza vaccine candidates are currently in preclinical or early clinical development. New technologies include adjuvants, synthetic peptides, virus-like particles (VLPs), DNA vectors, messenger RNA, viral vectors, and attenuated or inactivated influenza viruses. Other approaches target the conserved exposed epitope of the surface exposed membrane matrix protein M2e. Well-conserved influenza proteins, such as nucleoprotein and matrix protein, are mainly targeted for developing strong cross-protective T cell responses. With multiple vaccine candidates moving along the testing and development pipeline, the field is steadily moving toward a product that is more potent, durable, and broadly protective than previously licensed vaccines. Copyright © 2016 World Health Organization. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Nugamesh Mutter, Kussay; Mat Jafri, Mohd Zubir; Abdul Aziz, Azlan
2010-05-01
Many researches are conducted to improve Hopfield Neural Network (HNN) performance especially for speed and memory capacity in different approaches. However, there is still a significant scope of developing HNN using Optical Logic Gates. We propose here a new model of HNN based on all-optical XNOR logic gates for real time color image recognition. Firstly, we improved HNN toward optimum learning and converging operations. We considered each unipolar image as a set of small blocks of 3-pixels as vectors for HNN. This enables to save large number of images in the net with best reaching into global minima, and because there are only eight fixed states of weights so that only single iteration performed to construct a vector with stable state at minimum energy. HNN is useless in dealing with data not in bipolar representation. Therefore, HNN failed to work with color images. In RGB bands each represents different values of brightness, for d-bit RGB image it is simply consists of d-layers of unipolar. Each layer is as a single unipolar image for HNN. In addition, the weight matrices with stability of unity at the diagonal perform clear converging in comparison with no self-connecting architecture. Synchronously, each matrix-matrix multiplication operation would run optically in the second part, since we propose an array of all-optical XOR gates, which uses Mach-Zehnder Interferometer (MZI) for neurons setup and a controlling system to distribute timely signals with inverting to achieve XNOR function. The primary operation and simulation of the proposal HNN is demonstrated.
Frazer, LilyAnn Novak; O'Keefe, Raymond T
2007-09-01
The availability of Saccharomyces cerevisiae yeast strains with multiple auxotrophic markers allows the stable introduction and selection of more than one yeast shuttle vector containing marker genes that complement the auxotrophic markers. In certain experimental situations there is a need to recover more than one shuttle vector from yeast. To facilitate the recovery and identification of multiple plasmids from S. cerevisiae, we have constructed a series of plasmids based on the pRS series of yeast shuttle vectors. Bacterial antibiotic resistance genes to chloramphenicol, kanamycin and zeocin have been combined with the yeast centromere sequence (CEN6), the autonomously replicating sequence (ARSH4) and one of the four yeast selectable marker genes (HIS3, TRP1, LEU2 or URA3) from the pRS series of vectors. The 12 plasmids produced differ in antibiotic resistance and yeast marker gene within the backbone of the multipurpose plasmid pBluescript II. The newly constructed vectors show similar mitotic stability to the original pRS vectors. In combination with the ampicillin-resistant pRS series of yeast shuttle vectors, these plasmids now allow the recovery and identification in bacteria of up to four different vectors from S. cerevisiae. Copyright (c) 2007 John Wiley & Sons, Ltd.
Mathematical Methods for Optical Physics and Engineering
NASA Astrophysics Data System (ADS)
Gbur, Gregory J.
2011-01-01
1. Vector algebra; 2. Vector calculus; 3. Vector calculus in curvilinear coordinate systems; 4. Matrices and linear algebra; 5. Advanced matrix techniques and tensors; 6. Distributions; 7. Infinite series; 8. Fourier series; 9. Complex analysis; 10. Advanced complex analysis; 11. Fourier transforms; 12. Other integral transforms; 13. Discrete transforms; 14. Ordinary differential equations; 15. Partial differential equations; 16. Bessel functions; 17. Legendre functions and spherical harmonics; 18. Orthogonal functions; 19. Green's functions; 20. The calculus of variations; 21. Asymptotic techniques; Appendices; References; Index.
M-estimator for the 3D symmetric Helmert coordinate transformation
NASA Astrophysics Data System (ADS)
Chang, Guobin; Xu, Tianhe; Wang, Qianxin
2018-01-01
The M-estimator for the 3D symmetric Helmert coordinate transformation problem is developed. Small-angle rotation assumption is abandoned. The direction cosine matrix or the quaternion is used to represent the rotation. The 3 × 1 multiplicative error vector is defined to represent the rotation estimation error. An analytical solution can be employed to provide the initial approximate for iteration, if the outliers are not large. The iteration is carried out using the iterative reweighted least-squares scheme. In each iteration after the first one, the measurement equation is linearized using the available parameter estimates, the reweighting matrix is constructed using the residuals obtained in the previous iteration, and then the parameter estimates with their variance-covariance matrix are calculated. The influence functions of a single pseudo-measurement on the least-squares estimator and on the M-estimator are derived to theoretically show the robustness. In the solution process, the parameter is rescaled in order to improve the numerical stability. Monte Carlo experiments are conducted to check the developed method. Different cases to investigate whether the assumed stochastic model is correct are considered. The results with the simulated data slightly deviating from the true model are used to show the developed method's statistical efficacy at the assumed stochastic model, its robustness against the deviations from the assumed stochastic model, and the validity of the estimated variance-covariance matrix no matter whether the assumed stochastic model is correct or not.
ERIC Educational Resources Information Center
General Learning Corp., Washington, DC.
A common instructional task and a set of educational environments are hypothesized for analysis of media cost data. The analytic structure may be conceptulized as a three-dimensional matrix: the first vector separates costs into production, distribution, and reception; the second vector delineates capital (initial) and operating (annual) costs;…
ERIC Educational Resources Information Center
Farag, Mark
2007-01-01
Hill ciphers are linear codes that use as input a "plaintext" vector [p-right arrow above] of size n, which is encrypted with an invertible n x n matrix E to produce a "ciphertext" vector [c-right arrow above] = E [middle dot] [p-right arrow above]. Informally, a near-field is a triple [left angle bracket]N; +, *[right angle bracket] that…
Variable-speed wind power system with improved energy capture via multilevel conversion
Erickson, Robert W.; Al-Naseem, Osama A.; Fingersh, Lee Jay
2005-05-31
A system and method for efficiently capturing electrical energy from a variable-speed generator are disclosed. The system includes a matrix converter using full-bridge, multilevel switch cells, in which semiconductor devices are clamped to a known constant DC voltage of a capacitor. The multilevel matrix converter is capable of generating multilevel voltage wave waveform of arbitrary magnitude and frequencies. The matrix converter can be controlled by using space vector modulation.
Lutzko, Carolyn; Senadheera, Dinithi; Skelton, Dianne; Petersen, Denise; Kohn, Donald B.
2003-01-01
In the present studies we developed lentivirus vectors with regulated, consistent transgene expression in B lymphocytes by incorporating the immunoglobulin heavy chain enhancer (Eμ) with and without associated matrix attachment regions (EμMAR) into lentivirus vectors. Incorporation of these fragments upstream of phosphoglycerate kinase (PGK) or cytomegalovirus promoters resulted in a two- to threefold increase in enhanced green fluorescent protein (EGFP) mean fluorescence intensity (MFI) in B-lymphoid but not T-lymphoid, myeloid, fibroblast, or carcinoma cell lines. A 1-log increase in EGFP expression was observed in B-lymphoid cells (but not myeloid cells) differentiated from human CD34+ progenitors in vitro transduced with Eμ- and EμMAR-containing lentivectors. Lastly, we evaluated the expression from the EμMAR element in mice 2 to 24 weeks posttransplant with transduced hematopoietic stem cells. In mice receiving vectors with the Eμ and EμMAR elements upstream of the PGK promoter, there was a 2- to 10-fold increase in EGFP expression in B cells (but not other cell types). Evaluation of the coefficient of variation of expression among different cell types demonstrated that consistent, position-independent transgene expression was observed exclusively in B cells transduced with the EμMAR-containing vector and not other cells types or vectors. Proviral genomes with the EμMAR element had increased chromatin accessibility, which likely contributed to the position independence of expression in B lymphocytes. In summary, incorporation of the EμMAR element in lentivirus vectors resulted in enhanced, position-independent expression in primary B lymphocytes. These vectors provide a useful tool for the study of B-lymphocyte biology and the development of gene therapy for disorders affecting B lymphocytes, such as immune deficiencies. PMID:12805432
USDA-ARS?s Scientific Manuscript database
The energy transport in a vegetated (corn) surface layer is examined by solving the vector radiative transfer equation using a numerical iterative approach. This approach allows a higher order that includes the multiple scattering effects. Multiple scattering effects are important when the optical t...
Matrix multiplication on the Intel Touchstone Delta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huss-Lederman, S.; Jacobson, E.M.; Tsao, A.
1993-12-31
Matrix multiplication is a key primitive in block matrix algorithms such as those found in LAPACK. We present results from our study of matrix multiplication algorithms on the Intel Touchstone Delta, a distributed memory message-passing architecture with a two-dimensional mesh topology. We obtain an implementation that uses communication primitives highly suited to the Delta and exploits the single node assembly-coded matrix multiplication. Our algorithm is completely general, able to deal with arbitrary mesh aspect ratios and matrix dimensions, and has achieved parallel efficiency of 86% with overall peak performance in excess of 8 Gflops on 256 nodes for an 8800more » {times} 8800 matrix. We describe our algorithm design and implementation, and present performance results that demonstrate scalability and robust behavior over varying mesh topologies.« less
Aeroelastic analysis of a troposkien-type wind turbine blade
NASA Technical Reports Server (NTRS)
Nitzsche, F.
1981-01-01
The linear aeroelastic equations for one curved blade of a vertical axis wind turbine in state vector form are presented. The method is based on a simple integrating matrix scheme together with the transfer matrix idea. The method is proposed as a convenient way of solving the associated eigenvalue problem for general support conditions.
Matrix product representation of the stationary state of the open zero range process
NASA Astrophysics Data System (ADS)
Bertin, Eric; Vanicat, Matthieu
2018-06-01
Many one-dimensional lattice particle models with open boundaries, like the paradigmatic asymmetric simple exclusion process (ASEP), have their stationary states represented in the form of a matrix product, with matrices that do not explicitly depend on the lattice site. In contrast, the stationary state of the open 1D zero-range process (ZRP) takes an inhomogeneous factorized form, with site-dependent probability weights. We show that in spite of the absence of correlations, the stationary state of the open ZRP can also be represented in a matrix product form, where the matrices are site-independent, non-commuting and determined from algebraic relations resulting from the master equation. We recover the known distribution of the open ZRP in two different ways: first, using an explicit representation of the matrices and boundary vectors; second, from the sole knowledge of the algebraic relations satisfied by these matrices and vectors. Finally, an interpretation of the relation between the matrix product form and the inhomogeneous factorized form is proposed within the framework of hidden Markov chains.
Bolormaa, Sunduimijid; Pryce, Jennie E.; Reverter, Antonio; Zhang, Yuandan; Barendse, William; Kemper, Kathryn; Tier, Bruce; Savin, Keith; Hayes, Ben J.; Goddard, Michael E.
2014-01-01
Polymorphisms that affect complex traits or quantitative trait loci (QTL) often affect multiple traits. We describe two novel methods (1) for finding single nucleotide polymorphisms (SNPs) significantly associated with one or more traits using a multi-trait, meta-analysis, and (2) for distinguishing between a single pleiotropic QTL and multiple linked QTL. The meta-analysis uses the effect of each SNP on each of n traits, estimated in single trait genome wide association studies (GWAS). These effects are expressed as a vector of signed t-values (t) and the error covariance matrix of these t values is approximated by the correlation matrix of t-values among the traits calculated across the SNP (V). Consequently, t'V−1t is approximately distributed as a chi-squared with n degrees of freedom. An attractive feature of the meta-analysis is that it uses estimated effects of SNPs from single trait GWAS, so it can be applied to published data where individual records are not available. We demonstrate that the multi-trait method can be used to increase the power (numbers of SNPs validated in an independent population) of GWAS in a beef cattle data set including 10,191 animals genotyped for 729,068 SNPs with 32 traits recorded, including growth and reproduction traits. We can distinguish between a single pleiotropic QTL and multiple linked QTL because multiple SNPs tagging the same QTL show the same pattern of effects across traits. We confirm this finding by demonstrating that when one SNP is included in the statistical model the other SNPs have a non-significant effect. In the beef cattle data set, cluster analysis yielded four groups of QTL with similar patterns of effects across traits within a group. A linear index was used to validate SNPs having effects on multiple traits and to identify additional SNPs belonging to these four groups. PMID:24675618
Detection Performance of Horizontal Linear Hydrophone Arrays in Shallow Water.
1980-12-15
random phase G gain G angle interval covariance matrix h processor vector H matrix matched filter; generalized beamformer I unity matrix 4 SACLANTCEN SR...omnidirectional sensor is h*Ph P G = - h [Eq. 47] G = h* Q h P s The following two sections evaluate a few examples of application of the OLP. Following the...At broadside the signal covariance matrix reduces to a dyadic: P s s*;therefore, the gain (e.g. Eq. 37) becomes tr(H* P H) Pn * -1 Q -1 Pn G ~OQp
Gschwind, Michael K [Chappaqua, NY
2011-03-01
Mechanisms for implementing a floating point only single instruction multiple data instruction set architecture are provided. A processor is provided that comprises an issue unit, an execution unit coupled to the issue unit, and a vector register file coupled to the execution unit. The execution unit has logic that implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA). The floating point vector registers of the vector register file store both scalar and floating point values as vectors having a plurality of vector elements. The processor may be part of a data processing system.
NASA Astrophysics Data System (ADS)
Odinokov, S. B.; Petrov, A. V.
1995-10-01
Mathematical models of components of a vector-matrix optoelectronic multiplier are considered. Perturbing factors influencing a real optoelectronic system — noise and errors of radiation sources and detectors, nonlinearity of an analogue—digital converter, nonideal optical systems — are taken into account. Analytic expressions are obtained for relating the precision of such a multiplier to the probability of an error amounting to one bit, to the parameters describing the quality of the multiplier components, and to the quality of the optical system of the processor. Various methods of increasing the dynamic range of a multiplier are considered at the technical systems level.
Scattering amplitude and bosonization duality in general Chern-Simons vector models
NASA Astrophysics Data System (ADS)
Yokoyama, Shuichi
2016-09-01
We present the exact large N calculus of four point functions in general Chern-Simons bosonic and fermionic vector models. Applying the LSZ formula to the four point function we determine the two body scattering amplitudes in these theories taking a special care for a non-analytic term to achieve unitarity in the singlet channel. We show that the S-matrix enjoys the bosonization duality, an unusual crossing relation and a non-relativistic reduction to Aharonov-Bohm scattering. We also argue that the S-matrix develops a pole in a certain range of coupling constants, which disappears in the range where the theory reduces to the Chern-Simons theory interacting with free fermions.
NASA Astrophysics Data System (ADS)
Chen, Rui; Xu, Jing; Zhang, Song; Chen, Heping; Guan, Yong; Chen, Ken
2017-01-01
The accuracy of structured light measurement depends on delicate offline calibration. However, in some practical applications, the system is supposed to be reconfigured so frequently to track the target that an online calibration is required. To this end, this paper proposes a rapid and autonomous self-recalibration method. For the proposed method, first, the rotation matrix and the normalized translation vector are attained from the fundamental matrix; second, the scale factor is acquired based on scale-invariant registration such that the actual translation vector is obtained. Experiments have been conducted to verify the effectiveness of our proposed method and the results indicate a high degree of accuracy.
A new method to real-normalize measured complex modes
NASA Technical Reports Server (NTRS)
Wei, Max L.; Allemang, Randall J.; Zhang, Qiang; Brown, David L.
1987-01-01
A time domain subspace iteration technique is presented to compute a set of normal modes from the measured complex modes. By using the proposed method, a large number of physical coordinates are reduced to a smaller number of model or principal coordinates. Subspace free decay time responses are computed using properly scaled complex modal vectors. Companion matrix for the general case of nonproportional damping is then derived in the selected vector subspace. Subspace normal modes are obtained through eigenvalue solution of the (M sub N) sup -1 (K sub N) matrix and transformed back to the physical coordinates to get a set of normal modes. A numerical example is presented to demonstrate the outlined theory.
Scalar and vector form factors of D →π (K )ℓν decays with Nf=2 +1 +1 twisted fermions
NASA Astrophysics Data System (ADS)
Lubicz, V.; Riggio, L.; Salerno, G.; Simula, S.; Tarantino, C.; ETM Collaboration
2017-09-01
We present a lattice determination of the vector and scalar form factors of the D →π ℓν and D →K ℓν semileptonic decays, which are relevant for the extraction of the CKM matrix elements |Vc d| and |Vc s| from experimental data. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2 +1 +1 flavors of dynamical quarks, at three different values of the lattice spacing (a ≃0.062 ,0.082 ,0.089 fm ) and with pion masses as small as 210 MeV. Quark momenta are injected on the lattice using nonperiodic boundary conditions. The matrix elements of both vector and scalar currents are determined for plenty of kinematical conditions in which parent and child mesons are either moving or at rest. Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data and included in the decomposition of the current matrix elements in terms of additional form factors. After the extrapolations to the physical pion mass and to the continuum limit, we determine the vector and scalar form factors in the whole kinematical region from q2=0 up to qmax2=(MD-Mπ (K ))2 accessible in the experiments, obtaining a good overall agreement with experiments, except in the region at high values of q2 where some deviations are visible. A set of synthetic data points, representing our results for f+Dπ (K )(q2) and f0D π (K )(q2) for several selected values of q2, is provided and also the corresponding covariance matrix is available. At zero four-momentum transfer, we get f+D→π(0 )=0.612 (35 ) and f+D→K(0 )=0.765 (31 ). Using the experimental averages for |Vc d|f+D→π(0 ) and |Vc s|f+D→K(0 ), we extract |Vc d|=0.2330 (137 ) and |Vc s|=0.945 (38 ), respectively. The second row of the CKM matrix is found to be in agreement with unitarity within the current uncertainties: |Vc d|2+|Vc s|2+|Vc b|2=0.949 (78 ).
Multi-threaded Sparse Matrix Sparse Matrix Multiplication for Many-Core and GPU Architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deveci, Mehmet; Trott, Christian Robert; Rajamanickam, Sivasankaran
Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scientific computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix- matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less
Multi-threaded Sparse Matrix-Matrix Multiplication for Many-Core and GPU Architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deveci, Mehmet; Rajamanickam, Sivasankaran; Trott, Christian Robert
Sparse Matrix-Matrix multiplication is a key kernel that has applications in several domains such as scienti c computing and graph analysis. Several algorithms have been studied in the past for this foundational kernel. In this paper, we develop parallel algorithms for sparse matrix-matrix multiplication with a focus on performance portability across different high performance computing architectures. The performance of these algorithms depend on the data structures used in them. We compare different types of accumulators in these algorithms and demonstrate the performance difference between these data structures. Furthermore, we develop a meta-algorithm, kkSpGEMM, to choose the right algorithm and datamore » structure based on the characteristics of the problem. We show performance comparisons on three architectures and demonstrate the need for the community to develop two phase sparse matrix-matrix multiplication implementations for efficient reuse of the data structures involved.« less
Smisc - A collection of miscellaneous functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landon Sego, PNNL
2015-08-31
A collection of functions for statistical computing and data manipulation. These include routines for rapidly aggregating heterogeneous matrices, manipulating file names, loading R objects, sourcing multiple R files, formatting datetimes, multi-core parallel computing, stream editing, specialized plotting, etc. Smisc-package A collection of miscellaneous functions allMissing Identifies missing rows or columns in a data frame or matrix as.numericSilent Silent wrapper for coercing a vector to numeric comboList Produces all possible combinations of a set of linear model predictors cumMax Computes the maximum of the vector up to the current index cumsumNA Computes the cummulative sum of a vector without propogating NAsmore » d2binom Probability functions for the sum of two independent binomials dataIn A flexible way to import data into R. dbb The Beta-Binomial Distribution df2list Row-wise conversion of a data frame to a list dfplapply Parallelized single row processing of a data frame dframeEquiv Examines the equivalence of two dataframes or matrices dkbinom Probability functions for the sum of k independent binomials factor2character Converts all factor variables in a dataframe to character variables findDepMat Identify linearly dependent rows or columns in a matrix formatDT Converts date or datetime strings into alternate formats getExtension Filename manipulations: remove the extension or path, extract the extension or path getPath Filename manipulations: remove the extension or path, extract the extension or path grabLast Filename manipulations: remove the extension or path, extract the extension or path ifelse1 Non-vectorized version of ifelse integ Simple numerical integration routine interactionPlot Two-way Interaction Plot with Error Bar linearMap Linear mapping of a numerical vector or scalar list2df Convert a list to a data frame loadObject Loads and returns the object(s) in an ".Rdata" file more Display the contents of a file to the R terminal movAvg2 Calculate the moving average using a 2-sided window openDevice Opens a graphics device based on the filename extension p2binom Probability functions for the sum of two independent binomials padZero Pad a vector of numbers with zeros parseJob Parses a collection of elements into (almost) equal sized groups pbb The Beta-Binomial Distribution pcbinom A continuous version of the binomial cdf pkbinom Probability functions for the sum of k independent binomials plapply Simple parallelization of lapply plotFun Plot one or more functions on a single plot PowerData An example of power data pvar Prints the name and value of one or more objects qbb The Beta-Binomial Distribution rbb And numerous others (space limits reporting).« less
Optical matrix-matrix multiplication method demonstrated by the use of a multifocus hololens
NASA Technical Reports Server (NTRS)
Liu, H. K.; Liang, Y.-Z.
1984-01-01
A method of optical matrix-matrix multiplication is presented. The feasibility of the method is also experimentally demonstrated by the use of a dichromated-gelatin multifocus holographic lens (hololens). With the specific values of matrices chosen, the average percentage error between the theoretical and experimental data of the elements of the output matrix of the multiplication of some specific pairs of 3 x 3 matrices is 0.4 percent, which corresponds to an 8-bit accuracy.
NASA Technical Reports Server (NTRS)
Raibstein, A. I.; Kalev, I.; Pipano, A.
1976-01-01
A procedure for the local stiffness modifications of large structures is described. It enables structural modifications without an a priori definition of the changes in the original structure and without loss of efficiency due to multiple loading conditions. The solution procedure, implemented in NASTRAN, involved the decomposed stiffness matrix and the displacement vectors of the original structure. It solves the modified structure exactly, irrespective of the magnitude of the stiffness changes. In order to investigate the efficiency of the present procedure and to test its applicability within a design environment, several real and large structures were solved. The results of the efficiency studies indicate that the break-even point of the procedure varies between 8% and 60% stiffness modifications, depending upon the structure's characteristics and the options employed.
NASA Astrophysics Data System (ADS)
Park, Won-Kwang; Kim, Hwa Pyung; Lee, Kwang-Jae; Son, Seong-Ho
2017-11-01
Motivated by the biomedical engineering used in early-stage breast cancer detection, we investigated the use of MUltiple SIgnal Classification (MUSIC) algorithm for location searching of small anomalies using S-parameters. We considered the application of MUSIC to functional imaging where a small number of dipole antennas are used. Our approach is based on the application of Born approximation or physical factorization. We analyzed cases in which the anomaly is respectively small and large in relation to the wavelength, and the structure of the left-singular vectors is linked to the nonzero singular values of a Multi-Static Response (MSR) matrix whose elements are the S-parameters. Using simulations, we demonstrated the strengths and weaknesses of the MUSIC algorithm in detecting both small and extended anomalies.
Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution
NASA Astrophysics Data System (ADS)
Staples, G. Stacey
2017-12-01
Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph's adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph's vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an "indeterminate" fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.
A chaotic modified-DFT encryption scheme for physical layer security and PAPR reduction in OFDM-PON
NASA Astrophysics Data System (ADS)
Fu, Xiaosong; Bi, Meihua; Zhou, Xuefang; Yang, Guowei; Li, Qiliang; Zhou, Zhao; Yang, Xuelin
2018-05-01
This letter proposes a modified discrete Fourier transform (DFT) encryption scheme with multi-dimensional chaos for the physical layer security and peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing passive optical network (OFDM-PON) system. This multiple-fold encryption algorithm is mainly composed by using the column vectors permutation and the random phase encryption in the standard DFT matrix, which can create ∼10551 key space. The transmission of ∼10 Gb/s encrypted OFDM signal is verified over 20-km standard single mode fiber (SMF). Moreover, experimental results show that, the proposed scheme can achieve ∼2.6-dB PAPR reduction and ∼1-dB improvement of receiver sensitivity if compared with the common OFDM-PON.
ℓ(p)-Norm multikernel learning approach for stock market price forecasting.
Shao, Xigao; Wu, Kun; Liao, Bifeng
2012-01-01
Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ(1)-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we adopt ℓ(p)-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model. The optimization problem is decomposed into smaller subproblems, and the interleaved optimization strategy is employed to solve the regression model. The model is evaluated on forecasting the daily stock closing prices of Shanghai Stock Index in China. Experimental results show that our proposed model performs better than ℓ(1)-norm multiple support vector regression model.
D → π and D → K semileptonic form factors with Nf = 2 + 1 + 1 twisted mass fermions
NASA Astrophysics Data System (ADS)
Lubicz, Vittorio; Riggio, Lorenzo; Salerno, Giorgio; Simula, Silvano; Tarantino, Cecilia
2018-03-01
We present a lattice determination of the vector and scalar form factors of the D → π(K)lv semileptonic decays, which are relevant for the extraction of the CKM matrix elements |Vcd| and |Vcs| from experimental data. Our analysis is based on the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 +1 flavors of dynamical quarks. We simulated at three different values of the lattice spacing and with pion masses as small as 210 MeV. The matrix elements of both vector and scalar currents are determined for a plenty of kinematical conditions in which parent and child mesons are either moving or at rest. Lorentz symmetry breaking due to hypercubic effects is clearly observed in the data and included in the decomposition of the current matrix elements in terms of additional form factors. After the extrapolations to the physical pion mass and to the continuum limit the vector and scalar form factors are determined in the whole kinematical region from q2 = 0 up to qmax2 = (MD - Mπ(K))2 accessible in the experiments, obtaining a good overall agreement with experiments, except in the region at high values of q2 where some deviations are visible.
O'Brien, Kevin D; Lewis, Katherine; Fischer, Jens W; Johnson, Pamela; Hwang, Jin-Yong; Knopp, Eleanor A; Kinsella, Michael G; Barrett, P Hugh R; Chait, Alan; Wight, Thomas N
2004-11-01
Lipoprotein retention on extracellular matrix (ECM) may play a central role in atherogenesis, and a specific extracellular matrix proteoglycan, biglycan, has been implicated in lipoprotein retention in human atherosclerosis. To test whether increased cellular biglycan expression results in increased retention of lipoproteins on ECM, rat aortic smooth muscle cells (SMCs) were transduced with a human biglycan cDNA-containing retroviral vector (LBSN) or with an empty retroviral vector (LXSN). To assess the importance of biglycan's glycosaminoglycan side chains in lipoprotein retention, ECM binding studies were also performed using RASMCs transduced with a retroviral vector encoding for a mutant, glycosaminoglycan-deficient biglycan (LBmutSN). Human biglycan mRNA and protein were confirmed in LBSN and LBmutSN RASMCs by Northern and Western blot analyses. HDL3+E binding to SMC ECM was increased significantly (as determined by 95% confidence intervals for binding curves) for LBSN as compared to either LXSN or LBmutSN cells; the increases for LBSN cell ECM were due primarily to an approximately 50% increase in binding sites (increased Bmax) versus LXSN cell ECM and of approximately 25% versus LBmutSN cell ECM. These results are consistent with the hypothesis that biglycan, through its glycosaminoglycan side chains, may mediate lipoprotein retention on atherosclerotic plaque ECM.
Structuring Stokes correlation functions using vector-vortex beam
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Anwar, Ali; Singh, R. P.
2018-01-01
Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.
Vector meson photoproduction with a linearly polarized beam
NASA Astrophysics Data System (ADS)
Mathieu, V.; Nys, J.; Fernández-Ramírez, C.; Jackura, A.; Pilloni, A.; Sherrill, N.; Szczepaniak, A. P.; Fox, G.; Joint Physics Analysis Center
2018-05-01
We propose a model based on Regge theory to describe photoproduction of light vector mesons. We fit the SLAC data and make predictions for the energy and momentum-transfer dependence of the spin-density matrix elements in photoproduction of ω , ρ0 and ϕ mesons at Eγ˜8.5 GeV , which are soon to be measured at Jefferson Lab.
Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.
Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun
2018-05-08
Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.
Morgenstern, Hai; Rafaely, Boaz; Zotter, Franz
2015-11-01
Spatial attributes of room acoustics have been widely studied using microphone and loudspeaker arrays. However, systems that combine both arrays, referred to as multiple-input multiple-output (MIMO) systems, have only been studied to a limited degree in this context. These systems can potentially provide a powerful tool for room acoustics analysis due to the ability to simultaneously control both arrays. This paper offers a theoretical framework for the spatial analysis of enclosed sound fields using a MIMO system comprising spherical loudspeaker and microphone arrays. A system transfer function is formulated in matrix form for free-field conditions, and its properties are studied using tools from linear algebra. The system is shown to have unit-rank, regardless of the array types, and its singular vectors are related to the directions of arrival and radiation at the microphone and loudspeaker arrays, respectively. The formulation is then generalized to apply to rooms, using an image source method. In this case, the rank of the system is related to the number of significant reflections. The paper ends with simulation studies, which support the developed theory, and with an extensive reflection analysis of a room impulse response, using the platform of a MIMO system.
NASA Astrophysics Data System (ADS)
Pareek, Tribhuvan Prasad
2015-09-01
In this article, we develop an exact (nonadiabatic, nonperturbative) density matrix scattering theory for a two component quantum liquid which interacts or scatters off from a generic spin-dependent quantum potential. The generic spin dependent quantum potential [Eq. (1)] is a matrix potential, hence, adiabaticity criterion is ill-defined. Therefore the full matrix potential should be treated nonadiabatically. We succeed in doing so using the notion of vectorial matrices which allows us to obtain an exact analytical expression for the scattered density matrix (SDM), ϱsc [Eq. (30)]. We find that the number or charge density in scattered fluid, Tr(ϱsc), expressions in Eqs. (32) depends on nontrivial quantum interference coefficients, Qα β 0ijk, which arises due to quantum interference between spin-independent and spin-dependent scattering amplitudes and among spin-dependent scattering amplitudes. Further it is shown that Tr(ϱsc) can be expressed in a compact form [Eq. (39)] where the effect of quantum interference coefficients can be included using a vector Qαβ, which allows us to define a vector order parameterQ. Since the number density is obtained using an exact scattered density matrix, therefore, we do not need to prove that Q is non-zero. However, for sake of completeness, we make detailed mathematical analysis for the conditions under which the vector order parameterQ would be zero or nonzero. We find that in presence of spin-dependent interaction the vector order parameterQ is necessarily nonzero and is related to the commutator and anti-commutator of scattering matrix S with its dagger S† [Eq. (78)]. It is further shown that Q≠0, implies four physically equivalent conditions,i.e., spin-orbital entanglement is nonzero, non-Abelian scattering phase, i.e., matrices, scattering matrix is nonunitary and the broken time reversal symmetry for SDM. This also implies that quasi particle excitation are anyonic in nature, hence, charge fractionalization is a natural consequence. This aspect has also been discussed from the perspective of number or charge density conservation, which implies i.e., Tr(ϱ} sc) = Tr(ϱin). On the other hand Q = 0 turns out to be a mathematically forced unphysical solution in presence of spin-dependent potential or scattering which is equivalent to Abelian hydrodynamics, unitary scattering matrix, absence of spin-space entanglement and preserved time reversal symmetry. We have formulated the theory using mesoscopic language, specifically, we have considered two terminal systems connected to spin-dependent scattering region, which is equivalent to having two potential wells separated by a generic spin-dependent potential barrier. The formulation using mesoscopic language is practically useful because it leads directly to the measured quantities such as conductance and spin-polarization density in the leads, however, the presented formulation is not limited to the mesoscopic system only, its generality has been stressed at various places in this article.
Modeling and parameter identification of impulse response matrix of mechanical systems
NASA Astrophysics Data System (ADS)
Bordatchev, Evgueni V.
1998-12-01
A method for studying the problem of modeling, identification and analysis of mechanical system dynamic characteristic in view of the impulse response matrix for the purpose of adaptive control is developed here. Two types of the impulse response matrices are considered: (i) on displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement and (ii) on acceleration, which also describes the space-coupled relationship between the vectors of the force and measured acceleration. The idea of identification consists of: (a) the practical obtaining of the impulse response matrix on acceleration by 'impact-response' technique; (b) the modeling and parameter estimation of the each impulse response function on acceleration through the fundamental representation of the impulse response function on displacement as a sum of the damped sine curves applying linear and non-linear least square methods; (c) simulating the impulse provides the additional possibility to calculate masses, damper and spring constants. The damped natural frequencies are used as a priori information and are found through the standard FFT analysis. The problem of double numerical integration is avoided by taking two derivations of the fundamental dynamic model of a mechanical system as linear combination of the mass-damper-spring subsystems. The identified impulse response matrix on displacement represents the dynamic properties of the mechanical system. From the engineering point of view, this matrix can be also understood as a 'dynamic passport' of the mechanical system and can be used for dynamic certification and analysis of the dynamic quality. In addition, the suggested approach mathematically reproduces amplitude-frequency response matrix in a low-frequency band and on zero frequency. This allows the possibility of determining the matrix of the static stiffness due to dynamic testing over the time of 10- 15 minutes. As a practical example, the dynamic properties in view of the impulse and frequency response matrices of the lathe spindle are obtained, identified and investigated. The developed approach for modeling and parameter identification appears promising for a wide range o industrial applications; for example, rotary systems.
Quantum Linear System Algorithm for Dense Matrices.
Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam
2018-02-02
Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that Ax=b. We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O(κ^{2}sqrt[n]polylog(n)/ε) for an n×n dimensional A with bounded spectral norm, where κ denotes the condition number of A, and ε is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A.
A Simple Deep Learning Method for Neuronal Spike Sorting
NASA Astrophysics Data System (ADS)
Yang, Kai; Wu, Haifeng; Zeng, Yu
2017-10-01
Spike sorting is one of key technique to understand brain activity. With the development of modern electrophysiology technology, some recent multi-electrode technologies have been able to record the activity of thousands of neuronal spikes simultaneously. The spike sorting in this case will increase the computational complexity of conventional sorting algorithms. In this paper, we will focus spike sorting on how to reduce the complexity, and introduce a deep learning algorithm, principal component analysis network (PCANet) to spike sorting. The introduced method starts from a conventional model and establish a Toeplitz matrix. Through the column vectors in the matrix, we trains a PCANet, where some eigenvalue vectors of spikes could be extracted. Finally, support vector machine (SVM) is used to sort spikes. In experiments, we choose two groups of simulated data from public databases availably and compare this introduced method with conventional methods. The results indicate that the introduced method indeed has lower complexity with the same sorting errors as the conventional methods.
Odbadrakh, Kh.; Samolyuk, G.; Nicholson, D.; ...
2016-09-13
Resistance to swelling under irradiation and a low rate of corrosion in high temperature environments make Fe-Cr and Fe-Cr-Ni alloys promising structural materials for energy technologies. In this paper we report the results obtained using a combination of density functional theory (DFT) techniques: plane wave basis set solutions for pseudo-potentials and multiple scattering solutions for all electron potentials. We have found a very strong role of magnetism in the stability of screw dislocation cores in pure Fe and their interaction with Cr and Ni magnetic impurities. In particular, the screw dislocation quadrupole in Fe is stabilized only in the presencemore » of ferromagnetism. In addition, Ni atoms, who's magnetic moment is oriented along the magnetization direction of the Fe matrix, prefer to occupy in core positions whereas Cr atoms, which couple anti-ferromagnetically with the Fe matrix, prefer out of the dislocation core positions. In effect, Ni impurities are attracted to, while Cr impurities are repelled by the dislocation core. Moreover, we demonstrate that this contrasting behavior can be explained only by the nature of magnetic coupling of the impurities to the Fe matrix. In addition, Cr interaction with the dislocation core mirrors that of Ni if the Cr magnetic moment is constrained to be along the direction of Fe matrix magnetization. In addition, we have shown that the magnetic contribution can affect the impurity-impurity interaction at distances up to a few Burgers vectors. In particular, the distance between Cr atoms in Fe matrix should be at least 3–4 lattice parameters in order to eliminate finite size effects.« less
Frequency-domain beamformers using conjugate gradient techniques for speech enhancement.
Zhao, Shengkui; Jones, Douglas L; Khoo, Suiyang; Man, Zhihong
2014-09-01
A multiple-iteration constrained conjugate gradient (MICCG) algorithm and a single-iteration constrained conjugate gradient (SICCG) algorithm are proposed to realize the widely used frequency-domain minimum-variance-distortionless-response (MVDR) beamformers and the resulting algorithms are applied to speech enhancement. The algorithms are derived based on the Lagrange method and the conjugate gradient techniques. The implementations of the algorithms avoid any form of explicit or implicit autocorrelation matrix inversion. Theoretical analysis establishes formal convergence of the algorithms. Specifically, the MICCG algorithm is developed based on a block adaptation approach and it generates a finite sequence of estimates that converge to the MVDR solution. For limited data records, the estimates of the MICCG algorithm are better than the conventional estimators and equivalent to the auxiliary vector algorithms. The SICCG algorithm is developed based on a continuous adaptation approach with a sample-by-sample updating procedure and the estimates asymptotically converge to the MVDR solution. An illustrative example using synthetic data from a uniform linear array is studied and an evaluation on real data recorded by an acoustic vector sensor array is demonstrated. Performance of the MICCG algorithm and the SICCG algorithm are compared with the state-of-the-art approaches.
1989-10-01
wide range of Selds and temperatures.’ is the symmetrized two-dimensional strain matrix, A The .L der?.nn criterion assumes wave vector -inde- and A are...plificatioG, especially if fluctuations are important. A then (assuming 2 1 + A >> ) more accurate theory would use wave vector dependent k8 T elastic...with this siri’ M respect to B, H and Ha; the three latter approach; e.g., a possible anisotropy in the vectors are almost the same in"’’e and basal
Quantum and electromagnetic propagation with the conjugate symmetric Lanczos method.
Acevedo, Ramiro; Lombardini, Richard; Turner, Matthew A; Kinsey, James L; Johnson, Bruce R
2008-02-14
The conjugate symmetric Lanczos (CSL) method is introduced for the solution of the time-dependent Schrodinger equation. This remarkably simple and efficient time-domain algorithm is a low-order polynomial expansion of the quantum propagator for time-independent Hamiltonians and derives from the time-reversal symmetry of the Schrodinger equation. The CSL algorithm gives forward solutions by simply complex conjugating backward polynomial expansion coefficients. Interestingly, the expansion coefficients are the same for each uniform time step, a fact that is only spoiled by basis incompleteness and finite precision. This is true for the Krylov basis and, with further investigation, is also found to be true for the Lanczos basis, important for efficient orthogonal projection-based algorithms. The CSL method errors roughly track those of the short iterative Lanczos method while requiring fewer matrix-vector products than the Chebyshev method. With the CSL method, only a few vectors need to be stored at a time, there is no need to estimate the Hamiltonian spectral range, and only matrix-vector and vector-vector products are required. Applications using localized wavelet bases are made to harmonic oscillator and anharmonic Morse oscillator systems as well as electrodynamic pulse propagation using the Hamiltonian form of Maxwell's equations. For gold with a Drude dielectric function, the latter is non-Hermitian, requiring consideration of corrections to the CSL algorithm.
Eckhoff, Philip A; Bever, Caitlin A; Gerardin, Jaline; Wenger, Edward A; Smith, David L
2015-08-01
Since the original Ross-Macdonald formulations of vector-borne disease transmission, there has been a broad proliferation of mathematical models of vector-borne disease, but many of these models retain most to all of the simplifying assumptions of the original formulations. Recently, there has been a new expansion of mathematical frameworks that contain explicit representations of the vector life cycle including aquatic stages, multiple vector species, host heterogeneity in biting rate, realistic vector feeding behavior, and spatial heterogeneity. In particular, there are now multiple frameworks for spatially explicit dynamics with movements of vector, host, or both. These frameworks are flexible and powerful, but require additional data to take advantage of these features. For a given question posed, utilizing a range of models with varying complexity and assumptions can provide a deeper understanding of the answers derived from models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
2013-01-01
Background The cloning of gene sequences forms the basis for many molecular biological studies. One important step in the cloning process is the isolation of bacterial transformants carrying vector DNA. This involves a vector-encoded selectable marker gene, which in most cases, confers resistance to an antibiotic. However, there are a number of circumstances in which a different selectable marker is required or may be preferable. Such situations can include restrictions to host strain choice, two phase cloning experiments and mutagenesis experiments, issues that result in additional unnecessary cloning steps, in which the DNA needs to be subcloned into a vector with a suitable selectable marker. Results We have used restriction enzyme mediated gene disruption to modify the selectable marker gene of a given vector by cloning a different selectable marker gene into the original marker present in that vector. Cloning a new selectable marker into a pre-existing marker was found to change the selection phenotype conferred by that vector, which we were able to demonstrate using multiple commonly used vectors and multiple resistance markers. This methodology was also successfully applied not only to cloning vectors, but also to expression vectors while keeping the expression characteristics of the vector unaltered. Conclusions Changing the selectable marker of a given vector has a number of advantages and applications. This rapid and efficient method could be used for co-expression of recombinant proteins, optimisation of two phase cloning procedures, as well as multiple genetic manipulations within the same host strain without the need to remove a pre-existing selectable marker in a previously genetically modified strain. PMID:23497512
A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle
NASA Technical Reports Server (NTRS)
Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.
1992-01-01
A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.
Mapping the Conjugate Gradient Algorithm onto High Performance Heterogeneous Computers
2014-05-01
Matrix Storage Formats According to J . Dongarra (Dongerra 2000), the efficiency of most iterative methods, such as CG, can be attributed to the...valh = aij) ⇒ (colh = j ). The ptr integer vector is of length n + 1 and contains the index in val where each matrix row starts. For example, the...first nonzero element of matrix rowm is found at index ptrm of val. By convention, ptrn+1 ≡ nz + 1. Notice that (aij) ⇒ (ptri ≤ j < ptri+1) for all i. An
System for information discovery
Pennock, Kelly A [Richland, WA; Miller, Nancy E [Kennewick, WA
2002-11-19
A sequence of word filters are used to eliminate terms in the database which do not discriminate document content, resulting in a filtered word set and a topic word set whose members are highly predictive of content. These two word sets are then formed into a two dimensional matrix with matrix entries calculated as the conditional probability that a document will contain a word in a row given that it contains the word in a column. The matrix representation allows the resultant vectors to be utilized to interpret document contents.
Ren, Shoufeng; Wei, Qimei; Cai, Liya; Yang, Xuejing; Xing, Cuicui; Tan, Feng; Leavenworth, Jianmei W.; Liang, Shaohui; Liu, Wenquan
2018-01-01
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP) is the major protective antigen of EBOV, and can generate virus-like particles (VLPs) by co-expression with matrix protein (VP40). In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV) replicon vector DREP to express EBOV GP and matrix viral protein (VP40). EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40). Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention. PMID:29375526
NASA Astrophysics Data System (ADS)
Baydaroğlu, Özlem; Koçak, Kasım; Duran, Kemal
2018-06-01
Prediction of water amount that will enter the reservoirs in the following month is of vital importance especially for semi-arid countries like Turkey. Climate projections emphasize that water scarcity will be one of the serious problems in the future. This study presents a methodology for predicting river flow for the subsequent month based on the time series of observed monthly river flow with hybrid models of support vector regression (SVR). Monthly river flow over the period 1940-2012 observed for the Kızılırmak River in Turkey has been used for training the method, which then has been applied for predictions over a period of 3 years. SVR is a specific implementation of support vector machines (SVMs), which transforms the observed input data time series into a high-dimensional feature space (input matrix) by way of a kernel function and performs a linear regression in this space. SVR requires a special input matrix. The input matrix was produced by wavelet transforms (WT), singular spectrum analysis (SSA), and a chaotic approach (CA) applied to the input time series. WT convolutes the original time series into a series of wavelets, and SSA decomposes the time series into a trend, an oscillatory and a noise component by singular value decomposition. CA uses a phase space formed by trajectories, which represent the dynamics producing the time series. These three methods for producing the input matrix for the SVR proved successful, while the SVR-WT combination resulted in the highest coefficient of determination and the lowest mean absolute error.
NASA Technical Reports Server (NTRS)
Mishchenko, M. I.; Lacis, A. A.; Travis, L. D.
1994-01-01
Although neglecting polarization and replacing the rigorous vector radiative transfer equation by its approximate scalar counterpart has no physical background, it is a widely used simplification when the incident light is unpolarized and only the intensity of the reflected light is to be computed. We employ accurate vector and scalar multiple-scattering calculations to perform a systematic study of the errors induced by the neglect of polarization in radiance calculations for a homogeneous, plane-parallel Rayleigh-scattering atmosphere (with and without depolarization) above a Lambertian surface. Specifically, we calculate percent errors in the reflected intensity for various directions of light incidence and reflection, optical thicknesses of the atmosphere, single-scattering albedos, depolarization factors, and surface albedos. The numerical data displayed can be used to decide whether or not the scalar approximation may be employed depending on the parameters of the problem. We show that the errors decrease with increasing depolarization factor and/or increasing surface albedo. For conservative or nearly conservative scattering and small surface albedos, the errors are maximum at optical thicknesses of about 1. The calculated errors may be too large for some practical applications, and, therefore, rigorous vector calculations should be employed whenever possible. However, if approximate scalar calculations are used, we recommend to avoid geometries involving phase angles equal or close to 0 deg and 90 deg, where the errors are especially significant. We propose a theoretical explanation of the large vector/scalar differences in the case of Rayleigh scattering. According to this explanation, the differences are caused by the particular structure of the Rayleigh scattering matrix and come from lower-order (except first-order) light scattering paths involving right scattering angles and right-angle rotations of the scattering plane.
ℓ p-Norm Multikernel Learning Approach for Stock Market Price Forecasting
Shao, Xigao; Wu, Kun; Liao, Bifeng
2012-01-01
Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ 1-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we adopt ℓ p-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model. The optimization problem is decomposed into smaller subproblems, and the interleaved optimization strategy is employed to solve the regression model. The model is evaluated on forecasting the daily stock closing prices of Shanghai Stock Index in China. Experimental results show that our proposed model performs better than ℓ 1-norm multiple support vector regression model. PMID:23365561
Feedback controlled optics with wavefront compensation
NASA Technical Reports Server (NTRS)
Breckenridge, William G. (Inventor); Redding, David C. (Inventor)
1993-01-01
The sensitivity model of a complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's exit pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.
Stokes-vector and Mueller-matrix polarimetry [Invited].
Azzam, R M A
2016-07-01
This paper reviews the current status of instruments for measuring the full 4×1 Stokes vector S, which describes the state of polarization (SOP) of totally or partially polarized light, and the 4×4 Mueller matrix M, which determines how the SOP is transformed as light interacts with a material sample or an optical element or system. The principle of operation of each instrument is briefly explained by using the Stokes-Mueller calculus. The development of fast, automated, imaging, and spectroscopic instruments over the last 50 years has greatly expanded the range of applications of optical polarimetry and ellipsometry in almost every branch of science and technology. Current challenges and future directions of this important branch of optics are also discussed.
Improved analysis of SP and CoSaMP under total perturbations
NASA Astrophysics Data System (ADS)
Li, Haifeng
2016-12-01
Practically, in the underdetermined model y= A x, where x is a K sparse vector (i.e., it has no more than K nonzero entries), both y and A could be totally perturbed. A more relaxed condition means less number of measurements are needed to ensure the sparse recovery from theoretical aspect. In this paper, based on restricted isometry property (RIP), for subspace pursuit (SP) and compressed sampling matching pursuit (CoSaMP), two relaxed sufficient conditions are presented under total perturbations to guarantee that the sparse vector x is recovered. Taking random matrix as measurement matrix, we also discuss the advantage of our condition. Numerical experiments validate that SP and CoSaMP can provide oracle-order recovery performance.
User's Manual for PCSMS (Parallel Complex Sparse Matrix Solver). Version 1.
NASA Technical Reports Server (NTRS)
Reddy, C. J.
2000-01-01
PCSMS (Parallel Complex Sparse Matrix Solver) is a computer code written to make use of the existing real sparse direct solvers to solve complex, sparse matrix linear equations. PCSMS converts complex matrices into real matrices and use real, sparse direct matrix solvers to factor and solve the real matrices. The solution vector is reconverted to complex numbers. Though, this utility is written for Silicon Graphics (SGI) real sparse matrix solution routines, it is general in nature and can be easily modified to work with any real sparse matrix solver. The User's Manual is written to make the user acquainted with the installation and operation of the code. Driver routines are given to aid the users to integrate PCSMS routines in their own codes.
ERIC Educational Resources Information Center
Zhang, Zhidong
2016-01-01
This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…
NASA Astrophysics Data System (ADS)
Galiatsatos, P. G.; Tennyson, J.
2012-11-01
The most time consuming step within the framework of the UK R-matrix molecular codes is that of the diagonalization of the inner region Hamiltonian matrix (IRHM). Here we present the method that we follow to speed up this step. We use shared memory machines (SMM), distributed memory machines (DMM), the OpenMP directive based parallel language, the MPI function based parallel language, the sparse matrix diagonalizers ARPACK and PARPACK, a variation for real symmetric matrices of the official coordinate sparse matrix format and finally a parallel sparse matrix-vector product (PSMV). The efficient application of the previous techniques rely on two important facts: the sparsity of the matrix is large enough (more than 98%) and in order to get back converged results we need a small only part of the matrix spectrum.
Solution of nonlinear time-dependent PDEs through componentwise approximation of matrix functions
NASA Astrophysics Data System (ADS)
Cibotarica, Alexandru; Lambers, James V.; Palchak, Elisabeth M.
2016-09-01
Exponential propagation iterative (EPI) methods provide an efficient approach to the solution of large stiff systems of ODEs, compared to standard integrators. However, the bulk of the computational effort in these methods is due to products of matrix functions and vectors, which can become very costly at high resolution due to an increase in the number of Krylov projection steps needed to maintain accuracy. In this paper, it is proposed to modify EPI methods by using Krylov subspace spectral (KSS) methods, instead of standard Krylov projection methods, to compute products of matrix functions and vectors. Numerical experiments demonstrate that this modification causes the number of Krylov projection steps to become bounded independently of the grid size, thus dramatically improving efficiency and scalability. As a result, for each test problem featured, as the total number of grid points increases, the growth in computation time is just below linear, while other methods achieved this only on selected test problems or not at all.
Electro-gravity via geometric chrononfield
NASA Astrophysics Data System (ADS)
Suchard, Eytan H.
2017-05-01
In De Sitter / Anti De Sitter space-time and in other geometries, reference sub-manifolds from which proper time is measured along integral curves, are described as events. We introduce here a foliation with the help of a scalar field. The scalar field need not be unique but from the gradient of the scalar field, an intrinsic Reeb vector of the foliations perpendicular to the gradient vector is calculated. The Reeb vector describes the acceleration of a physical particle that moves along the integral curves that are formed by the gradient of the scalar field. The Reeb vector appears as a component of an anti-symmetric matrix which is a part of a rank-2, 2-Form. The 2-form is extended into a non-degenerate 4-form and into rank-4 matrix of a 2-form, which when multiplied by a velocity of a particle, becomes the acceleration of the particle. The matrix has one U(1) degree of freedom and an additional SU(2) degrees of freedom in two vectors that span the plane perpendicular to the gradient of the scalar field and to the Reeb vector. In total, there are U(1) x SU(2) degrees of freedom. SU(3) degrees of freedom arise from three dimensional foliations but require an additional symmetry to exist in order to have a valid covariant meaning. Matter in the Einstein Grossmann equation is replaced by the action of the acceleration field, i.e. by a geometric action which is not anticipated by the metric alone. This idea leads to a new formalism that replaces the conventional stress-energy-momentum-tensor. The formalism will be mainly developed for classical physics but will also be discussed for quantized physics based on events instead of particles. The result is that a positive charge manifests small attracting gravity and a stronger but small repelling acceleration field that repels even uncharged particles that have a rest mass. Negative charge manifests a repelling anti-gravity but also a stronger acceleration field that attracts even uncharged particles that have rest mass. Preliminary version: http://sciencedomain.org/abstract/9858
Classification of subsurface objects using singular values derived from signal frames
Chambers, David H; Paglieroni, David W
2014-05-06
The classification system represents a detected object with a feature vector derived from the return signals acquired by an array of N transceivers operating in multistatic mode. The classification system generates the feature vector by transforming the real-valued return signals into complex-valued spectra, using, for example, a Fast Fourier Transform. The classification system then generates a feature vector of singular values for each user-designated spectral sub-band by applying a singular value decomposition (SVD) to the N.times.N square complex-valued matrix formed from sub-band samples associated with all possible transmitter-receiver pairs. The resulting feature vector of singular values may be transformed into a feature vector of singular value likelihoods and then subjected to a multi-category linear or neural network classifier for object classification.
Accelerating molecular property calculations with nonorthonormal Krylov space methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
Accelerating molecular property calculations with nonorthonormal Krylov space methods
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; ...
2016-05-03
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
Wurfelspiel-based training data methods for ATR
NASA Astrophysics Data System (ADS)
Peterson, James K.
2004-09-01
A data object is constructed from a P by M Wurfelspiel matrix W by choosing an entry from each column to construct a sequence A0A1"AM-1. Each of the PM possibilities are designed to correspond to the same category according to some chosen measure. This matrix could encode many types of data. (1) Musical fragments, all of which evoke sadness; each column entry is a 4 beat sequence with a chosen A0A1A2 thus 16 beats long (W is P by 3). (2) Paintings, all of which evoke happiness; each column entry is a layer and a given A0A1A2 is a painting constructed using these layers (W is P by 3). (3) abstract feature vectors corresponding to action potentials evoked from a biological cell's exposure to a toxin. The action potential is divided into four relevant regions and each column entry represents the feature vector of a region. A given A0A1A2 is then an abstraction of the excitable cell's output (W is P by 4). (4) abstract feature vectors corresponding to an object such as a face or vehicle. The object is divided into four categories each assigned an abstract feature vector with the resulting concatenation an abstract representation of the object (W is P by 4). All of the examples above correspond to one particular measure (sad music, happy paintings, an introduced toxin, an object to recognize)and hence, when a Wurfelspiel matrix is constructed, relevant training information for recognition is encoded that can be used in many algorithms. The focus of this paper is on the application of these ideas to automatic target recognition (ATR). In addition, we discuss a larger biologically based model of temporal cortex polymodal sensor fusion which can use the feature vectors extracted from the ATR Wurfelspiel data.
Integrating vector control across diseases.
Golding, Nick; Wilson, Anne L; Moyes, Catherine L; Cano, Jorge; Pigott, David M; Velayudhan, Raman; Brooker, Simon J; Smith, David L; Hay, Simon I; Lindsay, Steve W
2015-10-01
Vector-borne diseases cause a significant proportion of the overall burden of disease across the globe, accounting for over 10 % of the burden of infectious diseases. Despite the availability of effective interventions for many of these diseases, a lack of resources prevents their effective control. Many existing vector control interventions are known to be effective against multiple diseases, so combining vector control programmes to simultaneously tackle several diseases could offer more cost-effective and therefore sustainable disease reductions. The highly successful cross-disease integration of vaccine and mass drug administration programmes in low-resource settings acts a precedent for cross-disease vector control. Whilst deliberate implementation of vector control programmes across multiple diseases has yet to be trialled on a large scale, a number of examples of 'accidental' cross-disease vector control suggest the potential of such an approach. Combining contemporary high-resolution global maps of the major vector-borne pathogens enables us to quantify overlap in their distributions and to estimate the populations jointly at risk of multiple diseases. Such an analysis shows that over 80 % of the global population live in regions of the world at risk from one vector-borne disease, and more than half the world's population live in areas where at least two different vector-borne diseases pose a threat to health. Combining information on co-endemicity with an assessment of the overlap of vector control methods effective against these diseases allows us to highlight opportunities for such integration. Malaria, leishmaniasis, lymphatic filariasis, and dengue are prime candidates for combined vector control. All four of these diseases overlap considerably in their distributions and there is a growing body of evidence for the effectiveness of insecticide-treated nets, screens, and curtains for controlling all of their vectors. The real-world effectiveness of cross-disease vector control programmes can only be evaluated by large-scale trials, but there is clear evidence of the potential of such an approach to enable greater overall health benefit using the limited funds available.
Chanda, Emmanuel; Govere, John M; Macdonald, Michael B; Lako, Richard L; Haque, Ubydul; Baba, Samson P; Mnzava, Abraham
2013-10-25
Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial.
Integrated vector management: a critical strategy for combating vector-borne diseases in South Sudan
2013-01-01
Background Integrated vector management (IVM) based vector control is encouraged by the World Health Organization (WHO). However, operational experience with the IVM strategy has mostly come from countries with relatively well-established health systems and with malaria control focused programmes. Little is known about deployment of IVM for combating multiple vector-borne diseases in post-emergency settings, where delivery structures are less developed or absent. This manuscript reports on the feasibility of operational IVM for combating vector-borne diseases in South Sudan. Case description A methodical review of published and unpublished documents on vector-borne diseases for South Sudan was conducted via systematic literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Additional, non-peer reviewed literature was examined for information related to the subject. Discussion South Sudan is among the heartlands of vector-borne diseases in the world, characterized by enormous infrastructure, human and financial resource constraints and a weak health system against an increasing number of refugees, returnees and internally displaced people. The presence of a multiplicity of vector-borne diseases in this post-conflict situation presents a unique opportunity to explore the potential of a rational IVM strategy for multiple disease control and optimize limited resource utilization, while maximizing the benefits and providing a model for countries in a similar situation. Conclusion The potential of integrating vector-borne disease control is enormous in South Sudan. However, strengthened coordination, intersectoral collaboration and institutional and technical capacity for entomological monitoring and evaluation, including enforcement of appropriate legislation are crucial. PMID:24156749
Population Control of Self-Replicating Systems: Option C
NASA Technical Reports Server (NTRS)
Mccord, R. L.
1983-01-01
From the conception and development of the theory of self-replicating automata by John von Neumann, others have expanded on his theories. In 1980, Georg von Tiesenhausen and Wesley A. Darbro developed a report which is a "first' in presenting the theories in a conceptualized engineering setting. In that report several options involving self-replicating systems are presented. One of the options allows each primary to generate n replicas, one in each sequential time frame after its own generation. Each replica is limited to a maximum of m ancestors. This study involves determining the state vector of the replicas in an efficient manner. The problem is cast in matrix notation, where F = fij is a non-diagonalizable matrix. Any element fij represents the number of elements of type j = (c,d) in time frame k+1 generated from type i = (a,b) in time frame k. It is then shown that the state vector is: bar F(k)=bar F (non-zero) X F sub K = bar F (non-zero) xmx J sub kx m sub-1 where J is a matrix in Jordan form having the same eigenvalues as F. M is a matrix composed of the eigenvectors and the generalized eigenvectors of F.
Effective slip identities for viscous flow over arbitrary patterned surfaces
NASA Astrophysics Data System (ADS)
Kamrin, Ken; Six, Pierre
2012-11-01
For a variety of applications, most recently microfluidics, the ability to control fluid motions using surface texturing has been an area of ongoing interest. In this talk, we will develop several identities relating to the construction of effective slip boundary conditions for patterned surfaces. The effective slip measures the apparent slip of a fluid layer flowing over a patterned surface when viewing the flow far from the surface. In specific, shear flows of tall fluid layers over periodic surfaces (surfaces perturbed from a planar no-slip boundary by height and/or hydrophobicity fluctuations) are governed by an effective slip matrix that relates the vector of far-field shear stress (applied to the top of the fluid layer) to the effective slip velocity vector that emerges from the flow. Of particular note, we will demonstrate several general rules that describe the effective slip matrix: (1) that the effective slip matrix is always symmetric, (2) that the effective slip over any hydrophobically striped surface implies a family of related results for slip over other striped surfaces, and (3) that when height or hydrophobicity fluctuations are small, the slip matrix can be approximated directly using a simple formula derived from the surface pattern.
NASA Astrophysics Data System (ADS)
Kaporin, I. E.
2012-02-01
In order to precondition a sparse symmetric positive definite matrix, its approximate inverse is examined, which is represented as the product of two sparse mutually adjoint triangular matrices. In this way, the solution of the corresponding system of linear algebraic equations (SLAE) by applying the preconditioned conjugate gradient method (CGM) is reduced to performing only elementary vector operations and calculating sparse matrix-vector products. A method for constructing the above preconditioner is described and analyzed. The triangular factor has a fixed sparsity pattern and is optimal in the sense that the preconditioned matrix has a minimum K-condition number. The use of polynomial preconditioning based on Chebyshev polynomials makes it possible to considerably reduce the amount of scalar product operations (at the cost of an insignificant increase in the total number of arithmetic operations). The possibility of an efficient massively parallel implementation of the resulting method for solving SLAEs is discussed. For a sequential version of this method, the results obtained by solving 56 test problems from the Florida sparse matrix collection (which are large-scale and ill-conditioned) are presented. These results show that the method is highly reliable and has low computational costs.
NASA Astrophysics Data System (ADS)
Özdemir, Gizem; Demiralp, Metin
2015-12-01
In this work, Enhanced Multivariance Products Representation (EMPR) approach which is a Demiralp-and-his- group extension to the Sobol's High Dimensional Model Representation (HDMR) has been used as the basic tool. Their discrete form have also been developed and used in practice by Demiralp and his group in addition to some other authors for the decomposition of the arrays like vectors, matrices, or multiway arrays. This work specifically focuses on the decomposition of infinite matrices involving denumerable infinitely many rows and columns. To this end the target matrix is first decomposed to the sum of certain outer products and then each outer product is treated by Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR) which has been developed by Demiralp and his group. The result is a three-matrix- factor-product whose kernel (the middle factor) is an arrowheaded matrix while the pre and post factors are invertable matrices decomposed of the support vectors of TMEMPR. This new method is called as Arrowheaded Enhanced Multivariance Products Representation for Matrices. The general purpose is approximation of denumerably infinite matrices with the new method.
NASA Astrophysics Data System (ADS)
Stukopin, Vladimir
2018-02-01
Main result is the multiplicative formula for universal R-matrix for Quantum Double of Yangian of strange Lie superalgebra Qn type. We introduce the Quantum Double of the Yangian of the strange Lie superalgebra Qn and define its PBW basis. We compute the Hopf pairing for the generators of the Yangian Double. From the Hopf pairing formulas we derive a factorized multiplicative formula for the universal R-matrix of the Yangian Double of the Lie superalgebra Qn . After them we obtain coefficients in this multiplicative formula for universal R-matrix.
Gschwind, Michael K
2013-04-16
Mechanisms for generating and executing programs for a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA) are provided. A computer program product comprising a computer recordable medium having a computer readable program recorded thereon is provided. The computer readable program, when executed on a computing device, causes the computing device to receive one or more instructions and execute the one or more instructions using logic in an execution unit of the computing device. The logic implements a floating point (FP) only single instruction multiple data (SIMD) instruction set architecture (ISA), based on data stored in a vector register file of the computing device. The vector register file is configured to store both scalar and floating point values as vectors having a plurality of vector elements.
Fast polar decomposition of an arbitrary matrix
NASA Technical Reports Server (NTRS)
Higham, Nicholas J.; Schreiber, Robert S.
1988-01-01
The polar decomposition of an m x n matrix A of full rank, where m is greater than or equal to n, can be computed using a quadratically convergent algorithm. The algorithm is based on a Newton iteration involving a matrix inverse. With the use of a preliminary complete orthogonal decomposition the algorithm can be extended to arbitrary A. How to use the algorithm to compute the positive semi-definite square root of a Hermitian positive semi-definite matrix is described. A hybrid algorithm which adaptively switches from the matrix inversion based iteration to a matrix multiplication based iteration due to Kovarik, and to Bjorck and Bowie is formulated. The decision when to switch is made using a condition estimator. This matrix multiplication rich algorithm is shown to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than matrix inversion.
Fast matrix multiplication and its algebraic neighbourhood
NASA Astrophysics Data System (ADS)
Pan, V. Ya.
2017-11-01
Matrix multiplication is among the most fundamental operations of modern computations. By 1969 it was still commonly believed that the classical algorithm was optimal, although the experts already knew that this was not so. Worldwide interest in matrix multiplication instantly exploded in 1969, when Strassen decreased the exponent 3 of cubic time to 2.807. Then everyone expected to see matrix multiplication performed in quadratic or nearly quadratic time very soon. Further progress, however, turned out to be capricious. It was at stalemate for almost a decade, then a combination of surprising techniques (completely independent of Strassen's original ones and much more advanced) enabled a new decrease of the exponent in 1978-1981 and then again in 1986, to 2.376. By 2017 the exponent has still not passed through the barrier of 2.373, but most disturbing was the curse of recursion — even the decrease of exponents below 2.7733 required numerous recursive steps, and each of them squared the problem size. As a result, all algorithms supporting such exponents supersede the classical algorithm only for inputs of immense sizes, far beyond any potential interest for the user. We survey the long study of fast matrix multiplication, focusing on neglected algorithms for feasible matrix multiplication. We comment on their design, the techniques involved, implementation issues, the impact of their study on the modern theory and practice of Algebraic Computations, and perspectives for fast matrix multiplication. Bibliography: 163 titles.
Vector Communication Curriculum: Moderate and Severe, Multiple Disabilities.
ERIC Educational Resources Information Center
Baine, David
This CD-ROM disk contains a curriculum on vector communication for students with moderate and severe multiple disabilities. Section 1 discusses pragmatic communication, functional analysis of behavior, augmentative and alternative communication, including gestures and signs, use of pictures and pictographs, and low, medium, and high tech…
ERIC Educational Resources Information Center
Elk, Seymour B.
1997-01-01
Suggests that the cross product of two vectors can be more easily and accurately explained by starting from the perspective of dyadics because then the concept of vector multiplication has a simple geometrical picture that encompasses both the dot and cross products in any number of dimensions in terms of orthogonal unit vector components. (AIM)
ERIC Educational Resources Information Center
Larson, Christine
2010-01-01
Little is known about the variety of ways students conceptualize matrix multiplication, yet this is a fundamental part of most introductory linear algebra courses. My dissertation follows a three-paper format, with the three papers exploring conceptualizations of matrix multiplication from a variety of viewpoints. In these papers, I explore (1)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, S.A.; Shadid, J.N.; Tuminaro, R.S.
1995-10-01
Aztec is an iterative library that greatly simplifies the parallelization process when solving the linear systems of equations Ax = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. Aztec is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparsemore » unstructured matrices for parallel solution. Once the distributed matrix is created, computation can be performed on any of the parallel machines running Aztec: nCUBE 2, IBM SP2 and Intel Paragon, MPI platforms as well as standard serial and vector platforms. Aztec includes a number of Krylov iterative methods such as conjugate gradient (CG), generalized minimum residual (GMRES) and stabilized biconjugate gradient (BICGSTAB) to solve systems of equations. These Krylov methods are used in conjunction with various preconditioners such as polynomial or domain decomposition methods using LU or incomplete LU factorizations within subdomains. Although the matrix A can be general, the package has been designed for matrices arising from the approximation of partial differential equations (PDEs). In particular, the Aztec package is oriented toward systems arising from PDE applications.« less
Generation of 2A-linked multicistronic cassettes by recombinant PCR.
Szymczak-Workman, Andrea L; Vignali, Kate M; Vignali, Dario A A
2012-02-01
The need for reliable, multicistronic vectors for multigene delivery is at the forefront of biomedical technology. It is now possible to express multiple proteins from a single open reading frame (ORF) using 2A peptide-linked multicistronic vectors. These small sequences, when cloned between genes, allow for efficient, stoichiometric production of discrete protein products within a single vector through a novel "cleavage" event within the 2A peptide sequence. Expression of more than two genes using conventional approaches has several limitations, most notably imbalanced protein expression and large size. The use of 2A peptide sequences alleviates these concerns. They are small (18-22 amino acids) and have divergent amino-terminal sequences, which minimizes the chance for homologous recombination and allows for multiple, different 2A peptide sequences to be used within a single vector. Importantly, separation of genes placed between 2A peptide sequences is nearly 100%, which allows for stoichiometric and concordant expression of the genes, regardless of the order of placement within the vector. This protocol describes the use of recombinant polymerase chain reaction (PCR) to connect multiple 2A-linked protein sequences. The final construct is subcloned into an expression vector.
AOF LTAO mode: reconstruction strategy and first test results
NASA Astrophysics Data System (ADS)
Oberti, Sylvain; Kolb, Johann; Le Louarn, Miska; La Penna, Paolo; Madec, Pierre-Yves; Neichel, Benoit; Sauvage, Jean-François; Fusco, Thierry; Donaldson, Robert; Soenke, Christian; Suárez Valles, Marcos; Arsenault, Robin
2016-07-01
GALACSI is the Adaptive Optics (AO) system serving the instrument MUSE in the framework of the Adaptive Optics Facility (AOF) project. Its Narrow Field Mode (NFM) is a Laser Tomography AO (LTAO) mode delivering high resolution in the visible across a small Field of View (FoV) of 7.5" diameter around the optical axis. From a reconstruction standpoint, GALACSI NFM intends to optimize the correction on axis by estimating the turbulence in volume via a tomographic process, then projecting the turbulence profile onto one single Deformable Mirror (DM) located in the pupil, close to the ground. In this paper, the laser tomographic reconstruction process is described. Several methods (virtual DM, virtual layer projection) are studied, under the constraint of a single matrix vector multiplication. The pseudo-synthetic interaction matrix model and the LTAO reconstructor design are analysed. Moreover, the reconstruction parameter space is explored, in particular the regularization terms. Furthermore, we present here the strategy to define the modal control basis and split the reconstruction between the Low Order (LO) loop and the High Order (HO) loop. Finally, closed loop performance obtained with a 3D turbulence generator will be analysed with respect to the most relevant system parameters to be tuned.
Full polarimetric millimetre wave radar for stand-off security screening
NASA Astrophysics Data System (ADS)
Blackhurst, Eddie; Salmon, Neil; Southgate, Matthew
2017-10-01
The development and measurements are described of a frequency modulated continuous wave (FMCW) mono-static millimetre wave full polarimetric radar, operating at k-band (18 to 26 GHz). The system has been designed to explore the feasibility of using full polarimetry for the detection of concealed weapons, and person borne improvised explosive devices (PBIED). The philosophy of this scheme is a means to extract the maximum information content from a target which is normally in the single spatial pixel (sometimes sub-pixel) configuration in stand-off (tens of metres) and crowd surveillance scenarios. The radar comprises a vector network analyser (VNA), an orthomode transducer and a conical horn antenna. A calibration strategy is discussed and demonstrated using a variety of known calibration targets with known reflective properties, including a flat metal plate, dihedral reflector, metal sphere, helix and dipole. The orthomode transducer is based on a high performance linear polarizer of the turnstile type with isolation better than - 35dB between orthogonal polarisations. The calibration enables the polarimetric Sinclair scattering matrix to be measured at each frequency for coherent polarimetry, and this can be extended using multiple measurements via the Kennaugh matrix to investigate incoherent full polarimetry.
On the Duality of Forward and Inverse Light Transport.
Chandraker, Manmohan; Bai, Jiamin; Ng, Tian-Tsong; Ramamoorthi, Ravi
2011-10-01
Inverse light transport seeks to undo global illumination effects, such as interreflections, that pervade images of most scenes. This paper presents the theoretical and computational foundations for inverse light transport as a dual of forward rendering. Mathematically, this duality is established through the existence of underlying Neumann series expansions. Physically, it can be shown that each term of our inverse series cancels an interreflection bounce, just as the forward series adds them. While the convergence properties of the forward series are well known, we show that the oscillatory convergence of the inverse series leads to more interesting conditions on material reflectance. Conceptually, the inverse problem requires the inversion of a large light transport matrix, which is impractical for realistic resolutions using standard techniques. A natural consequence of our theoretical framework is a suite of fast computational algorithms for light transport inversion--analogous to finite element radiosity, Monte Carlo and wavelet-based methods in forward rendering--that rely at most on matrix-vector multiplications. We demonstrate two practical applications, namely, separation of individual bounces of the light transport and fast projector radiometric compensation, to display images free of global illumination artifacts in real-world environments.
Lin, Hui; Wang, Zhou-Jing
2017-09-17
Low-carbon tourism plays an important role in carbon emission reduction and environmental protection. Low-carbon tourism destination selection often involves multiple conflicting and incommensurate attributes or criteria and can be modelled as a multi-attribute decision-making problem. This paper develops a framework to solve multi-attribute group decision-making problems, where attribute evaluation values are provided as linguistic terms and the attribute weight information is incomplete. In order to obtain a group risk preference captured by a linguistic term set with triangular fuzzy semantic information, a nonlinear programming model is established on the basis of individual risk preferences. We first convert individual linguistic-term-based decision matrices to their respective triangular fuzzy decision matrices, which are then aggregated into a group triangular fuzzy decision matrix. Based on this group decision matrix and the incomplete attribute weight information, a linear program is developed to find an optimal attribute weight vector. A detailed procedure is devised for tackling linguistic multi-attribute group decision making problems. A low-carbon tourism destination selection case study is offered to illustrate how to use the developed group decision-making model in practice.
Open-Source Software for Modeling of Nanoelectronic Devices
NASA Technical Reports Server (NTRS)
Oyafuso, Fabiano; Hua, Hook; Tisdale, Edwin; Hart, Don
2004-01-01
The Nanoelectronic Modeling 3-D (NEMO 3-D) computer program has been upgraded to open-source status through elimination of license-restricted components. The present version functions equivalently to the version reported in "Software for Numerical Modeling of Nanoelectronic Devices" (NPO-30520), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 37. To recapitulate: NEMO 3-D performs numerical modeling of the electronic transport and structural properties of a semiconductor device that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantum-mechanical behavior of the device resolved to the atomistic level of granularity. NEMO 3-D solves the applicable quantum matrix equation on a Beowulf-class cluster computer by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. A prior upgrade of NEMO 3-D incorporated a capability for a strain treatment, parameterized for bulk material properties of GaAs and InAs, for two tight-binding submodels. NEMO 3-D has been demonstrated in atomistic analyses of effects of disorder in alloys and, in particular, in bulk In(x)Ga(1-x)As and in In(0.6)Ga(0.4)As quantum dots.
Lin, Hui; Wang, Zhou-Jing
2017-01-01
Low-carbon tourism plays an important role in carbon emission reduction and environmental protection. Low-carbon tourism destination selection often involves multiple conflicting and incommensurate attributes or criteria and can be modelled as a multi-attribute decision-making problem. This paper develops a framework to solve multi-attribute group decision-making problems, where attribute evaluation values are provided as linguistic terms and the attribute weight information is incomplete. In order to obtain a group risk preference captured by a linguistic term set with triangular fuzzy semantic information, a nonlinear programming model is established on the basis of individual risk preferences. We first convert individual linguistic-term-based decision matrices to their respective triangular fuzzy decision matrices, which are then aggregated into a group triangular fuzzy decision matrix. Based on this group decision matrix and the incomplete attribute weight information, a linear program is developed to find an optimal attribute weight vector. A detailed procedure is devised for tackling linguistic multi-attribute group decision making problems. A low-carbon tourism destination selection case study is offered to illustrate how to use the developed group decision-making model in practice. PMID:28926985
MISR Level 2 TOA/Cloud Versioning
Atmospheric Science Data Center
2017-10-11
... public release. Add trap singular matrix condition. Add test for invalid look vectors. Use different metadata to test for validity of time tags. Fix incorrectly addressed array. Introduced bug ...
Bayesian statistics and Monte Carlo methods
NASA Astrophysics Data System (ADS)
Koch, K. R.
2018-03-01
The Bayesian approach allows an intuitive way to derive the methods of statistics. Probability is defined as a measure of the plausibility of statements or propositions. Three rules are sufficient to obtain the laws of probability. If the statements refer to the numerical values of variables, the so-called random variables, univariate and multivariate distributions follow. They lead to the point estimation by which unknown quantities, i.e. unknown parameters, are computed from measurements. The unknown parameters are random variables, they are fixed quantities in traditional statistics which is not founded on Bayes' theorem. Bayesian statistics therefore recommends itself for Monte Carlo methods, which generate random variates from given distributions. Monte Carlo methods, of course, can also be applied in traditional statistics. The unknown parameters, are introduced as functions of the measurements, and the Monte Carlo methods give the covariance matrix and the expectation of these functions. A confidence region is derived where the unknown parameters are situated with a given probability. Following a method of traditional statistics, hypotheses are tested by determining whether a value for an unknown parameter lies inside or outside the confidence region. The error propagation of a random vector by the Monte Carlo methods is presented as an application. If the random vector results from a nonlinearly transformed vector, its covariance matrix and its expectation follow from the Monte Carlo estimate. This saves a considerable amount of derivatives to be computed, and errors of the linearization are avoided. The Monte Carlo method is therefore efficient. If the functions of the measurements are given by a sum of two or more random vectors with different multivariate distributions, the resulting distribution is generally not known. TheMonte Carlo methods are then needed to obtain the covariance matrix and the expectation of the sum.
AN ADA LINEAR ALGEBRA PACKAGE MODELED AFTER HAL/S
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1994-01-01
This package extends the Ada programming language to include linear algebra capabilities similar to those of the HAL/S programming language. The package is designed for avionics applications such as Space Station flight software. In addition to the HAL/S built-in functions, the package incorporates the quaternion functions used in the Shuttle and Galileo projects, and routines from LINPAK that solve systems of equations involving general square matrices. Language conventions in this package follow those of HAL/S to the maximum extent practical and minimize the effort required for writing new avionics software and translating existent software into Ada. Valid numeric types in this package include scalar, vector, matrix, and quaternion declarations. (Quaternions are fourcomponent vectors used in representing motion between two coordinate frames). Single precision and double precision floating point arithmetic is available in addition to the standard double precision integer manipulation. Infix operators are used instead of function calls to define dot products, cross products, quaternion products, and mixed scalar-vector, scalar-matrix, and vector-matrix products. The package contains two generic programs: one for floating point, and one for integer. The actual component type is passed as a formal parameter to the generic linear algebra package. The procedures for solving systems of linear equations defined by general matrices include GEFA, GECO, GESL, and GIDI. The HAL/S functions include ABVAL, UNIT, TRACE, DET, INVERSE, TRANSPOSE, GET, PUT, FETCH, PLACE, and IDENTITY. This package is written in Ada (Version 1.2) for batch execution and is machine independent. The linear algebra software depends on nothing outside the Ada language except for a call to a square root function for floating point scalars (such as SQRT in the DEC VAX MATHLIB library). This program was developed in 1989, and is a copyrighted work with all copyright vested in NASA.
Adjudicating between face-coding models with individual-face fMRI responses
Kriegeskorte, Nikolaus
2017-01-01
The perceptual representation of individual faces is often explained with reference to a norm-based face space. In such spaces, individuals are encoded as vectors where identity is primarily conveyed by direction and distinctiveness by eccentricity. Here we measured human fMRI responses and psychophysical similarity judgments of individual face exemplars, which were generated as realistic 3D animations using a computer-graphics model. We developed and evaluated multiple neurobiologically plausible computational models, each of which predicts a representational distance matrix and a regional-mean activation profile for 24 face stimuli. In the fusiform face area, a face-space coding model with sigmoidal ramp tuning provided a better account of the data than one based on exemplar tuning. However, an image-processing model with weighted banks of Gabor filters performed similarly. Accounting for the data required the inclusion of a measurement-level population averaging mechanism that approximates how fMRI voxels locally average distinct neuronal tunings. Our study demonstrates the importance of comparing multiple models and of modeling the measurement process in computational neuroimaging. PMID:28746335
Lei, Yi; Li, Jianqiang; Fan, Yuting; Yu, Dawei; Fu, Songnian; Yin, Feifei; Dai, Yitang; Xu, Kun
2016-12-12
In this paper, we experimentally demonstrate space-division-multiplexed (SDM) transmission of IEEE 802.11ac-compliant 3-spatial-stream WLAN signals over 3 spatial modes of conventional 50um graded-index (GI) multimode fiber (MMF) employing non-mode-selective 3D-waveguide photonic lantern. Two kinds of scenarios, including fiber-only transmission and fiber-wireless hybrid transmission, were investigated by measuring error vector magnitude (EVM) performance for each stream and condition number (CN) of the channel matrix. The experimental results show that, SDM-based MMF link could offer a CN< 20dB well-conditioned MIMO channel over up to 1km fiber length within 0-6GHz, achieving as low as 2.38%, 2.97% and 2.11% EVM performance for 1km MMF link at 2.4GHz, 5.8GHz, and 200m MMF link followed by 1m air distance at 2.7GHz, respectively. These results indicate the possibility to distribute wireless MIMO signals over existing in-building commercially-available MMFs with enormous cost-saving.
Rate determination from vector observations
NASA Technical Reports Server (NTRS)
Weiss, Jerold L.
1993-01-01
Vector observations are a common class of attitude data provided by a wide variety of attitude sensors. Attitude determination from vector observations is a well-understood process and numerous algorithms such as the TRIAD algorithm exist. These algorithms require measurement of the line of site (LOS) vector to reference objects and knowledge of the LOS directions in some predetermined reference frame. Once attitude is determined, it is a simple matter to synthesize vehicle rate using some form of lead-lag filter, and then, use it for vehicle stabilization. Many situations arise, however, in which rate knowledge is required but knowledge of the nominal LOS directions are not available. This paper presents two methods for determining spacecraft angular rates from vector observations without a priori knowledge of the vector directions. The first approach uses an extended Kalman filter with a spacecraft dynamic model and a kinematic model representing the motion of the observed LOS vectors. The second approach uses a 'differential' TRIAD algorithm to compute the incremental direction cosine matrix, from which vehicle rate is then derived.
Convolution- and Fourier-transform-based reconstructors for pyramid wavefront sensor.
Shatokhina, Iuliia; Ramlau, Ronny
2017-08-01
In this paper, we present two novel algorithms for wavefront reconstruction from pyramid-type wavefront sensor data. An overview of the current state-of-the-art in the application of pyramid-type wavefront sensors shows that the novel algorithms can be applied in various scientific fields such as astronomy, ophthalmology, and microscopy. Assuming a computationally very challenging setting corresponding to the extreme adaptive optics (XAO) on the European Extremely Large Telescope, we present the results of the performed end-to-end simulations and compare the achieved AO correction quality (in terms of the long-exposure Strehl ratio) to other methods, such as matrix-vector multiplication and preprocessed cumulative reconstructor with domain decomposition. Also, we provide a comparison in terms of applicability and computational complexity and closed-loop performance of our novel algorithms to other methods existing for this type of sensor.
Bit-Table Based Biclustering and Frequent Closed Itemset Mining in High-Dimensional Binary Data
Király, András; Abonyi, János
2014-01-01
During the last decade various algorithms have been developed and proposed for discovering overlapping clusters in high-dimensional data. The two most prominent application fields in this research, proposed independently, are frequent itemset mining (developed for market basket data) and biclustering (applied to gene expression data analysis). The common limitation of both methodologies is the limited applicability for very large binary data sets. In this paper we propose a novel and efficient method to find both frequent closed itemsets and biclusters in high-dimensional binary data. The method is based on simple but very powerful matrix and vector multiplication approaches that ensure that all patterns can be discovered in a fast manner. The proposed algorithm has been implemented in the commonly used MATLAB environment and freely available for researchers. PMID:24616651
NASA Technical Reports Server (NTRS)
Rendell, Alistair P.; Lee, Timothy J.
1991-01-01
The analytic energy gradient for the single and double excitation coupled-cluster (CCSD) wave function has been reformulated and implemented in a new set of programs. The reformulated set of gradient equations have a smaller computational cost than any previously published. The iterative solution of the linear equations and the construction of the effective density matrices are fully vectorized, being based on matrix multiplications. The new method has been used to investigate the Cl2O2 molecule, which has recently been postulated as an important intermediate in the destruction of ozone in the stratosphere. In addition to reporting computational timings, the CCSD equilibrium geometries, harmonic vibrational frequencies, infrared intensities, and relative energetics of three isomers of Cl2O2 are presented.
Vector meson photoproduction with a linearly polarized beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathieu, V.; Nys, J.; Fernendez-Ramirez, C.
Here, we propose a model based on Regge theory to describe photoproduction of light vector mesons. We fit the SLAC data and make predictions for the energy and momentum transfer dependence of the spin-density matrix elements in photoproduction of ω,more » $$\\rho^0$$ and $$\\sigma$$ mesons at Ε γ ~ 8.5 GeV, which are soon to be measured at Jefferson Lab.« less
Vector meson photoproduction with a linearly polarized beam
Mathieu, V.; Nys, J.; Fernendez-Ramirez, C.; ...
2018-05-09
Here, we propose a model based on Regge theory to describe photoproduction of light vector mesons. We fit the SLAC data and make predictions for the energy and momentum transfer dependence of the spin-density matrix elements in photoproduction of ω,more » $$\\rho^0$$ and $$\\sigma$$ mesons at Ε γ ~ 8.5 GeV, which are soon to be measured at Jefferson Lab.« less
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN.
Liu, Chang; Cheng, Gang; Chen, Xihui; Pang, Yusong
2018-05-11
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears.
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN
Cheng, Gang; Chen, Xihui
2018-01-01
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears. PMID:29751671
Novel strategies to construct complex synthetic vectors to produce DNA molecular weight standards.
Chen, Zhe; Wu, Jianbing; Li, Xiaojuan; Ye, Chunjiang; Wenxing, He
2009-05-01
DNA molecular weight standards (DNA markers, nucleic acid ladders) are commonly used in molecular biology laboratories as references to estimate the size of various DNA samples in electrophoresis process. One method of DNA marker production is digestion of synthetic vectors harboring multiple DNA fragments of known sizes by restriction enzymes. In this article, we described three novel strategies-sequential DNA fragment ligation, screening of ligation products by polymerase chain reaction (PCR) with end primers, and "small fragment accumulation"-for constructing complex synthetic vectors and minimizing the mass differences between DNA fragments produced from restrictive digestion of synthetic vectors. The strategy could be applied to construct various complex synthetic vectors to produce any type of low-range DNA markers, usually available commercially. In addition, the strategy is useful for single-step ligation of multiple DNA fragments for construction of complex synthetic vectors and other applications in molecular biology field.
Vectorization of Nucleic Acids for Therapeutic Approach: Tutorial Review.
Geinguenaud, Frederic; Guenin, Erwann; Lalatonne, Yoann; Motte, Laurence
2016-05-20
Oligonucleotides present a high therapeutic potential for a wide variety of diseases. However, their clinical development is limited by their degradation by nucleases and their poor blood circulation time. Depending on the administration mode and the cellular target, these macromolecules will have to cross the vascular endothelium, to diffuse through the extracellular matrix, to be transported through the cell membrane, and finally to reach the cytoplasm. To overcome these physiological barriers, many strategies have been developed. Here, we review different methods of DNA vectorization, discuss limitations and advantages of the various vectors, and provide new perspectives for future development.
State-Space System Realization with Input- and Output-Data Correlation
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1997-01-01
This paper introduces a general version of the information matrix consisting of the autocorrelation and cross-correlation matrices of the shifted input and output data. Based on the concept of data correlation, a new system realization algorithm is developed to create a model directly from input and output data. The algorithm starts by computing a special type of correlation matrix derived from the information matrix. The special correlation matrix provides information on the system-observability matrix and the state-vector correlation. A system model is then developed from the observability matrix in conjunction with other algebraic manipulations. This approach leads to several different algorithms for computing system matrices for use in representing the system model. The relationship of the new algorithms with other realization algorithms in the time and frequency domains is established with matrix factorization of the information matrix. Several examples are given to illustrate the validity and usefulness of these new algorithms.
Test of understanding of vectors: A reliable multiple-choice vector concept test
NASA Astrophysics Data System (ADS)
Barniol, Pablo; Zavala, Genaro
2014-06-01
In this article we discuss the findings of our research on students' understanding of vector concepts in problems without physical context. First, we develop a complete taxonomy of the most frequent errors made by university students when learning vector concepts. This study is based on the results of several test administrations of open-ended problems in which a total of 2067 students participated. Using this taxonomy, we then designed a 20-item multiple-choice test [Test of understanding of vectors (TUV)] and administered it in English to 423 students who were completing the required sequence of introductory physics courses at a large private Mexican university. We evaluated the test's content validity, reliability, and discriminatory power. The results indicate that the TUV is a reliable assessment tool. We also conducted a detailed analysis of the students' understanding of the vector concepts evaluated in the test. The TUV is included in the Supplemental Material as a resource for other researchers studying vector learning, as well as instructors teaching the material.
Breaking Megrelishvili protocol using matrix diagonalization
NASA Astrophysics Data System (ADS)
Arzaki, Muhammad; Triantoro Murdiansyah, Danang; Adi Prabowo, Satrio
2018-03-01
In this article we conduct a theoretical security analysis of Megrelishvili protocol—a linear algebra-based key agreement between two participants. We study the computational complexity of Megrelishvili vector-matrix problem (MVMP) as a mathematical problem that strongly relates to the security of Megrelishvili protocol. In particular, we investigate the asymptotic upper bounds for the running time and memory requirement of the MVMP that involves diagonalizable public matrix. Specifically, we devise a diagonalization method for solving the MVMP that is asymptotically faster than all of the previously existing algorithms. We also found an important counterintuitive result: the utilization of primitive matrix in Megrelishvili protocol makes the protocol more vulnerable to attacks.
Concerning an application of the method of least squares with a variable weight matrix
NASA Technical Reports Server (NTRS)
Sukhanov, A. A.
1979-01-01
An estimate of a state vector for a physical system when the weight matrix in the method of least squares is a function of this vector is considered. An iterative procedure is proposed for calculating the desired estimate. Conditions for the existence and uniqueness of the limit of this procedure are obtained, and a domain is found which contains the limit estimate. A second method for calculating the desired estimate which reduces to the solution of a system of algebraic equations is proposed. The question of applying Newton's method of tangents to solving the given system of algebraic equations is considered and conditions for the convergence of the modified Newton's method are obtained. Certain properties of the estimate obtained are presented together with an example.
A systematic approach for locating optimum sites
Angel Ramos; Isabel Otero
1979-01-01
The basic information collected for landscape planning studies may be given the form of a "s x m" matrix, where s is the number of landscape units and m the number of data gathered for each unit. The problem of finding the optimum location for a given project is translated in the problem of ranking the series of vectors in the matrix which represent landscape...
Field Trial Data Analysis and Testing (FiTAT) Tool
2011-10-01
amplitude/phase pour chaque antenne du réseau) contenu dans les données acquises pourrait être faite par FiTAT et utilisé dans PAASoM pour déterminer...identity matrix, k is the loop gain, φ is the correlation matrix of the incident signals and T = [1 0 . . . 0]T . The length of vector T is equal to the
Solution of the determinantal assignment problem using the Grassmann matrices
NASA Astrophysics Data System (ADS)
Karcanias, Nicos; Leventides, John
2016-02-01
The paper provides a direct solution to the determinantal assignment problem (DAP) which unifies all frequency assignment problems of the linear control theory. The current approach is based on the solvability of the exterior equation ? where ? is an n -dimensional vector space over ? which is an integral part of the solution of DAP. New criteria for existence of solution and their computation based on the properties of structured matrices are referred to as Grassmann matrices. The solvability of this exterior equation is referred to as decomposability of ?, and it is in turn characterised by the set of quadratic Plücker relations (QPRs) describing the Grassmann variety of the corresponding projective space. Alternative new tests for decomposability of the multi-vector ? are given in terms of the rank properties of the Grassmann matrix, ? of the vector ?, which is constructed by the coordinates of ?. It is shown that the exterior equation is solvable (? is decomposable), if and only if ? where ?; the solution space for a decomposable ?, is the space ?. This provides an alternative linear algebra characterisation of the decomposability problem and of the Grassmann variety to that defined by the QPRs. Further properties of the Grassmann matrices are explored by defining the Hodge-Grassmann matrix as the dual of the Grassmann matrix. The connections of the Hodge-Grassmann matrix to the solution of exterior equations are examined, and an alternative new characterisation of decomposability is given in terms of the dimension of its image space. The framework based on the Grassmann matrices provides the means for the development of a new computational method for the solutions of the exact DAP (when such solutions exist), as well as computing approximate solutions, when exact solutions do not exist.
Least-squares analysis of the Mueller matrix.
Reimer, Michael; Yevick, David
2006-08-15
In a single-mode fiber excited by light with a fixed polarization state, the output polarizations obtained at two different optical frequencies are related by a Mueller matrix. We examine least-squares procedures for estimating this matrix from repeated measurements of the output Stokes vector for a random set of input polarization states. We then apply these methods to the determination of polarization mode dispersion and polarization-dependent loss in an optical fiber. We find that a relatively simple formalism leads to results that are comparable with those of far more involved techniques.
NASA Technical Reports Server (NTRS)
Sidi, Avram
1992-01-01
Let F(z) be a vectored-valued function F: C approaches C sup N, which is analytic at z=0 and meromorphic in a neighborhood of z=0, and let its Maclaurin series be given. We use vector-valued rational approximation procedures for F(z) that are based on its Maclaurin series in conjunction with power iterations to develop bona fide generalizations of the power method for an arbitrary N X N matrix that may be diagonalizable or not. These generalizations can be used to obtain simultaneously several of the largest distinct eigenvalues and the corresponding invariant subspaces, and present a detailed convergence theory for them. In addition, it is shown that the generalized power methods of this work are equivalent to some Krylov subspace methods, among them the methods of Arnoldi and Lanczos. Thus, the theory provides a set of completely new results and constructions for these Krylov subspace methods. This theory suggests at the same time a new mode of usage for these Krylov subspace methods that were observed to possess computational advantages over their common mode of usage.
Jafari, Masoumeh; Salimifard, Maryam; Dehghani, Maryam
2014-07-01
This paper presents an efficient method for identification of nonlinear Multi-Input Multi-Output (MIMO) systems in the presence of colored noises. The method studies the multivariable nonlinear Hammerstein and Wiener models, in which, the nonlinear memory-less block is approximated based on arbitrary vector-based basis functions. The linear time-invariant (LTI) block is modeled by an autoregressive moving average with exogenous (ARMAX) model which can effectively describe the moving average noises as well as the autoregressive and the exogenous dynamics. According to the multivariable nature of the system, a pseudo-linear-in-the-parameter model is obtained which includes two different kinds of unknown parameters, a vector and a matrix. Therefore, the standard least squares algorithm cannot be applied directly. To overcome this problem, a Hierarchical Least Squares Iterative (HLSI) algorithm is used to simultaneously estimate the vector and the matrix of unknown parameters as well as the noises. The efficiency of the proposed identification approaches are investigated through three nonlinear MIMO case studies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Quantum Linear System Algorithm for Dense Matrices
NASA Astrophysics Data System (ADS)
Wossnig, Leonard; Zhao, Zhikuan; Prakash, Anupam
2018-02-01
Solving linear systems of equations is a frequently encountered problem in machine learning and optimization. Given a matrix A and a vector b the task is to find the vector x such that A x =b . We describe a quantum algorithm that achieves a sparsity-independent runtime scaling of O (κ2√{n }polylog(n )/ɛ ) for an n ×n dimensional A with bounded spectral norm, where κ denotes the condition number of A , and ɛ is the desired precision parameter. This amounts to a polynomial improvement over known quantum linear system algorithms when applied to dense matrices, and poses a new state of the art for solving dense linear systems on a quantum computer. Furthermore, an exponential improvement is achievable if the rank of A is polylogarithmic in the matrix dimension. Our algorithm is built upon a singular value estimation subroutine, which makes use of a memory architecture that allows for efficient preparation of quantum states that correspond to the rows of A and the vector of Euclidean norms of the rows of A .
Zollanvari, Amin; Dougherty, Edward R
2016-12-01
In classification, prior knowledge is incorporated in a Bayesian framework by assuming that the feature-label distribution belongs to an uncertainty class of feature-label distributions governed by a prior distribution. A posterior distribution is then derived from the prior and the sample data. An optimal Bayesian classifier (OBC) minimizes the expected misclassification error relative to the posterior distribution. From an application perspective, prior construction is critical. The prior distribution is formed by mapping a set of mathematical relations among the features and labels, the prior knowledge, into a distribution governing the probability mass across the uncertainty class. In this paper, we consider prior knowledge in the form of stochastic differential equations (SDEs). We consider a vector SDE in integral form involving a drift vector and dispersion matrix. Having constructed the prior, we develop the optimal Bayesian classifier between two models and examine, via synthetic experiments, the effects of uncertainty in the drift vector and dispersion matrix. We apply the theory to a set of SDEs for the purpose of differentiating the evolutionary history between two species.
Transformation matrices between non-linear and linear differential equations
NASA Technical Reports Server (NTRS)
Sartain, R. L.
1983-01-01
In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.
Zhang, Zhonghui; Wu, Elise; Qian, Zhijian; Wu, Wen-Shu
2014-01-01
Stable and efficient knockdown of multiple gene targets is highly desirable for dissection of molecular pathways. Because it allows sequence-specific DNA binding, transcription activator-like effector (TALE) offers a new genetic perturbation technique that allows for gene-specific repression. Here, we constructed a multicolor lentiviral TALE-Kruppel-associated box (KRAB) expression vector platform that enables knockdown of multiple gene targets. This platform is fully compatible with the Golden Gate TALEN and TAL Effector Kit 2.0, a widely used and efficient method for TALE assembly. We showed that this multicolor TALE-KRAB vector system when combined together with bone marrow transplantation could quickly knock down c-kit and PU.1 genes in hematopoietic stem and progenitor cells of recipient mice. Furthermore, our data demonstrated that this platform simultaneously knocked down both c-Kit and PU.1 genes in the same primary cell populations. Together, our results suggest that this multicolor TALE-KRAB vector platform is a promising and versatile tool for knockdown of multiple gene targets and could greatly facilitate dissection of molecular pathways. PMID:25475013
Zhang, Zhonghui; Wu, Elise; Qian, Zhijian; Wu, Wen-Shu
2014-12-05
Stable and efficient knockdown of multiple gene targets is highly desirable for dissection of molecular pathways. Because it allows sequence-specific DNA binding, transcription activator-like effector (TALE) offers a new genetic perturbation technique that allows for gene-specific repression. Here, we constructed a multicolor lentiviral TALE-Kruppel-associated box (KRAB) expression vector platform that enables knockdown of multiple gene targets. This platform is fully compatible with the Golden Gate TALEN and TAL Effector Kit 2.0, a widely used and efficient method for TALE assembly. We showed that this multicolor TALE-KRAB vector system when combined together with bone marrow transplantation could quickly knock down c-kit and PU.1 genes in hematopoietic stem and progenitor cells of recipient mice. Furthermore, our data demonstrated that this platform simultaneously knocked down both c-Kit and PU.1 genes in the same primary cell populations. Together, our results suggest that this multicolor TALE-KRAB vector platform is a promising and versatile tool for knockdown of multiple gene targets and could greatly facilitate dissection of molecular pathways.
Prediction of L70 lumen maintenance and chromaticity for LEDs using extended Kalman filter models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall, Pradeep; Wei, Junchao; Davis, Lynn
2013-09-30
Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is definedmore » by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. The measured state variable has been related to the underlying damage using physics-based models. Life prediction of L70 life for the LEDs used in SSL luminaires from KF and EKF based models have been compared with the TM-21 model predictions and experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall, Pradeep; Wei, Junchao; Davis, Lynn
2013-08-08
Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life is definedmore » by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. The measured state variable has been related to the underlying damage using physics-based models. Life prediction of L70 life for the LEDs used in SSL luminaires from KF and EKF based models have been compared with the TM-21 model predictions and experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lall, Pradeep; Wei, Junchao; Davis, J Lynn
2014-06-24
Abstract— Solid-state lighting (SSL) luminaires containing light emitting diodes (LEDs) have the potential of seeing excessive temperatures when being transported across country or being stored in non-climate controlled warehouses. They are also being used in outdoor applications in desert environments that see little or no humidity but will experience extremely high temperatures during the day. This makes it important to increase our understanding of what effects high temperature exposure for a prolonged period of time will have on the usability and survivability of these devices. Traditional light sources “burn out” at end-of-life. For an incandescent bulb, the lamp life ismore » defined by B50 life. However, the LEDs have no filament to “burn”. The LEDs continually degrade and the light output decreases eventually below useful levels causing failure. Presently, the TM-21 test standard is used to predict the L70 life of LEDs from LM-80 test data. Several failure mechanisms may be active in a LED at a single time causing lumen depreciation. The underlying TM-21 Model may not capture the failure physics in presence of multiple failure mechanisms. Correlation of lumen maintenance with underlying physics of degradation at system-level is needed. In this paper, Kalman Filter (KF) and Extended Kalman Filters (EKF) have been used to develop a 70-percent Lumen Maintenance Life Prediction Model for LEDs used in SSL luminaires. Ten-thousand hour LM-80 test data for various LEDs have been used for model development. System state at each future time has been computed based on the state space at preceding time step, system dynamics matrix, control vector, control matrix, measurement matrix, measured vector, process noise and measurement noise. The future state of the lumen depreciation has been estimated based on a second order Kalman Filter model and a Bayesian Framework. Life prediction of L70 life for the LEDs used in SSL luminaires from KF and EKF based models have been compared with the TM-21 model predictions and experimental data.« less
A Solution Space for a System of Null-State Partial Differential Equations: Part 3
NASA Astrophysics Data System (ADS)
Flores, Steven M.; Kleban, Peter
2015-01-01
This article is the third of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE κ ). The system comprises 2 N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2 N one-leg boundary operators. In the first two articles (Flores and Kleban, in Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. Extending these results, we prove in this article that dim and entirely consists of (real-valued) solutions constructed with the CFT Coulomb gas (contour integral) formalism. In order to prove this claim, we show that a certain set of C N such solutions is linearly independent. Because the formulas for these solutions are complicated, we prove linear independence indirectly. We use the linear injective map of Lemma 15 in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012) to send each solution of the mentioned set to a vector in , whose components we find as inner products of elements in a Temperley-Lieb algebra. We gather these vectors together as columns of a symmetric matrix, with the form of a meander matrix. If the determinant of this matrix does not vanish, then the set of C N Coulomb gas solutions is linearly independent. And if this determinant does vanish, then we construct an alternative set of C N Coulomb gas solutions and follow a similar procedure to show that this set is linearly independent. The latter situation is closely related to CFT minimal models. We emphasize that, although the system of PDEs arises in CFT in away that is typically non-rigorous, our treatment of this system here and in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014; Commun Math Phys, arXiv:1405.2747, 2014) is completely rigorous.
Texture operator for snow particle classification into snowflake and graupel
NASA Astrophysics Data System (ADS)
Nurzyńska, Karolina; Kubo, Mamoru; Muramoto, Ken-ichiro
2012-11-01
In order to improve the estimation of precipitation, the coefficients of Z-R relation should be determined for each snow type. Therefore, it is necessary to identify the type of falling snow. Consequently, this research addresses a problem of snow particle classification into snowflake and graupel in an automatic manner (as these types are the most common in the study region). Having correctly classified precipitation events, it is believed that it will be possible to estimate the related parameters accurately. The automatic classification system presented here describes the images with texture operators. Some of them are well-known from the literature: first order features, co-occurrence matrix, grey-tone difference matrix, run length matrix, and local binary pattern, but also a novel approach to design simple local statistic operators is introduced. In this work the following texture operators are defined: mean histogram, min-max histogram, and mean-variance histogram. Moreover, building a feature vector, which is based on the structure created in many from mentioned algorithms is also suggested. For classification, the k-nearest neighbourhood classifier was applied. The results showed that it is possible to achieve correct classification accuracy above 80% by most of the techniques. The best result of 86.06%, was achieved for operator built from a structure achieved in the middle stage of the co-occurrence matrix calculation. Next, it was noticed that describing an image with two texture operators does not improve the classification results considerably. In the best case the correct classification efficiency was 87.89% for a pair of texture operators created from local binary pattern and structure build in a middle stage of grey-tone difference matrix calculation. This also suggests that the information gathered by each texture operator is redundant. Therefore, the principal component analysis was applied in order to remove the unnecessary information and additionally reduce the length of the feature vectors. The improvement of the correct classification efficiency for up to 100% is possible for methods: min-max histogram, texture operator built from structure achieved in a middle stage of co-occurrence matrix calculation, texture operator built from a structure achieved in a middle stage of grey-tone difference matrix creation, and texture operator based on a histogram, when the feature vector stores 99% of initial information.
Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P.; Al-Hendy, Ayman
2016-01-01
Background: Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. Study design: An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Materials and methods: Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. Results: In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Conclusion: Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. PMID:26884457
Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P; Al-Hendy, Ayman
2016-04-01
Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. © The Author(s) 2016.
Computer Simulation of Diffraction Patterns.
ERIC Educational Resources Information Center
Dodd, N. A.
1983-01-01
Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…
NASA Technical Reports Server (NTRS)
Tuey, R. C.
1972-01-01
Computer solutions of linear programming problems are outlined. Information covers vector spaces, convex sets, and matrix algebra elements for solving simultaneous linear equations. Dual problems, reduced cost analysis, ranges, and error analysis are illustrated.
Phase matrix induced symmetrics for multiple scattering using the matrix operator method
NASA Technical Reports Server (NTRS)
Hitzfelder, S. J.; Kattawar, G. W.
1973-01-01
Entirely rigorous proofs of the symmetries induced by the phase matrix into the reflection and transmission operators used in the matrix operator theory are given. Results are obtained for multiple scattering in both homogeneous and inhomogeneous atmospheres. These results will be useful to researchers using the method since large savings in computer time and storage are obtainable.
Test of Understanding of Vectors: A Reliable Multiple-Choice Vector Concept Test
ERIC Educational Resources Information Center
Barniol, Pablo; Zavala, Genaro
2014-01-01
In this article we discuss the findings of our research on students' understanding of vector concepts in problems without physical context. First, we develop a complete taxonomy of the most frequent errors made by university students when learning vector concepts. This study is based on the results of several test administrations of open-ended…
A microwave backscattering model for precipitation
NASA Astrophysics Data System (ADS)
Ermis, Seda
A geophysical microwave backscattering model for space borne and ground-based remote sensing of precipitation is developed and used to analyze backscattering measurements from rain and snow type precipitation. Vector Radiative Transfer (VRT) equations for a multilayered inhomogeneous medium are applied to the precipitation region for calculation of backscattered intensity. Numerical solution of the VRT equation for multiple layers is provided by the matrix doubling method to take into account close range interactions between particles. In previous studies, the VRT model was used to calculate backscattering from a rain column on a sea surface. In the model, Mie scattering theory for closely spaced scatterers was used to determine the phase matrix for each sublayer characterized by a set of parameters. The scatterers i.e. rain drops within the sublayers were modelled as spheres with complex permittivities. The rain layer was bounded by rough boundaries; the interface between the cloud and the rain column as well as the interface between the sea surface and the rain were all analyzed by using the integral equation model (IEM). Therefore, the phase matrix for the entire rain column was generated by the combination of surface and volume scattering. Besides Mie scattering, in this study, we use T-matrix approach to examine the effect of the shape to the backscattered intensities since larger raindrops are most likely oblique in shape. Analyses show that the effect of obliquity of raindrops to the backscattered wave is related with size of the scatterers and operated frequency. For the ground-based measurement system, the VRT model is applied to simulate the precipitation column on horizontal direction. Therefore, the backscattered reflectivities for each unit range of volume are calculated from the backscattering radar cross sections by considering radar range and effective illuminated area of the radar beam. The volume scattering phase matrices for each range interval are calculated by Mie scattering theory. VRT equations are solved by matrix doubling method to compute phase matrix for entire radar beam. Model results are validated with measured data by X-band dual polarization Phase Tilt Weather Radar (PTWR) for snow, rain, wet hail type precipitation. The geophysical parameters given the best fit with measured reflectivities are used in previous models i.e. Rayleigh Approximation and Mie scattering and compared with the VRT model. Results show that reflectivities calculated by VRT models are differed up to 10 dB from the Rayleigh approximation model and up to 5 dB from the Mie Scattering theory due to both multiple scattering and attenuation losses for the rain rates as high as 80 mm/h.
NASA Technical Reports Server (NTRS)
Nguyen, Duc T.; Mohammed, Ahmed Ali; Kadiam, Subhash
2010-01-01
Solving large (and sparse) system of simultaneous linear equations has been (and continues to be) a major challenging problem for many real-world engineering/science applications [1-2]. For many practical/large-scale problems, the sparse, Symmetrical and Positive Definite (SPD) system of linear equations can be conveniently represented in matrix notation as [A] {x} = {b} , where the square coefficient matrix [A] and the Right-Hand-Side (RHS) vector {b} are known. The unknown solution vector {x} can be efficiently solved by the following step-by-step procedures [1-2]: Reordering phase, Matrix Factorization phase, Forward solution phase, and Backward solution phase. In this research work, a Game-Based Learning (GBL) approach has been developed to help engineering students to understand crucial details about matrix reordering and factorization phases. A "chess-like" game has been developed and can be played by either a single player, or two players. Through this "chess-like" open-ended game, the players/learners will not only understand the key concepts involved in reordering algorithms (based on existing algorithms), but also have the opportunities to "discover new algorithms" which are better than existing algorithms. Implementing the proposed "chess-like" game for matrix reordering and factorization phases can be enhanced by FLASH [3] computer environments, where computer simulation with animated human voice, sound effects, visual/graphical/colorful displays of matrix tables, score (or monetary) awards for the best game players, etc. can all be exploited. Preliminary demonstrations of the developed GBL approach can be viewed by anyone who has access to the internet web-site [4]!
NASA Astrophysics Data System (ADS)
Klein, Ole; Cirpka, Olaf A.; Bastian, Peter; Ippisch, Olaf
2017-04-01
In the geostatistical inverse problem of subsurface hydrology, continuous hydraulic parameter fields, in most cases hydraulic conductivity, are estimated from measurements of dependent variables, such as hydraulic heads, under the assumption that the parameter fields are autocorrelated random space functions. Upon discretization, the continuous fields become large parameter vectors with O (104 -107) elements. While cokriging-like inversion methods have been shown to be efficient for highly resolved parameter fields when the number of measurements is small, they require the calculation of the sensitivity of each measurement with respect to all parameters, which may become prohibitive with large sets of measured data such as those arising from transient groundwater flow. We present a Preconditioned Conjugate Gradient method for the geostatistical inverse problem, in which a single adjoint equation needs to be solved to obtain the gradient of the objective function. Using the autocovariance matrix of the parameters as preconditioning matrix, expensive multiplications with its inverse can be avoided, and the number of iterations is significantly reduced. We use a randomized spectral decomposition of the posterior covariance matrix of the parameters to perform a linearized uncertainty quantification of the parameter estimate. The feasibility of the method is tested by virtual examples of head observations in steady-state and transient groundwater flow. These synthetic tests demonstrate that transient data can reduce both parameter uncertainty and time spent conducting experiments, while the presented methods are able to handle the resulting large number of measurements.
Tensor Sparse Coding for Positive Definite Matrices.
Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikos
2013-08-02
In recent years, there has been extensive research on sparse representation of vector-valued signals. In the matrix case, the data points are merely vectorized and treated as vectors thereafter (for e.g., image patches). However, this approach cannot be used for all matrices, as it may destroy the inherent structure of the data. Symmetric positive definite (SPD) matrices constitute one such class of signals, where their implicit structure of positive eigenvalues is lost upon vectorization. This paper proposes a novel sparse coding technique for positive definite matrices, which respects the structure of the Riemannian manifold and preserves the positivity of their eigenvalues, without resorting to vectorization. Synthetic and real-world computer vision experiments with region covariance descriptors demonstrate the need for and the applicability of the new sparse coding model. This work serves to bridge the gap between the sparse modeling paradigm and the space of positive definite matrices.
Tensor sparse coding for positive definite matrices.
Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2014-03-01
In recent years, there has been extensive research on sparse representation of vector-valued signals. In the matrix case, the data points are merely vectorized and treated as vectors thereafter (for example, image patches). However, this approach cannot be used for all matrices, as it may destroy the inherent structure of the data. Symmetric positive definite (SPD) matrices constitute one such class of signals, where their implicit structure of positive eigenvalues is lost upon vectorization. This paper proposes a novel sparse coding technique for positive definite matrices, which respects the structure of the Riemannian manifold and preserves the positivity of their eigenvalues, without resorting to vectorization. Synthetic and real-world computer vision experiments with region covariance descriptors demonstrate the need for and the applicability of the new sparse coding model. This work serves to bridge the gap between the sparse modeling paradigm and the space of positive definite matrices.
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Weissenberger, S.; Cuk, S. M.
1973-01-01
This report presents the development and description of the decomposition aggregation approach to stability investigations of high dimension mathematical models of dynamic systems. The high dimension vector differential equation describing a large dynamic system is decomposed into a number of lower dimension vector differential equations which represent interconnected subsystems. Then a method is described by which the stability properties of each subsystem are aggregated into a single vector Liapunov function, representing the aggregate system model, consisting of subsystem Liapunov functions as components. A linear vector differential inequality is then formed in terms of the vector Liapunov function. The matrix of the model, which reflects the stability properties of the subsystems and the nature of their interconnections, is analyzed to conclude over-all system stability characteristics. The technique is applied in detail to investigate the stability characteristics of a dynamic model of a hypothetical spinning Skylab.
Position Accuracy Improvement by Implementing the DGNSS-CP Algorithm in Smartphones
Yoon, Donghwan; Kee, Changdon; Seo, Jiwon; Park, Byungwoon
2016-01-01
The position accuracy of Global Navigation Satellite System (GNSS) modules is one of the most significant factors in determining the feasibility of new location-based services for smartphones. Considering the structure of current smartphones, it is impossible to apply the ordinary range-domain Differential GNSS (DGNSS) method. Therefore, this paper describes and applies a DGNSS-correction projection method to a commercial smartphone. First, the local line-of-sight unit vector is calculated using the elevation and azimuth angle provided in the position-related output of Android’s LocationManager, and this is transformed to Earth-centered, Earth-fixed coordinates for use. To achieve position-domain correction for satellite systems other than GPS, such as GLONASS and BeiDou, the relevant line-of-sight unit vectors are used to construct an observation matrix suitable for multiple constellations. The results of static and dynamic tests show that the standalone GNSS accuracy is improved by about 30%–60%, thereby reducing the existing error of 3–4 m to just 1 m. The proposed algorithm enables the position error to be directly corrected via software, without the need to alter the hardware and infrastructure of the smartphone. This method of implementation and the subsequent improvement in performance are expected to be highly effective to portability and cost saving. PMID:27322284
Unsymmetric Lanczos model reduction and linear state function observer for flexible structures
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1991-01-01
This report summarizes part of the research work accomplished during the second year of a two-year grant. The research, entitled 'Application of Lanczos Vectors to Control Design of Flexible Structures' concerns various ways to use Lanczos vectors and Krylov vectors to obtain reduced-order mathematical models for use in the dynamic response analyses and in control design studies. This report presents a one-sided, unsymmetric block Lanczos algorithm for model reduction of structural dynamics systems with unsymmetric damping matrix, and a control design procedure based on the theory of linear state function observers to design low-order controllers for flexible structures.
A vector matching method for analysing logic Petri nets
NASA Astrophysics Data System (ADS)
Du, YuYue; Qi, Liang; Zhou, MengChu
2011-11-01
Batch processing function and passing value indeterminacy in cooperative systems can be described and analysed by logic Petri nets (LPNs). To directly analyse the properties of LPNs, the concept of transition enabling vector sets is presented and a vector matching method used to judge the enabling transitions is proposed in this article. The incidence matrix of LPNs is defined; an equation about marking change due to a transition's firing is given; and a reachable tree is constructed. The state space explosion is mitigated to a certain extent from directly analysing LPNs. Finally, the validity and reliability of the proposed method are illustrated by an example in electronic commerce.
An accelerated training method for back propagation networks
NASA Technical Reports Server (NTRS)
Shelton, Robert O. (Inventor)
1993-01-01
The principal objective is to provide a training procedure for a feed forward, back propagation neural network which greatly accelerates the training process. A set of orthogonal singular vectors are determined from the input matrix such that the standard deviations of the projections of the input vectors along these singular vectors, as a set, are substantially maximized, thus providing an optimal means of presenting the input data. Novelty exists in the method of extracting from the set of input data, a set of features which can serve to represent the input data in a simplified manner, thus greatly reducing the time/expense to training the system.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.; Lawson, C. L.
1988-01-01
Routines provided for common scalar, vector, matrix, and quaternion operations. Computer program extends Ada programming language to include linear-algebra capabilities similar to HAS/S programming language. Designed for such avionics applications as software for Space Station.
Nucleon form factors from quenched lattice QCD with domain wall fermions
NASA Astrophysics Data System (ADS)
Sasaki, Shoichi; Yamazaki, Takeshi
2008-07-01
We present a quenched lattice calculation of the weak nucleon form factors: vector [FV(q2)], induced tensor [FT(q2)], axial vector [FA(q2)] and induced pseudoscalar [FP(q2)] form factors. Our simulations are performed on three different lattice sizes L3×T=243×32, 163×32, and 123×32 with a lattice cutoff of a-1≈1.3GeV and light quark masses down to about 1/4 the strange quark mass (mπ≈390MeV) using a combination of the DBW2 gauge action and domain wall fermions. The physical volume of our largest lattice is about (3.6fm)3, where the finite volume effects on form factors become negligible and the lower momentum transfers (q2≈0.1GeV2) are accessible. The q2 dependences of form factors in the low q2 region are examined. It is found that the vector, induced tensor, and axial-vector form factors are well described by the dipole form, while the induced pseudoscalar form factor is consistent with pion-pole dominance. We obtain the ratio of axial to vector coupling gA/gV=FA(0)/FV(0)=1.219(38) and the pseudoscalar coupling gP=mμFP(0.88mμ2)=8.15(54), where the errors are statistical errors only. These values agree with experimental values from neutron β decay and muon capture on the proton. However, the root mean-squared radii of the vector, induced tensor, and axial vector underestimate the known experimental values by about 20%. We also calculate the pseudoscalar nucleon matrix element in order to verify the axial Ward-Takahashi identity in terms of the nucleon matrix elements, which may be called as the generalized Goldberger-Treiman relation.
Study of modal coupling procedures for the shuttle: A matrix method for damping synthesis
NASA Technical Reports Server (NTRS)
Hasselman, T. K.
1972-01-01
The damping method was applied successfully to real structures as well as analytical models. It depends on the ability to determine an appropriate modal damping matrix for each substructure. In the past, modal damping matrices were assumed diagonal for lack of being able to determine the coupling terms which are significant in the general case of nonproportional damping. This problem was overcome by formulating the damped equations of motion as a linear perturbation of the undamped equations for light structural damping. Damped modes are defined as complex vectors derived from the complex frequency response vectors of each substructure and are obtained directly from sinusoidal vibration tests. The damped modes are used to compute first order approximations to the modal damping matrices. The perturbation approach avoids ever having to solve a complex eigenvalue problem.
Kim, Moo-Sang; Lim, Hak-Seob; Ahn, Sang Jung; Jeong, Yong-Kee; Kim, Chul Geun; Lee, Hyung Ho
2007-11-01
The origins of replication are associated with nuclear matrices or are found in close proximity to matrix attachment regions (MARs). In this report, fish MARs were cloned into an autonomously replicating sequence (ARS) cloning vector and were screened for ARS elements in Saccharomyces cerevisiae. Sixteen clones were isolated that were able to grow on the selective plates. In particular, an ARS905 that shows high efficiency among them was selected for this study. Southern hybridization indicated the autonomous replication of the transformation vector containing the ARS905 element. DNA sequences analysis showed that the ARS905 contained two ARS consensus sequences as well as MAR motifs, such as AT tracts, ORI patterns, and ATC tracts. In vitro matrix binding analysis, major matrix binding activity and ARS function coincided in a subfragment of the ARS905. To analyze the effects of ARS905 on expression of a reporter gene, an ARS905(E1158) with ARS activity was inserted into pBaEGFP(+) containing mud loach beta-actin promoter, EGFP as a reporter gene, and SV40 poly(A) signal. The pBaEGFP(+)-ARS905(E1158) was transfected into a fish cell line, CHSE-214. The intensity of EGFP transfected cells was a 7-fold of the control at 11days post-transfection. These results indicate that ARS905 enhances the expression of the EGFP gene and that it should be as a component of expression vectors in further fish biotechnological studies.
Acceleration of GPU-based Krylov solvers via data transfer reduction
Anzt, Hartwig; Tomov, Stanimire; Luszczek, Piotr; ...
2015-04-08
Krylov subspace iterative solvers are often the method of choice when solving large sparse linear systems. At the same time, hardware accelerators such as graphics processing units continue to offer significant floating point performance gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these libraries are usually composed of a well optimized but limited set of linear algebra operations, applications that use them often fail to reduce certain data communications, and hence fail to leverage the full potential of the accelerator. In this study, we target the acceleration of Krylov subspace iterative methods for graphicsmore » processing units, and in particular the Biconjugate Gradient Stabilized solver that significant improvement can be achieved by reformulating the method to reduce data-communications through application-specific kernels instead of using the generic BLAS kernels, e.g. as provided by NVIDIA’s cuBLAS library, and by designing a graphics processing unit specific sparse matrix-vector product kernel that is able to more efficiently use the graphics processing unit’s computing power. Furthermore, we derive a model estimating the performance improvement, and use experimental data to validate the expected runtime savings. Finally, considering that the derived implementation achieves significantly higher performance, we assert that similar optimizations addressing algorithm structure, as well as sparse matrix-vector, are crucial for the subsequent development of high-performance graphics processing units accelerated Krylov subspace iterative methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okabe, T.; Takeda, N.; Komotori, J.
1999-11-26
A new model is proposed for multiple matrix cracking in order to take into account the role of matrix-rich regions in the cross section in initiating crack growth. The model is used to predict the matrix cracking stress and the total number of matrix cracks. The model converts the matrix-rich regions into equivalent penny shape crack sizes and predicts the matrix cracking stress with a fracture mechanics crack-bridging model. The estimated distribution of matrix cracking stresses is used as statistical input to predict the number of matrix cracks. The results show good agreement with the experimental results by replica observations.more » Therefore, it is found that the matrix cracking behavior mainly depends on the distribution of matrix-rich regions in the composite.« less
LSRN: A PARALLEL ITERATIVE SOLVER FOR STRONGLY OVER- OR UNDERDETERMINED SYSTEMS*
Meng, Xiangrui; Saunders, Michael A.; Mahoney, Michael W.
2014-01-01
We describe a parallel iterative least squares solver named LSRN that is based on random normal projection. LSRN computes the min-length solution to minx∈ℝn ‖Ax − b‖2, where A ∈ ℝm × n with m ≫ n or m ≪ n, and where A may be rank-deficient. Tikhonov regularization may also be included. Since A is involved only in matrix-matrix and matrix-vector multiplications, it can be a dense or sparse matrix or a linear operator, and LSRN automatically speeds up when A is sparse or a fast linear operator. The preconditioning phase consists of a random normal projection, which is embarrassingly parallel, and a singular value decomposition of size ⌈γ min(m, n)⌉ × min(m, n), where γ is moderately larger than 1, e.g., γ = 2. We prove that the preconditioned system is well-conditioned, with a strong concentration result on the extreme singular values, and hence that the number of iterations is fully predictable when we apply LSQR or the Chebyshev semi-iterative method. As we demonstrate, the Chebyshev method is particularly efficient for solving large problems on clusters with high communication cost. Numerical results show that on a shared-memory machine, LSRN is very competitive with LAPACK’s DGELSD and a fast randomized least squares solver called Blendenpik on large dense problems, and it outperforms the least squares solver from SuiteSparseQR on sparse problems without sparsity patterns that can be exploited to reduce fill-in. Further experiments show that LSRN scales well on an Amazon Elastic Compute Cloud cluster. PMID:25419094
Adaptive track scheduling to optimize concurrency and vectorization in GeantV
Apostolakis, J.; Bandieramonte, M.; Bitzes, G.; ...
2015-05-22
The GeantV project is focused on the R&D of new particle transport techniques to maximize parallelism on multiple levels, profiting from the use of both SIMD instructions and co-processors for the CPU-intensive calculations specific to this type of applications. In our approach, vectors of tracks belonging to multiple events and matching different locality criteria must be gathered and dispatched to algorithms having vector signatures. While the transport propagates tracks and changes their individual states, data locality becomes harder to maintain. The scheduling policy has to be changed to maintain efficient vectors while keeping an optimal level of concurrency. The modelmore » has complex dynamics requiring tuning the thresholds to switch between the normal regime and special modes, i.e. prioritizing events to allow flushing memory, adding new events in the transport pipeline to boost locality, dynamically adjusting the particle vector size or switching between vector to single track mode when vectorization causes only overhead. Lastly, this work requires a comprehensive study for optimizing these parameters to make the behaviour of the scheduler self-adapting, presenting here its initial results.« less
A cross-species bi-clustering approach to identifying conserved co-regulated genes.
Sun, Jiangwen; Jiang, Zongliang; Tian, Xiuchun; Bi, Jinbo
2016-06-15
A growing number of studies have explored the process of pre-implantation embryonic development of multiple mammalian species. However, the conservation and variation among different species in their developmental programming are poorly defined due to the lack of effective computational methods for detecting co-regularized genes that are conserved across species. The most sophisticated method to date for identifying conserved co-regulated genes is a two-step approach. This approach first identifies gene clusters for each species by a cluster analysis of gene expression data, and subsequently computes the overlaps of clusters identified from different species to reveal common subgroups. This approach is ineffective to deal with the noise in the expression data introduced by the complicated procedures in quantifying gene expression. Furthermore, due to the sequential nature of the approach, the gene clusters identified in the first step may have little overlap among different species in the second step, thus difficult to detect conserved co-regulated genes. We propose a cross-species bi-clustering approach which first denoises the gene expression data of each species into a data matrix. The rows of the data matrices of different species represent the same set of genes that are characterized by their expression patterns over the developmental stages of each species as columns. A novel bi-clustering method is then developed to cluster genes into subgroups by a joint sparse rank-one factorization of all the data matrices. This method decomposes a data matrix into a product of a column vector and a row vector where the column vector is a consistent indicator across the matrices (species) to identify the same gene cluster and the row vector specifies for each species the developmental stages that the clustered genes co-regulate. Efficient optimization algorithm has been developed with convergence analysis. This approach was first validated on synthetic data and compared to the two-step method and several recent joint clustering methods. We then applied this approach to two real world datasets of gene expression during the pre-implantation embryonic development of the human and mouse. Co-regulated genes consistent between the human and mouse were identified, offering insights into conserved functions, as well as similarities and differences in genome activation timing between the human and mouse embryos. The R package containing the implementation of the proposed method in C ++ is available at: https://github.com/JavonSun/mvbc.git and also at the R platform https://www.r-project.org/ jinbo@engr.uconn.edu. © The Author 2016. Published by Oxford University Press.
Shao, Wei; Liu, Mingxia; Zhang, Daoqiang
2016-01-01
The systematic study of subcellular location pattern is very important for fully characterizing the human proteome. Nowadays, with the great advances in automated microscopic imaging, accurate bioimage-based classification methods to predict protein subcellular locations are highly desired. All existing models were constructed on the independent parallel hypothesis, where the cellular component classes are positioned independently in a multi-class classification engine. The important structural information of cellular compartments is missed. To deal with this problem for developing more accurate models, we proposed a novel cell structure-driven classifier construction approach (SC-PSorter) by employing the prior biological structural information in the learning model. Specifically, the structural relationship among the cellular components is reflected by a new codeword matrix under the error correcting output coding framework. Then, we construct multiple SC-PSorter-based classifiers corresponding to the columns of the error correcting output coding codeword matrix using a multi-kernel support vector machine classification approach. Finally, we perform the classifier ensemble by combining those multiple SC-PSorter-based classifiers via majority voting. We evaluate our method on a collection of 1636 immunohistochemistry images from the Human Protein Atlas database. The experimental results show that our method achieves an overall accuracy of 89.0%, which is 6.4% higher than the state-of-the-art method. The dataset and code can be downloaded from https://github.com/shaoweinuaa/. dqzhang@nuaa.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
CUGatesDensity—Quantum circuit analyser extended to density matrices
NASA Astrophysics Data System (ADS)
Loke, T.; Wang, J. B.
2013-12-01
CUGatesDensity is an extension of the original quantum circuit analyser CUGates (Loke and Wang, 2011) [7] to provide explicit support for the use of density matrices. The new package enables simulation of quantum circuits involving statistical ensemble of mixed quantum states. Such analysis is of vital importance in dealing with quantum decoherence, measurements, noise and error correction, and fault tolerant computation. Several examples involving mixed state quantum computation are presented to illustrate the use of this package. Catalogue identifier: AEPY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPY_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5368 No. of bytes in distributed program, including test data, etc.: 143994 Distribution format: tar.gz Programming language: Mathematica. Computer: Any computer installed with a copy of Mathematica 6.0 or higher. Operating system: Any system with a copy of Mathematica 6.0 or higher installed. Classification: 4.15. Nature of problem: To simulate arbitrarily complex quantum circuits comprised of single/multiple qubit and qudit quantum gates with mixed state registers. Solution method: A density matrix representation for mixed states and a state vector representation for pure states are used. The construct is based on an irreducible form of matrix decomposition, which allows a highly efficient implementation of general controlled gates with multiple conditionals. Running time: The examples provided in the notebook CUGatesDensity.nb take approximately 30 s to run on a laptop PC.
Smallwood, D. O.
1996-01-01
It is shown that the usual method for estimating the coherence functions (ordinary, partial, and multiple) for a general multiple-input! multiple-output problem can be expressed as a modified form of Cholesky decomposition of the cross-spectral density matrix of the input and output records. The results can be equivalently obtained using singular value decomposition (SVD) of the cross-spectral density matrix. Using SVD suggests a new form of fractional coherence. The formulation as a SVD problem also suggests a way to order the inputs when a natural physical order of the inputs is absent.
How random is a random vector?
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2015-12-01
Over 80 years ago Samuel Wilks proposed that the "generalized variance" of a random vector is the determinant of its covariance matrix. To date, the notion and use of the generalized variance is confined only to very specific niches in statistics. In this paper we establish that the "Wilks standard deviation" -the square root of the generalized variance-is indeed the standard deviation of a random vector. We further establish that the "uncorrelation index" -a derivative of the Wilks standard deviation-is a measure of the overall correlation between the components of a random vector. Both the Wilks standard deviation and the uncorrelation index are, respectively, special cases of two general notions that we introduce: "randomness measures" and "independence indices" of random vectors. In turn, these general notions give rise to "randomness diagrams"-tangible planar visualizations that answer the question: How random is a random vector? The notion of "independence indices" yields a novel measure of correlation for Lévy laws. In general, the concepts and results presented in this paper are applicable to any field of science and engineering with random-vectors empirical data.
The Vertical Linear Fractional Initialization Problem
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Hartley, Tom T.
1999-01-01
This paper presents a solution to the initialization problem for a system of linear fractional-order differential equations. The scalar problem is considered first, and solutions are obtained both generally and for a specific initialization. Next the vector fractional order differential equation is considered. In this case, the solution is obtained in the form of matrix F-functions. Some control implications of the vector case are discussed. The suggested method of problem solution is shown via an example.
NASA Astrophysics Data System (ADS)
Gerber, Florian; Mösinger, Kaspar; Furrer, Reinhard
2017-07-01
Software packages for spatial data often implement a hybrid approach of interpreted and compiled programming languages. The compiled parts are usually written in C, C++, or Fortran, and are efficient in terms of computational speed and memory usage. Conversely, the interpreted part serves as a convenient user-interface and calls the compiled code for computationally demanding operations. The price paid for the user friendliness of the interpreted component is-besides performance-the limited access to low level and optimized code. An example of such a restriction is the 64-bit vector support of the widely used statistical language R. On the R side, users do not need to change existing code and may not even notice the extension. On the other hand, interfacing 64-bit compiled code efficiently is challenging. Since many R packages for spatial data could benefit from 64-bit vectors, we investigate strategies to efficiently pass 64-bit vectors to compiled languages. More precisely, we show how to simply extend existing R packages using the foreign function interface to seamlessly support 64-bit vectors. This extension is shown with the sparse matrix algebra R package spam. The new capabilities are illustrated with an example of GIMMS NDVI3g data featuring a parametric modeling approach for a non-stationary covariance matrix.
Uniform Recovery Bounds for Structured Random Matrices in Corrupted Compressed Sensing
NASA Astrophysics Data System (ADS)
Zhang, Peng; Gan, Lu; Ling, Cong; Sun, Sumei
2018-04-01
We study the problem of recovering an $s$-sparse signal $\\mathbf{x}^{\\star}\\in\\mathbb{C}^n$ from corrupted measurements $\\mathbf{y} = \\mathbf{A}\\mathbf{x}^{\\star}+\\mathbf{z}^{\\star}+\\mathbf{w}$, where $\\mathbf{z}^{\\star}\\in\\mathbb{C}^m$ is a $k$-sparse corruption vector whose nonzero entries may be arbitrarily large and $\\mathbf{w}\\in\\mathbb{C}^m$ is a dense noise with bounded energy. The aim is to exactly and stably recover the sparse signal with tractable optimization programs. In this paper, we prove the uniform recovery guarantee of this problem for two classes of structured sensing matrices. The first class can be expressed as the product of a unit-norm tight frame (UTF), a random diagonal matrix and a bounded columnwise orthonormal matrix (e.g., partial random circulant matrix). When the UTF is bounded (i.e. $\\mu(\\mathbf{U})\\sim1/\\sqrt{m}$), we prove that with high probability, one can recover an $s$-sparse signal exactly and stably by $l_1$ minimization programs even if the measurements are corrupted by a sparse vector, provided $m = \\mathcal{O}(s \\log^2 s \\log^2 n)$ and the sparsity level $k$ of the corruption is a constant fraction of the total number of measurements. The second class considers randomly sub-sampled orthogonal matrix (e.g., random Fourier matrix). We prove the uniform recovery guarantee provided that the corruption is sparse on certain sparsifying domain. Numerous simulation results are also presented to verify and complement the theoretical results.
Managing focal fields of vector beams with multiple polarization singularities.
Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin
2016-11-10
We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.
Ambulatory Monitoring of Congestive Heart Failure by Multiple Bioelectric Impedance Vectors
Khoury, Dirar S.; Naware, Mihir; Siou, Jeff; Blomqvist, Andreas; Mathuria, Nilesh S.; Wang, Jianwen; Shih, Hue-Teh; Nagueh, Sherif F.; Panescu, Dorin
2009-01-01
Objectives To investigate properties of multiple bioelectric impedance signals recorded during congestive heart failure (CHF) by utilizing various electrode configurations of an implanted cardiac resynchronization therapy (CRT) system. Background Monitoring of CHF has relied mainly on right-heart sensors. Methods Fifteen normal dogs underwent implantation of CRT systems using standard leads. An additional left atrial (LA) pressure lead-sensor was implanted in 5 dogs. Continuous rapid right ventricular (RV) pacing was applied over several weeks. Left ventricular (LV) catheterization and echocardiography were performed biweekly. Six steady-state impedance signals, utilizing intrathorcaic and intracardiac vectors, were measured via ring (r), coil (c), and device Can electrodes. Results All animals developed CHF after 2–4 weeks of pacing. Impedance diminished gradually during CHF induction, but at varying rates for different vectors. Impedance during CHF decreased significantly in all measured vectors: LVr-Can, −17%; LVr-RVr, −15%; LVr-RAr, −11%; RVr-Can, −12%; RVc-Can, −7%; RAr-Can, −5%. The LVr-Can vector reflected both the fastest and largest change in impedance in comparison to vectors employing only right-heart electrodes, and was highly reflective of changes in LV end-diastolic volume and LA pressure. Conclusions Impedance, acquired via different lead-electrodes, have variable responses to CHF. Impedance vectors employing a LV lead are highly responsive to physiologic changes during CHF. Measuring multiple impedance signals could be useful for optimizing ambulatory monitoring in heart failure patients. PMID:19298923
Kernel-aligned multi-view canonical correlation analysis for image recognition
NASA Astrophysics Data System (ADS)
Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao
2016-09-01
Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.
An ANN-Based Smart Tomographic Reconstructor in a Dynamic Environment
de Cos Juez, Francisco J.; Lasheras, Fernando Sánchez; Roqueñí, Nieves; Osborn, James
2012-01-01
In astronomy, the light emitted by an object travels through the vacuum of space and then the turbulent atmosphere before arriving at a ground based telescope. By passing through the atmosphere a series of turbulent layers modify the light's wave-front in such a way that Adaptive Optics reconstruction techniques are needed to improve the image quality. A novel reconstruction technique based in Artificial Neural Networks (ANN) is proposed. The network is designed to use the local tilts of the wave-front measured by a Shack Hartmann Wave-front Sensor (SHWFS) as inputs and estimate the turbulence in terms of Zernike coefficients. The ANN used is a Multi-Layer Perceptron (MLP) trained with simulated data with one turbulent layer changing in altitude. The reconstructor was tested using three different atmospheric profiles and compared with two existing reconstruction techniques: Least Squares type Matrix Vector Multiplication (LS) and Learn and Apply (L + A). PMID:23012524
Glove-based approach to online signature verification.
Kamel, Nidal S; Sayeed, Shohel; Ellis, Grant A
2008-06-01
Utilizing the multiple degrees of freedom offered by the data glove for each finger and the hand, a novel on-line signature verification system using the Singular Value Decomposition (SVD) numerical tool for signature classification and verification is presented. The proposed technique is based on the Singular Value Decomposition in finding r singular vectors sensing the maximal energy of glove data matrix A, called principal subspace, so the effective dimensionality of A can be reduced. Having modeled the data glove signature through its r-principal subspace, signature authentication is performed by finding the angles between the different subspaces. A demonstration of the data glove is presented as an effective high-bandwidth data entry device for signature verification. This SVD-based signature verification technique is tested and its performance is shown to be able to recognize forgery signatures with a false acceptance rate of less than 1.2%.
NASA Astrophysics Data System (ADS)
Xu, Fangbo; Xu, Zhiping; Yakobson, Boris I.
2014-08-01
We present a site-percolation model based on a modified FCC lattice, as well as an efficient algorithm of inspecting percolation which takes advantage of the Markov stochastic theory, in order to study the percolation threshold of carbon nanotube (CNT) fibers. Our Markov-chain based algorithm carries out the inspection of percolation by performing repeated sparse matrix-vector multiplications, which allows parallelized computation to accelerate the inspection for a given configuration. With this approach, we determine that the site-percolation transition of CNT fibers occurs at pc=0.1533±0.0013, and analyze the dependence of the effective percolation threshold (corresponding to 0.5 percolation probability) on the length and the aspect ratio of a CNT fiber on a finite-size-scaling basis. We also discuss the aspect ratio dependence of percolation probability with various values of p (not restricted to pc).
Hoang, Tuan; Tran, Dat; Huang, Xu
2013-01-01
Common Spatial Pattern (CSP) is a state-of-the-art method for feature extraction in Brain-Computer Interface (BCI) systems. However it is designed for 2-class BCI classification problems. Current extensions of this method to multiple classes based on subspace union and covariance matrix similarity do not provide a high performance. This paper presents a new approach to solving multi-class BCI classification problems by forming a subspace resembled from original subspaces and the proposed method for this approach is called Approximation-based Common Principal Component (ACPC). We perform experiments on Dataset 2a used in BCI Competition IV to evaluate the proposed method. This dataset was designed for motor imagery classification with 4 classes. Preliminary experiments show that the proposed ACPC feature extraction method when combining with Support Vector Machines outperforms CSP-based feature extraction methods on the experimental dataset.
2016-06-01
index. The covariance matrix associated with the disctrete-time process noise vector [ ωdφ(k) ωdf (k) ]T is Qdt (k) = [ SφT + T 3 3 Sf T 2 2 Sf T 2 2 Sf...time process noise covariance matrix , scaled to metres, is shown on page 153 of [1]. It is Qd (k) = c 2Qdt (k) = [ 0.0114 0.0019 0.0019 0.0039 ] (8...somewhat, a shorthand notation is used where appropriate; viz., consider an m × n matrix A, with elements aij (k) , i = 1, ..,m, j = 1, .., n, then
The Geometry of Enhancement in Multiple Regression
ERIC Educational Resources Information Center
Waller, Niels G.
2011-01-01
In linear multiple regression, "enhancement" is said to occur when R[superscript 2] = b[prime]r greater than r[prime]r, where b is a p x 1 vector of standardized regression coefficients and r is a p x 1 vector of correlations between a criterion y and a set of standardized regressors, x. When p = 1 then b [is congruent to] r and…
Modeling and Control of a Tethered Rotorcraft
2010-07-30
viscous damper with damping coefficient Cv. Visco-elastic line force is written in terms of components Δx, Δy, and Δz, of the difference vector formed...tether drag coefficient CS = tether damping coefficient Cv = viscous damping coefficient d = diameter of the tether En = n x n identity matrix FA...matrix consisting of Iyy and Izz k = rotor head stiffness KLAT, KLON = steady state flapping gains Ks, Kv = static and viscous stiffness Lj
ERIC Educational Resources Information Center
Grimaldi, Ralph P.
This material was developed to provide an application of matrix mathematics in chemistry, and to show the concepts of linear independence and dependence in vector spaces of dimensions greater than three in a concrete setting. The techniques presented are not intended to be considered as replacements for such chemical methods as oxidation-reduction…
Vector Adaptive/Predictive Encoding Of Speech
NASA Technical Reports Server (NTRS)
Chen, Juin-Hwey; Gersho, Allen
1989-01-01
Vector adaptive/predictive technique for digital encoding of speech signals yields decoded speech of very good quality after transmission at coding rate of 9.6 kb/s and of reasonably good quality at 4.8 kb/s. Requires 3 to 4 million multiplications and additions per second. Combines advantages of adaptive/predictive coding, and code-excited linear prediction, yielding speech of high quality but requires 600 million multiplications and additions per second at encoding rate of 4.8 kb/s. Vector adaptive/predictive coding technique bridges gaps in performance and complexity between adaptive/predictive coding and code-excited linear prediction.
A new molecular evolution model for limited insertion independent of substitution.
Lèbre, Sophie; Michel, Christian J
2013-10-01
We recently introduced a new molecular evolution model called the IDIS model for Insertion Deletion Independent of Substitution [13,14]. In the IDIS model, the three independent processes of substitution, insertion and deletion of residues have constant rates. In order to control the genome expansion during evolution, we generalize here the IDIS model by introducing an insertion rate which decreases when the sequence grows and tends to 0 for a maximum sequence length nmax. This new model, called LIIS for Limited Insertion Independent of Substitution, defines a matrix differential equation satisfied by a vector P(t) describing the sequence content in each residue at evolution time t. An analytical solution is obtained for any diagonalizable substitution matrix M. Thus, the LIIS model gives an expression of the sequence content vector P(t) in each residue under evolution time t as a function of the eigenvalues and the eigenvectors of matrix M, the residue insertion rate vector R, the total insertion rate r, the initial and maximum sequence lengths n0 and nmax, respectively, and the sequence content vector P(t0) at initial time t0. The derivation of the analytical solution is much more technical, compared to the IDIS model, as it involves Gauss hypergeometric functions. Several propositions of the LIIS model are derived: proof that the IDIS model is a particular case of the LIIS model when the maximum sequence length nmax tends to infinity, fixed point, time scale, time step and time inversion. Using a relation between the sequence length l and the evolution time t, an expression of the LIIS model as a function of the sequence length l=n(t) is obtained. Formulas for 'insertion only', i.e. when the substitution rates are all equal to 0, are derived at evolution time t and sequence length l. Analytical solutions of the LIIS model are explicitly derived, as a function of either evolution time t or sequence length l, for two classical substitution matrices: the 3-parameter symmetric substitution matrix [12] (LIIS-SYM3) and the HKY asymmetric substitution matrix[9] (LIIS-HKY). An evaluation of the LIIS model (precisely, LIIS-HKY) based on four statistical analyses of the GC content in complete genomes of four prokaryotic taxonomic groups, namely Chlamydiae, Crenarchaeota, Spirochaetes and Thermotogae, shows the expected improvement from the theory of the LIIS model compared to the IDIS model. Copyright © 2013 Elsevier Inc. All rights reserved.