Pfefferbaum, Adolf; Adalsteinsson, Elfar; Sullivan, Edith V
2006-07-01
Chronic alcohol abuse is a ubiquitous health and societal problem, with a growing prevalence in the older population. Alcoholism is a source of substantial deterioration in brain tissue and has been consistently observed in vivo and postmortem in white matter. To quantify the potential compounded effect of age and alcoholism, we used conventional structural MRI and diffusion tensor imaging (DTI) to examine the macrostructural and microstructural integrity of the corpus callosum, one of the most prominent white matter structures of the brain, in 131 adults, age 27-75 years. Compared with the 74 controls, the 40 alcoholic men and 17 alcoholic women, who were abstinent from alcohol for an average of 3 months, showed similar patterns and extents of callosal shrinkage, which was greatest in the genu and body and less prominent in the splenium. Microstructural integrity was measured with DTI as fractional anisotropy, an index of intravoxel orientational coherence of white matter fibers, and bulk mean diffusivity, an index of the amount of intravoxel water motility. The macrostructural shrinkage was accompanied by abnormalities in anisotropy and diffusivity of the microstructural environment of these callosal regions, indicative of disruption of structural constituents of local brain white matter. Correlational analyses revealed an age-alcohol interaction, where older alcoholics had smaller genu and splenium and higher diffusivity in these regions than younger alcoholics. Significant correlations between regional MRI and DTI measures and performance on working memory, visuospatial ability, and gait and balance provided evidence for the functional ramifications of the callosal abnormalities in the alcoholics. Thus, despite abstinence from alcohol, the interaction of age and recent alcoholism history exerted a compounded untoward effect on callosal macrostructure and microstructure.
Warner, Tamara Duckworth; Behnke, Marylou; Eyler, Fonda Davis; Padgett, Kyle; Leonard, Christiana; Hou, Wei; Garvan, Cynthia Wilson; Schmalfuss, Ilona M.; Blackband, Stephen J.
2011-01-01
BACKGROUND Although animal studies have demonstrated frontal white matter and behavioral changes resulting from prenatal cocaine exposure, no human studies have associated neuropsychological deficits in attention and inhibition with brain structure. We used diffusion tensor imaging to investigate frontal white matter integrity and executive functioning in cocaine-exposed children. METHODS Six direction diffusion tensor images were acquired using a Siemens 3T scanner with a spin-echo echo-planar imaging pulse sequence on right-handed cocaine-exposed (n = 28) and sociodemographically similar non-exposed children (n = 25; mean age: 10.6 years) drawn from a prospective, longitudinal study. Average diffusion and fractional anisotropy were measured in the left and right frontal callosal and frontal projection fibers. Executive functioning was assessed using two well-validated neuropsychological tests (Stroop color-word test and Trail Making Test). RESULTS Cocaine-exposed children showed significantly higher average diffusion in the left frontal callosal and right frontal projection fibers. Cocaine-exposed children were also significantly slower on a visual-motor set-shifting task with a trend toward lower scores on a verbal inhibition task. Controlling for gender and intelligence, average diffusion in the left frontal callosal fibers was related to prenatal exposure to alcohol and marijuana and an interaction between cocaine and marijuana exposure. Performance on the visual-motor set-shifting task was related to prenatal cocaine exposure and an interaction between cocaine and tobacco exposure. Significant correlations were found between test performance and fractional anisotropy in areas of the frontal white matter. CONCLUSIONS Prenatal cocaine exposure, alone and in combination with exposure to other drugs, is associated with slightly poorer executive functioning and subtle microstructural changes suggesting less mature development of frontal white matter pathways. The relative contribution of postnatal environmental factors, including characteristics of the caregiving environment and stressors associated with poverty and out-of-home placement, on brain development and behavioral functioning in polydrug-exposed children awaits further research. PMID:17079574
Warner, Tamara Duckworth; Behnke, Marylou; Eyler, Fonda Davis; Padgett, Kyle; Leonard, Christiana; Hou, Wei; Garvan, Cynthia Wilson; Schmalfuss, Ilona M; Blackband, Stephen J
2006-11-01
Although animal studies have demonstrated frontal white matter and behavioral changes resulting from prenatal cocaine exposure, no human studies have associated neuropsychological deficits in attention and inhibition with brain structure. We used diffusion tensor imaging to investigate frontal white matter integrity and executive functioning in cocaine-exposed children. Six direction diffusion tensor images were acquired using a Siemens 3T scanner with a spin-echo echo-planar imaging pulse sequence on right-handed cocaine-exposed (n = 28) and sociodemographically similar non-exposed children (n = 25; mean age: 10.6 years) drawn from a prospective, longitudinal study. Average diffusion and fractional anisotropy were measured in the left and right frontal callosal and frontal projection fibers. Executive functioning was assessed using two well-validated neuropsychological tests (Stroop color-word test and Trail Making Test). Cocaine-exposed children showed significantly higher average diffusion in the left frontal callosal and right frontal projection fibers. Cocaine-exposed children were also significantly slower on a visual-motor set-shifting task with a trend toward lower scores on a verbal inhibition task. Controlling for gender and intelligence, average diffusion in the left frontal callosal fibers was related to prenatal exposure to alcohol and marijuana and an interaction between cocaine and marijuana exposure. Performance on the visual-motor set-shifting task was related to prenatal cocaine exposure and an interaction between cocaine and tobacco exposure. Significant correlations were found between test performance and fractional anisotropy in areas of the frontal white matter. Prenatal cocaine exposure, alone and in combination with exposure to other drugs, is associated with slightly poorer executive functioning and subtle microstructural changes suggesting less mature development of frontal white matter pathways. The relative contribution of postnatal environmental factors, including characteristics of the caregiving environment and stressors associated with poverty and out-of-home placement, on brain development and behavioral functioning in polydrug-exposed children awaits further research.
Rezende, Thiago J R; Silva, Cynthia B; Yassuda, Clarissa L; Campos, Brunno M; D'Abreu, Anelyssa; Cendes, Fernando; Lopes-Cendes, Iscia; França, Marcondes C
2016-01-01
Spinal cord and peripheral nerves are classically known to be damaged in Friedreich's ataxia, but the extent of cerebral involvement in the disease and its progression over time are not yet characterized. The aim of this study was to evaluate longitudinally cerebral damage in Friedreich's ataxia. We enrolled 31 patients and 40 controls, which were evaluated at baseline and after 1 and 2 years. To assess gray matter, we employed voxel-based morphometry and cortical thickness measurements. White matter was evaluated using diffusion tensor imaging. Statistical analyses were both cross-sectional and longitudinal (corrected for multiple comparisons). Group comparison between patients and controls revealed widespread macrostructural differences at baseline: gray matter atrophy in the dentate nuclei, brainstem, and precentral gyri; and white matter atrophy in the cerebellum and superior cerebellar peduncles, brainstem, and periventricular areas. We did not identify any longitudinal volumetric change over time. There were extensive microstructural alterations, including superior cerebellar peduncles, corpus callosum, and pyramidal tracts. Longitudinal analyses identified progressive microstructural abnormalities at the corpus callosum, pyramidal tracts, and superior cerebellar peduncles after 1 year of follow-up. Patients with Friedreich's ataxia present more widespread gray and white matter damage than previously reported, including not only infratentorial areas, but also supratentorial structures. Furthermore, patients with Friedreich's ataxia have progressive microstructural abnormalities amenable to detection in a short-term follow-up. © 2015 International Parkinson and Movement Disorder Society.
Inter-hemispheric functional connectivity disruption in children with prenatal alcohol exposure
Wozniak, Jeffrey R.; Mueller, Bryon A.; Muetzel, Ryan L.; Bell, Christopher J.; Hoecker, Heather L.; Nelson, Miranda L.; Chang, Pi-Nian; Lim, Kelvin O.
2010-01-01
Background MRI studies, including recent diffusion tensor imaging (DTI) studies, have shown corpus callosum abnormalities in children prenatally exposed to alcohol, especially in the posterior regions. These abnormalities appear across the range of Fetal Alcohol Spectrum Disorders (FASD). Several studies have demonstrated cognitive correlates of callosal abnormalities in FASD including deficits in visual-motor skill, verbal learning, and executive functioning. The goal of this study was to determine if inter-hemispheric structural connectivity abnormalities in FASD are associated with disrupted inter-hemispheric functional connectivity and disrupted cognition. Methods Twenty-one children with FASD and 23 matched controls underwent a six minute resting-state functional MRI scan as well as anatomical imaging and DTI. Using a semiautomated method, we parsed the corpus callosum and delineated seven inter-hemispheric white matter tracts with DTI tractography. Cortical regions of interest (ROIs) at the distal ends of these tracts were identified. Right-left correlations in resting fMRI signal were computed for these sets of ROIs and group comparisons were done. Correlations with facial dysmorphology, cognition, and DTI measures were computed. Results A significant group difference in inter-hemispheric functional connectivity was seen in a posterior set of ROIs, the para-central region. Children with FASD had functional connectivity that was 12% lower than controls in this region. Sub-group analyses were not possible due to small sample size, but the data suggest that there were effects across the FASD spectrum. No significant association with facial dysmorphology was found. Para-central functional connectivity was significantly correlated with DTI mean diffusivity, a measure of microstructural integrity, in posterior callosal tracts in controls but not in FASD. Significant correlations were seen between these structural and functional measures and Wechsler perceptual reasoning ability. Conclusions Inter-hemispheric functional connectivity disturbances were observed in children with FASD relative to controls. The disruption was measured in medial parietal regions (para-central) that are connected by posterior callosal fiber projections. We have previously shown microstructural abnormalities in these same posterior callosal regions and the current study suggests a possible relationship between the two. These measures have clinical relevance as they are associated with cognitive functioning. PMID:21303384
Puberty in the Corpus Callosum
Chavarria, Mary C.; Sánchez, Francisco J.; Chou, Yi-Yu; Thompson, Paul M.; Luders, Eileen
2014-01-01
Adolescence is an important period for brain development. White matter growth is influenced by sex hormones such as testosterone, and the corpus callosum—the largest white matter structure in the human brain—may change structurally during the hormone-laden period of adolescence. Little is known about puberty’s relationship to structural brain development, even though pubertal stage may better predict cognitive and behavioral maturity than chronological age. We therefore aimed to establish the presence and direction of pubertal effects on callosal anatomy. For this purpose, we applied advanced surface-based mesh-modeling to map correlations between callosal thickness and pubertal stage in a large and well-matched sample of 124 children and adolescents (62 female and 62 male) aged 5–18 years from a normative database. When linking callosal anatomy to pubertal status, only positive correlations reached statistical significance, indicating that callosal growth advances with puberty. In tests of differences in callosal anatomy at different stages of puberty, callosal growth was concentrated in different locations depending on the pubertal stage. Changing levels of circulating sex hormones during different phases of puberty likely contributed to the observed effects, and further research is clearly needed. Direct quantification of sex hormone levels and regional fiber connectivity—ideally using fiber tractography—will reveal whether hormones are the main drivers of callosal change during puberty. These callosal findings may lead to hypotheses regarding cortical changes during puberty, which may promote or result from changes in interhemispheric connectivity. PMID:24468104
Pathology of callosal damage in ALS: An ex-vivo, 7 T diffusion tensor MRI study.
Cardenas, Agustin M; Sarlls, Joelle E; Kwan, Justin Y; Bageac, Devin; Gala, Zachary S; Danielian, Laura E; Ray-Chaudhury, Abhik; Wang, Hao-Wei; Miller, Karla L; Foxley, Sean; Jbabdi, Saad; Welsh, Robert C; Floeter, Mary Kay
2017-01-01
The goal of this study was to better understand the changes in tissue microstructure that underlie white matter diffusion changes in ALS patients. Diffusion tensor imaging was carried out in postmortem brains of 4 ALS patients and two subjects without neurological disease on a 7 T MRI scanner using steady-state free precession sequences. Fractional anisotropy (FA) was measured in the genu, body, and splenium of the corpus callosum in formalin-fixed hemispheres. FA of the body and genu was expressed as ratio to FA of the splenium, a region unaffected in ALS. After imaging, tissue sections of the same segments of the callosum were stained for markers of different tissue components. Coded image fields were rated for pathological changes by blinded raters. The FA body/FA splenium ratio was reduced in ALS patients compared to controls. Patchy areas of myelin pallor and cells immunostained for CD68, a microglial-macrophage marker, were only observed in the body of the callosum of ALS patients. Blinded ratings showed increased CD68 + microglial cells in the body of the corpus callosum in ALS patients, especially those with C9orf72 mutations, and increased reactive astrocytes throughout the callosum. Reduced FA of the corpus callosum in ALS results from complex changes in tissue microstructure. Callosal segments with reduced FA had large numbers of microglia-macrophages in addition to loss of myelinated axons and astrogliosis. Microglial inflammation contributed to reduced FA in ALS, and may contribute to a pro-inflammatory state, but further work is needed to determine their role.
Ocklenburg, Sebastian; Friedrich, Patrick; Güntürkün, Onur; Genç, Erhan
2016-07-01
Hemispheric asymmetries are a central principle of nervous system architecture and shape the functional organization of most cognitive systems. Structural gray matter asymmetries and callosal interactions have been identified as contributing neural factors but always fell short to constitute a full explanans. Meanwhile, recent advances in in vivo white matter tractography have unrevealed the asymmetrical organization of many intrahemispheric white matter pathways, which might serve as the missing link to explain the substrate of functional lateralization. By taking into account callosal interactions, gray matter asymmetries and asymmetrical interhemispheric pathways, we opt for a new triadic model that has the potential to explain many observations which cannot be elucidated within the current frameworks of lateralized cognition.
The link between callosal thickness and intelligence in healthy children and adolescents.
Luders, Eileen; Thompson, Paul M; Narr, Katherine L; Zamanyan, Alen; Chou, Yi-Yu; Gutman, Boris; Dinov, Ivo D; Toga, Arthur W
2011-02-01
The link between brain structure and intelligence is a well-investigated topic, but existing analyses have mainly focused on adult samples. Studies in healthy children and adolescents are rare, and normative data specifically addressing the association between corpus callosum morphology and intellectual abilities are quite limited. To advance this field of research, we mapped the correlations between standardized intelligence measures and callosal thickness based on high-resolution magnetic resonance imaging (MRI) data. Our large and well-matched sample included 200 normally developing subjects (100 males, 100 females) ranging from 6 to 17 years of age. Although the strongest correlations were negative and confined to the splenium, the strength and the direction of intelligence-callosal thickness associations varied considerably. While significant correlations in females were mainly positive, significant correlations in males were exclusively negative. However, only the negative correlations in the overall sample (i.e., males and females combined) remained significant when controlling for multiple comparisons. The observed negative correlations between callosal thickness and intelligence in children and adolescents contrast with the positive correlations typically reported in adult samples. However, negative correlations are in line with reports from other pediatric studies relating cognitive measures to other brain attributes such as cortical thickness, gray matter volume, and gray matter density. Altogether, these findings suggest that relationships between callosal morphology and cognition are highly dynamic during brain maturation. Sex effects on links between callosal thickness and intelligence during childhood and adolescence are present but appear rather weak in general. Copyright © 2010 Elsevier Inc. All rights reserved.
The link between callosal thickness and intelligence in healthy children and adolescents
Luders, Eileen; Thompson, Paul M.; Narr, Katherine L.; Zamanyan, Alen; Chou, Yi-Yu; Gutman, Boris; Dinov, Ivo D.; Toga, Arthur W.
2010-01-01
The link between brain structure and intelligence is a well-investigated topic, but existing analyses have mainly focused on adult samples. Studies in healthy children and adolescents are rare, and normative data specifically addressing the association between corpus callosum morphology and intellectual abilities is quite limited. To advance this field of research, we mapped the correlations between standardized intelligence measures and callosal thickness based on high-resolution magnetic resonance imaging (MRI) data. Our large and well-matched sample included 200 normally developing subjects (100 males, 100 females) ranging from 6 to 17 years of age. Although the strongest correlations were negative and confined to the splenium, the strength and the direction of intelligence-callosal thickness associations varied considerably with respect to age and sex. While significant correlations in females were mainly positive, significant correlations in males were exclusively negative. However, only the negative correlations in the overall sample (i.e., males and females combined) remained significant when controlling for multiple comparisons. The observed negative correlations between callosal thickness and intelligence in children and adolescents contrast with the positive correlations typically reported in adult samples. However, negative correlations are in line with reports from other pediatric studies relating cognitive measures to other brain attributes such as cortical thickness, gray matter volume, and gray matter density. Altogether, these findings suggest that relationships between callosal morphology and cognition are highly dynamic during brain maturation. Sex effects on links between callosal thickness and intelligence during childhood and adolescence are present but appear rather weak in general. PMID:20932920
Zhang, Rui; Beyer, Frauke; Lampe, Leonie; Luck, Tobias; Riedel-Heller, Steffi G; Loeffler, Markus; Schroeter, Matthias L; Stumvoll, Michael; Villringer, Arno; Witte, A Veronica
2018-05-15
Obesity has been linked with structural and functional brain changes. However, the impact of obesity on brain and cognition in aging remains debatable, especially for white matter. We therefore aimed to determine the effects of obesity on white matter microstructure and potential implications for cognition in a well-characterized large cohort of healthy adults. In total, 1255 participants (50% females, 19-80 years, BMI 16.8-50.2 kg/m 2 ) with diffusion-weighted magnetic resonance imaging at 3T were analysed. Tract-based spatial statistics (TBSS) probed whether body mass index (BMI) and waist-to-hip ratio (WHR) were related to fractional anisotropy (FA). We conducted partial correlations and mediation analyses to explore whether obesity or regional FA were related to cognitive performance. Analyses were adjusted for demographic, genetic, and obesity-associated confounders. Results showed that higher BMI and higher WHR were associated with lower FA in multiple white matter tracts (p < 0.05, FWE-corrected). Mediation analyses provided evidence for indirect negative effects of higher BMI and higher WHR on executive functions and processing speed through lower FA in fiber tracts connecting (pre)frontal, visual, and associative areas (indirect paths, |ß| ≥ 0.01; 99% |CI| > 0). This large cross-sectional study showed that obesity is correlated with lower FA in multiple white matter tracts in otherwise healthy adults, independent of confounders. Moreover, although effect sizes were small, mediation results indicated that visceral obesity was linked to poorer executive functions and lower processing speed through lower FA in callosal and associative fiber tracts. Longitudinal studies are needed to support this hypothesis. Copyright © 2018 Elsevier Inc. All rights reserved.
Luders, Eileen; Toga, Arthur W; Thompson, Paul M
2014-01-01
Numerous studies have demonstrated a sexual dimorphism of the human corpus callosum. However, the question remains if sex differences in brain size, which typically is larger in men than in women, or biological sex per se account for the apparent sex differences in callosal morphology. Comparing callosal dimensions between men and women matched for overall brain size may clarify the true contribution of biological sex, as any observed group difference should indicate pure sex effects. We thus examined callosal morphology in 24 male and 24 female brains carefully matched for overall size. In addition, we selected 24 extremely large male brains and 24 extremely small female brains to explore if observed sex effects might vary depending on the degree to which male and female groups differed in brain size. Using the individual T1-weighted brain images (n=96), we delineated the corpus callosum at midline and applied a well-validated surface-based mesh-modeling approach to compare callosal thickness at 100 equidistant points between groups determined by brain size and sex. The corpus callosum was always thicker in men than in women. However, this callosal sex difference was strongly determined by the cerebral sex difference overall. That is, the larger the discrepancy in brain size between men and women, the more pronounced the sex difference in callosal thickness, with hardly any callosal differences remaining between brain-size matched men and women. Altogether, these findings suggest that individual differences in brain size account for apparent sex differences in the anatomy of the corpus callosum. © 2013.
Luders, Eileen; Toga, Arthur W.; Thompson, Paul M.
2013-01-01
Numerous studies have demonstrated a sexual dimorphism of the human corpus callosum. However, the question remains if sex differences in brain size, which typically is larger in men than in women, or biological sex per se account for the apparent sex differences in callosal morphology. Comparing callosal dimensions between men and women matched for overall brain size may clarify the true contribution of biological sex, as any observed group difference should indicate pure sex effects. We thus examined callosal morphology in 24 male and 24 female brains carefully matched for overall size. In addition, we selected 24 extremely large male brains and 24 extremely small female brains to explore if observed sex effects might vary depending on the degree to which male and female groups differed in brain size. Using the individual T1-weighted brain images (n=96), we delineated the corpus callosum at midline and applied a well-validated surface-based mesh-modeling approach to compare callosal thickness at 100 equidistant points between groups determined by brain size and sex. The corpus callosum was always thicker in men than in women. However, this callosal sex difference was strongly determined by the cerebral sex difference overall. That is, the larger the discrepancy in brain size between men and women, the more pronounced the sex difference in callosal thickness, with hardly any callosal differences remaining between brain-size matched men and women. Altogether, these findings suggest that individual differences in brain size account for apparent sex differences in the anatomy of the corpus callosum. PMID:24064068
White matter pathways in persistent developmental stuttering: Lessons from tractography.
Kronfeld-Duenias, Vered; Civier, Oren; Amir, Ofer; Ezrati-Vinacour, Ruth; Ben-Shachar, Michal
2018-03-01
Fluent speech production relies on the coordinated processing of multiple brain regions. This highlights the role of neural pathways that connect distinct brain regions in producing fluent speech. Here, we aim to investigate the role of the white matter pathways in persistent developmental stuttering (PDS), where speech fluency is disrupted. We use diffusion weighted imaging and tractography to compare the white matter properties between adults who do and do not stutter. We compare the diffusion properties along 18 major cerebral white matter pathways. We complement the analysis with an overview of the methodology and a roadmap of the pathways implicated in PDS according to the existing literature. We report differences in the microstructural properties of the anterior callosum, the right inferior longitudinal fasciculus and the right cingulum in people who stutter compared with fluent controls. Persistent developmental stuttering is consistently associated with differences in bilateral distributed networks. We review evidence showing that PDS involves differences in bilateral dorsal fronto-temporal and fronto-parietal pathways, in callosal pathways, in several motor pathways and in basal ganglia connections. This entails an important role for long range white matter pathways in this disorder. Using a wide-lens analysis, we demonstrate differences in additional, right hemispheric pathways, which go beyond the replicable findings in the literature. This suggests that the affected circuits may extend beyond the known language and motor pathways. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Shukla, Dinesh K.; Keehn, Brandon; Lincoln, Alan J.; Muller, Ralph-Axel
2010-01-01
Objective: Autism spectrum disorder (ASD) is increasingly viewed as a disorder of functional networks, highlighting the importance of investigating white matter and interregional connectivity. We used diffusion tensor imaging (DTI) to examine white matter integrity for the whole brain and for corpus callosum, internal capsule, and middle…
The role of white matter abnormalities in treatment-resistant depression: a systematic review.
Serafini, Gianluca; Pompili, Maurizio; Borgwardt, Stefan; Giuffra, Enrico; Howes, Oliver; Girardi, Paolo; Amore, Mario
2015-01-01
Patients with treatment-resistant depression (TRD) commonly report significant disability together with an increased risk of functional impairment. Neuroimaging techniques have been used to investigate the neuropathology of this complex illness, but it is still quite unknown whether abnormalities in the integrity of white matter (WM) of specific brain areas may be considered as trait markers of TRD. Electronic databases were searched from 1980 to 2013. Nine studies - comprising a total of 228 subjects and 171 controls - fulfilled our inclusion criteria and were analyzed in the present overview. Several cross-sectional studies showed the association between WM abnormalities and TRD. According to the selected studies, sub-callosal cingulated cortex (SCC) WM abnormalities were largely implicated in the pathogenesis of both major depressive disorder and TRD. However, alterations in cortical-limbic or cortical-subcortical circuits, particularly the left middle frontal gyrus (which is thought to have a major role in emotional regulation) may also be involved in the pathophysiology of TRD. TRD may be related to the presence of specific microstructural WM abnormalities. WM abnormalities of specific brain regions such as SCC may have a major involvement in the pathogenesis of TRD.
White matter microstructural properties correlate with sensorimotor synchronization abilities.
Blecher, Tal; Tal, Idan; Ben-Shachar, Michal
2016-09-01
Sensorimotor synchronization (SMS) to an external auditory rhythm is a developed ability in humans, particularly evident in dancing and singing. This ability is typically measured in the lab via a simple task of finger tapping to an auditory beat. While simplistic, there is some evidence that poor performance on this task could be related to impaired phonological and reading abilities in children. Auditory-motor synchronization is hypothesized to rely on a tight coupling between auditory and motor neural systems, but the specific pathways that mediate this coupling have not been identified yet. In this study, we test this hypothesis and examine the contribution of fronto-temporal and callosal connections to specific measures of rhythmic synchronization. Twenty participants went through SMS and diffusion magnetic resonance imaging (dMRI) measurements. We quantified the mean asynchrony between an auditory beat and participants' finger taps, as well as the time to resynchronize (TTR) with an altered meter, and examined the correlations between these behavioral measures and diffusivity in a small set of predefined pathways. We found significant correlations between asynchrony and fractional anisotropy (FA) in the left (but not right) arcuate fasciculus and in the temporal segment of the corpus callosum. On the other hand, TTR correlated with FA in the precentral segment of the callosum. To our knowledge, this is the first demonstration that relates these particular white matter tracts with performance on an auditory-motor rhythmic synchronization task. We propose that left fronto-temporal and temporal-callosal fibers are involved in prediction and constant comparison between auditory inputs and motor commands, while inter-hemispheric connections between the motor/premotor cortices contribute to successful resynchronization of motor responses with a new external rhythm, perhaps via inhibition of tapping to the previous rhythm. Our results indicate that auditory-motor synchronization skills are associated with anatomical pathways that have been previously related to phonological awareness, thus offering a possible anatomical basis for the behavioral covariance between these abilities. Copyright © 2016 Elsevier Inc. All rights reserved.
Microstructural White Matter Alterations in the Corpus Callosum of Girls With Conduct Disorder.
Menks, Willeke Martine; Furger, Reto; Lenz, Claudia; Fehlbaum, Lynn Valérie; Stadler, Christina; Raschle, Nora Maria
2017-03-01
Diffusion tensor imaging (DTI) studies in adolescent conduct disorder (CD) have demonstrated white matter alterations of tracts connecting functionally distinct fronto-limbic regions, but only in boys or mixed-gender samples. So far, no study has investigated white matter integrity in girls with CD on a whole-brain level. Therefore, our aim was to investigate white matter alterations in adolescent girls with CD. We collected high-resolution DTI data from 24 girls with CD and 20 typically developing control girls using a 3T magnetic resonance imaging system. Fractional anisotropy (FA) and mean diffusivity (MD) were analyzed for whole-brain as well as a priori-defined regions of interest, while controlling for age and intelligence, using a voxel-based analysis and an age-appropriate customized template. Whole-brain findings revealed white matter alterations (i.e., increased FA) in girls with CD bilaterally within the body of the corpus callosum, expanding toward the right cingulum and left corona radiata. The FA and MD results in a priori-defined regions of interest were more widespread and included changes in the cingulum, corona radiata, fornix, and uncinate fasciculus. These results were not driven by age, intelligence, or attention-deficit/hyperactivity disorder comorbidity. This report provides the first evidence of white matter alterations in female adolescents with CD as indicated through white matter reductions in callosal tracts. This finding enhances current knowledge about the neuropathological basis of female CD. An increased understanding of gender-specific neuronal characteristics in CD may influence diagnosis, early detection, and successful intervention strategies. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Uban, K A; Herting, M M; Wozniak, J R; Sowell, E R
2017-09-01
Despite accumulating evidence from animal models demonstrating that prenatal alcohol exposure (PAE) results in life-long neuroendocrine dysregulation, very little is known on this topic among humans with fetal alcohol spectrum disorders (FASD). We expected that alterations in gonadal hormones might interfere with the typical development of white matter (WM) myelination, and in a sex-dependent manner, in human adolescents with FASD. In order to investigate this hypothesis, we used diffusion tensor imaging (DTI) to assess: 1) whether or not sex moderates the impact of PAE on WM microstructure; and 2) how gonadal hormones relate to alterations in WM microstructure in children and adolescents affected by PAE. 61 youth (9 to 16 yrs.; 49% girls; 50% PAE) participated as part of the Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD). DTI scans and passive drool samples were obtained to examine neurodevelopmental associations with testosterone (T) and dehydroepiandrosterone (DHEA) levels in boys and girls, and estradiol (E2) and progesterone (P) levels in girls. Tract-based spatial statistics were utilized to generate fractional anisotropy (FA) and mean diffusivity (MD) for 9 a priori WM regions of interest (ROIs). As predicted, alterations in FA were observed in adolescents with PAE relative to controls, and these differences varied by sex. Girls with PAE exhibited lower FA (Inferior fronto-occipital and Uncinate fasciculi) while boys with PAE exhibited higher FA (Callosal body, Cingulum, Corticospinal tract, Optic radiation, Superior longitudinal fasciculus) relative to age-matched controls. When gonadal hormone levels were examined in relation to DTI measures, additional group differences in FA were revealed, demonstrating that neuroendocrine factors are associated with PAE-related brain alterations. These findings provide human evidence that PAE relates to sex-specific differences in WM microstructure, and underlying alterations in gonadal hormone function may, in part, contribute to these effects. Determining PAE-effects on neuroendocrine function among humans is an essential first step towards developing novel clinical (e.g., assessment or intervention) tools that target hormone systems to improve on-going brain development among children and adolescents with FASD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Traveling Slow Oscillations During Sleep: A Marker of Brain Connectivity in Childhood.
Kurth, Salome; Riedner, Brady A; Dean, Douglas C; O'Muircheartaigh, Jonathan; Huber, Reto; Jenni, Oskar G; Deoni, Sean C L; LeBourgeois, Monique K
2017-09-01
Slow oscillations, a defining characteristic of the nonrapid eye movement sleep electroencephalogram (EEG), proliferate across the scalp in highly reproducible patterns. In adults, the propagation of slow oscillations is a recognized fingerprint of brain connectivity and excitability. In this study, we (1) describe for the first time maturational features of sleep slow oscillation propagation in children (n = 23; 2-13 years) using high-density (hd) EEG and (2) examine associations between sleep slow oscillatory propagation characteristics (ie, distance, traveling speed, cortical involvement) and white matter myelin microstructure as measured with multicomponent Driven Equilibrium Single Pulse Observation of T1 and T2-magnetic resonance imaging (mcDESPOT-MRI). Results showed that with increasing age, slow oscillations propagated across longer distances (average growth of 0.2 cm per year; R(21) = 0.50, p < .05), while traveling speed and cortical involvement (ie, slow oscillation expanse) remained unchanged across childhood. Cortical involvement (R(20) = 0.44) and slow oscillation speed (R(20) = -0.47; both p < .05, corrected for age) were associated with myelin content in the superior longitudinal fascicle, the largest anterior-posterior, intrahemispheric white matter connectivity tract. Furthermore, slow oscillation distance was moderately associated with whole-brain (R(21) = 0.46, p < .05) and interhemispheric myelin content, the latter represented by callosal myelin water fraction (R(21) = 0.54, p < .01, uncorrected). Thus, we demonstrate age-related changes in slow oscillation propagation distance, as well as regional associations between brain activity during sleep and the anatomical connectivity of white matter microstructure. Our findings make an important contribution to knowledge of the brain connectome using a noninvasive and novel analytic approach. These data also have implications for understanding the emergence of neurodevelopmental disorders and the role of sleep in brain maturation trajectories. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Restani, Laura; Caleo, Matteo
2016-01-01
Vision is a very important sensory modality in humans. Visual disorders are numerous and arising from diverse and complex causes. Deficits in visual function are highly disabling from a social point of view and in addition cause a considerable economic burden. For all these reasons there is an intense effort by the scientific community to gather knowledge on visual deficit mechanisms and to find possible new strategies for recovery and treatment. In this review, we focus on an important and sometimes neglected player of the visual function, the corpus callosum (CC). The CC is the major white matter structure in the brain and is involved in information processing between the two hemispheres. In particular, visual callosal connections interconnect homologous areas of visual cortices, binding together the two halves of the visual field. This interhemispheric communication plays a significant role in visual cortical output. Here, we will first review the essential literature on the physiology of the callosal connections in normal vision. The available data support the view that the callosum contributes to both excitation and inhibition to the target hemisphere, with a dynamic adaptation to the strength of the incoming visual input. Next, we will focus on data showing how callosal connections may sense visual alterations and respond to the classical paradigm for the study of visual plasticity, i.e., monocular deprivation (MD). This is a prototypical example of a model for the study of callosal plasticity in pathological conditions (e.g., strabismus and amblyopia) characterized by unbalanced input from the two eyes. We will also discuss the findings of callosal alterations in blind subjects. Noteworthy, we will discuss data showing that inter-hemispheric transfer mediates recovery of visual responsiveness following cortical damage. Finally, we will provide an overview of how callosal projections dysfunction could contribute to pathologies such as neglect and occipital epilepsy. A particular focus will be on reviewing noninvasive brain stimulation techniques and optogenetic approaches that allow to selectively manipulate callosal function and to probe its involvement in cortical processing and plasticity. Overall, the data indicate that experience can potently impact on transcallosal connectivity, and that the callosum itself is crucial for plasticity and recovery in various disorders of the visual pathway. PMID:27895559
Wang, Pei-Ning; Chou, Kun-Hsien; Chang, Ni-Jung; Lin, Ker-Neng; Chen, Wei-Ta; Lan, Gong-Yau; Lin, Ching-Po; Lirng, Jiing-Feng
2014-04-01
Degeneration of the corpus callosum (CC) is evident in the pathogenesis of Alzheimer's disease (AD). However, the correlation of microstructural damage in the CC on the cognitive performance of patients with amnestic mild cognitive impairment (aMCI) and AD dementia is undetermined. We enrolled 26 normal controls, 24 patients with AD dementia, and 40 single-domain aMCI patients with at least grade 1 hippocampal atrophy and isolated memory impairment. Diffusion tensor imaging (DTI) with fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (DA), and radial diffusivity (DR) were measured. The entire CC was parcellated based on fiber trajectories to specific cortical Brodmann areas using a probabilistic tractography method. The relationship between the DTI measures in the subregions of the CC and cognitive performance was examined. Although the callosal degeneration in the patients with aMCI was less extended than in the patients with AD dementia, degeneration was already exhibited in several subregions of the CC at the aMCI stage. Scores of various neuropsychological tests were correlated to the severity of microstructural changes in the subregional CC connecting to functionally corresponding cortical regions. Our results confirm that CC degeneration is noticeable as early as the aMCI stage of AD and the disconnection of the CC subregional fibers to the corresponding Brodmann areas has an apparent impact on the related cognitive performance. Copyright © 2013 Wiley Periodicals, Inc.
Callosal tracts and patterns of hemispheric dominance: a combined fMRI and DTI study.
Häberling, Isabelle S; Badzakova-Trajkov, Gjurgjica; Corballis, Michael C
2011-01-15
Left-hemispheric dominance for language and right-hemispheric dominance for spatial processing are distinctive characteristics of the human brain. However, variations of these hemispheric asymmetries have been observed, with a minority showing crowding of both functions to the same hemisphere or even a mirror reversal of the typical lateralization pattern. Here, we used diffusion tensor imaging and functional magnetic imaging to investigate the role of the corpus callosum in participants with atypical hemispheric dominance. The corpus callosum was segmented according to the projection site of the underlying fibre tracts. Analyses of the microstructure of the identified callosal segments revealed that atypical hemispheric dominance for language was associated with high anisotropic diffusion through the corpus callosum as a whole. This effect was most evident in participants with crowding of both functions to the right. The enhanced anisotropic diffusion in atypical hemispheric dominance implies that in these individuals the two hemispheres are more heavily interconnected. Copyright © 2010 Elsevier Inc. All rights reserved.
Mazerolle, Erin L; D'Arcy, Ryan CN; Beyea, Steven D
2008-01-01
Background It is generally believed that activation in functional magnetic resonance imaging (fMRI) is restricted to gray matter. Despite this, a number of studies have reported white matter activation, particularly when the corpus callosum is targeted using interhemispheric transfer tasks. These findings suggest that fMRI signals may not be neatly confined to gray matter tissue. In the current experiment, 4 T fMRI was employed to evaluate whether it is possible to detect white matter activation. We used an interhemispheric transfer task modelled after neurological studies of callosal disconnection. It was hypothesized that white matter activation could be detected using fMRI. Results Both group and individual data were considered. At liberal statistical thresholds (p < 0.005, uncorrected), group level activation was detected in the isthmus of the corpus callosum. This region connects the superior parietal cortices, which have been implicated previously in interhemispheric transfer. At the individual level, five of the 24 subjects (21%) had activation clusters that were located primarily within the corpus callosum. Consistent with the group results, the clusters of all five subjects were located in posterior callosal regions. The signal time courses for these clusters were comparable to those observed for task related gray matter activation. Conclusion The findings support the idea that, despite the inherent challenges, fMRI activation can be detected in the corpus callosum at the individual level. Future work is needed to determine whether the detection of this activation can be improved by utilizing higher spatial resolution, optimizing acquisition parameters, and analyzing the data with tissue specific models of the hemodynamic response. The ability to detect white matter fMRI activation expands the scope of basic and clinical brain mapping research, and provides a new approach for understanding brain connectivity. PMID:18789154
Musiał, Krystyna; Kościńska-Pająk, Maria
2017-07-01
Total absence of callose in the ovules of diplosporous species has been previously suggested. This paper is the first description of callose events in the ovules of Chondrilla juncea, which exhibits meiotic diplospory of the Taraxacum type. We found the presence of callose in the megasporocyte wall and stated that the pattern of callose deposition is dynamically changing during megasporogenesis. At the premeiotic stage, no callose was observed in the ovules. Callose appeared at the micropylar pole of the cell entering prophase of the first meioticdivision restitution but did not surround the megasporocyte. After the formation of a restitution nucleus, a conspicuous callose micropylar cap and dispersed deposits of callose were detected in the megasporocyte wall. During the formation of a diplodyad, the micropylar callose cap decreased and the walls of a newly formed megaspores showed scattered distribution of callose. Within the older diplodyad, callose was mainly accumulated in the wall between megaspores, as well as in the wall of the micropylar cell; however, a dotted fluorescence of callose was also visible in the wall of the chalazal megaspore. Gradual degradation of callose in the wall of the chalazal cell and intense callose accumulation in the wall of the micropylar cell were related to the selection of the functional megaspore. Thus, our findings may suggest that callose fulfills a similar role both during megasporogenesis in sexual angiosperms and in the course of meiotic diplospory in apomicts and seems to form a regulatory interface between reproductive and somatic cells.
Cookey, Jacob; Bernier, Denise; Tibbo, Philip G
2014-07-01
The impact of cannabis use on the brain tissue is still unclear, both in the healthy developing brain and in people with schizophrenia. The focus of this review is on white matter, the primary connective infrastructure of the brain. We systematically reviewed diffusion tensor imaging (DTI) studies of early phase schizophrenia (illness effect), of cannabis use in otherwise healthy brains (drug effect), and of early phase schizophrenia with cannabis use (combined effects). Studies had to include a healthy, non-cannabis using, control group as well as report on fractional anisotropy as it is the most commonly used DTI index. We excluded cohorts with heavy alcohol or illicit drug use and studies with a sample size of less than 20 in the clinical group. We retained 17 studies of early phase schizophrenia, which together indicate deficits in white matter integrity observed in all fiber tract families, but most frequently in association, callosal and projection fibers. In otherwise healthy cannabis users (2 studies), deficits in white matter tracts were reported mainly in callosal fibers, but also in projection and limbic fibers. In cannabis users with early phase schizophrenia (1 study), deficits in white matter integrity were also observed in all fiber tract families, except for limbic fibers. The current literature points to several families of white matter tracts being differentially affected in early phase schizophrenia. Further work is required to reveal the impact of cannabis use in otherwise healthy people as well as those with schizophrenia. Paucity of available studies as well as restricting analysis to FA values represent the main limitations of this review. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhattacharya, Debanjali; Sinha, Neelam; Saini, Jitender
2017-03-01
Multiple system atrophy (MSA) is a rare, non-curable, progressive neurodegenerative disorder that affects nervous system and movement, poses a considerable diagnostic challenge to medical researchers. Corpus callosum (CC) being the largest white matter structure in brain, enabling inter-hemispheric communication, quantification of callosal atrophy may provide vital information at the earliest possible stages. The main objective is to identify the differences in CC structure for this disease, based on quantitative analysis on the pattern of callosal atrophy. We report results of quantification of structural changes in regional anatomical thickness, area and length of CC between patient-groups with MSA with respect to healthy controls. The method utilizes isolating and parcellating the mid-sagittal CC into 100 segments along the length - measuring the width of each segment. It also measures areas within geometrically defined five callosal compartments of the well-known Witelson, and Hofer-Frahma schemes. For quantification, statistical tests are performed on these different callosal measurements. From the statistical analysis, it is concluded that compared to healthy controls, width is reduced drastically throughout CC for MSA group and as well as changes in area and length are also significant for MSA. The study is further extended to check if any significant difference in thickness is found between the two variations of MSA, Parkinsonian MSA and Cerebellar MSA group, using the same methodology. However area and length of this two sub-MSA group, no substantial difference is obtained. The study is performed on twenty subjects for each control and MSA group, who had T1-weighted MRI.
Deposition of callose in young ovules of two Taraxacum species varying in the mode of reproduction.
Musiał, Krystyna; Kościńska-Pająk, Maria; Antolec, Renata; Joachimiak, Andrzej J
2015-01-01
Although callose occurs during megasporogenesis in most flowering plants, the knowledge about its general function and the mechanisms by which the callose layer is formed in particular places is still not sufficient. The results of previous studies suggest a total lack of callose in the ovules of diplosporous plants in which meiosis is omitted or disturbed. This report is the first documentation of callose events in dandelions ovules. We demonstrated the pattern of callose deposition during the formation of megaspores through diplospory of Taraxacum type and during normal meiotic megasporogenesis in apomictic triploid Taraxacum atricapillum and amphimictic diploid Taraxacum linearisquameum. We found the presence of callose in the megasporocyte wall of both diplosporous and sexual dandelions. However, in a diplosporous dandelion, callose predominated at the micropylar pole of megaspore mother cell (MMC) which may be correlated with abnormal asynaptic meiosis and may indicate diplospory of the Taraxacum type. After meiotic division, callose is mainly deposited in the walls between megaspores in tetrads and in diplodyads. In subsequent stages, callose gradually disappears around the chalazal functional megaspore. However, some variations in the pattern of callose deposition within tetrad may reflect variable positioning of the functional megaspore (FM) observed in the ovules of T. linearisquameum.
Schulte, T; Müller-Oehring, E M; Sullivan, E V; Pfefferbaum, A
2012-10-01
Alcoholism (ALC) and HIV-1 infection (HIV) each affects emotional and attentional processes and integrity of brain white matter fibers likely contributing to functional compromise. The highly prevalent ALC+HIV comorbidity may exacerbate compromise. We used diffusion tensor imaging (DTI) and an emotional Stroop Match-to-Sample task in 19 ALC, 16 HIV, 15 ALC+HIV, and 15 control participants to investigate whether disruption of fiber system integrity accounts for compromised attentional and emotional processing. The task required matching a cue color to that of an emotional word with faces appearing between the color cue and the Stroop word in half of the trials. Nonmatched cue-word color pairs assessed selective attention, and face-word pairs assessed emotion. Relative to controls, DTI-based fiber tracking revealed lower inferior longitudinal fasciculus (ilf) integrity in HIV and ALC+HIV and lower uncinate fasciculus (uf) integrity in all three patient groups. Controls exhibited Stroop effects to positive face-word emotion, and greater interference was related to greater callosal, cingulum and ilf integrity. By contrast, HIV showed greater interference from negative Stroop words during color-nonmatch trials, correlating with greater uf compromise. For face trials, ALC and ALC+HIV showed greater Stroop-word interference, correlating with lower cingulate and callosal integrity. Thus, in HIV, conflict resolution was diminished when challenging conditions usurped resources needed to manage interference from negative emotion and to disengage attention from wrongly cued colors (nonmatch). In ALC and ALC+HIV, poorer callosal integrity was related to enhanced emotional interference suggesting curtailed interhemispheric exchange needed between preferentially right-hemispheric emotion and left-hemispheric Stroop-word functions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cai, Giampiero; Faleri, Claudia; Del Casino, Cecilia; Emons, Anne Mie C.; Cresti, Mauro
2011-01-01
Callose and cellulose are fundamental components of the cell wall of pollen tubes and are probably synthesized by distinct enzymes, callose synthase and cellulose synthase, respectively. We examined the distribution of callose synthase and cellulose synthase in tobacco (Nicotiana tabacum) pollen tubes in relation to the dynamics of actin filaments, microtubules, and the endomembrane system using specific antibodies to highly conserved peptide sequences. The role of the cytoskeleton and membrane flow was investigated using specific inhibitors (latrunculin B, 2,3-butanedione monoxime, taxol, oryzalin, and brefeldin A). Both enzymes are associated with the plasma membrane, but cellulose synthase is present along the entire length of pollen tubes (with a higher concentration at the apex) while callose synthase is located in the apex and in distal regions. In longer pollen tubes, callose synthase accumulates consistently around callose plugs, indicating its involvement in plug synthesis. Actin filaments and endomembrane dynamics are critical for the distribution of callose synthase and cellulose synthase, showing that enzymes are transported through Golgi bodies and/or vesicles moving along actin filaments. Conversely, microtubules appear to be critical in the positioning of callose synthase in distal regions and around callose plugs. In contrast, cellulose synthases are only partially coaligned with cortical microtubules and unrelated to callose plugs. Callose synthase also comigrates with tubulin by Blue Native-polyacrylamide gel electrophoresis. Membrane sucrose synthase, which expectedly provides UDP-glucose to callose synthase and cellulose synthase, binds to actin filaments depending on sucrose concentration; its distribution is dependent on the actin cytoskeleton and the endomembrane system but not on microtubules. PMID:21205616
Emel'ianov, V I; Kravchuk, Zh N; Poliakovskiĭ, S A; Dmitriev, A P
2008-01-01
Time-course of induced accumulation of callose in tomato cells has been studied. Localization of callose in L. esculenthum cells was investigated by fluorescent microscopy technique, and the optimal time for its determination was found. Callose accumulation in tomato cells treated with different biotic elicitors was determined. Nonlinear dependence between callose accumulation and concentration of chitin oligomers (with 3-5 N-acetylglucosamine fragments) was established. Increasing of callose accumulation in tomato cells was proportional to the increase of concentration ofchitin dimer and chitosan in the culture medium.
Ellinger, Dorothea; Voigt, Christian A
2014-10-01
(1,3)-β-Glucan callose is a cell wall polymer that is involved in several fundamental biological processes, ranging from plant development to the response to abiotic and biotic stresses. Despite its importance in maintaining plant integrity and plant defence, knowledge about the regulation of callose biosynthesis at its diverse sites of action within the plant is still limited. The moderately sized family of GSL (GLUCAN SYNTHASE-LIKE) genes is predicted to encode callose synthases with a specific biological function and subcellular localization. Phosphorylation and directed translocation of callose synthases seem to be key post-translational mechanisms of enzymatic regulation, whereas transcriptional control of GSL genes might only have a minor function in response to biotic or abiotic stresses. Among the different sites of callose biosynthesis within the plant, particular attention has been focused on the formation of callose in response to pathogen attack. Here, callose is deposited between the plasma membrane and the cell wall to act as a physical barrier to stop or slow invading pathogens. Arabidopsis (Arabidopsis thaliana) is one of the best-studied models not only for general plant defence responses but also for the regulation of pathogen-induced callose biosynthesis. Callose synthase GSL5 (GLUCAN SYNTHASE-LIKE5) has been shown to be responsible for stress-induced callose deposition. Within the last decade of research into stress-induced callose, growing evidence has been found that the timing of callose deposition in the multilayered system of plant defence responses could be the key parameter for optimal effectiveness. This timing seems to be achieved through co-ordinated transport and formation of the callose synthase complex. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
White Matter Integrity Linked To Functional Impairments in Aging and Early Alzheimer’s Disease
Kavcic, Voyko; Ni, Hongyan; Zhu, Tong; Zhong, Jianhui; Duffy, Charles J.
2008-01-01
Background Alzheimer’s disease (AD) is associated with changes in cerebral white matter (WM) but the functional significance of such findings is not yet established. We hypothesized that diffusion tensor imaging (DTI) might reveal links between regional WM changes and specific neuropsychologically and psychophysically defined impairments in early AD. Methods Older adult control subjects (OA, n=18) and mildly impaired AD patients (n=14) underwent neuropsychological and visual perceptual testing along with DTI of cerebral WM. DTI yielded factional anisotropy (FA) and mean diffusivity (
Nadkarni, Neelesh K; Perera, Subashan; Studenski, Stephanie A; Rosano, Caterina; Aizenstein, Howard J; VanSwearingen, Jessie M
2015-06-01
To assess whether the volume of callosal hyperintensities in the genu and splenium of older adults with mobility impairment is differentially associated with the degree of gain in gait speed after 2 types of gait interventions. Single-blind randomized controlled trial of 2 types of gait exercises in older adults. Research center in an academic institution. Ambulatory adults (N=44) aged ≥65 years with a slow and variable gait. Twelve-week physical therapist-guided trial of a conventional walking, endurance, balance, and strength (WEBS) intervention (n=20) versus a timing and coordination of gait (TC) intervention (n=22). Gain in gait speed after the intervention and its relation to callosal hyperintensities in the genu and splenium of the corpus callosum. Gait speed improved in both the WEBS group (mean change, 0.16m/s) and the TC group (mean change, 0.21m/s; both P<.05). The volume of white matter hypertintensities (WMHs) in the genu was differentially associated with gait speed gain (group × genual WMH interaction, P=.05). Greater genual WMH volume was related to a smaller gait speed gain in the WEBS group (P=.01) but not in the TC (P=.10) group. Splenial WMH volume was not differentially associated with gait speed gain (interaction, P=.90). Callosal hyperintensities differentially influence gait speed gain by the type of gait rehabilitation. Mobility impaired older adults with genual hyperintensities may benefit from a rehabilitation program focused on motor skill learning rather than on strength and endurance training. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Jaffe, M. J.; Leopold, A. C.
1984-01-01
In etiolated corn (Zea mays L.) and etiolated pea (Pisum sativum L.) seedlings, a gravitropic stimulation induces the deposition of callose. In the corn coleoptiles this occurs within 5 min of gravity stimulation, and prior to the beginning of curvature. Both gravitropic curvature and callose deposition reach their maxima by 12 h. Within the first 2 h more callose is deposited on the upper (concave) side, but after 2-3 h, this deposition pattern is reversed. An inhibitor of protein glycosylation, 2-deoxy-D-glucose (DDG), inhibits callose production and considerably retards gravitropic bending in both species of plants. Mannose can relieve the inhibition of gravitropic bending by DDG. The pea mutant "Ageotropum", which does not respond to gravity when etiolated, also fails to produce callose in response to a gravitic stimulus. These correlations indicate that callose deposition may be a biochemical component of gravitropism in plant shoots.
The dimensionality of between-person differences in white matter microstructure in old age.
Lövdén, Martin; Laukka, Erika Jonsson; Rieckmann, Anna; Kalpouzos, Grégoria; Li, Tie-Qiang; Jonsson, Tomas; Wahlund, Lars-Olof; Fratiglioni, Laura; Bäckman, Lars
2013-06-01
Between-person differences in white matter microstructure may partly generalize across the brain and partly play out differently for distinct tracts. We used diffusion-tensor imaging and structural equation modeling to investigate this issue in a sample of 260 adults aged 60-87 years. Mean fractional anisotropy and mean diffusivity of seven white matter tracts in each hemisphere were quantified. Results showed good fit of a model positing that individual differences in white matter microstructure are structured according to tracts. A general factor, although accounting for variance in the measures, did not adequately represent the individual differences. This indicates the presence of a substantial amount of tract-specific individual differences in white matter microstructure. In addition, individual differences are to a varying degree shared between tracts, indicating that general factors also affect white matter microstructure. Age-related differences in white matter microstructure were present for all tracts. Correlations among tract factors did not generally increase as a function of age, suggesting that aging is not a process with homogenous effects on white matter microstructure across the brain. These findings highlight the need for future research to examine whether relations between white matter microstructure and diverse outcomes are specific or general. Copyright © 2011 Wiley Periodicals, Inc.
DTI-based response-driven modeling of mTLE laterality.
Nazem-Zadeh, Mohammad-Reza; Elisevich, Kost; Air, Ellen L; Schwalb, Jason M; Divine, George; Kaur, Manpreet; Wasade, Vibhangini S; Mahmoudi, Fariborz; Shokri, Saeed; Bagher-Ebadian, Hassan; Soltanian-Zadeh, Hamid
2016-01-01
To develop lateralization models for distinguishing between unilateral and bilateral mesial temporal lobe epilepsy (mTLE) and determining laterality in cases of unilateral mTLE. mTLE is the most common form of medically refractory focal epilepsy. Many mTLE patients fail to demonstrate an unambiguous unilateral ictal onset. Intracranial EEG (icEEG) monitoring can be performed to establish whether the ictal origin is unilateral or truly bilateral with independent bitemporal ictal origin. However, because of the expense and risk of intracranial electrode placement, much research has been done to determine if the need for icEEG can be obviated with noninvasive neuroimaging methods, such as diffusion tensor imaging (DTI). Fractional anisotropy (FA) was used to quantify microstructural changes reflected in the diffusivity properties of the corpus callosum, cingulum, and fornix, in a retrospective cohort of 31 patients confirmed to have unilateral (n = 24) or bilateral (n = 7) mTLE. All unilateral mTLE patients underwent resection with an Engel class I outcome. Eleven were reported to have hippocampal sclerosis on pathological analysis; nine had undergone prior icEEG. The bilateral mTLE patients had undergone icEEG demonstrating independent epileptiform activity in both right and left hemispheres. Twenty-three nonepileptic subjects were included as controls. In cases of right mTLE, FA showed significant differences from control in all callosal subregions, in both left and right superior cingulate subregions, and in forniceal crura. Comparison of right and left mTLE cases showed significant differences in FA of callosal genu, rostral body, and splenium and the right posteroinferior and superior cingulate subregions. In cases of left mTLE, FA showed significant differences from control only in the callosal isthmus. Significant differences in FA were identified when cases of right mTLE were compared with bilateral mTLE cases in the rostral and midbody callosal subregions and isthmus. Based on 11 FA measurements in the cingulate, callosal and forniceal subregions, a response-driven lateralization model successfully differentiated all cases (n = 54) into groups of unilateral right (n = 12), unilateral left (n = 12), and bilateral mTLE (n = 7), and nonepileptic control (23). The proposed response-driven DTI biomarker is intended to lessen diagnostic ambiguity of laterality in cases of mTLE and help optimize selection of surgical candidates. Application of this model shows promise in reducing the need for invasive icEEG in prospective cases.
Juenger, Hendrik; Koerte, Inga K; Muehlmann, Marc; Mayinger, Michael; Mall, Volker; Krägeloh-Mann, Ingeborg; Shenton, Martha E; Berweck, Steffen; Staudt, Martin; Heinen, Florian
2014-11-01
Early unilateral brain lesions can lead to different types of corticospinal (re-)organization of motor networks. In one group of patients, the contralesional hemisphere exerts motor control not only over the contralateral non-paretic hand but also over the (ipsilateral) paretic hand, as the primary motor cortex is (re-)organized in the contralesional hemisphere. Another group of patients with early unilateral lesions shows "normal" contralateral motor projections starting in the lesioned hemisphere. We investigated how these different patterns of cortical (re-)organization affect interhemispheric transcallosal connectivity in patients with congenital hemiparesis. Eight patients with ipsilateral motor projections (group IPSI) versus 7 patients with contralateral motor projections (group CONTRA) underwent magnetic resonance diffusion tensor imaging (DTI). The corpus callosum (CC) was subdivided in 5 areas (I-V) in the mid-sagittal slice and volumetric information. The following diffusion parameters were calculated: fractional anisotropy (FA), trace, radial diffusivity (RD), and axial diffusivity (AD). DTI revealed significantly lower FA, increased trace and RD for group IPSI compared to group CONTRA in area III of the corpus callosum, where transcallosal motor fibers cross the CC. In the directly neighboring area IV, where transcallosal somatosensory fibers cross the CC, no differences were found for these DTI parameters between IPSI and CONTRA. Volume of callosal subsections showed significant differences for area II (connecting premotor cortices) and III, where group IPSI had lower volume. The results of this study demonstrate that the callosal microstructure in patients with congenital hemiparesis reflects the type of cortical (re-)organization. Early lesions disrupting corticospinal motor projections to the paretic hand consecutively affect the development or maintenance of transcallosal motor fibers. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Unplugging the callose plug from sieve pores.
Xie, Bo; Hong, Zonglie
2011-04-01
The presence of callose in sieve plates has been known for a long time, but how this polysaccharide plug is synthesized has remained unsolved. Two independent laboratories have recently reported the identification of callose synthase 7 (CalS7), also known as glucan synthase-like 7 (GSL7), as the enzyme responsible for callose deposition in sieve plates. Mutant plants defective in this enzyme failed to synthesize callose in developing sieve plates during phloem formation and were unable to accumulate callose in sieve pores in response to stress treatments. The mutant plants developed less open pores per sieve plate and the pores were smaller in diameter. As a result, phloem conductivity was reduced significantly and the mutant plants were shorter and set fewer seeds.
Unplugging the callose plug from sieve pores
Xie, Bo
2011-01-01
The presence of callose in sieve plates has been known for a long time, but how this polysaccharide plug is synthesized has remained unsolved. Two independent laboratories have recently reported the identification of callose synthase 7 (CalS7), also known as glucan synthase-like 7 (GSL7), as the enzyme responsible for callose deposition in sieve plates. Mutant plants defective in this enzyme failed to synthesize callose in developing sieve plates during phloem formation and were unable to accumulate callose in sieve pores in response to stress treatments. The mutant plants developed less open pores per sieve plate and the pores were smaller in diameter. As a result, phloem conductivity was reduced significantly and the mutant plants were shorter and set fewer seeds. PMID:21386663
Zhou, H C; Jin, L; Li, J; Wang, X J
2016-06-03
Whether callose deposition is the cause or result of ovule sterility in Medicago sativa remains controversial, because it is unclear when and where changes in callose deposition and dissolution occur during fertile and sterile embryo sac formation. Here, alfalfa spontaneous multi-pistil mutant (mp1) and wild-type plants were used to compare the dynamics of callose deposition during embryo sac formation using microscopy. The results showed that both mutant and wild-type plants experienced megasporogenesis and megagametogenesis, and there was no significant difference during megasporogenesis. In contrast to the wild-type plants, in which the mature embryo sac was observed after three continuous cycles of mitosis, functional megaspores of mutant plants developed abnormally after the second round of mitosis, leading to degeneration of synergid, central, and antipodal cells. Callose deposition in both mutant and wild-type plants was first observed in the walls of megasporocytes, and then in the megaspore tetrad walls. After meiosis, the callose wall began to degrade as the functional megaspore underwent mitosis, and almost no callose was observed in the mature embryo sac in wild-type plants. However, callose deposition was observed in mp1 plants around the synergid, and increased with the development of the embryo sac, and was mainly deposited at the micropylar end. Our results indicate that synergid, central, and antipodal cells, which are surrounded by callose, may degrade owing to lack of nutrition. Callose accumulation around the synergid and at the micropylar end may hinder signals required for the pollen tube to enter the embryo sac, leading to abortion.
Oberlin, Lauren E; Verstynen, Timothy D; Burzynska, Agnieszka Z; Voss, Michelle W; Prakash, Ruchika Shaurya; Chaddock-Heyman, Laura; Wong, Chelsea; Fanning, Jason; Awick, Elizabeth; Gothe, Neha; Phillips, Siobhan M; Mailey, Emily; Ehlers, Diane; Olson, Erin; Wojcicki, Thomas; McAuley, Edward; Kramer, Arthur F; Erickson, Kirk I
2016-05-01
White matter structure declines with advancing age and has been associated with a decline in memory and executive processes in older adulthood. Yet, recent research suggests that higher physical activity and fitness levels may be associated with less white matter degeneration in late life, although the tract-specificity of this relationship is not well understood. In addition, these prior studies infrequently associate measures of white matter microstructure to cognitive outcomes, so the behavioral importance of higher levels of white matter microstructural organization with greater fitness levels remains a matter of speculation. Here we tested whether cardiorespiratory fitness (VO2max) levels were associated with white matter microstructure and whether this relationship constituted an indirect pathway between cardiorespiratory fitness and spatial working memory in two large, cognitively and neurologically healthy older adult samples. Diffusion tensor imaging was used to determine white matter microstructure in two separate groups: Experiment 1, N=113 (mean age=66.61) and Experiment 2, N=154 (mean age=65.66). Using a voxel-based regression approach, we found that higher VO2max was associated with higher fractional anisotropy (FA), a measure of white matter microstructure, in a diverse network of white matter tracts, including the anterior corona radiata, anterior internal capsule, fornix, cingulum, and corpus callosum (PFDR-corrected<.05). This effect was consistent across both samples even after controlling for age, gender, and education. Further, a statistical mediation analysis revealed that white matter microstructure within these regions, among others, constituted a significant indirect path between VO2max and spatial working memory performance. These results suggest that greater aerobic fitness levels are associated with higher levels of white matter microstructural organization, which may, in turn, preserve spatial memory performance in older adulthood. Copyright © 2015 Elsevier Inc. All rights reserved.
Mapping White Matter Microstructure in the One Month Human Brain.
Dean, D C; Planalp, E M; Wooten, W; Adluru, N; Kecskemeti, S R; Frye, C; Schmidt, C K; Schmidt, N L; Styner, M A; Goldsmith, H H; Davidson, R J; Alexander, A L
2017-08-29
White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.
Tetrad pollen formation in Annona (Annonaceae): proexine formation andbinding mechanism.
Tsou, Chih-Hua; Fu, Yu-Lan
2002-05-01
Meiotic tetrads of Annona glabra and A. montana build up a well-developed proexine (protectum, probaculum, and pronexine) at the proximal side but only a thin pronexine at the distal side during the tetrad stage. The callosic envelope is only partially digested by the end of tetrad stage. The remaining, undigested part is composed of the intersporal mass and thin peripheral layers, and the latter is conjunct with the distal pronexine of the microspore. In this remaining callosic structure celluloses are also present. Later on, due to the continuous slow decomposition of this callose-cellulose structure and microspore expansion, microspores break up the callose-cellulose envelope. Because all the four microspores are bound together by the callose-cellulose structure, they move out of the chamber in rotation. Eventually the thin pronexine is pulled toward the center of the tetrad and the well-developed proexine becomes the distal wall. These descriptions of the partial digestion of callosic envelope, the transformation from a callose-cellulose structure to the binding system of tetrad pollen, and microspore rotation in Annona are unusual in the angiosperms.
2012-01-01
Background There is growing evidence for the idea of fMRI activation in white matter. In the current study, we compared hemodynamic response functions (HRF) in white matter and gray matter using 4 T fMRI. White matter fMRI activation was elicited in the isthmus of the corpus callosum at both the group and individual levels (using an established interhemispheric transfer task). Callosal HRFs were compared to HRFs from cingulate and parietal activation. Results Examination of the raw HRF revealed similar overall response characteristics. Finite impulse response modeling confirmed that the WM HRF characteristics were comparable to those of the GM HRF, but had significantly decreased peak response amplitudes. Conclusions Overall, the results matched a priori expectations of smaller HRF responses in white matter due to the relative drop in cerebral blood flow (CBF) and cerebral blood volume (CBV). Importantly, the findings demonstrate that despite lower CBF and CBV, white matter fMRI activation remained within detectable ranges at 4 T. PMID:22852798
Visual interhemispheric communication and callosal connections of the occipital lobes.
Berlucchi, Giovanni
2014-07-01
Callosal connections of the occipital lobes, coursing in the splenium of the corpus callosum, have long been thought to be crucial for interactions between the cerebral hemispheres in vision in both experimental animals and humans. Yet the callosal connections of the temporal and parietal lobes appear to have more important roles than those of the occipital callosal connections in at least some high-order interhemispheric visual functions. The partial intermixing and overlap of temporal, parietal and occipital callosal connections within the splenium has made it difficult to attribute the effects of splenial pathological lesions or experimental sections to splenial components specifically related to select cortical areas. The present review describes some current contributions from the modern techniques for the tracking of commissural fibers within the living human brain to the tentative assignation of specific visual functions to specific callosal tracts, either occipital or extraoccipital. Copyright © 2013 Elsevier Ltd. All rights reserved.
Altered White Matter Microstructure in Children with Attention-Deficit/Hyperactivity Disorder
ERIC Educational Resources Information Center
Nagel, Bonnie J.; Bathula, Deepti; Herting, Megan; Schmitt, Colleen; Kroenke, Christopher D.; Fair, Damien; Nigg, Joel T.
2011-01-01
Objective: Identification of biomarkers is a priority for attention-deficit/hyperactivity disorder (ADHD). Studies have documented macrostructural brain alterations in ADHD, but few have examined white matter microstructure, particularly in preadolescent children. Given dramatic white matter maturation across childhood, microstructural differences…
Ellinger, Dorothea; Naumann, Marcel; Falter, Christian; Zwikowics, Claudia; Jamrow, Torsten; Manisseri, Chithra; Somerville, Shauna C.; Voigt, Christian A.
2013-01-01
A common response by plants to fungal attack is deposition of callose, a (1,3)-β-glucan polymer, in the form of cell wall thickenings called papillae, at site of wall penetration. While it has been generally believed that the papillae provide a structural barrier to slow fungal penetration, this idea has been challenged in recent studies of Arabidopsis (Arabidopsis thaliana), where fungal resistance was found to be independent of callose deposition. To the contrary, we show that callose can strongly support penetration resistance when deposited in elevated amounts at early time points of infection. We generated transgenic Arabidopsis lines that express POWDERY MILDEW RESISTANT4 (PMR4), which encodes a stress-induced callose synthase, under the control of the constitutive 35S promoter. In these lines, we detected callose synthase activity that was four times higher than that in wild-type plants 6 h post inoculation with the virulent powdery mildew Golovinomyces cichoracearum. The callose synthase activity was correlated with enlarged callose deposits and the focal accumulation of green fluorescent protein-tagged PMR4 at sites of attempted fungal penetration. We observed similar results from infection studies with the nonadapted powdery mildew Blumeria graminis f. sp. hordei. Haustoria formation was prevented in resistant transgenic lines during both types of powdery mildew infection, and neither the salicylic acid-dependent nor jasmonate-dependent pathways were induced. We present a schematic model that highlights the differences in callose deposition between the resistant transgenic lines and the susceptible wild-type plants during compatible and incompatible interactions between Arabidopsis and powdery mildew. PMID:23335625
Cremers, Lotte G M; de Groot, Marius; Hofman, Albert; Krestin, Gabriel P; van der Lugt, Aad; Niessen, Wiro J; Vernooij, Meike W; Ikram, M Arfan
2016-03-01
White matter microstructural integrity has been related to cognition. Yet, the potential role of specific white matter tracts on top of a global white matter effect remains unclear, especially when considering specific cognitive domains. Therefore, we determined the tract-specific effect of white matter microstructure on global cognition and specific cognitive domains. In 4400 nondemented and stroke-free participants (mean age 63.7 years, 55.5% women), we obtained diffusion magnetic resonance imaging parameters (fractional anisotropy and mean diffusivity) in 14 white matter tracts using probabilistic tractography and assessed cognitive performance with a cognitive test battery. Tract-specific white matter microstructure in all supratentorial tracts was associated with poorer global cognition. Lower fractional anisotropy in association tracts, primarily the inferior fronto-occipital fasciculus, and higher mean diffusivity in projection tracts, in particular the posterior thalamic radiation, most strongly related to poorer cognition. Altered white matter microstructure related to poorer information processing speed, executive functioning, and motor speed, but not to memory. Tract-specific microstructural changes may aid in better understanding the mechanism of cognitive impairment and neurodegenerative diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease
Weber, Bernd; Schoene-Bake, Jan-Christoph; Roeske, Sandra; Mirbach, Sandra; Anspach, Christian; Schneider-Gold, Christiane; Betz, Regina C.; Helmstaedter, Christoph; Tittgemeyer, Marc; Klockgether, Thomas; Kornblum, Cornelia
2011-01-01
Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T1/T2/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (Pcorrected < 0.05). We further examined the association of structural brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were more prominent in patients with myotonic dystrophy type 1 with less white matter affection (early disease stages), contrary to patients with myotonic dystrophy type 2. Thus, depression in myotonic dystrophies might be a reactive adjustment disorder rather than a direct consequence of structural brain damage. Associations of white matter affection with age/disease duration as well as patterns of cerebral water diffusion parameters pointed towards an ongoing process of myelin destruction and/or axonal loss in our cross-sectional study design. Our data suggest that both myotonic dystrophy types 1 and 2 are serious white matter diseases with prominent callosal body and limbic system affection. White matter changes dominated the extent of grey matter changes, which might argue against Wallerian degeneration as the major cause of white matter affection in myotonic dystrophies. PMID:22131273
Fortes, Ana M; Testillano, Pilar S; Del Carmen Risueño, Maria; Pais, Maria S
2002-09-01
Callose and cutin deposition were followed by staining with Aniline Blue and Nile Red and by immunolocalization using antibodies raised against callose. Along with morphogenesis induction from internodes of Humulus lupulus var. Nugget, a temporal and spatial differential deposition of callose and cutin was observed. A cutin layer showing bright yellow autofluorescence appears, surrounding cells or groups of cells committed to express morphogenic competence. This cutin layer that evolves to a randomly organized network appeared underneath a callose layer and may create a specific cellular environment with altered permeability and altered receptors providing conditions for entering the cell cycle. The incipient callose accumulation in control explants cultured on basal medium suggests the involvement of callose in the initiation of the morphogenic programme leading to nodule formation. A scanning electron microscopic study during the organogenic process showed that before shoot bud regeneration, the cutin layer increases in thickness and acquires a smooth texture. This cutin layer is specific to nodular organogenic regions and disappeared with plantlet regeneration. This layer may control permeability to water and solute transfer throughout plantlet regeneration.
Köhncke, Ylva; Laukka, Erika J; Brehmer, Yvonne; Kalpouzos, Grégoria; Li, Tie-Qiang; Fratiglioni, Laura; Bäckman, Lars; Lövdén, Martin
2016-05-01
Accumulating evidence suggests that engagement in leisure activities is associated with favorable trajectories of cognitive aging, but little is known about brain changes related to both activities and cognition. White matter microstructure shows experience-dependent plasticity and declines in aging. Therefore, we investigated the role of change in white matter microstructure in the activities-cognition link. We used repeated assessments of engagement, perceptual speed, and white matter microstructure (probed with diffusion tensor imaging) in a population-based sample of individuals over 80 years without dementia (n = 442, Mage = 85.1; n = 70 for diffusion tensor imaging; 2 occasions 3 years apart). Using multivariate latent change modeling, we observed positive correlations among changes in predominantly social activities, white matter microstructure, and perceptual speed. Interindividual differences in change in white matter microstructure statistically accounted for the association between change in leisure activities and change in perceptual speed. However, as analyses are based on observational data from 2 measurement occasions, causality remains unclear. Copyright © 2016 Elsevier Inc. All rights reserved.
Herburger, Klaus; Holzinger, Andreas
2015-01-01
Freshwater green algae started to colonize terrestrial habitats about 460 million years ago, giving rise to the evolution of land plants. Today, several streptophyte green algae occur in aero-terrestrial habitats with unpredictable fluctuations in water availability, serving as ideal models for investigating desiccation tolerance. We tested the hypothesis that callose, a β-d-1,3-glucan, is incorporated specifically in strained areas of the cell wall due to cellular water loss, implicating a contribution to desiccation tolerance. In the early diverging genus Klebsormidium, callose was drastically increased already after 30 min of desiccation stress. Localization studies demonstrated an increase in callose in the undulating cross cell walls during cellular water loss, allowing a regulated shrinkage and expansion after rehydration. This correlates with a high desiccation tolerance demonstrated by a full recovery of the photosynthetic yield visualized at the subcellular level by Imaging-PAM. Furthermore, abundant callose in terminal cell walls might facilitate cell detachment to release dispersal units. In contrast, in the late diverging Zygnema, the callose content did not change upon desiccation for up to 3.5 h and was primarily localized in the corners between individual cells and at terminal cells. While these callose deposits still imply reduction of mechanical damage, the photosynthetic yield did not recover fully in the investigated young cultures of Zygnema upon rehydration. The abundance and specific localization of callose correlates with the higher desiccation tolerance in Klebsormidium when compared with Zygnema. PMID:26412780
Retinal microvasculature and white matter microstructure: The Rotterdam Study.
Mutlu, Unal; Cremers, Lotte G M; de Groot, Marius; Hofman, Albert; Niessen, Wiro J; van der Lugt, Aad; Klaver, Caroline C W; Ikram, M Arfan; Vernooij, Meike W; Ikram, M Kamran
2016-09-06
To investigate whether retinal microvascular damage is related to normal-appearing white matter microstructure on diffusion tensor MRI. We included 2,436 participants (age ≥45 years) from the population-based Rotterdam Study (2005-2009) who had gradable retinal images and brain MRI scans. Retinal arteriolar and venular calibers were measured semiautomatically on fundus photographs. White matter microstructure was assessed using diffusion tensor MRI. We used linear regression models to investigate the associations of retinal vascular calibers with markers of normal-appearing white matter microstructure, adjusting for age, sex, the fellow vascular caliber, and additionally for structural MRI markers and cardiovascular risk factors. Narrower arterioles and wider venules were associated with poor white matter microstructure: adjusted difference in fractional anisotropy per SD decrease in arteriolar caliber -0.061 (95% confidence interval -0.106 to -0.016), increase in venular caliber -0.054 (-0.096 to -0.011), adjusted difference in mean diffusivity per SD decrease in arteriolar caliber 0.048 (0.007-0.088), and increase in venular caliber 0.047 (0.008-0.085). The associations for venules were more prominent in women. Retinal vascular calibers are related to normal-appearing white matter microstructure. This suggests that microvascular damage in the white matter is more widespread than visually detectable as white matter lesions. © 2016 American Academy of Neurology.
Chiang, Huey-Ling; Chen, Yu-Jen; Lin, Hsiang-Yuan; Tseng, Wen-Yih Isaac; Gau, Susan Shur-Fen
2017-01-01
Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) are not only often comorbid but also overlapped in behavioral and cognitive abnormalities. Little is known about whether these shared phenotypes are based on common or different underlying neuropathologies. Therefore, this study aims to examine the disorder-specific alterations in white matter (WM) structural property. The three comparison groups included 23 male adults with ASD (21.4 ± 3.1 years), 32 male adults with ADHD (23.4 ± 3.3 years), and 29 age-matched healthy male controls (22.4 ± 3.3 years). After acquisition of the diffusion spectrum imaging (DSI), whole brain tractography was reconstructed by a tract-based automatic analysis. Generalized fractional anisotropy (GFA) values were computed to indicate tract-specific WM property with adjusted P value < 0.05 for false discovery rate correction. Post hoc analyses revealed that men with ASD exhibited significant lower GFA values than men with ADHD and male controls in six identified fiber tracts: the right arcuate fasciculus, right cingulum (hippocampal part), anterior commissure, and three callosal fibers (ventrolateral prefrontal cortex part, precentral part, superior temporal part). There was no significant difference in the GFA values of any of the fiber tracts between men with ADHD and controls. In men with ASD, the GFA values of the right arcuate fasciculus and right cingulum (hippocampal part) were negatively associated with autistic social-deficit symptoms, and the anterior commissure GFA value was positively correlated with intelligence. This study highlights the disorder-specific alteration of the microstructural property of WM tracts in male adults with ASD. Hum Brain Mapp 38:384-395, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Kurth, Florian; Mayer, Emeran A; Toga, Arthur W; Thompson, Paul M; Luders, Eileen
2013-09-01
Numerous studies suggest that interhemispheric inhibition-relayed via the corpus callosum-plays an important role in unilateral hand motions. Interestingly, transcallosal inhibition appears to be indicative of a strong laterality effect, where generally the dominant hemisphere exerts inhibition on the nondominant one. These effects have been largely identified through functional studies in adult populations, but links between motor performance and callosal structure (especially during sensitive periods of neurodevelopment) remain largely unknown. We therefore investigated correlations between Purdue Pegboard performance (a test of motor function) and local callosal thickness in 170 right-handed children and adolescents (mean age: 11.5 ± 3.4 years; range, 6-17 years). Better task performance with the right (dominant) hand was associated with greater callosal thickness in isthmus and posterior midbody. Task performance using both hands yielded smaller and less significant correlations in the same regions, while task performance using the left (nondominant) hand showed no significant correlations with callosal thickness. There were no significant interactions with age and sex. These links between motor performance and callosal structure may constitute the neural correlate of interhemispheric inhibition, which is thought to be necessary for fast and complex unilateral motions and to be biased towards the dominant hand. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.
Berman, N E; Grant, S
1992-07-01
The callosal connections between visual cortical areas 17 and 18 in adult normally pigmented and "Boston" Siamese cats were studied using degeneration methods, and by transport of WGA-HRP combined with electrophysiological mapping. In normal cats, over 90% of callosal neurons were located in the supragranular layers. The supragranular callosal cell zone spanned the area 17/18 border and extended, on average, some 2-3 mm into both areas to occupy a territory which was roughly co-extensive with the distribution of callosal terminations in these areas. The region of the visual field adjoining the vertical meridian that was represented by neurons in the supragranular callosal cell zone was shown to increase systematically with decreasing visual elevation. Thus, close to the area centralis, receptive-field centers recorded from within this zone extended only up to 5 deg into the contralateral hemifield but at elevations of -10 deg and -40 deg they extended as far as 8 deg and 14 deg, respectively, into this hemifield. This suggests an element of visual non-correspondence in the callosal pathway between these cortical areas, which may be an essential substrate for "coarse" stereopsis at the visual midline. In the Siamese cats, the callosal cell and termination zones in areas 17 and 18 were expanded in width compared to the normal animals, but the major components were less robust. The area 17/18 border was often devoid of callosal axons and, in particular, the number of supragranular layer neurons participating in the pathway were drastically reduced, to only about 25% of those found in the normally pigmented adults. The callosal zones contained representations of the contralateral and ipsilateral hemifields that were roughly mirror-symmetric about the vertical meridian, and both hemifield representations increased with decreasing visual elevation. The extent and severity of the anomalies observed were similar across individual cats, regardless of whether a strabismus was also present. The callosal pathway between these visual cortical areas in the Siamese cat has been considered "silent," since nearly all neurons within its territory are activated only by the contralateral eye. The paucity of supragranular pyramidal neurons involved in the pathway may explain this silence.
Age-related differences in autism: The case of white matter microstructure.
Koolschijn, P Cédric M P; Caan, Matthan W A; Teeuw, Jalmar; Olabarriaga, Sílvia D; Geurts, Hilde M
2017-01-01
Autism spectrum disorder (ASD) is typified as a brain connectivity disorder in which white matter abnormalities are already present early on in life. However, it is unknown if and to which extent these abnormalities are hard-wired in (older) adults with ASD and how this interacts with age-related white matter changes as observed in typical aging. The aim of this first cross-sectional study in mid- and late-aged adults with ASD was to characterize white matter microstructure and its relationship with age. We utilized diffusion tensor imaging with head motion control in 48 adults with ASD and 48 age-matched controls (30-74 years), who also completed a Flanker task. Intra-individual variability of reaction times (IIVRT) measures based on performance on the Flanker interference task were used to assess IIVRT-white matter microstructure associations. We observed primarily higher mean and radial diffusivity in white matter microstructure in ASD, particularly in long-range fibers, which persisted after taking head motion into account. Importantly, group-by-age interactions revealed higher age-related mean and radial diffusivity in ASD, in projection and association fiber tracts. Subtle dissociations were observed in IIVRT-white matter microstructure relations between groups, with the IIVRT-white matter association pattern in ASD resembling observations in cognitive aging. The observed white matter microstructure differences are lending support to the structural underconnectivity hypothesis in ASD. These reductions seem to have behavioral percussions given the atypical relationship with IIVRT. Taken together, the current results may indicate different age-related patterns of white matter microstructure in adults with ASD. Hum Brain Mapp 38:82-96, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Rigters, Stephanie C; Cremers, Lotte G M; Ikram, M Arfan; van der Schroeff, Marc P; de Groot, Marius; Roshchupkin, Gennady V; Niessen, Wiro J N; Baatenburg de Jong, Robert J; Goedegebure, André; Vernooij, Meike W
2018-01-01
To study the relation between the microstructure of white matter in the brain and hearing function in older adults we carried out a population-based, cross-sectional study. In 2562 participants of the Rotterdam Study, we conducted diffusion tensor imaging to determine the microstructure of the white-matter tracts. We performed pure-tone audiogram and digit-in-noise tests to quantify hearing acuity. Poorer white-matter microstructure, especially in the association tracts, was related to poorer hearing acuity. After differentiating the separate white-matter tracts in the left and right hemisphere, poorer white-matter microstructure in the right superior longitudinal fasciculus and the right uncinate fasciculus remained significantly associated with worse hearing. These associations did not significantly differ between middle-aged (51-69 years old) and older (70-100 years old) participants. Progressing age was thus not found to be an effect modifier. In a voxel-based analysis no voxels in the white matter were significantly associated with hearing impairment. Copyright © 2017 Elsevier Inc. All rights reserved.
The roles of callose, elicitors and ethylene in thigmomorphogenesis and gravitropism
NASA Technical Reports Server (NTRS)
Jaffe, M. J.
1984-01-01
A correlation (both temporal and through the inhibitor, 2-deoxy-D-glucose) of callose deposition and ethylene evolution in mechanically perturbed (MP) bean or pine stems or in gravitationally stimulated corn shoots was demonstrated. It was suggested that the callose, which is deposited on the inside of the cell wall, and adjacent to the plasma membrane causes, in some way, the ethylene production. A hypothesis explaining the mechanism is discussed which states that there is a chemical activation of the enzyme system by the callose which is being deposited in apposition with it. Experimental data supporting the hypothesis are presented.
The Impact of Sex, Puberty, and Hormones on White Matter Microstructure in Adolescents
Herting, Megan M.; Maxwell, Emily C.; Irvine, Christy
2012-01-01
Background: During adolescence, numerous factors influence the organization of the brain. It is unclear what influence sex and puberty have on white matter microstructure, as well as the role that rapidly increasing sex steroids play. Methods: White matter microstructure was examined in 77 adolescents (ages 10–16) using diffusion tensor imaging. Multiple regression analyses were performed to examine the relationships between fractional anisotropy (FA) and mean diffusivity (MD) and sex, puberty, and their interaction, controlling for age. Follow-up analyses determined if sex steroids predicted microstructural characteristics in sexually dimorphic and pubertal-related white matter regions, as well as in whole brain. Results: Boys had higher FA in white matter carrying corticospinal, long-range association, and cortico-subcortical fibers, and lower MD in frontal and temporal white matter compared with girls. Pubertal development was related to higher FA in the insula, while a significant sex-by-puberty interaction was seen in superior frontal white matter. In boys, testosterone predicted white matter integrity in sexually dimorphic regions as well as whole brain FA, whereas estradiol showed a negative relationship with FA in girls. Conclusions: Sex differences and puberty uniquely relate to white matter microstructure in adolescents, which can partially be explained by sex steroids. PMID:22002939
ERIC Educational Resources Information Center
Warlop, Nele P.; Achten, Eric; Debruyne, Jan; Vingerhoets, Guy
2008-01-01
We aimed to investigate the relation between damage in the corpus callosum and the performance on an interhemispheric communication task in patients with multiple sclerosis (MS). Relative callosal lesion load defined as the ratio between callosal area and the total lesion load in the total corpus callosum, and the diffusion tensor imaging (DTI)…
Xie, Peng; Qin, Bangyong; Song, Ganjun; Zhang, Yi; Cao, Song; Yu, Jin; Wu, Jianjiang; Wang, Jiang; Zhang, Tijiang; Zhang, Xiaoming; Yu, Tian; Zheng, Hong
2016-01-01
Myofascial pain, presented as myofascial trigger points (MTrPs)-related pain, is a common, chronic disease involving skeletal muscle, but its underlying mechanisms have been poorly understood. Previous studies have revealed that chronic pain can induce microstructural abnormalities in the cerebral gray matter. However, it remains unclear whether the brain gray matters of patients with chronic MTrPs-related pain undergo alteration. In this study, we employed the Diffusion Kurtosis Imaging (DKI) technique, which is particularly sensitive to brain microstructural perturbation, to monitor the MTrPs-related microstructural alterations in brain gray matter of patients with chronic pain. Our results revealed that, in comparison with the healthy controls, patients with chronic myofascial pain exhibited microstructural abnormalities in the cerebral gray matter and these lesions were mainly distributed in the limbic system and the brain areas involved in the pain matrix. In addition, we showed that microstructural abnormalities in the right anterior cingulate cortex (ACC) and medial prefrontal cortex (mPFC) had a significant negative correlation with the course of disease and pain intensity. The results of this study demonstrated for the first time that there are microstructural abnormalities in the brain gray matter of patients with MTrPs-related chronic pain. Our findings may provide new insights into the future development of appropriate therapeutic strategies to this disease. PMID:28066193
AxTract: Toward microstructure informed tractography.
Girard, Gabriel; Daducci, Alessandro; Petit, Laurent; Thiran, Jean-Philippe; Whittingstall, Kevin; Deriche, Rachid; Wassermann, Demian; Descoteaux, Maxime
2017-11-01
Diffusion-weighted (DW) magnetic resonance imaging (MRI) tractography has become the tool of choice to probe the human brain's white matter in vivo. However, tractography algorithms produce a large number of erroneous streamlines (false positives), largely due to complex ambiguous tissue configurations. Moreover, the relationship between the resulting streamlines and the underlying white matter microstructure characteristics remains poorly understood. In this work, we introduce a new approach to simultaneously reconstruct white matter fascicles and characterize the apparent distribution of axon diameters within fascicles. To achieve this, our method, AxTract, takes full advantage of the recent development DW-MRI microstructure acquisition, modeling, and reconstruction techniques. This enables AxTract to separate parallel fascicles with different microstructure characteristics, hence reducing ambiguities in areas of complex tissue configuration. We report a decrease in the incidence of erroneous streamlines compared to the conventional deterministic tractography algorithms on simulated data. We also report an average increase in streamline density over 15 known fascicles of the 34 healthy subjects. Our results suggest that microstructure information improves tractography in crossing areas of the white matter. Moreover, AxTract provides additional microstructure information along the fascicle that can be studied alongside other streamline-based indices. Overall, AxTract provides the means to distinguish and follow white matter fascicles using their microstructure characteristics, bringing new insights into the white matter organization. This is a step forward in microstructure informed tractography, paving the way to a new generation of algorithms able to deal with intricate configurations of white matter fibers and providing quantitative brain connectivity analysis. Hum Brain Mapp 38:5485-5500, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Liu, David X; Gilbert, Margaret H; Wang, Xiaolei; Didier, Peter J; Veazey, Ronald S
2012-11-01
Ischial callosities have received little attention in veterinary medicine even though they are distinguishing anatomic organs. The organs are characterized by a pair of hairless pads of thickened epidermis, located bilaterally in the gluteal region, which overlay the tuberosities of the ischia of all Old World monkeys, gibbons, and siamangs. The current report describes a case of reactive amyloidosis associated with ischial callosititis in a rhesus macaque (Macaca mulatta). Amyloid A (AA) protein was found in the liver, spleen, small intestine, mesenteric lymph nodes, and ischial callosities by histology, Congo red stain, and immunohistochemistry. Confocal microscopy showed that many cluster of differentiation (CD)68-positive macrophages within the ischial callosities contained intracellular AA protein, which suggests that CD68-positive macrophages have an important role in the pathogenesis of reactive amyloidosis in nonhuman primates. The normal histology of ischial callosities of rhesus macaques is also documented in this report.
Coupled changes in brain white matter microstructure and fluid intelligence in later life.
Ritchie, Stuart J; Bastin, Mark E; Tucker-Drob, Elliot M; Maniega, Susana Muñoz; Engelhardt, Laura E; Cox, Simon R; Royle, Natalie A; Gow, Alan J; Corley, Janie; Pattie, Alison; Taylor, Adele M; Valdés Hernández, Maria Del C; Starr, John M; Wardlaw, Joanna M; Deary, Ian J
2015-06-03
Understanding aging-related cognitive decline is of growing importance in aging societies, but relatively little is known about its neural substrates. Measures of white matter microstructure are known to correlate cross-sectionally with cognitive ability measures, but only a few small studies have tested for longitudinal relations among these variables. We tested whether there were coupled changes in brain white matter microstructure indexed by fractional anisotropy (FA) and three broad cognitive domains (fluid intelligence, processing speed, and memory) in a large cohort of human participants with longitudinal diffusion tensor MRI and detailed cognitive data taken at ages 73 years (n = 731) and 76 years (n = 488). Longitudinal changes in white matter microstructure were coupled with changes in fluid intelligence, but not with processing speed or memory. Individuals with higher baseline white matter FA showed less subsequent decline in processing speed. Our results provide evidence for a longitudinal link between changes in white matter microstructure and aging-related cognitive decline during the eighth decade of life. They are consistent with theoretical perspectives positing that a corticocortical "disconnection" partly explains cognitive aging. Copyright © 2015 Ritchie et al.
Handedness and corpus callosal morphology in Williams syndrome.
Martens, Marilee A; Wilson, Sarah J; Chen, Jian; Wood, Amanda G; Reutens, David C
2013-02-01
Williams syndrome is a neurodevelopmental genetic disorder caused by a hemizygous deletion on chromosome 7q11.23, resulting in atypical brain structure and function, including abnormal morphology of the corpus callosum. An influence of handedness on the size of the corpus callosum has been observed in studies of typical individuals, but handedness has not been taken into account in studies of callosal morphology in Williams syndrome. We hypothesized that callosal area is smaller and the size of the splenium and isthmus is reduced in individuals with Williams syndrome compared to healthy controls, and examined age, sex, and handedness effects on corpus callosal area. Structural magnetic resonance imaging scans were obtained on 25 individuals with Williams syndrome (18 right-handed, 7 left-handed) and 25 matched controls. We found that callosal thickness was significantly reduced in the splenium of Williams syndrome individuals compared to controls. We also found novel evidence that the callosal area was smaller in left-handed participants with Williams syndrome than their right-handed counterparts, with opposite findings observed in the control group. This novel finding may be associated with LIM-kinase hemizygosity, a characteristic of Williams syndrome. The findings may have significant clinical implications in future explorations of the Williams syndrome cognitive phenotype.
Callosal responses in a retrosplenial column.
Sempere-Ferràndez, Alejandro; Andrés-Bayón, Belén; Geijo-Barrientos, Emilio
2018-04-01
The axons forming the corpus callosum sustain the interhemispheric communication across homotopic cortical areas. We have studied how neurons throughout the columnar extension of the retrosplenial cortex integrate the contralateral input from callosal projecting neurons in cortical slices. Our results show that pyramidal neurons in layers 2/3 and the large, thick-tufted pyramidal neurons in layer 5B showed larger excitatory callosal responses than layer 5A and layer 5B thin-tufted pyramidal neurons, while layer 6 remained silent to this input. Feed-forward inhibitory currents generated by fast spiking, parvalbumin expressing interneurons recruited by callosal axons mimicked the response size distribution of excitatory responses across pyramidal subtypes, being larger in those of superficial layers and in the layer 5B thick-tufted pyramidal cells. Overall, the combination of the excitatory and inhibitory currents evoked by callosal input had a strong and opposed effect in different layers of the cortex; while layer 2/3 pyramidal neurons were powerfully inhibited, the thick-tufted but not thin-tufted pyramidal neurons in layer 5 were strongly recruited. We believe that these results will help to understand the functional role of callosal connections in physiology and disease.
Characteristics of early MRI in children and adolescents with vanishing white matter.
van der Lei, Hannemieke D; Steenweg, Marjan E; Barkhof, Frederik; de Grauw, Ton; d'Hooghe, Marc; Morton, Richard; Shah, Siddharth; Wolf, Nicole; van der Knaap, Marjo S
2012-02-01
MRI in vanishing white matter typically shows diffuse abnormality of the cerebral white matter, which becomes increasingly rarefied and cystic. We investigated the MRI characteristics preceding this stage. In a retrospective observational study, we evaluated all available MRIs in our database of DNA-confirmed VWM patients and selected MRIs without diffuse cerebral white matter abnormalities and without signs of rarefaction or cystic degeneration in patients below 20 years of age. A previously established scoring list was used to evaluate the MRIs. An MRI of seven patients fulfilled the criteria. All had confluent and symmetrical abnormalities in the periventricular and bordering deep white matter. In young patients, myelination was delayed. The inner rim of the corpus callosum was affected in all patients. In early stages of VWM, MRI does not necessarily display diffuse cerebral white matter involvement and rarefaction or cystic degeneration. If the MRI abnormalities do not meet the criteria for VWM, it helps to look at the corpus callosum. If the inner rim (the callosal-septal interface) is affected, VWM should be considered. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Anastasopoulou, Stavroula; Kurth, Florian; Luders, Eileen; Savic, Ivanka
2017-01-01
The definition of two well-studied genetic generalized epilepsy syndromes (GGE) - juvenile myoclonic epilepsy (JME) and epilepsy with generalized tonic-clonic seizures alone (GTCS) - suggests the absence of structural cerebral abnormalities. Nevertheless, there are various reports of such abnormalities (especially in JME), where effects mainly occur within thalamus and mesial prefrontal regions. This raises the question of whether JME is particularly linked to midline structure abnormalities, which may also involve the corpus callosum. We studied callosal morphology in a well-matched sample of 22 JME patients, 15 GTCS patients, and 42 controls (CTL) for all of whom we obtained T1-weighted data on a 3T MRI scanner. More specifically, we measured callosal thickness at 100 equidistant points across the callosal surface, and subsequently compared the three groups (JME, GTCS, and CTL) against each other. Significant differences between JME patients and controls were observed within the callosal genu, anterior midbody, and isthmus, with thinner regions in JME patients. There were no significant differences between GTCS patients and controls, and also not between JME patients and GTCS patients. The present outcomes point to callosal abnormalities in JME patients suggesting an impairment of interhemisperic communication between prefrontal, motor, parietal and temporal cortices. These findings further support the notion that structural aberrations are present and differentiated across GGE syndromes, with significant callosal deviations from normality in JME. Copyright © 2016 Elsevier B.V. All rights reserved.
2011-01-01
Background A number of innovations underlie the origin of rapid reproductive cycles in angiosperms. A critical early step involved the modification of an ancestrally short and slow-growing pollen tube for faster and longer distance transport of sperm to egg. Associated with this shift are the predominantly callose (1,3-β-glucan) walls and septae (callose plugs) of angiosperm pollen tubes. Callose synthesis is mediated by callose synthase (CalS). Of 12 CalS gene family members in Arabidopsis, only one (CalS5) has been directly linked to pollen tube callose. CalS5 orthologues are present in several monocot and eudicot genomes, but little is known about the evolutionary origin of CalS5 or what its ancestral function may have been. Results We investigated expression of CalS in pollen and pollen tubes of selected non-flowering seed plants (gymnosperms) and angiosperms within lineages that diverged below the monocot/eudicot node. First, we determined the nearly full length coding sequence of a CalS5 orthologue from Cabomba caroliniana (CcCalS5) (Nymphaeales). Semi-quantitative RT-PCR demonstrated low CcCalS5 expression within several vegetative tissues, but strong expression in mature pollen. CalS transcripts were detected in pollen tubes of several species within Nymphaeales and Austrobaileyales, and comparative analyses with a phylogenetically diverse group of sequenced genomes indicated homology to CalS5. We also report in silico evidence of a putative CalS5 orthologue from Amborella. Among gymnosperms, CalS5 transcripts were recovered from germinating pollen of Gnetum and Ginkgo, but a novel CalS paralog was instead amplified from germinating pollen of Pinus taeda. Conclusion The finding that CalS5 is the predominant callose synthase in pollen tubes of both early-diverging and model system angiosperms is an indicator of the homology of their novel callosic pollen tube walls and callose plugs. The data suggest that CalS5 had transient expression and pollen-specific functions in early seed plants and was then recruited to novel expression patterns and functions within pollen tube walls in an ancestor of extant angiosperms. PMID:21722365
Callose biosynthesis regulates symplastic trafficking during root development.
Vatén, Anne; Dettmer, Jan; Wu, Shuang; Stierhof, York-Dieter; Miyashima, Shunsuke; Yadav, Shri Ram; Roberts, Christina J; Campilho, Ana; Bulone, Vincent; Lichtenberger, Raffael; Lehesranta, Satu; Mähönen, Ari Pekka; Kim, Jae-Yean; Jokitalo, Eija; Sauer, Norbert; Scheres, Ben; Nakajima, Keiji; Carlsbecker, Annelie; Gallagher, Kimberly L; Helariutta, Ykä
2011-12-13
Plant cells are connected through plasmodesmata (PD), membrane-lined channels that allow symplastic movement of molecules between cells. However, little is known about the role of PD-mediated signaling during plant morphogenesis. Here, we describe an Arabidopsis gene, CALS3/GSL12. Gain-of-function mutations in CALS3 result in increased accumulation of callose (β-1,3-glucan) at the PD, a decrease in PD aperture, defects in root development, and reduced intercellular trafficking. Enhancement of CALS3 expression during phloem development suppressed loss-of-function mutations in the phloem abundant callose synthase, CALS7 indicating that CALS3 is a bona fide callose synthase. CALS3 alleles allowed us to spatially and temporally control the PD aperture between plant tissues. Using this tool, we are able to show that movement of the transcription factor SHORT-ROOT and microRNA165 between the stele and the endodermis is PD dependent. Taken together, we conclude that regulated callose biosynthesis at PD is essential for cell signaling. Copyright © 2011 Elsevier Inc. All rights reserved.
A cascade of morphogenic signaling initiated by the meninges controls corpus callosum formation.
Choe, Youngshik; Siegenthaler, Julie A; Pleasure, Samuel J
2012-02-23
The corpus callosum is the most prominent commissural connection between the cortical hemispheres, and numerous neurodevelopmental disorders are associated with callosal agenesis. By using mice either with meningeal overgrowth or selective loss of meninges, we have identified a cascade of morphogenic signals initiated by the meninges that regulates corpus callosum development. The meninges produce BMP7, an inhibitor of callosal axon outgrowth. This activity is overcome by the induction of expression of Wnt3 by the callosal pathfinding neurons, which antagonize the inhibitory effects of BMP7. Wnt3 expression in the cingulate callosal pathfinding axons is developmentally regulated by another BMP family member, GDF5, which is produced by the adjacent Cajal-Retzius neurons and turns on before outgrowth of the callosal axons. The effects of GDF5 are in turn under the control of a soluble GDF5 inhibitor, Dan, made by the meninges. Thus, the meninges and medial neocortex use a cascade of signals to regulate corpus callosum development. Copyright © 2012 Elsevier Inc. All rights reserved.
A cascade of morphogenic signaling initiated by the meninges controls corpus callosum formation
Choe, Youngshik; Siegenthaler, Julie A.; Pleasure, Samuel J.
2012-01-01
Summary The corpus callosum is the most prominent commissural connection between the cortical hemispheres, and numerous neurodevelopmental disorders are associated with callosal agenesis. Using mice with either meningeal overgrowth or selective loss of meninges, we’ve identified a cascade of morphogenic signals initiated by the meninges that regulates corpus callosum development. The meninges produce BMP7, an inhibitor of callosal axon outgrowth. This activity is overcome by the induction of expression of Wnt3 by the callosal pathfinding neurons, which antagonizes the inhibitory effects of BMP7. Wnt3 expression in the cingulate callosal pathfinding axons is developmentally regulated by another BMP family member, GDF5, produced by the adjacent Cajal-Retzius neurons and turns on before outgrowth of the callosal axons. The effects of GDF5 are in turn under the control of a soluble GDF5 inhibitor, Dan, made by the meninges. Thus, the meninges and medial neocortex use a cascade of signals to regulate corpus callosum development. PMID:22365545
Liu, David X.; Gilbert, Margaret H.; Wang, Xiaolei; Didier, Peter J.; Veazey, Ronald S.
2014-01-01
Ischial callosities have received little attention in veterinary medicine even though they are distinguishing anatomic organs. The organs are characterized by a pair of hairless pads of thickened epidermis, located bilaterally in the gluteal region, which overlay the tuberosities of the ischia of all Old World monkeys, gibbons, and siamangs. The current report describes a case of reactive amyloidosis associated with ischial callosititis in a rhesus macaque (Macaca mulatta). Amyloid A (AA) protein was found in the liver, spleen, small intestine, mesenteric lymph nodes, and ischial callosities by histology, Congo red stain, and immunohistochemistry. Confocal microscopy showed that many cluster of differentiation (CD)68-positive macrophages within the ischial callosities contained intracellular AA protein, which suggests that CD68-positive macrophages have an important role in the pathogenesis of reactive amyloidosis in nonhuman primates. The normal histology of ischial callosities of rhesus macaques is also documented in this report. PMID:23104953
ERIC Educational Resources Information Center
Mazza, M.; Di Rienzo, A.; Costagliola, C.; Roncone, R.; Casacchia, M.; Ricci, A.; Galzio, R.J.
2004-01-01
Based on the observation of the course of callosal fibres and of their artero-venous support as appearing in a microanatomic study, the Authors propose a variant of standard callosotomy procedure by the introduction of the transverse section of callosal fibres. This technique would allow the surgeon to spare a larger number of callosal fibres by…
Bui Quoc, Emmanuel; Ribot, Jérôme; Quenech’Du, Nicole; Doutremer, Suzette; Lebas, Nicolas; Grantyn, Alexej; Aushana, Yonane; Milleret, Chantal
2011-01-01
In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When this is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, data concerning these changes are sparse and incomplete. Thus, little is known about the impact of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience) were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non-deviated eye). Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute successively to the development of the callosal maps in visual cortex. PMID:22275883
Multiple sclerosis-related white matter microstructural change alters the BOLD hemodynamic response.
Hubbard, Nicholas A; Turner, Monroe; Hutchison, Joanna L; Ouyang, Austin; Strain, Jeremy; Oasay, Larry; Sundaram, Saranya; Davis, Scott; Remington, Gina; Brigante, Ryan; Huang, Hao; Hart, John; Frohman, Teresa; Frohman, Elliot; Biswal, Bharat B; Rypma, Bart
2016-11-01
Multiple sclerosis (MS) results in inflammatory damage to white matter microstructure. Prior research using blood-oxygen-level dependent (BOLD) imaging indicates MS-related alterations to brain function. What is currently unknown is the extent to which white matter microstructural damage influences BOLD signal in MS. Here we assessed changes in parameters of the BOLD hemodynamic response function (HRF) in patients with relapsing-remitting MS compared to healthy controls. We also used diffusion tensor imaging to assess whether MS-related changes to the BOLD-HRF were affected by changes in white matter microstructural integrity. Our results showed MS-related reductions in BOLD-HRF peak amplitude. These MS-related amplitude decreases were influenced by individual differences in white matter microstructural integrity. Other MS-related factors including altered reaction time, limited spatial extent of BOLD activity, elevated lesion burden, or lesion proximity to regions of interest were not mediators of group differences in BOLD-HRF amplitude. Results are discussed in terms of functional hyperemic mechanisms and implications for analysis of BOLD signal differences. © The Author(s) 2015.
Gong, Nan-Jie; Chan, Chun-Chung; Leung, Lam-Ming; Wong, Chun-Sing; Dibb, Russell; Liu, Chunlei
2017-05-01
One aim of this study is to use non-Gaussian diffusion kurtosis imaging (DKI) for capturing microstructural abnormalities in gray matter of Alzheimer's disease (AD). The other aim is to compare DKI metrics against thickness of cortical gray matter and volume of deep gray matter, respectively. A cohort of 18 patients with AD, 18 patients with amnestic mild cognitive impairment (MCI), and 18 normal controls underwent morphological and DKI MR imaging. Images were investigated using regions-of-interest-based analyses for deep gray matter and vertex-wise analyses for cortical gray matter. In deep gray matter, more regions showed DKI parametric abnormalities than atrophies at the early MCI stage. Mean kurtosis (MK) exhibited the largest number of significant abnormalities among all DKI metrics. At the later AD stage, diffusional abnormalities were observed in fewer regions than atrophies. In cortical gray matter, abnormalities in thickness were mainly in the medial and lateral temporal lobes, which fit the locations of known early pathological changes. Microstructural abnormalities were predominantly in the parietal and even frontal lobes, which fit the locations of known late pathological changes. In conclusion, MK can complement conventional diffusion metrics for detecting microstructural changes, especially in deep gray matter. This study also provides evidence supporting the notion that microstructural changes predate morphological changes. Hum Brain Mapp 38:2495-2508, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI
Farooq, Hamza; Xu, Junqian; Nam, Jung Who; Keefe, Daniel F.; Yacoub, Essa; Georgiou, Tryphon; Lenglet, Christophe
2016-01-01
Diffusion MRI (dMRI) reveals microstructural features of the brain white matter by quantifying the anisotropic diffusion of water molecules within axonal bundles. Yet, identifying features such as axonal orientation dispersion, density, diameter, etc., in complex white matter fiber configurations (e.g. crossings) has proved challenging. Besides optimized data acquisition and advanced biophysical models, computational procedures to fit such models to the data are critical. However, these procedures have been largely overlooked by the dMRI microstructure community and new, more versatile, approaches are needed to solve complex biophysical model fitting problems. Existing methods are limited to models assuming single fiber orientation, relevant to limited brain areas like the corpus callosum, or multiple orientations but without the ability to extract detailed microstructural features. Here, we introduce a new and versatile optimization technique (MIX), which enables microstructure imaging of crossing white matter fibers. We provide a MATLAB implementation of MIX, and demonstrate its applicability to general microstructure models in fiber crossings using synthetic as well as ex-vivo and in-vivo brain data. PMID:27982056
Lamar, Melissa; Zhou, Xiaohong Joe; Charlton, Rebecca A.; Dean, Douglas; Little, Deborah; Deoni, Sean C
2013-01-01
Human brain imaging has seen many advances in the quantification of white matter in vivo. For example, these advances have revealed the association between white matter damage and vascular disease as well as their impact on risk for and development of dementia and depression in an aging population. Current neuroimaging methods to quantify white matter damage provide a foundation for understanding such age-related neuropathology; however, these methods are not as adept at determining the underlying microstructural abnormalities signaling at risk tissue or driving white matter damage in the aging brain. This review will begin with a brief overview of the use of diffusion tensor imaging (DTI) in understanding white matter alterations in aging before focusing in more detail on select advances in both diffusion-based methods and multi-component relaxometry techniques for imaging white matter microstructural integrity within myelin sheaths and the axons they encase. While DTI greatly extended the field of white matter interrogation, these more recent technological advances will add clarity to the underlying microstructural mechanisms that contribute to white matter damage. More specifically, the methods highlighted in this review may prove more sensitive (and specific) for determining the contribution of myelin versus axonal integrity to the aging of white matter in brain. PMID:24080382
Dichotic listening in patients with splenial and nonsplenial callosal lesions.
Pollmann, Stefan; Maertens, Marianne; von Cramon, D Yves; Lepsien, Joeran; Hugdahl, Kenneth
2002-01-01
The authors found splenial lesions to be associated with left ear suppression in dichotic listening of consonant-vowel syllables. This was found in both a rapid presentation dichotic monitoring task and a standard dichotic listening task, ruling out attentional limitations in the processing of high stimulus loads as a confounding factor. Moreover, directed attention to the left ear did not improve left ear target detection in the patients, independent of callosal lesion location. The authors' data may indicate that auditory callosal fibers pass through the splenium more posterior than previously thought. However, further studies should investigate whether callosal fibers between primary and secondary auditory cortices, or between higher level multimodal cortices, are vital for the detection of left ear targets in dichotic listening.
Keller, Simon S; Schoene-Bake, Jan-Christoph; Gerdes, Jan S; Weber, Bernd; Deppe, Michael
2012-01-01
In patients with temporal lobe epilepsy and associated hippocampal sclerosis (TLEhs) there are brain abnormalities extending beyond the presumed epileptogenic zone as revealed separately in conventional magnetic resonance imaging (MRI) and MR diffusion tensor imaging (DTI) studies. However, little is known about the relation between macroscopic atrophy (revealed by volumetric MRI) and microstructural degeneration (inferred by DTI). For 62 patients with unilateral TLEhs and 68 healthy controls, we determined volumes and mean fractional anisotropy (FA) of ipsilateral and contralateral brain structures from T1-weighted and DTI data, respectively. We report significant volume atrophy and FA alterations of temporal lobe, subcortical and callosal regions, which were more diffuse and bilateral in patients with left TLEhs relative to right TLEhs. We observed significant relationships between volume loss and mean FA, particularly of the thalamus and putamen bilaterally. When corrected for age, duration of epilepsy was significantly correlated with FA loss of an anatomically plausible route - including ipsilateral parahippocampal gyrus and temporal lobe white matter, the thalamus bilaterally, and posterior regions of the corpus callosum that contain temporal lobe fibres - that may be suggestive of progressive brain degeneration in response to recurrent seizures. Chronic TLEhs is associated with interrelated DTI-derived and volume-derived brain degenerative abnormalities that are influenced by the duration of the disorder and the side of seizure onset. This work confirms previously contradictory findings by employing multi-modal imaging techniques in parallel in a large sample of patients.
Parent, Maxime; Li, Ying; Santhakumar, Vijayalakshmi; Hyder, Fahmeed; Sanganahalli, Basavaraju G; Kannurpatti, Sridhar
2018-06-01
TBI is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence. 1 Based on the non-localized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity and neurovascular function are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2-months after injury, using functional MRI (fMRI) and Diffusion Tensor Imaging (DTI). fMRI based resting state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus and thalamus accompanied by decrease in the spatial extent of their corresponding RSFC networks and inter-hemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus and motor cortex. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient (ADC), reporting on axonal and microstructural integrity of the brain, indicated similar inter-hemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in inter-hemispheric structural connectivity. Hippocampus, thalamus and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance and parenchymal microstructure in the adolescent brain, indicating the highly diffuse and persistent nature of the lateral fluid percussion TBI early in development.
Zamroziewicz, Marta K; Paul, Erick J; Zwilling, Chris E; Barbey, Aron K
2017-07-01
Recent evidence demonstrates that age and disease-related decline in cognition depends not only upon degeneration in brain structure and function, but also on dietary intake and nutritional status. Memory, a potential preclinical marker of Alzheimer's disease, is supported by white matter integrity in the brain and dietary patterns high in omega-3 and omega-6 polyunsaturated fatty acids. However, the extent to which memory is supported by specific omega-3 and omega-6 polyunsaturated fatty acids, and the degree to which this relationship is reliant upon microstructure of particular white matter regions is not known. This study therefore examined the cross-sectional relationship between empirically-derived patterns of omega-3 and omega-6 polyunsaturated fatty acids (represented by nutrient biomarker patterns), memory, and regional white matter microstructure in healthy, older adults. We measured thirteen plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids, memory, and regional white matter microstructure in 94 cognitively intact older adults (65 to 75 years old). A three-step mediation analysis was implemented using multivariate linear regressions, adjusted for age, gender, education, income, depression status, and body mass index. The mediation analysis revealed that a mixture of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids is linked to memory and that white matter microstructure of the fornix fully mediates the relationship between this pattern of plasma phospholipid polyunsaturated fatty acids and memory. These results suggest that memory may be optimally supported by a balance of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids through the preservation of fornix white matter microstructure in cognitively intact older adults. This report provides novel evidence for the benefits of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acid balance on memory and underlying white matter microstructure.
Alfaro, Freddy J; Gavrieli, Anna; Saade-Lemus, Patricia; Lioutas, Vasileios-Arsenios; Upadhyay, Jagriti; Novak, Vera
2018-01-01
Metabolic syndrome is a cluster of cardiovascular risk factors defined by the presence of abdominal obesity, glucose intolerance, hypertension and/or dyslipidemia. It is a major public health epidemic worldwide, and a known risk factor for the development of cognitive dysfunction and dementia. Several studies have demonstrated a positive association between the presence of metabolic syndrome and worse cognitive outcomes, however, evidence of brain structure pathology is limited. Diffusion tensor imaging has offered new opportunities to detect microstructural white matter changes in metabolic syndrome, and a possibility to detect associations between functional and structural abnormalities. This review analyzes the impact of metabolic syndrome on white matter microstructural integrity, brain structure abnormalities and their relationship to cognitive function. Each of the metabolic syndrome components exerts a specific signature of white matter microstructural abnormalities. Metabolic syndrome and its components exert both additive/synergistic, as well as, independent effects on brain microstructure thus accelerating brain aging and cognitive decline. Copyright © 2017 Elsevier Inc. All rights reserved.
Enns, Linda C; Kanaoka, Masahiro M; Torii, Keiko U; Comai, Luca; Okada, Kiyotaka; Cleland, Robert E
2005-06-01
Callose, a beta-1,3-glucan that is widespread in plants, is synthesized by callose synthase. Arabidopsis thaliana contains a family of 12 putative callose synthase genes (GSL1-12). The role of callose and of the individual genes in plant development is still largely uncertain. We have now used TILLING and T-DNA insertion mutants (gsl1-1, gsl5-2 and gsl5-3) to study the role of two closely related and linked genes, GSL1 and GSL5, in sporophytic development and in reproduction. Both genes are expressed in all parts of the plant. Sporophytic development was nearly normal in gsl1-1 homozygotes and only moderately defective in homozygotes for either of the two gsl5 alleles. On the other hand, plants that were gsl1-1/+ gsl5/gsl5 were severely defective, with smaller leaves, shorter roots and bolts and smaller flowers. Plants were fertile when the sporophytes had either two wild-type GSL1 alleles, or one GSL5 allele in a gsl1-1 background, but gsl1-1/+ gsl5/gsl5 plants produced an extremely reduced number of viable seeds. A chromosome with mutations in both GSL1 and GSL5 rendered pollen infertile, although such a chromosome could be transmitted via the egg. As a result, it was not possible to obtain plants that were homozygous for mutations in both the GSL genes. Pollen grain development was severely affected in double mutant plants. Many pollen grains were collapsed and inviable in the gsl1-1/gsl1-1 gsl5/+ and gsl1-1/+ gsl5/gsl5 plants. In addition, gsl1-1/+ gsl5/gsl5 plants produced abnormally large pollen with unusual pore structures, and had problems with tetrad dissociation. In this particular genotype, while the callose wall formed around the pollen mother cells, no callose wall separated the resulting tetrads. We conclude that GSL1 and GSL5 play important, but at least partially redundant roles in both sporophytic development and in the development of pollen. They are responsible for the formation of the callose wall that separates the microspores of the tetrad, and also play a gametophytic role later in pollen grain maturation. Other GSL genes may control callose formation at different steps during pollen development.
Callosal connections of dorso-lateral premotor cortex.
Marconi, B; Genovesio, A; Giannetti, S; Molinari, M; Caminiti, R
2003-08-01
This study investigated the organization of the callosal connections of the two subdivisions of the monkey dorsal premotor cortex (PMd), dorso-rostral (F7) and dorso-caudal (F2). In one animal, Fast blue and Diamidino yellow were injected in F7 and F2, respectively; in a second animal, the pattern of injections was reversed. F7 and F2 receive a major callosal input from their homotopic counterpart. The heterotopic connections of F7 originate mainly from F2, with smaller contingent from pre-supplementary motor area (pre-SMA, F6), area 8 (frontal eye fields), and prefrontal cortex (area 46), while those of F2 originate from F7, with smaller contributions from ventral premotor areas (F5, F4), SMA-proper (F3), and primary motor cortex (M1). Callosal cells projecting homotopically are mostly located in layers II-III, those projecting heterotopically occupy layers II-III and V-VI. A spectral analysis was used to characterize the spatial fluctuations of the distribution of callosal neurons, in both F7 and F2, as well as in adjacent cortical areas. The results revealed two main periodic components. The first, in the domain of the low spatial frequencies, corresponds to periodicities of cell density with peak-to-peak distances of approximately 10 mm, and suggests an arrangement of callosal cells in the form of 5-mm wide bands. The second corresponds to periodicities of approximately 2 mm, and probably reflects a 1-mm columnar-like arrangement. Coherency and phase analyses showed that, although similar in their spatial arrangements, callosal cells projecting to dorsal premotor areas are segregated in the tangential cortical domain.
Blümke, Antje; Falter, Christian; Herrfurth, Cornelia; Sode, Björn; Bode, Rainer; Schäfer, Wilhelm; Feussner, Ivo; Voigt, Christian A.
2014-01-01
The deposition of the (1,3)-β-glucan cell wall polymer callose at sites of attempted penetration is a common plant defense response to intruding pathogens and part of the plant’s innate immunity. Infection of the Fusarium graminearum disruption mutant Δfgl1, which lacks the effector lipase FGL1, is restricted to inoculated wheat (Triticum aestivum) spikelets, whereas the wild-type strain colonized the whole wheat spike. Our studies here were aimed at analyzing the role of FGL1 in establishing full F. graminearum virulence. Confocal laser-scanning microscopy revealed that the Δfgl1 mutant strongly induced the deposition of spot-like callose patches in vascular bundles of directly inoculated spikelets, while these callose deposits were not observed in infections by the wild type. Elevated concentrations of the polyunsaturated free fatty acids (FFAs) linoleic and α-linolenic acid, which we detected in F. graminearum wild type-infected wheat spike tissue compared with Δfgl1-infected tissue, provided clear evidence for a suggested function of FGL1 in suppressing callose biosynthesis. These FFAs not only inhibited plant callose biosynthesis in vitro and in planta but also partially restored virulence to the Δfgl1 mutant when applied during infection of wheat spikelets. Additional FFA analysis confirmed that the purified effector lipase FGL1 was sufficient to release linoleic and α-linolenic acids from wheat spike tissue. We concluded that these two FFAs have a major function in the suppression of the innate immunity-related callose biosynthesis and, hence, the progress of F. graminearum wheat infection. PMID:24686113
Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance
De Storme, Nico; Geelen, Danny
2014-01-01
Plasmodesmata are membrane-lined channels that are located in the plant cell wall and that physically interconnect the cytoplasm and the endoplasmic reticulum (ER) of adjacent cells. Operating as controllable gates, plasmodesmata regulate the symplastic trafficking of micro- and macromolecules, such as endogenous proteins [transcription factors (TFs)] and RNA-based signals (mRNA, siRNA, etc.), hence mediating direct cell-to-cell communication and long distance signaling. Besides this physiological role, plasmodesmata also form gateways through which viral genomes can pass, largely facilitating the pernicious spread of viral infections. Plasmodesmatal trafficking is either passive (e.g., diffusion) or active and responses both to developmental and environmental stimuli. In general, plasmodesmatal conductivity is regulated by the controlled build-up of callose at the plasmodesmatal neck, largely mediated by the antagonistic action of callose synthases (CalSs) and β-1,3-glucanases. Here, in this theory and hypothesis paper, we outline the importance of callose metabolism in PD SEL control, and highlight the main molecular factors involved. In addition, we also review other proteins that regulate symplastic PD transport, both in a developmental and stress-responsive framework, and discuss on their putative role in the modulation of PD callose turn-over. Finally, we hypothesize on the role of structural sterols in the regulation of (PD) callose deposition and outline putative mechanisms by which this regulation may occur. PMID:24795733
Amor, Y; Haigler, C H; Johnson, S; Wainscott, M; Delmer, D P
1995-01-01
Sucrose synthase (SuSy; EC 2.4.1.13; sucrose + UDP reversible UDPglucose + fructose) has always been studied as a cytoplasmic enzyme in plant cells where it serves to degrade sucrose and provide carbon for respiration and synthesis of cell wall polysaccharides and starch. We report here that at least half of the total SuSy of developing cotton fibers (Gossypium hirsutum) is tightly associated with the plasma membrane. Therefore, this form of SuSy might serve to channel carbon directly from sucrose to cellulose and/or callose synthases in the plasma membrane. By using detached and permeabilized cotton fibers, we show that carbon from sucrose can be converted at high rates to both cellulose and callose. Synthesis of cellulose or callose is favored by addition of EGTA or calcium and cellobiose, respectively. These findings contrast with the traditional observation that when UDPglucose is used as substrate in vitro, callose is the major product synthesized. Immunolocalization studies show that SuSy can be localized at the fiber surface in patterns consistent with the deposition of cellulose or callose. Thus, these results support a model in which SuSy exists in a complex with the beta-glucan synthases and serves to channel carbon from sucrose to glucan. Images Fig. 1 Fig. 3 Fig. 4 PMID:7568131
Decreased Callosal Thickness in Attention-Deficit/Hyperactivity Disorder
Luders, Eileen; Narr, Katherine L.; Hamilton, Liberty S.; Phillips, Owen R.; Thompson, Paul M.; Valle, Jessica S.; Del'Homme, Melissa; Strickland, Tony; McCracken, James T.; Toga, Arthur W.; Levitt, Jennifer G.
2009-01-01
Background Neuroimaging studies of attention-deficit/hyperactivity disorder (ADHD) have revealed structural abnormalities in the brains of affected individuals. One of the most replicated alterations is a significantly smaller corpus callosum (CC), for which conflicting reports exist with respect to the affected callosal segments. Methods We applied novel surface-based geometrical modeling methods to establish the presence, direction, and exact location of callosal alterations in ADHD at high spatial resolution. For this purpose, we calculated the thickness of the CC at 100 equidistant midsagittal points in an age-matched male sample of 19 individuals with ADHD and 19 typically developing control subjects. Results In close agreement with many prior observations, the CC was shown to be significantly thinner in ADHD subjects in anterior and, particularly, posterior callosal sections. Covarying for intelligence did not significantly alter the observed ADHD effects. However, group differences were no longer present in anterior sections when covarying for brain volume and after excluding ADHD subjects comorbid for oppositional defiant disorder. Conclusions Decreased callosal thickness may be associated with fewer fibers or a decrease in the myelination of fibers connecting the parietal and prefrontal cortices. This might affect interhemispheric communication channels that are necessary to sustain attention or motor control, thus contributing to symptoms of hyperactivity and impulsivity, or inattention, observed in ADHD. Future studies are necessary to determine whether callosal abnormalities reflect maturational delays or persist into adulthood. PMID:18842255
Interhemispheric functional connectivity in anorexia and bulimia nervosa.
Canna, Antonietta; Prinster, Anna; Monteleone, Alessio Maria; Cantone, Elena; Monteleone, Palmiero; Volpe, Umberto; Maj, Mario; Di Salle, Francesco; Esposito, Fabrizio
2017-05-01
The functional interplay between hemispheres is fundamental for behavioral, cognitive, and emotional control. Anorexia nervosa (AN) and bulimia nervosa (BN) have been largely studied with brain magnetic resonance imaging (MRI) in relation to the functional mechanisms of high-level processing, but not in terms of possible inter-hemispheric functional connectivity anomalies. Using resting-state functional MRI (fMRI), voxel-mirrored homotopic connectivity (VMHC) and regional inter-hemispheric spectral coherence (IHSC) were studied in 15 AN and 13 BN patients and 16 healthy controls (HC). Using T1-weighted and diffusion tensor imaging MRI scans, regional VMHC values were correlated with the left-right asymmetry of corresponding homotopic gray matter volumes and with the white matter callosal fractional anisotropy (FA). Compared to HC, AN patients exhibited reduced VMHC in cerebellum, insula, and precuneus, while BN patients showed reduced VMHC in dorso-lateral prefrontal and orbito-frontal cortices. The regional IHSC analysis highlighted that the inter-hemispheric functional connectivity was higher in the 'Slow-5' band in all regions except the insula. No group differences in left-right structural asymmetries and in VMHC vs. callosal FA correlations were significant in the comparisons between cohorts. These anomalies, not explained by structural changes, indicate that AN and BN, at least in their acute phase, are associated with a loss of inter-hemispheric connectivity in regions implicated in self-referential, cognitive control and reward processing. These findings may thus gather novel functional markers to explore aberrant features of these eating disorders. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Size Matters: Cerebral Volume Influences Sex Differences in Neuroanatomy
Towler, Stephen; Welcome, Suzanne; Halderman, Laura K.; Otto, Ron; Eckert, Mark A.; Chiarello, Christine
2008-01-01
Biological and behavioral differences between the sexes range from obvious to subtle or nonexistent. Neuroanatomical differences are particularly controversial, perhaps due to the implication that they might account for behavioral differences. In this sample of 200 men and women, large effect sizes (Cohen's d > 0.8) were found for sex differences in total cerebral gray and white matter, cerebellum, and gray matter proportion (women had a higher proportion of gray matter). The only one of these sex differences that survived adjustment for the effect of cerebral volume was gray matter proportion. Individual differences in cerebral volume accounted for 21% of the difference in gray matter proportion, while sex accounted for an additional 4%. The relative size of the corpus callosum was 5% larger in women, but this difference was completely explained by a negative relationship between relative callosal size and cerebral volume. In agreement with Jancke et al., individuals with higher cerebral volume tended to have smaller corpora callosa. There were few sex differences in the size of structures in Broca's and Wernicke's area. We conclude that individual differences in brain volume, in both men and women, account for apparent sex differences in relative size. PMID:18440950
Lamar, Melissa; Zhou, Xiaohong Joe; Charlton, Rebecca A; Dean, Douglas; Little, Deborah; Deoni, Sean C
2014-02-01
Human brain imaging has seen many advances in the quantification of white matter in vivo. For example, these advances have revealed the association between white matter damage and vascular disease as well as their impact on risk for and development of dementia and depression in an aging population. Current neuroimaging methods to quantify white matter damage provide a foundation for understanding such age-related neuropathology; however, these methods are not as adept at determining the underlying microstructural abnormalities signaling at risk tissue or driving white matter damage in the aging brain. This review will begin with a brief overview of the use of diffusion tensor imaging (DTI) in understanding white matter alterations in aging before focusing in more detail on select advances in both diffusion-based methods and multi-component relaxometry techniques for imaging white matter microstructural integrity within myelin sheaths and the axons they encase. Although DTI greatly extended the field of white matter interrogation, these more recent technological advances will add clarity to the underlying microstructural mechanisms that contribute to white matter damage. More specifically, the methods highlighted in this review may prove more sensitive (and specific) for determining the contribution of myelin versus axonal integrity to the aging of white matter in brain. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Boisgontier, Matthieu P; Cheval, Boris; van Ruitenbeek, Peter; Levin, Oron; Renaud, Olivier; Chanal, Julien; Swinnen, Stephan P
2016-03-01
Functional and structural imaging studies have demonstrated the involvement of the brain in balance control. Nevertheless, how decisive grey matter density and white matter microstructural organisation are in predicting balance stability, and especially when linked to the effects of ageing, remains unclear. Standing balance was tested on a platform moving at different frequencies and amplitudes in 30 young and 30 older adults, with eyes open and with eyes closed. Centre of pressure variance was used as an indicator of balance instability. The mean density of grey matter and mean white matter microstructural organisation were measured using voxel-based morphometry and diffusion tensor imaging, respectively. Mixed-effects models were built to analyse the extent to which age, grey matter density, and white matter microstructural organisation predicted balance instability. Results showed that both grey matter density and age independently predicted balance instability. These predictions were reinforced when the level of difficulty of the conditions increased. Furthermore, grey matter predicted balance instability beyond age and at least as consistently as age across conditions. In other words, for balance stability, the level of whole-brain grey matter density is at least as decisive as being young or old. Finally, brain grey matter appeared to be protective against falls in older adults as age increased the probability of losing balance in older adults with low, but not moderate or high grey matter density. No such results were observed for white matter microstructural organisation, thereby reinforcing the specificity of our grey matter findings. Copyright © 2016 Elsevier B.V. All rights reserved.
Callosal involvement in a lateralized stroop task in alcoholic and healthy subjects.
Schulte, T; Müller-Oehring, E M; Salo, R; Pfefferbaum, A; Sullivan, E V
2006-11-01
To investigate the role of interhemispheric attentional processes, 25 alcoholic and 28 control subjects were tested with a Stroop match-to-sample task and callosal areas were measured with magnetic resonance imaging. Stroop color-word stimuli were presented to the left or right visual field (VF) and were preceded by a color cue that did or did not match the word's color. For matching colors, both groups showed a right VF advantage; for nonmatching colors, controls showed a left VF advantage, whereas alcoholic subjects showed no VF advantage. For nonmatch trials, VF advantage correlated with callosal splenium area in controls but not alcoholic subjects, supporting the position that information presented to the nonpreferred hemisphere is transmitted via the splenium to the hemisphere specialized for efficient processing. The authors speculate that alcoholism-associated callosal thinning disrupts this processing route.
Nyberg, Claudia Kim; Nordvik, Jan Egil; Becker, Frank; Rohani, Darius A; Sederevicius, Donatas; Fjell, Anders M; Walhovd, Kristine B
2018-05-01
Background Computerized cognitive training is suggested to enhance attention and working memory functioning following stroke, but effects on brain and behavior are not sufficiently studied and longitudinal studies assessing brain and behavior relationships are scarce. Objective The study objectives were to investigate relations between neuropsychological performance post-stroke and white matter microstructure measures derived from diffusion tensor imaging (DTI), including changes after 6 weeks of working memory training. Methods In this experimental training study, 26 stroke patients underwent DTI and neuropsychological tests at 3 time points - before and after a passive phase of 6 weeks, and again after 6 weeks of working memory training (Cogmed QM). Fractional anisotropy (FA) was extracted from stroke-free brain areas to assess the white matter microstructure. Twenty-two participants completed the majority of training (≥18/25 sessions) and were entered into longitudinal analyses. Results Significant correlations between FA and baseline cognitive functions were observed (r = 0.58, p = 0.004), however, no evidence was found of generally improved cognitive functions following training or of changes in white matter microstructure. Conclusions While white matter microstructure related to baseline cognitive function in stroke patients, the study revealed no effect on cognitive functions or microstructural changes in white matter in relation to computerized working memory training.
White matter damage is related to ataxia severity in SCA3.
Kang, J-S; Klein, J C; Baudrexel, S; Deichmann, R; Nolte, D; Hilker, R
2014-02-01
Spinocerebellar ataxia type 3 (SCA3) is the most frequent inherited cerebellar ataxia in Europe, the US and Japan, leading to disability and death through motor complications. Although the affected protein ataxin-3 is found ubiquitously in the brain, grey matter atrophy is predominant in the cerebellum and the brainstem. White matter pathology is generally less severe and thought to occur in the brainstem, spinal cord, and cerebellar white matter. Here, we investigated both grey and white matter pathology in a group of 12 SCA3 patients and matched controls. We used voxel-based morphometry for analysis of tissue loss, and tract-based spatial statistics (TBSS) on diffusion magnetic resonance imaging to investigate microstructural pathology. We analysed correlations between microstructural properties of the brain and ataxia severity, as measured by the Scale for the Assessment and Rating of Ataxia (SARA) score. SCA3 patients exhibited significant loss of both grey and white matter in the cerebellar hemispheres, brainstem including pons and in lateral thalamus. On between-group analysis, TBSS detected widespread microstructural white matter pathology in the cerebellum, brainstem, and bilaterally in thalamus and the cerebral hemispheres. Furthermore, fractional anisotropy in a white matter network comprising frontal, thalamic, brainstem and left cerebellar white matter strongly and negatively correlated with SARA ataxia scores. Tractography identified the thalamic white matter thus implicated as belonging to ventrolateral thalamus. Disruption of white matter integrity in patients suffering from SCA3 is more widespread than previously thought. Moreover, our data provide evidence that microstructural white matter changes in SCA3 are strongly related to the clinical severity of ataxia symptoms.
Jolly, Todd A D; Cooper, Patrick S; Rennie, Jaime L; Levi, Christopher R; Lenroot, Rhoshel; Parsons, Mark W; Michie, Patricia T; Karayanidis, Frini
2017-03-01
Task-switching performance relies on a broadly distributed frontoparietal network and declines in older adults. In this study, they investigated whether this age-related decline in task switching performance was mediated by variability in global or regional white matter microstructural health. Seventy cognitively intact adults (43-87 years) completed a cued-trials task switching paradigm. Microstructural white matter measures were derived using diffusion tensor imaging (DTI) analyses on the diffusion-weighted imaging (DWI) sequence. Task switching performance decreased with increasing age and radial diffusivity (RaD), a measure of white matter microstructure that is sensitive to myelin structure. RaD mediated the relationship between age and task switching performance. However, the relationship between RaD and task switching performance remained significant when controlling for age and was stronger in the presence of cardiovascular risk factors. Variability in error and RT mixing cost were associated with RaD in global white matter and in frontoparietal white matter tracts, respectively. These findings suggest that age-related increase in mixing cost may result from both global and tract-specific disruption of cerebral white matter linked to the increased incidence of cardiovascular risks in older adults. Hum Brain Mapp 38:1588-1603, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Halloran, M C; Kalil, K
1994-04-01
During development, axons of the mammalian corpus callosum must navigate across the midline to establish connections with corresponding targets in the contralateral cerebral cortex. To gain insight into how growth cones of callosal axons respond to putative guidance cues along this CNS pathway, we have used time-lapse video microscopy to observe dynamic behaviors of individual callosal growth cones extending in living brain slices from neonatal hamster sensorimotor cortex. Crystals of the lipophilic dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) were inserted into the cortex in vivo to label small populations of callosal axons and their growth cones. Subsequently, 400 microns brain slices that included the injection site, the corpus callosum, and the target cortex were placed in culture and viewed under low-light-level conditions with a silicon-intensified target (SIT) camera. Time-lapse video observations revealed striking differences in growth cone behaviors in different regions of the callosal pathway. In the tract, which is defined as the region of the callosal pathway from the injection site to the corresponding target cortex, growth cones advanced rapidly, displaying continual lamellipodial shape changes and filopodial exploration. Forward advance was sometimes interrupted by brief pauses or retraction. Growth cones in the target cortex had almost uniform compact shapes that were consistently smaller than those in the tract. In cortex, axons adhered to straight radial trajectories and their growth cones extended at only half the speed of those in the tract. Growth cones in subtarget regions of the callosum beneath cortical targets displayed complex behaviors characterized by long pauses, extension of transitory branches, and repeated cycles of collapse, withdrawal, and resurgence. Video observations suggested that extension of axons into cortical targets could occur by interstitial branching from callosal axons rather than by turning behaviors of the primary growth cones. These results suggest the existence of guidance cues distinct for each of these callosal regions that elicit characteristic growth cone behaviors.
Ocklenburg, Sebastian; Hugdahl, Kenneth; Westerhausen, René
2013-12-01
Functional hemispheric asymmetries of speech production and perception are a key feature of the human language system, but their neurophysiological basis is still poorly understood. Using a combined fMRI and tract-based spatial statistics approach, we investigated the relation of microstructural asymmetries in language-relevant white matter pathways and functional activation asymmetries during silent verb generation and passive listening to spoken words. Tract-based spatial statistics revealed several leftward asymmetric clusters in the arcuate fasciculus and uncinate fasciculus that were differentially related to activation asymmetries in the two functional tasks. Frontal and temporal activation asymmetries during silent verb generation were positively related to the strength of specific microstructural white matter asymmetries in the arcuate fasciculus. In contrast, microstructural uncinate fasciculus asymmetries were related to temporal activation asymmetries during passive listening. These findings suggest that white matter asymmetries may indeed be one of the factors underlying functional hemispheric asymmetries. Moreover, they also show that specific localized white matter asymmetries might be of greater relevance for functional activation asymmetries than microstructural features of whole pathways. © 2013.
Meng, Jie; Hao, Lei; Wei, Dongtao; Sun, Jiangzhou; Li, Yu; Qiu, Jiang
2017-12-01
Loneliness is a common experience. Susceptibility to loneliness is a stable trait and is heritable. Previous studies have suggested that loneliness may impact regional gray matter density and brain activation to social stimuli, but its relation to white matter structure and how it may interact with genetic factors remains unclear. In this study, we investigated whether and how a common polymorphism (Val66Met) in the brain-derived neurotrophic factor gene modulated the association between loneliness and white matter microstructure in 162 young adults. The tract-based spatial statistics analyses revealed that the relationships between loneliness and white matter microstructures were significantly different between Val/Met heterozygotes and Val/Val homozygotes. Specifically, loneliness was significantly correlated with reduced fractional anisotropy and increased radial diffusivity in widespread white matter fibers within Val/Met heterozygotes. It was also significantly correlated with increased radial diffusivity in Met/Met genotypes but showed no significant association with white matter measures in Val/Val genotypes. Furthermore, the associations between loneliness and fractional anisotropy (or radial diffusivity) in Val/Met heterozygotes turned out to be global effects. These results provide evidence that loneliness may interact with the BDNF Val66Met polymorphism to shape the microstructures of white matter, and the Val/Met heterozygotes may be more susceptible to social environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Hinton, Kendra E; Lahey, Benjamin B; Villalta-Gil, Victoria; Boyd, Brian D; Yvernault, Benjamin C; Werts, Katherine B; Plassard, Andrew J; Applegate, Brooks; Woodward, Neil D; Landman, Bennett A; Zald, David H
2018-01-01
Go/no-go tasks are widely used to index cognitive control. This construct has been linked to white matter microstructure in a circuit connecting the right inferior frontal gyrus (IFG), subthalamic nucleus (STN), and pre-supplementary motor area. However, the specificity of this association has not been tested. A general factor of white matter has been identified that is related to processing speed. Given the strong processing speed component in successful performance on the go/no-go task, this general factor could contribute to task performance, but the general factor has often not been accounted for in past studies of cognitive control. Further, studies on cognitive control have generally employed small unrepresentative case-control designs. The present study examined the relationship between go/no-go performance and white matter microstructure in a large community sample of 378 subjects that included participants with a range of both clinical and subclinical nonpsychotic psychopathology. We found that white matter microstructure properties in the right IFG-STN tract significantly predicted task performance, and remained significant after controlling for dimensional psychopathology. The general factor of white matter only reached statistical significance when controlling for dimensional psychopathology. Although the IFG-STN and general factor tracts were highly correlated, when both were included in the model, only the IFG-STN remained a significant predictor of performance. Overall, these findings suggest that while a general factor of white matter can be identified in a young community sample, white matter microstructure properties in the right IFG-STN tract show a specific relationship to cognitive control. The findings highlight the importance of examining both specific and general correlates of cognition, especially in tasks with a speeded component.
Manevich-Mazor, Mirra; Weissmann-Brenner, Alina; Bar Yosef, Omer; Hoffmann, Chen; Mazor, Roei David; Mosheva, Mariela; Achiron, Reuven Ryszard; Katorza, Eldad
2018-06-07
To evaluate the added value of fetal MRI to ultrasound in detecting and specifying callosal anomalies, and its impact on clinical decision making. Fetuses with a sonographic diagnosis of an anomalous corpus callosum (CC) who underwent a subsequent fetal brain MRI between 2010 and 2015 were retrospectively evaluated and classified according to the severity of the findings. The findings detected on ultrasound were compared to those detected on MRI. An analysis was performed to assess whether fetal MRI altered the group classification, and thus the management of these pregnancies. 78 women were recruited following sonographic diagnoses of either complete or partial callosal agenesis, short, thin or thick CC. Normal MRI studies were obtained inµ19 cases (24 %). Among these, all children available for follow-up received an adequate adaptive score in their Vineland II adaptive behavior scale assessment. Analysis of the concordance between US and MRI demonstrated a substantial level of agreement for complete callosal agenesis (kappa: 0.742), moderate agreement for thin CC (kappa: 0.418) and fair agreement for all other callosal anomalies. Comparison between US and MRI-based mild/severe findings classifications revealed that MRI contributed to a change in the management for 28 fetuses (35.9 %), mostly (25 fetuses, 32.1 %) in favor of pregnancy preservation. Fetal MRI effectively detects callosal anomalies and enables satisfactory validation of the presence or absence of callosal anomalies identified by ultrasound and adds valuable data that improves clinical decision making. © Georg Thieme Verlag KG Stuttgart · New York.
Snow, Nicholas J; Peters, Sue; Borich, Michael R; Shirzad, Navid; Auriat, Angela M; Hayward, Kathryn S; Boyd, Lara A
2016-01-15
Diffusion-weighted magnetic resonance imaging (DW-MRI) is commonly used to assess white matter properties after stroke. Novel work is utilizing constrained spherical deconvolution (CSD) to estimate complex intra-voxel fiber architecture unaccounted for with tensor-based fiber tractography. However, the reliability of CSD-based tractography has not been established in people with chronic stroke. Establishing the reliability of CSD-based DW-MRI in chronic stroke. High-resolution DW-MRI was performed in ten adults with chronic stroke during two separate sessions. Deterministic region of interest-based fiber tractography using CSD was performed by two raters. Mean fractional anisotropy (FA), apparent diffusion coefficient (ADC), tract number, and tract volume were extracted from reconstructed fiber pathways in the corticospinal tract (CST) and superior longitudinal fasciculus (SLF). Callosal fiber pathways connecting the primary motor cortices were also evaluated. Inter-rater and test-retest reliability were determined by intra-class correlation coefficients (ICCs). ICCs revealed excellent reliability for FA and ADC in ipsilesional (0.86-1.00; p<0.05) and contralesional hemispheres (0.94-1.00; p<0.0001), for CST and SLF fibers; and excellent reliability for all metrics in callosal fibers (0.85-1.00; p<0.05). ICC ranged from poor to excellent for tract number and tract volume in ipsilesional (-0.11 to 0.92; p≤0.57) and contralesional hemispheres (-0.27 to 0.93; p≤0.64), for CST and SLF fibers. Like other select DW-MRI approaches, CSD-based tractography is a reliable approach to evaluate FA and ADC in major white matter pathways, in chronic stroke. Future work should address the reproducibility and utility of CSD-based metrics of tract number and tract volume. Copyright © 2015 Elsevier B.V. All rights reserved.
Gerdes, Jan S.; Weber, Bernd; Deppe, Michael
2012-01-01
Background In patients with temporal lobe epilepsy and associated hippocampal sclerosis (TLEhs) there are brain abnormalities extending beyond the presumed epileptogenic zone as revealed separately in conventional magnetic resonance imaging (MRI) and MR diffusion tensor imaging (DTI) studies. However, little is known about the relation between macroscopic atrophy (revealed by volumetric MRI) and microstructural degeneration (inferred by DTI). Methodology/Principal Findings For 62 patients with unilateral TLEhs and 68 healthy controls, we determined volumes and mean fractional anisotropy (FA) of ipsilateral and contralateral brain structures from T1-weighted and DTI data, respectively. We report significant volume atrophy and FA alterations of temporal lobe, subcortical and callosal regions, which were more diffuse and bilateral in patients with left TLEhs relative to right TLEhs. We observed significant relationships between volume loss and mean FA, particularly of the thalamus and putamen bilaterally. When corrected for age, duration of epilepsy was significantly correlated with FA loss of an anatomically plausible route - including ipsilateral parahippocampal gyrus and temporal lobe white matter, the thalamus bilaterally, and posterior regions of the corpus callosum that contain temporal lobe fibres - that may be suggestive of progressive brain degeneration in response to recurrent seizures. Conclusions/Significance Chronic TLEhs is associated with interrelated DTI-derived and volume-derived brain degenerative abnormalities that are influenced by the duration of the disorder and the side of seizure onset. This work confirms previously contradictory findings by employing multi-modal imaging techniques in parallel in a large sample of patients. PMID:23071638
White Matter Integrity and Pictorial Reasoning in High-Functioning Children with Autism
Sahyoun, Chérif P.; Belliveau, John W.; Mody, Maria
2010-01-01
The current study investigated the neurobiological role of white matter in visuospatial versus linguistic processing abilities in autism using diffusion tensor imaging. We examined differences in white matter integrity between high-functioning children with autism (HFA) and typically developing controls (CTRL), in relation to the groups’ response times (RT) on a pictorial reasoning task under three conditions: visuospatial, V, semantic, S, and V+S, a hybrid condition allowing language use to facilitate visuospatial transformations. Diffusion-weighted images were collected from HFA and CTRL participants, matched on age and IQ, and significance maps were computed for group differences in fractional anisotropy (FA) and in RT-FA association for each condition. Typically developing children showed increased FA within frontal white matter and the superior longitudinal fasciculus (SLF). HFA showed increased FA within peripheral white matter, including the ventral temporal lobe. Additionally, RT-FA relationships in the semantic condition (S) implicated white matter near the STG and in the SLF within the temporal and frontal lobes to a greater extent in CTRL. Performance in visuospatial reasoning (V, V+S), in comparison, was related to peripheral parietal and superior precentral white matter in HFA, but to the SLF, callosal, and frontal white matter in CTRL. Our results appear to support a preferential use of linguistically-mediated pathways in reasoning by typically-developing children, whereas autistic cognition may rely more on visuospatial processing networks. PMID:20542370
White matter microstructure in boys with persistent depressive disorder.
Vilgis, Veronika; Vance, Alasdair; Cunnington, Ross; Silk, Timothy J
2017-10-15
Persistent depressive symptoms in children and adolescents are considered a risk factor for the development of major depressive disorder (MDD) later in life. Previous research has shown alterations in white matter microstructure in pediatric MDD but discrepancies exist as to the specific tracts affected. The current study aimed to improve upon previous methodology and address the question whether previous findings of lower fractional anisotropy (FA) replicate in a sample of children with persistent depressive disorder characterized by mild but more chronic symptoms of depression. White matter microstructure was examined in 25 boys with persistent depressive disorder and 25 typically developing children. Tract specific analysis implemented with the Diffusion Tensor Imaging - ToolKit (DTI-TK) was used to probe fractional anisotropy (FA) in eleven major white matter tracts. Clusters within the left uncinate, inferior fronto-occipital and cerebrospinal tracts showed lower FA in the clinical group. FA in the left uncinate showed a negative association with self-reported symptoms of depression. The results demonstrate lower FA in several white matter tracts in children with persistent depressive disorder. These findings support the contention that early onset depression is associated with altered white matter microstructure, which may contribute to the maintenance and recurrence of symptoms. Copyright © 2017. Published by Elsevier B.V.
Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder.
Dean, Douglas C; Travers, Brittany G; Adluru, Nagesh; Tromp, Do P M; Destiche, Daniel J; Samsin, Danica; Prigge, Molly B; Zielinski, Brandon A; Fletcher, P Thomas; Anderson, Jeffrey S; Froehlich, Alyson L; Bigler, Erin D; Lange, Nicholas; Lainhart, Janet E; Alexander, Andrew L
2016-06-01
White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD.
Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder
Travers, Brittany G.; Adluru, Nagesh; Tromp, Do P.M.; Destiche, Daniel J.; Samsin, Danica; Prigge, Molly B.; Zielinski, Brandon A.; Fletcher, P. Thomas; Anderson, Jeffrey S.; Froehlich, Alyson L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.; Alexander, Andrew L.
2016-01-01
Abstract White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD. PMID:27021440
Corpus callosal atrophy and associations with cognitive impairment in Parkinson disease
Bledsoe, Ian O.; Merkitch, Doug; Dinh, Vy; Bernard, Bryan; Stebbins, Glenn T.
2017-01-01
Objective: To investigate atrophy of the corpus callosum on MRI in Parkinson disease (PD) and its relationship to cognitive impairment. Methods: One hundred patients with PD and 24 healthy control participants underwent clinical and neuropsychological evaluations and structural MRI brain scans. Participants with PD were classified as cognitively normal (PD-NC; n = 28), having mild cognitive impairment (PD-MCI; n = 47), or having dementia (PDD; n = 25) by Movement Disorder Society criteria. Cognitive domain (attention/working memory, executive function, memory, language, visuospatial function) z scores were calculated. With the use of FreeSurfer image processing, volumes for total corpus callosum and its subsections (anterior, midanterior, central, midposterior, posterior) were computed and normalized by total intracranial volume. Callosal volumes were compared between participants with PD and controls and among PD cognitive groups, covarying for age, sex, and PD duration and with multiple comparison corrections. Regression analyses were performed to evaluate relationships between callosal volumes and performance in cognitive domains. Results: Participants with PD had reduced corpus callosum volumes in midanterior and central regions compared to healthy controls. Participants with PDD demonstrated decreased callosal volumes involving multiple subsections spanning anterior to posterior compared to participants with PD-MCI and PD-NC. Regional callosal atrophy predicted cognitive domain performance such that central volumes were associated with the attention/working memory domain; midposterior volumes with executive function, language, and memory domains; and posterior volumes with memory and visuospatial domains. Conclusions: Notable volume loss occurs in the corpus callosum in PD, with specific neuroanatomic distributions in PDD and relationships of regional atrophy to different cognitive domains. Callosal volume loss may contribute to clinical manifestations of PD cognitive impairment. PMID:28235816
Ballmaier, Martina; Kumar, Anand; Elderkin-Thompson, Virginia; Narr, Katherine L; Luders, Eileen; Thompson, Paul M; Hojatkashani, Cornelius; Pham, Daniel; Heinz, Andreas; Toga, Arthur W
2008-06-01
There is some evidence of corpus callosum abnormalities in elderly depression, but it is not known whether these deficits are region-specific or differ based on age at onset of depression. Twenty-four patients with early-onset depression (mean age = 68.00, SD+/-5.83), 22 patients with late-onset depression (mean age = 74.50, SD+/-8.09) and 34 elderly control subjects (mean age = 72.38; SD+/-6.93) were studied. Using 3D MRI data, novel mesh-based geometrical modeling methods were applied to compare the midsagittal thickness of the corpus callosum at high spatial resolution between groups. Neuropsychological correlates of midsagittal callosal area differences were additionally investigated in a subsample of subjects. Depressed patients exhibited significant callosal thinning in the genu and splenium compared to controls. Significant callosal thinning was restricted to the genu in early-onset patients, but patients with late-onset depression exhibited significant callosal thinning in both the genu and splenium relative to controls. The splenium of the corpus callosum was also significantly thinner in subjects with late- vs early-onset depression. Genu and splenium midsagittal areas significantly correlated with memory and attention functioning among late-onset depressed patients, but not early-onset depressed patients or controls. Circumscribed structural alterations in callosal morphology may distinguish late- from early-onset depression in the elderly. These findings suggest distinct abnormalities of cortical connectivity in late- and early-onset elderly depression with possible influence on the course of illness. Patients with a late onset of depression may be at higher risk of illness progression and eventually dementia conversion than early-onset depression, with potentially important implications for research and therapy.
Ma, Xinxin; Su, Wen; Chen, Haibo
2018-06-01
Reversible splenial lesion syndrome (RESLES) is a reversible condition with an excellent prognosis in most patients. The clinical features include altered states of consciousness, delirium, headache, and seizures, but no callosal disconnection syndromes have been described in RESLES. We presented a 57-year-old patient with alien hand syndrome, autotopagnosia, gait disorders, and left ideomotor apraxia after blood transfusion. The brain magnetic resonance imaging (MRI) showed a few regions with high signal intensity in the genu, body, and splenium of the right corpus callosum on diffusion weighted images. Cerebrovascular examination was unremarkable. He was diagnosed with RESLES and callosal disconnection syndrome. The patient received symptomatic and supportive treatment in our hospital. He recovered to baseline on following up of 6 months and abnormalities on brain MRI completely disappeared. Neurologists should be aware of the symptoms of callosal disconnection syndrome in RESLES. In addition, caution should be taken when transfusing blood products in patients with gastrointestinal bleeding.
Honys, David
2017-01-01
Callose is a plant-specific polysaccharide (β-1,3-glucan) playing an important role in angiosperms in many developmental processes and responses to biotic and abiotic stresses. Callose is synthesised at the plasma membrane of plant cells by callose synthase (CalS) and, among others, represents the main polysaccharide in the callose wall surrounding the tetrads of developing microspores and in the growing pollen tube wall. CalS proteins involvement in spore development is a plesiomorphic feature of terrestrial plants, but very little is known about their evolutionary origin and relationships amongst the members of this protein family. We performed thorough comparative analyses of callose synthase family proteins from major plant lineages to determine their evolutionary history across the plant kingdom. A total of 1211 candidate CalS sequences were identified and compared amongst diverse taxonomic groups of plants, from bryophytes to angiosperms. Phylogenetic analyses identified six main clades of CalS proteins and suggested duplications during the evolution of specialised functions. Twelve family members had previously been identified in Arabidopsis thaliana. We focused on five CalS subfamilies directly linked to pollen function and found that proteins expressed in pollen evolved twice. CalS9/10 and CalS11/12 formed well-defined clades, whereas pollen-specific CalS5 was found within subfamilies that mostly did not express in mature pollen vegetative cell, although were found in sperm cells. Expression of five out of seven mature pollen-expressed CalS genes was affected by mutations in bzip transcription factors. Only three subfamilies, CalS5, CalS10, and CalS11, however, formed monophyletic, mostly conserved clades. The pairs CalS9/CalS10, CalS11/CalS12 and CalS3 may have diverged after angiosperms diversified from lycophytes and bryophytes. Our analysis of fully sequenced plant proteins identified new evolutionary lineages of callose synthase subfamilies and has established a basis for understanding their functional evolution in terrestrial plants. PMID:29131847
Hemispheric specialization in spontaneous gesticulation in a patient with callosal disconnection.
Lausberg, H; Davis, M; Rothenhäusler, A
2000-01-01
This is an investigation of spontaneous gesticulation in a left-handed patient with a callosal disconnection syndrome due to infarction of the total length of the corpus callosum. After callosal infarction, the patient gesticulated predominantly unilaterally with the left hand despite left apraxia. Bilateral gesticulation occurred later on and was presumably achieved by an increase in ipsilateral proximal control. Movement analysis further indicated that the two hemispheres are specialized for certain gesture types. Gestures with emotional connotation and batons (emphasizing prosody) were generated predominantly in the right hemisphere whereas physiographics which picture the linguistic content concretely and deictics (pointing) were of left-hemispheric origin.
Hao, Peiying; Liu, Caixiang; Wang, Yuanyuan; Chen, Rongzhi; Tang, Ming; Du, Bo; Zhu, Lili; He, Guangcun
2008-04-01
The brown planthopper (Nilaparvata lugens Stål; BPH) is a specialist herbivore on rice (Oryza sativa) that ingests phloem sap from the plant through its stylet mouthparts. Electronic penetration graphs revealed that BPH insects spent more time wandering over plants carrying the resistance genes Bph14 and Bph15, but less time ingesting phloem than they did on susceptible plants. They also showed that their feeding was frequently interrupted. Tests with [(14)C]sucrose showed that insects ingested much less phloem sap from the resistant than the susceptible plants. BPH feeding up-regulated callose synthase genes and induced callose deposition in the sieve tubes at the point where the stylet was inserted. The compact callose remained intact in the resistant plants, but genes encoding beta-1,3-glucanases were activated, causing unplugging of the sieve tube occlusions in susceptible plants. Continuing ingestion led to a remarkable reduction in the susceptible plants' sucrose content and activation of the RAmy3D gene, leading to starch hydrolysis and ultimately carbohydrate deprivation in the plants. Our results demonstrate that BPH feeding induces the deposition of callose on sieve plates in rice and that this is an important defense mechanism that prevents insects from ingesting phloem sap. In response, however, the BPH can unplug sieve tube occlusions by activating beta-1,3-glucanase genes in rice plants.
Liu, Wenchao; Xu, Feng; Li, Yongcun; Hu, Xiaofang; Dong, Bo; Xiao, Yu
2016-02-23
This research aims to deepen the understanding of the interaction mechanisms between microwave and matter in a metal-ceramic system based on in situ synchrotron radiation computed tomography. A special internal "core-shell" microstructure was discovered for the first time and used as an indicator for the interaction mechanisms between microwave and matter. Firstly, it was proved that the microwave magnetic field acted on metal particles by way of inducing an eddy current in the surface of the metal particles, which led to the formation of a "core-shell" microstructure in the metal particles. On this basis, it was proposed that the ceramic particles could change the microwave field and open a way for the microwave, thereby leading to selective heating in the region around the ceramic particles, which was verified by the fact that all the "core-shell" microstructure was located around ceramic particles. Furthermore, it was indicated that the ceramic particles would gather the microwaves, and might lead to local heating in the metal-ceramic contact region. The focusing of the microwave was proved by the quantitative analysis of the evolution rate of the "core-shell" microstructure in a different region. This study will help to reveal the microwave-matter interaction mechanisms during microwave sintering.
Longitudinal changes in microstructural white matter metrics in Alzheimer's disease.
Mayo, Chantel D; Mazerolle, Erin L; Ritchie, Lesley; Fisk, John D; Gawryluk, Jodie R
2017-01-01
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Current avenues of AD research focus on pre-symptomatic biomarkers that will assist with early diagnosis of AD. The majority of magnetic resonance imaging (MRI) based biomarker research to date has focused on neuronal loss in grey matter and there is a paucity of research on white matter. Longitudinal DTI data from the Alzheimer's Disease Neuroimaging Initiative 2 database were used to examine 1) the within-group microstructural white matter changes in individuals with AD and healthy controls at baseline and year one; and 2) the between-group microstructural differences in individuals with AD and healthy controls at both time points. 1) Within-group: longitudinal Tract-Based Spatial Statistics revealed that individuals with AD and healthy controls both had widespread reduced fractional anisotropy (FA) and increased mean diffusivity (MD) with changes in the hippocampal cingulum exclusive to the AD group. 2) Between-group: relative to healthy controls, individuals with AD had lower FA and higher MD in the hippocampal cingulum, as well as the corpus callosum, internal and external capsule; corona radiata; posterior thalamic radiation; superior and inferior longitudinal fasciculus; fronto-occipital fasciculus; cingulate gyri; fornix; uncinate fasciculus; and tapetum. The current results indicate that sensitivity to white matter microstructure is a promising avenue for AD biomarker research. Additional longitudinal studies on both white and grey matter are warranted to further evaluate potential clinical utility.
Ageing and brain white matter structure in 3,513 UK Biobank participants
Cox, Simon R.; Ritchie, Stuart J.; Tucker-Drob, Elliot M.; Liewald, David C.; Hagenaars, Saskia P.; Davies, Gail; Wardlaw, Joanna M.; Gale, Catharine R.; Bastin, Mark E.; Deary, Ian J.
2016-01-01
Quantifying the microstructural properties of the human brain's connections is necessary for understanding normal ageing and disease. Here we examine brain white matter magnetic resonance imaging (MRI) data in 3,513 generally healthy people aged 44.64–77.12 years from the UK Biobank. Using conventional water diffusion measures and newer, rarely studied indices from neurite orientation dispersion and density imaging, we document large age associations with white matter microstructure. Mean diffusivity is the most age-sensitive measure, with negative age associations strongest in the thalamic radiation and association fibres. White matter microstructure across brain tracts becomes increasingly correlated in older age. This may reflect an age-related aggregation of systemic detrimental effects. We report several other novel results, including age associations with hemisphere and sex, and comparative volumetric MRI analyses. Results from this unusually large, single-scanner sample provide one of the most extensive characterizations of age associations with major white matter tracts in the human brain. PMID:27976682
Bloemen, Oswald J N; Deeley, Quinton; Sundram, Fred; Daly, Eileen M; Barker, Gareth J; Jones, Derek K; van Amelsvoort, Therese A M J; Schmitz, Nicole; Robertson, Dene; Murphy, Kieran C; Murphy, Declan G M
2010-10-01
Autistic Spectrum Disorder (ASD), including Asperger syndrome and autism, is a highly genetic neurodevelopmental disorder. There is a consensus that ASD has a biological basis, and it has been proposed that it is a "connectivity" disorder. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) allows measurement of the microstructural integrity of white matter (a proxy measure of "connectivity"). However, nobody has investigated the microstructural integrity of whole brain white matter in people with Asperger syndrome. We measured the fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) of white matter, using DT-MRI, in 13 adults with Asperger syndrome and 13 controls. The groups did not differ significantly in overall intelligence and age. FA, MD and RD were assessed using whole brain voxel-based techniques. Adults with Asperger syndrome had a significantly lower FA than controls in 13 clusters. These were largely bilateral and included white matter in the internal capsule, frontal, temporal, parietal and occipital lobes, cingulum and corpus callosum. Adults with Asperger syndrome have widespread significant differences from controls in white matter microstructural integrity.
Zhai, Zu Wei; Yip, Sarah W; Morie, Kristen P; Sinha, Rajita; Mayes, Linda C; Potenza, Marc N
2018-04-01
While childhood stress may contribute risk to substance-use initiation and differences in brain white-matter development, understanding of the potential impact of substance-use initiation on the relationship between experienced stress and white-matter microstructure remains limited. This study examined whether substance-use initiation moderated the effect of perceived stress on white-matter differences using measures of primary white-matter fiber anisotropy. Forty adolescents (age 14.75 ± .87 years) were assessed on the Perceived Stress Scale, and 50% were determined to have presence of substance-use initiation. White-matter microstructure was examined using primary-fiber orientations anisotropy, which may reflect white-matter integrity, modeled separately from other fiber orientations in the same voxels. Analyses were conducted on regions of interest previously associated with childhood stress and substance use. Lower perceived stress and presence of substance-use initiation were related to greater right cingulum primary-fiber measures. Substance-use-initiation status moderated the association between perceived stress and right cingulum primary-fiber measures, such that higher perceived stress was associated with lower right cingulum primary-fiber anisotropy in adolescents without substance-use initiation, but not in those with substance-use initiation. Findings in primary-fiber anisotropy suggest differences in right cingulum white-matter integrity is associated with substance-use initiation in higher-stress adolescents. This reflects a possible pre-existing risk factor, an impact of early substance use, or a combination thereof. Examination of potential markers associated with substance-use initiation in white-matter microstructure among stress-exposed youth warrant additional investigation as such biomarkers may inform efforts relating to tailored interventions. (Am J Addict 2018;27:217-224). © 2018 American Academy of Addiction Psychiatry.
Jugé, Lauriane; Pong, Alice C.; Bongers, Andre; Sinkus, Ralph; Bilston, Lynne E.; Cheng, Shaokoon
2016-01-01
Understanding neural injury in hydrocephalus and how the brain changes during the course of the disease in-vivo remain unclear. This study describes brain deformation, microstructural and mechanical properties changes during obstructive hydrocephalus development in a rat model using multimodal magnetic resonance (MR) imaging. Hydrocephalus was induced in eight Sprague-Dawley rats (4 weeks old) by injecting a kaolin suspension into the cisterna magna. Six sham-injected rats were used as controls. MR imaging (9.4T, Bruker) was performed 1 day before, and at 3, 7 and 16 days post injection. T2-weighted MR images were collected to quantify brain deformation. MR elastography was used to measure brain stiffness, and diffusion tensor imaging (DTI) was conducted to observe brain tissue microstructure. Results showed that the enlargement of the ventricular system was associated with a decrease in the cortical gray matter thickness and caudate-putamen cross-sectional area (P < 0.001, for both), an alteration of the corpus callosum and periventricular white matter microstructure (CC+PVWM) and rearrangement of the cortical gray matter microstructure (P < 0.001, for both), while compression without gross microstructural alteration was evident in the caudate-putamen and ventral internal capsule (P < 0.001, for both). During hydrocephalus development, increased space between the white matter tracts was observed in the CC+PVWM (P < 0.001), while a decrease in space was observed for the ventral internal capsule (P < 0.001). For the cortical gray matter, an increase in extracellular tissue water was significantly associated with a decrease in tissue stiffness (P = 0.001). To conclude, this study characterizes the temporal changes in tissue microstructure, water content and stiffness in different brain regions and their association with ventricular enlargement. In summary, whilst diffusion changes were larger and statistically significant for majority of the brain regions studied, the changes in mechanical properties were modest. Moreover, the effect of ventricular enlargement is not limited to the CC+PVWM and ventral internal capsule, the extent of microstructural changes vary between brain regions, and there is regional and temporal variation in brain tissue stiffness during hydrocephalus development. PMID:26848844
DTI-measured white matter abnormalities in adolescents with Conduct Disorder
Haney-Caron, Emily; Caprihan, Arvind; Stevens, Michael C.
2013-01-01
Emerging research suggests that antisocial behavior in youth is linked to abnormal brain white matter microstructure, but the extent of such anatomical connectivity abnormalities remain largely untested because previous Conduct Disorder (CD) studies typically have selectively focused on specific frontotemporal tracts. This study aimed to replicate and extend previous frontotemporal diffusion tensor imaging (DTI) findings to determine whether noncomorbid CD adolescents have white matter microstructural abnormalities in major white matter tracts across the whole brain. Seventeen CD-diagnosed adolescents recruited from the community were compared to a group of 24 non-CD youth which did not differ in average age (12–18) or gender proportion. Tract-based spatial statistics (TBSS) fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) measurements were compared between groups using FSL nonparametric two-sample t test, clusterwise whole-brain corrected, p<.05. CD FA and AD deficits were widespread, but unrelated to gender, verbal ability, or CD age of onset. CD adolescents had significantly lower FA and AD values in frontal lobe and temporal lobe regions, including frontal lobe anterior/superior corona radiata, and inferior longitudinal and fronto-occpital fasciculi passing through the temporal lobe. The magnitude of several CD FA deficits was associated with number of CD symptoms. Because AD, but not RD, differed between study groups, abnormalities of axonal microstructure in CD rather than myelination are suggested. This study provides evidence that adolescent antisocial disorder is linked to abnormal white matter microstructure in more than just the uncinate fasciulcus as identified in previous DTI studies, or frontotemporal brain structures as suggested by functional neuroimaging studies. Instead, neurobiological risk specific to antisociality in adolescence is linked to microstructural abnormality in numerous long-range white matter connections among many diverse different brain regions. PMID:24139595
Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel
2016-04-01
Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. © The Author(s) 2015.
ERIC Educational Resources Information Center
Fründt, Odette; Schulz, Robert; Schöttle, Daniel; Cheng, Bastian; Thomalla, Götz; Braaß, Hanna; Ganos, Christos; David, Nicole; Peiker, Ina; Engel, Andreas K.; Bäumer, Tobias; Münchau, Alexander
2018-01-01
Mirror neuron system (MNS) dysfunctions might underlie deficits in autism spectrum disorders (ASD). Diffusion tensor imaging based probabilistic tractography was conducted in 15 adult ASD patients and 13 matched, healthy controls. Fractional anisotropy (FA) was quantified to assess group differences in tract-related white matter microstructure of…
Agnosia, apraxia, callosal disconnection and other specific cognitive disorders.
Acciarresi, Monica
2012-01-01
Cortical function deficits have long been studied by anatomoclinic correlations. Recent functional imaging studies have allowed scientists to better understand which cerebral areas and which networks are involved in cognitive function deficit. This chapter will review the current knowledge on agnosia, apraxia and callosal disconnection syndromes. Copyright © 2012 S. Karger AG, Basel.
Megasporogenesis and programmed cell death in Tillandsia (Bromeliaceae).
Papini, Alessio; Mosti, Stefano; Milocani, Eva; Tani, Gabriele; Di Falco, Pietro; Brighigna, Luigi
2011-10-01
The degeneration of three of four meiotic products is a very common process in the female gender of oogamous eukaryotes. In Tillandsia (and many other angiosperms), the surviving megaspore has a callose-free wall in chalazal position while the other three megaspores are completely embedded in callose. Therefore, nutrients and signals can reach more easily the functional megaspore from the nucellus through the chalazal pole with respect to the other megaspores. The abortion of three of four megaspores was already recognized as the result of a programmed cell death (PCD) process. We investigated the process to understand the modality of this specific type of PCD and its relationship to the asymmetric callose deposition around the tetrad. The decision on which of the four megaspores will be the supernumerary megaspores in angiosperms, and hence destined to undergo programmed cell death, appears to be linked to the callose layer deposition around the tetrad. During supernumerary megaspores degeneration, events leading to the deletion of the cells do not appear to belong to a single type of cell death. The first morphological signs are typical of autophagy, including the formation of autophagosomes. The TUNEL positivity and a change in morphology of mitochondria and chloroplasts indicate the passage to an apoptotic-like PCD phase, while the cellular remnants undergo a final process resembling at least partially (ER swelling) necrotic morphological syndromes, eventually leading to a mainly lipidic cell corpse still separated from the functional megaspore by a callose layer.
Lyall, Amanda E; Savadjiev, Peter; Del Re, Elisabetta C; Seitz, Johanna; O'Donnell, Lauren J; Westin, Carl-Fredrik; Mesholam-Gately, Raquelle I; Petryshen, Tracey; Wojcik, Joanne D; Nestor, Paul; Niznikiewicz, Margaret; Goldstein, Jill; Seidman, Larry J; McCarley, Robert W; Shenton, Martha E; Kubicki, Marek
2018-04-03
Schizophrenia has been characterized as a neurodevelopmental disorder, with structural brain abnormalities reported at all stages. However, at present, it remains unclear whether gray and white matter abnormalities represent related or independent pathologies in schizophrenia. In this study, we present findings from an integrative analysis exploring the morphological relationship between gray and white matter in 45 schizophrenia participants and 49 healthy controls. We utilized mutual information (MI), a measure of how much information two variables share, to assess the morphological dependence between gray and white matter in three segments of the corpus callsoum, and the gray matter regions these segments connect: (1) the genu and the left and right rostral middle frontal gyrus (rMFG), (2) the isthmus and the left and right superior temporal gyrus (STG), (3) the splenium and the left and right lateral occipital gyrus (LOG). We report significantly reduced MI between white matter tract dispersion of the right hemispheric callosal connections to the STG and both cortical thickness and area in the right STG in schizophrenia patients, despite a lack of group differences in cortical thickness, surface area, or dispersion. We believe that this reduction in morphological dependence between gray and white matter may reflect a possible decoupling of the developmental processes that shape morphological features of white and gray matter early in life. The present study also demonstrates the importance of studying the relationship between gray and white matter measures, as opposed to restricting analyses to gray and white matter measures independently.
Callosal Function in Pediatric Traumatic Brain Injury Linked to Disrupted White Matter Integrity
Dennis, Emily L.; Ellis, Monica U.; Marion, Sarah D.; Jin, Yan; Moran, Lisa; Olsen, Alexander; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Asarnow, Robert F.
2015-01-01
Traumatic brain injury (TBI) often results in traumatic axonal injury and white matter (WM) damage, particularly to the corpus callosum (CC). Damage to the CC can lead to impaired performance on neurocognitive tasks, but there is a high degree of heterogeneity in impairment following TBI. Here we examined the relation between CC microstructure and function in pediatric TBI. We used high angular resolution diffusion-weighted imaging (DWI) to evaluate the structural integrity of the CC in humans following brain injury in a sample of 32 children (23 males and 9 females) with moderate-to-severe TBI (msTBI) at 1–5 months postinjury, compared with well matched healthy control children. We assessed CC function through interhemispheric transfer time (IHTT) as measured using event-related potentials (ERPs), and related this to DWI measures of WM integrity. Finally, the relation between DWI and IHTT results was supported by additional results of neurocognitive performance assessed using a single composite performance scale. Half of the msTBI participants (16 participants) had significantly slower IHTTs than the control group. This slow IHTT group demonstrated lower CC integrity (lower fractional anisotropy and higher mean diffusivity) and poorer neurocognitive functioning than both the control group and the msTBI group with normal IHTTs. Lower fractional anisotropy—a common sign of impaired WM—and slower IHTTs also predicted poor neurocognitive function. This study reveals that there is a subset of pediatric msTBI patients during the post-acute phase of injury who have markedly impaired CC functioning and structural integrity that is associated with poor neurocognitive functioning. SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is the primary cause of death and disability in children and adolescents. There is considerable heterogeneity in postinjury outcome, which is only partially explained by injury severity. Imaging biomarkers may help explain some of this variance, as diffusion weighted imaging is sensitive to the white matter disruption that is common after injury. The corpus callosum (CC) is one of the most commonly reported areas of disruption. In this multimodal study, we discovered a divergence within our pediatric moderate-to-severe TBI sample 1–5 months postinjury. A subset of the TBI sample showed significant impairment in CC function, which is supported by additional results showing deficits in CC structural integrity. This subset also had poorer neurocognitive functioning. Our research sheds light on postinjury heterogeneity. PMID:26180196
Rutten-Jacobs, Loes C A; Tozer, Daniel J; Duering, Marco; Malik, Rainer; Dichgans, Martin; Markus, Hugh S; Traylor, Matthew
2018-06-01
Structural integrity of the white matter is a marker of cerebral small vessel disease, which is the major cause of vascular dementia and a quarter of all strokes. Genetic studies provide a way to obtain novel insights in the disease mechanism underlying cerebral small vessel disease. The aim was to identify common variants associated with microstructural integrity of the white matter and to elucidate the relationships of white matter structural integrity with stroke, major depressive disorder, and Alzheimer disease. This genome-wide association analysis included 8448 individuals from UK Biobank-a population-based cohort study that recruited individuals from across the United Kingdom between 2006 and 2010, aged 40 to 69 years. Microstructural integrity was measured as fractional anisotropy- (FA) and mean diffusivity (MD)-derived parameters on diffusion tensor images. White matter hyperintensity volumes (WMHV) were assessed on T2-weighted fluid-attenuated inversion recovery images. We identified 1 novel locus at genome-wide significance ( VCAN [versican]: rs13164785; P =3.7×10 -18 for MD and rs67827860; P =1.3×10 -14 for FA). LD score regression showed a significant genome-wide correlation between FA, MD, and WMHV (FA-WMHV rG 0.39 [SE, 0.15]; MD-WMHV rG 0.56 [SE, 0.19]). In polygenic risk score analysis, FA, MD, and WMHV were significantly associated with lacunar stroke, MD with major depressive disorder, and WMHV with Alzheimer disease. Genetic variants within the VCAN gene may play a role in the mechanisms underlying microstructural integrity of the white matter in the brain measured as FA and MD. Mechanisms underlying white matter alterations are shared with cerebrovascular disease, and inherited differences in white matter microstructure impact on Alzheimer disease and major depressive disorder. © 2018 The Authors.
Tran, Linh T; Roos, Annerine; Fouche, Jean-Paul; Koen, Nastassja; Woods, Roger P; Zar, Heather J; Narr, Katherine L; Stein, Dan J; Donald, Kirsten A
2016-01-01
The successful implementation of prevention programs for mother-to-child human immunodeficiency virus (HIV) transmission has dramatically reduced the prevalence of infants infected with HIV while increasing that of HIV-exposed uninfected (HEU) children. Neuropsychological assessments indicate that HEU children may exhibit differences in neurodevelopment compared to unexposed children (HUU). Pathological mechanisms leading to such neurodevelopmental delays are not clear. In this observational birth cohort study we explored the integrity of regional white matter microstructure in HEU infants, shortly after birth. Microstructural changes in white matter associated with prenatal HIV exposure were evaluated in HEU infants (n = 15) and matched controls (n = 22) using diffusion tensor imaging and tract-based spatial statistics. Additionally, diffusion values were extracted and compared for white matter tracts of interest, and associations with clinical outcomes from the Dubowitz neonatal neurobehavioral tool were investigated. Higher fractional anisotropy in the middle cerebellar peduncles of HEU compared to HUU neonates was found after correction for age and gender. Scores on the Dubowitz abnormal neurological signs subscale were positively correlated with FA (r = 0.58, P = 0.038) in the left uncinate fasciculus in HEU infants. This is the first study to present data suggesting that prenatal HIV exposure without infection is associated with altered white matter microstructural integrity in the neonatal period. Longitudinal studies of HEU infants as their brains mature are necessary to understand further the significance of prenatal HIV and antiretroviral treatment exposure on white matter integrity and neurodevelopmental outcomes.
Wen, Hongwei; Liu, Yue; Wang, Jieqiong; Rekik, Islem; Zhang, Jishui; Zhang, Yue; Tian, Hongwei; Peng, Yun; He, Huiguang
2016-05-01
Tourette syndrome (TS) is a neurological disorder that causes uncontrolled repetitive motor and vocal tics in children. Examining the neural basis of TS churned out different research studies that advanced our understanding of the brain pathways involved in its development. Particularly, growing evidence points to abnormalities within the fronto-striato-thalamic pathways. In this study, we combined Tract-Based Spatial Statistics (TBSS) and Atlas-based regions of interest (ROI) analysis approach, to investigate the microstructural diffusion changes in both deep and superficial white matter (SWM) in TS children. We then characterized the altered microstructure of white matter in 27 TS children in comparison with 27 age- and gender-matched healthy controls. We found that fractional anisotropy (FA) decreases and radial diffusivity (RD) increases in deep white matter (DWM) tracts in cortico-striato-thalamo-cortical (CSTC) circuit as well as SWM. Furthermore, we found that lower FA values and higher RD values in white matter regions are correlated with more severe tics, but not tics duration. Besides, we also found both axial diffusivity and mean diffusivity increase using Atlas-based ROI analysis. Our work may suggest that microstructural diffusion changes in white matter is not only restricted to the gray matter of CSTC circuit but also affects SWM within the primary motor and somatosensory cortex, commissural and association fibers. Hum Brain Mapp 37:1903-1919, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mnemonic function in small vessel disease and associations with white matter tract microstructure.
Metoki, Athanasia; Brookes, Rebecca L; Zeestraten, Eva; Lawrence, Andrew J; Morris, Robin G; Barrick, Thomas R; Markus, Hugh S; Charlton, Rebecca A
2017-09-01
Cerebral small vessel disease (SVD) is associated with deficits in working memory, with a relative sparing of long-term memory; function may be influenced by white matter microstructure. Working and long-term memory were examined in 106 patients with SVD and 35 healthy controls. Microstructure was measured in the uncinate fasciculi and cingula. Working memory was more impaired than long-term memory in SVD, but both abilities were reduced compared to controls. Regression analyses found that having SVD explained the variance in memory functions, with additional variance explained by the cingula (working memory) and uncinate (long-term memory). Performance can be explained in terms of integrity loss in specific white matter tract associated with mnemonic functions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Cosa, Alejandro; Canals, Santiago; Valles-Lluch, Ana; Moratal, David
2013-01-01
In this work, a novel brain MRI segmentation approach evaluates microstructural differences between groups. Going further from the traditional segmentation of brain tissues (white matter -WM-, gray matter -GM- and cerebrospinal fluid -CSF- or a mixture of them), a new way to classify brain areas is proposed using their microstructural MR properties. Eight rats were studied using the proposed methodology identifying regions which present microstructural differences as a consequence on one month of hard alcohol consumption. Differences in relaxation times of the tissues have been found in different brain regions (p<0.05). Furthermore, these changes allowed the automatic classification of the animals based on their drinking history (hit rate of 93.75 % of the cases).
Pastura, Giuseppe; Doering, Thomas; Gasparetto, Emerson Leandro; Mattos, Paulo; Araújo, Alexandra Prüfer
2016-06-01
Abnormalities in the white matter microstructure of the attentional system have been implicated in the aetiology of attention deficit hyperactivity disorder (ADHD). Diffusion tensor imaging (DTI) is a promising magnetic resonance imaging (MRI) technology that has increasingly been used in studies of white matter microstructure in the brain. The main objective of this work was to perform an exploratory analysis of white matter tracts in a sample of children with ADHD versus typically developing children (TDC). For this purpose, 13 drug-naive children with ADHD of both genders underwent MRI using DTI acquisition methodology and tract-based spatial statistics. The results were compared to those of a sample of 14 age- and gender-matched TDC. Lower fractional anisotropy was observed in the splenium of the corpus callosum, right superior longitudinal fasciculus, bilateral retrolenticular part of the internal capsule, bilateral inferior fronto-occipital fasciculus, left external capsule and posterior thalamic radiation (including right optic radiation). We conclude that white matter tracts in attentional and motor control systems exhibited signs of abnormal microstructure in this sample of drug-naive children with ADHD.
Westerhausen, René; Grüner, Renate; Specht, Karsten; Hugdahl, Kenneth
2009-06-01
The midsagittal corpus callosum is topographically organized, that is, with regard to their cortical origin several subtracts can be distinguished within the corpus callosum that belong to specific functional brain networks. Recent diffusion tensor tractography studies have also revealed remarkable interindividual differences in the size and exact localization of these tracts. To examine the functional relevance of interindividual variability in callosal tracts, 17 right-handed male participants underwent structural and diffusion tensor magnetic resonance imaging. Probabilistic tractography was carried out to identify the callosal subregions that interconnect left and right temporal lobe auditory processing areas, and the midsagittal size of this tract was seen as indicator of the (anatomical) strength of this connection. Auditory information transfer was assessed applying an auditory speech perception task with dichotic presentations of consonant-vowel syllables (e.g., /ba-ga/). The frequency of correct left ear reports in this task served as a functional measure of interhemispheric transfer. Statistical analysis showed that a stronger anatomical connection between the superior temporal lobe areas supports a better information transfer. This specific structure-function association in the auditory modality supports the general notion that interindividual differences in callosal topography possess functional relevance.
NASA Technical Reports Server (NTRS)
Hof, P. R.; Ungerleider, L. G.; Adams, M. M.; Webster, M. J.; Gattass, R.; Blumberg, D. M.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)
1997-01-01
Previous immunohistochemical studies combined with retrograde tracing in macaque monkeys have demonstrated that corticocortical projections can be differentiated by their content of neurofilament protein. The present study analyzed the distribution of nonphosphorylated neurofilament protein in callosally projecting neurons located at the V1/V2 border. All of the retrogradely labeled neurons were located in layer III at the V1/V2 border and at an immediately adjacent zone of area V2. A quantitative analysis showed that the vast majority (almost 95%) of these interhemispheric projection neurons contain neurofilament protein immunoreactivity. This observation differs from data obtained in other sets of callosal connections, including homotypical interhemispheric projections in the prefrontal, temporal, and parietal association cortices, that were found to contain uniformly low proportions of neurofilament protein-immunoreactive neurons. Comparably, highly variable proportions of neurofilament protein-containing neurons have been reported in intrahemispheric corticocortical pathways, including feedforward and feedback visual connections. These results indicate that neurofilament protein is a prominent neurochemical feature that identifies a particular population of interhemispheric projection neurons at the V1/V2 border and suggest that this biochemical attribute may be critical for the function of this subset of callosal neurons.
Effects of white matter microstructure on phase and susceptibility maps.
Wharton, Samuel; Bowtell, Richard
2015-03-01
To investigate the effects on quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI) of the frequency variation produced by the microstructure of white matter (WM). The frequency offsets in a WM tissue sample that are not explained by the effect of bulk isotropic or anisotropic magnetic susceptibility, but rather result from the local microstructure, were characterized for the first time. QSM and STI were then applied to simulated frequency maps that were calculated using a digitized whole-brain, WM model formed from anatomical and diffusion tensor imaging data acquired from a volunteer. In this model, the magnitudes of the frequency contributions due to anisotropy and microstructure were derived from the results of the tissue experiments. The simulations suggest that the frequency contribution of microstructure is much larger than that due to bulk effects of anisotropic magnetic susceptibility. In QSM, the microstructure contribution introduced artificial WM heterogeneity. For the STI processing, the microstructure contribution caused the susceptibility anisotropy to be significantly overestimated. Microstructure-related phase offsets in WM yield artifacts in the calculated susceptibility maps. If susceptibility mapping is to become a robust MRI technique, further research should be carried out to reduce the confounding effects of microstructure-related frequency contributions. © 2014 Wiley Periodicals, Inc.
Effects of White Matter Microstructure on Phase and Susceptibility Maps
Wharton, Samuel; Bowtell, Richard
2015-01-01
Purpose To investigate the effects on quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI) of the frequency variation produced by the microstructure of white matter (WM). Methods The frequency offsets in a WM tissue sample that are not explained by the effect of bulk isotropic or anisotropic magnetic susceptibility, but rather result from the local microstructure, were characterized for the first time. QSM and STI were then applied to simulated frequency maps that were calculated using a digitized whole-brain, WM model formed from anatomical and diffusion tensor imaging data acquired from a volunteer. In this model, the magnitudes of the frequency contributions due to anisotropy and microstructure were derived from the results of the tissue experiments. Results The simulations suggest that the frequency contribution of microstructure is much larger than that due to bulk effects of anisotropic magnetic susceptibility. In QSM, the microstructure contribution introduced artificial WM heterogeneity. For the STI processing, the microstructure contribution caused the susceptibility anisotropy to be significantly overestimated. Conclusion Microstructure-related phase offsets in WM yield artifacts in the calculated susceptibility maps. If susceptibility mapping is to become a robust MRI technique, further research should be carried out to reduce the confounding effects of microstructure-related frequency contributions. Magn Reson Med 73:1258–1269, 2015. © 2014 Wiley Periodicals, Inc. PMID:24619643
Moore, Elizabeth E; Liu, Dandan; Pechman, Kimberly R; Terry, James G; Nair, Sangeeta; Cambronero, Francis E; Bell, Susan P; Gifford, Katherine A; Anderson, Adam W; Hohman, Timothy J; Carr, John Jeffrey; Jefferson, Angela L
2018-06-26
Left ventricular (LV) hypertrophy is associated with cerebrovascular disease and cognitive decline. Increased LV mass index is a subclinical imaging marker that precedes overt LV hypertrophy. This study relates LV mass index to white matter microstructure and cognition among older adults with normal cognition and mild cognitive impairment. Vanderbilt Memory & Aging Project participants free of clinical stroke, dementia, and heart failure (n=318, 73±7 years, 58% male, 39% mild cognitive impairment) underwent brain magnetic resonance imaging, cardiac magnetic resonance, and neuropsychological assessment. Voxelwise analyses related LV mass index (g/m 2 ) to diffusion tensor imaging metrics. Models adjusted for age, sex, education, race/ethnicity, Framingham Stroke Risk Profile, cognitive diagnosis, and apolipoprotein E-ε4 status. Secondary analyses included a LV mass index×diagnosis interaction term with follow-up models stratified by diagnosis. With identical covariates, linear regression models related LV mass index to neuropsychological performances. Increased LV mass index related to altered white matter microstructure ( P <0.05). In models stratified by diagnosis, associations between LV mass index and diffusion tensor imaging were present among mild cognitive impairment participants only ( P <0.05). LV mass index was related only to worse visuospatial memory performance (β=-0.003, P =0.036), an observation that would not withstand correction for multiple testing. In the absence of prevalent heart failure and clinical stroke, increased LV mass index corresponds to altered white matter microstructure, particularly among older adults with clinical symptoms of prodromal dementia. Findings highlight the potential link between subclinical LV remodeling and cerebral white matter microstructure vulnerability. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.
Mazerolle, Erin L; Wojtowicz, Magdalena A; Omisade, Antonina; Fisk, John D
2013-01-01
Slowed information processing speed is commonly reported in persons with multiple sclerosis (MS), and is typically investigated using clinical neuropsychological tests, which provide sensitive indices of mean-level information processing speed. However, recent studies have demonstrated that within-person variability or intra-individual variability (IIV) in information processing speed may be a more sensitive indicator of neurologic status than mean-level performance on clinical tests. We evaluated the neural basis of increased IIV in mildly affected relapsing-remitting MS patients by characterizing the relation between IIV (controlling for mean-level performance) and white matter integrity using diffusion tensor imaging (DTI). Twenty women with relapsing-remitting MS and 20 matched control participants completed the Computerized Test of Information Processing (CTIP), from which both mean response time and IIV were calculated. Other clinical measures of information processing speed were also collected. Relations between IIV on the CTIP and DTI metrics of white matter microstructure were evaluated using tract-based spatial statistics. We observed slower and more variable responses on the CTIP in MS patients relative to controls. Significant relations between white matter microstructure and IIV were observed for MS patients. Increased IIV was associated with reduced integrity in more white matter tracts than was slowed information processing speed as measured by either mean CTIP response time or other neuropsychological test scores. Thus, despite the common use of mean-level performance as an index of cognitive dysfunction in MS, IIV may be more sensitive to the overall burden of white matter disease at the microstructural level. Furthermore, our study highlights the potential value of considering within-person fluctuations, in addition to mean-level performance, for uncovering brain-behavior relationships in neurologic disorders with widespread white matter pathology.
Reneman, Liesbeth; Schagen, Sanne B; Mulder, Michel; Mutsaerts, Henri J; Hageman, Gerard; de Ruiter, Michiel B
2016-06-01
Cabin air in airplanes can be contaminated with engine oil contaminants. These contaminations may contain organophosphates (OPs) which are known neurotoxins to brain white matter. However, it is currently unknown if brain white matter in aircrew is affected. We investigated whether we could objectify cognitive complaints in aircrew and whether we could find a neurobiological substrate for their complaints. After medical ethical approval from the local institutional review board, informed consent was obtained from 12 aircrew (2 females, on average aged 44.4 years, 8,130 flying hours) with cognitive complaints and 11 well matched control subjects (2 females, 43.4 years, 233 flying hours). Depressive symptoms and self-reported cognitive symptoms were assessed, in addition to a neuropsychological test battery. State of the art Magnetic Resonance Imaging (MRI) techniques were administered that assess structural and functional changes, with a focus on white matter integrity. In aircrew we found significantly more self-reported cognitive complaints and depressive symptoms, and a higher number of tests scored in the impaired range compared to the control group. We observed small clusters in the brain in which white matter microstructure was affected. Also, we observed higher cerebral perfusion values in the left occipital cortex, and reduced brain activation on a functional MRI executive function task. The extent of cognitive impairment was strongly associated with white matter integrity, but extent of estimated number of flight hours was not associated with cognitive impairment nor with reductions in white matter microstructure. Defects in brain white matter microstructure and cerebral perfusion are potential neurobiological substrates for cognitive impairments and mood deficits reported in aircrew.
Lifespan Trajectories of White Matter Changes in Rhesus Monkeys.
Kubicki, M; Baxi, M; Pasternak, O; Tang, Y; Karmacharya, S; Chunga, N; Lyall, A E; Rathi, Y; Eckbo, R; Bouix, S; Mortazavi, F; Papadimitriou, G; Shenton, M E; Westin, C F; Killiany, R; Makris, N; Rosene, D L
2018-04-26
Progress in neurodevelopmental brain research has been achieved through the use of animal models. Such models not only help understanding biological changes that govern brain development, maturation and aging, but are also essential for identifying possible mechanisms of neurodevelopmental and age-related chronic disorders, and to evaluate possible interventions with potential relevance to human disease. Genetic relationship of rhesus monkeys to humans makes those animals a great candidate for such models. With the typical lifespan of 25 years, they undergo cognitive maturation and aging that is similar to this observed in humans. Quantitative structural neuroimaging has been proposed as one of the candidate in vivo biomarkers for tracking white matter brain maturation and aging. While lifespan trajectories of white matter changes have been mapped in humans, such knowledge is not available for nonhuman primates. Here, we analyze and model lifespan trajectories of white matter microstructure using in vivo diffusion imaging in a sample of 44 rhesus monkeys. We report quantitative parameters (including slopes and peaks) of lifespan trajectories for 8 individual white matter tracts. We show different trajectories for cellular and extracellular microstructural imaging components that are associated with white matter maturation and aging, and discuss similarities and differences between those in humans and rhesus monkeys, the importance of our findings, and future directions for the field.Significance Statement: Quantitative structural neuroimaging has been proposed as one of the candidate in vivo biomarkers for tracking brain maturation and aging. While lifespan trajectories of structural white matter changes have been mapped in humans, such knowledge is not available for rhesus monkeys. We present here results of the analysis and modeling of the lifespan trajectories of white matter microstructure using in vivo diffusion imaging in a sample of 44 rhesus monkeys (age 4-27). We report and anatomically map lifespan changes related to cellular and extracellular microstructural components that are associated with white matter maturation and aging.
Aging in deep gray matter and white matter revealed by diffusional kurtosis imaging.
Gong, Nan-Jie; Wong, Chun-Sing; Chan, Chun-Chung; Leung, Lam-Ming; Chu, Yiu-Ching
2014-10-01
Diffusion tensor imaging has already been extensively used to probe microstructural alterations in white matter tracts, and scarcely, in deep gray matter. However, results in literature regarding age-related degenerative mechanisms in white matter tracts and parametric changes in the putamen are inconsistent. Diffusional kurtosis imaging is a mathematical extension of diffusion tensor imaging, which could more comprehensively mirror microstructure, particularly in isotropic tissues such as gray matter. In this study, we used the diffusional kurtosis imaging method and a white-matter model that provided metrics of explicit neurobiological interpretations in healthy participants (58 in total, aged from 25 to 84 years). Tract-based whole-brain analyses and regions-of-interest (anterior and posterior limbs of the internal capsule, cerebral peduncle, fornix, genu and splenium of corpus callosum, globus pallidus, substantia nigra, red nucleus, putamen, caudate nucleus, and thalamus) analyses were performed to examine parametric differences across regions and correlations with age. In white matter tracts, evidence was found supportive for anterior-posterior gradient and not completely supportive for retrogenesis theory. Age-related degenerations appeared to be broadly driven by axonal loss. Demyelination may also be a major driving mechanism, although confined to the anterior brain. In terms of deep gray matter, higher mean kurtosis and fractional anisotropy in the globus pallidus, substantia nigra, and red nucleus reflected higher microstructural complexity and directionality compared with the putamen, caudate nucleus, and thalamus. In particular, the unique age-related positive correlations for fractional anisotropy, mean kurtosis, and radial kurtosis in the putamen opposite to those in other regions call for further investigation of exact underlying mechanisms. In summary, the results suggested that diffusional kurtosis can provide measurements in a new dimension that were complementary to diffusivity metrics. Kurtosis together with diffusivity can more comprehensively characterize microstructural compositions and age-related changes than diffusivity alone. Combined with proper model, it may also assist in providing neurobiological interpretations of the identified alterations. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Fryer, Susanna L.; Frank, Lawrence R.; Spadoni, Andrea D.; Theilmann, Rebecca J.; Nagel, Bonnie J.; Schweinsburg, Alecia D.; Tapert, Susan F.
2008-01-01
Background: Diffusion tensor imaging (DTI) has revealed microstructural aspects of adolescent brain development, the cognitive correlates of which remain relatively uncharacterized. Methods: DTI was used to assess white matter microstructure in 18 typically developing adolescents (ages 16-18). Fractional anisotropy (FA) and mean diffusion (MD)…
Ly, Martina; Carlsson, Cynthia M.; Okonkwo, Ozioma C.; Zetterberg, Henrik; Blennow, Kaj; Sager, Mark A.; Asthana, Sanjay; Johnson, Sterling C.; Alexander, Andrew L.; Bendlin, Barbara B.
2017-01-01
Brain changes associated with Alzheimer’s disease (AD) begin decades before disease diagnosis. While β-amyloid plaques and neurofibrillary tangles are defining features of AD, neuronal loss and synaptic pathology are closely related to the cognitive dysfunction. Brain imaging methods that are tuned to assess degeneration of myelinated nerve fibers in the brain (collectively called white matter) include diffusion tensor imaging (DTI) and related techniques, and are expected to shed light on disease-related loss of structural connectivity. Participants (N = 70, ages 47–76 years) from the Wisconsin Registry for Alzheimer’s Prevention study underwent DTI and hybrid diffusion imaging to determine a free-water elimination (FWE-DTI) model. The study assessed the extent to which preclinical AD pathology affects brain white matter. Preclinical AD pathology was determined using cerebrospinal fluid (CSF) biomarkers. The sample was enriched for AD risk (APOE ε4 and parental history of AD). AD pathology assessed by CSF analyses was significantly associated with altered microstructure on both DTI and FWE-DTI. Affected regions included frontal, parietal, and especially temporal white matter. The f-value derived from the FWE-DTI model appeared to be the most sensitive to the relationship between the CSF AD biomarkers and microstructural alterations in white matter. These findings suggest that white matter degeneration is an early pathological feature of AD that may have utility both for early disease detection and as outcome measures for clinical trials. More complex models of microstructural diffusion properties including FWE-DTI may provide increased sensitivity to early brain changes associated with AD over standard DTI. PMID:28291839
Bang, Lasse; Rø, Øyvind; Endestad, Tor
2018-01-01
Studies point to white matter (WM) microstructure alterations in both adolescent and adult patients with anorexia nervosa (AN). These include reduced fractional anisotropy in several WM fiber tracts, suggesting reduced WM integrity. The extent to which these alterations are reversible with recovery from AN is unclear. There is a paucity of research investigating the presence of WM microstructure alterations in recovered AN patients, and results are inconsistent. This study aimed to investigate the presence of WM microstructure alterations in women long-term recovered from AN. Twenty-one adult women who were recovered from AN for at least 1 year were compared to 21 adult comparison women. Participants were recruited via user-organizations for eating disorders, local advertisements, and online forums. Diffusion tensor imaging was used to compare WM microstructure between groups. Correlations between WM microstructure and clinical characteristics were also explored. There were no statistically significant between-group differences in WM microstructure. These null findings remained when employing liberal alpha level thresholds. Furthermore, there were no statistically significant correlations between WM microstructure and clinical characteristics. Our findings showed normal WM microstructure in long-term recovered patients, indicating the alterations observed during the acute phase are reversible. Given the paucity of research and inconsistent findings, future studies are warranted to determine the presence of WM microstructure alterations following recovery from AN. © 2017 Wiley Periodicals, Inc.
Abnormal white matter properties in adolescent girls with anorexia nervosa
Travis, Katherine E.; Golden, Neville H.; Feldman, Heidi M.; Solomon, Murray; Nguyen, Jenny; Mezer, Aviv; Yeatman, Jason D.; Dougherty, Robert F.
2015-01-01
Anorexia nervosa (AN) is a serious eating disorder that typically emerges during adolescence and occurs most frequently in females. To date, very few studies have investigated the possible impact of AN on white matter tissue properties during adolescence, when white matter is still developing. The present study evaluated white matter tissue properties in adolescent girls with AN using diffusion MRI with tractography and T1 relaxometry to measure R1 (1/T1), an index of myelin content. Fifteen adolescent girls with AN (mean age = 16.6 years ± 1.4) were compared to fifteen age-matched girls with normal weight and eating behaviors (mean age = 17.1 years ± 1.3). We identified and segmented 9 bilateral cerebral tracts (18) and 8 callosal fiber tracts in each participant's brain (26 total). Tract profiles were generated by computing measures for fractional anisotropy (FA) and R1 along the trajectory of each tract. Compared to controls, FA in the AN group was significantly decreased in 4 of 26 white matter tracts and significantly increased in 2 of 26 white matter tracts. R1 was significantly decreased in the AN group compared to controls in 11 of 26 white matter tracts. Reduced FA in combination with reduced R1 suggests that the observed white matter differences in AN are likely due to reductions in myelin content. For the majority of tracts, group differences in FA and R1 did not occur within the same tract. The present findings have important implications for understanding the neurobiological factors underlying white matter changes associated with AN and invite further investigations examining associations between white matter properties and specific physiological, cognitive, social, or emotional functions affected in AN. PMID:26740918
El Marroun, Hanan; Zou, Runyu; Muetzel, Ryan L; Jaddoe, Vincent W; Verhulst, Frank C; White, Tonya; Tiemeier, Henning
2018-04-01
Prenatal maternal depression has been associated with multiple problems in offspring involving affect, cognition, and neuroendocrine functioning. This suggests that prenatal depression influences neurodevelopment. However, the underlying neurodevelopmental mechanism remains unclear. We prospectively assessed whether maternal depressive symptoms during pregnancy and at the child's age 3 years are related to white matter microstructure in 690 children. The association of paternal depressive symptoms with childhood white matter microstructure was assessed to evaluate genetic or familial confounding. Parental depressive symptoms were measured using the Brief Symptom Inventory. In children aged 6-9 years, we used diffusion tensor imaging to assess white matter microstructure characteristics including fractional anisotropy (FA) and mean diffusivity (MD). Exposure to maternal depressive symptoms during pregnancy was associated with higher MD in the uncinate fasciculus and to lower FA and higher MD in the cingulum bundle. No associations of maternal depressive symptoms at the child's age of 3 years with white matter characteristics were observed. Paternal depressive symptoms also showed a trend toward significance for a lower FA in the cingulum bundle. Prenatal maternal depressive symptoms were associated with higher MD in the uncinate fasciculus and the cingulum bundle. These structures are part of the limbic system, which is involved in motivation, emotion, learning, and memory. As paternal depressive symptoms were also related to lower FA in the cingulum, the observed effect may partly reflect a genetic predisposition and shared environmental family factors and to a lesser extent a specific intrauterine effect. © 2018 Wiley Periodicals, Inc.
White matter microstructure damage in tremor-dominant Parkinson's disease patients.
Luo, ChunYan; Song, Wei; Chen, Qin; Yang, Jing; Gong, QiYong; Shang, Hui-Fang
2017-07-01
Resting tremor is one of the cardinal motor features of Parkinson's disease (PD). Several lines of evidence suggest resting tremor may have different underlying pathophysiological processes from those of bradykinesia and rigidity. The current study aims to identify white matter microstructural abnormalities associated with resting tremor in PD. We recruited 60 patients with PD (30 with tremor-dominant PD and 30 with nontremor-dominant PD) and 26 normal controls. All participants underwent clinical assessment and diffusion tensor MRI. We used tract-based spatial statistics to investigate white matter integrity across the entire white matter tract skeleton. Compared with both healthy controls and the nontremor-dominant PD patients, the tremor-dominant PD patients were characterized by increased mean diffusivity (MD) and axial diffusivity (AD) along multiple white matter tracts, mainly involving the cerebello-thalamo-cortical (CTC) pathway. The mean AD value in clusters with significant difference was correlated with resting tremor score in the tremor-dominant PD patients. There was no significant difference between the nontremor-dominant PD patients and controls. Our results support the notion that resting tremor in PD is a distinct condition in which significant microstructural white matter changes exist and provide evidence for the involvement of the CTC in tremor genesis of PD.
Chiapponi, Chiara; Piras, Fabrizio; Piras, Federica; Fagioli, Sabrina; Caltagirone, Carlo; Spalletta, Gianfranco
2013-01-01
It is still unknown whether the structural brain impairments that characterize schizophrenia (SZ) worsen during the lifetime. Here, we aimed to describe age-related microstructural brain changes in cortical grey matter and subcortical white matter of patients affected by SZ. In this diffusion tensor imaging study, we included 69 patients diagnosed with SZ and 69 healthy control (HC) subjects, age and gender matched. We carried out analyses of covariance, with diagnosis as fixed factor and brain diffusion-related parameters as dependent variables, and controlled for the effect of education. White matter fractional anisotropy decreased in the entire age range spanned (18-65 years) in both SZ and HC and was significantly lower in younger patients with SZ, with no interaction (age by diagnosis) effect in fiber tracts including corpus callosum, corona radiata, thalamic radiations and external capsule. Also, grey matter mean diffusivity increased in the entire age range in both SZ and HC and was significantly higher in younger patients, with no age by diagnosis interaction in the left frontal operculum cortex, left insula and left planum polare and in the right temporal pole and right intracalcarine cortex. In individuals with SZ we found that localized brain cortical and white matter subcortical microstructural impairments appear early in life but do not worsen in the 18-65 year age range.
Persistence of abnormalities in white matter in children with type 1 diabetes.
Fox, Larry A; Hershey, Tamara; Mauras, Nelly; Arbeláez, Ana Maria; Tamborlane, William V; Buckingham, Bruce; Tsalikian, Eva; Englert, Kim; Raman, Mira; Jo, Booil; Shen, Hanyang; Reiss, Allan; Mazaika, Paul
2018-07-01
Prior studies suggest white matter growth is reduced and white matter microstructure is altered in the brains of young children with type 1 diabetes when compared with brains of non-diabetic children, due in part to adverse effects of hyperglycaemia. This longitudinal observational study examines whether dysglycaemia alters the developmental trajectory of white matter microstructure over time in young children with type 1 diabetes. One hundred and eighteen children, aged 4 to <10 years old with type 1 diabetes and 58 age-matched, non-diabetic children were studied at baseline and 18 months, at five Diabetes Research in Children Network clinical centres. We analysed longitudinal trajectories of white matter using diffusion tensor imaging. Continuous glucose monitoring profiles and HbA 1c levels were obtained every 3 months. Axial diffusivity was lower in children with diabetes at baseline (p = 0.022) and at 18 months (p = 0.015), indicating that differences in white matter microstructure persist over time in children with diabetes. Within the diabetes group, lower exposure to hyperglycaemia, averaged over the time since diagnosis, was associated with higher fractional anisotropy (p = 0.037). Fractional anisotropy was positively correlated with performance (p < 0.002) and full-scale IQ (p < 0.02). These results suggest that hyperglycaemia is associated with altered white matter development, which may contribute to the mild cognitive deficits in this population.
Hubbard, Nicholas A; Turner, Monroe P; Ouyang, Minhui; Himes, Lyndahl; Thomas, Binu P; Hutchison, Joanna L; Faghihahmadabadi, Shawheen; Davis, Scott L; Strain, Jeremy F; Spence, Jeffrey; Krawczyk, Daniel C; Huang, Hao; Lu, Hanzhang; Hart, John; Frohman, Teresa C; Frohman, Elliot M; Okuda, Darin T; Rypma, Bart
2017-11-01
Multiple sclerosis (MS) involves damage to white matter microstructures. This damage has been related to grey matter function as measured by standard, physiologically-nonspecific neuroimaging indices (i.e., blood-oxygen-level dependent signal [BOLD]). Here, we used calibrated functional magnetic resonance imaging and diffusion tensor imaging to examine the extent to which specific, evoked grey matter physiological processes were associated with white matter diffusion in MS. Evoked changes in BOLD, cerebral blood flow (CBF), and oxygen metabolism (CMRO 2 ) were measured in visual cortex. Individual differences in the diffusion tensor measure, radial diffusivity, within occipital tracts were strongly associated with MS patients' BOLD and CMRO 2 . However, these relationships were in opposite directions, complicating the interpretation of the relationship between BOLD and white matter microstructural damage in MS. CMRO 2 was strongly associated with individual differences in patients' fatigue and neurological disability, suggesting that alterations to evoked oxygen metabolic processes may be taken as a marker for primary symptoms of MS. This work demonstrates the first application of calibrated and diffusion imaging together and details the first application of calibrated functional MRI in a neurological population. Results lend support for neuroenergetic hypotheses of MS pathophysiology and provide an initial demonstration of the utility of evoked oxygen metabolism signals for neurology research. Hum Brain Mapp 38:5375-5390, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Sotiriou, P; Giannoutsou, E; Panteris, E; Galatis, B; Apostolakos, P
2018-03-01
The distribution of homogalacturonans (HGAs) displaying different degrees of esterification as well as of callose was examined in cell walls of mature pavement cells in two angiosperm and two fern species. We investigated whether local cell wall matrix differentiation may enable pavement cells to respond to mechanical tension forces by transiently altering their shape. HGA epitopes, identified with 2F4, JIM5 and JIM7 antibodies, and callose were immunolocalised in hand-made or semithin leaf sections. Callose was also stained with aniline blue. The structure of pavement cells was studied with light and transmission electron microscopy (TEM). In all species examined, pavement cells displayed wavy anticlinal cell walls, but the waviness pattern differed between angiosperms and ferns. The angiosperm pavement cells were tightly interconnected throughout their whole depth, while in ferns they were interconnected only close to the external periclinal cell wall and intercellular spaces were developed between them close to the mesophyll. Although the HGA epitopes examined were located along the whole cell wall surface, the 2F4- and JIM5- epitopes were especially localised at cell lobe tips. In fern pavement cells, the contact sites were impregnated with callose and JIM5-HGA epitopes. When tension forces were applied on leaf regions, the pavement cells elongated along the stretching axis, due to a decrease in waviness of anticlinal cell walls. After removal of tension forces, the original cell shape was resumed. The presented data support that HGA epitopes make the anticlinal pavement cell walls flexible, in order to reversibly alter their shape. Furthermore, callose seems to offer stability to cell contacts between pavement cells, as already suggested in photosynthetic mesophyll cells. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Rice, Lauren J; Lagopoulos, Jim; Brammer, Michael; Einfeld, Stewart L
2017-09-01
Prader-Willi Syndrome (PWS) is a genetic disorder characterized by infantile hypotonia, hyperphagia, hypogonadism, growth hormone deficiency, intellectual disability, and severe emotional and behavioral problems. The brain mechanisms that underpin these disturbances are unknown. Diffusion tensor imaging (DTI) enables in vivo investigation of the microstructural integrity of white matter pathways. To date, only one study has used DTI to examine white matter alterations in PWS. However, that study used selected regions of interest, rather than a whole brain analysis. In the present study, we used diffusion tensor and magnetic resonance (T 1-weighted) imaging to examine microstructural white matter changes in 15 individuals with PWS (17-30 years) and 15 age-and-gender-matched controls. Whole-brain voxel-wise statistical analysis of FA was carried out using tract-based spatial statistics (TBSS). Significantly decreased fractional anisotropy was found localized to the left hemisphere in individuals with PWS within the splenium of the corpus callosum, the internal capsule including the posterior thalamic radiation and the inferior frontal occipital fasciculus (IFOF). Reduced integrity of these white matter pathways in individuals with PWS may relate to orientating attention, emotion recognition, semantic processing, and sensorimotor dysfunction. © 2017 Wiley Periodicals, Inc.
Effect of high-potency cannabis on corpus callosum microstructure.
Rigucci, S; Marques, T R; Di Forti, M; Taylor, H; Dell'Acqua, F; Mondelli, V; Bonaccorso, S; Simmons, A; David, A S; Girardi, P; Pariante, C M; Murray, R M; Dazzan, P
2016-03-01
The use of cannabis with higher Δ9-tetrahydrocannabinol content has been associated with greater risk, and earlier onset, of psychosis. However, the effect of cannabis potency on brain morphology has never been explored. Here, we investigated whether cannabis potency and pattern of use are associated with changes in corpus callosum (CC) microstructural organization, in patients with first-episode psychosis (FEP) and individuals without psychosis, cannabis users and non-users. The CC of 56 FEP (37 cannabis users) and 43 individuals without psychosis (22 cannabis users) was virtually dissected and segmented using diffusion tensor imaging tractography. The diffusion index of fractional anisotropy, mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity was calculated for each segment. Across the whole sample, users of high-potency cannabis had higher total CC MD and higher total CC AD than both low-potency users and those who never used (p = 0.005 and p = 0.004, respectively). Daily users also had higher total CC MD and higher total CC AD than both occasional users and those who never used (p = 0.001 and p < 0.001, respectively). However, there was no effect of group (patient/individuals without psychosis) or group x potency interaction for either potency or frequency of use. The within-group analysis showed in fact that the effects of potency and frequency were similar in FEP users and in users without psychosis. Frequent use of high-potency cannabis is associated with disturbed callosal microstructural organization in individuals with and without psychosis. Since high-potency preparations are now replacing traditional herbal drugs in many European countries, raising awareness about the risks of high-potency cannabis is crucial.
Steketee, Rebecca M E; Meijboom, Rozanna; de Groot, Marius; Bron, Esther E; Niessen, Wiro J; van der Lugt, Aad; van Swieten, John C; Smits, Marion
2016-07-01
This study investigates regional coherence between white matter (WM) microstructure and gray matter (GM) volume and perfusion measures in Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) using a correlational approach. WM-GM coherence, compared with controls, was stronger between cingulum WM and frontotemporal GM in AD, and temporoparietal GM in bvFTD. In addition, in AD compared with controls, coherence was stronger between inferior fronto-occipital fasciculus WM microstructure and occipital GM perfusion. In this first study assessing regional WM-GM coherence in AD and bvFTD, we show that WM microstructure and GM volume and perfusion measures are coherent, particularly in regions implicated in AD and bvFTD pathology. This indicates concurrent degeneration in disease-specific networks. Our methodology allows for the detection of incipient abnormalities that go undetected in conventional between-group analyses. Copyright © 2016 Elsevier Inc. All rights reserved.
Dimensions of Attention Associated With the Microstructure of Corona Radiata White Matter.
Stave, Elise A; De Bellis, Michael D; Hooper, Steven R; Woolley, Donald P; Chang, Suk Ki; Chen, Steven D
2017-04-01
Mirsky proposed a model of attention that included these dimensions: focus/execute, sustain, stabilize, encode, and shift. The neural correlates of these dimensions were investigated within corona radiata subregions in healthy youth. Diffusion tensor imaging and neuropsychological assessments were conducted in 79 healthy, right-handed youth aged 4-17 years. Diffusion tensor imaging maps were analyzed using standardized parcellation methods. Partial Pearson correlations between neuropsychological standardized scores, representing these attention dimensions, and diffusion tensor imaging measures of corona radiata subregions were calculated after adjusting for gender and IQ. Significant correlations were found between the focus/execute, sustain, stabilize, and shift dimensions and imaging metrics in hypothesized corona radiata subregions. Results suggest that greater microstructural white matter integrity of the corona radiata is partly associated with attention across 4 attention dimensions. Findings suggest that white matter microstructure of the corona radiata is a neural correlate of several, but not all, attention dimensions.
Dimensions of Attention Associated with the Microstructure of Corona Radiata White Matter
Stave, Elise A.; Hooper, Stephen R.; Woolley, Donald P.; Chang, Suk Ki; Chen, Steven D.
2016-01-01
Mirsky proposed a model of attention that included these dimensions: focus/execute, sustain, stabilize, encode, and shift. The neural correlates of these dimensions were investigated within corona radiate subregions in healthy youth. Diffusion tensor imaging and neuropsychological assessments were conducted in 79 healthy, right-handed youth aged 4–17 years. Diffusion tensor imaging maps were analyzed using standardized parcellation methods. Partial Pearson correlations between neuropsychological standardized scores, representing these attention dimensions, and diffusion tensor imaging measures of corona radiate subregions were calculated after adjusting for gender and IQ. Significant correlations were found between the focus/execute, sustain, stabilize and shift dimensions and imaging metrics in hypothesized corona radiate subregions. Results suggest that greater microstructural white matter integrity of the corona radiata is partly associated with attention across four attention dimensions. Findings suggest that white matter microstructure of the corona radiata is a neural correlate of several, but not all, attention dimensions. PMID:28090797
Nouwen, Arie; Chambers, Alison; Chechlacz, Magdalena; Higgs, Suzanne; Blissett, Jacqueline; Barrett, Timothy G; Allen, Harriet A
2017-01-01
In adults, type 2 diabetes and obesity have been associated with structural brain changes, even in the absence of dementia. Some evidence suggested similar changes in adolescents with type 2 diabetes but comparisons with a non-obese control group have been lacking. The aim of the current study was to examine differences in microstructure of gray and white matter between adolescents with type 2 diabetes, obese adolescents and healthy weight adolescents. Magnetic resonance imaging data were collected from 15 adolescents with type 2 diabetes, 21 obese adolescents and 22 healthy weight controls. Volumetric differences in the gray matter between the three groups were examined using voxel based morphology, while tract based spatial statistics was used to examine differences in the microstructure of the white matter. Adolescents with type 2 diabetes and obese adolescents had reduced gray matter volume in the right hippocampus, left putamen and caudate, bilateral amygdala and left thalamus compared to healthy weight controls. Type 2 diabetes was also associated with significant regional changes in fractional anisotropy within the corpus callosum, fornix, left inferior fronto-occipital fasciculus, left uncinate, left internal and external capsule. Fractional anisotropy reductions within these tracts were explained by increased radial diffusivity, which may suggest demyelination of white matter tracts. Mean diffusivity and axial diffusivity did not differ between the groups. Our data shows that adolescent obesity alone results in reduced gray matter volume and that adolescent type 2 diabetes is associated with both white and gray matter abnormalities.
Moreno, Martha Beatriz; Concha, Luis; González-Santos, Leopoldo; Ortiz, Juan Jose; Barrios, Fernando Alejandro
2014-01-01
We assessed the relationship between structural characteristics (area) and microstructure (apparent diffusion coefficient; ADC) of the corpus callosum (CC) in 57 healthy children aged 7.0 to 9.1 years, with diverse cognitive and academic abilities as well as executive functions evaluated with a neuropsychological battery for children. The CC was manually delineated and sub-segmented into six regions, and their ADC and area were measured. There were no significant differences between genders in the callosal region area or in ADC. The CC area and ADC, mainly of anterior regions, correlated with different cognitive abilities for each gender. Our results suggest that the relationship between cognitive abilities and CC characteristics is different between girls and boys and between the anterior and posterior regions of the CC. Furthermore, these findings strenghten the idea that regardless of the different interhemispheric connectivity schemes per gender, the results of cognitive tasks are very similar for girls and boys throughout childhood.
Moreno, Martha Beatriz; Concha, Luis; González-Santos, Leopoldo; Ortiz, Juan Jose; Barrios, Fernando Alejandro
2014-01-01
We assessed the relationship between structural characteristics (area) and microstructure (apparent diffusion coefficient; ADC) of the corpus callosum (CC) in 57 healthy children aged 7.0 to 9.1 years, with diverse cognitive and academic abilities as well as executive functions evaluated with a neuropsychological battery for children. The CC was manually delineated and sub-segmented into six regions, and their ADC and area were measured. There were no significant differences between genders in the callosal region area or in ADC. The CC area and ADC, mainly of anterior regions, correlated with different cognitive abilities for each gender. Our results suggest that the relationship between cognitive abilities and CC characteristics is different between girls and boys and between the anterior and posterior regions of the CC. Furthermore, these findings strenghten the idea that regardless of the different interhemispheric connectivity schemes per gender, the results of cognitive tasks are very similar for girls and boys throughout childhood. PMID:25170897
Yamamoto, Yoko; Kobayashi, Yukiko; Matsumoto, Hideaki
2001-01-01
Pea (Pisum sativum) roots were treated with aluminum in a calcium solution, and lipid peroxidation was investigated histochemically and biochemically, as well as other events caused by aluminum exposure. Histochemical stainings were observed to distribute similarly on the entire surface of the root apex for three events (aluminum accumulation, lipid peroxidation, and callose production), but the loss of plasma membrane integrity (detected by Evans blue uptake) was localized exclusively at the periphery of the cracks on the surface of root apex. The enhancement of four events (aluminum accumulation, lipid peroxidation, callose production, and root elongation inhibition) displayed similar aluminum dose dependencies and occurred by 4 h. The loss of membrane integrity, however, was enhanced at lower aluminum concentrations and after longer aluminum exposure (8 h). The addition of butylated hydroxyanisole (a lipophilic antioxidant) during aluminum treatment completely prevented lipid peroxidation and callose production by 40%, but did not prevent or slow the other events. Thus lipid peroxidation is a relatively early symptom induced by the accumulation of aluminum and appears to cause, in part, callose production, but not the root elongation inhibition; by comparison, the loss of plasma membrane integrity is a relatively late symptom caused by cracks in the root due to the inhibition of root elongation. PMID:11154329
Fernández-Crespo, Emma; Navarro, Jose A; Serra-Soriano, Marta; Finiti, Iván; García-Agustín, Pilar; Pallás, Vicente; González-Bosch, Carmen
2017-01-01
Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV) and demonstrated the efficacy of hexanoic acid (Hx) priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR) to MNSV. Our data indicate important roles of salicylic acid (SA), 12-oxo-phytodienoic acid (OPDA), jasmonic-isoleucine, and ferulic acid in both responses to MNSV. The hormonal and metabolites balance, depending on the time and location associated with basal and Hx-IR, demonstrated the reprogramming of plant metabolism in MNSV-inoculated plants. The treatment with both SA and OPDA prior to virus infection significantly reduced MNSV systemic movement by inducing callose deposition. This demonstrates their relevance in Hx-IR against MNSV and a high correlation with callose deposition. Our data also provide valuable evidence to unravel priming mechanisms by natural compounds.
Fernández-Crespo, Emma; Navarro, Jose A.; Serra-Soriano, Marta; Finiti, Iván; García-Agustín, Pilar; Pallás, Vicente; González-Bosch, Carmen
2017-01-01
Unlike fungal and bacterial diseases, no direct method is available to control viral diseases. The use of resistance-inducing compounds can be an alternative strategy for plant viruses. Here we studied the basal response of melon to Melon necrotic spot virus (MNSV) and demonstrated the efficacy of hexanoic acid (Hx) priming, which prevents the virus from systemically spreading. We analysed callose deposition and the hormonal profile and gene expression at the whole plant level. This allowed us to determine hormonal homeostasis in the melon roots, cotyledons, hypocotyls, stems and leaves involved in basal and hexanoic acid-induced resistance (Hx-IR) to MNSV. Our data indicate important roles of salicylic acid (SA), 12-oxo-phytodienoic acid (OPDA), jasmonic-isoleucine, and ferulic acid in both responses to MNSV. The hormonal and metabolites balance, depending on the time and location associated with basal and Hx-IR, demonstrated the reprogramming of plant metabolism in MNSV-inoculated plants. The treatment with both SA and OPDA prior to virus infection significantly reduced MNSV systemic movement by inducing callose deposition. This demonstrates their relevance in Hx-IR against MNSV and a high correlation with callose deposition. Our data also provide valuable evidence to unravel priming mechanisms by natural compounds. PMID:29104580
Goddard, Marcia N; van Rijn, Sophie; Rombouts, Serge A R B; Swaab, Hanna
2016-12-01
Klinefelter syndrome (47,XXY) is associated with physical, behavioral, and cognitive consequences. Deviations in brain structure and function have been reported, but structural characteristics of white matter have barely been assessed. This exploratory diffusion tensor imaging study assessed white matter microstructure in boys with 47,XXY compared with non-clinical, male controls. Additionally, both similarities and differences between 47,XXY and autism spectrum disorders (ASD) have been reported in cognition, behavior and neural architecture. To further investigate these brain-behavior pathways, white matter microstructure in boys with 47,XXY was compared to that of boys with ASD. Fractional anisotropy (FA), radial diffusivity (Dr), axial diffusivity (Da), and mean diffusivity (MD) were assessed in 47,XXY (n = 9), ASD (n = 18), and controls (n = 14), using tract-based spatial statistics. Compared with controls, boys with 47,XXY have reduced FA, coupled with reduced Da, in the corpus callosum. Boys with 47,XXY also have reduced Dr. in the left anterior corona radiata and sagittal striatum compared with controls. Compared with boys with ASD, boys with 47,XXY show reduced Da in the right inferior fronto-occipital fasciculus. Although this study is preliminary considering the small sample size, reduced white matter integrity in the corpus callosum may be a contributing factor in the cognitive and behavioral problems associated with 47,XXY. In addition, the differences in white matter microstructure between 47,XXY and ASD may be important for our understanding of the mechanisms that are fundamental to behavioral outcome in social dysfunction, and may be targeted through intervention.
Gold, Brian T.; Jiang, Yang; Powell, David K.; Smith, Charles D.
2012-01-01
White matter (WM) microstructural declines have been demonstrated in Alzheimer’s disease and amnestic mild cognitive impairment (aMCI). However, the pattern of WM microstructural changes in aMCI after controlling for WM atrophy is unknown. Here, we address this issue through joint consideration of aMCI alterations in fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, as well as macrostructural volume in WM and gray matter compartments. Participants were 18 individuals with aMCI and 24 healthy seniors. Voxelwise analyses of diffusion tensor imaging data was carried out using tract-based spatial statistics (TBSS) and voxelwise analyses of high-resolution structural data was conducted using voxel based morphometry. After controlling for WM atrophy, the main pattern of TBSS findings indicated reduced fractional anisotropy with only small alterations in mean diffusivity/radial diffusivity/axial diffusivity. These WM microstructural declines bordered and/or were connected to gray matter structures showing volumetric declines. However, none of the potential relationships between WM integrity and volume in connected gray matter structures was significant, and adding fractional anisotropy information improved the classificatory accuracy of aMCI compared to the use of hippocampal atrophy alone. These results suggest that WM microstructural declines provide unique information not captured by atrophy measures that may aid the magnetic resonance imaging contribution to aMCI detection. PMID:22460327
Clark, Alexandra L; Bangen, Katherine J; Sorg, Scott F; Schiehser, Dawn M; Evangelista, Nicole D; McKenna, Benjamin; Liu, Thomas T; Delano-Wood, Lisa
2017-01-01
Cerebral blood flow (CBF) plays a critical role in the maintenance of neuronal integrity, and CBF alterations have been linked to deleterious white matter changes. Although both CBF and white matter microstructural alterations have been observed within the context of traumatic brain injury (TBI), the degree to which these pathological changes relate to one another and whether this association is altered by time since injury have not been examined. The current study therefore sought to clarify associations between resting CBF and white matter microstructure post-TBI. 37 veterans with history of mild or moderate TBI (mmTBI) underwent neuroimaging and completed health and psychiatric symptom questionnaires. Resting CBF was measured with multiphase pseudocontinuous arterial spin labeling (MPPCASL), and white matter microstructural integrity was measured with diffusion tensor imaging (DTI). The cingulate cortex and cingulum bundle were selected as a priori regions of interest for the ASL and DTI data, respectively, given the known vulnerability of these regions to TBI. Regression analyses controlling for age, sex, and posttraumatic stress disorder (PTSD) symptoms revealed a significant time since injury × resting CBF interaction for the left cingulum ( p < 0.005). Decreased CBF was significantly associated with reduced cingulum fractional anisotropy (FA) in the chronic phase; however, no such association was observed for participants with less remote TBI. Our results showed that reduced CBF was associated with poorer white matter integrity in those who were further removed from their brain injury. Findings provide preliminary evidence of a possible dynamic association between CBF and white matter microstructure that warrants additional consideration within the context of the negative long-term clinical outcomes frequently observed in those with history of TBI. Additional cross-disciplinary studies integrating multiple imaging modalities (e.g., DTI, ASL) and refined neuropsychiatric assessment are needed to better understand the nature, temporal course, and dynamic association between brain changes and clinical outcomes post-injury.
Diffusion Tensor Imaging of Pedophilia.
Cantor, James M; Lafaille, Sophie; Soh, Debra W; Moayedi, Massieh; Mikulis, David J; Girard, Todd A
2015-11-01
Pedophilia is a principal motivator of child molestation, incurring great emotional and financial burdens on victims and society. Even among pedophiles who never commit any offense,the condition requires lifelong suppression and control. Previous comparison using voxel-based morphometry (VBM)of MR images from a large sample of pedophiles and controls revealed group differences in white matter. The present study therefore sought to verify and characterize white matter involvement using diffusion tensor imaging (DTI), which better captures the microstructure of white matter than does VBM. Pedophilics ex offenders (n=24) were compared with healthy, age-matched controls with no criminal record and no indication of pedophilia (n=32). White matter microstructure was analyzed with Tract-Based Spatial Statistics, and the trajectories of implicated fiber bundles were identified by probabilistic tractography. Groups showed significant, highly focused differences in DTI parameters which related to participants’ genital responses to sexual depictions of children, but not to measures of psychopathy or to childhood histories of physical abuse, sexual abuse, or neglect. Some previously reported gray matter differences were suggested under highly liberal statistical conditions (p(uncorrected)<.005), but did not survive ordinary statistical correction (whole brain per voxel false discovery rate of 5%). These results confirm that pedophilia is characterized by neuroanatomical differences in white matter microstructure, over and above any neural characteristics attributable to psychopathy and childhood adversity, which show neuroanatomic footprints of their own. Although some gray matter structures were implicated previously, only few have emerged reliably.
Meijboom, R; Steketee, R M E; de Koning, I; Osse, R J; Jiskoot, L C; de Jong, F J; van der Lugt, A; van Swieten, J C; Smits, M
2017-04-01
Phenocopy frontotemporal dementia (phFTD) is a rare and poorly understood clinical syndrome. PhFTD shows core behavioural variant FTD (bvFTD) symptoms without associated cognitive deficits and brain abnormalities on conventional MRI and without progression. In contrast to phFTD, functional connectivity and white matter (WM) microstructural abnormalities have been observed in bvFTD. We hypothesise that phFTD belongs to the same disease spectrum as bvFTD and investigated whether functional connectivity and microstructural WM changes similar to bvFTD are present in phFTD. Seven phFTD patients without progression or alternative psychiatric diagnosis, 12 bvFTD patients and 17 controls underwent resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI). Default mode network (DMN) connectivity and WM measures were compared between groups. PhFTD showed subtly increased DMN connectivity and subtle microstructural changes in frontal WM tracts. BvFTD showed abnormalities in similar regions as phFTD, but had lower increased DMN connectivity and more extensive microstructural WM changes. Our findings can be interpreted as neuropathological changes in phFTD and are in support of the hypothesis that phFTD and bvFTD may belong to the same disease spectrum. Advanced MRI techniques, objectively identifying brain abnormalities, would therefore be potentially suited to improve the diagnosis of phFTD. • PhFTD shows brain abnormalities that are similar to bvFTD. • PhFTD shows increased functional connectivity in the parietal default mode network. • PhFTD shows microstructural white matter abnormalities in the frontal lobe. • We hypothesise phFTD and bvFTD may belong to the same disease spectrum.
Herrmann, Markus M; Pinto, Sheena; Kluth, Jantjeline; Wienand, Udo; Lorbiecke, René
2006-10-06
The tomato kinase Pto confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato in a gene for gene manner. Upon recognition of specific avirulence factors the Pto kinase activates multiple signal transduction pathways culminating in induction of pathogen defense. The soluble cytoplasmic serine/threonine kinase Pti1 is one target of Pto phosphorylation and is involved in the hypersensitive response (HR) reaction. However, a clear role of Pti1 in plant pathogen resistance is uncertain. So far, no Pti1 homologues from monocotyledonous species have been studied. Here we report the identification and molecular analysis of four Pti1-like kinases from maize (ZmPti1a, -b, -c, -d). These kinase genes showed tissue-specific expression and their corresponding proteins were targeted to different cellular compartments. Sequence similarity, expression pattern and cellular localization of ZmPti1b suggested that this gene is a putative orthologue of Pti1 from tomato. In contrast, ZmPti1a was specifically expressed in pollen and sequestered to the plasma membrane, evidently owing to N-terminal modification by myristoylation and/or S-acylation. The ZmPti1a:GFP fusion protein was not evenly distributed at the pollen plasma membrane but accumulated as an annulus-like structure which co-localized with callose (1,3-beta-glucan) deposition. In addition, co-localization of ZmPti1a and callose was observed during stages of pollen mitosis I and pollen tube germination. Maize plants in which ZmPti1a expression was silenced by RNA interference (RNAi) produced pollen with decreased competitive ability. Hence, our data provide evidence that ZmPti1a plays an important part in a signalling pathway that accelerates pollen performance and male fitness. ZmPti1a from maize is involved in pollen-specific processes during the progamic phase of reproduction, probably in crucial signalling processes associated with regions of callose deposition. Pollen-sporophyte interactions and pathogen induced HR show certain similarities. For example, HR has been shown to be associated with cell wall reinforcement through callose deposition. Hence, it is hypothesized that Pti1 kinases from maize act as general components in evolutionary conserved signalling processes associated with callose, however during different developmental programs and in different tissue types.
Sexually dimorphic white matter geometry abnormalities in adolescent onset schizophrenia.
Savadjiev, P; Whitford, T J; Hough, M E; Clemm von Hohenberg, C; Bouix, S; Westin, C-F; Shenton, M E; Crow, T J; James, A C; Kubicki, M
2014-05-01
The normal human brain is characterized by a pattern of gross anatomical asymmetry. This pattern, known as the "torque", is associated with a sexual dimorphism: The male brain tends to be more asymmetric than that of the female. This fact, along with well-known sex differences in brain development (faster in females) and onset of psychosis (earlier with worse outcome in males), has led to the theory that schizophrenia is a disorder in which sex-dependent abnormalities in the development of brain torque, the correlate of the capacity for language, cause alterations in interhemispheric connectivity, which are causally related to psychosis (Crow TJ, Paez P, Chance SE. 2007. Callosal misconnectivity and the sex difference in psychosis. Int Rev Psychiatry. 19(4):449-457.). To provide evidence toward this theory, we analyze the geometry of interhemispheric white matter connections in adolescent-onset schizophrenia, with a particular focus on sex, using a recently introduced framework for white matter geometry computation in diffusion tensor imaging data (Savadjiev P, Kindlmann GL, Bouix S, Shenton ME, Westin CF. 2010. Local white geometry from diffusion tensor gradients. Neuroimage. 49(4):3175-3186.). Our results reveal a pattern of sex-dependent white matter geometry abnormalities that conform to the predictions of Crow's torque theory and correlate with the severity of patients' symptoms. To the best of our knowledge, this is the first study to associate geometrical differences in white matter connectivity with torque in schizophrenia.
Anatürk, M; Demnitz, N; Ebmeier, K P; Sexton, C E
2018-06-22
Population aging has prompted considerable interest in identifying modifiable factors that may help protect the brain and its functions. Collectively, epidemiological studies show that leisure activities with high mental and social demands are linked with better cognition in old age. The extent to which socio-intellectual activities relate to the brain's structure is, however, not yet fully understood. This systematic review and meta-analysis summarizes magnetic resonance imaging studies that have investigated whether cognitive and social activities correlate with measures of gray and white matter volume, white matter microstructure and white matter lesions. Across eighteen included studies (total n = 8429), activity levels were associated with whole-brain white matter volume, white matter lesions and regional gray matter volume, although effect sizes were small. No associations were found for global gray matter volume and the evidence concerning white matter microstructure was inconclusive. While the causality of the reviewed associations needs to be established, our findings implicate socio-intellectual activity levels as promising targets for interventions aimed at promoting healthy brain aging. Copyright © 2018. Published by Elsevier Ltd.
A Strategy to Validate the Role of Callose-mediated Plasmodesmal Gating in the Tropic Response.
Kumar, Ritesh; Wu, Shu Wei; Iswanto, Arya Bagus Boedi; Kumar, Dhinesh; Han, Xiao; Kim, Jae-Yean
2016-04-17
The plant hormone auxin plays an important role in many growth and developmental processes, including tropic responses to light and gravity. The establishment of an auxin gradient is a key event leading to phototropism and gravitropism. Previously, polar auxin transport (PAT) was shown to establish an auxin gradient in different cellular domains of plants. However, Han et al. recently demonstrated that for proper auxin gradient formation, plasmodesmal callose-mediated symplasmic connectivity between the adjacent cells is also a critical factor. In this manuscript, the strategy to elucidate the role of particular genes, which can affect phototropism and gravitropism by altering the symplasmic connectivity through modulating plasmodesmal callose synthesis, is discussed. The first step is to screen aberrant tropic responses from 3-day-old etiolated seedlings of mutants or over-expression lines of a gene along with the wild type. This preliminary screening can lead to the identification of a range of genes functioning in PAT or controlling symplasmic connectivity. The second screening involves the sorting of candidates that show altered tropic responses by affecting symplasmic connectivity. To address such candidates, the movement of a symplasmic tracer and the deposition of plasmodesmal callose were examined. This strategy would be useful to explore new candidate genes that can regulate symplasmic connectivity directly or indirectly during tropic responses and other developmental processes.
Wang, Xue; Casadio, Maura; Weber, Kenneth A; Mussa-Ivaldi, Ferdinando A; Parrish, Todd B
2014-03-01
The purpose of this study is to identify white matter microstructure changes following bilateral upper extremity motor skill training to increase our understanding of learning-induced structural plasticity and enhance clinical strategies in physical rehabilitation. Eleven healthy subjects performed two visuo-spatial motor training tasks over 9 sessions (2-3 sessions per week). Subjects controlled a cursor with bilateral simultaneous movements of the shoulders and upper arms using a body machine interface. Before the start and within 2days of the completion of training, whole brain diffusion tensor MR imaging data were acquired. Motor training increased fractional anisotropy (FA) values in the posterior and anterior limbs of the internal capsule, the corona radiata, and the body of the corpus callosum by 4.19% on average indicating white matter microstructure changes induced by activity-dependent modulation of axon number, axon diameter, or myelin thickness. These changes may underlie the functional reorganization associated with motor skill learning. Copyright © 2013 Elsevier Inc. All rights reserved.
Anjanappa, Ravi B; Mehta, Devang; Okoniewski, Michal J; Szabelska-Berȩsewicz, Alicja; Gruissem, Wilhelm; Vanderschuren, Hervé
2018-02-01
Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) are responsible for significant cassava yield losses in eastern sub-Saharan Africa. To study the possible mechanisms of plant resistance to CBSVs, we inoculated CBSV-susceptible and CBSV-resistant cassava varieties with a mixed infection of CBSVs using top-cleft grafting. Transcriptome profiling of the two cassava varieties was performed at the earliest time point of full infection (28 days after grafting) in the susceptible scions. The expression of genes encoding proteins in RNA silencing, salicylic acid pathways and callose deposition was altered in the susceptible cassava variety, but transcriptional changes were limited in the resistant variety. In total, the expression of 585 genes was altered in the resistant variety and 1292 in the susceptible variety. Transcriptional changes led to the activation of β-1,3-glucanase enzymatic activity and a reduction in callose deposition in the susceptible cassava variety. Time course analysis also showed that CBSV replication in susceptible cassava induced a strong up-regulation of RDR1, a gene previously reported to be a susceptibility factor in other potyvirus-host pathosystems. The differences in the transcriptional responses to CBSV infection indicated that susceptibility involves the restriction of callose deposition at plasmodesmata. Aniline blue staining of callose deposits also indicated that the resistant variety displays a moderate, but significant, increase in callose deposition at the plasmodesmata. Transcriptome data suggested that resistance does not involve typical antiviral defence responses (i.e. RNA silencing and salicylic acid). A meta-analysis of the current RNA-sequencing (RNA-seq) dataset and selected potyvirus-host and virus-cassava RNA-seq datasets revealed that the conservation of the host response across pathosystems is restricted to genes involved in developmental processes. © 2017 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.
Akintola, Abimbola A; van den Berg, Annette; Altmann-Schneider, Irmhild; Jansen, Steffy W; van Buchem, Mark A; Slagboom, P Eline; Westendorp, Rudi G; van Heemst, Diana; van der Grond, Jeroen
2015-08-01
Given the concurrent, escalating epidemic of diabetes mellitus and neurodegenerative diseases, two age-related disorders, we aimed to understand the relation between parameters of glucose metabolism and indices of pathology in the aging brain. From the Leiden Longevity Study, 132 participants (mean age 66 years) underwent a 2-h oral glucose tolerance test to assess glucose tolerance (fasted and area under the curve (AUC) glucose), insulin sensitivity (fasted and AUC insulin and homeostatic model assessment of insulin sensitivity (HOMA-IS)) and insulin secretion (insulinogenic index). 3-T brain MRI was used to detect macro-structural damage (atrophy, white matter hyper-intensities, infarcts and/or micro-bleeds) and magnetization transfer imaging (MTI) to detect loss of micro-structural homogeneity that remains otherwise invisible on conventional MRI. Macro-structurally, higher fasted glucose was significantly associated with white matter atrophy (P = 0.028). Micro-structurally, decreased magnetization transfer ratio (MTR) peak height in gray matter was associated with higher fasted insulin (P = 0.010), AUCinsulin (P = 0.001), insulinogenic index (P = 0.008) and lower HOMA-IS index (P < 0.001). Similar significant associations were found for white matter. Thus, while higher glucose was associated with macro-structural damage, impaired insulin action was associated more strongly with reduced micro-structural brain parenchymal homogeneity. These findings offer some insight into the association between different parameters of glucose metabolism (impairment of which is characteristic of diabetes mellitus) and brain aging.
Kranz, Georg S; Seiger, Rene; Kaufmann, Ulrike; Hummer, Allan; Hahn, Andreas; Ganger, Sebastian; Tik, Martin; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert
2017-04-15
Sex steroid hormones such as estradiol and testosterone are known to have organizing, as well as activating effects on neural tissue in animals and humans. This study investigated the effects of transgender hormone replacement therapy on white matter microstructure using diffusion tensor imaging. Female-to-male and male-to-female transgender participants were measured at baseline, four weeks and four months past treatment start and compared to female and male controls. We observed androgenization-related reductions in mean diffusivity and increases in fractional anisotropy. We also observed feminization-related increases in mean diffusivity and reductions in fractional anisotropy. In both transgender participants and controls, hormonal fluctuations were correlated with changes in white matter microstructure. Although the present study does not preclude regression to the mean as a potential contributing factor, the results indicate that sex hormones are - at least in part - responsible for white matter variability in the human brain. Studies investigating the effects of sex hormones on adult human brain structure may be an important route for greater understanding of the psychological differences between females and males. Copyright © 2017 Elsevier Inc. All rights reserved.
The Center for Advanced Food Technology: Food Related Studies.
1992-11-16
Glucan (Callose) Synthase from Beta Vulgaris L. by Product-Entrapment," Entrapment Mechanisms and Polypeptide Characterization. Elant MU g. 97:684...Na3HGe7O16 xH20, xaO 0-6. 1," Chemiatr of Materials, 4:388. FRost, D.L, Drake, R.R., and B.P. Wasserman (1992) ’(1,3)-- glucan Synthase from Saccbaro...Wu, A., and R.W. Harriman (1992) "Probing the Molecular Architecture of (1,3-- Glucan (Callose) Synthase: Polypeptide Depletion Studies," Biochemical
Starkey, Jay; Kobayashi, Nobuo; Numaguchi, Yuji; Moritani, Toshio
2017-01-01
Cytotoxic lesions of the corpus callosum (CLOCCs) are secondary lesions associated with various entities. CLOCCs have been found in association with drug therapy, malignancy, infection, subarachnoid hemorrhage, metabolic disorders, trauma, and other entities. In all of these conditions, cell-cytokine interactions lead to markedly increased levels of cytokines and extracellular glutamate. Ultimately, this cascade can lead to dysfunction of the callosal neurons and microglia. Cytotoxic edema develops as water becomes trapped in these cells. On diffusion-weighted magnetic resonance (MR) images, CLOCCs manifest as areas of low diffusion. CLOCCs lack enhancement on contrast material-enhanced images, tend to be midline, and are relatively symmetric. The involvement of the corpus callosum typically shows one of three patterns: (a) a small round or oval lesion located in the center of the splenium, (b) a lesion centered in the splenium but extending through the callosal fibers laterally into the adjacent white matter, or (c) a lesion centered posteriorly but extending into the anterior corpus callosum. CLOCCs are frequently but not invariably reversible. Their pathologic mechanisms are discussed, the typical MR imaging findings are described, and typical cases of CLOCCs are presented. Although CLOCCs are nonspecific with regard to the underlying cause, additional imaging findings and the clinical findings can aid in making a specific diagnosis. Radiologists should be familiar with the imaging appearance of CLOCCs to avoid a misdiagnosis of ischemia. When CLOCCs are found, the underlying cause of the lesion should be sought and addressed. © RSNA, 2017 An earlier incorrect version of this article appeared online. This article was corrected on February 13, 2017.
Associations Between White Matter Microstructure and Infants’ Working Memory
Short, Sarah J.; Elison, Jed T.; Goldman, Barbara Davis; Styner, Martin; Gu, Hongbin; Connelly, Mark; Maltbie, Eric; Woolson, Sandra; Lin, Weili; Gerig, Guido; Reznick, J. Steven; Gilmore, John H.
2013-01-01
Working memory emerges in infancy and plays a privileged role in subsequent adaptive cognitive development. The neural networks important for the development of working memory during infancy remain unknown. We used diffusion tensor imaging (DTI) and deterministic fiber tracking to characterize the microstructure of white matter fiber bundles hypothesized to support working memory in 12-month-old infants (n=73). Here we show robust associations between infants’ visuospatial working memory performance and microstructural characteristics of widespread white matter. Significant associations were found for white matter tracts that connect brain regions known to support working memory in older children and adults (genu, anterior and superior thalamic radiations, anterior cingulum, arcuate fasciculus, and the temporal-parietal segment). Better working memory scores were associated with higher FA and lower RD values in these selected white matter tracts. These tract-specific brain-behavior relationships accounted for a significant amount of individual variation above and beyond infants’ gestational age and developmental level, as measured with the Mullen Scales of Early Learning. Working memory was not associated with global measures of brain volume, as expected, and few associations were found between working memory and control white matter tracts. To our knowledge, this study is among the first demonstrations of brain-behavior associations in infants using quantitative tractography. The ability to characterize subtle individual differences in infant brain development associated with complex cognitive functions holds promise for improving our understanding of normative development, biomarkers of risk, experience-dependent learning and neuro-cognitive periods of developmental plasticity. PMID:22989623
Microstructure abnormalities in adolescents with internet addiction disorder.
Yuan, Kai; Qin, Wei; Wang, Guihong; Zeng, Fang; Zhao, Liyan; Yang, Xuejuan; Liu, Peng; Liu, Jixin; Sun, Jinbo; von Deneen, Karen M; Gong, Qiyong; Liu, Yijun; Tian, Jie
2011-01-01
Recent studies suggest that internet addiction disorder (IAD) is associated with structural abnormalities in brain gray matter. However, few studies have investigated the effects of internet addiction on the microstructural integrity of major neuronal fiber pathways, and almost no studies have assessed the microstructural changes with the duration of internet addiction. We investigated the morphology of the brain in adolescents with IAD (N = 18) using an optimized voxel-based morphometry (VBM) technique, and studied the white matter fractional anisotropy (FA) changes using the diffusion tensor imaging (DTI) method, linking these brain structural measures to the duration of IAD. We provided evidences demonstrating the multiple structural changes of the brain in IAD subjects. VBM results indicated the decreased gray matter volume in the bilateral dorsolateral prefrontal cortex (DLPFC), the supplementary motor area (SMA), the orbitofrontal cortex (OFC), the cerebellum and the left rostral ACC (rACC). DTI analysis revealed the enhanced FA value of the left posterior limb of the internal capsule (PLIC) and reduced FA value in the white matter within the right parahippocampal gyrus (PHG). Gray matter volumes of the DLPFC, rACC, SMA, and white matter FA changes of the PLIC were significantly correlated with the duration of internet addiction in the adolescents with IAD. Our results suggested that long-term internet addiction would result in brain structural alterations, which probably contributed to chronic dysfunction in subjects with IAD. The current study may shed further light on the potential brain effects of IAD.
Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI.
Groeschel, Samuel; Hagberg, Gisela E; Schultz, Thomas; Balla, Dávid Z; Klose, Uwe; Hauser, Till-Karsten; Nägele, Thomas; Bieri, Oliver; Prasloski, Thomas; MacKay, Alex L; Krägeloh-Mann, Ingeborg; Scheffler, Klaus
2016-01-01
We investigate how known differences in myelin architecture between regions along the cortico-spinal tract and frontal white matter (WM) in 19 healthy adolescents are reflected in several quantitative MRI parameters that have been proposed to non-invasively probe WM microstructure. In a clinically feasible scan time, both conventional imaging sequences as well as microstructural MRI parameters were assessed in order to quantitatively characterise WM regions that are known to differ in the thickness of their myelin sheaths, and in the presence of crossing or parallel fibre organisation. We found that diffusion imaging, MR spectroscopy (MRS), myelin water fraction (MWF), Magnetization Transfer Imaging, and Quantitative Susceptibility Mapping were myelin-sensitive in different ways, giving complementary information for characterising WM microstructure with different underlying fibre architecture. From the diffusion parameters, neurite density (NODDI) was found to be more sensitive than fractional anisotropy (FA), underlining the limitation of FA in WM crossing fibre regions. In terms of sensitivity to different myelin content, we found that MWF, the mean diffusivity and chemical-shift imaging based MRS yielded the best discrimination between areas. Multimodal assessment of WM microstructure was possible within clinically feasible scan times using a broad combination of quantitative microstructural MRI sequences. By assessing new microstructural WM parameters we were able to provide normative data and discuss their interpretation in regions with different myelin architecture, as well as their possible application as biomarker for WM disorders.
Disrupted White Matter Microstructure and Mood Disorders after Traumatic Brain Injury.
Spitz, Gershon; Alway, Yvette; Gould, Kate Rachel; Ponsford, Jennie L
2017-02-15
Traumatic brain injury (TBI) is associated with an elevated frequency of mood disorders that may, in part, be explained by changes in white-matter microstructure. This study is the first to examine the relationship between mood disorders and white-matter pathology in a sample of patients with mild to severe TBI using a standardized psychiatric interview. This study reports on a sub-sample of 29 individuals recruited from a large prospective study that examined the evolution of psychiatric disorders following complicated, mild to severe TBI. Individuals with TBI were also compared with 23 healthy control participants. Individuals were invited to complete the Structured Clinical Interview for DSM-IV Disorders (SCID) to diagnose psychiatric disorders. Participants who developed a mood disorder within the first 3 years were categorized into a TBI-Mood group. Diffusion tensor tractography assessed white matter microstructure using atlas-based tract-averaged and along-tract approaches. Fractional anisotropy (FA) was used as the measure of white-matter microstructure. TBI participants with and without a mood disorder did not differ in regard to injury severity and other background factors. Nevertheless, TBI participants diagnosed with a mood disorder displayed significantly lower tract-averaged FA values for the right arcuate fasciculus (p = 0.011), right inferior longitudinal fasciculus (p = 0.009), and anterior segments I (p = 0.0004) and II (p = 0.007) of the corpus callosum, as well as the left (p = 0.014) and right (p = 0.015) fronto-occipital longitudinal fasciculi. The pattern of white matter disruption identified in the current study provides further support for a neurobiological basis of post-TBI mood disorders. Greater understanding of individuals' underlying neuropathology may enable better characterization and prediction of mood disorders. Integration of neuropathology may also inform the potential efficacy of pharmacological and psychological interventions.
White matter correlates of psychopathic traits in a female community sample
Budhiraja, Meenal; Westerman, Johan; Savic, Ivanka; Jokinen, Jussi; Tiihonen, Jari; Hodgins, Sheilagh
2017-01-01
Abstract Psychopathy comprises interpersonal, affective, lifestyle and antisocial facets that vary dimensionally in the population and are associated with criminal offending and adverse psychosocial outcomes. Evidence associating these facets with white matter microstructure of the uncinate fasciculus and the cingulum tracts is inconsistent and derives principally from studies of male offenders. In a sample of 99 young women presenting a range of scores on the Psychopathy Checklist: Screening Version, we used Diffusion Tensor Imaging, tractography and Tract-Based Spatial Statistics to investigate microstructure across the brain and of the uncinate fasciculus and cingulum. Right uncinate fasciculus microstructure was negatively associated with the interpersonal facet, while cingulum integrity was not associated with any facet of psychopathy. Whole-brain analyses revealed that both affective and lifestyle facets were negatively correlated with white matter microstructure adjacent to the fusiform gyrus, and the interpersonal facet correlated negatively with the integrity of the fornix. Findings survived adjustment for the other facet scores, and age, verbal and performance IQ. A similar negative association between the interpersonal facet and uncinate fasciculus integrity was previously observed in male offenders. Thus, previous evidence showing that psychopathic traits are associated with functional and structural abnormalities within limbic networks may also apply to females. PMID:28992269
Microstructural Abnormalities of Short-Distance White Matter Tracts in Autism Spectrum Disorder
ERIC Educational Resources Information Center
Shukla, Dinesh K.; Keehn, Brandon; Smylie, Daren M.; Muller, Ralph-Axel
2011-01-01
Recent functional connectivity magnetic resonance imaging and diffusion tensor imaging (DTI) studies have suggested atypical functional connectivity and reduced integrity of long-distance white matter fibers in autism spectrum disorder (ASD). However, evidence for short-distance white matter fibers is still limited, despite some speculation of…
Tetsuka, Syuichi; Nonaka, Hiroaki
2017-05-25
Severe haemolysis, elevated liver enzyme levels, and low platelet count (HELLP) syndrome in pregnancy are possible underlying trigger factors for posterior reversible encephalopathy syndrome (PRES). Magnetic resonance imaging (MRI) shows diffuse signal abnormalities involving the subcortical white matter in the parieto-occipital lobes. Although the diagnosis of RPES was clearly established by the distinctive reversibility of clinical and radiological abnormalities, it is difficult to distinguish from differential diagnosis. Thus, it is important to correctly interpret MRI. We describe a case of HELLP syndrome with PRES. A 38-year-old pregnant woman was admitted to our hospital as an emergency case with a complaint of upper abdominal pain and headache at 29 weeks of pregnancy and the development of HELLP syndrome. An emergency caesarean section was immediately performed. After the operation, the patient received intravenous corticosteroids, and her blood pressure was controlled. Thereafter, she showed an altered mental status. MRI showed hypersignal intense lesions in the cortical and subcortical white matter in the occipital lobes, basal ganglia and callosal splenium in both the fluid-attenuated inversion recovery (FLAIR) sequence and apparent diffusion coefficient (ADC), but these lesions were not recognized in diffusion-weighted imaging (DWI). These images were suggestive of PRES. The patient was kept in the hospital and received the appropriate treatment, after which the patient's level of consciousness improved and all laboratory tests and imaging examinations returned normal. The MRI findings were useful for the prompt diagnosis of PRES, characterized by hypersignals in FLAIR and ADC, but not in DWI. Additionally, there was an "atypical" MRI appearance of basal ganglial and callosal splenial involvement in this case, which may mistakenly lead clinicians to diagnose other aetiologies than typical PRES. It is considered that vasogenic oedema is the main pathology of PRES according to the MRI image findings. MRI is the gold standard for diagnosing PRES because it can provide information about cerebral involvement earlier than CT; further, it can be a useful tool in the differential diagnosis. This technique facilitated the prompt diagnosis and treatment of the said patient, ultimately resulting in a good outcome.
Cell-to-cell communication via plasmodesmata in vascular plants
Sevilem, Iris; Miyashima, Shunsuke; Helariutta, Ykä
2013-01-01
In plant development, cell-to-cell signaling is mediated by mobile signals, including transcription factors and small RNA molecules. This communication is essential for growth and patterning. Short-range movement of signals occurs in the extracellular space via the apoplastic pathway or directly from cell-to-cell via the symplastic pathway. Symplastic transport is mediated by plant specific structures called plasmodesmata, which are plasma membrane-lined pores that traverse the cell walls of adjacent cells thus connecting their cytoplasms. However, a thorough understanding of molecules moving via plasmodesmata and regulatory networks relying on symplastic signaling is lacking. Traffic via plasmodesmata is highly regulated, and callose turnover is known to be one mechanism. In Arabidopsis, plasmodesmata apertures can be regulated in a spatially and temporally specific manner with the icals3m, an inducible vector system expressing the mutated CalS3 gene encoding a plasmodesmata localized callose synthase that increases callose deposition at plasmodesmata. We discuss strategies to use the icals3m system for global analyses on symplastic signaling in plants. PMID:23076211
Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis.
Iswanto, Arya Bagus Boedi; Kim, Jae-Yean
2017-04-03
A bstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.
Laing, R.J.; Turecek, J.; Takahata, T.; Olavarria, J.F.
2015-01-01
Ocular dominance columns (ODCs) exist in many primates and carnivores, but it is believed that they do not exist in rodents. Using a combination of transneuronal tracing, in situ hybridization for Zif268 and electrophysiological recordings, we show that inputs from both eyes are largely segregated in the binocular region of V1 in Long Evans rats. We also show that, interposed between this binocular region and the lateral border of V1, there lies a strip of cortex that is strongly dominated by the contralateral eye. Finally, we show that callosal connections colocalize primarily with ipsilateral eye domains in the binocular region and with contralateral eye input in the lateral cortical strip, mirroring the relationship between patchy callosal connections and specific sets of ODCs described previously in the cat. Our results suggest that development of cortical modular architecture is more conserved among rodents, carnivores, and primates than previously thought. PMID:24969475
Mataró, Maria; Matarín, Mar; Poca, Maria Antonia; Pueyo, Roser; Sahuquillo, Juan; Barrios, Maite; Junqué, Carme
2007-01-01
Background Normal pressure hydrocephalus (NPH) is associated with corpus callosum abnormalities. Objectives To study the clinical and neuropsychological effect of callosal thinning in 18 patients with idiopathic NPH and to investigate the postsurgical callosal changes in 14 patients. Methods Global corpus callosum size and seven callosal subdivisions were measured. Neuropsychological assessment included an extensive battery assessing memory, psychomotor speed, visuospatial and frontal lobe functioning. Results After surgery, patients showed improvements in memory, visuospatial and frontal lobe functions, and psychomotor speed. Two frontal corpus callosum areas, the genu and the rostral body, were the regions most related to the clinical and neuropsychological dysfunction. After surgery, total corpus callosum and four of the seven subdivisions presented a significant increase in size, which was related to poorer neuropsychological and clinical outcome. Conclusion The postsurgical corpus callosum increase might be the result of decompression, re‐expansion and increase of interstitial fluid, although it may also be caused by differences in shape due to cerebral reorganisation. PMID:17056634
Herrmann, Markus M; Pinto, Sheena; Kluth, Jantjeline; Wienand, Udo; Lorbiecke, René
2006-01-01
Background The tomato kinase Pto confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato in a gene for gene manner. Upon recognition of specific avirulence factors the Pto kinase activates multiple signal transduction pathways culminating in induction of pathogen defense. The soluble cytoplasmic serine/threonine kinase Pti1 is one target of Pto phosphorylation and is involved in the hypersensitive response (HR) reaction. However, a clear role of Pti1 in plant pathogen resistance is uncertain. So far, no Pti1 homologues from monocotyledonous species have been studied. Results Here we report the identification and molecular analysis of four Pti1-like kinases from maize (ZmPti1a, -b, -c, -d). These kinase genes showed tissue-specific expression and their corresponding proteins were targeted to different cellular compartments. Sequence similarity, expression pattern and cellular localization of ZmPti1b suggested that this gene is a putative orthologue of Pti1 from tomato. In contrast, ZmPti1a was specifically expressed in pollen and sequestered to the plasma membrane, evidently owing to N-terminal modification by myristoylation and/or S-acylation. The ZmPti1a:GFP fusion protein was not evenly distributed at the pollen plasma membrane but accumulated as an annulus-like structure which co-localized with callose (1,3-β-glucan) deposition. In addition, co-localization of ZmPti1a and callose was observed during stages of pollen mitosis I and pollen tube germination. Maize plants in which ZmPti1a expression was silenced by RNA interference (RNAi) produced pollen with decreased competitive ability. Hence, our data provide evidence that ZmPti1a plays an important part in a signalling pathway that accelerates pollen performance and male fitness. Conclusion ZmPti1a from maize is involved in pollen-specific processes during the progamic phase of reproduction, probably in crucial signalling processes associated with regions of callose deposition. Pollen-sporophyte interactions and pathogen induced HR show certain similarities. For example, HR has been shown to be associated with cell wall reinforcement through callose deposition. Hence, it is hypothesized that Pti1 kinases from maize act as general components in evolutionary conserved signalling processes associated with callose, however during different developmental programs and in different tissue types. PMID:17022830
Ferrer, E.; Whitaker, K.J.; Steele, J.; Green, C.T.; Wendelken, C.; Bunge, S.A.
2013-01-01
The structure of the human brain changes in several ways throughout childhood and adolescence. Perhaps the most salient of these changes is the strengthening of white matter tracts that enable distal brain regions to communicate with one another more quickly and efficiently. Here, we sought to understand whether and how white matter changes contribute to improved reasoning ability over development. In particular, we sought to understand whether previously reported relationships between white matter microstructure and reasoning are mediated by processing speed. To this end, we analyzed diffusion tensor imaging data as well as data from standard psychometric tests of cognitive abilities from 103 individuals between the ages of 6 and 18. We used structural equation modeling to investigate the network of relationships between brain and behavior variables. Our analyses provide support for the hypothesis that white matter maturation (as indexed either by microstructural organization or volume) supports improved processing speed, which, in turn, supports improved reasoning ability. PMID:24118718
Delineation of early brain development from fetuses to infants with diffusion MRI and beyond.
Ouyang, Minhui; Dubois, Jessica; Yu, Qinlin; Mukherjee, Pratik; Huang, Hao
2018-04-12
Dynamic macrostructural and microstructural changes take place from the mid-fetal stage to 2 years after birth. Delineating structural changes of the brain during early development provides new insights into the complicated processes of both typical development and the pathological mechanisms underlying various psychiatric and neurological disorders including autism, attention deficit hyperactivity disorder and schizophrenia. Decades of histological studies have identified strong spatial and functional maturation gradients in human brain gray and white matter. The recent improvements in magnetic resonance imaging (MRI) techniques, especially diffusion MRI (dMRI), relaxometry imaging, and magnetization transfer imaging (MTI) have provided unprecedented opportunities to non-invasively quantify and map the early developmental changes at whole brain and regional levels. Here, we review the recent advances in understanding early brain structural development during the second half of gestation and the first two postnatal years using modern MR techniques. Specifically, we review studies that delineate the emergence and microstructural maturation of white matter tracts, as well as dynamic mapping of inhomogeneous cortical microstructural organization unique to fetuses and infants. These imaging studies converge into maturational curves of MRI measurements that are distinctive across different white matter tracts and cortical regions. Furthermore, contemporary models offering biophysical interpretations of the dMRI-derived measurements are illustrated to infer the underlying microstructural changes. Collectively, this review summarizes findings that contribute to charting spatiotemporally heterogeneous gray and white matter structural development, offering MRI-based biomarkers of typical brain development and setting the stage for understanding aberrant brain development in neurodevelopmental disorders. Copyright © 2018 Elsevier Inc. All rights reserved.
White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis.
Perlaki, Gabor; Horvath, Reka; Orsi, Gergely; Aradi, Mihaly; Auer, Tibor; Varga, Eszter; Kantor, Gyongyi; Altbäcker, Anna; John, Flora; Doczi, Tamas; Komoly, Samuel; Kovacs, Norbert; Schwarcz, Attila; Janszky, Jozsef
2013-08-01
Most people are left-hemisphere dominant for language. However the neuroanatomy of language lateralization is not fully understood. By combining functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we studied whether language lateralization is associated with cerebral white-matter (WM) microstructure. Sixteen healthy, left-handed women aged 20-25 were included in the study. Left-handers were targeted in order to increase the chances of involving subjects with atypical language lateralization. Language lateralization was determined by fMRI using a verbal fluency paradigm. Tract-based spatial statistics analysis of DTI data was applied to test for WM microstructural correlates of language lateralization across the whole brain. Fractional anisotropy and mean diffusivity were used as indicators of WM microstructural organization. Right-hemispheric language dominance was associated with reduced microstructural integrity of the left superior longitudinal fasciculus and left-sided parietal lobe WM. In left-handed women, reduced integrity of the left-sided language related tracts may be closely linked to the development of right hemispheric language dominance. Our results may offer new insights into language lateralization and structure-function relationships in human language system. Copyright © 2013 Elsevier Inc. All rights reserved.
White matter microstructure integrity in relation to reading proficiency☆.
Nikki Arrington, C; Kulesz, Paulina A; Juranek, Jenifer; Cirino, Paul T; Fletcher, Jack M
2017-11-01
Components of reading proficiency such asaccuracy, fluency, and comprehension require the successful coordination of numerous, yet distinct, cortical regions. Underlying white matter tracts allow for communication among these regions. This study utilized unique residualized tract - based spatial statistics methodology to identify the relations of white matter microstructure integrity to three components of reading proficiency in 49 school - aged children with typically developing phonological decoding skills and 27 readers with poor decoders. Results indicated that measures of white matter integrity were differentially associated with components of reading proficiency. In both typical and poor decoders, reading comprehension correlated with measures of integrity of the right uncinate fasciculus; reading comprehension was also related to the left inferior longitudinal fasciculus in poor decoders. Also in poor decoders, word reading fluency was related to the right uncinate and left inferior fronto - occipital fasciculi. Word reading was unrelated to white matter integrity in either group. These findings expand our knowledge of the association between white matter integrity and different elements of reading proficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Whitaker, Kirstie J; Kang, Xiaojian; Herron, Timothy J; Woods, David L; Robertson, Lynn C; Alvarez, Bryan D
2014-04-15
In this study we show, for the first time, a correlation between the neuroanatomy of the synesthetic brain and a metric that measures behavior not exclusive to the synesthetic experience. Grapheme-color synesthetes (n=20), who experience colors triggered by viewing or thinking of specific letters or numbers, showed altered white matter microstructure, as measured using diffusion tensor imaging, compared with carefully matched non-synesthetic controls. Synesthetes had lower fractional anisotropy and higher perpendicular diffusivity when compared to non-synesthetic controls. An analysis of the mode of anisotropy suggested that these differences were likely due to the presence of more crossing pathways in the brains of synesthetes. Additionally, these differences in white matter microstructure correlated negatively, and only for synesthetes, with a measure of the vividness of their visual imagery. Synesthetes who reported the most vivid visual imagery had the lowest fractional anisotropy and highest perpendicular diffusivity. We conclude that synesthetes as a population vary along a continuum while showing categorical differences in neuroanatomy and behavior compared to non-synesthetes. Copyright © 2013 Elsevier Inc. All rights reserved.
Susac syndrome and pregnancy: disease management.
Deane, Kevin D; Tyler, Kim N; Johnson, David W; Tanabe, Jody L; Oskarrson, Bjorn E; Nitka, Ernest E; Brass, Elizabeth; Davies, Jill K; Striebich, Christopher C
2011-03-01
Susac syndrome (SS) consists of a triad of vision loss, hearing loss, and encephalopathy due to autoimmune-mediated vascular endothelial injury. Herein we describe a 25-year-old previously healthy woman who presented at 20 weeks' gestation with symptoms of confusion, difficulty walking, and vision and hearing loss. She had branch-retinal artery occlusions on funduscopic examination, and sensorineural hearing loss. Additionally, non-contrast enhanced brain magnetic resonance imaging showed multiple white matter and callosal lesions consistent with ischemia. She was treated initially with aspirin, corticosteroids, and intravenous immunoglobulin with early improvement, although recurrent disease was treated with cyclophosphamide and rituximab after induction of premature delivery (at 35 weeks' gestation) to spare the fetus possible toxicity. We additionally discuss a general overview of SS, what is known about pregnancy and this disease, and issues regarding diagnostic and treatment approaches for SS during pregnancy.
Somatosensory discrimination deficits following pediatric cerebral malaria.
Dugbartey, A T; Spellacy, F J; Dugbartey, M T
1998-09-01
Pathologic studies of central nervous system damage in human falciparum malaria indicate primary localization in the cerebral white matter. We report a sensory-perceptual investigation of 20 Ghanaian children with a recent history of cerebral malaria who were age-, gender-, and education-matched with 20 healthy control subjects. Somatosensory examinations failed to show any evidence of hemianesthesia, pseudohemianesthesia, or extinction to double simultaneous tactile stimulation. While unilateral upper limb testing revealed intact unimanual tactile roughness discrimination, bimanual tactile discrimination, however, was significantly impaired in the cerebral malaria group. A strong negative correlation (r = -0.72) between coma duration and the bimanual tactile roughness discrimination test was also found. An inefficiency in the integrity of callosal fibers appear to account for our findings, although alternative subcortical mechanisms known to be involved in information transfer across the cerebral hemispheres may be compromised as well.
White matter connectivity and aerobic fitness in male adolescents.
Herting, Megan M; Colby, John B; Sowell, Elizabeth R; Nagel, Bonnie J
2014-01-01
Exercise has been shown to have positive effects on the brain and behavior throughout various stages of the lifespan. However, little is known about the impact of exercise on neurodevelopment during the adolescent years, particularly with regard to white matter microstructure, as assessed by diffusion tensor imaging (DTI). Both tract-based spatial statistics (TBSS) and tractography-based along-tract statistics were utilized to examine the relationship between white matter microstructure and aerobic exercise in adolescent males, ages 15-18. Furthermore, we examined the data by both (1) grouping individuals based on aerobic fitness self-reports (high fit (HF) vs. low fit (LF)), and (2) using VO2 peak as a continuous variable across the entire sample. Results showed that HF youth had an overall higher number of streamline counts compared to LF peers, which was driven by group differences in corticospinal tract (CST) and anterior corpus callosum (Fminor). In addition, VO2 peak was negatively related to FA in the left CST. Together, these results suggest that aerobic fitness relates to white matter connectivity and microstructure in tracts carrying frontal and motor fibers during adolescence. Furthermore, the current study highlights the importance of considering the environmental factor of aerobic exercise when examining adolescent brain development. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Peterson, Daniel; Mahajan, Rajneesh; Crocetti, Deana; Mejia, Amanda; Mostofsky, Stewart
2014-01-01
Current theories of the neurobiological basis of Autism Spectrum Disorder (ASD) posit an altered pattern of connectivity in large-scale brain networks. Here we used Diffusion Tensor Imaging to investigate the microstructural properties of the white matter that mediates inter-regional connectivity in 36 high-functioning children with ASD (HF-ASD), as compared to 37 controls. By employing an atlas-based analysis using LDDMM registration, a widespread, but left-lateralized pattern of abnormalities was revealed. The Mean Diffusivity (MD) of water in the white matter of HF-ASD children was significantly elevated throughout the left hemisphere, particularly in the outer-zone cortical white matter. Across diagnostic groups there was a significant effect of age on left hemisphere MD, with a similar reduction in MD during childhood in both TD and HF-ASD children. The increased MD in children with HF-ASD suggests hypomyelination, and may reflect increased short-range cortico-cortical connections subsequent to early white matter overgrowth. These findings also highlight left hemispheric connectivity as relevant to the pathophysiology of ASD, and indicate that the spatial distribution of microstructural abnormalities in HF-ASD is widespread, and left-lateralized. This altered left-hemispheric connectivity may contribute to deficits in communication and praxis observed in ASD. PMID:25256103
Huang, Lejian; Kutch, Jason J; Ellingson, Benjamin M; Martucci, Katherine T; Harris, Richard E; Clauw, Daniel J; Mackey, Sean; Mayer, Emeran A; Schaeffer, Anthony J; Apkarian, A Vania; Farmer, Melissa A
2016-12-01
Clinical phenotyping of urological chronic pelvic pain syndromes (UCPPSs) in men and women have focused on end organ abnormalities to identify putative clinical subtypes. Initial evidence of abnormal brain function and structure in male pelvic pain has necessitated large-scale, multisite investigations into potential UCPPS brain biomarkers. We present the first evidence of regional white matter (axonal) abnormalities in men and women with UCPPS, compared with positive (irritable bowel syndrome, IBS) and healthy controls. Epidemiological and neuroimaging data were collected from participants with UCPPS (n = 52), IBS (n = 39), and healthy sex- and age-matched controls (n = 61). White matter microstructure, measured as fractional anisotropy (FA), was examined by diffusion tensor imaging. Group differences in regional FA positively correlated with pain severity, including segments of the right corticospinal tract and right anterior thalamic radiation. Increased corticospinal FA was specific and sensitive to UCPPS, positively correlated with pain severity, and reflected sensory (not affective) features of pain. Reduced anterior thalamic radiation FA distinguished patients with IBS from those with UCPPS and controls, suggesting greater microstructural divergence from normal tract organization. Findings confirm that regional white matter abnormalities characterize UCPPS and can distinguish between visceral diagnoses, suggesting that regional axonal microstructure is either altered with ongoing pain or predisposes its development.
Longitudinal changes in white matter microstructure after heavy cannabis use
Becker, Mary P.; Collins, Paul F.; Lim, Kelvin O.; Muetzel, R.L.; Luciana, M.
2015-01-01
Diffusion tensor imaging (DTI) studies of cannabis users report alterations in brain white matter microstructure, primarily based on cross-sectional research, and etiology of the alterations remains unclear. We report findings from longitudinal voxelwise analyses of DTI data collected at baseline and at a 2-year follow-up on 23 young adult (18-20 years old at baseline) regular cannabis users and 23 age-, sex-, and IQ-matched non-using controls with limited substance use histories. Onset of cannabis use was prior to age 17. Cannabis users displayed reduced longitudinal growth in fractional anisotropy in the central and parietal regions of the right and left superior longitudinal fasciculus, in white matter adjacent to the left superior frontal gyrus, in the left corticospinal tract, and in the right anterior thalamic radiation lateral to the genu of the corpus callosum, along with less longitudinal reduction of radial diffusion in the right central/posterior superior longitudinal fasciculus, corticospinal tract, and posterior cingulum. Greater amounts of cannabis use were correlated with reduced longitudinal growth in FA as was relatively impaired performance on a measure of verbal learning. These findings suggest that continued heavy cannabis use during adolescence and young adulthood alters ongoing development of white matter microstructure, contributing to functional impairment. PMID:26602958
Fjell, Anders M.; Tamnes, Christian K.; Grydeland, Håkon; Due-Tønnessen, Paulina; Bjørnerud, Atle; Sampaio-Baptista, Cassandra; Andersson, Jesper; Johansen-Berg, Heidi; Walhovd, Kristine B.
2018-01-01
Working memory capacity is pivotal for a broad specter of cognitive tasks and develops throughout childhood. This must in part rely on development of neural connections and white matter microstructure maturation, but there is scarce knowledge of specific relations between this and different aspects of working memory. Diffusion tensor imaging (DTI) enables us to study development of brain white matter microstructure. In a longitudinal DTI study of 148 healthy children between 4 and 11 years scanned twice with an on average 1.6 years interval, we characterized change in fractional anisotropy (FA), mean (MD), radial (RD) and axial diffusivity (AD) in 10 major white matter tracts hypothesized to be of importance for working memory. The results showed relationships between change in several tracts and change in visuospatial working memory. Specifically, improvement in visuospatial working memory capacity was significantly associated with decreased MD, RD and AD in inferior longitudinal fasciculus (ILF), inferior fronto-occipital fasciculus (IFOF) and uncinate fasciculus (UF) in the right hemisphere, as well as forceps major (FMaj). No significant relationships were found between change in DTI metrics and change in verbal working memory capacity. These findings yield new knowledge about brain development and corresponding working memory improvements in childhood. PMID:29689058
Huang, Lejian; Kutch, Jason J.; Ellingson, Benjamin M.; Martucci, Katherine T.; Harris, Richard E.; Clauw, Daniel J.; Mackey, Sean; Mayer, Emeran A.; Schaeffer, Anthony J.; Apkarian, A. Vania; Farmer, Melissa A.
2016-01-01
Clinical phenotyping of urological chronic pelvic pain syndromes (UCPPS) in men and women has focused on end-organ abnormalities to identify putative clinical subtypes. Initial evidence of abnormal brain function and structure in male pelvic pain has necessitated large-scale, multi-site investigations into potential UCPPS brain biomarkers. We present the first evidence of regional white matter (axonal) abnormalities in men and women with UCPPS, compared to positive (irritable bowel syndrome, IBS) and healthy controls. Epidemiological and neuroimaging data was collected from participants with UCPPS (n=52), IBS (n=39), and healthy, sex- and age-matched controls (n=61). White matter microstructure, measured as fractional anisotropy (FA), was examined with diffusion tensor imaging (DTI). Group differences in regional FA positively correlated with pain severity, including segments of the right corticospinal tract and right anterior thalamic radiation. Increased corticospinal FA was specific and sensitive to UCPPS, positively correlated with pain severity, and reflected sensory (not affective) features of pain. Reduced anterior thalamic radiation FA distinguished IBS from UCPPS patients and controls, suggesting greater microstructural divergence from normal tract organization. Findings confirm that regional white matter abnormalities characterize UCPPS and can distinguish between visceral diagnoses, suggesting that regional axonal microstructure is either altered with ongoing pain or predisposes its development. PMID:27842046
Woodward, Lianne J.; Clark, Caron A. C.; Bora, Samudragupta; Inder, Terrie E.
2012-01-01
Background Cerebral white matter abnormalities on term MRI are a strong predictor of motor disability in children born very preterm. However, their contribution to cognitive impairment is less certain. Objective Examine relationships between the presence and severity of cerebral white matter abnormalities on neonatal MRI and a range of neurocognitive outcomes assessed at ages 4 and 6 years. Design/Methods The study sample consisted of a regionally representative cohort of 104 very preterm (≤32 weeks gestation) infants born from 1998–2000 and a comparison group of 107 full-term infants. At term equivalent, all preterm infants underwent a structural MRI scan that was analyzed qualitatively for the presence and severity of cerebral white matter abnormalities, including cysts, signal abnormalities, loss of white matter volume, ventriculomegaly, and corpus callosal thinning/myelination. At corrected ages 4 and 6 years, all children underwent a comprehensive neurodevelopmental assessment that included measures of general intellectual ability, language development, and executive functioning. Results At 4 and 6 years, very preterm children without cerebral white matter abnormalities showed no apparent neurocognitive impairments relative to their full-term peers on any of the domain specific measures of intelligence, language, and executive functioning. In contrast, children born very preterm with mild and moderate-to-severe white matter abnormalities were characterized by performance impairments across all measures and time points, with more severe cerebral abnormalities being associated with increased risks of cognitive impairment. These associations persisted after adjustment for gender, neonatal medical risk factors, and family social risk. Conclusions Findings highlight the importance of cerebral white matter connectivity for later intact cognitive functioning amongst children born very preterm. Preterm born children without cerebral white matter abnormalities on their term MRI appear to be spared many of the cognitive impairments commonly associated with preterm birth. Further follow-up will be important to assess whether this finding persists into the school years. PMID:23284800
Alarcón, Gabriela; Ray, Siddharth; Nagel, Bonnie J.
2017-01-01
Objectives Elevated body mass index (BMI) is associated with deficits in working memory, reduced gray matter volume in frontal and parietal lobes, as well as changes in white matter (WM) microstructure. The current study examined whether BMI was related to working memory performance and blood oxygen level dependent (BOLD) activity, as well as WM microstructure during adolescence. Methods Linear regressions with BMI and (1) verbal working memory BOLD signal, (2) spatial working memory BOLD signal, and (3) fractional anisotropy (FA), a measure of WM microstructure, were conducted in a sample of 152 healthy adolescents ranging in BMI. Results BMI was inversely related to IQ and verbal and spatial working memory accuracy; however, there was no significant relationship between BMI and BOLD response for either verbal or spatial working memory. Furthermore, BMI was negatively correlated with FA in the left superior longitudinal fasciculus (SLF) and left inferior longitudinal fasciculus (ILF). ILF FA and IQ significantly mediated the relationship between BMI and verbal working memory performance, whereas SLF FA, but not IQ, significantly mediated the relationship between BMI and accuracy of both verbal and spatial working memory. Conclusions These findings indicate that higher BMI is associated with decreased FA in WM fibers connecting brain regions that support working memory, and that WM microstructural deficits may underlie inferior working memory performance in youth with higher BMI. Of interest, BMI did not show the same relationship with working memory BOLD activity, which may indicate that changes in brain structure precede changes in function. PMID:26708324
Chronic cigarette smoking and the microstructural integrity of white matter in healthy adults
Paul, Robert H.; Grieve, Stuart M.; Niaura, Raymond; David, Sean P.; Laidlaw, David H.; Cohen, Ronald; Sweet, Lawrence; Taylor, George; Clark, C. Richard; Pogun, Sakire; Gordon, Evian
2008-01-01
Results from recent studies suggest that chronic cigarette smoking is associated with increased white matter volume in the brain as determined by in vivo neuroimaging. We used diffusion tensor imaging to examine the microstructural integrity of the white matter in 10 chronic smokers and 10 nonsmokers. All individuals were healthy, without histories of medical or psychiatric illness. Fractional anisotropy (FA) and trace were measured in the genu, body, and splenium of the corpus callosum. FA provides a measure of directional versus nondirectional water diffusion, whereas trace provides a measure of nondirectional water diffusion. Lower FA and higher trace values are considered to reflect less brain integrity. Voxel-based morphometry was used to define volumes in each of these regions of the corpus callosum. Chronic smokers exhibited significantly higher FA in the body and whole corpus callosum and a strong trend for higher FA in the splenium compared with nonsmokers. FA did not differ between groups in the genu, and neither trace nor white matter volumes differed between groups in any of the regions of interest. When subdivided by Fagerström score (low vs. high), the low Fagerström group exhibited significantly higher FA in the body of the corpus callosum compared with the high Fagerström group and the nonsmokers. These results suggest that, among healthy adults, lower exposure to cigarette smoking is associated with increased microstructural integrity of the white matter compared with either no exposure or higher exposure. Additional studies are needed to further explore differences in white matter integrity between smokers and nonsmokers. PMID:18188754
Karns, Christina M; Stevens, Courtney; Dow, Mark W; Schorr, Emily M; Neville, Helen J
2017-01-01
Considerable research documents the cross-modal reorganization of auditory cortices as a consequence of congenital deafness, with remapped functions that include visual and somatosensory processing of both linguistic and nonlinguistic information. Structural changes accompany this cross-modal neuroplasticity, but precisely which specific structural changes accompany congenital and early deafness and whether there are group differences in hemispheric asymmetries remain to be established. Here, we used diffusion tensor imaging (DTI) to examine microstructural white matter changes accompanying cross-modal reorganization in 23 deaf adults who were genetically, profoundly, and congenitally deaf, having learned sign language from infancy with 26 hearing controls who participated in our previous fMRI studies of cross-modal neuroplasticity. In contrast to prior literature using a whole-brain approach, we introduce a semiautomatic method for demarcating auditory regions in which regions of interest (ROIs) are defined on the normalized white matter skeleton for all participants, projected into each participants native space, and manually constrained to anatomical boundaries. White-matter ROIs were left and right Heschl's gyrus (HG), left and right anterior superior temporal gyrus (aSTG), left and right posterior superior temporal gyrus (pSTG), as well as one tractography-defined region in the splenium of the corpus callosum connecting homologous left and right superior temporal regions (pCC). Within these regions, we measured fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and white-matter volume. Congenitally deaf adults had reduced FA and volume in white matter structures underlying bilateral HG, aSTG, pSTG, and reduced FA in pCC. In HG and pCC, this reduction in FA corresponded with increased RD, but differences in aSTG and pSTG could not be localized to alterations in RD or AD. Direct statistical tests of hemispheric asymmetries in these differences indicated the most prominent effects in pSTG, where the largest differences between groups occurred in the right hemisphere. Other regions did not show significant hemispheric asymmetries in group differences. Taken together, these results indicate that atypical white matter microstructure and reduced volume underlies regions of superior temporal primary and association auditory cortex and introduce a robust method for quantifying volumetric and white matter microstructural differences that can be applied to future studies of special populations. Published by Elsevier B.V.
Mackey, Allyson P.; Whitaker, Kirstie J.; Bunge, Silvia A.
2012-01-01
Diffusion tensor imaging (DTI) techniques have made it possible to investigate white matter plasticity in humans. Changes in DTI measures, principally increases in fractional anisotropy (FA), have been observed following training programs as diverse as juggling, meditation, and working memory. Here, we sought to test whether three months of reasoning training could alter white matter microstructure. We recruited participants (n = 23) who were enrolled in a course to prepare for the Law School Admission Test (LSAT), a test that places strong demands on reasoning skills, as well as age- and IQ-matched controls planning to take the LSAT in the future (n = 22). DTI data were collected at two scan sessions scheduled three months apart. In trained participants but not controls, we observed decreases in radial diffusivity (RD) in white matter connecting frontal cortices, and in mean diffusivity (MD) within frontal and parietal lobe white matter. Further, participants exhibiting larger gains on the LSAT exhibited greater decreases in MD in the right internal capsule. In summary, reasoning training altered multiple measures of white matter structure in young adults. While the cellular underpinnings are unknown, these results provide evidence of experience-dependent white matter changes that may not be limited to myelination. PMID:22936899
Radford, J E; White, R G
2001-01-01
Plasmodesmata are often characterised by their size exclusion limit (SEL), which is the molecular weight of the largest dye, introduced by microinjection, that will move from cell to cell. In this study, we investigated whether commonly used techniques for isolation and manipulation of tissues, and microinjection of fluorescent dyes, affected the SEL, and whether any such effects could be ameliorated by inhibiting callose deposition. We examined young root epidermal cells of Arabidopsis thaliana and staminal hair cells of Tradescantia virginiana, two tissues often used in experiments on symplastic transport. Transport in root tips dissected from the main plant body and in stamen hairs removed from the base of the stamen filament was compared with transport in undissected roots and stamen hairs attached to the base of the filament, respectively. Tissues were microinjected with fluorescent dyes (457 Da to > 3 kDa) with or without prior incubation in the callose deposition inhibitors 2-deoxy-D-glucose or aniline blue fluorochrome. In both tissues, dissection reduced the SEL, which was largely prevented by prior incubation in 2-deoxy-D-glucose but not by incubation in aniline blue fluorochrome. Thus, standard methods for tissue preparation can cause sufficient callose deposition to reduce cell-to-cell transport, and this needs to be considered in studies employing microinjection. Introduction of the dyes by pressure injection rather than iontophoresis decreased the SEL in A. thaliana but increased it in T. virginiana, showing that these two injection techniques do not necessarily give identical results and that plasmodesmata in different tissues may respond differently to similar experimental procedures.
2018-01-01
Abstract The neocortex is composed of many distinct subtypes of neurons that must form precise subtype-specific connections to enable the cortex to perform complex functions. Callosal projection neurons (CPN) are the broad population of commissural neurons that connect the cerebral hemispheres via the corpus callosum (CC). Currently, how the remarkable diversity of CPN subtypes and connectivity is specified, and how they differentiate to form highly precise and specific circuits, are largely unknown. We identify in mouse that the lipid-bound scaffolding domain protein Caveolin 1 (CAV1) is specifically expressed by a unique subpopulation of Layer V CPN that maintain dual ipsilateral frontal projections to premotor cortex. CAV1 is expressed by over 80% of these dual projecting callosal/frontal projection neurons (CPN/FPN), with expression peaking early postnatally as axonal and dendritic targets are being reached and refined. CAV1 is localized to the soma and dendrites of CPN/FPN, a unique population of neurons that shares information both between hemispheres and with premotor cortex, suggesting function during postmitotic development and refinement of these neurons, rather than in their specification. Consistent with this, we find that Cav1 function is not necessary for the early specification of CPN/FPN, or for projecting to their dual axonal targets. CPN subtype-specific expression of Cav1 identifies and characterizes a first molecular component that distinguishes this functionally unique projection neuron population, a population that expands in primates, and is prototypical of additional dual and higher-order projection neuron subtypes. PMID:29379878
Malekpour, Sheida; Li, Zhimin; Cheung, Bing Leung Patrick; Castillo, Eduardo M.; Papanicolaou, Andrew C.; Kramer, Larry A.; Fletcher, Jack M.
2012-01-01
Abstract The impact of the posterior callosal anomalies associated with spina bifida on interhemispheric cortical connectivity is studied using a method for estimating cortical multivariable autoregressive models from scalp magnetoencephalography data. Interhemispheric effective and functional connectivity, measured using conditional Granger causality and coherence, respectively, is determined for the anterior and posterior cortical regions in a population of five spina bifida and five control subjects during a resting eyes-closed state. The estimated connectivity is shown to be consistent over the randomly selected subsets of the data for each subject. The posterior interhemispheric effective and functional connectivity and cortical power are significantly lower in the spina bifida group, a result that is consistent with posterior callosal anomalies. The anterior interhemispheric effective and functional connectivity are elevated in the spina bifida group, a result that may reflect compensatory mechanisms. In contrast, the intrahemispheric effective connectivity is comparable in the two groups. The differences between the spina bifida and control groups are most significant in the θ and α bands. PMID:22571349
Sieve tube geometry in relation to phloem flow.
Mullendore, Daniel L; Windt, Carel W; Van As, Henk; Knoblauch, Michael
2010-03-01
Sieve elements are one of the least understood cell types in plants. Translocation velocities and volume flow to supply sinks with photoassimilates greatly depend on the geometry of the microfluidic sieve tube system and especially on the anatomy of sieve plates and sieve plate pores. Several models for phloem translocation have been developed, but appropriate data on the geometry of pores, plates, sieve elements, and flow parameters are lacking. We developed a method to clear cells from cytoplasmic constituents to image cell walls by scanning electron microscopy. This method allows high-resolution measurements of sieve element and sieve plate geometries. Sieve tube-specific conductivity and its reduction by callose deposition after injury was calculated for green bean (Phaseolus vulgaris), bamboo (Phyllostachys nuda), squash (Cucurbita maxima), castor bean (Ricinus communis), and tomato (Solanum lycopersicum). Phloem sap velocity measurements by magnetic resonance imaging velocimetry indicate that higher conductivity is not accompanied by a higher velocity. Studies on the temporal development of callose show that small sieve plate pores might be occluded by callose within minutes, but plants containing sieve tubes with large pores need additional mechanisms.
Idris, Nurul A; Collings, David A
2015-02-01
Phi thickenings, bands of secondary wall thickenings that reinforce the primary wall of root cortical cells in a wide range of species, are described for the first time in the epiphytic orchid Miltoniopsis. As with phi thickenings found in other plants, the phi thickenings in Miltoniopsis contain highly aligned cellulose running along the lengths of the thickenings, and are lignified but not suberized. Using a combination of histological and immunocytochemical techniques, thickening development can be categorized into three different stages. Microtubules align lengthwise along the thickening during early and intermediate stages of development, and callose is deposited within the thickening in a pattern similar to the microtubules. These developing thickenings also label with the fluorescently tagged lectin wheat germ agglutinin (WGA). These associations with microtubules and callose, and the WGA labeling, all disappear when the phi thickenings are mature. This pattern of callose and WGA deposition show changes in the thickened cell wall composition and may shed light on the function of phi thickenings in plant roots, a role for which has yet to be established.
Plasmodesmata-mediated intercellular signaling during plant growth and development.
Yadav, Shri R; Yan, Dawei; Sevilem, Iris; Helariutta, Ykä
2014-01-01
Plasmodesmata (PD) are cytoplasmic channels that connect neighboring cells for cell-to-cell communication. PD structure and function vary temporally and spatially to allow formation of symplastic domains during different stages of plant development. Reversible deposition of callose at PD plays an important role in controlling molecular trafficking through PD by regulating their size exclusion limit. Previously, we reported several semi-dominant mutants for CALLOSE SYNTHASE 3 (CALS3) gene, which overproduce callose at PD in Arabidopsis. By combining two of these mutations in a LexA-VP16-ER (XVE)-based estradiol inducible vector system, a tool known as the "icals3m system" was developed to temporally obstruct the symplastic connections in a specified spatial domain. The system has been successfully tested and used, in combination with other methods, to investigate the route for mobile signals such as the SHR protein, microRNA165/6, and cytokinins in Arabidopsis roots, and also to understand the role of symplastic domain formation during lateral root development. We envision that this tool may also be useful for identifying tissue-specific symplastic regulatory networks and to analyze symplastic movement of metabolites.
Laing, R J; Turecek, J; Takahata, T; Olavarria, J F
2015-10-01
Ocular dominance columns (ODCs) exist in many primates and carnivores, but it is believed that they do not exist in rodents. Using a combination of transneuronal tracing, in situ hybridization for Zif268 and electrophysiological recordings, we show that inputs from both eyes are largely segregated in the binocular region of V1 in Long Evans rats. We also show that, interposed between this binocular region and the lateral border of V1, there lies a strip of cortex that is strongly dominated by the contralateral eye. Finally, we show that callosal connections colocalize primarily with ipsilateral eye domains in the binocular region and with contralateral eye input in the lateral cortical strip, mirroring the relationship between patchy callosal connections and specific sets of ODCs described previously in the cat. Our results suggest that development of cortical modular architecture is more conserved among rodents, carnivores, and primates than previously thought. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sieve Tube Geometry in Relation to Phloem Flow
Mullendore, Daniel L.; Windt, Carel W.; Van As, Henk; Knoblauch, Michael
2010-01-01
Sieve elements are one of the least understood cell types in plants. Translocation velocities and volume flow to supply sinks with photoassimilates greatly depend on the geometry of the microfluidic sieve tube system and especially on the anatomy of sieve plates and sieve plate pores. Several models for phloem translocation have been developed, but appropriate data on the geometry of pores, plates, sieve elements, and flow parameters are lacking. We developed a method to clear cells from cytoplasmic constituents to image cell walls by scanning electron microscopy. This method allows high-resolution measurements of sieve element and sieve plate geometries. Sieve tube–specific conductivity and its reduction by callose deposition after injury was calculated for green bean (Phaseolus vulgaris), bamboo (Phyllostachys nuda), squash (Cucurbita maxima), castor bean (Ricinus communis), and tomato (Solanum lycopersicum). Phloem sap velocity measurements by magnetic resonance imaging velocimetry indicate that higher conductivity is not accompanied by a higher velocity. Studies on the temporal development of callose show that small sieve plate pores might be occluded by callose within minutes, but plants containing sieve tubes with large pores need additional mechanisms. PMID:20354199
Wiseman, S J; Bastin, M E; Hamilton, I F; Hunt, D; Ritchie, S J; Amft, E N; Thomson, S; Belch, J F F; Ralston, S H; Wardlaw, J M
2017-05-01
Objective The objective of this study was to investigate fatigue and cognitive impairments in systemic lupus erythematous (SLE) in relation to diffuse white matter microstructural brain damage. Methods Diffusion tensor MRI, used to generate biomarkers of brain white matter microstructural integrity, was obtained in patients with SLE and age-matched controls. Fatigue and cognitive function were assessed and related to SLE activity, clinical data and plasma biomarkers of inflammation and endothelial dysfunction. Results Fifty-one patients with SLE (mean age 48.8 ± 14.3 years) were included. Mean diffusivity (MD) was significantly higher in all white matter fibre tracts in SLE patients versus age-matched healthy controls ( p < 0.0001). Fatigue in SLE was higher than a normal reference range ( p < 0.0001) and associated with lower MD ( ß = -0.61, p = 0.02), depression ( ß = 0.17, p = 0.001), anxiety ( ß = 0.13, p = 0.006) and higher body mass index ( ß = 0.10, p = 0.004) in adjusted analyses. Poorer cognitive function was associated with longer SLE disease duration ( p = 0.003) and higher MD ( p = 0.03) and, in adjusted analysis, higher levels of IL-6 ( ß = -0.15, p = 0.02) but not with MD. Meta-analysis (10 studies, n = 261, including the present study) confirmed that patients with SLE have higher MD than controls. Conclusion Patients with SLE have more microstructural brain white matter damage for age than the general population, but this does not explain increased fatigue or lower cognition in SLE. The association between raised IL-6 and worse current cognitive function in SLE should be explored in larger datasets.
G-Protein-Coupled Receptor Gpr17 Expression in Two Multiple Sclerosis Remyelination Models.
Nyamoya, Stella; Leopold, Patrizia; Becker, Birte; Beyer, Cordian; Hustadt, Fabian; Schmitz, Christoph; Michel, Anne; Kipp, Markus
2018-06-05
In multiple sclerosis patients, demyelination is prominent in both the white and gray matter. Chronic clinical deficits are known to result from acute or chronic injury to the myelin sheath and inadequate remyelination. The underlying molecular mechanisms of remyelination and its failure remain currently unclear. Recent studies have recognized G protein-coupled receptor 17 (GPR17) as an important regulator of oligodendrocyte development and remyelination. So far, the relevance of GPR17 for myelin repair was mainly tested in remyelinating white matter lesions. The relevance of GPR17 for gray matter remyelination as well as remyelination of chronic white matter lesions was not addressed so far. Here, we provide a detailed characterization of GPR17 expression during experimental de- and remyelination. Experimental lesions with robust and limited endogenous remyelination capacity were established by either acute or chronic cuprizone-induced demyelination. Furthermore, remyelinating lesions were induced by the focal injection of lysophosphatidylcholine (LPC) into the corpus callosum. GPR17 expression was analyzed by complementary techniques including immunohistochemistry, in situ hybridization, and real-time PCR. In control animals, GPR17 + cells were evenly distributed in the corpus callosum and cortex and displayed a highly ramified morphology. Virtually all GPR17 + cells also expressed the oligodendrocyte-specific transcription factor OLIG2. After acute cuprizone-induced demyelination, robust endogenous remyelination was evident in the white matter corpus callosum but not in the gray matter cortex. Endogenous callosal remyelination was paralleled by a robust induction of GPR17 expression which was absent in the gray matter cortex. Higher numbers of GPR17 + cells were as well observed after LPC-induced focal white matter demyelination. In contrast, densities of GPR17 + cells were comparable to control animals after chronic cuprizone-induced demyelination indicating quiescence of this cell population. Our findings demonstrate that GPR17 expression induction correlates with acute demyelination and sufficient endogenous remyelination. This strengthens the view that manipulation of this receptor might be a therapeutic opportunity to support endogenous remyelination.
Fling, Brett W.; Dutta, Geetanjali Gera; Schlueter, Heather; Cameron, Michelle H.; Horak, Fay B.
2014-01-01
Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere’s proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system. PMID:25368564
Travers, Brittany G.; Bigler, Erin D.; Tromp, Do P. M.; Adluru, Nagesh; Froehlich, Alyson L.; Ennis, Chad; Lange, Nicholas; Nielsen, Jared A.; Prigge, Molly B. D.; Alexander, Andrew L.; Lainhart, Janet E.
2014-01-01
The present study used an accelerated longitudinal design to examine group differences and age-related changes in processing speed in 81 individuals with Autism Spectrum Disorder (ASD) compared to 56 age-matched individuals with typical development (ages 6–39 years). Processing speed was assessed using the Wechsler Intelligence Scale for Children-3rd edition (WISC-III) and the Wechsler Adult Intelligence Scale-3rd edition (WAIS-III). Follow-up analyses examined processing speed subtest performance and relations between processing speed and white matter microstructure (as measured with diffusion tensor imaging [DTI] in a subset of these participants). After controlling for full scale IQ, the present results show that processing speed index standard scores were on average 12 points lower in the group with ASD compared to the group with typical development. There were, however, no significant group differences in standard score age-related changes within this age range. For subtest raw scores, the group with ASD demonstrated robustly slower processing speeds in the adult versions of the IQ test (i.e., WAIS-III) but not in the child versions (WISC-III), even though age-related changes were similar in both the ASD and typically developing groups. This pattern of results may reflect difficulties that become increasingly evident in ASD on more complex measures of processing speed. Finally, DTI measures of whole-brain white matter microstructure suggested that fractional anisotropy (but not mean diffusivity, radial diffusivity, or axial diffusivity) made significant but small-sized contributions to processing speed standard scores across our entire sample. Taken together, the present findings suggest that robust decreases in processing speed may be present in ASD, more pronounced in adulthood, and partially attributable to white matter microstructural integrity. PMID:24269298
Fling, Brett W; Dutta, Geetanjali Gera; Schlueter, Heather; Cameron, Michelle H; Horak, Fay B
2014-01-01
Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere's proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system.
Francx, Winke; Zwiers, Marcel P; Mennes, Maarten; Oosterlaan, Jaap; Heslenfeld, Dirk; Hoekstra, Pieter J; Hartman, Catharina A; Franke, Barbara; Faraone, Stephen V; O'Dwyer, Laurence; Buitelaar, Jan K
2015-12-01
A developmental improvement of symptoms in attention-deficit/hyperactivity disorder (ADHD) is frequently reported, but the underlying neurobiological substrate has not been identified. The aim of this study was to determine whether white matter microstructure is related to developmental improvement of ADHD symptoms. A cross-sectional magnetic resonance imaging (MRI) analysis was embedded in a prospective follow-up of an adolescent cohort of ADHD and control subjects (NeuroIMAGE). Mean age at baseline was 11.9 years, mean interval of follow-up was 5.9 years. About 75.3% of the original cohort was retained successfully. Data of 101 participants with ADHD combined type at baseline and 40 healthy controls were analysed. ADHD symptoms were measured with semistructured, investigator-based interviews and Conners' questionnaires, on the basis of DSM-IV criteria. Fractional anisotropy (FA) and mean diffusivity (MD) indices of white matter microstructure were measured using whole brain diffusion tensor imaging at follow-up only. In a dimensional analysis FA and MD were related to change in ADHD symptoms. To link this analysis to DSM-IV diagnoses, a post hoc categorical group analysis was conducted comparing participants with persistent (n = 59) versus remittent (n = 42) ADHD and controls. Over time, participants with ADHD showed improvement mainly in hyperactive/impulsive symptoms. This improvement was associated with lower FA and higher MD values in the left corticospinal tract at follow-up. Findings of the dimensional and the categorical analysis strongly converged. Changes in inattentive symptoms over time were minimal and not related to white matter microstructure. The corticospinal tract is important in the control of voluntary movements, suggesting the importance of the motor system in the persistence of hyperactive/impulsive symptoms. © 2015 Association for Child and Adolescent Mental Health.
Francx, Winke; Zwiers, Marcel P.; Mennes, Maarten; Oosterlaan, Jaap; Heslenfeld, Dirk; Hoekstra, Pieter J.; Hartman, Catharina A.; Franke, Barbara; Faraone, Stephen V.; O’Dwyer, Laurence; Buitelaar, Jan K.
2014-01-01
Background A developmental improvement of symptoms in Attention-Deficit/Hyperactivity Disorder (ADHD) is frequently reported, but the underlying neurobiological substrate has not been identified. The aim of this study was to determine whether white matter microstructure is related to developmental improvement of ADHD symptoms. Methods A cross-sectional Magnetic Resonance Imaging (MRI) analysis was embedded in a prospective follow-up of an adolescent cohort of ADHD and control subjects (NeuroIMAGE). Mean age at baseline was 11.9 years, mean interval of follow-up was 5.9 years. 75.3% of the original cohort was retained successfully. Data of 101 participants with ADHD combined type at baseline and 40 healthy controls was analysed. ADHD symptoms were measured with semi-structured, investigator-based interviews and Conners' questionnaires, on the basis of DSM-IV criteria. Fractional anisotropy (FA) and mean diffusivity (MD) indices of white matter microstructure were measured using whole brain diffusion tensor imaging at follow-up only. In a dimensional analysis FA and MD were related to change in ADHD symptoms. To link this analysis to DSM-IV diagnoses, a post-hoc categorical group analysis was conducted comparing participants with persistent (n=59) versus remittent (n=42) ADHD and controls. Results Over time, participants with ADHD showed improvement mainly in hyperactive/impulsive symptoms. This improvement was associated with lower FA and higher MD values in the left corticospinal tract at follow-up. Findings of the dimensional and the categorical analysis strongly converged. Changes in inattentive symptoms over time were minimal and not related to white matter microstructure. Conclusions The corticospinal tract is important in the control of voluntary movements, suggesting the importance of the motor system in the persistence of hyperactive/impulsive symptoms. PMID:25581343
Neurocognitive Correlates of White Matter Quality in Adolescent Substance Users
ERIC Educational Resources Information Center
Bava, Sunita; Jacobus, Joanna; Mahmood, Omar; Yang, Tony T.; Tapert, Susan F.
2010-01-01
Background: Progressive myelination during adolescence implicates an increased vulnerability to neurotoxic substances and enduring neurocognitive consequences. This study examined the cognitive manifestations of altered white matter microstructure in chronic marijuana and alcohol-using (MJ + ALC) adolescents. Methods: Thirty-six MJ + ALC…
Right unilateral agraphia following callosal infarction in a left-hander.
Tei, H; Soma, Y; Maruyama, S
1994-01-01
A left-handed Japanese man is reported who presented right-hand agraphia and tactile anomia following callosal infarction. Magnetic resonance imaging revealed an ischemic lesion extending from the posterior half of the trunk to the splenium of the corpus callosum. In his right handwriting, the 'Kana' (phonogram) was more severely impaired than the 'Kanji' (ideogram), and the most frequent typewriting error was morphological followed by neographism. His visuoconstructional ability was also more impaired in the right hand than in the left. Right-hand agraphia in our case is readily explained by the right hemisphere dominance both for language and visuoconstructional ability.
Impaired corticopontocerebellar tracts underlie pseudobulbar affect in motor neuron disorders
Katipally, Rohan; Kim, Meredith P.; Schanz, Olivia; Stephen, Matthew; Danielian, Laura; Wu, Tianxia; Huey, Edward D.; Meoded, Avner
2014-01-01
Objective: The objectives of the study were (1) to determine the prevalence and characteristics of pseudobulbar affect (PBA) in patients with primary lateral sclerosis (PLS) and amyotrophic lateral sclerosis (ALS) in an outpatient clinic population, and (2) to test the hypothesis that damage of inputs to the cerebellum, leading to cerebellar dysmodulation, is associated with PBA. Methods: Chart review of all patients with PLS and ALS seen between 2000 and 2013. The examining neurologist documented the presence or absence of PBA in 87 patients. Forty-seven patients also had diffusion tensor imaging (DTI) studies. Tract-based spatial statistics were used to compare DTI of patients with and without PBA to identify altered white matter tracts associated with PBA. Results: Thirty-one of 50 patients with PLS and 12 of 37 patients with ALS had PBA. Psychiatric/emotional assessment found congruence between mood and affect during episodes, but excessive magnitude of the response. DTI studies of 25 PLS and 22 ALS patient brains showed reduced fractional anisotropy of the corticospinal and callosal white matter tracts in all patients. Patients with PBA additionally had increased mean diffusivity of white matter tracts underlying the frontotemporal cortex, the transverse pontine fibers, and the middle cerebellar peduncle. Conclusions: PBA is common in PLS. Imaging findings showing disruption of corticopontocerebellar pathways support the hypothesis that PBA can be viewed as a “dysmetria” of emotional expression resulting from cerebellar dysmodulation. PMID:25008395
Impaired corticopontocerebellar tracts underlie pseudobulbar affect in motor neuron disorders.
Floeter, Mary Kay; Katipally, Rohan; Kim, Meredith P; Schanz, Olivia; Stephen, Matthew; Danielian, Laura; Wu, Tianxia; Huey, Edward D; Meoded, Avner
2014-08-12
The objectives of the study were (1) to determine the prevalence and characteristics of pseudobulbar affect (PBA) in patients with primary lateral sclerosis (PLS) and amyotrophic lateral sclerosis (ALS) in an outpatient clinic population, and (2) to test the hypothesis that damage of inputs to the cerebellum, leading to cerebellar dysmodulation, is associated with PBA. Chart review of all patients with PLS and ALS seen between 2000 and 2013. The examining neurologist documented the presence or absence of PBA in 87 patients. Forty-seven patients also had diffusion tensor imaging (DTI) studies. Tract-based spatial statistics were used to compare DTI of patients with and without PBA to identify altered white matter tracts associated with PBA. Thirty-one of 50 patients with PLS and 12 of 37 patients with ALS had PBA. Psychiatric/emotional assessment found congruence between mood and affect during episodes, but excessive magnitude of the response. DTI studies of 25 PLS and 22 ALS patient brains showed reduced fractional anisotropy of the corticospinal and callosal white matter tracts in all patients. Patients with PBA additionally had increased mean diffusivity of white matter tracts underlying the frontotemporal cortex, the transverse pontine fibers, and the middle cerebellar peduncle. PBA is common in PLS. Imaging findings showing disruption of corticopontocerebellar pathways support the hypothesis that PBA can be viewed as a "dysmetria" of emotional expression resulting from cerebellar dysmodulation. © 2014 American Academy of Neurology.
Meijboom, Rozanna; Steketee, Rebecca M E; Ham, Leontine S; van der Lugt, Aad; van Swieten, John C; Smits, Marion
2017-01-01
Semantic dementia (SD) and behavioral variant frontotemporal dementia (bvFTD), subtypes of frontotemporal dementia, are characterized by distinct clinical symptoms and neuroimaging features, with predominant left temporal grey matter (GM) atrophy in SD and bilateral or right frontal GM atrophy in bvFTD. Such differential hemispheric predilection may also be reflected by other neuroimaging features, such as brain connectivity. This study investigated white matter (WM) microstructure and functional connectivity differences between SD and bvFTD, focusing on the hemispheric predilection of these differences. Eight SD and 12 bvFTD patients, and 17 controls underwent diffusion tensor imaging and resting state functional MRI at 3T. Whole-brain WM microstructure was assessed to determine distinct WM tracts affected in SD and bvFTD. For these tracts, diffusivity measures and lateralization indices were calculated. Functional connectivity was established for GM regions affected in early stage SD or bvFTD. Results of a direct comparison between SD and bvFTD are reported. Whole-brain WM microstructure abnormalities were more pronounced in the left hemisphere in SD and bilaterally- with a slight predilection for the right- in bvFTD. Lateralization of tract-specific abnormalities was seen in SD only, toward the left hemisphere. Functional connectivity of disease-specific regions was mainly decreased bilaterally in SD and in the right hemisphere in bvFTD. SD and bvFTD show WM microstructure and functional connectivity abnormalities in different regions, that are respectively more pronounced in the left hemisphere in SD and in the right hemisphere in bvFTD. This indicates differential hemispheric predilection of brain connectivity abnormalities between SD and bvFTD.
Abnormal brain white matter microstructure is associated with both pre-hypertension and hypertension
Gao, He; Bai, Wenjia; Evangelou, Evangelos; Glocker, Ben; O’Regan, Declan P.; Elliott, Paul; Matthews, Paul M.
2017-01-01
Objectives To characterize effects of chronically elevated blood pressure on the brain, we tested for brain white matter microstructural differences associated with normotension, pre-hypertension and hypertension in recently available brain magnetic resonance imaging data from 4659 participants without known neurological or psychiatric disease (62.3±7.4 yrs, 47.0% male) in UK Biobank. Methods For assessment of white matter microstructure, we used measures derived from neurite orientation dispersion and density imaging (NODDI) including the intracellular volume fraction (an estimate of neurite density) and isotropic volume fraction (an index of the relative extra-cellular water diffusion). To estimate differences associated specifically with blood pressure, we applied propensity score matching based on age, sex, educational level, body mass index, and history of smoking, diabetes mellitus and cardiovascular disease to perform separate contrasts of non-hypertensive (normotensive or pre-hypertensive, N = 2332) and hypertensive (N = 2337) individuals and of normotensive (N = 741) and pre-hypertensive (N = 1581) individuals (p<0.05 after Bonferroni correction). Results The brain white matter intracellular volume fraction was significantly lower, and isotropic volume fraction was higher in hypertensive relative to non-hypertensive individuals (N = 1559, each). The white matter isotropic volume fraction also was higher in pre-hypertensive than in normotensive individuals (N = 694, each) in the right superior longitudinal fasciculus and the right superior thalamic radiation, where the lower intracellular volume fraction was observed in the hypertensives relative to the non-hypertensive group. Significance Pathological processes associated with chronically elevated blood pressure are associated with imaging differences suggesting chronic alterations of white matter axonal structure that may affect cognitive functions even with pre-hypertension. PMID:29145428
Mills, Brian; Lai, Janie; Brown, Timothy T.; Erhart, Matthew; Halgren, Eric; Reilly, Judy; Dale, Anders; Appelbaum, Mark; Moses, Pamela
2013-01-01
This study investigated the relationship between white matter microstructure and the development of morphosyntax in a spoken narrative in typically developing children (TD) and in children with high functioning autism (HFA). Autism is characterized by language and communication impairments, yet the relationship between morphosyntactic development in spontaneous discourse contexts and neural development is not well understood in either this population or typical development. Diffusion tensor imaging (DTI) was used to assess multiple parameters of diffusivity as indicators of white matter tract integrity in language-related tracts in children between 6 and 13 years of age. Children were asked to spontaneously tell a story about at time when someone made them sad, mad, or angry. The story was evaluated for morphological accuracy and syntactic complexity. Analysis of the relationship between white matter microstructure and language performance in TD children showed that diffusivity correlated with morphosyntax production in the superior longitudinal fasciculus (SLF), a fiber tract traditionally associated with language. At the anatomical level, the HFA group showed abnormal diffusivity in the right inferior longitudinal fasciculus (ILF) relative to the TD group. Within the HFA group, children with greater white matter integrity in the right ILF displayed greater morphological accuracy during their spoken narrative. Overall, the current study shows an association between white matter structure in a traditional language pathway and narrative performance in TD children. In the autism group, associations were only found in the ILF, suggesting that during real world language use, children with HFA rely less on typical pathways and instead rely on alternative ventral pathways that possibly mediate visual elements of language. PMID:23810972
Shifting brain asymmetry: the link between meditation and structural lateralization
Kurth, Florian; MacKenzie-Graham, Allan; Toga, Arthur W.
2015-01-01
Previous studies have revealed an increased fractional anisotropy and greater thickness in the anterior parts of the corpus callosum in meditation practitioners compared with control subjects. Altered callosal features may be associated with an altered inter-hemispheric integration and the degree of brain asymmetry may also be shifted in meditation practitioners. Therefore, we investigated differences in gray matter asymmetry as well as correlations between gray matter asymmetry and years of meditation practice in 50 long-term meditators and 50 controls. We detected a decreased rightward asymmetry in the precuneus in meditators compared with controls. In addition, we observed that a stronger leftward asymmetry near the posterior intraparietal sulcus was positively associated with the number of meditation practice years. In a further exploratory analysis, we observed that a stronger rightward asymmetry in the pregenual cingulate cortex was negatively associated with the number of practice years. The group difference within the precuneus, as well as the positive correlations with meditation years in the pregenual cingulate cortex, suggests an adaptation of the default mode network in meditators. The positive correlation between meditation practice years and asymmetry near the posterior intraparietal sulcus may suggest that meditation is accompanied by changes in attention processing. PMID:24643652
Structural development of human brain white matter from mid-fetal to perinatal stage
NASA Astrophysics Data System (ADS)
Ouyang, Austin; Yu, Qiaowen; Mishra, Virendra; Chalak, Lina; Jeon, Tina; Sivarajan, Muraleedharan; Jackson, Greg; Rollins, Nancy; Liu, Shuwei; Huang, Hao
2015-03-01
The structures of developing human brain white matter (WM) tracts can be effectively quantified by DTI-derived metrics, including fractional anisotropy (FA), mean, axial and radial diffusivity (MD, AD and RD). However, dynamics of WM microstructure during very early developmental period from mid-fetal to perinatal stage is unknown. It is difficult to accurately measure microstructural properties of these WM tracts due to severe contamination from cerebrospinal fluid (CSF). In this study, high resolution DTI of fetal brains at mid-fetal stage (20 weeks of gestation or 20wg), 19 brains in the middle of 3rd trimester (35wg) and 17 brains around term (40wg) were acquired. We established first population-averaged DTI templates at these three time points and extracted WM skeleton. 16 major WM tracts in limbic, projection, commissural and association tract groups were traced with DTI tractography in native space. The WM skeleton in the template space was inversely transformed back to the native space for measuring core WM microstructures of each individual tract. Continuous microstructural enhancement and volumetric increase of WM tracts were found from 20wg to 40wg. The microstructural enhancement from FA measurement is decelerated in late 3rd trimester compared to mid-fetal to middle 3rd trimester, while volumetric increase of prefrontal WM tracts is accelerated. The microstructural enhancement from 35wg to 40wg is heterogeneous among different tract groups with microstructures of association tracts undergoing most dramatic change. Besides decreases of RD indicating active myelination, the decrease of AD for most WM tracts during late 3rd trimester suggests axonal packing process.
Wendel, Kara M; Lee, Jeong Bin; Affeldt, Bethann; Hamer, Mary; Harahap-Carrillo, Indira S; Pardo, Andrea C; Obenaus, Andre
2018-05-09
Emerging data suggest that pediatric traumatic brain injury (TBI) is associated with impaired developmental plasticity and poorer neuropsychological outcomes than adults with similar head injuries. Unlike adult mild TBI (mTBI), the effects of mTBI on white matter (WM) microstructure and vascular supply are not well-understood in the pediatric population. The cerebral vasculature plays an important role providing necessary nutrients and removing waste. To address this critical element, we examined the microstructure of the corpus callosum (CC) following pediatric mTBI using diffusion tensor imaging (DTI), and investigated myelin, oligodendrocytes, and vasculature of WM with immunohistochemistry. We hypothesized that pediatric mTBI leads to abnormal WM microstructure and impacts the vasculature within the CC, and that these alterations to WM vasculature contribute to the long-term altered microstructure. We induced a closed head injury mTBI at postnatal day 14, then at 4, 14, and 60 days post injury (DPI) mice were sacrificed for analysis. We observed persistent changes in apparent diffusion coefficient (ADC) within the ipsilateral CC following mTBI, indicating microstructural changes, but surprisingly changes in myelin and oligodendrocyte densities were minimal. However, vasculature features of the ipsilateral CC such as vessel density, length, and number of junctions were persistently altered following mTBI. Correlative analysis showed a strong inverse relationship between ADC and vessel density at 60 DPI, suggesting increased vessel density following mTBI may restrict WM diffusion characteristics. Our findings suggest that WM vasculature contributes to the long-term microstructural changes within the ipsilateral CC following mTBI.
Abnormalities in white matter microstructure associated with chronic ketamine use.
Edward Roberts, R; Curran, H Valerie; Friston, Karl J; Morgan, Celia J A
2014-01-01
Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist that has been found to induce schizophrenia-type symptoms in humans and is a potent and fast-acting antidepressant. It is also a relatively widespread drug of abuse, particularly in China and the UK. Acute administration has been well characterized, but the effect of extended periods of ketamine use-on brain structure in humans-remains poorly understood. We measured indices of white matter microstructural integrity and connectivity in the brain of 16 ketamine users and 16 poly-drug-using controls, and we used probabilistic tractography to quantify changes in corticosubcortical connectivity associated with ketamine use. We found a reduction in the axial diffusivity profile of white matter in a right hemisphere network of white matter regions in ketamine users compared with controls. Within the ketamine-user group, we found a significant positive association between the connectivity profile between the caudate nucleus and the lateral prefrontal cortex and dissociative experiences. These findings suggest that chronic ketamine use may be associated with widespread disruption of white matter integrity, and white matter pathways between subcortical and prefrontal cortical areas may in part predict individual differences in dissociative experiences due to ketamine use.
Gray matter and white matter abnormalities in online game addiction.
Weng, Chuan-Bo; Qian, Ruo-Bing; Fu, Xian-Ming; Lin, Bin; Han, Xiao-Peng; Niu, Chao-Shi; Wang, Ye-Han
2013-08-01
Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Padilla, Nelly; Junqué, Carme; Figueras, Francesc; Sanz-Cortes, Magdalena; Bargalló, Núria; Arranz, Angela; Donaire, Antonio; Figueras, Josep; Gratacos, Eduard
2014-01-30
Intrauterine growth restriction (IUGR) is associated with a high risk of abnormal neurodevelopment. Underlying neuroanatomical substrates are partially documented. We hypothesized that at 12 months preterm infants would evidence specific white-matter microstructure alterations and gray-matter differences induced by severe IUGR. Twenty preterm infants with IUGR (26-34 weeks of gestation) were compared with 20 term-born infants and 20 appropriate for gestational age preterm infants of similar gestational age. Preterm groups showed no evidence of brain abnormalities. At 12 months, infants were scanned sleeping naturally. Gray-matter volumes were studied with voxel-based morphometry. White-matter microstructure was examined using tract-based spatial statistics. The relationship between diffusivity indices in white matter, gray matter volumes, and perinatal data was also investigated. Gray-matter decrements attributable to IUGR comprised amygdala, basal ganglia, thalamus and insula bilaterally, left occipital and parietal lobes, and right perirolandic area. Gray-matter volumes positively correlated with birth weight exclusively. Preterm infants had reduced FA in the corpus callosum, and increased FA in the anterior corona radiata. Additionally, IUGR infants had increased FA in the forceps minor, internal and external capsules, uncinate and fronto-occipital white matter tracts. Increased axial diffusivity was observed in several white matter tracts. Fractional anisotropy positively correlated with birth weight and gestational age at birth. These data suggest that IUGR differentially affects gray and white matter development preferentially affecting gray matter. At 12 months IUGR is associated with a specific set of structural gray-matter decrements. White matter follows an unusual developmental pattern, and is apparently affected by IUGR and prematurity combined. Copyright © 2013 Elsevier B.V. All rights reserved.
White Matter Microstructure Predicts Autistic Traits in Attention-Deficit/Hyperactivity Disorder
ERIC Educational Resources Information Center
Cooper, Miriam; Thapar, Anita; Jones, Derek K.
2014-01-01
Traits of autism spectrum disorder (ASD) in children with attention-deficit/hyperactivity disorder (ADHD) have previously been found to index clinical severity. This study examined the association of ASD traits with diffusion parameters in adolescent males with ADHD (n = 17), and also compared WM microstructure relative to controls (n = 17).…
Episodic Memory in Detoxified Alcoholics: Contribution of Grey Matter Microstructure Alteration
Chanraud, Sandra; Leroy, Claire; Martelli, Catherine; Kostogianni, Nikoleta; Delain, Françoise; Aubin, Henri-Jean; Reynaud, Michel; Martinot, Jean-Luc
2009-01-01
Even though uncomplicated alcoholics may likely have episodic memory deficits, discrepancies exist regarding to the integrity of brain regions that underlie this function in healthy subjects. Possible relationships between episodic memory and 1) brain microstructure assessed by magnetic resonance diffusion tensor imaging (DTI), 2) brain volumes assessed by voxel-based morphometry (VBM) were investigated in uncomplicated, detoxified alcoholics. Diffusion and morphometric analyses were performed in 24 alcohol dependent men without neurological or somatic complications and in 24 healthy men. The mean apparent coefficient of diffusion (ADC) and grey matter volumes were measured in the whole brain. Episodic memory performance was assessed using a French version of the Free and Cued Selective Reminding Test (FCSRT). Correlation analyses between verbal episodic memory, brain microstructure, and brain volumes were carried out using SPM2 software. In those with alcohol dependence, higher ADC was detected mainly in frontal, temporal and parahippocampal regions, and in the cerebellum. In alcoholics, regions with higher ADC typically also had lower grey matter volume. Low verbal episodic memory performance in alcoholism was associated with higher mean ADC in parahippocampal areas, in frontal cortex and in the left temporal cortex; no correlation was found between regional volumes and episodic memory scores. Regression analyses for the control group were not significant. These findings support the hypothesis that regional microstructural but no macrostructural alteration of the brain might be responsible, at least in part, for episodic memory deficits in alcohol dependence. PMID:19707568
Impact of early and recent stress on white matter microstructure in major depressive disorder.
Poletti, Sara; Aggio, Veronica; Brioschi, Silvia; Bollettini, Irene; Falini, Andrea; Colombo, Cristina; Benedetti, Francesco
2018-01-01
Major Depressive Disorder (MDD) is a worldwide-spread pathology, characterized by lifetime-recurrent episodes. Adverse childhood experiences (ACE) increase the lifetime risk of developing depression and affect the structure of the brain. Recent stressful events (RSE) can trigger the onset of depressive episodes, and affect grey matter volume. The aim of our study is to analyse the effect of both early and recent stress events on white matter microstructure in MDD patients and healthy volunteers. Sixty-five MDD inpatients and fifty-nine healthy controls underwent MRI acquisition of diffusion tensor images with a 3.0T scanner. Severity of ACE and RSE was rated, respectively, on the Risky Families Questionnaire and on the Social Readjustment Rating Scale. A significant effect of diagnosis was observed, with MDD subjects showing reduced fractional anisotropy (FA) and axial diffusivity (AD) compared to healthy controls in all the major association, projection and commissural tracts. In patients with MDD, but not in healthy controls, both ACE and RSE correlated with measures of WM microstructure: ACE correlated negatively with AD and MD, whereas RSE correlated negatively with FA. The two diagnostic groups differed for age and education, previous and current medications, and treatment periods. Exposure to both early and recent stress exerts a widespread effect on WM microstructure of MDD patients, with a different impact possibly depending from the developmental period in which the stress has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, W; Liu, J; Skidmore, F; Liu, Y; Tian, J; Li, K
2010-11-01
Depression occurs frequently in PD; however the neural basis of depression in PD remains unclear. The aim of this study was to characterize possible depression-related white matter microstructural changes in the thalamus of patients with DPD compared with those with NDPD. FA and MD maps from DTI were obtained in 14 patients with DPD and 18 patients with NDPD. Region-of-interest-guided VBA was conducted on the FA maps to detect possible microstructural differences in the thalamus between these 2 patient groups. Moreover, mean FA and MD in regions with a detected difference were compared between DPD and NDPD groups, and correlations between diffusion quantities and the severity of depression were analyzed. White matter microstructure differences were found between the patients with DPD and NDPD in the bilateral mediodorsal thalamic regions. In these regions, patients with DPD showed significantly decreased FA values (P < .005) compared with patients with NDPD, and the mean values of FA were negatively correlated with the scores of depression severity (P < .05) for patients with PD. No significant differences of MD were found in the mediodorsal thalamus between these 2 groups. Our results provide preliminary evidence that the mediodorsal thalamus may play an important role in depression in PD and suggest a relationship between FA in the mediodorsal thalamus and the presence of depressive symptoms in patients with DPD. These findings may be helpful for further understanding the potential mechanisms of depression in PD.
The role of white matter microstructure in inhibitory deficits in patients with schizophrenia.
Du, Xiaoming; Kochunov, Peter; Summerfelt, Ann; Chiappelli, Joshua; Choa, Fow-Sen; Hong, L Elliot
Inhibitory-excitatory (I-E) imbalance has increasingly been proposed as a fundamental mechanism giving rise to many schizophrenia-related pathophysiology. The integrity of I-E functions should require precise and rapid electrical signal transmission. We hypothesized that part of the I-E abnormality in schizophrenia may originate from their known abnormal white matter connectivity that may interfere the I-E functions. We test this using short-interval intracortical inhibition (SICI) vs. intracortical facilitation (ICF) which is a non-invasive measurement of I-E signaling. SICI-ICF from left motor cortex and white matter microstructure were assessed in schizophrenia patients and healthy controls. Schizophrenia patients showed significantly reduced SICI but not ICF. White matter microstructure as measured by fraction anisotropy (FA) in diffusion tensor imaging had a significant effect on SICI in patients, such that weaker SICI was associated with lower FA in several white matter tracts, most strongly with left corona radiata (r = -0.68, p = 0.0002) that contains the fibers connecting with left motor cortex. Left corticospinal tract, which carries the motor fibers to peripheral muscular output, also showed significant correlation with SICI (r = -0.54, p = 0.005). Mediation analysis revealed that much of the schizophrenia disease effect on SICI can be accounted for by mediation through left corona radiata. SICI was also significantly associated with the performance of processing speed in patients. This study demonstrated the importance of structural circuitry integrity in inhibitory signaling in schizophrenia, and encouraged modeling the I-E dysfunction in schizophrenia from a circuitry perspective. Published by Elsevier Inc.
Asensi-Fabado, María Amparo; Ammon, Alexandra; Sonnewald, Uwe; Munné-Bosch, Sergi; Voll, Lars M.
2015-01-01
Tocopherol cyclase, encoded by the gene SUCROSE EXPORT DEFECTIVE1, catalyses the second step in the synthesis of the antioxidant tocopherol. Depletion of SXD1 activity in maize and potato leaves leads to tocopherol deficiency and a ‘sugar export block’ phenotype that comprises massive starch accumulation and obstruction of plasmodesmata in paraveinal tissue by callose. We grew two transgenic StSXD1:RNAi potato lines with severe tocopherol deficiency under moderate light conditions and subjected them to salt stress. After three weeks of salt exposure, we observed a strongly reduced sugar exudation rate and a lack of starch mobilization in leaves of salt-stressed transgenic plants, but not in wild-type plants. However, callose accumulation in the vasculature declined upon salt stress in all genotypes, indicating that callose plugging of plasmodesmata was not the sole cause of the sugar export block phenotype in tocopherol-deficient leaves. Based on comprehensive gene expression analyses, we propose that enhanced responsiveness of SnRK1 target genes in mesophyll cells and altered redox regulation of phloem loading by SUT1 contribute to the attenuation of sucrose export from salt-stressed SXD:RNAi source leaves. Furthermore, we could not find any indication that elevated oxidative stress may have served as a trigger for the salt-induced carbohydrate phenotype of SXD1:RNAi transgenic plants. In leaves of the SXD1:RNAi plants, sodium accumulation was diminished, while proline accumulation and pools of soluble antioxidants were increased. As supported by phytohormone contents, these differences seem to increase longevity and prevent senescence of SXD:RNAi leaves under salt stress. PMID:25428995
Racial Differences in Gray Matter Integrity by Diffusion Tensor in Black and White Octogenarians.
Liu, Ge; Allen, Ben; Lopez, Oscar; Aizenstein, Howard; Boudreau, Robert; Newman, Anne; Yaffe, Kristine; Kritchevsky, Stephen; Launer, Lenore; Satterfield, Suzanne; Simonsick, Eleanor; Rosano, Caterina
2015-01-01
To quantify racial differences in brain structural characteristics in white and black octogenarians, and to examine whether these characteristics contribute to cognition. Cross-sectional study of 283 adults 79-89 years old (59.4% white;42.0% women) with data on gray matter integrity via diffusion tensor imaging (mean diffusivity), gray matter atrophy (GMA), white matter hyperintensities (WMH), literacy, smoking, drinking, income, hypertension and diabetes. Participants were recruited from an ongoing epidemiological study of older adults living in the community with a range of chronic conditions, physical and cognitive function. Standardized betas (sβ) of neuroimaging markers predicting Digit Symbol Substitution Test (DSST) and Modified Mini-Mental State Examination (3MS) scores were computed in multivariable regression models stratified by race. Compared to whites, blacks had lower DSST (p=0.001) and lower 3MS (p=0.006), but also lower mean diffusivity (i.e. higher gray matter microstructural integrity, p=0.032), independent of gender, income, literacy, body mass index, diabetes and drinking habits. Racial differences were not significant for WMH (p=0.062) or GMA (p=0.4). Among blacks, mean diffusivity and WMH were associated with DSST (sβ=-.209, p=0.037 and -.211, p=.038, respectively) independent of each other and other covariates; among whites, mean diffusivity, but not WMH, was significantly associated with DSST and 3MS (sβ =-.277, p=.002 and -.250, p=0.029, respectively). In this cohort of octogenarians living in the community, blacks appeared to have higher microstructural integrity of gray matter as compared to whites. This neuroimaging marker was related to higher cognition even in the presence of WMH and other cardiovascular conditions. If confirmed, these findings suggest microstructural gray matter integrity may be a target to improve cognition, especially among blacks who survive to very old age with a range of chronic cardiovascular conditions.
Volumetric Effects of Motor Cortex Injury on Recovery of Ipsilesional Dexterous Movements
Darling, Warren G.; Pizzimenti, Marc A.; Hynes, Stephanie M.; Rotella, Diane L.; Headley, Grant; Ge, Jizhi; Stilwell-Morecraft, Kimberly S.; McNeal, David W.; Solon-Cline, Kathryn M.; Morecraft, Robert J.
2011-01-01
Damage to the motor cortex of one hemisphere has classically been associated with contralateral upper limb paresis, but recent patient studies have identified deficits in both upper limbs. In non-human primates, we tested the hypothesis that the severity of ipsilesional upper limb motor impairment in the early post-injury phase depends on the volume of gray and white matter damage of the motor areas of the frontal lobe. We also postulated that substantial recovery would accompany minimal task practice and that ipsilesional limb recovery would be correlated with recovery of the contralesional limb. Gross (reaching) and fine hand motor functions were assessed for 3-12 months post-injury using two motor tests. Volumes of white and gray matter lesions were assessed using quantitative histology. Early changes in post-lesion motor performance were inversely correlated with white matter lesion volume indicating that larger lesions produced greater decreases in ipsilesional hand movement control. All monkeys showed improvements in ipsilesional hand motor skill during the post-lesion period, with reaching skill improvements being positively correlated with total lesion volume indicating larger lesions were associate with greater ipsilesional motor skill recovery. We suggest that reduced trans-callosal inhibition from the lesioned hemisphere may play a role in the observed skill improvements. Our findings show that significant ipsilesional hand motor recovery is likely to accompany injury limited to frontal motor areas. In humans, more pronounced ipsilesional motor deficits that invariably develop after stroke may, in part, be a consequence of more extensive subcortical white and gray matter damage. PMID:21703261
Wang, Tracy H.; Minton, Brian; Muftuler, L. Tugan; Rugg, Michael D.
2011-01-01
This functional magnetic resonance imaging study investigated the relationship between the neural correlates of associative memory encoding, callosal integrity, and memory performance in older adults. Thirty-six older and 18 young subjects were scanned while making relational judgments on word pairs. Neural correlates of successful encoding (subsequent memory effects) were identified by contrasting the activity elicited by study pairs that were correctly identified as having been studied together with the activity elicited by pairs wrongly judged to have come from different study trials. Subsequent memory effects common to the 2 age groups were identified in several regions, including left inferior frontal gyrus and bilateral hippocampus. Negative effects (greater activity for forgotten than for remembered items) in default network regions in young subjects were reversed in the older group, and the amount of reversal correlated negatively with memory performance. Additionally, older subjects' subsequent memory effects in right frontal cortex correlated positively with anterior callosal integrity and negatively with memory performance. It is suggested that recruitment of right frontal cortex during verbal memory encoding may reflect the engagement of processes that compensate only partially for age-related neural degradation. PMID:21282317
ERIC Educational Resources Information Center
Vestergaard, Martin; Madsen, Kathrine Skak; Baare, William F. C.; Skimminge, Arnold; Ejersbo, Lisser Rye; Ramsoy, Thomas Z.; Gerlach, Christian; Akeson, Per; Paulson, Olaf B.; Jernigan, Terry L.
2011-01-01
During childhood and adolescence, ongoing white matter maturation in the fronto-parietal cortices and connecting fiber tracts is measurable with diffusion-weighted imaging. Important questions remain, however, about the links between these changes and developing cognitive functions. Spatial working memory (SWM) performance improves significantly…
Individual differences in white matter microstructure predict semantic control.
Nugiel, Tehila; Alm, Kylie H; Olson, Ingrid R
2016-12-01
In everyday conversation, we make many rapid choices between competing concepts and words in order to convey our intent. This process is termed semantic control, and it is thought to rely on information transmission between a distributed semantic store in the temporal lobes and a more discrete region, optimized for retrieval and selection, in the left inferior frontal gyrus. Here, we used diffusion tensor imaging in a group of neurologically normal young adults to investigate the relationship between semantic control and white matter tracts that have been implicated in semantic memory retrieval. Participants completed a verb generation task that taps semantic control (Snyder & Munakata, 2008; Snyder et al., 2010) and underwent a diffusion imaging scan. Deterministic tractography was performed to compute indices representing the microstructural properties of the inferior fronto-occipital fasciculus (IFOF), the uncinate fasciculus (UF), and the inferior longitudinal fasciculus (ILF). Microstructural measures of the UF failed to predict semantic control performance. However, there was a significant relationship between microstructure of the left IFOF and ILF and individual differences in semantic control. Our findings support the view put forth by Duffau (2013) that the IFOF is a key structural pathway in semantic retrieval.
Long-term white matter tract reorganization following prolonged febrile seizures.
Pujar, Suresh S; Seunarine, Kiran K; Martinos, Marina M; Neville, Brian G R; Scott, Rod C; Chin, Richard F M; Clark, Chris A
2017-05-01
Diffusion magnetic resonance imaging (MRI) studies have demonstrated acute white matter changes following prolonged febrile seizures (PFS), but their longer-term evolution is unknown. We investigated a population-based cohort to determine white matter diffusion properties 8 years after PFS. We used diffusion tensor imaging (DTI) and applied Tract-Based Spatial Statistics for voxel-wise comparison of white matter microstructure between 26 children with PFS and 27 age-matched healthy controls. Age, gender, handedness, and hippocampal volumes were entered as covariates for voxel-wise analysis. Mean duration between the episode of PFS and follow-up was 8.2 years (range 6.7-9.6). All children were neurologically normal, and had normal conventional neuroimaging. On voxel-wise analysis, compared to controls, the PFS group had (1) increased fractional anisotropy in early maturing central white matter tracts, (2) increased mean and axial diffusivity in several peripheral white matter tracts and late-maturing central white matter tracts, and (3) increased radial diffusivity in peripheral white matter tracts. None of the tracts had reduced fractional anisotropy or diffusivity indices in the PFS group. In this homogeneous, population-based sample, we found increased fractional anisotropy in early maturing central white matter tracts and increased mean and axial diffusivity with/without increased radial diffusivity in several late-maturing peripheral white matter tracts 8 years post-PFS. We propose disruption in white matter maturation secondary to seizure-induced axonal injury, with subsequent neuroplasticity and microstructural reorganization as a plausible explanation. © 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
Hallgrímsson, Haraldur T; Cieslak, Matthew; Foschini, Luca; Grafton, Scott T; Singh, Ambuj K
2018-05-15
We present a method to discover differences between populations with respect to the spatial coherence of their oriented white matter microstructure in arbitrarily shaped white matter regions. This method is applied to diffusion MRI scans of a subset of the Human Connectome Project dataset: 57 pairs of monozygotic and 52 pairs of dizygotic twins. After controlling for morphological similarity between twins, we identify 3.7% of all white matter as being associated with genetic similarity (35.1 k voxels, p<10 -4 , false discovery rate 1.5%), 75% of which spatially clusters into twenty-two contiguous white matter regions. Furthermore, we show that the orientation similarity within these regions generalizes to a subset of 47 pairs of non-twin siblings, and show that these siblings are on average as similar as dizygotic twins. The regions are located in deep white matter including the superior longitudinal fasciculus, the optic radiations, the middle cerebellar peduncle, the corticospinal tract, and within the anterior temporal lobe, as well as the cerebellum, brain stem, and amygdalae. These results extend previous work using undirected fractional anisotrophy for measuring putative heritable influences in white matter. Our multidirectional extension better accounts for crossing fiber connections within voxels. This bottom up approach has at its basis a novel measurement of coherence within neighboring voxel dyads between subjects, and avoids some of the fundamental ambiguities encountered with tractographic approaches to white matter analysis that estimate global connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.
Brown, Christopher A; Jiang, Yang; Smith, Charles D; Gold, Brian T
2018-04-19
The default mode network (DMN) comprises defined brain regions contributing to internally-directed thought processes. Reductions in task-induced deactivation in the DMN have been associated with increasing age and poorer executive task performance, but factors underlying these functional changes remain unclear. We investigated contributions of white matter (WM) microstructure, WM hyperintensities (WMH) and Alzheimer's pathology to age-related alterations in DMN function. Thirty-five cognitively normal older adults and 29 younger adults underwent working memory task fMRI and diffusion tensor imaging. In the older adults, we measured cerebrospinal fluid tau and Aβ 42 (markers of AD pathology), and WMH on FLAIR imaging (marker of cerebrovascular disease). We identified a set of regions showing DMN deactivation and a set of inter-connecting WM tracts (DMN-WM) common to both age groups. There were negative associations between DMN deactivation and task performance in older adults, consistent with previous studies. Decreased DMN deactivation was associated with AD pathology and WM microstructure but not with WMH volume. Mediation analyses showed that WM microstructure mediated declines in DMN deactivation associated with both aging and AD pathology. Together these results suggest that AD pathology may exert a "second-hit" on WM microstructure, over-and-above the effects of age, both contributing to diminished DMN deactivation in older adults. Copyright © 2018 Elsevier Ltd. All rights reserved.
White Matter Microstructure in Transsexuals and Controls Investigated by Diffusion Tensor Imaging
Kranz, Georg S.; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F.; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert
2015-01-01
Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects’ sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. PMID:25392513
Neural connections foster social connections: a diffusion-weighted imaging study of social networks
Hampton, William H.; Unger, Ashley; Von Der Heide, Rebecca J.
2016-01-01
Although we know the transition from childhood to adulthood is marked by important social and neural development, little is known about how social network size might affect neurocognitive development or vice versa. Neuroimaging research has identified several brain regions, such as the amygdala, as key to this affiliative behavior. However, white matter connectivity among these regions, and its behavioral correlates, remain unclear. Here we tested two hypotheses: that an amygdalocentric structural white matter network governs social affiliative behavior and that this network changes during adolescence and young adulthood. We measured social network size behaviorally, and white matter microstructure using probabilistic diffusion tensor imaging in a sample of neurologically normal adolescents and young adults. Our results suggest amygdala white matter microstructure is key to understanding individual differences in social network size, with connectivity to other social brain regions such as the orbitofrontal cortex and anterior temporal lobe predicting much variation. In addition, participant age correlated with both network size and white matter variation in this network. These findings suggest the transition to adulthood may constitute a critical period for the optimization of structural brain networks underlying affiliative behavior. PMID:26755769
Vollmer, Brigitte; Lundequist, Aiko; Mårtensson, Gustaf; Nagy, Zoltan; Lagercrantz, Hugo; Smedler, Ann-Charlotte; Forssberg, Hans
2017-01-01
Executive functions are frequently a weakness in children born preterm. We examined associations of executive functions and general cognitive abilities with brain structure in preterm born adolescents who were born with appropriate weight for gestational age and who have no radiological signs of preterm brain injury on neuroimaging. The Stockholm Neonatal Project (SNP) is a longitudinal, population-based study of children born preterm (<36 weeks of gestation) with very low birth weight (<1501g) between 1988-1993. At age 18 years (mean 18 years, SD 2 weeks) 134 preterm born and 94 full term participants underwent psychological assessment (general intelligence, executive function measures). Of these, 71 preterm and 63 full term participants underwent Magnetic Resonance Imaging (MRI) at mean 15.2 years (range 12-18 years), including 3D T1-weighted images for volumetric analyses and Diffusion Tensor Imaging (DTI) for assessment of white matter microstructure. Group comparisons of regional grey and white matter volumes and fractional anisotropy (FA, as a measure of white matter microstructure) and, within each group, correlation analyses of cognitive measures with MRI metrics were carried out. Significant differences in grey and white matter regional volumes and widespread differences in FA were seen between the two groups. No significant correlations were found between cognitive measures and brain volumes in any group after correction for multiple comparisons. However, there were significant correlations between FA in projection fibres and long association fibres, linking frontal, temporal, parietal, and occipital lobes, and measures of executive function and general cognitive abilities in the preterm born adolescents, but not in the term born adolescents. In persons born preterm, in the absence of perinatal brain injury on visual inspection of MRI, widespread alterations in regional brain tissue volumes and microstructure are present in adolescence/young adulthood. Importantly, these alterations in WM tracts are correlated with measures of executive function and general cognitive abilities. Our findings suggest that disturbance of neural pathways, rather than changes in regional brain volumes, are involved in the impaired cognitive functions.
Wolf, Dominik; Fischer, Florian U; Scheurich, Armin; Fellgiebel, Andreas
2015-01-01
Cerebral amyloid-β accumulation and changes in white matter (WM) microstructure are imaging characteristics in clinical Alzheimer's disease and have also been reported in cognitively healthy older adults. However, the relationship between amyloid deposition and WM microstructure is not well understood. Here, we investigated the impact of quantitative cerebral amyloid load on WM microstructure in a group of cognitively healthy older adults. AV45-positron emission tomography and diffusion tensor imaging (DTI) scans of forty-four participants (age-range: 60 to 89 years) from the Alzheimer's Disease Neuroimaging Initiative were analyzed. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (DR), and axial diffusivity (DA) were calculated to characterize WM microstructure. Regression analyses demonstrated non-linear (quadratic) relationships between amyloid deposition and FA, MD, as well as RD in widespread WM regions. At low amyloid burden, higher deposition was associated with increased FA as well as decreased MD and DR. At higher amyloid burden, higher deposition was associated with decreased FA as well as increased MD and DR. Additional regression analyses demonstrated an interaction effect between amyloid load and global WM FA, MD, DR, and DA on cognition, suggesting that cognition is only affected when amyloid is increasing and WM integrity is decreasing. Thus, increases in FA and decreases in MD and RD with increasing amyloid load at low levels of amyloid burden may indicate compensatory processes that preserve cognitive functioning. Potential mechanisms underlying the observed non-linear association between amyloid deposition and DTI metrics of WM microstructure are discussed.
Borich, Michael R; Brown, Katlyn E; Boyd, Lara A
2014-07-01
Imaging advances allow investigation of white matter after stroke; a growing body of literature has shown links between diffusion-based measures of white matter microstructure and motor function. However, the relationship between these measures and motor skill learning has not been considered in individuals with stroke. The aim of this study was to investigate the relationships between posttraining white matter microstructural status, as indexed by diffusion tensor imaging within the ipsilesional posterior limb of the internal capsule (PLIC), and learning of a novel motor task in individuals with chronic stroke. A total of 13 participants with chronic stroke and 9 healthy controls practiced a visuomotor pursuit task across 5 sessions. Change in motor behavior associated with learning was indexed by comparing baseline performance with a delayed retention test. Fractional anisotropy (FA) indexed at the retention test was the primary diffusion tensor imaging-derived outcome measure. In individuals with chronic stroke, we discovered an association between posttraining ipsilesional PLIC FA and the magnitude of change associated with motor learning; hierarchical multiple linear regression analyses revealed that the combination of age, time poststroke, and ipsilesional PLIC FA posttraining was associated with motor learning-related change (R = 0.649; P = 0.02). Baseline motor performance was not related to posttraining ipsilesional PLIC FA. Diffusion characteristics of posttraining ipsilesional PLIC were linked to the magnitude of change in skilled motor behavior. These results imply that the microstructural properties of regional white matter indexed by diffusion behavior may be an important factor to consider when determining potential response to rehabilitation in persons with stroke. (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A59) for more insights from the authors.
Nestor, Paul G; Ohtani, Toshiyuki; Bouix, Sylvain; Hosokawa, Taiga; Saito, Yukiko; Newell, Dominick T; Kubicki, Marek
2015-12-01
We examined intelligence and memory in 25 healthy participants who had both prior magnetic resonance imaging (MRI) of gray matter volumes of medial orbital frontal cortex (mOFC) and rostral anterior cingulate cortex (rACC), along with diffusion tensor imaging (DTI) of posterior and anterior mOFC-rACC white matter microstructure, as assessed by fractional anisotropy (FA). Results showed distinct relationships between these basic structural brain parameters and higher cognition, highlighted by a highly significant correlation of left rACC gray matter volume with memory, and to a lesser extent, though still statistically significant, correlation of left posterior mOFC-rACC FA with intelligence. Regression analyses showed that left posterior mOFC-rACC connections and left rACC gray matter volume each contributed to intelligence, with left posterior mOFC-rACC FA uniquely accounting for between 20.43 and 24.99% of the variance in intelligence, in comparison to 13.54 to 17.98% uniquely explained by left rACC gray matter volume. For memory, only left rACC gray matter volume explained neuropsychological performance, uniquely accounting for a remarkably high portion of individual variation, ranging from 73.61 to 79.21%. These results pointed to differential contributions of white mater microstructure connections and gray matter volumes to individual differences in intelligence and memory, respectively.
Song, Sunbin; Sharma, Nikhil; Buch, Ethan R.
2012-01-01
We value skills we have learned intentionally, but equally important are skills acquired incidentally without ability to describe how or what is learned, referred to as implicit. Randomized practice schedules are superior to grouped schedules for long-term skill gained intentionally, but its relevance for implicit learning is not known. In a parallel design, we studied healthy subjects who learned a motor sequence implicitly under randomized or grouped practice schedule and obtained diffusion-weighted images to identify white matter microstructural correlates of long-term skill. Randomized practice led to superior long-term skill compared with grouped practice. Whole-brain analyses relating interindividual variability in fractional anisotropy (FA) to long-term skill demonstrated that 1) skill in randomized learners correlated with FA within the corticostriatal tract connecting left sensorimotor cortex to posterior putamen, while 2) skill in grouped learners correlated with FA within the right forceps minor connecting homologous regions of the prefrontal cortex (PFC) and the corticostriatal tract connecting lateral PFC to anterior putamen. These results demonstrate first that randomized practice schedules improve long-term implicit skill more than grouped practice schedules and, second, that the superior skill acquired through randomized practice can be related to white matter microstructure in the sensorimotor corticostriatal network. PMID:21914632
Liu, Qing-Ping; He, Wen-Wen; Ding, Hong; Nedelska, Zuzana; Hort, Jakub; Zhang, Bing; Xu, Yun
2016-01-01
Lacunar cerebral infarction (LI) is one of risk factors of vascular dementia and correlates with progression of cognitive impairment including the executive functions. However, little is known on spatial navigation impairment and its underlying microstructural alteration of white matter in patients with LI and with or without mild cognitive impairment (MCI). Our aim was to investigate whether the spatial navigation impairment correlated with the white matter integrity in LI patients with MCI (LI-MCI). Thirty patients with LI were included in the study and were divided into LI-MCI (n=17) and non MCI (LI-Non MCI) groups (n=13) according neuropsychological tests.The microstructural integrity of white matter was assessed by calculating a fractional anisotropy (FA) and mean diffusivity (MD) from diffusion tensor imaging (DTI) scans. The spatial navigation accuracy, separately evaluated as egocentric and allocentric, was assessed by a computerized human analogue of the Morris Water Maze tests Amunet. LI-MCI performed worse than the CN and LI-NonMCI groups on egocentric and delayed spatial navigation subtests. LI-MCI patients have spatial navigation deficits. The microstructural abnormalities in diffuse brain regions, including hippocampus, uncinate fasciculus and other brain regions may contribute to the spatial navigation impairment in LI-MCI patients at follow-up. PMID:27861154
Koppelmans, Vincent; Pasternak, Ofer; Bloomberg, Jacob J; Dios, Yiri E De; Wood, Scott J; Riascos, Roy; Reuter-Lorenz, Patricia A; Kofman, Igor S; Mulavara, Ajitkumar P; Seidler, Rachael D
2017-06-09
The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt bed rest (HDBR) serves as a microgravity analog because it mimics the headward fluid shift and axial body unloading of spaceflight. We investigated focal brain white matter (WM) changes and fluid shifts during 70 days of 6° HDBR in 16 subjects who were assessed pre (2x), during (3x), and post-HDBR (2x). Changes over time were compared to those in control subjects (n = 12) assessed four times over 90 days. Diffusion MRI was used to assess WM microstructure and fluid shifts. Free-Water Imaging was used to quantify distribution of intracranial extracellular free water (FW). Additionally, we tested whether WM and FW changes correlated with changes in functional mobility and balance measures. HDBR resulted in FW increases in fronto-temporal regions and decreases in posterior-parietal regions that largely recovered by two weeks post-HDBR. WM microstructure was unaffected by HDBR. FW decreases in the post-central gyrus and precuneus correlated negatively with balance changes. We previously reported that gray matter increases in these regions were associated with less HDBR-induced balance impairment, suggesting adaptive structural neuroplasticity. Future studies are warranted to determine causality and underlying mechanisms.
Duning, Thomas; Deppe, Michael; Brand, Eva; Stypmann, Jörg; Becht, Charlotte; Heidbreder, Anna; Young, Peter
2013-01-01
Background The exact underlying pathomechanism of central sleep apnea with Cheyne-Stokes respiration (CSA-CSR) is still unclear. Recent studies have demonstrated an association between cerebral white matter changes and CSA. A dysfunction of central respiratory control centers in the brainstem was suggested by some authors. Novel MR-imaging analysis tools now allow far more subtle assessment of microstructural cerebral changes. The aim of this study was to investigate whether and what severity of subtle structural cerebral changes could lead to CSA-CSR, and whether there is a specific pattern of neurodegenerative changes that cause CSR. Therefore, we examined patients with Fabry disease (FD), an inherited, lysosomal storage disease. White matter lesions are early and frequent findings in FD. Thus, FD can serve as a "model disease" of cerebral microangiopathy to study in more detail the impact of cerebral lesions on central sleep apnea. Patients and Methods Genetically proven FD patients (n = 23) and age-matched healthy controls (n = 44) underwent a cardio-respiratory polysomnography and brain MRI at 3.0 Tesla. We applied different MR-imaging techniques, ranging from semiquantitative measurement of white matter lesion (WML) volumes and automated calculation of brain tissue volumes to VBM of gray matter and voxel-based diffusion tensor imaging (DTI) analysis. Results In 5 of 23 Fabry patients (22%) CSA-CSR was detected. Voxel-based DTI analysis revealed widespread structural changes in FD patients when compared to the healthy controls. When calculated as a separate group, DTI changes of CSA-CSR patients were most prominent in the brainstem. Voxel-based regression analysis revealed a significant association between CSR severity and microstructural DTI changes within the brainstem. Conclusion Subtle microstructural changes in the brainstem might be a neuroanatomical correlate of CSA-CSR in patients at risk of WML. DTI is more sensitive and specific than conventional structural MRI and other advanced MR analyses tools in demonstrating these abnormalities. PMID:23637744
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueckriegel, Stefan Mark, E-mail: stefan.rueckriegel@charite.d; Driever, Pablo Hernaiz; Blankenburg, Friederike
2010-03-01
Purpose: To elucidate morphologic correlates of brain dysfunction in pediatric survivors of posterior fossa tumors by using magnetic resonance diffusion tensor imaging (DTI) to examine neuroaxonal integrity in white matter. Patients and Methods: Seventeen medulloblastoma (MB) patients who had received surgery and adjuvant treatment, 13 pilocytic astrocytoma (PA) patients who had been treated only with surgery, and age-matched healthy control subjects underwent magnetic resonance imaging on a 3-Tesla system. High-resolution conventional T1- and T2-weighted magnetic resonance imaging and DTI data sets were obtained. Fractional anisotropy (FA) maps were analyzed using tract-based spatial statistics, a part of the Functional MRI ofmore » the Brain Software Library. Results: Compared with control subjects, FA values of MB patients were significantly decreased in the cerebellar midline structures, in the frontal lobes, and in the callosal body. Fractional anisotropy values of the PA patients were not only decreased in cerebellar hemispheric structures as expected, but also in supratentorial parts of the brain, with a distribution similar to that in MB patients. However, the amount of significantly decreased FA was greater in MB than in PA patients, underscoring the aggravating neurotoxic effect of the adjuvant treatment. Conclusions: Neurotoxic mechanisms that are present in PA patients (e.g., internal hydrocephalus and damaged cerebellar structures affecting neuronal circuits) contribute significantly to the alteration of supratentorial white matter in pediatric posterior fossa tumor patients.« less
D'Arceuil, Helen; Liu, Christina; Levitt, Pat; Thompson, Barbara; Kosofsky, Barry; de Crespigny, Alex
2008-01-01
Diffusion tensor imaging (DTI) is sensitive to structural ordering in brain tissue particularly in the white matter tracts. Diffusion anisotropy changes with disease and also with neural development. We used high-resolution DTI of fixed rabbit brains to study developmental changes in regional diffusion anisotropy and white matter fiber tract development. Imaging was performed on a 4.7-tesla Bruker Biospec Avance scanner using custom-built solenoid coils and DTI was performed at various postnatal ages. Trace apparent diffusion coefficient, fractional diffusion anisotropy maps and fiber tracts were generated and compared across the ages. The brain was highly anisotropic at birth and white matter anisotropy increased with age. Regional DTI tractography of the internal capsule showed refinement in regional tract architecture with maturation. Interestingly, brains with congenital deficiencies of the callosal commissure showed selectively strikingly different fiber architecture compared to age-matched brains. There was also some evidence of subcortical to cortical fiber connectivity. DTI tractography of the anterior and posterior limbs of the internal capsule showed reproducibly coherent fiber tracts corresponding to known corticospinal and corticobulbar tract anatomy. There was some minor interanimal tract variability, but there was remarkable similarity between the tracts in all animals. Therefore, ex vivo DTI tractography is a potentially powerful tool for neuroscience investigations and may also reveal effects (such as fiber tract pruning during development) which may be important targets for in vivo human studies. Copyright 2007 S. Karger AG, Basel.
Market microstructure matters when imposing a Tobin tax-Evidence from the lab.
Kirchler, Michael; Huber, Jürgen; Kleinlercher, Daniel
2011-12-01
TRADING IN FX MARKETS IS DOMINATED BY TWO MICROSTRUCTURES: exchanges with market makers and OTC-markets without market makers. Using laboratory experiments we test whether the impact of a Tobin tax is different in these two market microstructures. We find that (i) in markets without market makers an unilaterally imposed Tobin tax (i.e. a tax haven exists) increases volatility. (ii) In contrast, in markets with market makers we observe a decrease in volatility in unilaterally taxed markets. (iii) An encompassing Tobin tax has no impact on volatility in either setting. Efficiency does not vary significantly across tax regimes.
Spaceflight Effect on White Matter Structural Integrity
NASA Technical Reports Server (NTRS)
Lee, Jessica K.; Kopplemans, Vincent; Paternack, Ofer; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.
2017-01-01
Recent reports of elevated brain white matter hyperintensity (WMH) counts and volume in postflight astronaut MRIs suggest that further examination of spaceflight's impact on the microstructure of brain white matter is warranted. To this end, retrospective longitudinal diffusion-weighted MRI scans obtained from 15 astronauts were evaluated. In light of the recent reports of microgravity-induced cephalad fluid shift and gray matter atrophy seen in astronauts, we applied a technique to estimate diffusion tensor imaging (DTI) metrics corrected for free water contamination. This approach enabled the analysis of white matter tissue-specific alterations that are unrelated to fluid shifts, occurring from before spaceflight to after landing. After spaceflight, decreased fractional anisotropy (FA) values were detected in an area encompassing the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus. Increased radial diffusivity (RD) and decreased axial diffusivity (AD) were also detected within overlapping regions. In addition, FA values in the corticospinal tract decreased and RD measures in the precentral gyrus white matter increased from before to after flight. The results show disrupted structural connectivity of white matter in tracts involved in visuospatial processing, vestibular function, and movement control as a result of spaceflight. The findings may help us understand the structural underpinnings of the extensive spaceflight-induced sensorimotor remodeling. Prospective longitudinal assessment of the white matter integrity in astronauts is needed to characterize the evolution of white matter microstructural changes associated with spaceflight, their behavioral consequences, and the time course of recovery. Supported by a grant from the National Space Biomedical Research Institute, NASA NCC 9-58.
Vitolo, Enrico; Tatu, Mona Karina; Pignolo, Claudia; Cauda, Franco; Costa, Tommaso; Ando', Agata; Zennaro, Alessandro
2017-12-30
Voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) are the most implemented methodologies to detect alterations of both gray and white matter (WM). However, the role of WM in mental disorders is still not well defined. We aimed at clarifying the role of WM disruption in schizophrenia and at identifying the most frequently involved brain networks. A systematic literature search was conducted to identify VBM and DTI studies focusing on WM alterations in patients with schizophrenia compared to control subjects. We selected studies reporting the coordinates of WM reductions and we performed the anatomical likelihood estimation (ALE). Moreover, we labeled the WM bundles with an anatomical atlas and compared VBM and DTI ALE-scores of each significant WM tract. A total of 59 studies were eligible for the meta-analysis. WM alterations were reported in 31 and 34 foci with VBM and DTI methods, respectively. The most occurred WM bundles in both VBM and DTI studies and largely involved in schizophrenia were long projection fibers, callosal and commissural fibers, part of motor descending fibers, and fronto-temporal-limbic pathways. The meta-analysis showed a widespread WM disruption in schizophrenia involving specific cerebral circuits instead of well-defined regions. Copyright © 2017 Elsevier B.V. All rights reserved.
Shifting brain asymmetry: the link between meditation and structural lateralization.
Kurth, Florian; MacKenzie-Graham, Allan; Toga, Arthur W; Luders, Eileen
2015-01-01
Previous studies have revealed an increased fractional anisotropy and greater thickness in the anterior parts of the corpus callosum in meditation practitioners compared with control subjects. Altered callosal features may be associated with an altered inter-hemispheric integration and the degree of brain asymmetry may also be shifted in meditation practitioners. Therefore, we investigated differences in gray matter asymmetry as well as correlations between gray matter asymmetry and years of meditation practice in 50 long-term meditators and 50 controls. We detected a decreased rightward asymmetry in the precuneus in meditators compared with controls. In addition, we observed that a stronger leftward asymmetry near the posterior intraparietal sulcus was positively associated with the number of meditation practice years. In a further exploratory analysis, we observed that a stronger rightward asymmetry in the pregenual cingulate cortex was negatively associated with the number of practice years. The group difference within the precuneus, as well as the positive correlations with meditation years in the pregenual cingulate cortex, suggests an adaptation of the default mode network in meditators. The positive correlation between meditation practice years and asymmetry near the posterior intraparietal sulcus may suggest that meditation is accompanied by changes in attention processing. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Liu, Jinglan; Du, Haitao; Ding, Xu; Zhou, Yaodong; Xie, Pengfei; Wu, Jincai
2017-12-01
Callose is a plant cell wall polysaccharide controlled by β-1,3-glucanase and synthase. Abscisic acid (ABA) is an important plant hormone. Exogenous ABA promotes rice resistance to pests. Whether exogenous ABA could reduce the decline in rice yield after brown planthopper (Nilaparvata lugens Stål; BPH) feeding is an important question, however, the mechanisms behind rice resistance induced by ABA remain obscure. Electronic penetration graph (EPG) recording indicated a significant increase in rice resistance to BPH, and the number of BPH eggs decreased significantly upon application of exogenous ABA. As the concentration of ABA increased, the reduction in rice yield decreased significantly after BPH feeding. Further studies showed that β-1,3-glucanase activity was significantly lower, but synthase activity was higher after ABA treatment than in controls. Our results demonstrated that exogenous ABA suppressed β-1,3-glucanase and induced synthase activity, and promoted callose deposition. This is an important defense mechanism that prevents BPH from ingesting phloem sap. These studies provide support for an insect-resistance mechanism after ABA treatment and provide a reference for the integrated management of other piercing-sucking pests. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
AUXIN RESPONSE FACTOR17 Is Essential for Pollen Wall Pattern Formation in Arabidopsis1[C][W][OA
Yang, Jun; Tian, Lei; Sun, Ming-Xi; Huang, Xue-Yong; Zhu, Jun; Guan, Yue-Feng; Jia, Qi-Shi; Yang, Zhong-Nan
2013-01-01
In angiosperms, pollen wall pattern formation is determined by primexine deposition on the microspores. Here, we show that AUXIN RESPONSE FACTOR17 (ARF17) is essential for primexine formation and pollen development in Arabidopsis (Arabidopsis thaliana). The arf17 mutant exhibited a male-sterile phenotype with normal vegetative growth. ARF17 was expressed in microsporocytes and microgametophytes from meiosis to the bicellular microspore stage. Transmission electron microscopy analysis showed that primexine was absent in the arf17 mutant, which leads to pollen wall-patterning defects and pollen degradation. Callose deposition was also significantly reduced in the arf17 mutant, and the expression of CALLOSE SYNTHASE5 (CalS5), the major gene for callose biosynthesis, was approximately 10% that of the wild type. Chromatin immunoprecipitation and electrophoretic mobility shift assays showed that ARF17 can directly bind to the CalS5 promoter. As indicated by the expression of DR5-driven green fluorescent protein, which is an synthetic auxin response reporter, auxin signaling appeared to be specifically impaired in arf17 anthers. Taken together, our results suggest that ARF17 is essential for pollen wall patterning in Arabidopsis by modulating primexine formation at least partially through direct regulation of CalS5 gene expression. PMID:23580594
Compost addition reduces porosity and chlordecone transfer in soil microstructure.
Woignier, Thierry; Clostre, Florence; Fernandes, Paula; Rangon, Luc; Soler, Alain; Lesueur-Jannoyer, Magalie
2016-01-01
Chlordecone, an organochlorine insecticide, pollutes soils and contaminates crops and water resources and is biomagnified by food chains. As chlordecone is partly trapped in the soil, one possible alternative to decontamination may be to increase its containment in the soil, thereby reducing its diffusion into the environment. Containing the pesticide in the soil could be achieved by adding compost because the pollutant has an affinity for organic matter. We hypothesized that adding compost would also change soil porosity, as well as transport and containment of the pesticide. We measured the pore features and studied the nanoscale structure to assess the effect of adding compost on soil microstructure. We simulated changes in the transport properties (hydraulic conductivity and diffusion) associated with changes in porosity. During compost incubation, the clay microstructure collapsed due to capillary stresses. Simulated data showed that the hydraulic conductivity and diffusion coefficient were reduced by 95 and 70% in the clay microstructure, respectively. Reduced transport properties affected pesticide mobility and thus helped reduce its transfer from the soil to water and to the crop. We propose that the containment effect is due not only to the high affinity of chlordecone for soil organic matter but also to a trapping mechanism in the soil porosity.
Holleran, Laurena; Kim, Joong Hee; Gangolli, Mihika; Stein, Thor; Alvarez, Victor; McKee, Ann; Brody, David L
2017-03-01
Chronic traumatic encephalopathy (CTE) is a progressive degenerative disorder associated with repetitive traumatic brain injury. One of the primary defining neuropathological lesions in CTE, based on the first consensus conference, is the accumulation of hyperphosphorylated tau in gray matter sulcal depths. Post-mortem CTE studies have also reported myelin loss, axonal injury and white matter degeneration. Currently, the diagnosis of CTE is restricted to post-mortem neuropathological analysis. We hypothesized that high spatial resolution advanced diffusion MRI might be useful for detecting white matter microstructural changes directly adjacent to gray matter tau pathology. To test this hypothesis, formalin-fixed post-mortem tissue blocks from the superior frontal cortex of ten individuals with an established diagnosis of CTE were obtained from the Veterans Affairs-Boston University-Concussion Legacy Foundation brain bank. Advanced diffusion MRI data was acquired using an 11.74 T MRI scanner at Washington University with 250 × 250 × 500 µm 3 spatial resolution. Diffusion tensor imaging, diffusion kurtosis imaging and generalized q-sampling imaging analyses were performed in a blinded fashion. Following MRI acquisition, tissue sections were tested for phosphorylated tau immunoreactivity in gray matter sulcal depths. Axonal disruption in underlying white matter was assessed using two-dimensional Fourier transform analysis of myelin black gold staining. A robust image co-registration method was applied to accurately quantify the relationship between diffusion MRI parameters and histopathology. We found that white matter underlying sulci with high levels of tau pathology had substantially impaired myelin black gold Fourier transform power coherence, indicating axonal microstructural disruption (r = -0.55, p = 0.0015). Using diffusion tensor MRI, we found that fractional anisotropy (FA) was modestly (r = 0.53) but significantly (p = 0.0012) correlated with axonal disruption, where lower FA was associated with greater axonal disruption in white matter directly adjacent to hyperphosphorylated tau positive sulci. In summary, our findings indicate that axonal disruption and tau pathology are closely associated, and high spatial resolution ex vivo diffusion MRI has the potential to detect microstructural alterations observed in CTE tissue. Future studies will be required to determine whether this approach can be applied to living people.
White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging.
Kranz, Georg S; Hahn, Andreas; Kaufmann, Ulrike; Küblböck, Martin; Hummer, Allan; Ganger, Sebastian; Seiger, Rene; Winkler, Dietmar; Swaab, Dick F; Windischberger, Christian; Kasper, Siegfried; Lanzenberger, Rupert
2014-11-12
Biological causes underpinning the well known gender dimorphisms in human behavior, cognition, and emotion have received increased attention in recent years. The advent of diffusion-weighted magnetic resonance imaging has permitted the investigation of the white matter microstructure in unprecedented detail. Here, we aimed to study the potential influences of biological sex, gender identity, sex hormones, and sexual orientation on white matter microstructure by investigating transsexuals and healthy controls using diffusion tensor imaging (DTI). Twenty-three female-to-male (FtM) and 21 male-to-female (MtF) transsexuals, as well as 23 female (FC) and 22 male (MC) controls underwent DTI at 3 tesla. Fractional anisotropy, axial, radial, and mean diffusivity were calculated using tract-based spatial statistics (TBSS) and fiber tractography. Results showed widespread significant differences in mean diffusivity between groups in almost all white matter tracts. FCs had highest mean diffusivities, followed by FtM transsexuals with lower values, MtF transsexuals with further reduced values, and MCs with lowest values. Investigating axial and radial diffusivities showed that a transition in axial diffusivity accounted for mean diffusivity results. No significant differences in fractional anisotropy maps were found between groups. Plasma testosterone levels were strongly correlated with mean, axial, and radial diffusivities. However, controlling for individual estradiol, testosterone, or progesterone plasma levels or for subjects' sexual orientation did not change group differences. Our data harmonize with the hypothesis that fiber tract development is influenced by the hormonal environment during late prenatal and early postnatal brain development. Copyright © 2014 the authors 0270-6474/14/3415466-10$15.00/0.
Callosal Influence on Visual Receptive Fields Has an Ocular, an Orientation-and Direction Bias.
Conde-Ocazionez, Sergio A; Jungen, Christiane; Wunderle, Thomas; Eriksson, David; Neuenschwander, Sergio; Schmidt, Kerstin E
2018-01-01
One leading hypothesis on the nature of visual callosal connections (CC) is that they replicate features of intrahemispheric lateral connections. However, CC act also in the central part of the binocular visual field. In agreement, early experiments in cats indicated that they provide the ipsilateral eye part of binocular receptive fields (RFs) at the vertical midline (Berlucchi and Rizzolatti, 1968), and play a key role in stereoscopic function. But until today callosal inputs to receptive fields activated by one or both eyes were never compared simultaneously, because callosal function has been often studied by cutting or lesioning either corpus callosum or optic chiasm not allowing such a comparison. To investigate the functional contribution of CC in the intact cat visual system we recorded both monocular and binocular neuronal spiking responses and receptive fields in the 17/18 transition zone during reversible deactivation of the contralateral hemisphere. Unexpectedly from many of the previous reports, we observe no change in ocular dominance during CC deactivation. Throughout the transition zone, a majority of RFs shrink, but several also increase in size. RFs are significantly more affected for ipsi- as opposed to contralateral stimulation, but changes are also observed with binocular stimulation. Noteworthy, RF shrinkages are tiny and not correlated to the profound decreases of monocular and binocular firing rates. They depend more on orientation and direction preference than on eccentricity or ocular dominance of the receiving neuron's RF. Our findings confirm that in binocularly viewing mammals, binocular RFs near the midline are constructed via the direct geniculo-cortical pathway. They also support the idea that input from the two eyes complement each other through CC: Rather than linking parts of RFs separated by the vertical meridian, CC convey a modulatory influence, reflecting the feature selectivity of lateral circuits, with a strong cardinal bias.
Giannoutsou, E; Sotiriou, P; Apostolakos, P; Galatis, B
2013-10-01
The morphogenesis of lobed mesophyll cells (MCs) is highly controlled and coupled with intercellular space formation. Cortical microtubule rings define the number and the position of MC isthmi. This work investigated early events of MC morphogenesis, especially the mechanism defining the position of contacts between MCs. The distributions of plasmodesmata, the hemicelluloses callose and (1 → 3,1 → 4)-β-d-glucans (MLGs) and the pectin epitopes recognized by the 2F4, JIM5, JIM7 and LM6 antibodies were studied in the cell walls of Zea mays MCs. Matrix cell wall polysaccharides were immunolocalized in hand-made sections and in sections of material embedded in LR White resin. Callose was also localized using aniline blue in hand-made sections. Plasmodesmata distribution was examined by transmission electron microscopy. Before reorganization of the dispersed cortical microtubules into microtubule rings, particular bands of the longitudinal MC walls, where the MC contacts will form, locally differentiate by selective (1) deposition of callose and the pectin epitopes recognized by the 2F4, LM6, JIM5 and JIM7 antibodies, (2) degradation of MLGs and (3) formation of secondary plasmodesmata clusterings. This cell wall matrix differentiation persists in cell contacts of mature MCs. Simultaneously, the wall bands between those of future cell contacts differentiate with (1) deposition of local cell wall thickenings including cellulose microfibrils, (2) preferential presence of MLGs, (3) absence of callose and (4) transient presence of the pectins identified by the JIM5 and JIM7 antibodies. The wall areas between cell contacts expand determinately to form the cell isthmi and the cell lobes. The morphogenesis of lobed MCs is characterized by the early patterned differentiation of two distinct cell wall subdomains, defining the sites of the future MC contacts and of the future MC isthmi respectively. This patterned cell wall differentiation precedes cortical microtubule reorganization and may define microtubule ring disposition.
Effect of chorioamnionitis on brain development and injury in premature newborns.
Chau, Vann; Poskitt, Kenneth J; McFadden, Deborah E; Bowen-Roberts, Tim; Synnes, Anne; Brant, Rollin; Sargent, Michael A; Soulikias, Wendy; Miller, Steven P
2009-08-01
The association of chorioamnionitis and noncystic white matter injury, a common brain injury in premature newborns, remains controversial. Our objectives were to determine the association of chorioamnionitis and postnatal risk factors with white matter injury, and the effects of chorioamnionitis on early brain development, using advanced magnetic resonance imaging. Ninety-two preterm newborns (24-32 weeks gestation) were studied at a median age of 31.9 weeks and again at 40.3 weeks gestation. Histopathological chorioamnionitis and white matter injury were scored using validated systems. Measures of brain metabolism (N-acetylaspartate/choline and lactate/choline) on magnetic resonance spectroscopy, and microstructure (average diffusivity and fractional anisotropy) on diffusion tensor imaging were calculated from predefined brain regions. Thirty-one (34%) newborns were exposed to histopathological chorioamnionitis, and 26 (28%) had white matter injury. Histopathological chorioamnionitis was not associated with an increased risk of white matter injury (relative risk: 1.2; p = 0.6). Newborns with postnatal infections and hypotension requiring therapy were at higher risk of white matter injury (p < 0.03). Adjusting for gestational age at scan and regions of interest, histopathological chorioamnionitis did not significantly affect brain metabolic and microstructural development (p > 0.1). In contrast, white matter injury was associated with lower N-acetylaspartate/choline (-8.9%; p = 0.009) and lower white matter fractional anisotropy (-11.9%; p = 0.01). Histopathological chorioamnionitis does not appear to be associated with an increased risk of white matter injury on magnetic resonance imaging or with abnormalities of brain development. In contrast, postnatal infections and hypotension are associated with an increased risk of white matter injury in the premature newborn.
van Ewijk, Hanneke; Groenman, Annabeth P; Zwiers, Marcel P; Heslenfeld, Dirk J; Faraone, Stephen V; Hartman, Catharina A; Luman, Marjolein; Greven, Corina U; Hoekstra, Pieter J; Franke, Barbara; Buitelaar, Jan; Oosterlaan, Jaap
2015-03-01
Brain white matter (WM) tracts, playing a vital role in the communication between brain regions, undergo important maturational changes during adolescence and young adulthood, a critical period for the development of nicotine dependence. Attention-deficit/hyperactivity disorder (ADHD) is associated with increased smoking and widespread WM abnormalities, suggesting that the developing ADHD brain might be especially vulnerable to effects of smoking. This study aims to investigate the effect of smoking on (WM) microstructure in adolescents and young adults with and without ADHD. Diffusion tensor imaging was performed in an extensively phenotyped sample of nonsmokers (n = 95, 50.5% ADHD), irregular smokers (n = 41, 58.5% ADHD), and regular smokers (n = 50, 82.5% ADHD), aged 14-24 years. A whole-brain voxelwise approach investigated associations of smoking, ADHD and their interaction, with WM microstructure as measured by fractional anisotropy (FA) and mean diffusivity (MD). Widespread alterations in FA and MD were found for regular smokers compared to irregular and nonsmokers, mainly located in the corpus callosum and WM tracts surrounding the basal ganglia. Several regions overlapped with regions of altered FA for ADHD versus controls, albeit in different directions. Irregular and nonsmokers did not differ, and ADHD and smoking did not interact. Results implicate that smoking and ADHD have independent effects on WM microstructure, and possibly do not share underlying mechanisms. Two mechanisms may play a role in the current results. First, smoking may cause alterations in WM microstructure in the maturing brain. Second, pre-existing WM microstructure differences possibly reflect a risk factor for development of a smoking addiction. © 2014 Wiley Periodicals, Inc.
Agenesis of the corpus callosum and autism: a comprehensive comparison.
Paul, Lynn K; Corsello, Christina; Kennedy, Daniel P; Adolphs, Ralph
2014-06-01
The corpus callosum, with its ∼200 million axons, remains enigmatic in its contribution to cognition and behaviour. Agenesis of the corpus callosum is a congenital condition in which the corpus callosum fails to develop; such individuals exhibit localized deficits in non-literal language comprehension, humour, theory of mind and social reasoning. These findings together with parent reports suggest that behavioural and cognitive impairments in subjects with callosal agenesis may overlap with the profile of autism spectrum disorders, particularly with respect to impairments in social interaction and communication. To provide a comprehensive test of this hypothesis, we directly compared a group of 26 adults with callosal agenesis to a group of 28 adults with a diagnosis of autism spectrum disorder but no neurological abnormality. All participants had full-scale intelligence quotient scores >78 and groups were matched on age, handedness, and gender ratio. Using the Autism Diagnostic Observation Schedule together with current clinical presentation to assess autistic symptomatology, we found that 8/26 (about a third) of agenesis subjects presented with autism. However, more formal diagnosis additionally involving recollective parent-report measures regarding childhood behaviour showed that only 3/22 met complete formal criteria for an autism spectrum disorder (parent reports were unavailable for four subjects). We found no relationship between intelligence quotient and autism symptomatology in callosal agenesis, nor evidence that the presence of any residual corpus callosum differentiated those who exhibited current autism spectrum symptoms from those who did not. Relative to the autism spectrum comparison group, parent ratings of childhood behaviour indicated children with agenesis were less likely to meet diagnostic criteria for autism, even for those who met autism spectrum criteria as adults, and even though there was no group difference in parent report of current behaviours. The findings suggest two broad conclusions. First, they support the hypothesis that congenital disruption of the corpus callosum constitutes a major risk factor for developing autism. Second, they quantify specific features that distinguish autistic behaviour associated with callosal agenesis from autism more generally. Taken together, these two findings also leverage specific questions for future investigation: what are the distal causes (genetic and environmental) determining both callosal agenesis and its autistic features, and what are the proximal mechanisms by which absence of the callosum might generate autistic symptomatology? © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
FELDMAN, HEIDI M; LEE, ELIANA S; LOE, IRENE M; YEOM, KRISTEN W; GRILL-SPECTOR, KALANIT; LUNA, BEATRIZ
2013-01-01
AIM Diffusion tensor imaging (DTI) was used to evaluate white matter architecture after preterm birth. The goals were (1) to compare white matter microstructure in two cohorts of preterm- and term-born children; and (2) within preterm groups, to determine if sex, gestational age, birthweight, white matter injury score from conventional magnetic resonance imaging (MRI), or IQ was associated with DTI measures. METHOD Participants (n=121; 66 females, 55 males) were aged 9 to 16 years. They comprised 58 preterm children (site 1, n=25; and site 2, n=33) born at less than 36 weeks’ gestation (mean 29.4wks; birthweight 1289g) and 63 term children (site 1, n=40; site 2, n=23) born at more than 37 weeks’ gestation. DTI was analyzed using tract-based spatial statistics. Diffusion measures were fractional anisotropy, axial, radial, and mean diffusivity. RESULTS In no region of the white matter skeleton was fractional anisotropy lower in the preterm group at either site. Within the preterm groups, fractional anisotropy was significantly associated with white matter injury score, but not sex, gestational age, or birthweight. At site 1, fractional anisotropy was associated with IQ. INTERPRETATION DTI contributes to understanding individual differences after preterm birth but may not differentiate a relatively high-functioning group of preterm children from a matched group of term-born children. PMID:22803787
Falvey, Cherie M.; Rosano, Caterina; Simonsick, Eleanor M.; Harris, Tamara; Strotmeyer, Elsa S.; Satterfield, Suzanne; Yaffe, Kristine
2013-01-01
OBJECTIVE To better understand the association between diabetes and cognitive impairment, we evaluated macro- and microstructural brain MRI measures for the total brain and regions of interest (ROIs) in a group of community-dwelling elders with and without diabetes. RESEARCH DESIGN AND METHODS MRI measures were obtained on 308 elders (mean age 83.3 years; n = 85 with diabetes) from the Health ABC Healthy Brain Substudy. We performed a series of linear regressions and used standardized β values to estimate the cross-sectional association between diabetes and macrostructural (gray matter volume [GMV] and white matter hyperintensities [WMHs]) and microstructural (mean diffusivity [MD] and fractional anisotropy [FA]) measures for the total brain and ROIs. Models were adjusted for age, race, and sex; GMV values for ROIs were also adjusted for total brain volume (TBV). RESULTS In multivariate-adjusted models, diabetes was associated with lower total GMV (P = 0.0006), GMV in the putamen (P = 0.02 for left and right), and TBV (P = 0.04) and greater cerebral atrophy (P = 0.02). There was no association with WMHs. On microstructural measures, diabetes was associated with reduced FA for total white matter (P = 0.006) and greater MD for the hippocampus (P = 0.006 left; P = 0.01 right), dorsolateral prefrontal cortex (P = 0.0007, left; P = 0.002, right), left posterior cingulate (P = 0.02), and right putamen (P = 0.02). Further adjustment for stroke, hypertension, and myocardial infarction produced similar results. CONCLUSIONS In this cross-sectional study, elders with diabetes compared with those without had greater brain atrophy and early signs of neurodegeneration. Further studies are needed to determine whether these structural changes associated with diabetes predict risk of cognitive decline. PMID:23160721
Sun, Xiaoyan; Salat, David; Upchurch, Kristen; Deason, Rebecca; Kowall, Neil; Budson, Andrew
2014-10-01
Accumulating evidence shows that gradual loss of white matter integrity plays an important role in the development of Alzheimer disease (AD). The aim of this research was to study the microstructural integrity of white matter in AD in vivo. Global fractional anisotropy, global axial diffusivity (AxD), and global radial diffusivity (RD) were analyzed in subjects with normal controls (NC), mild cognitive impairment (MCI), and AD using Alzheimer's Disease Neuroimaging Initiative data (total N = 210). We further compared specific white matter tracts among the 3 groups. Compared with the NC group, the MCI group had significantly increased global AxD and global RD. Compared with the NC and MCI groups, the AD group had significantly decreased global fractional anisotropy, increased global AxD, and increased global RD. With regard to specific white matter tracts, in the MCI group, we found increased AxD and increased RD in the external capsule, part of the lateral cholinergic pathway, in addition to the tracts connecting the limbic regions, predominantly in the left hemisphere. In the AD group, white matter abnormalities were widespread, including in the external capsule (cholinergic pathway) and limbic region tracts as well as tracts connecting anterior to posterior regions bilaterally. The radiographic manifestation of damaged white matter microstructural integrity in the cholinergic pathway in MCI patients may provide a rational basis for the use of cholinesterase inhibitor drugs in the MCI stage of AD.
Moberget, T; Andersson, S; Lundar, T; Due-Tønnessen, B J; Heldal, A; Endestad, T; Westlye, L T
2015-03-01
The cerebellum is connected to extensive regions of the cerebrum, and cognitive deficits following cerebellar lesions may thus be related to disrupted cerebello-cerebral connectivity. Moreover, early cerebellar lesions could affect distal brain development, effectively inducing long-term changes in brain structure and cognitive function. Here, we characterize supratentorial brain structure and cognitive function in 20 adult patients treated for cerebellar tumours in childhood (mean age at surgery: 7.1 years) and 26 matched controls. Relative to controls, patients showed reduced cognitive function and increased grey matter density in bilateral cingulum, left orbitofrontal cortex and the left hippocampus. Within the patient group, increased grey matter density in these regions was associated with decreased performance on tests of processing speed and executive function. Further, diffusion tensor imaging revealed widespread alterations in white matter microstructure in patients. While current ventricle volume (an index of previous hydrocephalus severity it patients) was associated with grey matter density and white matter microstructure in patients, this could only partially account for the observed group differences in brain structure and cognitive function. In conclusion, our results show distal effects of cerebellar lesions on cerebral integrity and wiring, likely caused by a combination of neurodegenerative processes and perturbed neurodevelopment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sex differences in white matter development during adolescence: a DTI study.
Wang, Yingying; Adamson, Chris; Yuan, Weihong; Altaye, Mekibib; Rajagopal, Akila; Byars, Anna W; Holland, Scott K
2012-10-10
Adolescence is a complex transitional period in human development, composing physical maturation, cognitive and social behavioral changes. The objective of this study is to investigate sex differences in white matter development and the associations between intelligence and white matter microstructure in the adolescent brain using diffusion tensor imaging (DTI) and tract-based spatial statistics (TBSS). In a cohort of 16 typically-developing adolescents aged 13 to 17 years, longitudinal DTI data were recorded from each subject at two time points that were one year apart. We used TBSS to analyze the diffusion indices including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Our results suggest that boys (13-18 years) continued to demonstrate white matter maturation, whereas girls appeared to reach mature levels earlier. In addition, we identified significant positive correlations between FA and full-scale intelligence quotient (IQ) in the right inferior fronto-occipital fasciculus when both sexes were looked at together. Only girls showed significant positive correlations between FA and verbal IQ in the left cortico-spinal tract and superior longitudinal fasciculus. The preliminary evidence presented in this study supports that boys and girls have different developmental trajectories in white matter microstructure. Copyright © 2012 Elsevier B.V. All rights reserved.
Laporta-Hoyos, Olga; Pannek, Kerstin; Ballester-Plané, Júlia; Reid, Lee B; Vázquez, Élida; Delgado, Ignacio; Zubiaurre-Elorza, Leire; Macaya, Alfons; Póo, Pilar; Meléndez-Plumed, Mar; Junqué, Carme; Boyd, Roslyn; Pueyo, Roser
2017-01-01
Dyskinetic cerebral palsy (CP) is one of the most disabling motor types of CP and has been classically associated with injury to the basal ganglia and thalamus. Although cognitive dysfunction is common in CP, there is a paucity of published quantitative analyses investigating the relationship between white matter (WM) microstructure and cognition in this CP type. This study aims (1) to compare brain WM microstructure between people with dyskinetic CP and healthy controls, (2) to identify brain regions where WM microstructure is related to intelligence and (3) to identify brain regions where WM microstructure is related to executive function in people with dyskinetic CP and (4) to identify brain regions where the correlations are different between controls and people with CP in IQ and executive functions. Thirty-three participants with dyskinetic CP (mean ± SD age: 24.42 ± 12.61, 15 female) were age and sex matched with 33 controls. Participants underwent a comprehensive neuropsychological battery to assess intelligence quotient (IQ) and four executive function domains (attentional control, cognitive flexibility, goal setting and information processing). Diffusion weighted MRI scans were acquired at 3T. Voxel-based whole brain groupwise analyses were used to compare fractional anisotropy (FA) and of the CP group to the matched controls using a general lineal model. Further general linear models were used to identify regions where white matter FA correlated with IQ and each of the executive function domains. White matter FA was significantly reduced in the CP group in all cerebral lobes, predominantly in regions connected with the parietal and to a lesser extent the temporal lobes. There was no significant correlation between IQ or any of the four executive function domains and WM microstructure in the control group. In participants with CP, lower IQ was associated with lower FA in all cerebral lobes, predominantly in locations that also showed reduced FA compared to controls. Attentional control, goal setting and information processing did not correlate with WM microstructure in the CP group. Cognitive flexibility was associated with FA in regions known to contain connections with the frontal lobe (such as the superior longitudinal fasciculus and cingulum) as well as regions not known to contain tracts directly connected with the frontal lobe (such as the posterior corona radiata, posterior thalamic radiation, retrolenticular part of internal capsule, tapetum, body and splenium of corpus callosum). The widespread loss in the integrity of WM tissue is mainly located in the parietal lobe and related to IQ in dyskinetic CP. Unexpectedly, executive functions are only related with WM microstructure in regions containing fronto-cortical and posterior cortico-subcortical pathways, and not being specifically related to the state of fronto-striatal pathways which might be due to brain reorganization. Further studies of this nature may improve our understanding of the neurobiological bases of cognitive impairments after early brain insult.
Kakita, Akiyoshi; Zerlin, Marielba; Takahashi, Hitoshi; Goldman, James E
2003-04-14
The great majority of glial cells of the mammalian forebrain are generated in the perinatal period from progenitors in the subventricular zone (SVZ). We investigated the migration of progenitors from the neonatal (postnatal day 0, P0) rat forebrain SVZ by labeling them in vivo with a green fluorescence protein (GFP) retrovirus and monitoring their movements by time-lapse video microscopy in P3 slices. We identified a small number of progenitors that migrated tangentially within the corpus callosum (CC) and crossed the midline. These cells retained a relatively uniform morphology: the leading process was extended toward the contralateral side but showed no process branching or turning away from the migratory direction. Net migration requires the elongation of the leading process and nuclear translocation, and the migrating cells in the CC showed both modes. We confirmed the presence of unmyelinated axon bundles within the P3 CC, but failed to detect any radially directed glial processes (vimentin- or GLAST-immunolabeled fibers) spanning through the CC. Confocal images showed a close proximity between neurofilament-immunolabeled axons and the leading process of the GFP-expressing progenitors in the CC. The destination of the callosal fibers was examined by applying DiI to the right cingulum; the labeled fibers ran throughout the CC and reached the left cingulate and motor areas. The distribution and final fates of the retrovirus-labeled cells were examined in P28 brains. A small proportion of the labeled cells were found in the contralateral hemisphere, where, as oligodendrocytes and astrocytes, they colonized predominantly the cortex and the underlying white matter of the cingulate and secondary motor areas. The distribution pattern appears to coincide well with the projection direction of the callosal fibers. Thus, glial progenitors migrate across the CC, presumably in conjunction with unmyelinated axons, to colonize the contralateral hemisphere. Copyright 2003 Wiley-Liss, Inc.
Song, Sunbin; Garrido, Lúcia; Nagy, Zoltan; Mohammadi, Siawoosh; Steel, Adam; Driver, Jon; Dolan, Ray J.; Duchaine, Bradley; Furl, Nicholas
2015-01-01
Individuals with developmental prosopagnosia (DP) experience face recognition impairments despite normal intellect and low-level vision and no history of brain damage. Prior studies using diffusion tensor imaging in small samples of subjects with DP (n=6 or n=8) offer conflicting views on the neurobiological bases for DP, with one suggesting white matter differences in two major long-range tracts running through the temporal cortex, and another suggesting white matter differences confined to fibers local to ventral temporal face-specific functional regions of interest (fROIs) in the fusiform gyrus. Here, we address these inconsistent findings using a comprehensive set of analyzes in a sample of DP subjects larger than both prior studies combined (n=16). While we found no microstructural differences in long-range tracts between DP and age-matched control participants, we found differences local to face-specific fROIs, and relationships between these microstructural measures with face recognition ability. We conclude that subtle differences in local rather than long-range tracts in the ventral temporal lobe are more likely associated with developmental prosopagnosia. PMID:26456436
Market microstructure matters when imposing a Tobin tax—Evidence from the lab☆
Kirchler, Michael; Huber, Jürgen; Kleinlercher, Daniel
2011-01-01
Trading in FX markets is dominated by two microstructures: exchanges with market makers and OTC-markets without market makers. Using laboratory experiments we test whether the impact of a Tobin tax is different in these two market microstructures. We find that (i) in markets without market makers an unilaterally imposed Tobin tax (i.e. a tax haven exists) increases volatility. (ii) In contrast, in markets with market makers we observe a decrease in volatility in unilaterally taxed markets. (iii) An encompassing Tobin tax has no impact on volatility in either setting. Efficiency does not vary significantly across tax regimes. PMID:22210970
ERIC Educational Resources Information Center
Travers, Brittany G.; Bigler, Erin D.; Tromp, Do P. M.; Adluru, Nagesh; Destiche, Dan; Samsin, Danica; Froehlich, Alyson; Prigge, Molly D. B.; Duffield, Tyler C.; Lange, Nicholas; Alexander, Andrew L.; Lainhart, Janet E.
2015-01-01
Mounting evidence suggests that poorer motor skills may be related to more severe autism symptoms. This study investigated if atypical white matter microstructure in the brain mediated the relationship between motor skills and ASD symptom severity. Sixty-seven males with ASD and 42 males with typical development (5-33 years old) completed a…
ERIC Educational Resources Information Center
Versace, Amelia; Ladouceur, Cecile D.; Romero, Soledad; Birmaher, Boris; Axelson, David A.; Kupfer, David J.; Phillips, Mary L.
2010-01-01
Objective: To study white matter (WM) development in youth at high familial risk for bipolar disorder (BD). WM alterations are reported in youth and adults with BD. WM undergoes important maturational changes in adolescence. Age-related changes in WM microstructure using diffusion tensor imaging with tract-based spatial statistics in healthy…
Cohen, Jessica I.; Cazettes, Fanny; Convit, Antonio
2011-01-01
The brain is the most cholesterol-rich organ in the body. Although most of the cholesterol in the brain is produced endogenously, some studies suggest that systemic cholesterol may be able to enter the brain. We investigated whether abnormal cholesterol profiles correlated with diffusion-tensor-imaging-based estimates of white matter microstructural integrity of lean and overweight/obese (o/o) adults. Twenty-two lean and 39 obese adults underwent magnetic resonance imaging, kept a 3-day food diary, and had a standardized assessment of fasting blood lipids. The lean group ate less cholesterol rich food than o/o although both groups ate equivalent servings of food per day. Voxelwise correlational analyses controlling for age, diabetes, and white matter hyperintensities, resulted in two significant clusters of negative associations between abnormal cholesterol profile and fractional anisotropy, located in the left and right prefrontal lobes. When the groups were split, the lean subjects showed no associations, whereas the o/o group expanded the association to three significant clusters, still in the frontal lobes. These findings suggest that cholesterol profile abnormalities may explain some of the reductions in white matter microstructural integrity that are reported in obesity. PMID:22163070
Avram, Alexandru V; Sarlls, Joelle E; Barnett, Alan S; Özarslan, Evren; Thomas, Cibu; Irfanoglu, M Okan; Hutchinson, Elizabeth; Pierpaoli, Carlo; Basser, Peter J
2016-02-15
Diffusion tensor imaging (DTI) is the most widely used method for characterizing noninvasively structural and architectural features of brain tissues. However, the assumption of a Gaussian spin displacement distribution intrinsic to DTI weakens its ability to describe intricate tissue microanatomy. Consequently, the biological interpretation of microstructural parameters, such as fractional anisotropy or mean diffusivity, is often equivocal. We evaluate the clinical feasibility of assessing brain tissue microstructure with mean apparent propagator (MAP) MRI, a powerful analytical framework that efficiently measures the probability density function (PDF) of spin displacements and quantifies useful metrics of this PDF indicative of diffusion in complex microstructure (e.g., restrictions, multiple compartments). Rotation invariant and scalar parameters computed from the MAP show consistent variation across neuroanatomical brain regions and increased ability to differentiate tissues with distinct structural and architectural features compared with DTI-derived parameters. The return-to-origin probability (RTOP) appears to reflect cellularity and restrictions better than MD, while the non-Gaussianity (NG) measures diffusion heterogeneity by comprehensively quantifying the deviation between the spin displacement PDF and its Gaussian approximation. Both RTOP and NG can be decomposed in the local anatomical frame for reference determined by the orientation of the diffusion tensor and reveal additional information complementary to DTI. The propagator anisotropy (PA) shows high tissue contrast even in deep brain nuclei and cortical gray matter and is more uniform in white matter than the FA, which drops significantly in regions containing crossing fibers. Orientational profiles of the propagator computed analytically from the MAP MRI series coefficients allow separation of different fiber populations in regions of crossing white matter pathways, which in turn improves our ability to perform whole-brain fiber tractography. Reconstructions from subsampled data sets suggest that MAP MRI parameters can be computed from a relatively small number of DWIs acquired with high b-value and good signal-to-noise ratio in clinically achievable scan durations of less than 10min. The neuroanatomical consistency across healthy subjects and reproducibility in test-retest experiments of MAP MRI microstructural parameters further substantiate the robustness and clinical feasibility of this technique. The MAP MRI metrics could potentially provide more sensitive clinical biomarkers with increased pathophysiological specificity compared to microstructural measures derived using conventional diffusion MRI techniques. Published by Elsevier Inc.
Fjalldal, S; Follin, C; Svärd, D; Rylander, L; Gabery, S; Petersén, Å; van Westen, D; Sundgren, P C; Björkman-Burtscher, I M; Lätt, J; Ekman, B; Johanson, A; Erfurth, E M
2018-06-01
Patients with craniopharyngioma (CP) and hypothalamic lesions (HL) have cognitive deficits. Which neural pathways are affected is unknown. To determine whether there is a relationship between microstructural white matter (WM) alterations detected with diffusion tensor imaging (DTI) and cognition in adults with childhood-onset CP. A cross-sectional study with a median follow-up time of 22 (6-49) years after operation. The South Medical Region of Sweden (2.5 million inhabitants). Included were 41 patients (24 women, ≥17 years) surgically treated for childhood-onset CP between 1958-2010 and 32 controls with similar age and gender distributions. HL was found in 23 patients. Subjects performed cognitive tests and magnetic resonance imaging, and images were analyzed using DTI of uncinate fasciculus, fornix, cingulum, hippocampus and hypothalamus as well as hippocampal volumetry. Right uncinate fasciculus was significantly altered ( P ≤ 0.01). Microstructural WM alterations in left ventral cingulum were significantly associated with worse performance in visual episodic memory, explaining approximately 50% of the variation. Alterations in dorsal cingulum were associated with worse performance in immediate, delayed recall and recognition, explaining 26-38% of the variation, and with visuospatial ability and executive function, explaining 19-29%. Patients who had smaller hippocampal volume had worse general knowledge ( P = 0.028), and microstructural WM alterations in hippocampus were associated with a decline in general knowledge and episodic visual memory. A structure to function relationship is suggested between microstructural WM alterations in cingulum and in hippocampus with cognitive deficits in CP. © 2018 The authors.
Xie, Y; Zhang, Y; Qin, W; Lu, S; Ni, C; Zhang, Q
2017-03-01
Increasing DTI studies have demonstrated that white matter microstructural abnormalities play an important role in type 2 diabetes mellitus-related cognitive impairment. In this study, the diffusional kurtosis imaging method was used to investigate WM microstructural alterations in patients with type 2 diabetes mellitus and to detect associations between diffusional kurtosis imaging metrics and clinical/cognitive measurements. Diffusional kurtosis imaging and cognitive assessments were performed on 58 patients with type 2 diabetes mellitus and 58 controls. Voxel-based intergroup comparisons of diffusional kurtosis imaging metrics were conducted, and ROI-based intergroup comparisons were further performed. Correlations between the diffusional kurtosis imaging metrics and cognitive/clinical measurements were assessed after controlling for age, sex, and education in both patients and controls. Altered diffusion metrics were observed in the corpus callosum, the bilateral frontal WM, the right superior temporal WM, the left external capsule, and the pons in patients with type 2 diabetes mellitus compared with controls. The splenium of the corpus callosum and the pons had abnormal kurtosis metrics in patients with type 2 diabetes mellitus. Additionally, altered diffusion metrics in the right prefrontal WM were significantly correlated with disease duration and attention task performance in patients with type 2 diabetes mellitus. With both conventional diffusion and additional kurtosis metrics, diffusional kurtosis imaging can provide additional information on WM microstructural abnormalities in patients with type 2 diabetes mellitus. Our results indicate that WM microstructural abnormalities occur before cognitive decline and may be used as neuroimaging markers for predicting the early cognitive impairment in patients with type 2 diabetes mellitus. © 2017 by American Journal of Neuroradiology.
Hayes, Dave J; Lipsman, Nir; Chen, David Q; Woodside, D Blake; Davis, Karen D; Lozano, Andres M; Hodaie, Mojgan
2015-01-01
Anorexia nervosa is characterized by extreme low body weight and alterations in affective processing. The subcallosal cingulate regulates affect through wide-spread white matter connections and is implicated in the pathophysiology of anorexia nervosa. We examined whether those with treatment refractory anorexia nervosa undergoing deep brain stimulation (DBS) of the subcallosal white matter (SCC) show: (1) altered anatomical SCC connectivity compared to healthy controls, (2) white matter microstructural changes, and (3) microstructural changes associated with clinically-measured affect. Diffusion magnetic resonance imaging (dMRI) and deterministic multi-tensor tractography were used to compare anatomical connectivity and microstructure in SCC-associated white matter tracts. Eight women with treatment-refractory anorexia nervosa were compared to 8 age- and sex-matched healthy controls. Anorexia nervosa patients also completed affect-related clinical assessments presurgically and 12 months post-surgery. (1) Higher (e.g., left parieto-occipital cortices) and lower (e.g., thalamus) connectivity in those with anorexia nervosa compared to controls. (2) Decreases in fractional anisotropy, and alterations in axial and radial diffusivities, in the left fornix crus, anterior limb of the internal capsule (ALIC), right anterior cingulum and left inferior fronto-occipital fasciculus. (3) Correlations between dMRI metrics and clinical assessments, such as low pre-surgical left fornix and right ALIC fractional anisotropy being related to post-DBS improvements in quality-of-life and depressive symptoms, respectively. We identified widely-distributed differences in SCC connectivity in anorexia nervosa patients consistent with heterogenous clinical disruptions, although these results should be considered with caution given the low number of subjects. Future studies should further explore the use of affect-related connectivity and behavioral assessments to assist with DBS target selection and treatment outcome. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Betsiashvili, Mariam; Ahern, Kevin R.; Jander, Georg
2015-01-01
Plants show considerable within-species variation in their resistance to insect herbivores. In the case of Zea mays (cultivated maize), Rhopalosiphum maidis (corn leaf aphids) produce approximately twenty times more progeny on inbred line B73 than on inbred line Mo17. Genetic mapping of this difference in maize aphid resistance identified quantitative trait loci (QTL) on chromosomes 4 and 6, with the Mo17 allele reducing aphid reproduction in each case. The chromosome 4 QTL mapping interval includes several genes involved in the biosynthesis of DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one), a maize defensive metabolite that also is required for callose accumulation in response to aphid feeding. Consistent with the known association of callose with plant defence against aphids, R. maidis reproduction on B73×Mo17 recombinant inbred lines was negatively correlated with both DIMBOA content and callose formation. Further genetic mapping, as well as experiments with near-isogenic lines, confirmed that the Mo17 allele causes increased DIMBOA accumulation relative to the B73 allele. The chromosome 6 aphid resistance QTL functions independently of DIMBOA accumulation and has an effect that is additive to that of the chromosome 4 QTL. Thus, at least two separate defence mechanisms account for the higher level of R. maidis resistance in Mo17 compared with B73. PMID:25249072
Huang, Xue-Yong; Niu, Jin; Sun, Ming-Xi; Zhu, Jun; Gao, Ju-Fang; Yang, Jun; Zhou, Que; Yang, Zhong-Nan
2013-01-01
Arabidopsis thaliana CYCLIN-DEPEDENT KINASE G1 (CDKG1) belongs to the family of cyclin-dependent protein kinases that were originally characterized as cell cycle regulators in eukaryotes. Here, we report that CDKG1 regulates pre-mRNA splicing of CALLOSE SYNTHASE5 (CalS5) and, therefore, pollen wall formation. The knockout mutant cdkg1 exhibits reduced male fertility with impaired callose synthesis and abnormal pollen wall formation. The sixth intron in CalS5 pre-mRNA, a rare type of intron with a GC 5′ splice site, is abnormally spliced in cdkg1. RNA immunoprecipitation analysis suggests that CDKG1 is associated with this intron. CDKG1 contains N-terminal Ser/Arg (RS) motifs and interacts with splicing factor Arginine/Serine-Rich Zinc Knuckle-Containing Protein33 (RSZ33) through its RS region to regulate proper splicing. CDKG1 and RS-containing Zinc Finger Protein22 (SRZ22), a splicing factor interacting with RSZ33 and U1 small nuclear ribonucleoprotein particle (snRNP) component U1-70k, colocalize in nuclear speckles and reside in the same complex. We propose that CDKG1 is recruited to U1 snRNP through RSZ33 to facilitate the splicing of the sixth intron of CalS5. PMID:23404887
Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis.
Grison, Magali S; Brocard, Lysiane; Fouillen, Laetitia; Nicolas, William; Wewer, Vera; Dörmann, Peter; Nacir, Houda; Benitez-Alfonso, Yoselin; Claverol, Stéphane; Germain, Véronique; Boutté, Yohann; Mongrand, Sébastien; Bayer, Emmanuelle M
2015-04-01
Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes. © 2015 American Society of Plant Biologists. All rights reserved.
Specific Membrane Lipid Composition Is Important for Plasmodesmata Function in Arabidopsis
Grison, Magali S.; Brocard, Lysiane; Fouillen, Laetitia; Nicolas, William; Wewer, Vera; Dörmann, Peter; Nacir, Houda; Benitez-Alfonso, Yoselin; Claverol, Stéphane; Germain, Véronique; Boutté, Yohann; Mongrand, Sébastien; Bayer, Emmanuelle M.
2015-01-01
Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of “native” PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes. PMID:25818623
Novelties of the flowering plant pollen tube underlie diversification of a key life history stage.
Williams, Joseph H
2008-08-12
The origin and rapid diversification of flowering plants has puzzled evolutionary biologists, dating back to Charles Darwin. Since that time a number of key life history and morphological traits have been proposed as developmental correlates of the extraordinary diversity and ecological success of angiosperms. Here, I identify several innovations that were fundamental to the evolutionary lability of angiosperm reproduction, and hence to their diversification. In gymnosperms pollen reception must be near the egg largely because sperm swim or are transported by pollen tubes that grow at very slow rates (< approximately 20 microm/h). In contrast, pollen tube growth rates of taxa in ancient angiosperm lineages (Amborella, Nuphar, and Austrobaileya) range from approximately 80 to 600 microm/h. Comparative analyses point to accelerated pollen tube growth rate as a critical innovation that preceded the origin of the true closed carpel, long styles, multiseeded ovaries, and, in monocots and eudicots, much faster pollen tube growth rates. Ancient angiosperm pollen tubes all have callosic walls and callose plugs (in contrast, no gymnosperms have these features). The early association of the callose-walled growth pattern with accelerated pollen tube growth rate underlies a striking repeated pattern of faster and longer-distance pollen tube growth often within solid pathways in phylogenetically derived angiosperms. Pollen tube innovations are a key component of the spectacular diversification of carpel (flower and fruit) form and reproductive cycles in flowering plants.
β-1,3-Glucans are components of brown seaweed (Phaeophyceae) cell walls.
Raimundo, Sandra Cristina; Pattathil, Sivakumar; Eberhard, Stefan; Hahn, Michael G; Popper, Zoë A
2017-03-01
LAMP is a cell wall-directed monoclonal antibody (mAb) that recognizes a β-(1,3)-glucan epitope. It has primarily been used in the immunolocalization of callose in vascular plant cell wall research. It was generated against a brown seaweed storage polysaccharide, laminarin, although it has not often been applied in algal research. We conducted in vitro (glycome profiling of cell wall extracts) and in situ (immunolabeling of sections) studies on the brown seaweeds Fucus vesiculosus (Fucales) and Laminaria digitata (Laminariales). Although glycome profiling did not give a positive signal with the LAMP mAb, this antibody clearly detected the presence of the β-(1,3)-glucan in situ, showing that this epitope is a constituent of these brown algal cell walls. In F. vesiculosus, the β-(1,3)-glucan epitope was present throughout the cell walls in all thallus parts; in L. digitata, the epitope was restricted to the sieve plates of the conductive elements. The sieve plate walls also stained with aniline blue, a fluorochrome used as a probe for callose. Enzymatic digestion with an endo-β-(1,3)-glucanase removed the ability of the LAMP mAb to label the cell walls. Thus, β-(1,3)-glucans are structural polysaccharides of F. vesiculosus cell walls and are integral components of the sieve plates in these brown seaweeds, reminiscent of plant callose.
van Norden, Anouk Gw; de Laat, Karlijn F; Gons, Rob Ar; van Uden, Inge Wm; van Dijk, Ewoud J; van Oudheusden, Lucas Jb; Esselink, Rianne Aj; Bloem, Bastiaan R; van Engelen, Baziel Gm; Zwarts, Machiel J; Tendolkar, Indira; Olde-Rikkert, Marcel G; van der Vlugt, Maureen J; Zwiers, Marcel P; Norris, David G; de Leeuw, Frank-Erik
2011-02-28
Cerebral small vessel disease (SVD) is a frequent finding on CT and MRI scans of elderly people and is related to vascular risk factors and cognitive and motor impairment, ultimately leading to dementia or parkinsonism in some. In general, the relations are weak, and not all subjects with SVD become demented or get parkinsonism. This might be explained by the diversity of underlying pathology of both white matter lesions (WML) and the normal appearing white matter (NAWM). Both cannot be properly appreciated with conventional MRI. Diffusion tensor imaging (DTI) provides alternative information on microstructural white matter integrity. The association between SVD, its microstructural integrity, and incident dementia and parkinsonism has never been investigated. The RUN DMC study is a prospective cohort study on the risk factors and cognitive and motor consequences of brain changes among 503 non-demented elderly, aged between 50-85 years, with cerebral SVD. First follow up is being prepared for July 2011. Participants alive will be included and invited to the research centre to undergo a structured questionnaire on demographics and vascular risk factors, and a cognitive, and motor, assessment, followed by a MRI protocol including conventional MRI, DTI and resting state fMRI. The follow up of the RUN DMC study has the potential to further unravel the causes and possibly better predict the consequences of changes in white matter integrity in elderly with SVD by using relatively new imaging techniques. When proven, these changes might function as a surrogate endpoint for cognitive and motor function in future therapeutic trials. Our data could furthermore provide a better understanding of the pathophysiology of cognitive and motor disturbances in elderly with SVD. The execution and completion of the follow up of our study might ultimately unravel the role of SVD on the microstructural integrity of the white matter in the transition from "normal" aging to cognitive and motor decline and impairment and eventually to incident dementia and parkinsonism.
Chirumamilla, Venkata Chaitanya; Koirala, Nabin; Paktas, Burcu; Deuschl, Günther; Zeuner, Kirsten E.; Groppa, Sergiu
2016-01-01
Objective Benign Essential Blepharospasm (BEB) and hemifacial spasm (HFS) are the most common hyperkinetic movement disorders of facial muscles. Although similar in clinical presentation different pathophysiological mechanisms are assumed. Botulinum Neurotoxin (BoNT) is a standard evidence-based treatment for both conditions. In this study we aimed to assess grey matter microstructural differences between these two groups of patients and compared them with healthy controls. In patients we furthermore tracked the longitudinal morphometric changes associated with BoNT therapy. We hypothesized microstructural differences between the groups at the time point of maximum symptoms representation and distinct longitudinal grey matter dynamics with symptom improvement. Methods Cross-sectional and longitudinal analyses of 3T 3D-T1 MRI images from BEB, HFS patients prior to and one month after BoNT therapy and from a group of age and sex matched healthy controls. Cortical thickness as extracted from Freesurfer was assessed as parameter of microstructural integrity. Results BoNT therapy markedly improved motor symptoms in patients with BEB and HFS. Significant differences of grey matter integrity have been found between the two patients groups. The BEB group showed lower cortical thickness at baseline in the frontal-rostral, supramarginal and temporal regions compared to patients with HFS. In this group BoNT treatment was associated with a cortical thinning in the primary motor cortex and the pre-supplementary motor area (pre-SMA). Contrary patients with HFS showed no longitudinal CT changes. A decreased cortical thickness was attested bilaterally in the temporal poles and in the right superior frontal region in BEB patients in comparison to HC. Patients in the HFS group presented a decreased CT in the left lingual gyrus and temporal pole. Conclusions Although patients with BEB and HFS present clinically with involuntary movements of facial muscles, they exhibited differences in cortical thickness. While BoNT therapy was equally effective in both groups, widespread changes of cortical morphology occurred only in BEB patients. We demonstrated specific disease- and therapy-dependent structural changes induced by BoNT in the studied hyperkinetic conditions. PMID:27992533
AxonPacking: An Open-Source Software to Simulate Arrangements of Axons in White Matter
Mingasson, Tom; Duval, Tanguy; Stikov, Nikola; Cohen-Adad, Julien
2017-01-01
HIGHLIGHTS AxonPacking: Open-source software for simulating white matter microstructure.Validation on a theoretical disk packing problem.Reproducible and stable for various densities and diameter distributions.Can be used to study interplay between myelin/fiber density and restricted fraction. Quantitative Magnetic Resonance Imaging (MRI) can provide parameters that describe white matter microstructure, such as the fiber volume fraction (FVF), the myelin volume fraction (MVF) or the axon volume fraction (AVF) via the fraction of restricted water (fr). While already being used for clinical application, the complex interplay between these parameters requires thorough validation via simulations. These simulations required a realistic, controlled and adaptable model of the white matter axons with the surrounding myelin sheath. While there already exist useful algorithms to perform this task, none of them combine optimisation of axon packing, presence of myelin sheath and availability as free and open source software. Here, we introduce a novel disk packing algorithm that addresses these issues. The performance of the algorithm is tested in term of reproducibility over 50 runs, resulting density, and stability over iterations. This tool was then used to derive multiple values of FVF and to study the impact of this parameter on fr and MVF in light of the known microstructure based on histology sample. The standard deviation of the axon density over runs was lower than 10−3 and the expected hexagonal packing for monodisperse disks was obtained with a density close to the optimal density (obtained: 0.892, theoretical: 0.907). Using an FVF ranging within [0.58, 0.82] and a mean inter-axon gap ranging within [0.1, 1.1] μm, MVF ranged within [0.32, 0.44] and fr ranged within [0.39, 0.71], which is consistent with the histology. The proposed algorithm is implemented in the open-source software AxonPacking (https://github.com/neuropoly/axonpacking) and can be useful for validating diffusion models as well as for enabling researchers to study the interplay between microstructure parameters when evaluating qMRI methods. PMID:28197091
Gao, Shudan; Liu, Peng; Guo, Jialu; Zhu, Yuanqiang; Liu, Peng; Sun, Jinbo; Yang, Xuejuan; Qin, Wei
2017-12-01
Response conflict can be induced by priming multiple responses competing for control of action in trials. The N2 is one functionally-related cognitive control index for response conflict. And yet the underlying whiter matter neural substrates of inter-individual difference in conflict N2 remain unclear. So the aim of present study was to address the white matter microstructure of the N2 responsible for conflict by directly relating the amplitude cost of the event-related potential (ERP) N2 component to diffusion tensor imaging (DTI) indices in healthy subjects. Thirty healthy subjects underwent DTI scanning and electrophysiology recording during a modified Flanker task. N2 was a stimulus-locked negative ERP component. Fractional anisotropy (FA) was calculated based on DTI measures and was assumed to reflect the integrity of myelinate fiber bundles. Therefore, we tested the relationship between N2 amplitude and FA in brain white matter. Results showed that FA, an index for white matter characteristics, in the right superior longitudinal fasciculus (SLF) was significantly positively associated with N2 amplitude cost. The N2 amplitude cost also predicted response time (RT) cost in the Flanker task. Higher FA was associated with larger N2 amplitude cost, suggesting that changes in white matter integrity in the SLF may account for changes in efficient transmission of fronto-parietal modulatory conflict signals. Copyright © 2017 Elsevier B.V. All rights reserved.
Uhlmann, Anne; Fouche, Jean-Paul; Lederer, Katharina; Meintjes, Ernesta M; Wilson, Don; Stein, Dan J
2016-06-01
Methamphetamine (MA) use may lead to white matter injury and to a range of behavioral problems and psychiatric disorders, including psychosis. The present study sought to assess white matter microstructural impairment as well as impulsive behavior in MA dependence and MA-associated psychosis (MAP). Thirty patients with a history of MAP, 39 participants with MA dependence and 40 healthy controls underwent diffusion tensor imaging (DTI). Participants also completed the UPPS-P impulsive behavior questionnaire. We applied tract-based spatial statistics (TBSS) to investigate group differences in mean diffusivity (MD), fractional anisotropy (FA), axial (λ‖ ) and radial diffusivity (λ⊥ ), and their association with impulsivity scores and psychotic symptoms. The MAP group displayed widespread higher MD, λ‖ and λ⊥ levels compared to both controls and the MA group, and lower FA in extensive white matter areas relative to controls. MD levels correlated positively with negative psychotic symptoms in MAP. No significant DTI group differences were found between the MA group and controls. Both clinical groups showed high levels of impulsivity, and this dysfunction was associated with DTI measures in frontal white matter tracts. MAP patients show distinct patterns of impaired white matter integrity of global nature relative to controls and the MA group. Future work to investigate the precise nature and timing of alterations in MAP is needed. The results are further suggestive of frontal white matter pathology playing a role in impulsivity in MA dependence and MAP. Hum Brain Mapp 37:2055-2067, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Bells, Sonya; Lefebvre, Jérémie; Prescott, Steven A; Dockstader, Colleen; Bouffet, Eric; Skocic, Jovanka; Laughlin, Suzanne; Mabbott, Donald J
2017-08-23
Cognition is compromised by white matter (WM) injury but the neurophysiological alterations linking them remain unclear. We hypothesized that reduced neural synchronization caused by disruption of neural signal propagation is involved. To test this, we evaluated group differences in: diffusion tensor WM microstructure measures within the optic radiations, primary visual area (V1), and cuneus; neural phase synchrony to a visual attention cue during visual-motor task; and reaction time to a response cue during the same task between 26 pediatric patients (17/9: male/female) treated with cranial radiation treatment for a brain tumor (12.67 ± 2.76 years), and 26 healthy children (16/10: male/female; 12.01 ± 3.9 years). We corroborated our findings using a corticocortical computational model representing perturbed signal conduction from myelin. Patients show delayed reaction time, WM compromise, and reduced phase synchrony during visual attention compared with healthy children. Notably, using partial least-squares-path modeling we found that WM insult within the optic radiations, V1, and cuneus is a strong predictor of the slower reaction times via disruption of neural synchrony in visual cortex. Observed changes in synchronization were reproduced in a computational model of WM injury. These findings provide new evidence linking cognition with WM via the reliance of neural synchronization on propagation of neural signals. SIGNIFICANCE STATEMENT By comparing brain tumor patients to healthy children, we establish that changes in the microstructure of the optic radiations and neural synchrony during visual attention predict reaction time. Furthermore, by testing the directionality of these links through statistical modeling and verifying our findings with computational modeling, we infer a causal relationship, namely that changes in white matter microstructure impact cognition in part by disturbing the ability of neural assemblies to synchronize. Together, our human imaging data and computer simulations show a fundamental connection between WM microstructure and neural synchronization that is critical for cognitive processing. Copyright © 2017 the authors 0270-6474/17/378227-12$15.00/0.
Nilsson, Markus; van Westen, Danielle; Ståhlberg, Freddy; Sundgren, Pia C; Lätt, Jimmy
2013-08-01
Biophysical models that describe the outcome of white matter diffusion MRI experiments have various degrees of complexity. While the simplest models assume equal-sized and parallel axons, more elaborate ones may include distributions of axon diameters and axonal orientation dispersions. These microstructural features can be inferred from diffusion-weighted signal attenuation curves by solving an inverse problem, validated in several Monte Carlo simulation studies. Model development has been paralleled by microscopy studies of the microstructure of excised and fixed nerves, confirming that axon diameter estimates from diffusion measurements agree with those from microscopy. However, results obtained in vivo are less conclusive. For example, the amount of slowly diffusing water is lower than expected, and the diffusion-encoded signal is apparently insensitive to diffusion time variations, contrary to what may be expected. Recent understandings of the resolution limit in diffusion MRI, the rate of water exchange, and the presence of microscopic axonal undulation and axonal orientation dispersions may, however, explain such apparent contradictions. Knowledge of the effects of biophysical mechanisms on water diffusion in tissue can be used to predict the outcome of diffusion tensor imaging (DTI) and of diffusion kurtosis imaging (DKI) studies. Alterations of DTI or DKI parameters found in studies of pathologies such as ischemic stroke can thus be compared with those predicted by modelling. Observations in agreement with the predictions strengthen the credibility of biophysical models; those in disagreement could provide clues of how to improve them. DKI is particularly suited for this purpose; it is performed using higher b-values than DTI, and thus carries more information about the tissue microstructure. The purpose of this review is to provide an update on the current understanding of how various properties of the tissue microstructure and the rate of water exchange between microenvironments are reflected in diffusion MRI measurements. We focus on the use of biophysical models for extracting tissue-specific parameters from data obtained with single PGSE sequences on clinical MRI scanners, but results obtained with animal MRI scanners are also considered. While modelling of white matter is the central theme, experiments on model systems that highlight important aspects of the biophysical models are also reviewed.
Schizophrenia and the corpus callosum: developmental, structural and functional relationships.
David, A S
1994-10-20
Several empirical and theoretical connections exist between schizophrenia and the corpus callosum: (1) disconnection symptoms resemble certain psychotic phenomena; (2) abnormal interhemispheric transmission could explain typically schizophrenic phenomena; (3) cases of psychosis have been found in association with complete and partial agenesis of the callosum; (4) experimental neuropsychology with schizophrenic patients has revealed abnormal patterns of interhemispheric transfer; (5) studies using magnetic resonance imaging have shown abnormal callosal dimensions in schizophrenic patients. The evidence in support of these links is discussed critically. Novel neuropsychological approaches in the study of information transfer in the visual modality between the cerebral hemispheres, consistent with callosal hyperconnectivity in schizophrenic patients but not matched psychiatric controls are highlighted. Some suggestions for further work including integrating functional and structural measures are offered.
Gestational Age at Birth and Brain White Matter Development in Term-Born Infants and Children.
Ou, X; Glasier, C M; Ramakrishnaiah, R H; Kanfi, A; Rowell, A C; Pivik, R T; Andres, A; Cleves, M A; Badger, T M
2017-12-01
Studies on infants and children born preterm have shown that adequate gestational length is critical for brain white matter development. Less is known regarding how variations in gestational age at birth in term infants and children affect white matter development, which was evaluated in this study. Using DTI tract-based spatial statistics methods, we evaluated white matter microstructures in 2 groups of term-born (≥37 weeks of gestation) healthy subjects: 2-week-old infants ( n = 44) and 8-year-old children ( n = 63). DTI parameters including fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were calculated by voxelwise and ROI methods and were correlated with gestational age at birth, with potential confounding factors such as postnatal age and sex controlled. Fractional anisotropy values, which are markers for white matter microstructural integrity, positively correlated ( P < .05, corrected) with gestational age at birth in most major white matter tracts/regions for the term infants. Mean diffusivity values, which are measures of water diffusivities in the brain, and axial and radial diffusivity values, which are markers for axonal growth and myelination, respectively, negatively correlated ( P < .05, corrected) with gestational age at birth in all major white matter tracts/regions excluding the body and splenium of the corpus callosum for the term infants. No significant correlations with gestational age were observed for any tracts/regions for the term-born 8-year-old children. Our results indicate that longer gestation during the normal term period is associated with significantly greater infant white matter development (as reflected by higher fractional anisotropy and lower mean diffusivity, axial diffusivity, and radial diffusivity values); however, similar associations were not observable in later childhood. © 2017 by American Journal of Neuroradiology.
Lewis, Gary J; Cox, Simon R; Booth, Tom; Muñoz Maniega, Susana; Royle, Natalie A; Valdés Hernández, Maria; Wardlaw, Joanna M; Bastin, Mark E; Deary, Ian J
2016-08-01
Establishing the neural bases of individual differences in personality has been an enduring topic of interest. However, while a growing literature has sought to characterize grey matter correlates of personality traits, little attention to date has been focused on regional white matter correlates of personality, especially for the personality traits agreeableness, conscientiousness and openness. To rectify this gap in knowledge we used a large sample (n > 550) of older adults who provided data on both personality (International Personality Item Pool) and white matter tract-specific fractional anisotropy (FA) from diffusion tensor MRI. Results indicated that conscientiousness was associated with greater FA in the left uncinate fasciculus (β = 0.17, P < 0.001). We also examined links between FA and the personality meta-trait 'stability', which is defined as the common variance underlying agreeableness, conscientiousness, and neuroticism/emotional stability. We observed an association between left uncinate fasciculus FA and stability (β = 0.27, P < 0.001), which fully accounted for the link between left uncinate fasciculus FA and conscientiousness. In sum, these results provide novel evidence for links between regional white matter microstructure and key traits of human personality, specifically conscientiousness and the meta-trait, stability. Future research is recommended to replicate and address the causal directions of these associations. © The Author (2016). Published by Oxford University Press.
Bagga, Deepika; Sharma, Aakansha; Kumari, Archana; Kaur, Prabhjot; Bhattacharya, Debajyoti; Garg, Mohan Lal; Khushu, Subash; Singh, Namita
2014-02-01
Chronic alcohol abuse is characterized by impaired cognitive abilities with a more severe deficit in visual than in verbal functions. Neuropathologically, it is associated with widespread brain structural compromise marked by gray matter shrinkage, ventricular enlargement, and white matter degradation. The present study sought to increase current understanding of the impairment of visual processing abilities in alcohol-dependent subjects, and its correlation with white matter microstructural alterations, using diffusion tensor imaging (DTI). To that end, a DTI study was carried out on 35 alcohol-dependent subjects and 30 healthy male control subjects. Neuropsychological tests were assessed for visual processing skills and deficits were reported as raw dysfunction scores (rDyS). Reduced FA (fractional anisotropy) and increased MD (mean diffusivity) were observed bilaterally in inferior and superior fronto-occipital fasciculus (FOF) fiber bundles. A significant inverse correlation in rDyS and FA values was observed in these fiber tracts whereas a positive correlation of these scores was found with the MD values. Our results suggest that FOF fiber bundles linking the frontal lobe to occipital lobe might be related to visual processing skills. This is the first report of an alteration of the white matter microstructure of FOF fiber bundles that might have functional consequences for visual processing in alcohol-dependent subjects who exhibit no neurological complications. Copyright © 2014 Elsevier Inc. All rights reserved.
Granberg, Tobias; Fan, Qiuyun; Treaba, Constantina Andrada; Ouellette, Russell; Herranz, Elena; Mangeat, Gabriel; Louapre, Céline; Cohen-Adad, Julien; Klawiter, Eric C; Sloane, Jacob A; Mainero, Caterina
2017-11-01
Neuroaxonal pathology is a main determinant of disease progression in multiple sclerosis; however, its underlying pathophysiological mechanisms, including its link to inflammatory demyelination and temporal occurrence in the disease course are still unknown. We used ultra-high field (7 T), ultra-high gradient strength diffusion and T1/T2-weighted myelin-sensitive magnetic resonance imaging to characterize microstructural changes in myelin and neuroaxonal integrity in the cortex and white matter in early stage multiple sclerosis, their distribution in lesional and normal-appearing tissue, and their correlations with neurological disability. Twenty-six early stage multiple sclerosis subjects (disease duration ≤5 years) and 24 age-matched healthy controls underwent 7 T T2*-weighted imaging for cortical lesion segmentation and 3 T T1/T2-weighted myelin-sensitive imaging and neurite orientation dispersion and density imaging for assessing microstructural myelin, axonal and dendrite integrity in lesional and normal-appearing tissue of the cortex and the white matter. Conventional mean diffusivity and fractional anisotropy metrics were also assessed for comparison. Cortical lesions were identified in 92% of early multiple sclerosis subjects and they were characterized by lower intracellular volume fraction (P = 0.015 by paired t-test), lower myelin-sensitive contrast (P = 0.030 by related-samples Wilcoxon signed-rank test) and higher mean diffusivity (P = 0.022 by related-samples Wilcoxon signed-rank test) relative to the contralateral normal-appearing cortex. Similar findings were observed in white matter lesions relative to normal-appearing white matter (all P < 0.001), accompanied by an increased orientation dispersion (P < 0.001 by paired t-test) and lower fractional anisotropy (P < 0.001 by related-samples Wilcoxon signed-rank test) suggestive of less coherent underlying fibre orientation. Additionally, the normal-appearing white matter in multiple sclerosis subjects had diffusely lower intracellular volume fractions than the white matter in controls (P = 0.029 by unpaired t-test). Cortical thickness did not differ significantly between multiple sclerosis subjects and controls. Higher orientation dispersion in the left primary motor-somatosensory cortex was associated with increased Expanded Disability Status Scale scores in surface-based general linear modelling (P < 0.05). Microstructural pathology was frequent in early multiple sclerosis, and present mainly focally in cortical lesions, whereas more diffusely in white matter. These results suggest early demyelination with loss of cells and/or cell volumes in cortical and white matter lesions, with additional axonal dispersion in white matter lesions. In the cortex, focal lesion changes might precede diffuse atrophy with cortical thinning. Findings in the normal-appearing white matter reveal early axonal pathology outside inflammatory demyelinating lesions. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
White Matter Integrity Deficit Associated with Betel Quid Dependence.
Yuan, Fulai; Zhu, Xueling; Kong, Lingyu; Shen, Huaizhen; Liao, Weihua; Jiang, Canhua
2017-01-01
Betel quid (BQ) is a commonly consumed psychoactive substance, which has been regarded as a human carcinogen. Long-term BQ chewing may cause Diagnostic and Statistical Manual of Mental Disorders-IV dependence symptoms, which can lead to decreased cognitive functions, such as attention and inhibition control. Although betel quid dependence (BQD) individuals have been reported with altered brain structure and function, there is little evidence showing white matter microstructure alternation in BQD individuals. The present study aimed to investigate altered white matter microstructure in BQD individuals using diffusion tensor imaging. Tract-based spatial statistics was used to analyze the data. Compared with healthy controls, BQD individuals exhibited higher mean diffusivity (MD) in anterior thalamic radiation (ATR). Further analysis revealed that the ATR in BQD individuals showed less fractional anisotropy (FA) than that in healthy controls. Correlation analysis showed that both the increase of MD and reduction of FA in BQD individuals were associated with severity of BQ dependence. These results suggested that BQD would disrupt the balance between prefrontal cortex and subcortical areas, causing declined inhibition control.
Melbourne, Launice; Murnick, Jonathan; Chang, Taeun; Glass, Penny; Massaro, An N
2015-10-01
This study aims to evaluate individual regional brain biometrics and their association with developmental outcome in extremely low-birth-weight (ELBW) infants. This is a retrospective study evaluating term-equivalent magnetic resonance imaging (TE-MRI) from 27 ELBW infants with known developmental outcomes beyond 12 months corrected age. Regional biometric measurements were performed by a pediatric neuroradiologist blinded to outcome data. Measures included biparietal width, transcerebellar diameter (TCD), deep gray matter area (DGMA), ventricular dilatation, corpus callosum, and interhemispheric distance. The relationship between regional biometrics and Bayley-II developmental scores were evaluated with linear regression models. The study cohort had an average±standard deviation birth weight of 684±150 g, gestational age of 24.6±2 weeks and 48% males. DGMA was significantly associated with both cognitive and motor outcomes. Significant associations were also observed between TCD and corpus callosum splenium with cognitive and motor outcomes, respectively. Other biometric measures were not associated with outcome (p>0.05). DGMA<10.26 cm2 was highly specific for poor motor and cognitive outcome. TE-MRI biometrics reflecting impaired deep gray matter, callosal, and cerebellar size is associated with worse early childhood cognitive and motor outcomes. DGMA may be the most robust single biometric measure to predict adverse developmental outcome in preterm survivors. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Hodgetts, Carl J; Postans, Mark; Warne, Naomi; Varnava, Alice; Lawrence, Andrew D; Graham, Kim S
2017-09-01
Autobiographical memory (AM) is multifaceted, incorporating the vivid retrieval of contextual detail (episodic AM), together with semantic knowledge that infuses meaning and coherence into past events (semantic AM). While neuropsychological evidence highlights a role for the hippocampus and anterior temporal lobe (ATL) in episodic and semantic AM, respectively, it is unclear whether these constitute dissociable large-scale AM networks. We used high angular resolution diffusion-weighted imaging and constrained spherical deconvolution-based tractography to assess white matter microstructure in 27 healthy young adult participants who were asked to recall past experiences using word cues. Inter-individual variation in the microstructure of the fornix (the main hippocampal input/output pathway) related to the amount of episodic, but not semantic, detail in AMs - independent of memory age. Conversely, microstructure of the inferior longitudinal fasciculus, linking occipitotemporal regions with ATL, correlated with semantic, but not episodic, AMs. Further, these significant correlations remained when controlling for hippocampal and ATL grey matter volume, respectively. This striking correlational double dissociation supports the view that distinct, large-scale distributed brain circuits underpin context and concepts in AM. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Docx, Lise; Emsell, Louise; Van Hecke, Wim; De Bondt, Timo; Parizel, Paul M; Sabbe, Bernard; Morrens, Manuel
2017-02-28
Avolition is a core feature of schizophrenia and may arise from altered brain connectivity. Here we used diffusion kurtosis imaging (DKI) to investigate the association between white matter (WM) microstructure and volitional motor activity. Multi-shell diffusion MRI and 24-h actigraphy data were obtained from 20 right-handed patients with schizophrenia and 16 right-handed age and gender matched healthy controls. We examined correlations between fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK), and motor activity level, as well as group differences in these measures. In the patient group, increasing motor activity level was positively correlated with MK in the inferior, medial and superior longitudinal fasciculus, the corpus callosum, the posterior fronto-occipital fasciculus and the posterior cingulum. This association was not found in control subjects or in DTI measures. These results show that a lack of volitional motor activity in schizophrenia is associated with potentially altered WM microstructure in posterior brain regions associated with cognitive function and motivation. This could reflect both illness related dysconnectivity which through altered cognition, manifests as reduced volitional motor activity, and/or the effects of reduced physical activity on brain WM. Copyright © 2016. Published by Elsevier B.V.
Night sleep influences white matter microstructure in bipolar depression.
Benedetti, Francesco; Melloni, Elisa M T; Dallaspezia, Sara; Bollettini, Irene; Locatelli, Clara; Poletti, Sara; Colombo, Cristina
2017-08-15
Alteration of circadian rhythms and sleep disruption are prominent trait-like features of bipolar disorder (BD). Diffusion tensor imaging (DTI) measures suggest a widespread alteration of white matter (WM) microstructure in patients with BD. Sleep promotes myelination and oligodendrocyte precursor cells proliferation. We hypothesized a possible association between DTI measures of WM microstructure and sleep quantity measures in BD. We studied 69 inpatients affected by a depressive episode in course of type I BD. We used whole brain tract-based spatial statistics on DTI measures of WM microstructure: axial, radial, and mean diffusivity (AD, RD, MD), and fractional anisotropy (FA). Self-assessed measures of time asleep (TA) and total sleep time (TST) were extracted from the Pittsburgh Sleep Quality Index (PSQI). Actigraphic recordings were performed on a subsample of 23 patients. We observed a positive correlation of DTI measures of FA with actigraphic measures of TA and TST, and with PSQI measure of TA. DTI measures of RD inversely associated with actigraphic measure of TA, and with PSQI measures of TA and TST. Several WM tracts were involved, including corpus callosum, cyngulate gyrus, uncinate fasciculus, left superior and inferior longitudinal and fronto-occipital fasciculi, thalamic radiation, corona radiata, retrolenticular part of internal capsule and corticospinal tract. The study is correlational in nature, and no conclusion about a causal connection can be drawn. Reduced FA with increased RD and MD indicate higher water diffusivity associated with less organized myelin and/or axonal structures. Our findings suggest an association between sleep disruption and these measures of brain microstructure in specific tracts contributing to the functional connectivity in BD. Copyright © 2017 Elsevier B.V. All rights reserved.
Billiet, Thibo; Mädler, Burkhard; D'Arco, Felice; Peeters, Ronald; Deprez, Sabine; Plasschaert, Ellen; Leemans, Alexander; Zhang, Hui; den Bergh, Bea Van; Vandenbulcke, Mathieu; Legius, Eric; Sunaert, Stefan; Emsell, Louise
2014-01-01
The histopathological basis of "unidentified bright objects" (UBOs) (hyperintense regions seen on T2-weighted magnetic resonance (MR) brain scans in neurofibromatosis-1 (NF1)) remains unclear. New in vivo MRI-based techniques (multi-exponential T2 relaxation (MET2) and diffusion MR imaging (dMRI)) provide measures relating to microstructural change. We combined these methods and present previously unreported data on in vivo UBO microstructure in NF1. 3-Tesla dMRI data were acquired on 17 NF1 patients, covering 30 white matter UBOs. Diffusion tensor, kurtosis and neurite orientation and dispersion density imaging parameters were calculated within UBO sites and in contralateral normal appearing white matter (cNAWM). Analysis of MET2 parameters was performed on 24 UBO-cNAWM pairs. No significant alterations in the myelin water fraction and intra- and extracellular (IE) water fraction were found. Mean T2 time of IE water was significantly higher in UBOs. UBOs furthermore showed increased axial, radial and mean diffusivity, and decreased fractional anisotropy, mean kurtosis and neurite density index compared to cNAWM. Neurite orientation dispersion and isotropic fluid fraction were unaltered. Our results suggest that demyelination and axonal degeneration are unlikely to be present in UBOs, which appear to be mainly caused by a shift towards a higher T2-value of the intra- and extracellular water pool. This may arise from altered microstructural compartmentalization, and an increase in 'extracellular-like', intracellular water, possibly due to intramyelinic edema. These findings confirm the added value of combining dMRI and MET2 to characterize the microstructural basis of T2 hyperintensities in vivo.
Wolfers, Thomas; Onnink, A Marten H; Zwiers, Marcel P; Arias-Vasquez, Alejandro; Hoogman, Martine; Mostert, Jeanette C; Kan, Cornelis C; Slaats-Willemse, Dorine; Buitelaar, Jan K; Franke, Barbara
2015-09-01
Response time variability (RTV) is consistently increased in patients with attention-deficit/hyperactivity disorder (ADHD). A right-hemispheric frontoparietal attention network model has been implicated in these patients. The 3 main connecting fibre tracts in this network, the superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF) and the cingulum bundle (CB), show microstructural abnormalities in patients with ADHD. We hypothesized that the microstructural integrity of the 3 white matter tracts of this network are associated with ADHD and RTV. We examined RTV in adults with ADHD by modelling the reaction time distribution as an exponentially modified Gaussian (ex-Gaussian) function with the parameters μ, σ and τ, the latter of which has been attributed to lapses of attention. We assessed adults with ADHD and healthy controls using a sustained attention task. Diffusion tensor imaging-derived fractional anisotropy (FA) values were determined to quantify bilateral microstructural integrity of the tracts of interest. We included 100 adults with ADHD and 96 controls in our study. Increased τ was associated with ADHD diagnosis and was linked to symptoms of inattention. An inverse correlation of τ with mean FA was seen in the right SLF of patients with ADHD, but no direct association between the mean FA of the 6 regions of interest with ADHD could be observed. Regions of interest were defined a priori based on the attentional network model for ADHD and thus we might have missed effects in other networks. This study suggests that reduced microstructural integrity of the right SLF is associated with elevated τ in patients with ADHD.
Wolfers, Thomas; Onnink, A. Marten H.; Zwiers, Marcel P.; Arias-Vasquez, Alejandro; Hoogman, Martine; Mostert, Jeanette C.; Kan, Cornelis C.; Slaats-Willemse, Dorine; Buitelaar, Jan K.; Franke, Barbara
2015-01-01
Background Response time variability (RTV) is consistently increased in patients with attention-deficit/hyperactivity disorder (ADHD). A right-hemispheric frontoparietal attention network model has been implicated in these patients. The 3 main connecting fibre tracts in this network, the superior longitudinal fasciculus (SLF), inferior longitudinal fasciculus (ILF) and the cingulum bundle (CB), show microstructural abnormalities in patients with ADHD. We hypothesized that the microstructural integrity of the 3 white matter tracts of this network are associated with ADHD and RTV. Methods We examined RTV in adults with ADHD by modelling the reaction time distribution as an exponentially modified Gaussian (ex-Gaussian) function with the parameters μ, σ and τ, the latter of which has been attributed to lapses of attention. We assessed adults with ADHD and healthy controls using a sustained attention task. Diffusion tensor imaging–derived fractional anisotropy (FA) values were determined to quantify bilateral microstructural integrity of the tracts of interest. Results We included 100 adults with ADHD and 96 controls in our study. Increased τ was associated with ADHD diagnosis and was linked to symptoms of inattention. An inverse correlation of τ with mean FA was seen in the right SLF of patients with ADHD, but no direct association between the mean FA of the 6 regions of interest with ADHD could be observed. Limitations Regions of interest were defined a priori based on the attentional network model for ADHD and thus we might have missed effects in other networks. Conclusion This study suggests that reduced microstructural integrity of the right SLF is associated with elevated τ in patients with ADHD. PMID:26079698
Walker, Keenan A; Windham, B Gwen; Power, Melinda C; Hoogeveen, Ron C; Folsom, Aaron R; Ballantyne, Christie M; Knopman, David S; Selvin, Elizabeth; Jack, Clifford R; Gottesman, Rebecca F
2018-08-01
We examined whether the pattern of middle- to late-life systemic inflammation was associated with white matter (WM) structural abnormalities in older adults. A total of 1532 participants (age = 76.5; standard deviations = 5.4) underwent 3T brain magnetic resonance imaging to quantify white matter hyperintensity volume and whole-brain WM microstructural integrity (fractional anisotropy, mean diffusivity). High-sensitivity C-reactive protein (CRP), a marker of systemic inflammation, was measured at 3 visits (21 and 14 years before, and concurrent with, neuroimaging). Participants were categorized into 1 of 6 groups based on their 21-year pattern of low (<3 mg/L) versus elevated (≥3 mg/L) CRP. Compared to the group with low CRP at all 3 visits, the group that transitioned from low to elevated CRP during midlife demonstrated greatest white matter hyperintensity volume and poorest WM microstructural integrity, after adjusting for demographic variables and cardiovascular risk factors. Participants with high CRP at all visits also demonstrated greater WM structural abnormalities, but only after accounting for differential attrition. These results suggest that increasing and persistent inflammation in the decades spanning middle-to late-life may promote WM disease in older adults. Copyright © 2018 Elsevier Inc. All rights reserved.
Mengotti, Paola; D'Agostini, Serena; Terlevic, Robert; De Colle, Cristina; Biasizzo, Elsa; Londero, Danielle; Ferro, Adele; Rambaldelli, Gianluca; Balestrieri, Matteo; Zanini, Sergio; Fabbro, Franco; Molteni, Massimo; Brambilla, Paolo
2011-02-01
A combined protocol of voxel-based morphometry (VBM) and diffusion-weighted imaging (DWI) was applied to investigate the neurodevelopment of gray and white matter in autism. Twenty children with autism (mean age= 7 ± 2.75 years old; age range: 4-14; 2 girls) and 22 matched normally developing children (mean age = 7.68 ± 2.03 years old; age range: 4-11; 2 girls) underwent magnetic resonance imaging (MRI). VBM was employed by applying the Template-o-Matic toolbox (TOM), a new approach which constructs the age-matched customized template for tissue segmentation. Also, the apparent diffusion coefficients (ADC) of water molecules were obtained from the analysis of DWI. Regions of interests (ROIs), standardized at 5 pixels, were placed in cortical lobes and corpus callosum on the non-diffusion weighted echo-planar images (b = 0) and were then automatically transferred to the corresponding maps to obtain the ADC values. Compared to normal children, individuals with autism had significantly: (1) increased white matter volumes in the right inferior frontal gyrus, the right fusiform gyrus, the left precentral and supplementary motor area and the left hippocampus, (2) increased gray matter volumes in the inferior temporal gyri bilaterally, the right inferior parietal cortex, the right superior occipital lobe and the left superior parietal lobule, and (3) decreased gray matter volumes in the right inferior frontal gyrus and the left supplementary motor area. Abnormally increased ADC values in the bilateral frontal cortex and in the left side of the genu of the corpus callosum were also reported in autism. Finally, age correlated negatively with lobar and callosal ADC measurements in individuals with autism, but not in children with normal development. These findings suggest cerebral dysconnectivity in the early phases of autism coupled with an altered white matter maturation trajectory during childhood potentially taking place in the frontal and parietal lobes, which may represent a neurodevelopmental marker of the disorder, possibly accounting for the cognitive and social deficits. Copyright © 2010 Elsevier Inc. All rights reserved.
Sobhani, Mona; Baker, Laura; Martins, Bradford; Tuvblad, Catherine; Aziz-Zadeh, Lisa
2015-01-01
Individuals with psychopathy possess emotional and behavioral abnormalities. Two neural regions, involved in behavioral control and emotion regulation, are often implicated: amygdala and ventromedial prefrontal cortex (VMPFC). Recently, in studies using adult criminal populations, reductions in microstructural integrity of the white matter connections (i.e., uncinate fasciculus (UF)) between these two neural regions have been discovered in criminals with psychopathy, supporting the notion of neural dysfunction in the amygdala-VMPFC circuit. Here, a young adult, community sample is used to assess whether psychopathic traits modulate microstructural integrity of UF, and whether this relationship is dependent upon levels of trait anxiety, which is sometimes used to distinguish subtypes of psychopathy. Results reveal a negative association between psychopathic traits and microstructural integrity of UF, supporting previous findings. However, no moderation of the relationship by trait anxiety was discovered. Findings provide further support for the notion of altered amygdala-VMPFC connectivity in association with higher psychopathic traits.
Hobbs, Nicola Z.; Cole, James H.; Farmer, Ruth E.; Rees, Elin M.; Crawford, Helen E.; Malone, Ian B.; Roos, Raymund A.C.; Sprengelmeyer, Reiner; Durr, Alexandra; Landwehrmeyer, Bernhard; Scahill, Rachael I.; Tabrizi, Sarah J.; Frost, Chris
2012-01-01
Background Macro- and micro-structural neuroimaging measures provide valuable information on the pathophysiology of Huntington's disease (HD) and are proposed as biomarkers. Despite theoretical advantages of microstructural measures in terms of sensitivity to pathology, there is little evidence directly comparing the two. Methods 40 controls and 61 early HD subjects underwent 3 T MRI (T1- and diffusion-weighted), as part of the PADDINGTON study. Macrostructural volumetrics were obtained for the whole brain, caudate, putamen, corpus callosum (CC) and ventricles. Microstructural diffusion metrics of fractional anisotropy (FA), mean-, radial- and axial-diffusivity (MD, RD, AD) were computed for white matter (WM), CC, caudate and putamen. Group differences were examined adjusting for age, gender and site. A formal comparison of effect sizes determined which modality and metrics provided a statistically significant advantage over others. Results Macrostructural measures showed decreased regional and global volume in HD (p < 0.001); except the ventricles which were enlarged (p < 0.01). In HD, FA was increased in the deep grey-matter structures (p < 0.001), and decreased in the WM (CC, p = 0.035; WM, p = 0.053); diffusivity metrics (MD, RD, AD) were increased for all brain regions (p < 0.001). The largest effect sizes were for putamen volume, caudate volume and putamen diffusivity (AD, RD and MD); each was significantly larger than those for all other metrics (p < 0.05). Conclusion The highest performing macro- and micro-structural metrics had similar sensitivity to HD pathology quantified via effect sizes. Region-of-interest may be more important than imaging modality, with deep grey-matter regions outperforming the CC and global measures, for both volume and diffusivity. FA appears to be relatively insensitive to disease effects. PMID:24179770
EDS1 contributes to nonhost resistance of Arabidopsis thaliana against Erwinia amylovora.
Moreau, Manon; Degrave, Alexandre; Vedel, Régine; Bitton, Frédérique; Patrit, Oriane; Renou, Jean-Pierre; Barny, Marie-Anne; Fagard, Mathilde
2012-03-01
Erwinia amylovora causes fire blight in rosaceous plants. In nonhost Arabidopsis thaliana, E. amylovora triggers necrotic symptoms associated with transient bacterial multiplication, suggesting either that A. thaliana lacks a susceptibility factor or that it actively restricts E. amylovora growth. Inhibiting plant protein synthesis at the time of infection led to an increase in necrosis and bacterial multiplication and reduced callose deposition, indicating that A. thaliana requires active protein synthesis to restrict E. amylovora growth. Analysis of the callose synthase-deficient pmr4-1 mutant indicated that lack of callose deposition alone did not lead to increased sensitivity to E. amylovora. Transcriptome analysis revealed that approximately 20% of the genes induced following E. amylovora infection are related to defense and signaling. Analysis of mutants affected in NDR1 and EDS1, two main components of the defense-gene activation observed, revealed that E. amylovora multiplied ten times more in the eds1-2 mutant than in the wild type but not in the ndr1-1 mutant. Analysis of mutants affected in three WRKY transcription factors showing EDS1-dependent activation identified WRKY46 and WRKY54 as positive regulators and WRKY70 as a negative regulator of defense against E. amylovora. Altogether, we show that EDS1 is a positive regulator of nonhost resistance against E. amylovora in A. thaliana and hypothesize that it controls the production of several effective defenses against E. amylovora through the action of WRKY46 and WRKY54, while WRKY70 acts as a negative regulator.
Hamdoun, Safae; Gao, Min; Gill, Manroop; Kwon, Ashley; Norelli, John L; Lu, Hua
2018-05-01
Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The non-host plant Arabidopsis serves as a powerful system for the dissection of mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found that Arabidopsis activated strong defence signalling mediated by salicylic acid (SA), with kinetics and amplitude similar to that induced by the recognition of the bacterial effector avrRpm1 by the resistance protein RPM1. Genetic analysis further revealed that SA signalling, but not signalling mediated by ethylene (ET) and jasmonic acid (JA), is required for E. amylovora resistance. Erwinia amylovora induces massive callose deposition on infected leaves, which is independent of SA, ET and JA signalling and is necessary for E. amylovora resistance in Arabidopsis. We also observed tumour-like growths on E. amylovora-infected Arabidopsis leaves, which contain enlarged mesophyll cells with increased DNA content and are probably a result of endoreplication. The formation of such growths is largely independent of SA signalling and some E. amylovora effectors. Together, our data reveal signalling requirements for E. amylovora-induced disease resistance, callose deposition and cell fate change in the non-host plant Arabidopsis. Knowledge from this study could facilitate a better understanding of the mechanisms of host defence against E. amylovora and eventually improve host resistance to the pathogen. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Li, H; Bacic, A; Read, S M
1997-01-01
In pollen tubes of Nicotiana alata, a membrane-bound, Ca(2+)-independent callose synthase (CalS) is responsible for the biosynthesis of the (1,3)-beta-glucan backbone of callose, the main cell wall component. Digitonin increases CalS activity 3- to 4-fold over a wide range of concentrations, increasing the maximum initial velocity without altering the Michaelis constant for UDP-glucose. The CalS activity that requires digitonin for assay (the latent CalS activity) is not inhibited by the membrane-impermeant, active site-directed reagent UDP-pyridoxal when the reaction is conducted in the absence of digitonin. This is consistent with digitonin increasing CalS activity by the permeabilization of membrane vesicles. A second group of detergents, including 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS), Zwittergent 3-16, and 1-alpha-lysolecithin, activate pollen tube CalS 10- to 15-fold, but only over a narrow range of concentrations just below their respective critical micellar concentrations. This activation could not be attributed to any particular chemical feature of these detergents. CHAPS increases maximum initial velocity and decreases the Michaelis constant for UDP-glucose and activates CalS even in the presence of permeabilizing concentrations of digitonin. Inhibition studies with UDP-pyridoxal indicate that activation by CHAPS occurs by recruitment of previously inactive CalS molecules to the pool of active enzyme. The activation of pollen tube CalS by these detergents therefore resembles activation of the enzyme by trypsin. PMID:9276948
Slewinski, Thomas L.; Baker, R. Frank; Stubert, Adam; Braun, David M.
2012-01-01
The tie-dyed2 (tdy2) mutant of maize (Zea mays) displays variegated green and yellow leaves. Intriguingly, the yellow leaf tissues hyperaccumulate starch and sucrose, the soluble sugar transported long distance through the phloem of veins. To determine the molecular basis for Tdy2 function, we cloned the gene and found that Tdy2 encodes a callose synthase. RNA in situ hybridizations revealed that in developing leaves, Tdy2 was most highly expressed in the vascular tissue. Comparative expression analysis with the vascular marker maize PINFORMED1a-yellow fluorescent protein confirmed that Tdy2 was expressed in developing vein tissues. To ascertain whether the defect in tdy2 leaves affected the movement of sucrose into the phloem or its long-distance transport, we performed radiolabeled and fluorescent dye tracer assays. The results showed that tdy2 yellow leaf regions were defective in phloem export but competent in long-distance transport. Furthermore, transmission electron microscopy of tdy2 yellow leaf regions showed incomplete vascular differentiation and implicated a defect in cell-to-cell solute movement between phloem companion cells and sieve elements. The disruption of sucrose movement in the phloem in tdy2 mutants provides evidence that the Tdy2 callose synthase functions in vascular maturation and that the vascular defects result in impaired symplastic trafficking into the phloem translocation stream. PMID:22932757
Novelties of the flowering plant pollen tube underlie diversification of a key life history stage
Williams, Joseph H.
2008-01-01
The origin and rapid diversification of flowering plants has puzzled evolutionary biologists, dating back to Charles Darwin. Since that time a number of key life history and morphological traits have been proposed as developmental correlates of the extraordinary diversity and ecological success of angiosperms. Here, I identify several innovations that were fundamental to the evolutionary lability of angiosperm reproduction, and hence to their diversification. In gymnosperms pollen reception must be near the egg largely because sperm swim or are transported by pollen tubes that grow at very slow rates (< ≈20 μm/h). In contrast, pollen tube growth rates of taxa in ancient angiosperm lineages (Amborella, Nuphar, and Austrobaileya) range from ≈80 to 600 μm/h. Comparative analyses point to accelerated pollen tube growth rate as a critical innovation that preceded the origin of the true closed carpel, long styles, multiseeded ovaries, and, in monocots and eudicots, much faster pollen tube growth rates. Ancient angiosperm pollen tubes all have callosic walls and callose plugs (in contrast, no gymnosperms have these features). The early association of the callose-walled growth pattern with accelerated pollen tube growth rate underlies a striking repeated pattern of faster and longer-distance pollen tube growth often within solid pathways in phylogenetically derived angiosperms. Pollen tube innovations are a key component of the spectacular diversification of carpel (flower and fruit) form and reproductive cycles in flowering plants. PMID:18678915
Design and validation of diffusion MRI models of white matter
NASA Astrophysics Data System (ADS)
Jelescu, Ileana O.; Budde, Matthew D.
2017-11-01
Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the “biological accuracy” of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus.
Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich
2016-08-15
Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. Copyright © 2016 Elsevier Inc. All rights reserved.
Design and validation of diffusion MRI models of white matter
Jelescu, Ileana O.; Budde, Matthew D.
2018-01-01
Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure. A plethora of white matter models have been proposed. However, overparameterization and mathematical fitting complications encourage the introduction of simplifying assumptions that vary between different approaches. These choices impact the quantitative estimation of model parameters with potential detriments to their biological accuracy and promised specificity. First, we review biophysical white matter models in use and recapitulate their underlying assumptions and realms of applicability. Second, we present up-to-date efforts to validate parameters estimated from biophysical models. Simulations and dedicated phantoms are useful in assessing the performance of models when the ground truth is known. However, the biggest challenge remains the validation of the “biological accuracy” of estimated parameters. Complementary techniques such as microscopy of fixed tissue specimens have facilitated direct comparisons of estimates of white matter fiber orientation and densities. However, validation of compartmental diffusivities remains challenging, and complementary MRI-based techniques such as alternative diffusion encodings, compartment-specific contrast agents and metabolites have been used to validate diffusion models. Finally, white matter injury and disease pose additional challenges to modeling, which are also discussed. This review aims to provide an overview of the current state of models and their validation and to stimulate further research in the field to solve the remaining open questions and converge towards consensus. PMID:29755979
Splenium microstructure is related to two dimensions of reading skill.
Frye, Richard E; Hasan, Khader; Xue, Lian; Strickland, David; Malmberg, Benjamin; Liederman, Jacqueline; Papanicolaou, Andrew
2008-10-29
Inconsistent differences in the corpus callosum (CC) structure between dyslexic readers (DRs) and typical readers (TRs) have been reported. We examine differences in CC splenium microstructure and the association of splenium microstructure with reading-related skills. Nine DRs and 18 TRs completed a reading skills battery and diffusion tensor imaging. DRs had higher splenium fractional anisotropy (FA) and axial diffusivity (LA) as compared with TRs. Retrieval of orthographic information from the language lexicon was negatively associated with FA and LA within both reading groups. Phonological awareness was positively associated with splenium FA and LA in TRs but not DRs. This study suggests two white matter pathways that may be differentially associated with reading skills in the CC splenium.
Kasper, Elisabeth; Schuster, Christina; Machts, Judith; Kaufmann, Joern; Bittner, Daniel; Vielhaber, Stefan; Benecke, Reiner; Teipel, Stefan; Prudlo, Johannes
2014-01-01
Background A relevant fraction of patients with amyotrophic lateral sclerosis (ALS) exhibit a fronto-temporal pattern of cognitive and behavioural disturbances with pronounced deficits in executive functioning and cognitive control of behaviour. Structural imaging shows a decline in fronto-temporal brain areas, but most brain imaging studies did not evaluate cognitive status. We investigated microstructural white matter changes underlying cognitive impairment using diffusion tensor imaging (DTI) in a large cohort of ALS patients. Methods We assessed 72 non-demented ALS patients and 65 matched healthy control subjects using a comprehensive neuropsychological test battery and DTI. We compared DTI measures of fiber tract integrity using tract-based spatial statistics among ALS patients with and without cognitive impairment and healthy controls. Neuropsychological performance and behavioural measures were correlated with DTI measures. Results Patients without cognitive impairment demonstrated white matter changes predominantly in motor tracts, including the corticospinal tract and the body of corpus callosum. Those with impairments (ca. 30%) additionally presented significant white matter alterations in extra-motor regions, particularly the frontal lobe. Executive and memory performance and behavioural measures were correlated with fiber tract integrity in large association tracts. Conclusion In non-demented cognitively impaired ALS patients, white matter changes measured by DTI are related to disturbances of executive and memory functions, including prefrontal and temporal regions. In a group comparison, DTI is able to observe differences between cognitively unimpaired and impaired ALS patients. PMID:25501028
Neuroanatomy of intergroup bias: A white matter microstructure study of individual differences.
Baumgartner, Thomas; Nash, Kyle; Hill, Christopher; Knoch, Daria
2015-11-15
Intergroup bias-the tendency to behave more positively toward an ingroup member than an outgroup member-is a powerful social force, for good and ill. Although it is widely demonstrated, intergroup bias is not universal, as it is characterized by significant individual differences. Recently, attention has begun to turn to whether neuroanatomy might explain these individual differences in intergroup bias. However, no research to date has examined whether white matter microstructure could help determine differences in behavior toward ingroup and outgroup members. In the current research, we examine intergroup bias with the third-party punishment paradigm and white matter integrity and connectivity strength as determined by diffusion tensor imaging (DTI). We found that both increased white matter integrity at the right temporal-parietal junction (TPJ) and connectivity strength between the right TPJ and the dorsomedial prefrontal cortex (DMPFC) were associated with increased impartiality in the third-party punishment paradigm, i.e., reduced intergroup bias. Further, consistent with the role that these brain regions play in the mentalizing network, we found that these effects were mediated by mentalizing processes. Participants with greater white matter integrity at the right TPJ and connectivity strength between the right TPJ and the DMPFC employed mentalizing processes more equally for ingroup and outgroup members, and this non-biased use of mentalizing was associated with increased impartiality. The current results help shed light on the mechanisms of bias and, potentially, on interventions that promote impartiality over intergroup bias. Copyright © 2015 Elsevier Inc. All rights reserved.
Park, Bong Soo; Lee, Yoo Jin; Park, Jin-Han; Kim, Il Hwan; Park, Si Hyung; Lee, Ho-Joon; Park, Kang Min
2018-06-01
We evaluated global topology and organization of regional hubs in the brain networks and microstructural abnormalities in the white matter of patients with reflex syncope. Twenty patients with reflex syncope and thirty healthy subjects were recruited, and they underwent diffusion tensor imaging (DTI) scans. Graph theory was applied to obtain network measures based on extracted DTI data, using DSI Studio. We then investigated differences in the network measures between the patients with reflex syncope and the healthy subjects. We also analyzed microstructural abnormalities of white matter using tract-based spatial statistics analysis (TBSS). Measures of global topology were not different between patients with reflex syncope and healthy subjects. However, in reflex syncope patients, the strength measures of the right angular, left inferior frontal, left middle orbitofrontal, left superior medial frontal, and left middle temporal gyrus were lower than in healthy subjects. The betweenness centrality measures of the left middle orbitofrontal, left fusiform, and left lingual gyrus in patients were lower than those in healthy subjects. The PageRank centrality measures of the right angular, left middle orbitofrontal, and left superior medial frontal gyrus in patients were lower than those in healthy subjects. Regarding the analysis of the white matter microstructure, there were no differences in the fractional anisotropy and mean diffusivity values between the two groups. We have identified a reorganization of network hubs in the brain network of patients with reflex syncope. These alterations in brain network may play a role in the pathophysiologic mechanism underlying reflex syncope. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
Unger, Ashley; Alm, Kylie H.; Collins, Jessica A.; O’Leary, Jacqueline M.; Olson, Ingrid R.
2017-01-01
Objective The extended face network contains clusters of neurons that perform distinct functions on facial stimuli. Regions in the posterior ventral visual stream appear to perform basic perceptual functions on faces, while more anterior regions, such as the ventral anterior temporal lobe and amygdala, function to link mnemonic and affective information to faces. Anterior and posterior regions are interconnected by a long-range white matter tracts however it is not known if variation in connectivity of these pathways explains cognitive performance. Methods Here, we used diffusion imaging and deterministic tractography in a cohort of 28 neurologically normal adults ages 18–28 to examine microstructural properties of visual fiber pathways and their relationship to certain mnemonic and affective functions involved in face processing. We investigated how inter-individual variability in two tracts, the inferior longitudinal fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF), related to performance on tests of facial emotion recognition and face memory. Results Results revealed that microstructure of both tracts predicted variability in behavioral performance indexed by both tasks, suggesting that the ILF and IFOF play a role in facilitating our ability to discriminate emotional expressions in faces, as well as to remember unique faces. Variation in a control tract, the uncinate fasciculus, did not predict performance on these tasks. Conclusions These results corroborate and extend the findings of previous neuropsychology studies investigating the effects of damage to the ILF and IFOF, and demonstrate that differences in face processing abilities are related to white matter microstructure, even in healthy individuals. PMID:26888615
Inder, Terrie E; Wells, Scott J; Mogridge, Nina B; Spencer, Carole; Volpe, Joseph J
2003-08-01
The aim of this study was to define qualitatively the nature and extent of white and gray matter abnormalities in a longitudinal population-based study of infants with very low birth weight. Perinatal factors were then related to the presence and severity of magnetic resonance imaging (MRI) abnormalities. From November 1998 to December 2000, 100 consecutive premature infants admitted to the neonatal intensive care unit at Christchurch Women's Hospital were recruited (98% eligible) after informed parental consent to undergo an MRI scan at term equivalent. The scans were analyzed by a single neuroradiologist experienced in pediatric MRI, with a second independent scoring of the MRI using a combination of criteria for white matter (cysts, signal abnormality, loss of volume, ventriculomegaly, corpus callosal thinning, myelination) and gray matter (gray matter signal abnormality, gyration, subarachnoid space). Results were analyzed against individual item scores as well as the presence of moderate-severe white matter score, total gray matter score, and total brain score. The mean gestational age was 27.9+/-2.4 weeks (range, 23-32 weeks), and mean birth weight was 1063+/-292 g. The greatest univariate predictors for moderate-severe white matter abnormality were lower gestational age (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.1-1.7; P<.01), maternal fever (OR, 2.2; 95% CI, 1.1-4.6; P<.04), proven sepsis in the infant at delivery (OR, 1.8; 95% CI, 1.1-3.6; P=0.03), inotropic support (OR, 2.7; 95% CI, 1.5-4.5; P<.001), patent ductus arteriosus (OR, 2.2; 95% CI, 1.2-3.8; P=.01), grade III/IV intraventricular hemorrhage (P=.015), and the occurrence of a pneumothorax (P=.05). There was a significant protective effect of intrauterine growth restriction (OR, 0.51; 95% CI, 0.23-0.99; P=.04). Gray matter abnormality was highly related to the presence and severity of white matter abnormality. A unique pattern of cerebral abnormality consisting of significant diffuse white matter atrophy, ventriculomegaly, immature gyral development, and enlarged subarachnoid space was found in 10 of 11 infants with birth gestation <26 weeks. Given the later outcome of these infants, this pattern may have very high risk for later global neurodevelopmental disability. This MRI study confirms a high incidence of cerebral white matter abnormality at term in an unselected population of premature infants, which is predominantly a result of noncystic injury in the extremely immature infant. We confirm that the major perinatal risk factors for white matter abnormality are related to perinatal infection, particularly maternal fever and infant sepsis, and hypotension with inotrope use. We have defined a distinct pattern of diffuse white and gray matter abnormality in the extremely immature infant.
Madsen, Kathrine Skak; Jernigan, Terry L; Vestergaard, Martin; Mortensen, Erik Lykke; Baaré, William F C
2018-06-01
Neuroticism is a fundamental personality trait that reflects a tendency to experience heightened negative affect and susceptibility to stress. Negative emotionality has been associated with fronto-limbic brain structures and connecting fibre tracts. The major fibre tracts connecting the frontal and limbic brain regions are the cingulum bundle and uncinate fasciculus. We previously found that healthy adults with higher neuroticism scores had decreased left relative to right fractional anisotropy (FA) of the cingulum. Both cingulum and uncinate fasciculus FA increases throughout childhood and into early adulthood. Since adolescence is associated with an increased incidence of anxiety and mood disorders, for which neuroticism is a known risk factor, the question arises whether the association between neuroticism and fronto-limbic white matter microstructure asymmetry is already present in children and adolescents or whether such relationship emerges during this age period. To address this question, we assessed 72 typically-developing 10-to-15 year-olds with diffusion-weighted imaging on a 3 T magnetic resonance scanner. Neuroticism was assessed with the Junior Eysenck Personality Questionnaire. FA and parallel and perpendicular diffusivity measures were extracted for cingulum, uncinate fasciculus as well as the white matter underlying the ventromedial prefrontal cortex. Higher neuroticism scores were associated with decreased left relative to right cingulum FA in boys, while in girls, higher neuroticism scores were associated with increased left relative to right cingulum and ventromedial prefrontal white matter FA, indicating that there are sex differences in the neural correlates of neuroticism. Our findings suggest that the link between neuroticism and frontal-limbic white matter microstructure asymmetry likely predates early adolescence. Future studies need to elucidate the significance of the observed sex differences in the neural correlates of neuroticism. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Viswanathan, Anand; Patel, Pratik; Rahman, Rosanna; Nandigam, R N Kaveer; Kinnecom, Catherine; Bracoud, Luc; Rosand, Jonathan; Chabriat, Hugues; Greenberg, Steven M; Smith, Eric E
2008-07-01
Cerebral amyloid angiopathy (CAA) is a major cause of lobar intracerebral hemorrhage and cognitive impairment and is associated with white matter hyperintensities and cerebral microbleeds. MRI diffusion tensor imaging detects microstructural tissue damage in advanced CAA even in areas that appear normal on conventional MRI. We hypothesized that higher global mean apparent diffusion coefficient (mean ADC), reflecting a higher amount of chronic tissue disruption caused by CAA, would be independently associated with CAA-related cognitive impairment. Preintracerebral hemorrhage cognitive impairment was systematically assessed using a standardized questionnaire (IQCODE) in 49 patients. Volume of white matter hyperintensities, number of microbleeds, and mean ADC were determined from MRIs obtained within 14.0+/-22.5 days of intracerebral hemorrhage cognitive impairment. White matter hyperintensities and mean ADC were measured in the hemisphere uninvolved by intracerebral hemorrhage to avoid confounding. Preintracerebral hemorrhage cognitive impairment was identified in 10 of 49 subjects. Mean ADC was the only variable associated with preintracerebral hemorrhage cognitive impairment and was elevated in those with preintracerebral hemorrhage cognitive impairment compared with those without (12.4x10(-4) versus 11.7x10(-4) mm(2)/s; P=0.03). Mean ADC positively correlated with age but not white matter hyperintensities or number of microbleeds. In logistic regression controlling for age and visible cerebral atrophy, mean ADC was independently associated with preintracerebral hemorrhage cognitive impairment (OR per 1x10(-4) mm(2)/s increase=2.45, 95% CI 1.11 to 5.40, P=0.04). Mean ADC is independently associated with preintracerebral hemorrhage cognitive impairment in CAA. The lack of correlation with other MRI markers of CAA suggests that mean ADC may be sensitive to distinct aspects of CAA pathology and its tissue consequences. These results suggest that global MRI diffusion changes are sensitive to clinically relevant microstructural alterations and may be useful markers of CAA-related tissue damage.
Viswanathan, Anand; Patel, Pratik; Rahman, Rosanna; Nandigam, R.N. Kaveer; Kinnecom, Catherine; Bracoud, Luc; Rosand, Jonathan; Chabriat, Hugues; Greenberg, Steven M.; Smith, Eric E.
2009-01-01
Background and Purpose Cerebral amyloid angiopathy (CAA) is a major cause of lobar intracerebral hemorrhage and cognitive impairment and is associated with white matter hyperintensities and cerebral microbleeds. MRI diffusion tensor imaging detects microstructural tissue damage in advanced CAA even in areas that appear normal on conventional MRI. We hypothesized that higher global mean apparent diffusion coefficient (mean ADC), reflecting a higher amount of chronic tissue disruption caused by CAA, would be independently associated with CAA-related cognitive impairment. Methods Preintracerebral hemorrhage cognitive impairment was systematically assessed using a standardized questionnaire (IQCODE) in 49 patients. Volume of white matter hyperintensities, number of microbleeds, and mean ADC were determined from MRIs obtained within 14.0±22.5 days of intracerebral hemorrhage cognitive impairment. White matter hyperintensities and mean ADC were measured in the hemisphere uninvolved by intracerebral hemorrhage to avoid confounding. Results Preintracerebral hemorrhage cognitive impairment was identified in 10 of 49 subjects. Mean ADC was the only variable associated with preintracerebral hemorrhage cognitive impairment and was elevated in those with preintracerebral hemorrhage cognitive impairment compared with those without (12.4×10-4 versus 11.7×10-4 mm2/s; P=0.03). Mean ADC positively correlated with age but not white matter hyperintensities or number of microbleeds. In logistic regression controlling for age and visible cerebral atrophy, mean ADC was independently associated with preintracerebral hemorrhage cognitive impairment (OR per 1×10-4 mm2/s increase=2.45, 95% CI 1.11 to 5.40, P=0.04). Conclusions Mean ADC is independently associated with preintracerebral hemorrhage cognitive impairment in CAA. The lack of correlation with other MRI markers of CAA suggests that mean ADC may be sensitive to distinct aspects of CAA pathology and its tissue consequences. These results suggest that global MRI diffusion changes are sensitive to clinically relevant microstructural alterations and may be useful markers of CAA-related tissue damage. PMID:18436874
Evaluating Kurtosis-based Diffusion MRI Tissue Models for White Matter with Fiber Ball Imaging
Jensen, Jens H.; McKinnon, Emilie T.; Glenn, G. Russell; Helpern, Joseph A.
2018-01-01
In order to quantify well-defined microstructural properties of brain tissue from diffusion MRI (dMRI) data, tissue models are typically employed that relate biological features, such as cell morphology and cell membrane permeability, to the diffusion dynamics. A variety of such models have been proposed for white matter, and their validation is a topic of active interest. In this paper, three different tissue models are tested by comparing their predictions for a specific microstructural parameter to the value measured independently with a recently proposed dMRI method known as fiber ball imaging (FBI). The three tissue models are all constructed with the diffusion and kurtosis tensors, and they are hence compatible with diffusional kurtosis imaging (DKI). Nevertheless, the models differ significantly in their details and predictions. For voxels with fractional anisotropies (FA) exceeding 0.5, all three are reasonably consistent with FBI. However, for lower FA values, one of these, called the white matter tract integrity (WMTI) model, is found to be in much better accord with FBI than the other two, suggesting that the WMTI model has a broader range of applicability. PMID:28085211
Zou, Ke; Huang, Xiaoqi; Li, Tao; Gong, Qiyong; Li, Zhe; Ou-yang, Luo; Deng, Wei; Chen, Qin; Li, Chunxiao; Ding, Yi; Sun, Xueli
2008-01-01
Objective The purpose of our study was to investigate alterations of white matter integrity in adults with major depressive disorder (MDD) using magnetic resonance imaging (MRI). Methods We performed diffusion tensor imaging with a 3T MRI scanner on 45 patients with major depression and 45 healthy controls matched for age, sex and education. Using a voxel-based analysis, we measured the fractional anisotropy (FA), and we investigated the differences between the patient and control groups. We examined the correlations between the microstructure abnormalities of white matter and symptom severity, age of illness onset and cumulative illness duration, respectively. Results We found a significant decrease in FA in the left hemisphere, including the anterior limb of the internal capsule and the inferior parietal portion of the superior longitudinal fasciculus, in patients with MDD compared with healthy controls. Diffusion tensor imaging measures in the left anterior limb of the internal capsule were negatively related to the severity of depressive symptoms, even after we controlled for age and sex. Conclusion Our findings provide new evidence of microstructural changes of white matter in non–late-onset adult depression. Our results complement those observed in late-life depression and support the hypothesis that the disruption of cortical– subcortical circuit integrity may be involved in the etiology of major depressive disorder. PMID:18982175
Reus, L. M.; Shen, X.; Gibson, J.; Wigmore, E.; Ligthart, L.; Adams, M. J.; Davies, G.; Cox, S. R.; Hagenaars, S. P.; Bastin, M. E.; Deary, I. J.; Whalley, H. C.; McIntosh, A. M.
2017-01-01
Major depressive disorder (MDD), schizophrenia (SCZ) and bipolar disorder (BP) are common, disabling and heritable psychiatric diseases with a complex overlapping polygenic architecture. Individuals with these disorders, as well as their unaffected relatives, show widespread structural differences in corticostriatal and limbic networks. Structural variation in many of these brain regions is also heritable and polygenic but whether their genetic architecture overlaps with that of major psychiatric disorders is unknown. We sought to address this issue by examining the impact of polygenic risk of MDD, SCZ, and BP on subcortical brain volumes and white matter (WM) microstructure in a large single sample of neuroimaging data; the UK Biobank Imaging study. The first release of UK Biobank imaging data comprised participants with overlapping genetic data and subcortical volumes (N = 978) and WM measures (N = 816). The calculation of polygenic risk scores was based on genome-wide association study results generated by the Psychiatric Genomics Consortium. Our findings indicated no statistically significant associations between either subcortical volumes or WM microstructure, and polygenic risk for MDD, SCZ or BP. These findings suggest that subcortical brain volumes and WM microstructure may not be closely linked to the genetic mechanisms of major psychiatric disorders. PMID:28186152
Reus, L M; Shen, X; Gibson, J; Wigmore, E; Ligthart, L; Adams, M J; Davies, G; Cox, S R; Hagenaars, S P; Bastin, M E; Deary, I J; Whalley, H C; McIntosh, A M
2017-02-10
Major depressive disorder (MDD), schizophrenia (SCZ) and bipolar disorder (BP) are common, disabling and heritable psychiatric diseases with a complex overlapping polygenic architecture. Individuals with these disorders, as well as their unaffected relatives, show widespread structural differences in corticostriatal and limbic networks. Structural variation in many of these brain regions is also heritable and polygenic but whether their genetic architecture overlaps with that of major psychiatric disorders is unknown. We sought to address this issue by examining the impact of polygenic risk of MDD, SCZ, and BP on subcortical brain volumes and white matter (WM) microstructure in a large single sample of neuroimaging data; the UK Biobank Imaging study. The first release of UK Biobank imaging data comprised participants with overlapping genetic data and subcortical volumes (N = 978) and WM measures (N = 816). The calculation of polygenic risk scores was based on genome-wide association study results generated by the Psychiatric Genomics Consortium. Our findings indicated no statistically significant associations between either subcortical volumes or WM microstructure, and polygenic risk for MDD, SCZ or BP. These findings suggest that subcortical brain volumes and WM microstructure may not be closely linked to the genetic mechanisms of major psychiatric disorders.
Zhang, Zhiyuan; Ruan, Yong-Ling; Zhou, Na; Wang, Fang; Guan, Xueying; Fang, Lei; Shang, Xiaoguang; Guo, Wangzhen; Zhu, Shuijin; Zhang, Tianzhen
2017-08-01
Plasmodesmata (PDs) play vital roles in cell-to-cell communication and plant development. Emerging evidence suggests that sterols are involved in PD activity during cytokinesis. However, whether sterols contribute to PD gating between established cells remains unknown. Here, we isolated GhSCP2D , a putative sterol carrier protein gene from elongating cotton ( Gossypium hirsutum ) fibers. In contrast to wild-type fiber PDs, which opened at 5 to 10 d postanthesis (DPA) and closed only at 15 to 25 DPA, plants with suppressed GhSCP2D expression had reduced sterol contents and closed PDs at 5 through 25 DPA The GhSCP2D- suppressed fibers exhibited callose deposition at the PDs, likely due to reduced expression of GhPdBG3-2A/D , which encodes a PD-targeting β-1,3-glucanase. Both GhPdBG3-2A/D expression and callose deposition were sensitive to a sterol biosynthesis inhibitor. Moreover, suppressing GhSCP2D upregulated a cohort of SUT and SWEET sucrose transporter genes in fiber cells. Collectively, our results indicate that (1) GhSCP2D is required for GhPdBG3-2A/D expression to degrade callose at the PD, thereby contributing to the establishment of the symplasmic pathway; and (2) blocking the symplasmic pathway by downregulating GhSCP2D activates or increases the expression of SUTs and SWEETs , leading to the switch from symplasmic to apoplasmic pathways. © 2017 American Society of Plant Biologists. All rights reserved.
Siu, Timothy L; Morley, John W
2007-12-01
The development of a visual prosthesis has been limited by an incomplete understanding of functional changes of the visual cortex accompanying deafferentation. In particular, the role of the corpus callosum in modulating these changes has not been fully evaluated. Recent experimental evidence suggests that through synaptic modulation, short-term (4-5 days) visual deafferentation can induce plastic changes in the visual cortex, leading to adaptive enhancement of residual visual input. We therefore investigated whether a compensatory rerouting of visual information can occur via the indirect transcallosal linkage after deafferentation and the influence of this interhemispheric communication on the visual evoked response of each hemisphere. In albino rabbits, misrouting of uncrossed optic fibres reduces ipsilateral input to a negligible degree. We thus took advantage of this congenital anomaly to model unilateral cortical and ocular deafferentation by eliminating visual input from one eye and recorded the visual evoked potential (VEP) from the intact eye. In keeping with the chiasmal anomaly, no VEP was elicited from the hemisphere ipsilateral to the intact eye. This remained unchanged following unilateral visual deafferentation. The amplitude and latency of the VEP in the fellow hemisphere, however, were significantly decreased in the deafferented animals. Our data suggest that callosal linkage does not contribute to visual evoked responses and this is not changed after short-term deafferentation. The decrease in amplitude and latency of evoked responses in the hemisphere ipsilateral to the treated eye, however, confirms the facilitatory role of callosal transfer. This observation highlights the importance of bicortical stimulation in the future design of a cortical visual prosthesis.
Local-global interference is modulated by age, sex and anterior corpus callosum size
Müller-Oehring, Eva M.; Schulte, Tilman; Raassi, Carla; Pfefferbaum, Adolf; Sullivan, Edith V.
2007-01-01
To identify attentional and neural mechanisms affecting global and local feature extraction, we devised a global-local hierarchical letter paradigm to test the hypothesis that aging reduces functional cerebral lateralization through corpus callosum (CC) degradation. Participants (37 men and women, 26–79 years) performed a task requiring global, local, or global+local attention and underwent structural MRI for CC measurement. Although reaction time (RT) slowed with age, all participants had faster RTs to local than global targets. This local precedence effect together with greater interference from incongruent local information and greater response conflict from local targets each correlated with older age and smaller callosal genu (anterior) areas. These findings support the hypothesis that the CC mediates lateralized local-global processes by inhibition of task-irrelevant information under selective attention conditions. Further, with advancing age smaller genu size leads to less robust inhibition, thereby reducing cerebral lateralization and permitting interference to influence processing. Sex was an additional modifier of interference, in that callosum-interference relationships were evident in women but not in men. Regardless of age, smaller splenium (posterior) areas correlated with less response facilitation from repetition priming of global targets in men, but with greater response facilitation from repetition priming of local targets in women. Our data indicate the following dissociation: Anterior callosal structure was associated with inhibitory processes (i.e., interference from incongruency and response conflict), which are vulnerable to the effects of age and sex, whereas posterior callosal structure was associated with facilitation processes from repetition priming dependent on sex and independent of age. PMID:17335783
Local-global interference is modulated by age, sex and anterior corpus callosum size.
Müller-Oehring, Eva M; Schulte, Tilman; Raassi, Carla; Pfefferbaum, Adolf; Sullivan, Edith V
2007-04-20
To identify attentional and neural mechanisms affecting global and local feature extraction, we devised a global-local hierarchical letter paradigm to test the hypothesis that aging reduces functional cerebral lateralization through corpus callosum (CC) degradation. Participants (37 men and women, 26-79 years) performed a task requiring global, local, or global+local attention and underwent structural MRI for CC measurement. Although reaction time (RT) slowed with age, all participants had faster RTs to local than global targets. This local precedence effect together with greater interference from incongruent local information and greater response conflict from local targets each correlated with older age and smaller callosal genu (anterior) areas. These findings support the hypothesis that the CC mediates lateralized local-global processes by inhibition of task-irrelevant information under selective attention conditions. Further, with advancing age smaller genu size leads to less robust inhibition, thereby reducing cerebral lateralization and permitting interference to influence processing. Sex was an additional modifier of interference, in that callosum-interference relationships were evident in women but not in men. Regardless of age, smaller splenium (posterior) areas correlated with less response facilitation from repetition priming of global targets in men, but with greater response facilitation from repetition priming of local targets in women. Our data indicate the following dissociation: anterior callosal structure was associated with inhibitory processes (i.e., interference from incongruency and response conflict), which are vulnerable to the effects of age and sex, whereas posterior callosal structure was associated with facilitation processes from repetition priming dependent on sex and independent of age.
Nielsen, Mads Eggert; Feechan, Angela; Böhlenius, Henrik; Ueda, Takashi; Thordal-Christensen, Hans
2012-01-01
Penetration resistance to powdery mildew fungi, conferred by localized cell wall appositions (papillae), is one of the best-studied processes in plant innate immunity. The syntaxin PENETRATION (PEN)1 is required for timely appearance of papillae, which contain callose and extracellular membrane material, as well as PEN1 itself. Appearance of membrane material in papillae suggests secretion of exosomes. These are potentially derived from multivesicular bodies (MVBs), supported by our observation that ARA6-labeled organelles assemble at the fungal attack site. However, the trafficking components that mediate delivery of extracellular membrane material are unknown. Here, we show that the delivery is independent of PEN1 function. Instead, we find that application of brefeldin (BF)A blocks the papillary accumulation of GFP-PEN1–labeled extracellular membrane and callose, while impeding penetration resistance. We subsequently provide evidence indicating that the responsible BFA-sensitive ADP ribosylation factor–GTP exchange factor (ARF-GEF) is GNOM. Firstly, analysis of the transheterozygote gnomB4049/emb30-1 (gnomB/E) mutant revealed a delay in papilla formation and reduced penetration resistance. Furthermore, a BFA-resistant version of GNOM restored the BFA-sensitive papillary accumulation of GFP-PEN1 and callose. Our data, therefore, provide a link between GNOM and disease resistance. We suggest that papilla formation requires rapid reorganization of material from the plasma membrane mediated by GNOM. The papilla material is subsequently presumed to be sorted into MVBs and directed to the site of fungal attack, rendering the epidermal plant cell inaccessible for the invading powdery mildew fungus. PMID:22733775
Rinne, Päivi L.H.; Welling, Annikki; Vahala, Jorma; Ripel, Linda; Ruonala, Raili; Kangasjärvi, Jaakko; van der Schoot, Christiaan
2011-01-01
In trees, production of intercellular signals and accessibility of signal conduits jointly govern dormancy cycling at the shoot apex. We identified 10 putative cell wall 1,3-β-glucanase genes (glucan hydrolase family 17 [GH17]) in Populus that could turn over 1,3-β-glucan (callose) at pores and plasmodesmata (PD) and investigated their regulation in relation to FT and CENL1 expression. The 10 genes encode orthologs of Arabidopsis thaliana BG_ppap, a PD-associated glycosylphosphatidylinositol (GPI) lipid-anchored protein, the Arabidopsis PD callose binding protein PDCB, and a birch (Betula pendula) putative lipid body (LB) protein. We found that these genes were differentially regulated by photoperiod, by chilling (5°C), and by feeding of gibberellins GA3 and GA4. GA3 feeding upregulated all LB-associated GH17s, whereas GA4 upregulated most GH17s with a GPI anchor and/or callose binding motif, but only GA4 induced true bud burst. Chilling upregulated a number of GA biosynthesis and signaling genes as well as FT, but not CENL1, while the reverse was true for both GA3 and GA4. Collectively, the results suggest a model for dormancy release in which chilling induces FT and both GPI lipid-anchored and GA3-inducible GH17s to reopen signaling conduits in the embryonic shoot. When temperatures rise, the reopened conduits enable movement of FT and CENL1 to their targets, where they drive bud burst, shoot elongation, and morphogenesis. PMID:21282527
Liu, Jing-Lan; Chen, Xiao; Zhang, Hong-Mei; Yang, Xia; Wong, Andrew
2014-01-01
Abstract Recent study showed that exogenous abscisic acid (ABA) acts as a regulator of plant resistance. This study investigated average injury scale and callose contents of rice, and vitellogenin ( Nlvg ) mRNA expression in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) adult females after third instar nymphs fed on exogenous ABA-treated susceptible [Taichung Native one (TN1)] and moderately resistant (IR42) rice cultivars. The results showed that exogenous ABA significantly decreased average injury scale of rice and Nlvg mRNA expression in N. lugens adults compared with the control (without ABA spraying). Nlvg mRNA expression in N. lugens adults decreased significantly after third instar nymphs fed on ABA-treated (5, 20, and 40 mg/liter) TN1 for 1 and 2 d, and for IR42, after fed on ABA-treated (20 and 40 mg/liter) rice plants for 1 d and after fed on ABA-treated (5, 20, and 40 mg/liter) rice for 2 d decreased significantly. The callose contents showed no significant change for TN1, while for IR42, significantly increased in roots and sheathes after N. lugens infestation under ABA treatments (20 and 40 mg/liter) compared with the control. The decrease of Nlvg mRNA expression may be partially attributed to the increase of callose content of plants. The results provide a profile for concerning the effects of ABA-induced rice plants’ defenses on phloem-feeding insects. PMID:25502025
Brain Microstructure and Impulsivity Differ between Current and Past Methamphetamine Users.
Andres, Tamara; Ernst, Thomas; Oishi, Kenichi; Greenstein, David; Nakama, Helenna; Chang, Linda
2016-09-01
Methamphetamine (Meth) use disorder continues to be highly prevalent worldwide. Meth users have higher impulsivity and brain abnormalities that may be different between current and past Meth users. The current study assessed impulsivity and depressive symptoms in 94 participants (27 current Meth users, 32 past Meth users and 35 non-drug user controls). Additionally, brain microstructure was assessed using diffusion tensor imaging (DTI); fractional anisotropy (FA) and mean diffusivity (MD) were assessed in the striatum, and FA, MD, radial and axial diffusivity were quantified in five white matter structures using DtiStudio.Across the three subject groups, current users had the highest self-reported impulsivity scores, while both Meth user groups had larger striatal structures than the controls. Past Meth users had the highest FA and lowest MD in the striatum, which is likely due to greater magnetic susceptibility from higher iron content and greater dendritic spine density. In white matter tracts, current Meth users had higher AD than past users, indicating greater water diffusion along the axons, and suggesting inflammation with axonal swelling. In contrast, past users had the lowest AD, indicating more restricted diffusion, which might have resulted from reactive gliosis. Although current Meth users had greater impulsivity than past users, the brain microstructural abnormalities showed differences that may reflect different stages of neuroinflammation or iron-induced neurodegeneration. Combining current and past Meth users may lead to greater variability in studies of Meth users. Longitudinal studies are needed to further evaluate the relationship between recency of Meth use and brain microstructure.
A Yassine, Imane; M Eldeeb, Waleed; A Gad, Khaled; A Ashour, Yossri; A Yassine, Inas; O Hosny, Ahmed
2018-07-01
Neurocognitive impairment represents one of the most common comorbidities occurring in children with idiopathic epilepsy. Diagnosis of the idiopathic form of epilepsy requires the absence of any macrostructural abnormality in the conventional MRI. Though changes can be seen at the microstructural level imaged using advanced techniques such as the Diffusion Tensor Imaging (DTI). The aim of this work is to study the correlation between the microstructural white matter DTI findings, the electroencephalographic changes and the cognitive dysfunction in children with active idiopathic epilepsy. A comparative cross-sectional study, included 60 children with epilepsy based on the Stanford-Binet 5th Edition Scores was conducted. Patients were equally assigned to normal cognitive function or cognitive dysfunction groups. The history of the epileptic condition was gathered via personal interviews. All patients underwent brain Electroencephalography (EEG) and DTI, which was analyzed using FSL. The Fractional Anisotropy (FA) was significantly higher whereas the Mean Diffusivity (MD) was significantly lower in the normal cognitive function group than in the cognitive dysfunction group. This altered microstructure was related to the degree of the cognitive performance of the studied children with epilepsy. The microstructural alterations of the neural fibers in children with epilepsy and cognitive dysfunction were significantly related to the younger age of onset of epilepsy, the poor control of the clinical seizures, and the use of multiple antiepileptic medications. Children with epilepsy and normal cognitive functions differ in white matter integrity, measured using DTI, compared with children with cognitive dysfunction. These changes have important cognitive consequences. Copyright © 2018 Elsevier Inc. All rights reserved.
Bråthen, Anne Cecilie Sjøli; Rohani, Darius A.; Grydeland, Håkon; Fjell, Anders M.; Walhovd, Kristine B.
2017-01-01
Abstract Age differences in human brain plasticity are assumed, but have not been systematically investigated. In this longitudinal study, we investigated changes in white matter (WM) microstructure in response to memory training relative to passive and active control conditions in 183 young and older adults. We hypothesized that (i) only the training group would show improved memory performance and microstructural alterations, (ii) the young adults would show larger memory improvement and a higher degree of microstructural alterations as compared to the older adults, and (iii) changes in memory performance would relate to microstructural alterations. The results showed that memory improvement was specific to the training group, and that both the young and older participants improved their performance. The young group improved their memory to a larger extent compared to the older group. In the older sample, the training group showed less age‐related decline in WM microstructure compared to the control groups, in areas overlapping the corpus callosum, the cortico‐spinal tract, the cingulum bundle, the superior longitudinal fasciculus, and the anterior thalamic radiation. Less microstructural decline was related to a higher degree of memory improvement. Despite individual adaptation securing sufficient task difficulty, no training‐related group differences in microstructure were found in the young adults. The observed divergence of behavioral and microstructural responses to memory training with age is discussed within a supply‐demand framework. The results demonstrate that plasticity is preserved into older age, and that microstructural alterations may be part of a neurobiological substrate for behavioral improvements in older adults. Hum Brain Mapp 38:5666–5680, 2017. © 2018 The Authors Human Brain Mapping Published byWiley Periodicals, Inc. PMID:28782901
Teli, Radhika; Hay, Margaret; Hershey, Alexa; Kumar, Manoj; Yin, Han; Parikh, Nehal A
2018-05-15
Our objectives were to define the microstructural developmental trajectory of six corpus callosum subregions and identify perinatal clinical factors that influence early development of these subregions in very preterm infants. We performed a longitudinal cohort study of very preterm infants (32 weeks gestational age or younger) (N = 36) who underwent structural MRI and diffusion tensor imaging serially at four time points - before 32, 32, 38, and 52 weeks postmenstrual age. We divided the corpus callosum into six subregions, performed probabilistic tractography, and used linear mixed effects models to evaluate the influence of antecedent clinical factors on its microstructural growth trajectory. The genu and splenium demonstrated the most rapid developmental maturation, exhibited by a steep increase in fractional anisotropy. We identified several factors that favored greater corpus callosum microstructural development, including advancing postmenstrual age, higher birth weight, and college level or higher maternal education. Bronchopulmonary dysplasia, low 5-minute Apgar scores, caffeine therapy/apnea of prematurity and male sex were associated with reduced corpus callosum microstructural integrity/development over the first six months after very preterm birth. We identified a unique postnatal microstructural growth trajectory and associated clinical factor profile for each of the six corpus callosum subregions that is consistent with the heterogeneous functional role of these white matter subregions.
Magnetic resonance features of cerebral malaria.
Yadav, P; Sharma, R; Kumar, S; Kumar, U
2008-06-01
Cerebral malaria is a major health hazard, with a high incidence of mortality. The disease is endemic in many developing countries, but with a greater increase in tourism, occasional cases may be detected in countries where the disease in not prevalent. Early diagnosis and evaluation of cerebral involvement in malaria utilizing modern imaging modalities have an impact on the treatment and clinical outcome. To evaluate the magnetic resonance (MR) features of patients with cerebral malaria presenting with altered sensorium. We present the findings in three patients with cerebral malaria presenting with altered sensorium. MR imaging using a 1.5-Tesla unit was carried out. The sequences performed were 5-mm-thick T1-weighted, T2-weighted, fluid-attenuated inversion-recovery (FLAIR), and T2-weighted gradient-echo axial sequences, and sagittal and coronal FLAIR. Diffusion-weighted imaging was performed with b values of 0 and 1000 s/mm(2), and apparent diffusion coefficient (ADC) maps were obtained. Focal hyperintensities in the bilateral periventricular white matter, corpus callosum, occipital subcortex, and bilateral thalami were noticed on T2-weighted and FLAIR sequences. The lesions were more marked in the splenium of the corpus callosum. No enhancement on postcontrast T1-weighted MR images was observed. There was no evidence of restricted diffusion on the diffusion-weighted sequence and ADC map. MR is a sensitive imaging modality, with a role in the assessment of cerebral lesions in malaria. Focal white matter and corpus callosal lesions without any restricted diffusion were the key findings in our patients.
Segmentation of the Canine Corpus Callosum using Diffusion Tensor Imaging Tractography
Pierce, T.T.; Calabrese, E.; White, L.E.; Chen, S.D.; Platt, S.R.; Provenzale, J.M.
2014-01-01
Background We set out to determine functional white matter (WM) connections passing through the canine corpus callosum useful for subsequent studies of canine brains that serve as models for human WM pathway disease. Based on prior studies, we anticipated that the anterior corpus callosum would send projections to the anterior cerebral cortex while progressively posterior segments would send projections to more posterior cortex. Methods A post mortem canine brain was imaged using a 7T MRI producing 100 micron isotropic resolution DTI analyzed by tractography. Using ROIs within cortical locations, which were confirmed by a Nissl stain that identified distinct cortical architecture, we successfully identified 6 important WM pathways. We also compared fractional anisotropy (FA), apparent diffusion coefficient (ADC), radial diffusivity (RD), and axial diffusivity (AD) in tracts passing through the genu and splenium. Results Callosal fibers were organized based upon cortical destination, i.e. fibers from the genu project to the frontal cortex. Histologic results identified the motor cortex based on cytoarchitectonic criteria that allowed placement of ROIs to discriminate between frontal and parietal lobes. We also identified cytoarchitecture typical of the orbital frontal, anterior frontal, and occipital regions and placed ROIs accordingly. FA, ADC, RD and AD values were all higher in posterior corpus callosum fiber tracts. Conclusions Using 6 cortical ROIs, we identified 6 major white matter tracts that reflect major functional divisions of the cerebral hemispheres and we derived quantitative values that can be used for study of canine models of human WM pathological states. PMID:24370161
Onnink, A Marten H; Zwiers, Marcel P; Hoogman, Martine; Mostert, Jeanette C; Dammers, Janneke; Kan, Cornelis C; Vasquez, Alejandro Arias; Schene, Aart H; Buitelaar, Jan; Franke, Barbara
2015-12-03
Attention-deficit/hyperactivity disorder (ADHD) in childhood is characterized by gray and white matter abnormalities in several brain areas. Considerably less is known about white matter microstructure in adults with ADHD and its relation with clinical symptoms and cognitive performance. In 107 adult ADHD patients and 109 gender-, age- and IQ-matched controls, we used diffusion tensor imaging (DTI) with tract-based spatial statistics (TBSS) to investigate whole-skeleton changes of fractional anisotropy (FA) and mean, axial, and radial diffusivity (MD, AD, RD). Additionally, we studied the relation of FA and MD values with symptom severity and cognitive performance on tasks measuring working memory, attention, inhibition, and delay discounting. In comparison to controls, participants with ADHD showed reduced FA in corpus callosum, bilateral corona radiata, and thalamic radiation. Higher MD and RD were found in overlapping and even more widespread areas in both hemispheres, also encompassing internal and external capsule, sagittal stratum, fornix, and superior lateral fasciculus. Values of FA and MD were not associated with symptom severity. However, within some white matter clusters that distinguished patients from controls, worse inhibition performance was associated with reduced FA and more impulsive decision making was associated with increased MD. This study shows widespread differences in white matter integrity between adults with persistent ADHD and healthy individuals. Changes in RD suggest aberrant myelination as a pathophysiological factor in persistent ADHD. The microstructural differences in adult ADHD may contribute to poor inhibition and greater impulsivity but appear to be independent of disease severity. Copyright © 2015. Published by Elsevier Inc.
Shin, W; Mahmoud, S Y; Sakaie, K; Banks, S J; Lowe, M J; Phillips, M; Modic, M T; Bernick, C
2014-02-01
Traumatic brain injury is common in fighting athletes such as boxers, given the frequency of blows to the head. Because DTI is sensitive to microstructural changes in white matter, this technique is often used to investigate white matter integrity in patients with traumatic brain injury. We hypothesized that previous fight exposure would predict DTI abnormalities in fighting athletes after controlling for individual variation. A total of 74 boxers and 81 mixed martial arts fighters were included in the analysis and scanned by use of DTI. Individual information and data on fight exposures, including number of fights and knockouts, were collected. A multiple hierarchical linear regression model was used in region-of-interest analysis to test the hypothesis that fight-related exposure could predict DTI values separately in boxers and mixed martial arts fighters. Age, weight, and years of education were controlled to ensure that these factors would not account for the hypothesized effects. We found that the number of knockouts among boxers predicted increased longitudinal diffusivity and transversal diffusivity in white matter and subcortical gray matter regions, including corpus callosum, isthmus cingulate, pericalcarine, precuneus, and amygdala, leading to increased mean diffusivity and decreased fractional anisotropy in the corresponding regions. The mixed martial arts fighters had increased transversal diffusivity in the posterior cingulate. The number of fights did not predict any DTI measures in either group. These findings suggest that the history of fight exposure in a fighter population can be used to predict microstructural brain damage.
Brain white matter microstructure is associated with susceptibility to motion-induced nausea.
Napadow, V; Sheehan, J; Kim, J; Dassatti, A; Thurler, A H; Surjanhata, B; Vangel, M; Makris, N; Schaechter, J D; Kuo, B
2013-05-01
Nausea is associated with significant morbidity, and there is a wide range in the propensity of individuals to experience nausea. The neural basis of the heterogeneity in nausea susceptibility is poorly understood. Our previous functional magnetic resonance imaging (fMRI) study in healthy adults showed that a visual motion stimulus caused activation in the right MT+/V5 area, and that increased sensation of nausea due to this stimulus was associated with increased activation in the right anterior insula. For the current study, we hypothesized that individual differences in visual motion-induced nausea are due to microstructural differences in the inferior fronto-occipital fasciculus (IFOF), the white matter tract connecting the right visual motion processing area (MT+/V5) and right anterior insula. To test this hypothesis, we acquired diffusion tensor imaging data from 30 healthy adults who were subsequently dichotomized into high and low nausea susceptibility groups based on the Motion Sickness Susceptibility Scale. We quantified diffusion along the IFOF for each subject based on axial diffusivity (AD); radial diffusivity (RD), mean diffusivity (MD) and fractional anisotropy (FA), and evaluated between-group differences in these diffusion metrics. Subjects with high susceptibility to nausea rated significantly (P < 0.001) higher nausea intensity to visual motion stimuli and had significantly (P < 0.05) lower AD and MD along the right IFOF compared to subjects with low susceptibility to nausea. This result suggests that differences in white matter microstructure within tracts connecting visual motion and nausea-processing brain areas may contribute to nausea susceptibility or may have resulted from an increased history of nausea episodes. © 2013 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Koppelmans, V.; Erdeniz, B.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.
2014-01-01
Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes are solely related to peripheral changes from reduced vestibular stimulation, body unloading, body fluid shifts or that they may be related to structural and functional brain changes is yet unknown. However, a recent study reported associations between microgravity and flattening of the posterior eye globe and protrusion of the optic nerve [1] possibly as the result of increased intracranial pressure due to microgravity induced bodily fluid shifts [3]. Moreover, elevated intracranial pressure has been related to white matter microstructural damage [2]. Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning. Long duration head down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system [4]. Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on brain structure [5]. Here we present results of the first six subjects. Six subjects were assessed at 12 and 7 days before-, at 7, 30, and 70 days in-, and at 8 and 12 days post 70 days of bed rest at the NASA bed rest facility in UTMB, Galveston, TX, USA. At each time point structural MRI scans (i.e., high resolution T1-weighted imaging and Diffusion Tensor Imaging (DTI)) were obtained using a 3T Siemens scanner. Focal changes over time in gray matter density were assessed using the voxel based morphometry 8 (VBM8) toolbox under SPM. Longitudinal processing in VBM8 includes linear registration of each scan to the mean of the subject and subsequently transforming all scans in to MNI space by applying the warp from the mean subject to MNI to the individual gray matter segmentations. Modulation was applied so that all images represented the volume of the original structure in native space. Voxel wise analysis was carried out on the gray matter images after smoothing, using a flexible factorial design with family wise error correction. Focal changes in white matter microstructural integrity were assessed using tract based spatial statistics (TBSS) as part of FMRIB software library (FSL). TBSS registers all DTI scans to standard space. It subsequently creates a study specific white matter skeleton of the major white matter tracts. For each subject, for each DTI metric (i.e. fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD)), the maximum value in a line perpendicular to the skeleton tract is projected to the skeleton. Non-parametric permutation based t-tests and ANOVA's were used for voxel-wise comparison of the skeletons. For both VBM and TBSS, comparison of pre bed rest measurements did not show significant differences. VBM analysis revealed decreased gray matter density in bilateral areas including the frontal medial cortex, the insular cortex and the caudate (see Figure) from 'pre to in bed rest'. Over the same time period, there was an increase in gray matter density in the cerebellum, occipital-, and parietal cortex, including the precuneus (see Figure). The majority of these changes did not recover from 'during to post bed rest'. TBSS analysis did not reveal significant changes in white matter microstructural integrity after correction for multiple comparisons. Uncorrected analyses (p<.015) revealed an increase in RD in the cerebellum and brainstem from pre bed rest to the first week in bed rest that did not recover post bed rest. Extended bed rest, which is an analog for microgravity, can result in gray matter changes and potentially in microstructural white matter changes in areas that are important for neuro motor behavior and cognition. These changes did not recover at two weeks post bed rest. Whether the effects of bed rest wear off at longer times post bed rest, and if they are associated with behavior are important questions that warrant further research.
Černíková, Michaela; Nebesářová, Jana; Salek, Richardos Nikolaos; Popková, Romana; Buňka, František
2018-04-01
The aim of this work was to add various amounts of rework (0.0 to 20.0% wt/wt) to processed cheeses with a dry matter content of 36% (wt/wt) and fat with a dry matter content of 45% (wt/wt). The effect of the rework addition on the viscoelastic properties and microstructure of the processed cheeses was observed. The addition of rework (in this case, to processed cheese with a spreadable consistency) in the amounts of 2.5, 5.0, and 10.0% (wt/wt) increased the firmness of the processed cheese. With the further addition of rework, the consistency of the processed cheeses no longer differed significantly. The conclusions obtained by the measurement of viscoelastic properties were supported by cryo-scanning electron microscopy, where fat droplets in samples with added rework of over 10.0% (wt/wt) were smaller than fat droplets in processed cheeses with lower additions of rework. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ekmekci, Burcu; Bulut, Hacı Taner; Gümüştaş, Funda; Yıldırım, Adem; Kuştepe, Ali
2016-09-01
Diffusion tensor imaging (DTI) has revealed evidence of subcortical white matter abnormalities in the frontal area in juvenile myoclonic epilepsy (JME). Decreased fractional anisotropy (FA) and increased mean diffusivity (MD) in the corticothalamic pathway have been detected in adult patients with JME. It has been demonstrated that, in adult patients with JME, frontal dysfunction is related to subcortical white matter damage and decreased volume in frontal cortical gray matter and the thalamus. Many studies have focused on adult patients. Twenty-four patients and 28 controls were evaluated. The group with JME had significantly worse results for the word fluency, trail-B, and Stroop tests that assessed executive functions. A significant decrease in FA values in the dorsolateral prefrontal cortex (DLPFC), the supplementary motor area (SMA), the right thalamus, the posterior cingulate, the corpus callosum anterior, the corona radiata, and the middle frontal white matter (MFWM) and an increase in ADC values in patients with JME were detected. The correlation between FA values in DLPFC and the letter fluency test results was positive, and the correlation with the Stroop and trail-B test results was negative. We found a negative correlation between SMA, anterior thalamus, and MFWM FA values and the trail-B test results and a positive correlation between the SMA, anterior thalamus, and MFWM FA values and the letter fluency test results. We detected white matter and gray matter abnormalities in patients with new-onset JME using DTI. In addition, we determined the relationship between cognitive deficit and microstructural abnormalities by evaluating the correlation between the neuropsychological test battery results and DTI parameters. We evaluated newly diagnosed patients with JME in our study. That leads us to believe that microstructural abnormalities exist from the very beginning of the disease and that they result from the genetic basis of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.
van Zoest, Rosan A; Underwood, Jonathan; De Francesco, Davide; Sabin, Caroline A; Cole, James H; Wit, Ferdinand W; Caan, Matthan W A; Kootstra, Neeltje A; Fuchs, Dietmar; Zetterberg, Henrik; Majoie, Charles B L M; Portegies, Peter; Winston, Alan; Sharp, David J; Gisslén, Magnus; Reiss, Peter
2017-12-27
Brain structural abnormalities have been reported in persons living with human immunodeficiency virus (HIV; PLWH) who are receiving suppressive combination antiretroviral therapy (cART), but their pathophysiology remains unclear. We investigated factors associated with brain tissue volumes and white matter microstructure (fractional anisotropy) in 134 PLWH receiving suppressive cART and 79 comparable HIV-negative controls, aged ≥45 years, from the Comorbidity in Relation to AIDS cohort, using multimodal neuroimaging and cerebrospinal fluid biomarkers. Compared with controls, PLWH had lower gray matter volumes (-13.7 mL; 95% confidence interval, -25.1 to -2.2) and fractional anisotropy (-0.0073; 95% confidence interval, -.012 to -.0024), with the largest differences observed in those with prior clinical AIDS. Hypertension and the soluble CD14 concentration in cerebrospinal fluid were associated with lower fractional anisotropy. These associations were independent of HIV serostatus (Pinteraction = .32 and Pinteraction = .59, respectively) and did not explain the greater abnormalities in brain structure in relation to HIV infection. The presence of lower gray matter volumes and more white matter microstructural abnormalities in well-treated PLWH partly reflect a combination of historical effects of AIDS, as well as the more general influence of systemic factors, such as hypertension and ongoing neuroinflammation. Additional mechanisms explaining the accentuation of brain structure abnormalities in treated HIV infection remain to be identified. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.
Foot and ankle problems in Muay Thai kickboxers.
Vaseenon, Tanawat; Intharasompan, Piyapong; Wattanarojanapom, Thongaek; Theeraamphon, Nipon; Auephanviriyakul, Sansanee; Phisitkul, Phinit
2015-01-01
Muay Thai kickboxing is a common sport that uses the foot and ankle in fighting. Muay Thai kickboxing trainees usually receive training in Thailand Foot and ankle problems in this group ofpeople who usually train barefoot remain unexplored To evaluate the prevalence of common foot and ankle problems in Muay Thai kick boxers. The present study is a cross-sectional survey of Muay Thai kick boxers practicing in northern Thailand. Interviews were conducted and foot and ankle examinations were evaluated Foot morphology was examined using a Harris mat footprint. One hundred and twenty-three Muay Thai kickbox ersinnine training gyms were included in this study. Common foot and ankle problems found in the Muay Thai kick boxers were callosity (59%), gastrocnemius contracture (57%), toe deformities (49.3%), wounds (10%) and heel pain (9%). Callosity was most commonly found on the forefoot (77.5%), on the plantar first metatarsal (55.3%) and on the big toe (33.3%). An association was found between a tight heel cord and a history of foot injury with prolonged periods of weekly training. Toe deformities such as hallux rigidus (37.6%) were also associated with prolonged periods of training (p = 0.001). No correlation was found between type of foot arch and foot and ankle problems. Plantar forefoot callosities and wounds as well as toe deformities including tight heel cords are some of the foot and ankle problems commonly found in Muay Thai kick boxers. They are associated with prolonged periods of barefoot training. The unique pattern of training and of the kicks in Muay Thai might be a path mechanism, leading to the development of foot and ankle problems.
Alkhatib, Rami; Creamer, Rebecca; Lartey, Robert T; Ghoshroy, Soumitra
2011-08-01
Effect of various lead (Pb) concentrations on the systemic movement of RNA viruses was examined in tobacco plants. Prior to inoculation, plants were grown hydroponically for 6 days in Hoagland's solution supplemented with five concentrations of lead nitrate [Pb(NO(3))(2)]: 0.0 (control), 10, 15, 50, and 100 μM. Four different RNA viruses with different cell-to-cell movement mechanisms were used. Two weeks after inoculation lower and upper leaves of each treatment were harvested and examined for the presence of viral coat protein. In plants inoculated with Tobacco mosaic virus, Potato virus X, and Tobacco etch virus, TEM images and western blot assays confirmed the presence of viral coat proteins in the upper leaves of all lead treatments. However, in plants inoculated with Turnip vein-clearing virus (TVCV), no signs of viral particles were detected in the upper leaves of plants treated with 10 μM or 15 μM lead nitrate. In contrast, plants treated with high concentrations of lead nitrate (50 μM or 100 μM) showed viral particles in their upper leaves. In plants treated with 10 μM or 15 μM lead nitrate, callose accumulation was the same as in control plants. This suggests that non-toxic concentrations of lead nitrate may trigger the production of putative cellular factors in addition to callose that interfere with the TVCV systemic movement. In contrast, plants treated with 100 μM lead nitrate showed less callose as compared to control plants, facilitating the systemic movement of TVCV.
Liu, Jing-Lan; Chen, Xiao; Zhang, Hong-Mei; Yang, Xia; Wong, Andrew
2014-01-01
Recent study showed that exogenous abscisic acid (ABA) acts as a regulator of plant resistance. This study investigated average injury scale and callose contents of rice, and vitellogenin (Nlvg) mRNA expression in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) adult females after third instar nymphs fed on exogenous ABA-treated susceptible [Taichung Native one (TN1)] and moderately resistant (IR42) rice cultivars. The results showed that exogenous ABA significantly decreased average injury scale of rice and Nlvg mRNA expression in N. lugens adults compared with the control (without ABA spraying). Nlvg mRNA expression in N. lugens adults decreased significantly after third instar nymphs fed on ABA-treated (5, 20, and 40 mg/liter) TN1 for 1 and 2 d, and for IR42, after fed on ABA-treated (20 and 40 mg/liter) rice plants for 1 d and after fed on ABA-treated (5, 20, and 40 mg/liter) rice for 2 d decreased significantly. The callose contents showed no significant change for TN1, while for IR42, significantly increased in roots and sheathes after N. lugens infestation under ABA treatments (20 and 40 mg/liter) compared with the control. The decrease of Nlvg mRNA expression may be partially attributed to the increase of callose content of plants. The results provide a profile for concerning the effects of ABA-induced rice plants' defenses on phloem-feeding insects. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.
STRUCTURE OF PRIMARY PM2.5 DERIVED FROM DIESEL TRUCK EXHAUST
The U.S. Environmental Protection Agency is currently considering regulations on airborne particulate matter < 2.5 microns in mean diameter (PM2.5). It is important that the molecular structure and microstructure of PM2.5 from various sources be thoroughly characterized in order ...
Chiappelli, J; Hong, L E; Wijtenburg, S A; Du, X; Gaston, F; Kochunov, P; Rowland, L M
2015-04-14
We investigated in vivo neurochemical markers reflective of neuronal health and glial activation to determine if these could yield clues regarding the reduced fractional anisotropy (FA) of white matter and accelerated decline of FA with age in schizophrenia. Participants with schizophrenia and healthy controls completed diffusion tensor imaging to assess FA and proton magnetic resonance spectroscopy to assess neurochemical metabolites in the same frontal region. Frontal FA was significantly lower in the schizophrenia and declined more rapidly with age compared with the healthy control group. In both groups, N-acetylaspartate (NAA), a putative marker of neuronal integrity, and glutamate declined with age, and this decline was stronger in patients. Myo-inositol, a marker of glial cells, was negatively related to FA in both groups. The relationship between FA and age remained significant in schizophrenia even when controlling for all metabolites. The relationships of FA, NAA and myo-inositol to age appear to be independent of one another. The relationship between FA and myo-inositol was independently present in both patients and controls, even after controlling for age, indicating a potential general effect of neuroinflammation on white matter microstructure. Further studies are warranted to determine the underlying mechanism driving the accelerated FA decline with age in schizophrenia.
Zikou, Anastasia K; Xydis, Vasileios G; Astrakas, Loukas G; Nakou, Iliada; Tzarouchi, Loukia C; Tzoufi, Meropi; Argyropoulou, Maria I
2016-07-01
There is evidence of microstructural changes in normal-appearing white matter of patients with tuberous sclerosis complex. To evaluate major white matter tracts in children with tuberous sclerosis complex using tract-based spatial statistics diffusion tensor imaging (DTI) analysis. Eight children (mean age ± standard deviation: 8.5 ± 5.5 years) with an established diagnosis of tuberous sclerosis complex and 8 age-matched controls were studied. The imaging protocol consisted of T1-weighted high-resolution 3-D spoiled gradient-echo sequence and a spin-echo, echo-planar diffusion-weighted sequence. Differences in the diffusion indices were evaluated using tract-based spatial statistics. Tract-based spatial statistics showed increased axial diffusivity in the children with tuberous sclerosis complex in the superior and anterior corona radiata, the superior longitudinal fascicle, the inferior fronto-occipital fascicle, the uncinate fascicle and the anterior thalamic radiation. No significant differences were observed in fractional anisotropy, mean diffusivity and radial diffusivity between patients and control subjects. No difference was found in the diffusion indices between the baseline and follow-up examination in the patient group. Patients with tuberous sclerosis complex have increased axial diffusivity in major white matter tracts, probably related to reduced axonal integrity.
Quentin, Romain; Elkin Frankston, Seth; Vernet, Marine; Toba, Monica N.; Bartolomeo, Paolo; Chanes, Lorena; Valero-Cabré, Antoni
2016-01-01
Behavioral and electrophysiological studies in humans and non-human primates have correlated frontal high-beta activity with the orienting of endogenous attention and shown the ability of the latter function to modulate visual performance. We here combined rhythmic transcranial magnetic stimulation (TMS) and diffusion imaging to study the relation between frontal oscillatory activity and visual performance, and we associated these phenomena to a specific set of white matter pathways that in humans subtend attentional processes. High-beta rhythmic activity on the right frontal eye field (FEF) was induced with TMS and its causal effects on a contrast sensitivity function were recorded to explore its ability to improve visual detection performance across different stimulus contrast levels. Our results show that frequency-specific activity patterns engaged in the right FEF have the ability to induce a leftward shift of the psychometric function. This increase in visual performance across different levels of stimulus contrast is likely mediated by a contrast gain mechanism. Interestingly, microstructural measures of white matter connectivity suggest a strong implication of right fronto-parietal connectivity linking the FEF and the intraparietal sulcus in propagating high-beta rhythmic signals across brain networks and subtending top-down frontal influences on visual performance. PMID:25899709
Sex differences in adolescent white matter architecture.
Bava, Sunita; Boucquey, Veronique; Goldenberg, Diane; Thayer, Rachel E; Ward, Megan; Jacobus, Joanna; Tapert, Susan F
2011-02-23
Sex-specific trajectories in white matter development during adolescence may help explain cognitive and behavioral divergences between males and females. Knowledge of sex differences in typically developing adolescents can provide a basis for interpreting sexual dimorphisms in abilities and actions. We examined 58 healthy adolescents (12-14years of age) with diffusion tensor imaging (DTI). Diffusion parameters fractional anisotropy (FA), and mean (MD), radial (RD), and axial diffusivities (AD) were subjected to whole-brain voxel-wise group comparisons using tract-based spatial statistics. Sex differences in white matter microstructure were examined in relation to pubertal development. Early adolescent females (n=29) evidenced higher FA in the right superior corona radiata, higher FA and AD in bilateral corticospinal tracts (≥164μl, p<.01), and lower MD in the right inferior longitudinal fasciculus (ILF) and left forceps major (≥164μl, p<.01) than age-matched males (n=29). Males did not show any areas of higher FA or lower MD than females, but had higher AD in the right superior longitudinal fasciculus, ILF, and forceps minor (≥ 164μl, p<.01). Pubertal stage did not account for sex disparities. In early adolescence, females' motor tracts may reflect widespread changes, while males may undergo relatively more microstructural change in projection and association fibers. Copyright © 2010 Elsevier B.V. All rights reserved.
Chaker, Layal; Cremers, Lotte G M; Korevaar, Tim I M; de Groot, Marius; Dehghan, Abbas; Franco, Oscar H; Niessen, Wiro J; Ikram, M Arfan; Peeters, Robin P; Vernooij, Meike W
2018-01-01
Thyroid hormone (TH) is crucial during neurodevelopment, but high levels of TH have been linked to neurodegenerative disorders. No data on the association of thyroid function with brain imaging in the general population are available. We therefore investigated the association of thyroid-stimulating hormone and free thyroxine (FT4) with magnetic resonance imaging (MRI)-derived total intracranial volume, brain tissue volumes, and diffusion tensor imaging measures of white matter microstructure in 4683 dementia- and stroke-free participants (mean age 60.2, range 45.6-89.9 years). Higher FT4 levels were associated with larger total intracranial volumes (β = 6.73 mL, 95% confidence interval = 2.94-9.80). Higher FT4 levels were also associated with larger total brain and white matter volumes in younger individuals, but with smaller total brain and white matter volume in older individuals (p-interaction 0.02). There was a similar interaction by age for the association of FT4 with mean diffusivity on diffusion tensor imaging (p-interaction 0.026). These results are in line with differential effects of TH during neurodevelopmental and neurodegenerative processes and can improve the understanding of the role of thyroid function in neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Hurley, Samuel A.; Samsonov, Alexey A.; Adluru, Nagesh; Hosseinbor, Ameer Pasha; Mossahebi, Pouria; Tromp, Do P.M.; Zakszewski, Elizabeth; Field, Aaron S.
2011-01-01
Abstract The image contrast in magnetic resonance imaging (MRI) is highly sensitive to several mechanisms that are modulated by the properties of the tissue environment. The degree and type of contrast weighting may be viewed as image filters that accentuate specific tissue properties. Maps of quantitative measures of these mechanisms, akin to microstructural/environmental-specific tissue stains, may be generated to characterize the MRI and physiological properties of biological tissues. In this article, three quantitative MRI (qMRI) methods for characterizing white matter (WM) microstructural properties are reviewed. All of these measures measure complementary aspects of how water interacts with the tissue environment. Diffusion MRI, including diffusion tensor imaging, characterizes the diffusion of water in the tissues and is sensitive to the microstructural density, spacing, and orientational organization of tissue membranes, including myelin. Magnetization transfer imaging characterizes the amount and degree of magnetization exchange between free water and macromolecules like proteins found in the myelin bilayers. Relaxometry measures the MRI relaxation constants T1 and T2, which in WM have a component associated with the water trapped in the myelin bilayers. The conduction of signals between distant brain regions occurs primarily through myelinated WM tracts; thus, these methods are potential indicators of pathology and structural connectivity in the brain. This article provides an overview of the qMRI stain mechanisms, acquisition and analysis strategies, and applications for these qMRI stains. PMID:22432902
Konukoglu, Ender; Coutu, Jean-Philippe; Salat, David H; Fischl, Bruce
2016-07-01
Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in identifying pathological structural changes in various conditions, such as Alzheimer's and Huntington's diseases (Salat et al., 2010; Rosas et al., 2006). The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as diffusion tensor imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the underlying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation. However, it is most likely that variations in the microstructure due to pathology or normal variability would affect several parameters simultaneously, with differing variations modulating the various parameters to differing degrees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopathology and distinguishing between conditions than the widely used univariate analysis. In this article, we propose a multivariate approach for statistical analysis of diffusion parameters that uses partial least squares correlation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the common formulation, we present three different multivariate procedures for group analysis, regressing-out nuisance parameters and comparing effects of different conditions. We used the proposed procedures to study the effects of non-demented aging, Alzheimer's disease and mild cognitive impairment on the white matter. Here, we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of different conditions in the same region as well as uncover spatial variations of effects across the white matter. The proposed procedures were able to answer questions on structural variations such as: "are there regions in the white matter where Alzheimer's disease has a different effect than aging or similar effect as aging?" and "are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer's disease but with differing multivariate effects?" Copyright © 2016 Elsevier Inc. All rights reserved.
Konukoglu, Ender; Coutu, Jean-Philippe; Salat, David H.; Fischl, Bruce
2016-01-01
Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in identifying pathological structural changes in various conditions, such as Alzheimer’s and Huntington’s diseases1,2. The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as Diffusion Tensor Imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the underlying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation. However, it is most likely that variations in the microstructure due to pathology or normal variability would affect several parameters simultaneously, with differing variations modulating the various parameters to differing degrees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopathology and distinguishing between conditions than the widely used univariate analysis. In this article, we propose a multivariate approach for statistical analysis of diffusion parameters that uses partial least squares correlation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the common formulation, we present three different multivariate procedures for group analysis, regressing-out nuisance parameters and comparing effects of different conditions. We used the proposed procedures to study the effects of non-demented aging, Alzheimer’s disease and mild cognitive impairment on the white matter. Here, we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of different conditions in the same region as well as uncover spatial variations of effects across the white matter. The proposed procedures were able to answer questions on structural variations such as: “are there regions in the white matter where Alzheimer’s disease has a different effect than aging or similar effect as aging?” and “are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer’s disease but with differing multivariate effects?” PMID:27103138
Lausberg, H; Göttert, R; Münssinger, U; Boegner, F; Marx, P
1999-03-01
We report on a left-handed patient with an ischemic infarction affecting exclusively the total length of the corpus callosum. This lesion clinically correlated with an almost complete callosal disconnection syndrome as described in callosotomy subjects, including unilateral verbal anosmia, hemialexia, unilateral ideomotor apraxia, unilateral agraphia, unilateral tactile anomia, unilateral constructional apraxia, lack of somesthetic transfer and dissociative phenomena. Despite the patient's left-handedness, his pattern of deficits was similar to the disconnection syndrome found in right-handers. Our report focusses on motor dominance and praxis. We followed-up the improvement in left apraxia and investigated the ability to initiate and learn a new visuo-motor skill. The results permit two tentative assumptions: (1) that the improvement in left apraxia was due to a compensatory increase in ipsilateral proximal muscle control, and (2) that motor dominance, i.e. the competence to initiate and learn a new movement pattern, was hemispherically dissociable from manual dominance in the sense of praxis control.
Utsunomiya, Hidetsuna; Yamashita, Shinichi; Takano, Koichi; Ueda, Yukiyo; Fujii, Akira
2006-07-01
This article describes a classification and imaging diagnosis of intracranial midline cystic malformations based on neuroembryologic analysis. Midline cystic malformations are classified into two categories from an embryologic point of view. In one category, the cyst represents expansion of the roof plate of the brain vesicle, and in the other the cyst consists of extraaxial structures such as an arachnoid membrane or migrating ependymal cells. Infratentorial cysts, such as the Dandy-Walker cyst or Blake's pouch cyst, and supratentorial cysts, such as a communicating interhemispheric cyst with callosal agenesis or a dorsal cyst with holoprosencephaly, are included in the first category. Infratentorial arachnoid cavities, such as the arachnoid cyst, arachnoid pouch, and mega cisterna magna, are in the second category. Noncommunicating interhemispheric cysts, such as interhemispheric arachnoid cyst or ependymal cyst, with callosal agenesis are also in the second category. A careful review of embryologic development is essential for understanding these midline cysts and for making a more accurate radiologic diagnosis.
Benson, Randall R; Gattu, Ramtilak; Cacace, Anthony T
2014-03-01
Diffusion tensor imaging (DTI) is a contemporary neuroimaging modality used to study connectivity patterns and microstructure of white matter tracts in the brain. The use of DTI in the study of tinnitus is a relatively unexplored methodology with no studies focusing specifically on tinnitus induced by noise exposure. In this investigation, participants were two groups of adults matched for etiology, age, and degree of peripheral hearing loss, but differed by the presence or absence (+/-) of tinnitus. It is assumed that matching individuals on the basis of peripheral hearing loss, allows for differentiating changes in white matter microstructure due to hearing loss from changes due to the effects of chronic tinnitus. Alterations in white matter tracts, using the fractional anisotropy (FA) metric, which measures directional diffusion of water, were quantified using tract-based spatial statistics (TBSS) with additional details provided by in vivo probabilistic tractography. Our results indicate that 10 voxel clusters differentiated the two groups, including 9 with higher FA in the group with tinnitus. A decrease in FA was found for a single cluster in the group with tinnitus. However, seven of the 9 clusters with higher FA were in left hemisphere thalamic, frontal, and parietal white matter. These foci were localized to the anterior thalamic radiations and the inferior and superior longitudinal fasciculi. The two right-sided clusters with increased FA were located in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus. The only decrease in FA for the tinnitus-positive group was found in the superior longitudinal fasciculus of the left parietal lobe. Copyright © 2013 Elsevier B.V. All rights reserved.
Response Inhibition Is Associated with White Matter Microstructure in Children
ERIC Educational Resources Information Center
Madsen, Kathrine Skak; Baare, William F. C.; Vestergaard, Martin; Skimminge, Arnold; Ejersbo, Lisser Rye; Ramsoy, Thomas Z.; Gerlach, Christian; Akeson, Per; Paulson, Olaf B.; Jernigan, Terry L.
2010-01-01
Cognitive control of thoughts, actions and emotions is important for normal behaviour and the development of such control continues throughout childhood and adolescence. Several lines of evidence suggest that response inhibition is primarily mediated by a right-lateralized network involving inferior frontal gyrus (IFG), presupplementary motor…
Altered White Matter Microstructure in Adolescents with Major Depression: A Preliminary Study
ERIC Educational Resources Information Center
Cullen, Kathryn R.; Klimes-Dougan, Bonnie; Muetzel, Ryan; Mueller, Bryon A.; Camchong, Jazmin; Houri, Alaa; Kurma, Sanjiv; Lim, Kelvin O.
2010-01-01
Objective: Major depressive disorder (MDD) occurs frequently in adolescents, but the neurobiology of depression in youth is poorly understood. Structural neuroimaging studies in both adult and pediatric populations have implicated frontolimbic neural networks in the pathophysiology of MDD. Diffusion tensor imaging (DTI), which measures white…
NASA Astrophysics Data System (ADS)
Tanasta, Z.; Muhamad, P.; Kuwano, N.; Norfazrina, H. M. Y.; Unuh, M. H.
2018-03-01
Aluminium Nitride (AlN) is a ceramic 111-nitride material that is used widely as components in functional devices. Besides good thermal conductivity, it also has a high band gap in emitting light which is 6 eV. AlN thin film is grown on the sapphire substrate (0001). However, lattice mismatch between both materials has caused defects to exist along the microstructure of AlN thin films. The defects have affected the properties of Aluminium Nitride. Annealing heat treatment has been proved by the previous researcher to be the best method to improve the microstructure of Aluminium Nitride thin films. Hence, this method is applied at four different temperatures for two hour. The changes of Aluminium Nitride microstructures before and after annealing is observed using Transmission Electron Microscope. It is observed that inversion domains start to occur at temperature of 1500 °C. Convergent Beam Electron Diffraction pattern simulation has confirmed the defects as inversion domain. Therefore, this paper is about to extract the matters occurred during the process of producing high quality Aluminium Nitride thin films and the ways to overcome this problem.
Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; ...
2015-09-07
The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the appliedmore » magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.« less
Microstructure and property of directionally solidified Ni-Si hypereutectic alloy
NASA Astrophysics Data System (ADS)
Cui, Chunjuan; Tian, Lulu; Zhang, Jun; Yu, Shengnan; Liu, Lin; Fu, Hengzhi
2016-03-01
This paper investigates the influence of the solidification rate on the microstructure, solid/liquid interface, and micro-hardness of the directionally solidified Ni-Si hypereutectic alloy. Microstructure of the Ni-Si hypereutectic alloy is refined with the increase of the solidification rate. The Ni-Si hypereutectic composite is mainly composed of α-Ni matrix, Ni-Ni3Si eutectic phase, and metastable Ni31Si12 phase. The solid/liquid interface always keeps planar interface no matter how high the solidification rate is increased. This is proved by the calculation in terms of M-S interface stability criterion. Moreover, the Ni-Si hypereutectic composites present higher micro-hardness as compared with that of the pure Ni3Si compound. This is caused by the formation of the metastable Ni31Si12 phase and NiSi phase during the directional solidification process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganin, D V; Lapshin, K E; Obidin, A Z
2015-11-30
We present the result of the experiments on producing graphite-like cylindrical microstructures by focusing single femtosecond laser pulses into the bulk of a transparent polymer (polycarbonate). The microstructures are embedded in a cladding with a modified refractive index, possessing waveguide properties. In the experiments with nontransparent screens and diaphragms, placed in the laser beam in front of the entrance pupil of the objective with a large numerical aperture, we have found that the paraxial rays are blocked by the peripheral ones, which reduces the length of the destruction region in the pre-focal zone. In the experiments with transparent screens andmore » diaphragms, introducing optical delays τ{sub d} between the paraxial and peripheral rays, the quantitative dependence of the destruction region length in the pre-focal zone on the value of τ{sub d} is determined. (interaction of laser radiation with matter. laser plasma)« less
van Leijsen, Esther M C; Bergkamp, Mayra I; van Uden, Ingeborg W M; Ghafoorian, Mohsen; van der Holst, Helena M; Norris, David G; Platel, Bram; Tuladhar, Anil M; de Leeuw, Frank-Erik
2018-05-03
White matter hyperintensities (WMH) are frequently seen on neuroimaging of elderly and are associated with cognitive decline and the development of dementia. Yet, the temporal dynamics of conversion of normal-appearing white matter (NAWM) into WMH remains unknown. We examined whether and when progression of WMH was preceded by changes in fluid-attenuated inversion recovery and diffusion tensor imaging values, thereby taking into account differences between participants with mild versus severe baseline WMH. From 266 participants of the RUN DMC study (Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Imaging Cohort), we semiautomatically segmented WMH at 3 time points for 9 years. Images were registered to standard space through a subject template. We analyzed differences in baseline fluid-attenuated inversion recovery, fractional anisotropy, and mean diffusivity (MD) values and changes in MD values over time between 4 regions: (1) remaining NAWM, (2) NAWM converting into WMH in the second follow-up period, (3) NAWM converting into WMH in the first follow-up period, and (4) WMH. NAWM converting into WMH in the first or second time interval showed higher fluid-attenuated inversion recovery and MD values than remaining NAWM. MD values in NAWM converting into WMH in the first time interval were similar to MD values in WMH. When stratified by baseline WMH severity, participants with severe WMH had higher fluid-attenuated inversion recovery and MD and lower fractional anisotropy values than participants with mild WMH, in all areas including the NAWM. MD values in WMH and in NAWM that converted into WMH continuously increased over time. Impaired microstructural integrity preceded conversion into WMH and continuously declined over time, suggesting a continuous disease process of white matter integrity loss that can be detected using diffusion tensor imaging even years before WMH become visible on conventional neuroimaging. Differences in microstructural integrity between participants with mild versus severe WMH suggest heterogeneity of both NAWM and WMH, which might explain the clinical variability observed in patients with similar small vessel disease severity. © 2018 American Heart Association, Inc.
MaRIE: Probing Dynamic Processes in Soft Materials Using Advanced Light Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sykora, Milan; Kober, Edward Martin
Los Alamos National Laboratory has developed a concept for a new research facility, MaRIE: Matter-Radiation Interactions in Extremes. The key motivation for MaRIE is to develop new experimental capabilities needed to fill the existing gaps in our fundamental understanding of materials important for key National Nuclear Security Agency (NNSA) goals. MaRIE will bring two major new capabilities: (a) the ability to characterize the meso- and microstructure of materials in bulk as well as local dynamic response characteristics, and (b) the ability to characterize how this microstructure evolves under NNSA-relevant conditions and impacts the material’s performance in this regime.
Hemispheric connectivity and the visual-spatial divergent-thinking component of creativity.
Moore, Dana W; Bhadelia, Rafeeque A; Billings, Rebecca L; Fulwiler, Carl; Heilman, Kenneth M; Rood, Kenneth M J; Gansler, David A
2009-08-01
Divergent thinking is an important measurable component of creativity. This study tested the postulate that divergent thinking depends on large distributed inter- and intra-hemispheric networks. Although preliminary evidence supports increased brain connectivity during divergent thinking, the neural correlates of this characteristic have not been entirely specified. It was predicted that visuospatial divergent thinking would correlate with right hemisphere white matter volume (WMV) and with the size of the corpus callosum (CC). Volumetric magnetic resonance imaging (MRI) analyses and the Torrance Tests of Creative Thinking (TTCT) were completed among 21 normal right-handed adult males. TTCT scores correlated negatively with the size of the CC and were not correlated with right or, incidentally, left WMV. Although these results were not predicted, perhaps, as suggested by Bogen and Bogen (1988), decreased callosal connectivity enhances hemispheric specialization, which benefits the incubation of ideas that are critical for the divergent-thinking component of creativity, and it is the momentary inhibition of this hemispheric independence that accounts for the illumination that is part of the innovative stage of creativity. Alternatively, decreased CC size may reflect more selective developmental pruning, thereby facilitating efficient functional connectivity.
Dai, Guangping; Das, Avilash; Hayashi, Emiko; Chen, Qin; Takahashi, Emi
2016-11-01
Three-dimensional reconstruction of developing fiber pathways is essential to assessing the developmental course of fiber pathways in the whole brain. We applied diffusion spectrum imaging (DSI) tractography to five juvenile ex vivo cat brains at postnatal day (P) 35, when the degree of myelination varies across brain regions. We quantified diffusion properties (fractional anisotropy [FA] and apparent diffusion coefficient [ADC]) and other measurements (number, volume, and voxel count) on reconstructed pathways for projection (cortico-spinal and thalamo-cortical), corpus callosal, limbic (cingulum and fornix), and association (cortico-cortical) pathways, and characterized regional differences in maturation patterns by assessing diffusion properties. FA values were significantly higher in cortico-cortical pathways within the right hemisphere compared to those within the left hemisphere, while the other measurements for the cortico-cortical pathways within the hemisphere did not show asymmetry. ADC values were not asymmetric in both types of pathways. Interestingly, tract count and volume were significantly larger in the left thalamo-cortical pathways compared to the right thalamo-cortical pathways. The bilateral thalamo-cortical pathways showed high FA values compared to the other fiber pathways. On the other hand, ADC values did not show any differences across pathways studied. These results demonstrate that DSI tractography successfully depicted regional variations of white matter tracts during development when myelination is incomplete. Low FA and high ADC values in the cingulum bundle suggest that the cingulum bundle is less mature than the others at this developmental stage. Copyright © 2016 ISDN. Published by Elsevier Ltd. All rights reserved.
Brain structure and verbal function across adulthood while controlling for cerebrovascular risks.
Sanfratello, L; Lundy, S L; Qualls, C; Knoefel, J E; Adair, J C; Caprihan, A; Stephen, J M; Aine, C J
2017-04-08
The development and decline of brain structure and function throughout adulthood is a complex issue, with cognitive aging trajectories influenced by a host of factors including cerebrovascular risk. Neuroimaging studies of age-related cognitive decline typically reveal a linear decrease in gray matter (GM) volume/density in frontal regions across adulthood. However, white matter (WM) tracts mature later than GM, particularly in regions necessary for executive functions and memory. Therefore, it was predicted that a middle-aged group (MC: 35-45 years) would perform best on a verbal working memory task and reveal greater regional WM integrity, compared with both young (YC: 18-25 years) and elder groups (EC: 60+ years). Diffusion tensor imaging (DTI) and magnetoencephalography (MEG) were obtained from 80 healthy participants. Objective measures of cerebrovascular risk and cognition were also obtained. As predicted, MC revealed best verbal working memory accuracy overall indicating some maturation of brain function between YC and MC. However, contrary to the prediction fractional anisotropy values (FA), a measure of WM integrity, were not greater in MC (i.e., there were no significant differences in FA between YC and MC but both groups showed greater FA than EC). An overall multivariate model for MEG ROIs showed greater peak amplitudes for MC and YC, compared with EC. Subclinical cerebrovascular risk factors (systolic blood pressure and blood glucose) were negatively associated with FA in frontal callosal, limbic, and thalamic radiation regions which correlated with executive dysfunction and slower processing speed, suggesting their contribution to age-related cognitive decline. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Koutsarnakis, Christos; Liakos, Faidon; Kalyvas, Aristotelis V; Skandalakis, Georgios P; Komaitis, Spyros; Christidi, Fotini; Karavasilis, Efstratios; Liouta, Evangelia; Stranjalis, George
2017-10-01
To explore the superior frontal sulcus (SFS) morphology, trajectory of the applied surgical corridor, and white matter bundles that are traversed during the superior frontal transsulcal transventricular approach. Twenty normal, adult, formalin-fixed cerebral hemispheres and 2 cadaveric heads were included in the study. The topography, morphology, and dimensions of the SFS were recorded in all specimens. Fourteen hemispheres were investigated through the fiber dissection technique whereas the remaining 6 were explored using coronal cuts. The cadaveric heads were used to perform the superior frontal transsulcal transventricular approach. In addition, 2 healthy volunteers underwent diffusion tensor imaging and tractography reconstruction studies. The SFS was interrupted in 40% of the specimens studied and was always parallel to the interhemispheric fissure. The proximal 5 cm of the SFS (starting from the SFS precentral sulcus meeting point) were found to overlie the anterior ventricular system in all hemispheres. Five discrete white matter layers were identified en route to the anterior ventricular system (i.e., the arcuate fibers, the frontal aslant tract, the external capsule, internal capsule, and the callosal radiations). Diffusion tensor imaging studies confirmed the fiber tract architecture. When feasible, the superior frontal transsulcal transventricular approach offers a safe and effective corridor to the anterior part of the lateral ventricle because it minimizes brain retraction and transgression and offers a wide and straightforward working corridor. Meticulous preoperative planning coupled with a sound microneurosurgical technique are prerequisites to perform the approach successfully. Copyright © 2017 Elsevier Inc. All rights reserved.
Language Lateralization in Individuals with Callosal Agenesis: An fMRI Study
ERIC Educational Resources Information Center
Pelletier, Isabelle; Paquette, Natacha; Lepore, Franco; Rouleau, Isabelle; Sauerwein, Catherine H.; Rosa, Christine; Leroux, Jean-Maxime; Gravel, Pierre; Valois, Katja; Andermann, Frederick; Saint-Amour, Dave; Lassonde, Maryse
2011-01-01
Since the seminal work of Broca in 1861, it is well established that language is essentially processed in the left hemisphere. However, the origin of hemispheric specialization remains controversial. Some authors posit that language lateralization is genetically determined, while others have suggested that hemispheric specialization develops with…
Language and Development in FG Syndrome with Callosal Agenesis.
ERIC Educational Resources Information Center
McCardle, Peggy; Wilson, Bruce
1993-01-01
The FG syndrome is characterized by unusual facies; sudden infant death; developmental delay; and abnormalities of the cardiac, gastrointestinal, and central nervous systems. Serial evaluations of one case with isolated agenesis of the corpus callosum found consistent patterns over time in specific language impairments in syntactic and…
Acute caffeine administration effect on brain activation patterns in mild cognitive impairment.
Haller, Sven; Montandon, Marie-Louise; Rodriguez, Cristelle; Moser, Dominik; Toma, Simona; Hofmeister, Jeremy; Sinanaj, Indrit; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon
2014-01-01
Previous studies showed that acute caffeine administration enhances task-related brain activation in elderly individuals with preserved cognition. To explore the effects of this widely used agent on cognition and brain activation in early phases of cognitive decline, we performed a double-blinded, placebo-controlled functional magnetic resonance imaging (fMRI) study during an n-back working memory task in 17 individuals with mild cognitive impairment (MCI) compared to 17 age-matched healthy controls (HC). All individuals were regular caffeine consumers with an overnight abstinence and given 200 mg caffeine versus placebo tablets 30 minutes before testing. Analyses included assessment of task-related activation (general linear model), functional connectivity (tensorial-independent component analysis, TICA), baseline perfusion (arterial spin labeling, ASL), grey matter density (voxel-based morphometry, VBM), and white matter microstructure (tract-based spatial statistics, TBSS). Acute caffeine administration induced a focal activation of the prefrontal areas in HC with a more diffuse and posteromedial activation pattern in MCI individuals. In MCI, TICA documented a significant caffeine-related enhancement in the prefrontal cortex, supplementary motor area, ventral premotor and parietal cortex as well as the basal ganglia and cerebellum. The absence of significant group differences in baseline ASL perfusion patterns supports a neuronal rather than a purely vascular origin of these differences. The VBM and TBSS analyses excluded potentially confounding differences in grey matter density and white matter microstructure between MCI and HC. The present findings suggest a posterior displacement of working memory-related brain activation patterns after caffeine administration in MCI that may represent a compensatory mechanism to counterbalance a frontal lobe dysfunction.
Huang, J; Friedland, R P; Auchus, A P
2007-01-01
Diffusion tensor imaging (DTI) is a sensitive technique for studying cerebral white matter. We used DTI to characterize microstructural white matter changes and their associations with cognitive dysfunction in Alzheimer disease (AD) and mild cognitive impairment (MCI). We studied elderly subjects with mild AD (n = 6), MCI (n = 11), or normal cognition (n = 8). A standardized clinical and neuropsychological evaluation was conducted on each subject. DTI images were acquired, and fractional anisotropy (FA), axial diffusivity (DA), and radial diffusivity (DR) of normal-appearing white matter (NAWM) in frontal, temporal, parietal, and occipital lobes were determined. These diffusion measurements were compared across the 3 groups, and significant differences were further examined for correlations with tests of cognitive function. Compared with normal controls, AD subjects demonstrated decreased FA and increased DR in the temporal, parietal, and frontal NAWM and decreased DA in temporal NAWM. MCI subjects also showed decreased FA and decreased DA in temporal NAWM, with decreased FA and increased DR in parietal NAWM. Diffusion measurements showed no differences in occipital NAWM. Across all subjects, temporal lobe FA and DR correlated with episodic memory, frontal FA and DR correlated with executive function, and parietal DR significantly correlated with visuospatial ability. We found evidence for functionally relevant microstructural changes in the NAWM of patients with AD and MCI. These changes were present in brain regions serving higher cortical functions, but not in regions serving primary functions, and are consistent with a hypothesized loss of axonal processes in the temporal lobe.
Churchill, Nathan W; Caverzasi, Eduardo; Graham, Simon J; Hutchison, Michael G; Schweizer, Tom A
2017-08-01
Sport concussion is associated with disturbances in brain function in the absence of gross anatomical lesions, and may have long-term health consequences. Diffusion-weighted magnetic resonance imaging (MRI) methods provide a powerful tool for investigating alterations in white matter microstructure reflecting the long-term effects of concussion. In a previous study, diffusion tensor imaging (DTI) showed that athletes with a history of concussion had elevated fractional anisotropy (FA) and reduced mean diffusivity (MD) parameters. To better understand these effects, this study compared DTI results to neurite orientation dispersion and density imaging (NODDI), which was used to estimate the intracellular volume fraction (V IC ) and orientation dispersion index (ODI). Sixty-eight (68) varsity athletes were recruited, including 37 without a history of concussion and 31 with concussion >6 months prior to imaging. Univariate analyses showed elevated FA and decreased MD for concussed athletes, along with increased V IC and reduced ODI, indicating greater neurite density and coherence of neurite orientation within white matter. Multivariate analyses also showed that for athletes with a history of concussion, white matter regions with increased FA had increased V IC and decreased ODI, with greater effects among athletes who were imaged a longer time since their last concussion. These findings enhance our understanding of the relationship between the biophysics of water diffusion and concussion neurobiology for young, healthy adults. Hum Brain Mapp 38:4201-4211, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Churchill, Nathan; Hutchison, Michael; Richards, Doug; Leung, General; Graham, Simon; Schweizer, Tom A
2017-02-15
There is growing concern about the potential long-term consequences of sport concussion for young, currently active athletes. However, there remains limited information about brain abnormalities associated with a history of concussion and how they relate to clinical factors. In this study, advanced MRI was used to comprehensively describe abnormalities in brain structure and function associated with a history of sport concussion. Forty-three athletes (21 male, 22 female) were recruited from interuniversity teams at the beginning of the season, including 21 with a history of concussion and 22 without prior concussion; both groups also contained a balanced sample of contact and noncontact sports. Multi-modal MRI was used to evaluate abnormalities in brain structure and function. Athletes with a history of concussion showed frontal decreases in brain volume and blood flow. However, they also demonstrated increased posterior cortical volume and elevated markers of white matter microstructure. A greater number of prior concussions was associated with more extensive decreases in cerebral blood flow and insular volume, whereas recovery time from most recent concussion was correlated with reduced frontotemporal volume. White matter showed limited correlations with clinical factors, predominantly in the anterior corona radiata. This study provides the first evidence of the long-term effects of concussion on gray matter volume, blood flow, and white matter microstructure within a single athlete cohort. This was examined for a mixture of male and female athletes in both contact and noncontact sports, demonstrating the relevance of these findings for the overall sporting community.
Li, Qi; Shi, Lin; Lu, Gang; Yu, Hong-Luan; Yeung, Fu-Ki; Wong, Nai-Kei; Sun, Lin; Liu, Kai; Yew, David; Pan, Fang; Wang, De-Feng; Sham, Pak C
2017-01-01
Acute and repeated exposures to ketamine mimic aspects of positive, negative, and cognitive symptoms of schizophrenia in humans. Recent studies by our group and others have shown that chronicity of ketamine use may be a key element for establishing a more valid model of cognitive symptoms of schizophrenia. However, current understanding on the long-term consequences of ketamine exposure on brain circuits has remained incomplete, particularly with regard to microstructural changes of white matter tracts that underpin the neuropathology of schizophrenia. Thus, the present study aimed to expand on previous investigations by examining causal effects of repeated ketamine exposure on white matter integrity in a non-human primate model. Ketamine or saline (control) was administered intravenously for 3 months to male adolescent cynomolgus monkeys ( n = 5/group). Diffusion tensor imaging (DTI) experiments were performed and tract-based spatial statistics (TBSS) was used for data analysis. Fractional anisotropy (FA) was quantified across the whole brain. Profoundly reduced FA on the right side of sagittal striatum, posterior thalamic radiation (PTR), retrolenticular limb of the internal capsule (RLIC) and superior longitudinal fasciculus (SLF), and on the left side of PTR, middle temporal gyrus and inferior frontal gyrus were observed in the ketamine group compared to controls. Diminished white matter integrity found in either fronto-thalamo-temporal or striato-thalamic connections with tracts including the SLF, PTR, and RLIC lends support to similar findings from DTI studies on schizophrenia in humans. This study suggests that chronic ketamine exposure is a useful pharmacological paradigm that might provide translational insights into the pathophysiology and treatment of schizophrenia.
ERIC Educational Resources Information Center
Hogg, Linda; Yates, Anne
2013-01-01
This formative evaluation within a graduate initial teacher education program sought to identify student teachers' perceptions of lecturer practice and its influence on their developing practice. Data collected from course and teaching evaluations and focus group interviews suggested that microstructural course elements--lectures, tutorials, and…
ERIC Educational Resources Information Center
Lawrence, Katherine E.; Levitt, Jennifer G.; Loo, Sandra K.; Ly, Ronald; Yee, Victor; O'Neill, Joseph; Alger, Jeffry; Narr, Katherine L.
2013-01-01
Objective: Previous voxel-based and regions-of-interest (ROI)-based diffusion tensor imaging (DTI) studies have found above-normal mean diffusivity (MD) and below-normal fractional anisotropy (FA) in subjects with attention-deficit/hyperactivity disorder (ADHD). However, findings remain mixed, and few studies have examined the contribution of ADHD…
Diffusion tensor imaging in preterm infants with punctate white matter lesions.
Bassi, Laura; Chew, Andrew; Merchant, Nazakat; Ball, Gareth; Ramenghi, Luca; Boardman, James; Allsop, Joanna M; Doria, Valentina; Arichi, Tomoki; Mosca, Fabio; Edwards, A David; Cowan, Frances M; Rutherford, Mary A; Counsell, Serena J
2011-06-01
Our aim was to compare white matter (WM) microstructure in preterm infants with and without punctate WM lesions on MRI using tract-based spatial statistics (TBSS) and probabilistic tractography. We studied 23 preterm infants with punctate lesions, median GA at birth 30 (25-35) wk, and 23 GA- and sex-matched preterm controls. TBSS and tractography were performed to assess differences in fractional anisotropy (FA) between the two groups at term equivalent age. The impact of lesion load was assessed by performing linear regression analysis of the number of lesions on term MRI versus FA in the corticospinal tracts in the punctate lesions group. FA values were significantly lower in the posterior limb of the internal capsule, cerebral peduncles, decussation of the superior cerebellar peduncles, superior cerebellar peduncles, and pontine crossing tract in the punctate lesions group. There was a significant negative correlation between lesion load at term and FA in the corticospinal tracts (p = 0.03, adjusted r² = 0.467). In conclusion, punctate lesions are associated with altered microstructure in the WM fibers of the corticospinal tract at term equivalent age.
Relationships between cortical myeloarchitecture and electrophysiological networks
Hunt, Benjamin A. E.; Tewarie, Prejaas K.; Mougin, Olivier E.; Geades, Nicolas; Singh, Krish D.; Morris, Peter G.; Gowland, Penny A.; Brookes, Matthew J.
2016-01-01
The human brain relies upon the dynamic formation and dissolution of a hierarchy of functional networks to support ongoing cognition. However, how functional connectivities underlying such networks are supported by cortical microstructure remains poorly understood. Recent animal work has demonstrated that electrical activity promotes myelination. Inspired by this, we test a hypothesis that gray-matter myelin is related to electrophysiological connectivity. Using ultra-high field MRI and the principle of structural covariance, we derive a structural network showing how myelin density differs across cortical regions and how separate regions can exhibit similar myeloarchitecture. Building upon recent evidence that neural oscillations mediate connectivity, we use magnetoencephalography to elucidate networks that represent the major electrophysiological pathways of communication in the brain. Finally, we show that a significant relationship exists between our functional and structural networks; this relationship differs as a function of neural oscillatory frequency and becomes stronger when integrating oscillations over frequency bands. Our study sheds light on the way in which cortical microstructure supports functional networks. Further, it paves the way for future investigations of the gray-matter structure/function relationship and its breakdown in pathology. PMID:27830650
Tractography optimization using quantitative T1 mapping in the human optic radiation.
Schurr, Roey; Duan, Yiran; Norcia, Anthony M; Ogawa, Shumpei; Yeatman, Jason D; Mezer, Aviv A
2018-06-21
Diffusion MRI tractography is essential for reconstructing white-matter projections in the living human brain. Yet tractography results miss some projections and falsely identify others. A challenging example is the optic radiation (OR) that connects the thalamus and the primary visual cortex. Here, we tested whether OR tractography can be optimized using quantitative T1 mapping. Based on histology, we proposed that myelin-sensitive T1 values along the OR should remain consistently low compared with adjacent white matter. We found that complementary information from the T1 map allows for increasing the specificity of the reconstructed OR tract by eliminating falsely identified projections. This T1-filtering outperforms other, diffusion-based tractography filters. These results provide evidence that the smooth microstructural signature along the tract can be used as constructive input for tractography. Finally, we demonstrate that this approach can be generalized to the HCP-available MRI measurements. We conclude that multimodal MRI microstructural information can be used to eliminate spurious tractography results in the case of the OR. Copyright © 2018. Published by Elsevier Inc.
Nicolas, Renaud; Sibon, Igor; Hiba, Bassem
2015-01-01
The diffusion-weighted-dependent attenuation of the MRI signal E(b) is extremely sensitive to microstructural features. The aim of this study was to determine which mathematical model of the E(b) signal most accurately describes it in the brain. The models compared were the monoexponential model, the stretched exponential model, the truncated cumulant expansion (TCE) model, the biexponential model, and the triexponential model. Acquisition was performed with nine b-values up to 2500 s/mm(2) in 12 healthy volunteers. The goodness-of-fit was studied with F-tests and with the Akaike information criterion. Tissue contrasts were differentiated with a multiple comparison corrected nonparametric analysis of variance. F-test showed that the TCE model was better than the biexponential model in gray and white matter. Corrected Akaike information criterion showed that the TCE model has the best accuracy and produced the most reliable contrasts in white matter among all models studied. In conclusion, the TCE model was found to be the best model to infer the microstructural properties of brain tissue.
van Ewijk, Hanneke; Noordermeer, Siri D S; Heslenfeld, Dirk J; Luman, Marjolein; Hartman, Catharina A; Hoekstra, Pieter J; Faraone, Stephen V; Franke, Barbara; Buitelaar, Jan K; Oosterlaan, J
2016-07-01
Attention-deficit/hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) are highly comorbid disorders. ADHD has been associated with altered white matter (WM) microstructure, though the literature is inconsistent, which may be due to differences in the in- or exclusion of participants with comorbid ODD. WM abnormalities in ODD are still poorly understood, and it is unclear whether comorbid ODD in ADHD may have confounded the current ADHD literature. Diffusion Tensor Imaging (DTI) was used to compare fractional anisotropy (FA) and mean diffusivity (MD) between ADHD patients with (n = 42) and without (n = 117) comorbid ODD. All participants were between 8-25 years and groups did not differ in mean age or gender. Follow-up analyses were conducted to examine the role of antisocial behaviour (conduct problems) on FA and MD values in both groups. Comorbid ODD in ADHD was associated with lower FA in left frontotemporal WM, which appeared independent of ADHD symptoms. FA was negatively associated with antisocial behaviour in ADHD + ODD, but not in ADHD-only. Comorbid ODD is associated with WM abnormalities in individuals with ADHD, which appears to be independent of ADHD symptoms. Altered WM microstructure in comorbid ODD may play a role in inconsistencies in the current DTI literature in ADHD. Altered development of these tracts may contribute to social-emotional and cognitive problems in children with oppositional and antisocial behaviour.
Effects of insulin resistance on white matter microstructure in middle-aged and older adults
Coutu, Jean-Philippe; Rosas, H. Diana; Salat, David H.
2014-01-01
Objective: To investigate the potential relationship between insulin resistance (IR) and white matter (WM) microstructure using diffusion tensor imaging in cognitively healthy middle-aged and older adults. Methods: Diffusion tensor imaging was acquired from 127 individuals (age range 41–86 years). IR was evaluated by the homeostasis model assessment of IR (HOMA-IR). Participants were divided into 2 groups based on HOMA-IR values: “high HOMA-IR” (≥2.5, n = 27) and “low HOMA-IR” (<2.5, n = 100). Cross-sectional voxel-based comparisons were performed using Tract-Based Spatial Statistics and anatomically defined regions of interest analysis. Results: The high HOMA-IR group demonstrated decreased axial diffusivity broadly throughout the cerebral WM in areas such as the corpus callosum, corona radiata, cerebral peduncle, posterior thalamic radiation, and right superior longitudinal fasciculus, and WM underlying the frontal, parietal, and temporal lobes, as well as decreased fractional anisotropy in the body and genu of corpus callosum and parts of the superior and anterior corona radiata, compared with the low HOMA-IR group, independent of age, WM signal abnormality volume, and antihypertensive medication status. These regions additionally demonstrated linear associations between diffusion measures and HOMA-IR across all subjects, with higher HOMA-IR values being correlated with lower axial diffusivity. Conclusions: In generally healthy adults, greater IR is associated with alterations in WM tissue integrity. These cross-sectional findings suggest that IR contributes to WM microstructural alterations in middle-aged and older adults. PMID:24771537
A Whole-Brain Investigation of White Matter Microstructure in Adolescents with Conduct Disorder.
Sarkar, Sagari; Dell'Acqua, Flavio; Froudist Walsh, Seán; Blackwood, Nigel; Scott, Stephen; Craig, Michael C; Deeley, Quinton; Murphy, Declan G M
2016-01-01
The biological basis of severe antisocial behaviour in adolescents is poorly understood. We recently reported that adolescents with conduct disorder (CD) have significantly increased fractional anisotropy (FA) of the uncinate fasciculus (a white matter (WM) tract that connects the amygdala to the frontal lobe) compared to their non-CD peers. However, the extent of WM abnormality in other brain regions is currently unclear. We used tract-based spatial statistics to investigate whole brain WM microstructural organisation in 27 adolescent males with CD, and 21 non-CD controls. We also examined relationships between FA and behavioural measures. Groups did not differ significantly in age, ethnicity, or substance use history. The CD group, compared to controls, had clusters of significantly greater FA in 7 brain regions corresponding to: 1) the bilateral inferior and superior cerebellar peduncles, corticopontocerebellar tract, posterior limb of internal capsule, and corticospinal tract; 2) right superior longitudinal fasciculus; and 3) left cerebellar WM. Severity of antisocial behavior and callous-unemotional symptoms were significantly correlated with FA in several of these regions across the total sample, but not in the CD or control groups alone. Adolescents with CD have significantly greater FA than controls in WM regions corresponding predominantly to the fronto-cerebellar circuit. There is preliminary evidence that variation in WM microstructure may be dimensionally related to behaviour problems in youngsters. These findings are consistent with the hypothesis that antisocial behaviour in some young people is associated with abnormalities in WM 'connectivity'.
Vogel, Katja; Timmers, Inge; Kumar, Vinod; Nickl-Jockschat, Thomas; Bastiani, Matteo; Roebroek, Alard; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Goebel, Rainer; Seitz, Jochen
2016-01-01
Anorexia nervosa (AN) often begins in adolescence, however, the understanding of the underlying pathophysiology at this developmentally important age is scarce, impeding early interventions. We used diffusion tensor imaging (DTI) to investigate microstructural white matter (WM) brain changes including an experimental longitudinal follow-up. We acquired whole brain diffusion-weighted brain scans of 22 adolescent female hospitalized patients with AN at admission and nine patients longitudinally at discharge after weight rehabilitation. Patients (10-18 years) were compared to 21 typically developing controls (TD). Tract-based spatial statistics (TBSS) were applied to compare fractional anisotropy (FA) across groups and time points. Associations between average FA values of the global WM skeleton and weight as well as illness duration parameters were analyzed by multiple linear regression. We observed increased FA in bilateral frontal, parietal and temporal areas in AN patients at admission compared to TD. Higher FA of the global WM skeleton at admission was associated with faster weight loss prior to admission. Exploratory longitudinal analysis showed this FA increase to be partially normalized after weight rehabilitation. Our findings reveal a markedly different pattern of WM microstructural changes in adolescent AN compared to most previous results in adult AN. This could signify a different susceptibility and reaction to semi-starvation in the still developing brain of adolescents or a time-dependent pathomechanism differing with extend of chronicity. Higher FA at admission in adolescents with AN could point to WM fibers being packed together more closely.
Wu, Mon-Ju; Mwangi, Benson; Bauer, Isabelle E; Passos, Ives C; Sanches, Marsal; Zunta-Soares, Giovana B; Meyer, Thomas D; Hasan, Khader M; Soares, Jair C
2017-01-15
Diagnosis, clinical management and research of psychiatric disorders remain subjective - largely guided by historically developed categories which may not effectively capture underlying pathophysiological mechanisms of dysfunction. Here, we report a novel approach of identifying and validating distinct and biologically meaningful clinical phenotypes of bipolar disorders using both unsupervised and supervised machine learning techniques. First, neurocognitive data were analyzed using an unsupervised machine learning approach and two distinct clinical phenotypes identified namely; phenotype I and phenotype II. Second, diffusion weighted imaging scans were pre-processed using the tract-based spatial statistics (TBSS) method and 'skeletonized' white matter fractional anisotropy (FA) and mean diffusivity (MD) maps extracted. The 'skeletonized' white matter FA and MD maps were entered into the Elastic Net machine learning algorithm to distinguish individual subjects' phenotypic labels (e.g. phenotype I vs. phenotype II). This calculation was performed to ascertain whether the identified clinical phenotypes were biologically distinct. Original neurocognitive measurements distinguished individual subjects' phenotypic labels with 94% accuracy (sensitivity=92%, specificity=97%). TBSS derived FA and MD measurements predicted individual subjects' phenotypic labels with 76% and 65% accuracy respectively. In addition, individual subjects belonging to phenotypes I and II were distinguished from healthy controls with 57% and 92% accuracy respectively. Neurocognitive task variables identified as most relevant in distinguishing phenotypic labels included; Affective Go/No-Go (AGN), Cambridge Gambling Task (CGT) coupled with inferior fronto-occipital fasciculus and callosal white matter pathways. These results suggest that there may exist two biologically distinct clinical phenotypes in bipolar disorders which can be identified from healthy controls with high accuracy and at an individual subject level. We suggest a strong clinical utility of the proposed approach in defining and validating biologically meaningful and less heterogeneous clinical sub-phenotypes of major psychiatric disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Neuropsychiatry and White Matter Microstructure in Huntington's Disease.
Gregory, Sarah; Scahill, Rachael I; Seunarine, Kiran K; Stopford, Cheryl; Zhang, Hui; Zhang, Jiaying; Orth, Michael; Durr, Alexandra; Roos, Raymund A C; Langbehn, Douglas R; Long, Jeffrey D; Johnson, Hans; Rees, Geraint; Tabrizi, Sarah J; Craufurd, David
2015-01-01
Neuropsychiatric symptoms in Huntington's disease (HD) are often evident prior to clinical diagnosis. Apathy is highly correlated with disease progression, while depression and irritability occur at different stages of the disease, both before and after clinical onset. Little is understood about the neural bases of these neuropsychiatric symptoms and to what extent those neural bases are analogous to neuropsychiatric disorders in the general population. We used Diffusion Tensor Imaging (DTI) to investigate structural connectivity between brain regions and any putative microstructural changes associated with depression, apathy and irritability in HD. DTI data were collected from 39 premanifest and 45 early-HD participants in the Track-HD study and analysed using whole-brain Tract-Based Spatial Statistics. We used regression analyses to identify white matter tracts whose structural integrity (as measured by fractional anisotropy, FA) was correlated with HADS-depression, PBA-apathy or PBA-irritability scores in gene-carriers and related to cumulative probability to onset (CPO). For those with the highest CPO, we found significant correlations between depression scores and reduced FA in the splenium of the corpus callosum. In contrast, those with lowest CPO demonstrated significant correlations between irritability scores and widespread FA reductions. There was no significant relationship between apathy and FA throughout the whole brain. We demonstrate that white matter changes associated with both depression and irritability in HD occur at different stages of disease progression concomitant with their clinical presentation.
Owens, Jacqueline A; Spitz, Gershon; Ponsford, Jennie L; Dymowski, Alicia R; Ferris, Nicholas; Willmott, Catherine
2017-02-01
The medial forebrain bundle (MFB) contains ascending catecholamine fibers that project to the prefrontal cortex (PFC). Damage to these fibers following traumatic brain injury (TBI) may alter extracellular catecholamine levels in the PFC and impede attention and working memory ability. This study investigated white matter microstructure of the medial MFB, specifically the supero-lateral branch (slMFB), following TBI, and its association with performance on attention and working memory tasks. Neuropsychological measures of attention and working memory were administered to 20 moderate-severe participants with TBI (posttraumatic amnesia M = 40.05 ± 37.10 days, median time since injury 10.48 months, range 3.72-87.49) and 20 healthy controls. Probabilistic tractography was used to obtain fractional anisotropy (FA) and mean diffusivity (MD) values for 17 participants with TBI and 20 healthy controls. When compared to controls, participants with TBI were found to have significantly lower FA ( p < .001) and higher MD ( p < .001) slMFB values, and they were slower to complete tasks including Trail Making Task-A, Hayling, selective attention task, n -back, and Symbol Digit Modalities Test. This study was the first to demonstrate microstructural white matter damage within the slMFB following TBI. However, no evidence was found for an association of alterations to this tract and performance on attentional tasks.
Saar-Ashkenazy, Rotem; Veksler, Ronel; Guez, Jonathan; Jacob, Yael; Shelef, Ilan; Shalev, Hadar; Friedman, Alon; Cohen, Jonathan E.
2016-01-01
Altered brain anatomy in specific gray-matter regions has been shown in patients with posttraumatic stress disorder (PTSD). Recently, white-matter tracts have become a focus of research in PTSD. The corpus callosum (CC) is the principal white-matter fiber bundle, crucial in relaying sensory, motor and cognitive information between hemispheres. Alterations in CC fibers have been reported in PTSD and might be assumed to underlie substantial behavioral and cognitive sequelae; however most diffusion tensor imaging (DTI) studies in adult-onset PTSD failed to address the clinical correlates between imaging and PTSD symptoms severity, behavioral manifestation and cognitive functions. In the current study we examined (a) to what extent microstructural integrity of the CC is associated with memory performance and (b) whether imaging and cognitive parameters are associated with PTSD symptom severity. DTI data were obtained and fractional anisotropy (FA) values were computed for 16 patients and 14 controls. PTSD symptom severity was assessed by employing the clinician administered PTSD scale (CAPS) and memory was tested using a task probing item and associative memory for words and pictures. Significant correlations were found between PTSD symptoms severity, memory accuracy and reaction-time to CC FA values in the PTSD group. This study demonstrates meaningful clinical and cognitive correlates of microstructural connectivity. These results have implications for diagnostic tools and future studies aimed at identifying individuals at risk for PTSD. PMID:26863536
Eylers, V V; Maudsley, A A; Bronzlik, P; Dellani, P R; Lanfermann, H; Ding, X-Q
2016-03-01
Knowledge of age-related physiological changes in the human brain is a prerequisite to identify neurodegenerative diseases. Therefore, in this study whole-brain (1)H-MRS was used in combination with quantitative MR imaging to study the effects of normal aging on healthy human brain metabolites and microstructure. Sixty healthy volunteers, 21-70 years of age, were studied. Brain maps of the metabolites NAA, creatine and phosphocreatine, and Cho and the tissue irreversible and reversible transverse relaxation times T2 and T2' were derived from the datasets. The relative metabolite concentrations and the values of relaxation times were measured with ROIs placed within the frontal and parietal WM, centrum semiovale, splenium of the corpus callosum, hand motor area, occipital GM, putamen, thalamus, pons ventral/dorsal, and cerebellar white matter and posterior lobe. Linear regression analysis and Pearson correlation tests were used to analyze the data. Aging resulted in decreased NAA concentrations in the occipital GM, putamen, splenium of the corpus callosum, and pons ventral and decreased creatine and phosphocreatine concentrations in the pons dorsal and putamen. Cho concentrations did not change significantly in selected brain regions. T2 increased in the cerebellar white matter and decreased in the splenium of the corpus callosum with aging, while the T2' decreased in the occipital GM, hand motor area, and putamen, and increased in the splenium of the corpus callosum. Correlations were found between NAA concentrations and T2' in the occipital GM and putamen and between creatine and phosphocreatine concentrations and T2' in the putamen. The effects of normal aging on brain metabolites and microstructure are region-dependent. Correlations between both processes are evident in the gray matter. The obtained data could be used as references for future studies on patients. © 2016 by American Journal of Neuroradiology.
Wehrman, Matthew D; Milstrey, Melissa J; Lindberg, Seth; Schultz, Kelly M
2018-04-19
The microstructure of soft matter directly impacts macroscopic rheological properties and can be changed by factors including colloidal rearrangement during previous phase changes and applied shear. To determine the extent of these changes, we have developed a microfluidic device that enables repeated phase transitions induced by exchange of the surrounding fluid and microrheological characterization while limiting shear on the sample. This technique is µ 2 rheology, the combination of microfluidics and microrheology. The microfluidic device is a two-layer design with symmetric inlet streams entering a sample chamber that traps the gel sample in place during fluid exchange. Suction can be applied far away from the sample chamber to pull fluids into the sample chamber. Material rheological properties are characterized using multiple particle tracking microrheology (MPT). In MPT, fluorescent probe particles are embedded into the material and the Brownian motion of the probes is recorded using video microscopy. The movement of the particles is tracked and the mean-squared displacement (MSD) is calculated. The MSD is related to macroscopic rheological properties, using the Generalized Stokes-Einstein Relation. The phase of the material is identified by comparison to the critical relaxation exponent, determined using time-cure superposition. Measurements of a fibrous colloidal gel illustrate the utility of the technique. This gel has a delicate structure that can be irreversibly changed when shear is applied. µ 2 rheology data shows that the material repeatedly equilibrates to the same rheological properties after each phase transition, indicating that phase transitions do not play a role in microstructural changes. To determine the role of shear, samples can be sheared prior to injection into our microfluidic device. µ 2 rheology is a widely applicable technique for the characterization of soft matter enabling the determination of rheological properties of delicate microstructures in a single sample during phase transitions in response to repeated changes in the surrounding environmental conditions.
Zhao, Cailei; Li, Yongxin; Cao, Weiguo; Xiang, Kui; Zhang, Heye; Yang, Jian; Gan, Yungen
2016-01-01
Abstract To explore the use of diffusion tensor imaging (DTI) parameters in the quantitative assessment of early brain microstructure changes before and after ventriculoperitoneal shunt in children with high intracranial pressure hydrocephalus. Ten patients with communicating hydrocephalus (age: 2–36 months) and 14 age-/gender-matched controls (age: 2–36 months) were enrolled in this study. All patients underwent the ventriculoperitoneal shunt procedure. The imaging data were collected before and 3 months after the operation. Regions of interests (ROIs) included the white matter near the frontal horn of the lateral ventricles (FHLV), the occipital horn of the lateral ventricles (OHLV), occipital subcortical (OS) area, frontal subcortical (FS) area, and thalamus. Fractional anisotropies (FA) and apparent diffusion coefficients (ADC) of the ROIs before and after ventriculoperitoneal shunt were compared between the patients and the controls. Three months after surgery, the patients recovered from the surgery with ameliorated intracranial pressure and slight improvement of clinical intelligence scale and motor scale. Before ventriculoperitoneal shunt, the FA values (except the right FHLV) were significantly decreased and the ADC values were significantly increased in the patients with hydrocephalus, compared with the controls. After the ventriculoperitoneal shunt, the FA values in the FHLV and OHLV of the patients were similar to the controls, but the FA values in other ROIs were still significantly lower than controls. The ADC values in the FS and OS white matter areas of the patients were similar to the controls; however, the ADC values in other ROIs were still significantly higher in patients. The increase of FA and the reduction in ADC in the ROIs preceded the clinical function improvement in patients with high intracranial pressure hydrocephalus and reflected the early changes in brain tissue microstructure, such as the compression of the white matter areas in the ROIs. PMID:27759635
Sanz-Cortes, Magdalena; Egaña-Ugrinovic, Gabriela; Simoes, Rui V; Vazquez, Lucia; Bargallo, Nuria; Gratacos, Eduard
2015-06-01
We sought to determine the relationship between fetal brain metabolism and microstructure expressed by brain sulcation, and corpus callosum (CC) development assessed by fetal brain magnetic resonance (MR) imaging and proton MR spectroscopy ((1)H-MRS). A total of 119 fetuses, 64 that were small for gestational age (estimated fetal weight <10th centile and normal umbilical artery Doppler) and 55 controls underwent a 3T MR imaging/(1)H-MRS exam at 37 weeks. Anatomical T2-weighted images were obtained in the 3 orthogonal planes and long echo time (TE) (1)H-MRS acquired from the frontal lobe. Head biometrics, cortical fissure depths (insula, Sylvian, parietooccipital, cingulate, and calcarine), and CC area and biometries were blindly performed by manual and semiautomated delineation using Analyze software and corrected creating ratios for biparietal diameter and frontooccipital diameter, respectively, for group comparison. Spectroscopic data were processed using LCModel software and analyzed as metabolic ratios of N-acetylaspartate (NAA) to choline (Cho), Cho to creatine (Cr), and myo-inositol (Ino) to Cho. Differences between cases and controls were assessed. To test for the association between metabolic ratios and microstructural parameters, bivariate correlation analyses were performed. Spectroscopic findings showed decreased NAA/Cho and increased Cho/Cr ratios in small fetuses. They also presented smaller head biometrics, shorter and smaller CC, and greater insular and cingulate depths. Frontal lobe NAA/Cho significantly correlated with biparietal diameter (r = 0.268; P = .021), head circumference (r = 0.259; P = .026), CC length (r = 0.265; P = .026), CC area (r = 0.317; P = .007), and the area of 6 from the 7 CC subdivisions. It did not correlate with any of the cortical sulcation parameters evaluated. None of the other metabolic ratios presented significant correlations with cortical development or CC parameters. Frontal lobe NAA/Cho levels-which are considered a surrogate marker of neuronal activity-show a strong association with CC development. These results suggest that both metabolic and callosal alterations may be part of the same process of impaired brain development associated with intrauterine growth restriction. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Jie; Chen, Chen; Liang, Yan; Wang, Jian
2010-03-01
Haliotis discus hannai Ino (abalone shell) and Hemifusus tuba conch shell have been studied for the purpose to comparatively investigate the mechanisms by which nature designs composites. It is shown that both shells are composed of aragonite and a small amount of proteins while the conch shell shows finer microstructure but lower strength than abalone shell. It is also shown that the fresh shells exhibits better property than those after heat-treatments. It is therefore supposed that the size of inorganic substance is not a dominant factor to improve strength, while both proteins in shells and the microstructure of inorganic matter also play important roles.
Belke, Marcus; Heverhagen, Johannes T; Keil, Boris; Rosenow, Felix; Oertel, Wolfgang H; Stiasny-Kolster, Karin; Knake, Susanne; Menzler, Katja
2015-01-01
Background and Purpose We evaluated cerebral white and gray matter changes in patients with iRLS in order to shed light on the pathophysiology of this disease. Methods Twelve patients with iRLS were compared to 12 age- and sex-matched controls using whole-head diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) techniques. Evaluation of the DTI scans included the voxelwise analysis of the fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Results Diffusion tensor imaging revealed areas of altered FA in subcortical white matter bilaterally, mainly in temporal regions as well as in the right internal capsule, the pons, and the right cerebellum. These changes overlapped with changes in RD. Voxel-based morphometry did not reveal any gray matter alterations. Conclusions We showed altered diffusion properties in several white matter regions in patients with iRLS. White matter changes could mainly be attributed to changes in RD, a parameter thought to reflect altered myelination. Areas with altered white matter microstructure included areas in the internal capsule which include the corticospinal tract to the lower limbs, thereby supporting studies that suggest changes in sensorimotor pathways associated with RLS. PMID:26442748
Altering cortical connectivity: Remediation-induced changes in the white matter of poor readers
Keller, Timothy A.; Just, Marcel Adam
2009-01-01
SUMMARY Neuroimaging studies using diffusion tensor imaging (DTI) have revealed regions of cerebral white matter with decreased microstructural organization (lower fractional anisotropy or FA) among poor readers. We examined whether 100 hours of intensive remedial instruction affected the white matter of 8–10-year-old poor readers. Prior to instruction, poor readers had significantly lower FA than good readers in a region of the left anterior centrum semiovale. The instruction resulted in a change in white matter (significantly increased FA), and in the very same region. The FA increase was correlated with a decrease in radial diffusivity (but not with a change in axial diffusivity), suggesting that myelination had increased. Furthermore, the FA increase was correlated with improvement in phonological decoding ability, clarifying the cognitive locus of the effect. The results demonstrate for the first time the capability of a behavioral intervention to bring about a positive change in cortico-cortical white matter tracts. PMID:20005820
Surface microstructure and chemistry of polyimide by single pulse ablation of picosecond laser
NASA Astrophysics Data System (ADS)
Du, Qifeng; Chen, Ting; Liu, Jianguo; Zeng, Xiaoyan
2018-03-01
Polyimide (PI) surface was ablated by the single pulse of picosecond laser, and the effects of laser wavelength (λ= 355 nm and 1064 nm) and fluence on surface microstructure and chemistry were explored. Scanning electron microscopy (SEM) analysis found that different surface microstructures, i.e., the concave of concentric ring and the convex of porous circular disk, were generated by 355 nm and 1064 nm picosecond laser ablation, respectively. X-ray photoelectron spectroscopy (XPS) characterization indicated that due to the high peak energy density of picosecond laser, oxygen and nitrogen from the ambient were incorporated into the PI surface mainly in the form of Cdbnd O and Csbnd Nsbnd C groups. Thus, both of the O/C and N/C atomic content ratios increased, but the increase caused by 1064 nm wavelength laser was larger. It inferred that the differences of PI surface microstructures and chemistry resulted from different laser parameters were related to different laser-matter interaction effects. For 355 nm picosecond laser, no obvious thermal features were observed and the probable ablation process of PI was mainly governed by photochemical effect; while for 1064 nm picosecond laser, obvious thermal feature appeared and photothermal effect was thought to be dominant.
A Choice Reaction Time Index of Callosal Anatomical Homotopy
ERIC Educational Resources Information Center
Desjardins, Sameul; Braun, Claude M. J.; Achim, Andre; Roberge, Carl
2009-01-01
Tachistoscopically presented bilateral stimulus pairs not parallel to the meridian produced significantly longer RTs on a task requiring discrimination of shapes (Go/no-Go) than pairs emplaced symmetrically on each side of the meridian in Desjardins and Braun [Desjardins, S., & Braun, C. M. J. (2006). Homotopy and heterotopy and the bilateral…
Paralinguistic Processing in Children with Callosal Agenesis: Emergence of Neurolinguistic Deficits
ERIC Educational Resources Information Center
Brown, W.S.; Symingtion, M.; VanLancker-Sidtis, D.; Dietrich, R.; Paul, L.K.
2005-01-01
Recent research revealed impaired processing of both nonliteral meaning and affective prosody in adults with agenesis of the corpus callosum (ACC) and normal intelligence. Since normal children have incomplete myelination of the corpus callosum, it was hypothesized that paralanguage deficits in children with ACC would be less apparent relative to…
Costello, L. R.; Bassham, James A.; Calvin, Melvin
1982-01-01
Ethylenediaminetetraacetic acid (EDTA) enhanced the exudation of 14C-labeled assimilates from excised leaflets and whole plant specimens of Fraxinus uhdei Wenz. A 2 millimolar EDTA concentration was found to be most effective in promoting exudation from excised leaflets, while 10 millimolar EDTA was most effective in whole plants experiments. Exudation rate reached a maximum after 24 hours in both experiments. The continuous presence of EDTA throughout the treatment period was required for maximum exudation from excised leaflets. Stachyose, raffinose, verbascose, and sucrose were the principal compounds found to occur in exudate samples. These compounds are typically transported in sieve elements of various Fraxinus species suggesting the exudate was of phloem origin. Electron microscope studies of petiolule sieve plate pores from excised leaflets showed substantially less callose appearing after treatment with EDTA than after H2O treatment. It is suggested that EDTA enhances phloem exudation by inhibiting or reducing callose formation in sieve plate pores. The exudation enhancement technique described for whole plant specimens is suggested as a useful means of collecting phloem sap and studying translocation in woody plants. Images PMID:16662189
Srinivasan, Karpagam; Leone, Dino P; Bateson, Rosalie K; Dobreva, Gergana; Kohwi, Yoshinori; Kohwi-Shigematsu, Terumi; Grosschedl, Rudolf; McConnell, Susan K
2012-11-20
Neurons within each layer in the mammalian cortex have stereotypic projections. Four genes-Fezf2, Ctip2, Tbr1, and Satb2-regulate these projection identities. These genes also interact with each other, and it is unclear how these interactions shape the final projection identity. Here we show, by generating double mutants of Fezf2, Ctip2, and Satb2, that cortical neurons deploy a complex genetic switch that uses mutual repression to produce subcortical or callosal projections. We discovered that Tbr1, EphA4, and Unc5H3 are critical downstream targets of Satb2 in callosal fate specification. This represents a unique role for Tbr1, implicated previously in specifying corticothalamic projections. We further show that Tbr1 expression is dually regulated by Satb2 and Ctip2 in layers 2-5. Finally, we show that Satb2 and Fezf2 regulate two disease-related genes, Auts2 (Autistic Susceptibility Gene2) and Bhlhb5 (mutated in Hereditary Spastic Paraplegia), providing a molecular handle to investigate circuit disorders in neurodevelopmental diseases.
Kinno, Ryuta; Ohashi, Hideaki; Mori, Yukiko; Shiromaru, Azusa; Ono, Kenjiro
2018-03-01
A 28-year-old right-handed man noticed weakness in his legs, three days after an ephedrine overdose. Initial brain magnetic resonance imaging showed lesions in the parietal regions bilaterally. Computed tomography angiography showed segmental and multifocal vasoconstriction of the cerebral arteries. After treatment, clinical and radiological findings resolved, suggesting the patient had reversible cerebral vasoconstriction syndrome with posterior reversible encephalopathy syndrome. However, he had residual agraphia of the left hand. Language testing revealed no difficulties in oral expression, auditory comprehension, understanding of written language, or writing with the right hand. I-123 iodoamphetamine single-photon emission computed tomography showed residual dysfunction in the left superior parietal lobule. There were no apparent signs of other disconnection syndromes or neuroimaging abnormalities in the corpus callosum. We diagnosed left-hand agraphia due to left parietal dysfunction. Our case suggests that left superior parietal dysfunction without callosal lesions is a possible cause of left-hand agraphia. Neural mechanisms for writing with the right or left hand may be separable at the cortical level.
Mid-callosal plane determination using preferred directions from diffusion tensor images
NASA Astrophysics Data System (ADS)
Costa, André L.; Rittner, Letícia; Lotufo, Roberto A.; Appenzeller, Simone
2015-03-01
The corpus callosum is the major brain structure responsible for inter{hemispheric communication between neurons. Many studies seek to relate corpus callosum attributes to patient characteristics, cerebral diseases and psychological disorders. Most of those studies rely on 2D analysis of the corpus callosum in the mid-sagittal plane. However, it is common to find conflicting results among studies, once many ignore methodological issues and define the mid-sagittal plane based on precary or invalid criteria with respect to the corpus callosum. In this work we propose a novel method to determine the mid-callosal plane using the corpus callosum internal preferred diffusion directions obtained from diffusion tensor images. This plane is analogous to the mid-sagittal plane, but intended to serve exclusively as the corpus callosum reference. Our method elucidates the great potential the directional information of the corpus callosum fibers have to indicate its own referential. Results from experiments with five image pairs from distinct subjects, obtained under the same conditions, demonstrate the method effectiveness to find the corpus callosum symmetric axis relative to the axial plane.
Dhont, J K; Wagner, N J
2001-02-01
The interpretation of superposition rheology data is still a matter of debate due to lack of understanding of viscoelastic superposition response on a microscopic level. So far, only phenomenological approaches have been described, which do not capture the shear induced microstructural deformation, which is responsible for the viscoelastic behavior to the superimposed flow. Experimentally there are indications that there is a fundamental difference between the viscoelastic response to an orthogonally and a parallel superimposed shear flow. We present theoretical predictions, based on microscopic considerations, for both orthogonal and parallel viscoelastic response functions for a colloidal system of attractive particles near their gas-liquid critical point. These predictions extend to values of the stationary shear rate where the system is nonlinearly perturbed, and are based on considerations on the colloidal particle level. The difference in response to orthogonal and parallel superimposed shear flow can be understood entirely in terms of microstructural distortion, where the anisotropy of the microstructure under shear flow conditions is essential. In accordance with experimental observations we find pronounced negative values for response functions in case of parallel superposition for an intermediate range of frequencies, provided that microstructure is nonlinearly perturbed by the stationary shear component. For the critical colloidal systems considered here, the Kramers-Kronig relations for the superimposed response functions are found to be valid. It is argued, however, that the Kramers-Kronig relations may be violated for systems where the stationary shear flow induces a considerable amount of new microstructure.
ERIC Educational Resources Information Center
Counsell, Serena J.; Edwards, A. David; Chew, Andrew T. M.; Anjari, Mustafa; Dyet, Leigh E.; Srinivasan, Latha; Boardman, James P.; Allsop, Joanna M.; Hajnal, Joseph V.; Rutherford, Mary A.; Cowan, Frances M.
2008-01-01
Survivors of preterm birth have a high incidence of neurodevelopmental impairment which is not explained by currently understood brain abnormalities. The aim of this study was to test the hypothesis that the neurodevelopmental abilities of 2-year-old children who were born preterm and who had no evidence of focal abnormality on conventional MR…
Sotiriou, P.; Giannoutsou, E.; Panteris, E.; Apostolakos, P.; Galatis, B.
2016-01-01
Background and aims This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Methods Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. Results In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. Conclusions The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: 1067–1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril alignment, spatially controlled cell wall expansion, allowing MCs to acquire their particular shape. PMID:26802013
The Role of Corpus Callosum Development in Functional Connectivity and Cognitive Processing
Findlay, Anne M.; Honma, Susanne; Jeremy, Rita J.; Strominger, Zoe; Bukshpun, Polina; Wakahiro, Mari; Brown, Warren S.; Paul, Lynn K.; Barkovich, A. James; Mukherjee, Pratik; Nagarajan, Srikantan S.; Sherr, Elliott H.
2012-01-01
The corpus callosum is hypothesized to play a fundamental role in integrating information and mediating complex behaviors. Here, we demonstrate that lack of normal callosal development can lead to deficits in functional connectivity that are related to impairments in specific cognitive domains. We examined resting-state functional connectivity in individuals with agenesis of the corpus callosum (AgCC) and matched controls using magnetoencephalographic imaging (MEG-I) of coherence in the alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–55 Hz) bands. Global connectivity (GC) was defined as synchronization between a region and the rest of the brain. In AgCC individuals, alpha band GC was significantly reduced in the dorsolateral pre-frontal (DLPFC), posterior parietal (PPC) and parieto-occipital cortices (PO). No significant differences in GC were seen in either the beta or gamma bands. We also explored the hypothesis that, in AgCC, this regional reduction in functional connectivity is explained primarily by a specific reduction in interhemispheric connectivity. However, our data suggest that reduced connectivity in these regions is driven by faulty coupling in both inter- and intrahemispheric connectivity. We also assessed whether the degree of connectivity correlated with behavioral performance, focusing on cognitive measures known to be impaired in AgCC individuals. Neuropsychological measures of verbal processing speed were significantly correlated with resting-state functional connectivity of the left medial and superior temporal lobe in AgCC participants. Connectivity of DLPFC correlated strongly with performance on the Tower of London in the AgCC cohort. These findings indicate that the abnormal callosal development produces salient but selective (alpha band only) resting-state functional connectivity disruptions that correlate with cognitive impairment. Understanding the relationship between impoverished functional connectivity and cognition is a key step in identifying the neural mechanisms of language and executive dysfunction in common neurodevelopmental and psychiatric disorders where disruptions of callosal development are consistently identified. PMID:22870191
Ahn, Jiyong; Lee, Ho Seong; Seo, Jeong Ho; Kim, Ju Yeong
2016-06-01
The first metatarsal bone can shorten after a distal chevron metatarsal osteotomy (DCMO). This shortening can result in a postoperative second metatarsal transfer lesion. The aim of the present study was to investigate the occurrence of second metatarsal transfer lesions after DCMO. This study involved 185 feet (138 patients), with hallux valgus (HV) deformity, treated with DCMO with Akin osteotomy. The mean patient age was 51.7 years (range, 21 to 74). Patients were followed for an average of 28 months, between June 2004 and June 2010. We measured the length of first metatarsal relative to second metatarsal preoperatively and postoperatively, using Morton's and Hardy-Clapham's methods. A second metatarsal transfer lesion was defined as a newly developed lesion, including metatarsalgia, a painful callosity, or a painless callosity, which was not present prior to the DCMO. The relation of the shortened first metatarsal after DCMO with the occurrence of second metatarsal transfer lesion was evaluated. Second metatarsal transfer lesions (painless callosity) developed in 5 feet (2.7%) of 185 feet. Twenty-four preoperative second metatarsal lesions were improved postoperatively. The median shortening of the first metatarsal bone after DCMO was 0.6 mm according to Morton's method (range, -6.4 to 6.4), and 1.9 according to Hardy-Clapham's method (range, -5.8 to 5.8). According to the extent of first metatarsal shortening after DCMO by Hardy-Clapham's method and Morton's method, there was no significant difference of the occurrence of second transfer metatarsal lesions (P = .259 and P = .176, respectively). In our study, second metatarsal transfer lesions developed in 2.7% of feet after DCMO. The occurrence of second metatarsal transfer lesions did not appear to be correlated with the degree of first metatarsal shortening in cases with less than 5.8 mm shortening. Level IV, retrospective case series. © The Author(s) 2016.
Sugarcane smut: shedding light on the development of the whip-shaped sorus
Marques, João Paulo R.; Appezzato-da-Glória, Beatriz; Piepenbring, Meike; Massola Jr, Nelson S.; Monteiro-Vitorello, Claudia B.
2017-01-01
Background and Aims Sugarcane smut is caused by the fungus Sporisorium scitamineum (Ustilaginales/Ustilaginomycotina/Basidiomycota), which is responsible for losses in sugarcane production worldwide. Infected plants show a profound metabolic modification resulting in the development of a whip-shaped structure (sorus) composed of a mixture of plant tissues and fungal hyphae. Within this structure, ustilospores develop and disseminate the disease. Despite the importance of this disease, a detailed histopathological analysis of the plant–pathogen interaction is lacking. Methods The whip-shaped sorus was investigated using light microscopy, scanning and transmission electron microscopy, histochemical tests and epifluorescence microscopy coupled with deconvolution. Key Results Sorus growth is mediated by intercalary meristem activity at the base of the sorus, where the fungus causes partial host cell wall degradation and formation of intercellular spaces. Sporogenesis in S. scitamineum is thallic, with ustilospore initials in intercalary or terminal positions, and mostly restricted to the base of the sorus. Ustilospore maturation is centrifugal in relation to the ground parenchyma and occurs throughout the sorus median region. At the apex of the sorus, the fungus produces sterile cells and promotes host cell detachment. Hyphae are present throughout the central axis of the sorus (columella). The plant cell produces callose around the intracellular hyphae as well as inside the papillae at the infection site. Conclusions The ontogeny of the whip-shaped sorus suggests that the fungus can cause the acropetal growth in the intercalary meristem. The sporogenesis of S. scitamineum was described in detail, demonstrating that the spores are formed exclusively at the base of the whip. Light was also shed on the nature of the sterile cells. The presence of the fungus alters the host cell wall composition, promotes its degradation and causes the release of some peripheral cells of the sorus. Finally, callose was observed around fungal hyphae in infected cells, suggesting that deposition of callose by the host may act as a structural response to fungal infection. PMID:27568298
Nakanishi, Akiko; Sasaki, Takeshi; Yan, Kuo; Tarabykin, Victor; Vigier, Lisa; Sumiyama, Kenta; Hirakawa, Mika; Nishihara, Hidenori; Pierani, Alessandra; Okada, Norihiro
2011-01-01
Short interspersed repetitive elements (SINEs) are highly repeated sequences that account for a significant proportion of many eukaryotic genomes and are usually considered “junk DNA”. However, we previously discovered that many AmnSINE1 loci are evolutionarily conserved across mammalian genomes, suggesting that they may have acquired significant functions involved in controlling mammalian-specific traits. Notably, we identified the AS021 SINE locus, located 390 kbp upstream of Satb2. Using transgenic mice, we showed that this SINE displays specific enhancer activity in the developing cerebral cortex. The transcription factor Satb2 is expressed by cortical neurons extending axons through the corpus callosum and is a determinant of callosal versus subcortical projection. Mouse mutants reveal a crucial function for Sabt2 in corpus callosum formation. In this study, we compared the enhancer activity of the AS021 locus with Satb2 expression during telencephalic development in the mouse. First, we showed that the AS021 enhancer is specifically activated in early-born Satb2+ neurons. Second, we demonstrated that the activity of the AS021 enhancer recapitulates the expression of Satb2 at later embryonic and postnatal stages in deep-layer but not superficial-layer neurons, suggesting the possibility that the expression of Satb2 in these two subpopulations of cortical neurons is under genetically distinct transcriptional control. Third, we showed that the AS021 enhancer is activated in neurons projecting through the corpus callosum, as described for Satb2+ neurons. Notably, AS021 drives specific expression in axons crossing through the ventral (TAG1−/NPY+) portion of the corpus callosum, confirming that it is active in a subpopulation of callosal neurons. These data suggest that exaptation of the AS021 SINE locus might be involved in enhancement of Satb2 expression, leading to the establishment of interhemispheric communication via the corpus callosum, a eutherian-specific brain structure. PMID:22174821
Jeon, Tina; Mishra, Virendra; Ouyang, Minhui; Chen, Min; Huang, Hao
2015-01-01
Cortical thickness (CT) changes during normal brain development is associated with complicated cellular and molecular processes including synaptic pruning and apoptosis. In parallel, the microstructural enhancement of developmental white matter (WM) axons with their neuronal bodies in the cerebral cortex has been widely reported with measurements of metrics derived from diffusion tensor imaging (DTI), especially fractional anisotropy (FA). We hypothesized that the changes of CT and microstructural enhancement of corresponding axons are highly interacted during development. DTI and T1-weighted images of 50 healthy children and adolescents between the ages of 7 and 25 years were acquired. With the parcellated cortical gyri transformed from T1-weighted images to DTI space as the tractography seeds, probabilistic tracking was performed to delineate the WM fibers traced from specific parcellated cortical regions. CT was measured at certain cortical regions and FA was measured from the WM fibers traced from same cortical regions. The CT of all frontal cortical gyri, including Brodmann areas 4, 6, 8, 9, 10, 11, 44, 45, 46, and 47, decreased significantly and heterogeneously; concurrently, significant, and heterogeneous increases of FA of WM traced from corresponding regions were found. We further revealed significant correlation between the slopes of the CT decrease and the slopes of corresponding WM FA increase in all frontal cortical gyri, suggesting coherent cortical pruning and corresponding WM microstructural enhancement. Such correlation was not found in cortical regions other than frontal cortex. The molecular and cellular mechanisms of these synchronous changes may be associated with overlapping signaling pathways of axonal guidance, synaptic pruning, neuronal apoptosis, and more prevalent interstitial neurons in the prefrontal cortex. Revealing the coherence of cortical and WM structural changes during development may open a new window for understanding the underlying mechanisms of developing brain circuits and structural abnormality associated with mental disorders. PMID:26696839
NASA Astrophysics Data System (ADS)
Dalui, Malay; Kundu, M.; Madhu Trivikram, T.; Ray, Krishanu; Krishnamurthy, M.
2016-10-01
Identification of the basic processes responsible for an efficient heating of intense laser produced plasmas is one of the important features of high intensity laser matter interaction studies. Collisionless absorption due to the anharmonicity in the self-consistent electrostatic potential of the plasma, known as anharmonic resonance (AHR), has been proposed to be a basic mechanism but a clear experimental demonstration is needed. Here, we show that microstructured targets enhance X-ray emission and the polarization dependence ascribes the enhancement to anharmonic resonance heating. It is found that p-polarized pulses of 5 ×1017 W/cm2 intensity bring in a 16-fold enhancement in the X-ray emission in the energy range 20-350 keV compared to s-polarized pulses with microstructured targets. This ratio is 2 for the case of polished targets under otherwise identical conditions. Particle-in-cell simulations clearly show that AHR is the key absorption mechanism responsible for this effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavergne, F.; Sab, K., E-mail: karam.sab@enpc.fr; Sanahuja, J.
2015-05-15
Prestress losses due to creep of concrete is a matter of interest for long-term operations of nuclear power plants containment buildings. Experimental studies by Granger (1995) have shown that concretes with similar formulations have different creep behaviors. The aim of this paper is to numerically investigate the effect of size distribution and shape of elastic inclusions on the long-term creep of concrete. Several microstructures with prescribed size distribution and spherical or polyhedral shape of inclusions are generated. By using the 3D numerical homogenization procedure for viscoelastic microstructures proposed by Šmilauer and Bažant (2010), it is shown that the size distributionmore » and shape of inclusions have no measurable influence on the overall creep behavior. Moreover, a mean-field estimate provides close predictions. An Interfacial Transition Zone was introduced according to the model of Nadeau (2003). It is shown that this feature of concrete's microstructure can explain differences between creep behaviors.« less
White matter biomarkers from diffusion MRI
NASA Astrophysics Data System (ADS)
Nørhøj Jespersen, Sune
2018-06-01
As part of an issue celebrating 2 decades of Joseph Ackerman editing the Journal of Magnetic Resonance, this paper reviews recent progress in one of the many areas in which Ackerman and his lab has made significant contributions: NMR measurement of diffusion in biological media, specifically in brain tissue. NMR diffusion signals display exquisite sensitivity to tissue microstructure, and have the potential to offer quantitative and specific information on the cellular scale orders of magnitude below nominal image resolution when combined with biophysical modeling. Here, I offer a personal perspective on some recent advances in diffusion imaging, from diffusion kurtosis imaging to microstructural modeling, and the connection between the two. A new result on the estimation accuracy of axial and radial kurtosis with axially symmetric DKI is presented. I moreover touch upon recently suggested generalized diffusion sequences, promising to offer independent microstructural information. We discuss the need and some methods for validation, and end with an outlook on some promising future directions.
Evaluation of diffusion kurtosis imaging in ex vivo hypomyelinated mouse brains.
Kelm, Nathaniel D; West, Kathryn L; Carson, Robert P; Gochberg, Daniel F; Ess, Kevin C; Does, Mark D
2016-01-01
Diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and DKI-derived white matter tract integrity metrics (WMTI) were experimentally evaluated ex vivo through comparisons to histological measurements and established magnetic resonance imaging (MRI) measures of myelin in two knockout mouse models with varying degrees of hypomyelination. DKI metrics of mean and radial kurtosis were found to be better indicators of myelin content than conventional DTI metrics. The biophysical WMTI model based on the DKI framework reported on axon water fraction with good accuracy in cases with near normal axon density, but did not provide additional specificity to myelination. Overall, DKI provided additional information regarding white matter microstructure compared with DTI, making it an attractive method for future assessments of white matter development and pathology. Copyright © 2015 Elsevier Inc. All rights reserved.
Hsin, Yue-Loong; Harnod, Tomor; Chang, Cheng-Siu; Peng, Syu-Jyun
2017-11-01
Convulsive motor activity is a clinical manifestation of secondarily generalized seizures evolving from different focal regions. The way in which the motor seizures present themselves is not very different from most of the generalized seizures in and between epilepsy patients. This might point towards the involvement of motor-related cortices and corticospinal pathway for wide spread propagation of epileptic activity. Our aim was to identify changes in the cerebral structures and to correlate clinical variables with structural changes particularly in the motor-related cortices and pathway of patients with generalized convulsions from different seizure foci. Sixteen patients with focal onset and secondarily generalized seizures were included, along with sixteen healthy volunteers. Structural differences were analysed by measuring grey matter (GM) volume and thickness via T1-weighted MRI, and white matter (WM) fractional anisotropy (FA) via diffusion tensor imaging. GM and WM microstructural properties were compared between patients and controls by voxel- and surface- based analyses. Next, morphometric findings were correlated with seizure severity and disease duration to identify the pathologic process. In addition to widely reduced GM and WM properties, increased GM volume in the bilateral precentral gyri and paracentral lobules, and elevated regional FA in the bilateral corticospinal tracts adjacent to these motor -related GM were observed in patients and with higher statistical difference in the sub-patient group with drug-resistance. The increment of GM volume and WM FA in the motor pathway positively correlated with severity and duration of epilepsy. The demonstrated microstructural changes of motor pathways imply a plastic process of motor networks in the patients with frequent generalization of focal seizures. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Heaps-Woodruff, J M; Wright, P W; Ances, B M; Clifford, D; Paul, R H
2016-06-01
The purpose of the present study is to examine the integrity of white matter microstructure among individuals coinfected with HIV and HCV using diffusion tensor imaging (DTI). Twenty-five HIV+ patients, 21 HIV+/HCV+ patients, and 25 HIV- controls were included in this study. All HIV+ individuals were stable on combination antiretroviral therapy (cART; ≥3 months). All participants completed MRI and neuropsychological measures. Clinical variables including liver function, HIV-viral load, and CD4 count were collected from the patient groups. DTI metrics including mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and fractional anisotropy (FA) from five subregions of the corpus callosum were compared across groups. The HIV+/HCV+ group and HIV+ group were similar in terms of HIV clinical variables. None of the participants met criteria for cirrhosis or fibrosis. Within the anterior corpus callosum, significant differences were observed between both HIV+ groups compared to HIV- controls on DTI measures. HIV+ and HIV+/HCV+ groups had significantly lower FA values and higher MD and RD values compared to HIV- controls; however, no differences were present between the HIV+ and HIV+/HCV+ groups. Duration of HIV infection was significantly related to DTI metrics in total corpus callosum FA only, but not other markers of HIV disease burden or neurocognitive function. Both HIV+ and HIV+/HCV+ individuals had significant alterations in white matter integrity within the corpus callosum; however, there was no evidence for an additive effect of HCV coinfection. The association between DTI metrics and duration of HIV infection suggests that HIV may continue to negatively impact white matter integrity even in well-controlled disease.
Regional neuronal network failure and cognition in late-onset sporadic Alzheimer disease.
Carter, S F; Embleton, K V; Anton-Rodriguez, J M; Burns, A; Ralph, M A L; Herholz, K
2014-06-01
The severe cognitive deficits in Alzheimer disease are associated with structural lesions in gray and white matter in addition to changes in synaptic function. The current investigation studied the breakdown of the structure and function in regional networks involving the Papez circuit and extended neocortical association areas. Cortical volumetric and diffusion tensor imaging (3T MR imaging), positron-emission tomography with (18)F fluorodeoxyglucose on a high-resolution research tomograph, and comprehensive neuropsychological assessments were performed in patients with late-onset sporadic Alzheimer disease, those with mild cognitive impairment, and elderly healthy controls. Atrophy of the medial temporal lobes was the strongest and most consistent abnormality in patients with mild cognitive impairment and Alzheimer disease. Atrophy in the temporal, frontal, and parietal regions was most strongly related to episodic memory deficits, while deficits in semantic cognition were also strongly related to reductions of glucose metabolism in the posterior cingulate cortex and temporoparietal regions. Changes in fractional anisotropy within white matter tracts, particularly in the left cingulum bundle, uncinate fasciculus, superior longitudinal fasciculus, and inferior fronto-occipital fasciculus, were significantly associated with the cognitive deficits in multiple regression analyses. Posterior cingulate and orbitofrontal metabolic deficits appeared to be related to microstructural changes in projecting white matter tracts. Many lesioned network components within the Papez circuit and extended neocortical association areas were significantly associated with cognitive dysfunction in both mild cognitive impairment and late-onset sporadic Alzheimer disease. Hippocampal atrophy was the most prominent lesion, with associated impairment of the uncinate and cingulum white matter microstructures and hippocampal and posterior cingulate metabolic impairment. © 2014 by American Journal of Neuroradiology.
Mapping of recent brachiopod microstructure: A tool for environmental studies.
Ye, Facheng; Crippa, Gaia; Angiolini, Lucia; Brand, Uwe; Capitani, GianCarlo; Cusack, Maggie; Garbelli, Claudio; Griesshaber, Erika; Harper, Elizabeth; Schmahl, Wolfgang
2018-03-01
Shells of brachiopods are excellent archives for environmental reconstructions in the recent and distant past as their microstructure and geochemistry respond to climate and environmental forcings. We studied the morphology and size of the basic structural unit, the secondary layer fibre, of the shells of several extant brachiopod taxa to derive a model correlating microstructural patterns to environmental conditions. Twenty-one adult specimens of six recent brachiopod species adapted to different environmental conditions, from Antarctica, to New Zealand, to the Mediterranean Sea, were chosen for microstructural analysis using SEM, TEM and EBSD. We conclude that: 1) there is no significant difference in the shape and size of the fibres between ventral and dorsal valves, 2) there is an ontogenetic trend in the shape and size of the fibres, as they become larger, wider, and flatter with increasing age. This indicates that the fibrous layer produced in the later stages of growth, which is recommended by the literature to be the best material for geochemical analyses, has a different morphostructure and probably a lower organic content than that produced earlier in life. In two species of the same genus living in seawater with different temperature and carbonate saturation state, a relationship emerged between the microstructure and environmental conditions. Fibres of the polar Liothyrella uva tend to be smaller, rounder and less convex than those of the temperate Liothyrella neozelanica, suggesting a relationship between microstructural size, shell organic matter content, ambient seawater temperature and calcite saturation state. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Kievit, Rogier A.; Fuhrmann, Delia; Henson, Richard N. A.
2018-01-01
Background: Fluid intelligence declines with advancing age, starting in early adulthood. Within-subject declines in fluid intelligence are highly correlated with contemporaneous declines in the ability to live and function independently. To support healthy aging, the mechanisms underlying these declines need to be better understood. Methods: In this pre-registered analysis, we applied latent growth curve modelling to investigate the neural determinants of longitudinal changes in fluid intelligence across three time points in 185,317 individuals (N=9,719 two waves, N=870 three waves) from the UK Biobank (age range: 39-73 years). Results: We found a weak but significant effect of cross-sectional age on the mean fluid intelligence score, such that older individuals scored slightly lower. However, the mean longitudinal slope was positive, rather than negative, suggesting improvement across testing occasions. Despite the considerable sample size, the slope variance was non-significant, suggesting no reliable individual differences in change over time. This null-result is likely due to the nature of the cognitive test used. In a subset of individuals, we found that white matter microstructure (N=8839, as indexed by fractional anisotropy) and grey-matter volume (N=9931) in pre-defined regions-of-interest accounted for complementary and unique variance in mean fluid intelligence scores. The strongest effects were such that higher grey matter volume in the frontal pole and greater white matter microstructure in the posterior thalamic radiations were associated with higher fluid intelligence scores. Conclusions: In a large preregistered analysis, we demonstrate a weak but significant negative association between age and fluid intelligence. However, we did not observe plausible longitudinal patterns, instead observing a weak increase across testing occasions, and no significant individual differences in rates of change, likely due to the suboptimal task design. Finally, we find support for our preregistered expectation that white- and grey matter make separate contributions to individual differences in fluid intelligence beyond age. PMID:29707655
Altered white matter microstructure in adolescent substance users.
Bava, Sunita; Frank, Lawrence R; McQueeny, Tim; Schweinsburg, Brian C; Schweinsburg, Alecia D; Tapert, Susan F
2009-09-30
Chronic marijuana use during adolescence is frequently comorbid with heavy alcohol consumption and associated with CNS alterations, yet the influence of early cannabis and alcohol use on microstructural white matter integrity is unclear. Building on evidence that cannabinoid receptors are present in myelin precursors and affect glial cell processing, and that excessive ethanol exposure is associated with persistently impaired myelination, we used diffusion tensor imaging (DTI) to characterize white matter integrity in heavy substance using and non-using adolescents. We evaluated 36 marijuana and alcohol-using (MJ+ALC) adolescents (ages 16-19) and 36 demographically similar non-using controls with DTI. The diffusion parameters fractional anisotropy (FA) and mean diffusivity (MD) were subjected to whole-brain voxelwise group comparisons using tract-based spatial statistics (Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E., 2006. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487-1505). MJ+ALC teens had significantly lower FA than controls in 10 regions, including left superior longitudinal fasciculus (SLF), left postcentral gyrus, bilateral crus cerebri, and inferior frontal and temporal white matter tracts. These diminutions occurred in the context of increased FA in right occipital, internal capsule, and SLF regions. Changes in MD were less distributed, but increased MD was evident in the right occipital lobe, whereas the left inferior longitudinal fasciculus showed lower MD in MJ+ALC users. Findings suggest that fronto-parietal circuitry may be particularly impacted in adolescent users of the most prevalent intoxicants: marijuana and alcohol. Disruptions to white matter in this young group could indicate aberrant axonal and myelin maturation with resultant compromise of fiber integrity. Findings of increased anisotropic diffusion in alternate brain regions suggest possible neuroadaptive processes and can be examined in future studies of connectivity to determine how aberrancies in specific tracts might influence efficient cognitive processing.
Jalbrzikowski, Maria; Villalon-Reina, Julio E.; Karlsgodt, Katherine H.; Senturk, Damla; Chow, Carolyn; Thompson, Paul M.; Bearden, Carrie E.
2014-01-01
22q11.2 Microdeletion Syndrome (22q11DS) is a highly penetrant genetic mutation associated with a significantly increased risk for psychosis. Aberrant neurodevelopment may lead to inappropriate neural circuit formation and cerebral dysconnectivity in 22q11DS, which may contribute to symptom development. Here we examined: (1) differences between 22q11DS participants and typically developing controls in diffusion tensor imaging (DTI) measures within white matter tracts; (2) whether there is an altered age-related trajectory of white matter pathways in 22q11DS; and (3) relationships between DTI measures, social cognition task performance, and positive symptoms of psychosis in 22q11DS and typically developing controls. Sixty-four direction diffusion weighted imaging data were acquired on 65 participants (36 22q11DS, 29 controls). We examined differences between 22q11DS vs. controls in measures of fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), using both a voxel-based and region of interest approach. Social cognition domains assessed were: Theory of Mind and emotion recognition. Positive symptoms were assessed using the Structured Interview for Prodromal Syndromes. Compared to typically developing controls, 22q11DS participants showed significantly lower AD and RD in multiple white matter tracts, with effects of greatest magnitude for AD in the superior longitudinal fasciculus. Additionally, 22q11DS participants failed to show typical age-associated changes in FA and RD in the left inferior longitudinal fasciculus. Higher AD in the left inferior fronto-occipital fasciculus (IFO) and left uncinate fasciculus was associated with better social cognition in 22q11DS and controls. In contrast, greater severity of positive symptoms was associated with lower AD in bilateral regions of the IFO in 22q11DS. White matter microstructure in tracts relevant to social cognition is disrupted in 22q11DS, and may contribute to psychosis risk. PMID:25426042
Differential Brain Development with Low and High IQ in Attention-Deficit/Hyperactivity Disorder
de Zeeuw, Patrick; Schnack, Hugo G.; van Belle, Janna; Weusten, Juliette; van Dijk, Sarai; Langen, Marieke; Brouwer, Rachel M.; van Engeland, Herman; Durston, Sarah
2012-01-01
Attention-Deficit/Hyperactivity Disorder (ADHD) and intelligence (IQ) are both heritable phenotypes. Overlapping genetic effects have been suggested to influence both, with neuroimaging work suggesting similar overlap in terms of morphometric properties of the brain. Together, this evidence suggests that the brain changes characteristic of ADHD may vary as a function of IQ. This study investigated this hypothesis in a sample of 108 children with ADHD and 106 typically developing controls, who participated in a cross-sectional anatomical MRI study. A subgroup of 64 children also participated in a diffusion tensor imaging scan. Brain volumes, local cortical thickness and average cerebral white matter microstructure were analyzed in relation to diagnostic group and IQ. Dimensional analyses investigated possible group differences in the relationship between anatomical measures and IQ. Second, the groups were split into above and below median IQ subgroups to investigate possible differences in the trajectories of cortical development. Dimensionally, cerebral gray matter volume and cerebral white matter microstructure were positively associated with IQ for controls, but not for ADHD. In the analyses of the below and above median IQ subgroups, we found no differences from controls in cerebral gray matter volume in ADHD with below-median IQ, but a delay of cortical development in a number of regions, including prefrontal areas. Conversely, in ADHD with above-median IQ, there were significant reductions from controls in cerebral gray matter volume, but no local differences in the trajectories of cortical development. In conclusion, the basic relationship between IQ and neuroanatomy appears to be altered in ADHD. Our results suggest that there may be multiple brain phenotypes associated with ADHD, where ADHD combined with above median IQ is characterized by small, more global reductions in brain volume that are stable over development, whereas ADHD with below median IQ is associated more with a delay of cortical development. PMID:22536435
ApoE influences regional white-matter axonal density loss in Alzheimer's disease.
Slattery, Catherine F; Zhang, Jiaying; Paterson, Ross W; Foulkes, Alexander J M; Carton, Amelia; Macpherson, Kirsty; Mancini, Laura; Thomas, David L; Modat, Marc; Toussaint, Nicolas; Cash, David M; Thornton, John S; Henley, Susie M D; Crutch, Sebastian J; Alexander, Daniel C; Ourselin, Sebastien; Fox, Nick C; Zhang, Hui; Schott, Jonathan M
2017-09-01
Mechanisms underlying phenotypic heterogeneity in young onset Alzheimer disease (YOAD) are poorly understood. We used diffusion tensor imaging and neurite orientation dispersion and density imaging (NODDI) with tract-based spatial statistics to investigate apolipoprotein (APOE) ε4 modulation of white-matter damage in 37 patients with YOAD (22, 59% APOE ε4 positive) and 23 age-matched controls. Correlation between neurite density index (NDI) and neuropsychological performance was assessed in 4 white-matter regions of interest. White-matter disruption was more widespread in ε4+ individuals but more focal (posterior predominant) in the absence of an ε4 allele. NODDI metrics indicate fractional anisotropy changes are underpinned by combinations of axonal loss and morphological change. Regional NDI in parieto-occipital white matter correlated with visual object and spatial perception battery performance (right and left, both p = 0.02), and performance (nonverbal) intelligence (WASI matrices, right, p = 0.04). NODDI provides tissue-specific microstructural metrics of white-matter tract damage in YOAD, including NDI which correlates with focal cognitive deficits, and APOEε4 status is associated with different patterns of white-matter neurodegeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
De Santis, Silvia; Bastiani, Matteo; Droby, Amgad; Kolber, Pierre; Zipp, Frauke; Pracht, Eberhard; Stoecker, Tony; Groppa, Sergiu; Roebroeck, Alard
2018-04-07
The recent introduction of advanced magnetic resonance (MR) imaging techniques to characterize focal and global degeneration in multiple sclerosis (MS), like the Composite Hindered and Restricted Model of Diffusion, or CHARMED, diffusional kurtosis imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI) made available new tools to image axonal pathology non-invasively in vivo. These methods already showed greater sensitivity and specificity compared to conventional diffusion tensor-based metrics (e.g., fractional anisotropy), overcoming some of its limitations. While previous studies uncovered global and focal axonal degeneration in MS patients compared to healthy controls, here our aim is to investigate and compare different diffusion MRI acquisition protocols in their ability to highlight microstructural differences between MS and control tissue over several much used models. For comparison, we contrasted the ability of fractional anisotropy measurements to uncover differences between lesion, normal-appearing white matter (WM), gray matter and healthy tissue under the same imaging protocols. We show that: (1) focal and diffuse differences in several microstructural parameters are observed under clinical settings; (2) advanced models (CHARMED, DKI and NODDI) have increased specificity and sensitivity to neurodegeneration when compared to fractional anisotropy measurements; and (3) both high (3 T) and ultra-high fields (7 T) are viable options for imaging tissue change in MS lesions and normal appearing WM, while higher b-values are less beneficial under the tested short-time (10 min acquisition) conditions. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
White matter microstructural alterations in children with prenatal methamphetamine/polydrug exposure
Colby, John B.; Smith, Lynne; O’Connor, Mary J.; Bookheimer, Susan Y.; Van Horn, John D.; Sowell, Elizabeth R.
2013-01-01
Little is known about the effects of prenatal methamphetamine exposure on white matter microstructure, and the impact of concomitant alcohol exposure. Diffusion tensor imaging and neurocognitive testing were performed on 21 children with prenatal methamphetamine exposure (age 9.8±1.8 years; 17 also exposed to alcohol), 19 children with prenatal alcohol but not methamphetamine exposure (age 10.8±2.3 years), and 27 typically-developing children (age 10.3±3.3 years). Whole-brain maps of fractional anisotropy (FA) were evaluated using tract-based spatial statistics. Relative to unexposed controls, children with prenatal methamphetamine exposure demonstrated higher FA mainly in left-sided regions, including the left anterior corona radiata (LCR) and corticospinal tract (P<0.05, corrected). Post-hoc analyses of these FA differences showed they likely result more from lower radial diffusivity (RD) than higher axial diffusivity (AD). Relative to the methamphetamine-exposed group, children with prenatal alcohol exposure showed lower FA in frontotemporal regions – particularly the right external capsule (P<0.05, corrected). We failed to find any group-performance interaction (on tests of executive functioning and visuomotor integration) in predicting FA; however, FA in the right external capsule was significantly associated with performance on a test of visuomotor integration across groups (P<0.05). This report demonstrates unique diffusion abnormalities in children with prenatal methamphetamine/polydrug exposure that are distinct from those associated with alcohol exposure alone, and illustrates that these abnormalities in brain microstructure are persistent into childhood and adolescence – long after the polydrug exposure in utero. PMID:23149028
Vogel, Katja; Timmers, Inge; Kumar, Vinod; Nickl-Jockschat, Thomas; Bastiani, Matteo; Roebroek, Alard; Herpertz-Dahlmann, Beate; Konrad, Kerstin; Goebel, Rainer; Seitz, Jochen
2016-01-01
Background Anorexia nervosa (AN) often begins in adolescence, however, the understanding of the underlying pathophysiology at this developmentally important age is scarce, impeding early interventions. We used diffusion tensor imaging (DTI) to investigate microstructural white matter (WM) brain changes including an experimental longitudinal follow-up. Methods We acquired whole brain diffusion-weighted brain scans of 22 adolescent female hospitalized patients with AN at admission and nine patients longitudinally at discharge after weight rehabilitation. Patients (10–18 years) were compared to 21 typically developing controls (TD). Tract-based spatial statistics (TBSS) were applied to compare fractional anisotropy (FA) across groups and time points. Associations between average FA values of the global WM skeleton and weight as well as illness duration parameters were analyzed by multiple linear regression. Results We observed increased FA in bilateral frontal, parietal and temporal areas in AN patients at admission compared to TD. Higher FA of the global WM skeleton at admission was associated with faster weight loss prior to admission. Exploratory longitudinal analysis showed this FA increase to be partially normalized after weight rehabilitation. Conclusions Our findings reveal a markedly different pattern of WM microstructural changes in adolescent AN compared to most previous results in adult AN. This could signify a different susceptibility and reaction to semi-starvation in the still developing brain of adolescents or a time-dependent pathomechanism differing with extend of chronicity. Higher FA at admission in adolescents with AN could point to WM fibers being packed together more closely. PMID:27182488
USDA-ARS?s Scientific Manuscript database
MAP3Ka encodes a key conserved protein kinase responsible for orchestrating a rapid cascade of cellular events ultimately leading to localized cell death. Hypersensitive response, as it is termed, enables genetically-resistant plants to limit microbial invasion under the right environmental conditio...
Anarchic-Hand Syndrome: ERP Reflections of Lost Control over the Right Hemisphere
ERIC Educational Resources Information Center
Verleger, Rolf; Binkofski, Ferdinand; Friedrich, Monique; Sedlmeier, Peter; Kompf, Detlef
2011-01-01
In patients with the callosal type of anarchic-hand syndrome, the left hand often does not act as intended and counteracts the right hand. Reports are scarce about the underlying neurophysiological mechanisms. We report the case G.H. who developed the syndrome after infarction of the left arteria pericallosa. It has been suggested that the…
ERIC Educational Resources Information Center
Roessner, Veit; Overlack, Sebastian; Schmidt-Samoa, Carsten; Baudewig, Jurgen; Dechent, Peter; Rothenberger, Aribert; Helms, Gunther
2011-01-01
Background: Despite an increasing number of studies, findings of structural brain alterations in patients with Tourette syndrome are still inconsistent. Several confounders (comorbid conditions, medication, gender, age, IQ) might explain these discrepancies. In the present study, these confounders were excluded to identify differences in basal…
Neuropsychiatry and White Matter Microstructure in Huntington’s Disease
Gregory, Sarah; Scahill, Rachael I.; Seunarine, Kiran K.; Stopford, Cheryl; Zhang, Hui; Zhang, Jiaying; Orth, Michael; Durr, Alexandra; Roos, Raymund A.C.; Langbehn, Douglas R.; Long, Jeffrey D.; Johnson, Hans; Rees, Geraint; Tabrizi, Sarah J.; Craufurd, David
2015-01-01
Abstract Background: Neuropsychiatric symptoms in Huntington’s disease (HD) are often evident prior to clinical diagnosis. Apathy is highly correlated with disease progression, while depression and irritability occur at different stages of the disease, both before and after clinical onset. Little is understood about the neural bases of these neuropsychiatric symptoms and to what extent those neural bases are analogous to neuropsychiatric disorders in the general population. Objective: We used Diffusion Tensor Imaging (DTI) to investigate structural connectivity between brain regions and any putative microstructural changes associated with depression, apathy and irritability in HD. Methods: DTI data were collected from 39 premanifest and 45 early-HD participants in the Track-HD study and analysed using whole-brain Tract-Based Spatial Statistics. We used regression analyses to identify white matter tracts whose structural integrity (as measured by fractional anisotropy, FA) was correlated with HADS-depression, PBA-apathy or PBA-irritability scores in gene-carriers and related to cumulative probability to onset (CPO). Results: For those with the highest CPO, we found significant correlations between depression scores and reduced FA in the splenium of the corpus callosum. In contrast, those with lowest CPO demonstrated significant correlations between irritability scores and widespread FA reductions. There was no significant relationship between apathy and FA throughout the whole brain. Conclusions: We demonstrate that white matter changes associated with both depression and irritability in HD occur at different stages of disease progression concomitant with their clinical presentation. PMID:26443926
Nichols, Emily S; Joanisse, Marc F
2016-12-01
Two key factors govern how bilingual speakers neurally maintain two languages: the speakers' second language age of acquisition (AoA) and their subsequent proficiency. However, the relative roles of these two factors have been difficult to disentangle given that the two can be closely correlated, and most prior studies have examined the two factors in isolation. Here, we combine functional magnetic resonance imaging with diffusion tensor imaging to identify specific brain areas that are independently modulated by AoA and proficiency in second language speakers. First-language Mandarin Chinese speakers who are second language speakers of English were scanned as they performed a picture-word matching task in either language. In the same session we also acquired diffusion-weighted scans to assess white matter microstructure, along with behavioural measures of language proficiency prior to entering the scanner. Results reveal gray- and white-matter networks involving both the left and right hemisphere that independently vary as a function of a second-language speaker's AoA and proficiency, focused on the superior temporal gyrus, middle and inferior frontal gyrus, parahippocampal gyrus, and the basal ganglia. These results indicate that proficiency and AoA explain separate functional and structural networks in the bilingual brain, which we interpret as suggesting distinct types of plasticity for age-dependent effects (i.e., AoA) versus experience and/or predisposition (i.e., proficiency). Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Schulz, Jonathan; Pagano, Gennaro; Fernández Bonfante, Juan Alberto; Wilson, Heather; Politis, Marios
2018-05-01
Currently, no reliable predictors of cognitive impairment in Parkinson's disease exist. We hypothesized that microstructural changes at grey matter T1-weighted MRI and diffusion tensor imaging in the cholinergic system nuclei and associated limbic pathways underlie cognitive impairment in Parkinson's disease. We performed a cross-sectional comparison between patients with Parkinson's disease with and without cognitive impairment. We also performed a longitudinal 36-month follow-up study of cognitively intact Parkinson's disease patients, comparing patients who remained cognitively intact to those who developed cognitive impairment. Patients with Parkinson's disease with cognitive impairment showed lower grey matter volume and increased mean diffusivity in the nucleus basalis of Meynert, compared to patients with Parkinson's disease without cognitive impairment. These results were confirmed both with region of interest and voxel-based analyses, and after partial volume correction. Lower grey matter volume and increased mean diffusivity in the nucleus basalis of Meynert was predictive for developing cognitive impairment in cognitively intact patients with Parkinson's disease, independent of other clinical and non-clinical markers of the disease. Structural and microstructural alterations in entorhinal cortex, amygdala, hippocampus, insula, and thalamus were not predictive for developing cognitive impairment in Parkinson's disease. Our findings provide evidence that degeneration of the nucleus basalis of Meynert precedes and predicts the onset of cognitive impairment, and might be used in a clinical setting as a reliable biomarker to stratify patients at higher risk of cognitive decline.
Bodini, Benedetta; Cercignani, Mara; Khaleeli, Zhaleh; Miller, David H; Ron, Maria; Penny, Sophie; Thompson, Alan J; Ciccarelli, Olga
2013-05-01
We aim to identify specific areas of white matter (WM) and grey matter (GM), which predict disability progression and cognitive dysfunction after five years in patients with primary-progressive multiple sclerosis (PPMS). Thirty-two patients with early PPMS were assessed at baseline and after five years on the Expanded Disability Status Scale (EDSS), and EDSS step-changes were calculated. At year five, a subgroup of 25 patients and 31 healthy controls underwent a neuropsychological assessment. Baseline imaging consisted of dual-echo (proton density and T2-weighted), T1-weighted volumetric, and diffusion tensor imaging. Fractional anisotropy (FA) maps were created, and fed into tract-based spatial statistics. To compensate for the potential bias introduced by WM lesions, the T1 volumes underwent a lesion-filling procedure before entering a voxel-based morphometry protocol. To investigate whether FA and GM volume predicted EDSS step-changes over five years and neuropsychological tests scores at five years, voxelwise linear regression analyses were performed. Lower FA in the splenium of the corpus callosum (CC) predicted a greater progression of disability over the follow-up. Lower FA along the entire CC predicted worse verbal memory, attention and speed of information processing, and executive function at five years. GM baseline volume did not predict any clinical variable. Our findings highlight the importance of damage to the interhemispheric callosal pathways in determining physical and cognitive disability in PPMS. Disruption of these pathways, which interconnect motor and cognitive networks between the two hemispheres, may result in a disconnection syndrome that contributes to long-term physical and cognitive disability. Copyright © 2011 Wiley Periodicals, Inc.
Frequency Mapping of Rat Spinal Cord at 7T
NASA Astrophysics Data System (ADS)
Chen, Evan; Rauscher, Alexander; Kozlowski, Piotr; Yung, Andrew
2012-10-01
The spinal cord is an integral part of the nervous system responsible for sensory, motor, and reflex control crucial to all bodily function. Due to its non-invasive nature, MRI is well matched for characterizing and imaging of spinal cord, and is used extensively for clinical applications. Recent developments in magnetic resonance imaging (MRI) at high field (7T) using phase represents a new approach of characterizing spinal cord myelin. Theory suggests that microstructure differences in myelinated white matter (WM) and non-myelinated gray matter (GM) affect MR phase, measurable frequency shifts. Data from pilot experiments using a multi-gradient echo (MGE) sequence to image rat spinal cords placed parallel to main magnetic field B0 has shown frequency shifts between not only between WM and GM, but also between specific WM tracts of the dorsal column, including the fasciculus gracilis, fasciculus cuneatus, and corticospinal tract. Using MGE, frequency maps at multiple echo times (TE) between 4ms and 22ms show a non-linear relationship between WM frequency, contrary to what was previously expected. These results demonstrate the effectiveness of MGE in revealing new information about spinal cord tissue microstructure, and lays important groundwork for in-vivo and human studies.
Alves, Gilberto Sousa; Oertel Knöchel, Viola; Knöchel, Christian; Carvalho, André Férrer; Pantel, Johannes; Engelhardt, Eliasz; Laks, Jerson
2015-01-01
Microstructural abnormalities in white matter (WM) are often reported in Alzheimer's disease (AD) and may reflect primary or secondary circuitry degeneration (i.e., due to cortical atrophy). The interpretation of diffusion tensor imaging (DTI) eigenvectors, known as multiple indices, may provide new insights into the main pathological models supporting primary or secondary patterns of WM disruption in AD, the retrogenesis, and Wallerian degeneration models, respectively. The aim of this review is to analyze the current literature on the contribution of DTI multiple indices to the understanding of AD neuropathology, taking the retrogenesis model as a reference for discussion. A systematic review using MEDLINE, EMBASE, and PUBMED was performed. Evidence suggests that AD evolves through distinct patterns of WM disruption, in which retrogenesis or, alternatively, the Wallerian degeneration may prevail. Distinct patterns of WM atrophy may be influenced by complex interactions which comprise disease status and progression, fiber localization, concurrent risk factors (i.e., vascular disease, gender), and cognitive reserve. The use of DTI multiple indices in addition to other standard multimodal methods in dementia research may help to determine the contribution of retrogenesis hypothesis to the understanding of neuropathological hallmarks that lead to AD.
Intracranial Fluid Redistribution During a Spaceflight Analog
NASA Technical Reports Server (NTRS)
Koppelmans, Vincent; Pasternak, Ofer; Bloomberg, Jacob J.; De Dios, Yiri E.; Wood, Scott J.; Riascos, Roy; Reuter-Lorenz, Patrica A.; Kofman, Igor S.; Mulavara, Ajitkumar P.; Seidler, Rachael D.
2017-01-01
The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt bed rest (HDBR) serves as a microgravity analog because it mimics the headward fluid shift and limb unloading of spaceflight. We investigated focal brain white matter (WM) changes and fluid shifts during 70 days of 6 deg HDBR in 16 subjects who were assessed pre (2x), during (3x), and post-HDBR (2x). Changes over time were compared to those in control subjects (n=12) assessed four times over 90 days. Diffusion MRI was used to assess WM microstructure and fluid shifts. Free-Water Imaging, derived from diffusion MRI, was used to quantify the distribution of intracranial extracellular free water (FW). Additionally, we tested whether WM and FW changes correlated with changes in functional mobility and balance measures. HDBR resulted in FW increases in fronto-temporal regions and decreases in posterior-parietal regions that largely recovered by two weeks post-HDBR. WM microstructure was unaffected by HDBR. FW decreased in the post-central gyrus and precuneus. We previously reported that gray matter increases in these regions were associated with less HDBR-induced balance impairment, suggesting adaptive structural neuroplasticity. Future studies are warranted to determine causality and underlying mechanisms.
Impaired Frontal-Limbic White Matter Maturation in Children at Risk for Major Depression.
Hung, Yuwen; Saygin, Zeynep M; Biederman, Joseph; Hirshfeld-Becker, Dina; Uchida, Mai; Doehrmann, Oliver; Han, Michelle; Chai, Xiaoqian J; Kenworthy, Tara; Yarmak, Pavel; Gaillard, Schuyler L; Whitfield-Gabrieli, Susan; Gabrieli, John D E
2017-09-01
Depression is among the most common neuropsychiatric disorders. It remains unclear whether brain abnormalities associated with depression reflect the pathological state of the disease or neurobiological traits predisposing individuals to depression. Parental history of depression is a risk factor that more than triples the risk of depression. We compared white matter (WM) microstructure cross-sectionally in 40 children ages 8-14 with versus without parental history of depression (At-Risk vs. Control). There were significant differences in age-related changes of fractional anisotropy (FA) between the groups, localized in the anterior fronto-limbic WM pathways, including the anterior cingulum and the genu of the corpus callosum. Control children exhibited typical increasing FA with age, whereas At-Risk children exhibited atypical decreasing FA with age in these fronto-limbic regions. Furthermore, dorsal cingulate FA significantly correlated with depressive symptoms for At-Risk children. The results suggest maturational WM microstructure differences in mood-regulatory neurocircuitry that may contribute to neurodevelopmental risk for depression. The study provides new insights into neurodevelopmental susceptibility to depression and related disabilities that may promote early preventive intervention approaches. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
White matter abnormalities of microstructure and physiological noise in schizophrenia.
Cheng, Hu; Newman, Sharlene D; Kent, Jerillyn S; Bolbecker, Amanda; Klaunig, Mallory J; O'Donnell, Brian F; Puce, Aina; Hetrick, William P
2015-12-01
White matter abnormalities in schizophrenia have been revealed by many imaging techniques and analysis methods. One of the findings by diffusion tensor imaging is a decrease in fractional anisotropy (FA), which is an indicator of white matter integrity. On the other hand, elevation of metabolic rate in white matter was observed from positron emission tomography (PET) studies. In this report, we aim to compare the two structural and functional effects on the same subjects. Our comparison is based on the hypothesis that signal fluctuation in white matter is associated with white matter functional activity. We examined the variance of the signal in resting state fMRI and found significant differences between individuals with schizophrenia and non-psychiatric controls specifically in white matter tissue. Controls showed higher temporal signal-to-noise ratios clustered in regions including temporal, frontal, and parietal lobes, cerebellum, corpus callosum, superior longitudinal fasciculus, and other major white matter tracts. These regions with higher temporal signal-to-noise ratio agree well with those showing higher metabolic activity reported by studies using PET. The results suggest that individuals with schizophrenia tend to have higher functional activity in white matter in certain brain regions relative to healthy controls. Despite some overlaps, the distinct regions for physiological noise are different from those for FA derived from diffusion tensor imaging, and therefore provide a unique angle to explore potential mechanisms to white matter abnormality.
Tryptophan Metabolism and White Matter Integrity in Schizophrenia
Chiappelli, Joshua; Postolache, Teodor T; Kochunov, Peter; Rowland, Laura M; Wijtenburg, S Andrea; Shukla, Dinesh K; Tagamets, Malle; Du, Xiaoming; Savransky, Anya; Lowry, Christopher A; Can, Adem; Fuchs, Dietmar; Hong, L Elliot
2016-01-01
Schizophrenia is associated with abnormalities in the structure and functioning of white matter, but the underlying neuropathology is unclear. We hypothesized that increased tryptophan degradation in the kynurenine pathway could be associated with white matter microstructure and biochemistry, potentially contributing to white matter abnormalities in schizophrenia. To test this, fasting plasma samples were obtained from 37 schizophrenia patients and 38 healthy controls and levels of total tryptophan and its metabolite kynurenine were assessed. The ratio of kynurenine to tryptophan was used as an index of tryptophan catabolic activity in this pathway. White matter structure and function were assessed by diffusion tensor imaging (DTI) and 1H magnetic resonance spectroscopy (MRS). Tryptophan levels were significantly lower (p<0.001), and kynurenine/tryptophan ratios were correspondingly higher (p=0.018) in patients compared with controls. In patients, lower plasma tryptophan levels corresponded to lower structural integrity (DTI fractional anisotropy) (r=0.347, p=0.038). In both patients and controls, the kynurenine/tryptophan ratio was inversely correlated with frontal white matter glutamate level (r=−0.391 and −0.350 respectively, p=0.024 and 0.036). These results provide initial evidence implicating abnormal tryptophan/kynurenine pathway activity in changes to white matter integrity and white matter glutamate in schizophrenia. PMID:27143602
MYELIN IN THE CENTRAL NERVOUS SYSTEM AS OBSERVED IN EXPERIMENTALLY INDUCED EDEMA IN THE RAT
Hirano, Asao; Zimmerman, H. M.; Levine, Seymour
1966-01-01
The compact arrangement of cells in the normal white matter of the brain makes an analysis of cellular architecture difficult. To overcome this difficulty, cerebral edema was induced in rats by means of the unilateral intracerebral implantation of silver nitrate. Within 48 hr, the brains were fixed by perfusion with glutaraldehyde followed by immersion in Dalton's chrome-osmium. Sections of the callosal radiations were studied in the electron microscope. The untreated hemisphere appeared entirely unaltered, whereas in the edematous hemisphere the edema fluid separated individual cell processes and small groups of them. The myelin sheaths and their relationships to the axons appeared essentially unaltered. In this material, analysis of cellular architecture was relatively easy, and the widely held theory of spiral wrapping could be confirmed. In addition, several other aspects of the myelin and myelin-forming cell relationships became apparent in the edematous tissue. Most of these were later confirmed by extensive and careful study of the nonedematous tissue. These included the presence of occasional isolated cytoplasmic areas in myelin and the presence of two complete sheaths around a single axon. Other observations, such as the appearance of mitochondria and dense bodies within the outer loop and the separation of myelin lamellae, are apparently limited to the edematous tissue. PMID:5971641
Subgenual Cingulum Microstructure Supports Control of Emotional Conflict.
Keedwell, Paul A; Doidge, Amie N; Meyer, Marcel; Lawrence, Natalia; Lawrence, Andrew D; Jones, Derek K
2016-06-01
Major depressive disorder (MDD) is associated with specific difficulties in attentional disengagement from negatively valenced material. Diffusion MRI studies have demonstrated altered white matter microstructure in the subgenual cingulum bundle (CB) in individuals with MDD, though the functional significance of these alterations has not been examined formally. This study explored whether individual differences in selective attention to negatively valenced stimuli are related to interindividual differences in subgenual CB microstructure. Forty-six individuals (21 with remitted MDD, 25 never depressed) completed an emotional Stroop task, using happy and angry distractor faces overlaid by pleasant or unpleasant target words and a control gender-based Stroop task. CBs were reconstructed in 38 individuals using diffusion-weighted imaging and tractography, and mean fractional anisotropy (FA) computed for the subgenual, retrosplenial, and parahippocampal subdivisions. No significant correlations were found between FA and performance in the control gender-based Stroop task in any CB region. However, the degree of interference produced by angry face distractors on time to identify pleasant words (emotional conflict) correlated selectively with FA in the subgenual CB (r = -0.53; P = 0.01). Higher FA was associated with reduced interference, irrespective of a diagnosis of MDD, suggesting that subgenual CB microstructure is functionally relevant for regulating attentional bias toward negative interpersonal stimuli. © The Author 2016. Published by Oxford University Press.
Subgenual Cingulum Microstructure Supports Control of Emotional Conflict
Keedwell, Paul A.; Doidge, Amie N.; Meyer, Marcel; Lawrence, Natalia; Lawrence, Andrew D.; Jones, Derek K.
2016-01-01
Major depressive disorder (MDD) is associated with specific difficulties in attentional disengagement from negatively valenced material. Diffusion MRI studies have demonstrated altered white matter microstructure in the subgenual cingulum bundle (CB) in individuals with MDD, though the functional significance of these alterations has not been examined formally. This study explored whether individual differences in selective attention to negatively valenced stimuli are related to interindividual differences in subgenual CB microstructure. Forty-six individuals (21 with remitted MDD, 25 never depressed) completed an emotional Stroop task, using happy and angry distractor faces overlaid by pleasant or unpleasant target words and a control gender-based Stroop task. CBs were reconstructed in 38 individuals using diffusion-weighted imaging and tractography, and mean fractional anisotropy (FA) computed for the subgenual, retrosplenial, and parahippocampal subdivisions. No significant correlations were found between FA and performance in the control gender-based Stroop task in any CB region. However, the degree of interference produced by angry face distractors on time to identify pleasant words (emotional conflict) correlated selectively with FA in the subgenual CB (r = −0.53; P = 0.01). Higher FA was associated with reduced interference, irrespective of a diagnosis of MDD, suggesting that subgenual CB microstructure is functionally relevant for regulating attentional bias toward negative interpersonal stimuli. PMID:27048427
NASA Astrophysics Data System (ADS)
Génio, Luciana; Kiel, Steffen; Cunha, Marina R.; Grahame, John; Little, Crispin T. S.
2012-06-01
The increasing number of bathymodiolin mussel species being described from deep-sea chemosynthetic environments worldwide has raised many questions about their evolutionary history, and their systematics is still being debated. Mussels are also abundant in fossil chemosynthetic assemblages, but their identification is problematic due to conservative shell morphology within the group and preservation issues. Potential resolution of bathymodiolin taxonomy requires new character sets, including morphological features that are likely to be preserved in fossil specimens. To investigate the phylogenetic significance of shell microstructural features, we studied the shell microstructure and mineralogy of 10 mussel species from hydrothermal vents and hydrocarbon seeps, and 15 taxa from sunken wood and bone habitats, and compared these observations with current molecular phylogenies of the sub-family Bathymodiolinae. In addition, we analyzed the shell microstructure in Adipicola chickubetsuensis from fossil whale carcasses, and in Bathymodiolus cf. willapaensis and “Modiola exbrocchii” from fossil cold seeps, and discussed the usefulness of these characters for identification of fossil chemosymbiotic mussels. Microstructural shell features are quite uniform among vent, seep, wood and bone mussel taxa, and therefore established bathymodiolin lineages cannot be discriminated, nor can the relations between fossil and modern species be determined with these characters. Nevertheless, the uniformity of shell microstructures observed among chemosymbiotic mussels and the similarity with its closest relative, Modiolus modiolus, does not challenge the monophyly of the group. Slight differences are found between the large vent and seep mussels and the small mytilids commonly found in habitats enriched in organic matter. Together with previous data, these results indicate that a repeated pattern of paedomorphism characterizes the evolutionary history of deep-sea mussels, and the occurrence of neotenous features should be considered in the taxonomic revision of this group.
The visual white matter: The application of diffusion MRI and fiber tractography to vision science
Rokem, Ariel; Takemura, Hiromasa; Bock, Andrew S.; Scherf, K. Suzanne; Behrmann, Marlene; Wandell, Brian A.; Fine, Ione; Bridge, Holly; Pestilli, Franco
2017-01-01
Visual neuroscience has traditionally focused much of its attention on understanding the response properties of single neurons or neuronal ensembles. The visual white matter and the long-range neuronal connections it supports are fundamental in establishing such neuronal response properties and visual function. This review article provides an introduction to measurements and methods to study the human visual white matter using diffusion MRI. These methods allow us to measure the microstructural and macrostructural properties of the white matter in living human individuals; they allow us to trace long-range connections between neurons in different parts of the visual system and to measure the biophysical properties of these connections. We also review a range of findings from recent studies on connections between different visual field maps, the effects of visual impairment on the white matter, and the properties underlying networks that process visual information supporting visual face recognition. Finally, we discuss a few promising directions for future studies. These include new methods for analysis of MRI data, open datasets that are becoming available to study brain connectivity and white matter properties, and open source software for the analysis of these data. PMID:28196374
USDA-ARS?s Scientific Manuscript database
Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The nonhost plant Arabidopsis serves as a powerful system to dissect mechanisms of resistance to E. amylovora. Although not yet known to mount gene-for-gene resistance to E. amylovora, we found ...
Bound Pool Fractions Complement Diffusion Measures to Describe White Matter Micro and Macrostructure
Stikov, Nikola; Perry, Lee M.; Mezer, Aviv; Rykhlevskaia, Elena; Wandell, Brian A.; Pauly, John M.; Dougherty, Robert F.
2010-01-01
Diffusion imaging and bound pool fraction (BPF) mapping are two quantitative magnetic resonance imaging techniques that measure microstructural features of the white matter of the brain. Diffusion imaging provides a quantitative measure of the diffusivity of water in tissue. BPF mapping is a quantitative magnetization transfer (qMT) technique that estimates the proportion of exchanging protons bound to macromolecules, such as those found in myelin, and is thus a more direct measure of myelin content than diffusion. In this work, we combine BPF estimates of macromolecular content with measurements of diffusivity within human white matter tracts. Within the white matter, the correlation between BPFs and diffusivity measures such as fractional anisotropy and radial diffusivity was modest, suggesting that diffusion tensor imaging and bound pool fractions are complementary techniques. We found that several major tracts have high BPF, suggesting a higher density of myelin in these tracts. We interpret these results in the context of a quantitative tissue model. PMID:20828622
Price, D; Tyler, L K; Neto Henriques, R; Campbell, K L; Williams, N; Treder, M S; Taylor, J R; Henson, R N A
2017-06-09
Slowing is a common feature of ageing, yet a direct relationship between neural slowing and brain atrophy is yet to be established in healthy humans. We combine magnetoencephalographic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI) measures of white and grey matter in a large population-derived cohort to investigate the relationship between age-related structural differences and visual evoked field (VEF) and auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over time. White-matter (WM) microstructure in the optic radiation partially mediates visual delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex partially mediates auditory delay, suggesting less efficient local processing. Our results demonstrate that age has dissociable effects on neural processing speed, and that these effects relate to different types of brain atrophy.
Price, D.; Tyler, L. K.; Neto Henriques, R.; Campbell, K. L.; Williams, N.; Treder, M.S.; Taylor, J. R.; Brayne, Carol; Bullmore, Edward T.; Calder, Andrew C.; Cusack, Rhodri; Dalgleish, Tim; Duncan, John; Matthews, Fiona E.; Marslen-Wilson, William D.; Rowe, James B.; Shafto, Meredith A.; Cheung, Teresa; Davis, Simon; Geerligs, Linda; Kievit, Rogier; McCarrey, Anna; Mustafa, Abdur; Samu, David; Tsvetanov, Kamen A.; van Belle, Janna; Bates, Lauren; Emery, Tina; Erzinglioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Auer, Tibor; Correia, Marta; Gao, Lu; Green, Emma; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, R. N. A.
2017-01-01
Slowing is a common feature of ageing, yet a direct relationship between neural slowing and brain atrophy is yet to be established in healthy humans. We combine magnetoencephalographic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI) measures of white and grey matter in a large population-derived cohort to investigate the relationship between age-related structural differences and visual evoked field (VEF) and auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over time. White-matter (WM) microstructure in the optic radiation partially mediates visual delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex partially mediates auditory delay, suggesting less efficient local processing. Our results demonstrate that age has dissociable effects on neural processing speed, and that these effects relate to different types of brain atrophy. PMID:28598417
P protein in the phloem of Cucurbita. II. The P protein of mature sieve elements.
Cronshaw, J; Esau, K
1968-08-01
During maturation of sieve elements in Cucurbita maxima Duchesne, the P-protein bodies (slime bodies) usually disperse in the tonoplast-free cell. In some sieve elements the P-protein bodies fail to disperse. The occurrence of dispersal or nondispersal of P-protein bodies can be related to the position of the sieve elements in the stem or petiole. In the sieve elements within the vascular bundle the bodies normally disperse; in the extrafascicular sieve elements the bodies often fail to disperse. Extrafascicular sieve elements showing partial dispersal also occur. The appearance of the sieve plate in fixed material is related to the degree of dispersal or nondispersal of the P-protein bodies. In sieve elements in which complete dispersal occurs the sieve plate usually has a substantial deposit of callose, and the sieve-plate pores are filled with P protein. In sieve elements containing nondispersing P-protein bodies the sieve plate bears little or no callose, and its pores usually are essentially "open." The dispersed P-protein components may aggregate into loosely organized "strands," which sometimes extend vertically through the cell and continue through the sieve-plate pores; but they may be oriented otherwise in the cell, even transversely.
P PROTEIN IN THE PHLOEM OF CUCURBITA
Cronshaw, James; Esau, Katherine
1968-01-01
During maturation of sieve elements in Cucurbita maxima Duchesne, the P-protein bodies (slime bodies) usually disperse in the tonoplast-free cell. In some sieve elements the P-protein bodies fail to disperse. The occurrence of dispersal or nondispersal of P-protein bodies can be related to the position of the sieve elements in the stem or petiole. In the sieve elements within the vascular bundle the bodies normally disperse; in the extrafascicular sieve elements the bodies often fail to disperse. Extrafascicular sieve elements showing partial dispersal also occur. The appearance of the sieve plate in fixed material is related to the degree of dispersal or nondispersal of the P-protein bodies. In sieve elements in which complete dispersal occurs the sieve plate usually has a substantial deposit of callose, and the sieve-plate pores are filled with P protein. In sieve elements containing nondispersing P-protein bodies the sieve plate bears little or no callose, and its pores usually are essentially "open." The dispersed P-protein components may aggregate into loosely organized "strands," which sometimes extend vertically through the cell and continue through the sieve-plate pores; but they may be oriented otherwise in the cell, even transversely. PMID:5664205
Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing.
Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William G T; Knox, J Paul; Goubet, Florence; Meulewaeter, Frank
2014-01-01
Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments.
Sex differences in associations between spatial ability and corpus callosum morphology.
Kurth, Florian; Spencer, Debra; Hines, Melissa; Luders, Eileen
2018-05-10
Rotating mental representations of objects is accompanied by widespread bilateral brain activations. Thus, interhemispheric communication channels may play a relevant part when engaging in mental rotation tasks. Indeed, links between mental rotation and dimensions of the corpus callosum-the brain's main commissure system-have been reported. However, existing findings are sparse and inconsistent across studies. Here we set out to further characterize the nature of any such links, including their exact location across the corpus callosum. For this purpose, we applied an advanced image analysis approach assessing callosal thickness at 100 equidistant points in a sample of 38 healthy adults (19 men, 19 women), aged between 22 and 45 years. We detected a sex interaction, with significant structure-performance relationships in women, but not in men. Specifically, better mental rotation performance was linked to a thicker female corpus callosum within regions of the callosal splenium, posterior midbody, and anterior third. These findings may suggest sex differences in problem solving strategies where in women, more than in men, stronger interhemispheric connectivity-especially between occipitoparietal, frontal, and prefrontal regions-is associated with improved task performance. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Microstructural changes in memory and reticular formation neural pathway after simple concussion☆
Ouyang, Lin; Shi, Rongyue; Xiao, Yuhui; Meng, Jiarong; Guo, Yihe; Lu, Guangming
2012-01-01
Patients with concussion often present with temporary disturbance of consciousness. The microstructural and functional changes in the brain associated with concussion, as well as the relationship with transient cognitive disorders, are currently unclear. In the present study, a rabbit model of simple concussion was established. Magnetic resonance-diffusion tensor imaging results revealed that the corona radiata and midbrain exhibited significantly decreased fractional anisotropy values in the neural pathways associated with memory and the reticular formation. In addition, the apparent diffusion coefficient values were significantly increased following injury compared with those before injury. Following a 1-hour period of quiet rest, the fractional anisotropy values significantly increased, and apparent diffusion coefficient values significantly decreased, returning to normal pre-injury levels. In contrast, the fractional anisotropy values and apparent diffusion coefficient values in the corpus callosum, thalamus and hippocampus showed no statistical significant alterations following injury. These findings indicate that the neural pathways associated with memory and the reticular formation pathway exhibit reversible microstructural white matter changes when concussion occurs, and these changes are exhibited to a different extent in different regions. PMID:25538741
The Effect of Prism Orientation in the Indentation Testing of Human Molar Enamel
Braly, A.; Darnell, L.A.; Mann, A.B.; Teaford, M.F.; Weihs, T.P.
2007-01-01
Recent nanoindentation studies have demonstrated that the hardness and Young's modulus of human molar enamel decreases by more than 50% on moving from the occlusal surface to the dentin-enamel junction on cross-sectional samples. Possible sources of these variations are changes in local chemistry, microstructure, and prism orientation. This study investigates the latter source by performing nanoindentation tests at two different orientations relative to the hydroxyapatite prisms: parallel and perpendicular. A single sample volume was tested in order to maintain a constant chemistry and microstructure. The resulting data show very small differences between the two orientations for both hardness and Young's modulus. The 1.5 to 3.0% difference is significantly less than the standard deviations found within the data set. Thus, the variations in hardness and Young's modulus on cross-sectional samples of human molar are attributed to changes in local chemistry (varying levels of mineralization, organic matter, and water content) and changes in microstructure (varying volume fractions of inorganic crystals and organic matrix). The impact of prism orientation on mechanical properties measured by nanoindentation appears to be minimal. PMID:17449008
Microstructural changes in memory and reticular formation neural pathway after simple concussion.
Ouyang, Lin; Shi, Rongyue; Xiao, Yuhui; Meng, Jiarong; Guo, Yihe; Lu, Guangming
2012-10-05
Patients with concussion often present with temporary disturbance of consciousness. The microstructural and functional changes in the brain associated with concussion, as well as the relationship with transient cognitive disorders, are currently unclear. In the present study, a rabbit model of simple concussion was established. Magnetic resonance-diffusion tensor imaging results revealed that the corona radiata and midbrain exhibited significantly decreased fractional anisotropy values in the neural pathways associated with memory and the reticular formation. In addition, the apparent diffusion coefficient values were significantly increased following injury compared with those before injury. Following a 1-hour period of quiet rest, the fractional anisotropy values significantly increased, and apparent diffusion coefficient values significantly decreased, returning to normal pre-injury levels. In contrast, the fractional anisotropy values and apparent diffusion coefficient values in the corpus callosum, thalamus and hippocampus showed no statistical significant alterations following injury. These findings indicate that the neural pathways associated with memory and the reticular formation pathway exhibit reversible microstructural white matter changes when concussion occurs, and these changes are exhibited to a different extent in different regions.
Unique white matter microstructural patterns in ADHD presentations-a diffusion tensor imaging study.
Svatkova, Alena; Nestrasil, Igor; Rudser, Kyle; Goldenring Fine, Jodene; Bledsoe, Jesse; Semrud-Clikeman, Margaret
2016-09-01
Attention-deficit/hyperactivity disorder predominantly inattentive (ADHD-PI) and combined (ADHD-C) presentations are likely distinct disorders that differ neuroanatomically, neurochemically, and neuropsychologically. However, to date, little is known about specific white matter (WM) regions differentiating ADHD presentations. This study examined differences in WM microstructure using diffusion tensor imaging (DTI) data from 20 ADHD-PI, 18 ADHD-C, and 27 typically developed children. Voxel-wise analysis of DTI measurements in major fiber bundles was carried out using tract-based spatial statistics (TBSS). Clusters showing diffusivity abnormalities were used as regions of interest for regression analysis between fractional anisotropy (FA) and neuropsychological outcomes. Compared to neurotypicals, ADHD-PI children showed higher FA in the anterior thalamic radiations (ATR), bilateral inferior longitudinal fasciculus (ILF), and in the left corticospinal tract (CST). In contrast, the ADHD-C group exhibited higher FA in the bilateral cingulum bundle (CB). In the ADHD-PI group, differences in FA in the left ILF and ATR were accompanied by axial diffusivity (AD) abnormalities. In addition, the ADHD-PI group exhibited atypical mean diffusivity in the forceps minor (FMi) and left ATR and AD differences in right CB compared to healthy subjects. Direct comparison between ADHD presentations demonstrated radial diffusivity differences in FMi. WM clusters with FA irregularities in ADHD were associated with neurobehavioral performance across groups. In conclusion, differences in WM microstructure in ADHD presentations strengthen the theory that ADHD-PI and ADHD-C are two distinct disorders. Regions with WM irregularity seen in both ADHD presentations might serve as predictors of executive and behavioral functioning across groups. Hum Brain Mapp 37:3323-3336, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Lemkaddem, Alia; Daducci, Alessandro; Kunz, Nicolas; Lazeyras, François; Seeck, Margitta; Thiran, Jean-Philippe; Vulliémoz, Serge
2014-01-01
Focal epilepsy is increasingly recognized as the result of an altered brain network, both on the structural and functional levels and the characterization of these widespread brain alterations is crucial for our understanding of the clinical manifestation of seizure and cognitive deficits as well as for the management of candidates to epilepsy surgery. Tractography based on Diffusion Tensor Imaging allows non-invasive mapping of white matter tracts in vivo. Recently, diffusion spectrum imaging (DSI), based on an increased number of diffusion directions and intensities, has improved the sensitivity of tractography, notably with respect to the problem of fiber crossing and recent developments allow acquisition times compatible with clinical application. We used DSI and parcellation of the gray matter in regions of interest to build whole-brain connectivity matrices describing the mutual connections between cortical and subcortical regions in patients with focal epilepsy and healthy controls. In addition, the high angular and radial resolution of DSI allowed us to evaluate also some of the biophysical compartment models, to better understand the cause of the changes in diffusion anisotropy. Global connectivity, hub architecture and regional connectivity patterns were altered in TLE patients and showed different characteristics in RTLE vs LTLE with stronger abnormalities in RTLE. The microstructural analysis suggested that disturbed axonal density contributed more than fiber orientation to the connectivity changes affecting the temporal lobes whereas fiber orientation changes were more involved in extratemporal lobe changes. Our study provides further structural evidence that RTLE and LTLE are not symmetrical entities and DSI-based imaging could help investigate the microstructural correlate of these imaging abnormalities.
White Matter Microstructural Changes Following Quadrato Motor Training: A Longitudinal Study
Piervincenzi, Claudia; Ben-Soussan, Tal D.; Mauro, Federica; Mallio, Carlo A.; Errante, Yuri; Quattrocchi, Carlo C.; Carducci, Filippo
2017-01-01
Diffusion tensor imaging (DTI) is an important way to characterize white matter (WM) microstructural changes. While several cross-sectional DTI studies investigated possible links between mindfulness practices and WM, only few longitudinal investigations focused on the effects of these practices on WM architecture, behavioral change, and the relationship between them. To this aim, in the current study, we chose to conduct an unbiased tract-based spatial statistics (TBSS) analysis (n = 35 healthy participants) to identify longitudinal changes in WM diffusion parameters following 6 and 12 weeks of daily Quadrato Motor Training (QMT), a whole-body mindful movement practice aimed at improving well-being by enhancing attention, coordination, and creativity. We also investigated the possible relationship between training-induced WM changes and concomitant changes in creativity, self-efficacy, and motivation. Our results indicate that following 6 weeks of daily QMT, there was a bilateral increase of fractional anisotropy (FA) in tracts related to sensorimotor and cognitive functions, including the corticospinal tracts, anterior thalamic radiations, and uncinate fasciculi, as well as in the left inferior fronto-occipital, superior and inferior longitudinal fasciculi. Interestingly, significant FA increments were still present after 12 weeks of QMT in most of the above WM tracts, but only in the left hemisphere. FA increase was accompanied by a significant decrease of radial diffusivity (RD), supporting the leading role of myelination processes in training-related FA changes. Finally, significant correlations were found between training-induced diffusion changes and increased self-efficacy as well as creativity. Together, these findings suggest that QMT can improve WM integrity and support the existence of possible relationships between training-related WM microstructural changes and behavioral change. PMID:29270117
Strength of Temporal White Matter Pathways Predicts Semantic Learning.
Ripollés, Pablo; Biel, Davina; Peñaloza, Claudia; Kaufmann, Jörn; Marco-Pallarés, Josep; Noesselt, Toemme; Rodríguez-Fornells, Antoni
2017-11-15
Learning the associations between words and meanings is a fundamental human ability. Although the language network is cortically well defined, the role of the white matter pathways supporting novel word-to-meaning mappings remains unclear. Here, by using contextual and cross-situational word learning, we tested whether learning the meaning of a new word is related to the integrity of the language-related white matter pathways in 40 adults (18 women). The arcuate, uncinate, inferior-fronto-occipital and inferior-longitudinal fasciculi were virtually dissected using manual and automatic deterministic fiber tracking. Critically, the automatic method allowed assessing the white matter microstructure along the tract. Results demonstrate that the microstructural properties of the left inferior-longitudinal fasciculus predict contextual learning, whereas the left uncinate was associated with cross-situational learning. In addition, we identified regions of special importance within these pathways: the posterior middle temporal gyrus, thought to serve as a lexical interface and specifically related to contextual learning; the anterior temporal lobe, known to be an amodal hub for semantic processing and related to cross-situational learning; and the white matter near the hippocampus, a structure fundamental for the initial stages of new-word learning and, remarkably, related to both types of word learning. No significant associations were found for the inferior-fronto-occipital fasciculus or the arcuate. While previous results suggest that learning new phonological word forms is mediated by the arcuate fasciculus, these findings show that the temporal pathways are the crucial neural substrate supporting one of the most striking human abilities: our capacity to identify correct associations between words and meanings under referential indeterminacy. SIGNIFICANCE STATEMENT The language-processing network is cortically (i.e., gray matter) well defined. However, the role of the white matter pathways that support novel word learning within this network remains unclear. In this work, we dissected language-related (arcuate, uncinate, inferior-fronto-occipital, and inferior-longitudinal) fasciculi using manual and automatic tracking. We found the left inferior-longitudinal fasciculus to be predictive of word-learning success in two word-to-meaning tasks: contextual and cross-situational learning paradigms. The left uncinate was predictive of cross-situational word learning. No significant correlations were found for the arcuate or the inferior-fronto-occipital fasciculus. While previous results showed that learning new phonological word forms is supported by the arcuate fasciculus, these findings demonstrate that learning new word-to-meaning associations is mainly dependent on temporal white matter pathways. Copyright © 2017 the authors 0270-6474/17/3711102-13$15.00/0.
Steventon, Jessica J.; Trueman, Rebecca C.; Rosser, Anne E.; Jones, Derek K.
2016-01-01
Background Huge advances have been made in understanding and addressing confounds in diffusion MRI data to quantify white matter microstructure. However, there has been a lag in applying these advances in clinical research. Some confounds are more pronounced in HD which impedes data quality and interpretability of patient-control differences. This study presents an optimised analysis pipeline and addresses specific confounds in a HD patient cohort. Method 15 HD gene-positive and 13 matched control participants were scanned on a 3T MRI system with two diffusion MRI sequences. An optimised post processing pipeline included motion, eddy current and EPI correction, rotation of the B matrix, free water elimination (FWE) and tractography analysis using an algorithm capable of reconstructing crossing fibres. The corpus callosum was examined using both a region-of-interest and a deterministic tractography approach, using both conventional diffusion tensor imaging (DTI)-based and spherical deconvolution analyses. Results Correcting for CSF contamination significantly altered microstructural metrics and the detection of group differences. Reconstructing the corpus callosum using spherical deconvolution produced a more complete reconstruction with greater sensitivity to group differences, compared to DTI-based tractography. Tissue volume fraction (TVF) was reduced in HD participants and was more sensitive to disease burden compared to DTI metrics. Conclusion Addressing confounds in diffusion MR data results in more valid, anatomically faithful white matter tract reconstructions with reduced within-group variance. TVF is recommended as a complementary metric, providing insight into the relationship with clinical symptoms in HD not fully captured by conventional DTI metrics. PMID:26335798
Steventon, Jessica J; Trueman, Rebecca C; Rosser, Anne E; Jones, Derek K
2016-05-30
Huge advances have been made in understanding and addressing confounds in diffusion MRI data to quantify white matter microstructure. However, there has been a lag in applying these advances in clinical research. Some confounds are more pronounced in HD which impedes data quality and interpretability of patient-control differences. This study presents an optimised analysis pipeline and addresses specific confounds in a HD patient cohort. 15 HD gene-positive and 13 matched control participants were scanned on a 3T MRI system with two diffusion MRI sequences. An optimised post processing pipeline included motion, eddy current and EPI correction, rotation of the B matrix, free water elimination (FWE) and tractography analysis using an algorithm capable of reconstructing crossing fibres. The corpus callosum was examined using both a region-of-interest and a deterministic tractography approach, using both conventional diffusion tensor imaging (DTI)-based and spherical deconvolution analyses. Correcting for CSF contamination significantly altered microstructural metrics and the detection of group differences. Reconstructing the corpus callosum using spherical deconvolution produced a more complete reconstruction with greater sensitivity to group differences, compared to DTI-based tractography. Tissue volume fraction (TVF) was reduced in HD participants and was more sensitive to disease burden compared to DTI metrics. Addressing confounds in diffusion MR data results in more valid, anatomically faithful white matter tract reconstructions with reduced within-group variance. TVF is recommended as a complementary metric, providing insight into the relationship with clinical symptoms in HD not fully captured by conventional DTI metrics. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Soccer Heading Is Associated with White Matter Microstructural and Cognitive Abnormalities
Kim, Namhee; Zimmerman, Molly E.; Kim, Mimi; Stewart, Walter F.; Branch, Craig A.
2013-01-01
Purpose: To investigate the association of soccer heading with subclinical evidence of traumatic brain injury. Materials and Methods: With institutional review board approval and compliance with HIPAA guidelines, 37 amateur soccer players (mean age, 30.9 years; 78% [29] men, 22% [eight] women) gave written informed consent and completed a questionnaire to quantify heading in the prior 12 months and lifetime concussions. Diffusion-tensor magnetic resonance (MR) imaging at 3.0 T was performed (32 directions; b value, 800 sec/mm2; 2 × 2 × 2-mm voxels). Cognitive function was measured by using a computerized battery of tests. Voxelwise linear regression (heading vs fractional anisotropy [FA]) was applied to identify significant regional associations. FA at each location and cognition were tested for a nonlinear relationship to heading by using an inverse logit model that incorporated demographic covariates and history of concussion. Results: Participants had headed 32–5400 times (median, 432 times) over the previous year. Heading was associated with lower FA at three locations in temporo-occipital white matter with a threshold that varied according to location (885–1550 headings per year) (P < .00001). Lower levels of FA were also associated with poorer memory scores (P < .00001), with a threshold of 1800 headings per year. Lifetime concussion history and demographic features were not significantly associated with either FA or cognitive performance. Conclusion: Heading is associated with abnormal white matter microstructure and with poorer neurocognitive performance. This relationship is not explained by a history of concussion. © RSNA, 2013 PMID:23757503
Simmonds, Daniel J; Hallquist, Michael N; Asato, Miya; Luna, Beatriz
2014-05-15
White matter (WM) continues to mature through adolescence in parallel with gains in cognitive ability. To date, developmental changes in human WM microstructure have been inferred using analyses of cross-sectional or two time-point follow-up studies, limiting our understanding of individual developmental trajectories. The aims of the present longitudinal study were to characterize the timing of WM growth and investigate how sex and behavior are associated with different developmental trajectories. We utilized diffusion tensor imaging (DTI) in 128 individuals aged 8-28, who received annual scans for up to 5 years and completed motor and cognitive tasks. Flexible nonlinear growth curves indicated a hierarchical pattern of WM development. By late childhood, posterior cortical-subcortical connections were similar to adults. During adolescence, WM microstructure reached adult levels, including frontocortical, frontosubcortical and cerebellar connections. Later to mature in adulthood were major corticolimbic association tracts and connections at terminal gray matter sites in cortical and basal ganglia regions. These patterns may reflect adolescent maturation of frontal connectivity supporting cognitive abilities, particularly the protracted refinement of corticolimbic connectivity underlying cognition-emotion interactions. Sex and behavior also played a large role. Males showed continuous WM growth from childhood through early adulthood, whereas females mainly showed growth during mid-adolescence. Further, earlier WM growth in adolescence was associated with faster and more efficient responding and better inhibitory control whereas later growth in adulthood was associated with poorer performance, suggesting that the timing of WM growth is important for cognitive development. Copyright © 2013 Elsevier Inc. All rights reserved.
Microstructural abnormalities of the brain white matter in attention-deficit/hyperactivity disorder
Chen, Lizhou; Huang, Xiaoqi; Lei, Du; He, Ning; Hu, Xinyu; Chen, Ying; Li, Yuanyuan; Zhou, Jinbo; Guo, Lanting; Kemp, Graham J.; Gong, Qiyong
2015-01-01
Background Attention-deficit/hyperactivity disorder (ADHD) is an early-onset neurodevelopmental disorder with multiple behavioural problems and executive dysfunctions for which neuroimaging studies have reported a variety of abnormalities, with inconsistencies partly owing to confounding by medication and concurrent psychiatric disease. We aimed to investigate the microstructural abnormalities of white matter in unmedicated children and adolescents with pure ADHD and to explore the association between these abnormalities and behavioural symptoms and executive functions. Methods We assessed children and adolescents with ADHD and healthy controls using psychiatric interviews. Behavioural problems were rated using the revised Conners’ Parent Rating Scale, and executive functions were measured using the Stroop Colour-Word Test and the Wisconsin Card Sorting test. We acquired diffusion tensor imaging data using a 3 T MRI system, and we compared diffusion parameters, including fractional anisotropy (FA) and mean, axial and radial diffusivities, between the 2 groups. Results Thirty-three children and adolescents with ADHD and 35 healthy controls were included in our study. In patients compared with controls, FA was increased in the left posterior cingulum bundle as a result of both increased axial diffusivity and decreased radial diffusivity. In addition, the averaged FA of the cluster in this region correlated with behavioural measures as well as executive function in patients with ADHD. Limitations This study was limited by its cross-sectional design and small sample size. The cluster size of the significant result was small. Conclusion Our findings suggest that white matter abnormalities within the limbic network could be part of the neural underpinning of behavioural problems and executive dysfunction in patients with ADHD. PMID:25853285
Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI
NASA Astrophysics Data System (ADS)
Nunes, Daniel; Cruz, Tomás L.; Jespersen, Sune N.; Shemesh, Noam
2017-04-01
White Matter (WM) microstructures, such as axonal density and average diameter, are crucial to the normal function of the Central Nervous System (CNS) as they are closely related with axonal conduction velocities. Conversely, disruptions of these microstructural features may result in severe neurological deficits, suggesting that their noninvasive mapping could be an important step towards diagnosing and following pathophysiology. Whereas diffusion based MRI methods have been proposed to map these features, they typically entail the application of powerful gradients, which are rarely available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures - such as axons and extra-axonal spaces, which were here used as a simple model for the microstructure - and that, for axons parallel to the main magnetic field, the axonal density can be extracted. We then experimentally demonstrate in ex-vivo rat spinal cords that its different tracts - characterized by different microstructures - can be clearly contrasted using the MGE-derived maps. When the quantitative results are compared against ground-truth histology, they reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing a potential and usefulness of the approach to map underlying microstructures using a simple and time-efficient MRI sequence. We further show that a simple general-linear-model can predict the average axonal diameters from the four model parameters, and map these average axonal diameters in the spinal cords. While clearly further modelling and theoretical developments are necessary, we conclude that salient WM microstructural features can be extracted from simple, SNR-efficient multi-gradient echo MRI, and that this paves the way towards easier estimation of WM microstructure in vivo.
Mapping axonal density and average diameter using non-monotonic time-dependent gradient-echo MRI.
Nunes, Daniel; Cruz, Tomás L; Jespersen, Sune N; Shemesh, Noam
2017-04-01
White Matter (WM) microstructures, such as axonal density and average diameter, are crucial to the normal function of the Central Nervous System (CNS) as they are closely related with axonal conduction velocities. Conversely, disruptions of these microstructural features may result in severe neurological deficits, suggesting that their noninvasive mapping could be an important step towards diagnosing and following pathophysiology. Whereas diffusion based MRI methods have been proposed to map these features, they typically entail the application of powerful gradients, which are rarely available in the clinic, or extremely long acquisition schemes to extract information from parameter-intensive models. In this study, we suggest that simple and time-efficient multi-gradient-echo (MGE) MRI can be used to extract the axon density from susceptibility-driven non-monotonic decay in the time-dependent signal. We show, both theoretically and with simulations, that a non-monotonic signal decay will occur for multi-compartmental microstructures - such as axons and extra-axonal spaces, which were here used as a simple model for the microstructure - and that, for axons parallel to the main magnetic field, the axonal density can be extracted. We then experimentally demonstrate in ex-vivo rat spinal cords that its different tracts - characterized by different microstructures - can be clearly contrasted using the MGE-derived maps. When the quantitative results are compared against ground-truth histology, they reflect the axonal fraction (though with a bias, as evident from Bland-Altman analysis). As well, the extra-axonal fraction can be estimated. The results suggest that our model is oversimplified, yet at the same time evidencing a potential and usefulness of the approach to map underlying microstructures using a simple and time-efficient MRI sequence. We further show that a simple general-linear-model can predict the average axonal diameters from the four model parameters, and map these average axonal diameters in the spinal cords. While clearly further modelling and theoretical developments are necessary, we conclude that salient WM microstructural features can be extracted from simple, SNR-efficient multi-gradient echo MRI, and that this paves the way towards easier estimation of WM microstructure in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
McLaughlin, Kristine; Travers, Brittany G; Dadalko, Olga I; Dean, Douglas C; Tromp, Do; Adluru, Nagesh; Destiche, Daniel; Freeman, Abigail; Prigge, Molly D; Froehlich, Alyson; Duffield, Tyler C; Zielinski, Brandon A; Bigler, Erin D; Lange, Nicholas; Anderson, Jeff S; Alexander, Andrew L; Lainhart, Janet E
2018-03-01
The thalamus is a key sensorimotor relay area that is implicated in autism spectrum disorder (ASD). However, it is unknown how the thalamus and white-matter structures that contain thalamo-cortical fiber connections (e.g., the internal capsule) develop from childhood into adulthood and whether this microstructure relates to basic motor challenges in ASD. We used diffusion weighted imaging in a cohort-sequential design to assess longitudinal development of the thalamus, and posterior- and anterior-limbs of the internal capsule (PLIC and ALIC, respectively) in 89 males with ASD and 56 males with typical development (3-41 years; all verbal). Our results showed that the group with ASD exhibited different developmental trajectories of microstructure in all regions, demonstrating childhood group differences that appeared to approach and, in some cases, surpass the typically developing group in adolescence and adulthood. The PLIC (but not ALIC nor thalamus) mediated the relation between age and finger-tapping speed in both groups. Yet, the gap in finger-tapping speed appeared to widen at the same time that the between-group gap in the PLIC appeared to narrow. Overall, these results suggest that childhood group differences in microstructure of the thalamus and PLIC become less robust in adolescence and adulthood. Further, finger-tapping speed appears to be mediated by the PLIC in both groups, but group differences in motor speed that widen during adolescence and adulthood suggest that factors beyond the microstructure of the thalamus and internal capsule may contribute to atypical motor profiles in ASD. Autism Res 2018, 11: 450-462. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Microstructure of the thalamus, a key sensory and motor brain area, appears to develop differently in individuals with autism spectrum disorder (ASD). Microstructure is important because it informs us of the density and organization of different brain tissues. During childhood, thalamic microstructure was distinct in the ASD group compared to the typically developing group. However, these group differences appeared to narrow with age, suggesting that the thalamus continues to dynamically change in ASD into adulthood. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
In Vivo Evidence of Reduced Integrity of the Gray-White Matter Boundary in Autism Spectrum Disorder.
Andrews, Derek Sayre; Avino, Thomas A; Gudbrandsen, Maria; Daly, Eileen; Marquand, Andre; Murphy, Clodagh M; Lai, Meng-Chuan; Lombardo, Michael V; Ruigrok, Amber N V; Williams, Steven C; Bullmore, Edward T; The Mrc Aims Consortium; Suckling, John; Baron-Cohen, Simon; Craig, Michael C; Murphy, Declan G M; Ecker, Christine
2017-02-01
Atypical cortical organization and reduced integrity of the gray-white matter boundary have been reported by postmortem studies in individuals with autism spectrum disorder (ASD). However, there are no in vivo studies that examine these particular features of cortical organization in ASD. Hence, we used structural magnetic resonance imaging to examine differences in tissue contrast between gray and white matter in 98 adults with ASD and 98 typically developing controls, to test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More specifically, we examined contrast as a percentage between gray and white matter tissue signal intensities (GWPC) sampled at the gray-white matter boundary, and across different cortical layers. We found that individuals with ASD had significantly reduced GWPC in several clusters throughout the cortex (cluster, P < 0.05). As expected, these reductions were greatest when tissue intensities were sampled close to gray-white matter interface, which indicates a less distinct gray-white matter boundary in ASD. Our in vivo findings of reduced GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined gray-white matter boundary in ASD. Taken together, these results indicate that GWPC might be utilized as an in vivo proxy measure of atypical cortical microstructural organization in future studies. © The Author 2017. Published by Oxford University Press.
ERIC Educational Resources Information Center
Frak, Victor; Paulignan, Yves; Jeannerod, Marc; Michel, Francois; Cohen, Henri
2006-01-01
Prehension movements of the right hand were recorded in a right-handed man (AC), with an injury to the left posterior parietal cortex (PPC) and with a section of the left half of the splenium. The kinematic analysis of AC's grasping movements in direct and perturbed conditions was compared to that of five control subjects. A novel effect in…
1996-12-01
callosities appear on the foetuses whilst they 3.1 The Goals of Evolution and Learning are still within the egg and so cannot be the result of abrasion but...now abuse by them until no stimulus was required and the calluses ap- taking drugs and eating too much chocolate). In an A- pear on the foetus . They
Visual Characterization of VX Droplets on Plant Foliage
2016-07-01
epicuticular waxes, which are complex lipophilic mixtures of primarily long-chain aliphatics, including primary alcohols (n-alkan-1-ols), aldehydes, fatty...2006). Trichomes act in a complex way relative to spread of herbicide solution and sorption of herbicide. Trichomes may cause reduced wetting and...Bicellular trichomes discharge a mucilage-type secretion that contains callose, a carbohydrate component (1,3-glucan) usually associated with “walling
NASA Astrophysics Data System (ADS)
Wilkinson, Taylor Marie
Oil shales are naturally occurring heterogeneous composites with micro-scale, micro-structural variations. They may be found throughout the world, with large deposits located in the United States; shales are composed of organic matter known as kerogen, clays, calcite, quartz, and other minerals. Typically their microstructure consists of a composite network where the organic matter is housed in open and closed pores between different mineral phases that range in size from sub-micron to several microns. Currently, it is unknown how the micro-scale heterogeneity of the shale will impact hydraulic fracture, which is the key extraction technique used for these materials. In this thesis, high-resolution topographic and modulus maps were collected from oil shales with the use of new nanoindentation techniques in order to characterize the micro-scale, micro-structural variations that are typical for these materials. Dynamic modulus mapping allows for substantially higher spatial resolution of properties across grains and intragranular regions of kerogen than has previously been produced with standard quasistatic indentation methods. For accurate scanning, surface variations were minimized to maintain uniform contact of the tip and appropriate quasi-static and dynamic forces were used to maintain displacement amplitudes that avoid plastic deformation of the sample. Sample preparation to minimize surface roughness was completed with the use of focused ion beam milling, however, some variation was still noted. Due to the large changes in modulus values between the constituents of the shale, there were variations in the recorded displacement amplitude values as well. In order to distinguish biased data due to surface topography or a lack of displacement amplitude, filtering techniques were developed, optimization and implemented. Variations in surface topography, which resulted in the indenter tip not being able to accurately resolve surface features, and inadequate displacement amplitude values that prohibit differentiation between material changes and the noise floor of the machine, were removed. These filters resulted in a more valid interpretation of the micro-scale, micro-structural features and arrangement, as well as the mechanical properties, that are common to oil shales.
Sotiriou, P; Giannoutsou, E; Panteris, E; Apostolakos, P; Galatis, B
2016-03-01
This work investigates the involvement of local differentiation of cell wall matrix polysaccharides and the role of microtubules in the morphogenesis of mesophyll cells (MCs) of three types (lobed, branched and palisade) in the dicotyledon Vigna sinensis and the fern Asplenium nidus. Homogalacturonan (HGA) epitopes recognized by the 2F4, JIM5 and JIM7 antibodies and callose were immunolocalized in hand-made leaf sections. Callose was also stained with aniline blue. We studied microtubule organization by tubulin immunofluorescence and transmission electron microscopy. In both plants, the matrix cell wall polysaccharide distribution underwent definite changes during MC differentiation. Callose constantly defined the sites of MC contacts. The 2F4 HGA epitope in V. sinensis first appeared in MC contacts but gradually moved towards the cell wall regions facing the intercellular spaces, while in A. nidus it was initially localized at the cell walls delimiting the intercellular spaces, but finally shifted to MC contacts. In V. sinensis, the JIM5 and JIM7 HGA epitopes initially marked the cell walls delimiting the intercellular spaces and gradually shifted in MC contacts, while in A. nidus they constantly enriched MC contacts. In all MC types examined, the cortical microtubules played a crucial role in their morphogenesis. In particular, in palisade MCs, cortical microtubule helices, by controlling cellulose microfibril orientation, forced these MCs to acquire a truncated cone-like shape. Unexpectedly in V. sinensis, the differentiation of colchicine-affected MCs deviated completely, since they developed a cell wall ingrowth labyrinth, becoming transfer-like cells. The results of this work and previous studies on Zea mays (Giannoutsou et al., Annals of Botany 2013; 112: : 1067-1081) revealed highly controlled local cell wall matrix differentiation in MCs of species belonging to different plant groups. This, in coordination with microtubule-dependent cellulose microfibril alignment, spatially controlled cell wall expansion, allowing MCs to acquire their particular shape. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Breen, J E; Green, M J; Bradley, A J
2009-06-01
Quarter and cow risk factors associated with the development of clinical mastitis (CM) during lactation were investigated during a 12-mo longitudinal study on 8 commercial Holstein-Friesian dairy farms in the southwest of England. The individual risk factors studied on 1,677 cows included assessments of udder and leg hygiene, teat-end callosity, and hyperkeratosis; body condition score; and measurements of monthly milk quality and yield. Several outcome variables for CM were used for statistical analysis, which included use of generalized linear mixed models. Significant covariates associated with an increased risk of CM were increasing parity, decreasing month of lactation, cows with very dirty udders, and quarters with only very severe hyperkeratosis of the teat-end. Thin and moderate smooth teat-end callosity scores were not associated with an increased risk for CM. Cows that recorded a somatic cell count >199,000 cells/mL and a milk protein percentage <3.2 at the first milk recording after calving were significantly more likely to develop CM after the first 30 d of lactation. There was no association between cow body condition score and incidence of CM. Of the cases of CM available for culture, 171 (26.7%) were confirmed as being caused by Escherichia coli and 121 (18.9%) confirmed as being caused by Streptococcus uberis. Quarters with moderate and very severe hyperkeratosis of the teat-end were at significantly increased risk of clinical E. coli mastitis before the next visit. Quarters with very severe hyperkeratosis of the teat-end were significantly more likely to develop clinical Strep. uberis mastitis before the next visit. There were strong trends within the data to suggest an association between very dirty udders (an increased risk of clinical E. coli mastitis) and teat-ends with no callosity ring present (an increased risk of clinical Strep. uberis mastitis). These results highlight the importance of individual quarter- and cow-level risk factors in determining the risk of CM associated with environmental pathogens during lactation.