Sample records for matter density profiles

  1. Radial dependence of the dark matter distribution in M33

    NASA Astrophysics Data System (ADS)

    López Fune, E.; Salucci, P.; Corbelli, E.

    2017-06-01

    The stellar and gaseous mass distributions, as well as the extended rotation curve, in the nearby galaxy M33 are used to derive the radial distribution of dark matter density in the halo and to test cosmological models of galaxy formation and evolution. Two methods are examined to constrain the dark mass density profiles. The first method deals directly with fitting the rotation curve data in the range of galactocentric distances 0.24 ≤ r ≤ 22.72 kpc. Using the results of collisionless Λ cold dark matter numerical simulations, we confirm that the Navarro-Frenkel-White (NFW) dark matter profile provides a better fit to the rotation curve data than the cored Burkert profile (BRK) profile. The second method relies on the local equation of centrifugal equilibrium and on the rotation curve slope. In the aforementioned range of distances, we fit the observed velocity profile, using a function that has a rational dependence on the radius, and we derive the slope of the rotation curve. Then, we infer the effective matter densities. In the radial range 9.53 ≤ r ≤ 22.72 kpc, the uncertainties induced by the luminous matter (stars and gas) become negligible, because the dark matter density dominates, and we can determine locally the radial distribution of dark matter. With this second method, we tested the NFW and BRK dark matter profiles and we can confirm that both profiles are compatible with the data, even though in this case the cored BRK density profile provides a more reasonable value for the baryonic-to-dark matter ratio.

  2. The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons

    NASA Astrophysics Data System (ADS)

    Robertson, Andrew; Massey, Richard; Eke, Vincent; Tulin, Sean; Yu, Hai-Bo; Bahé, Yannick; Barnes, David J.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Kay, Scott T.; Schaller, Matthieu; Schaye, Joop

    2018-05-01

    We present the first simulated galaxy clusters (M200 > 1014 M⊙) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simulations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.

  3. Condensation of galactic cold dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visinelli, Luca

    2016-07-07

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Withinmore » the model proposed, we predict the mass of the cold dark matter particle to be of the order of M{sub χ}c{sup 2}≈10{sup −24} eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.« less

  4. Halo density profiles and baryon physics

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Li, Xi-Guo

    2017-08-01

    The radial dependence of the pseudo phase-space density, ρ( r)/ σ 3( r) is studied. We find that the pseudo phase-space density for halos consisting both of dark matter and baryons is approximately a power-law only down to 0.1% of the virial radius while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. Halos consisting just of dark matter, as the one in dark matter only simulations, are characterized by an approximately power-law behavior. The results argue against universality of the pseudo phase-space density, when the baryons effect are included, and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in [1].

  5. The density of dark matter in the Galactic bulge and implications for indirect detection

    DOE PAGES

    Hooper, Dan

    2016-11-29

    A recent study, making use of the number of horizontal branch stars observed in infrared photometric surveys and kinematic measurements of M-giant stars from the BRAVA survey, combined with N-body simulations of stellar populations, has presented a new determination of the dark matter mass within the bulge-bar region of the Milky Way. That study constrains the total mass within themore » $$\\pm 2.2 \\times \\pm 1.4 \\times \\pm 1.2$$ kpc volume of the bulge-bar region to be ($$1.84 \\pm 0.07) \\times 10^{10} \\, M_{\\odot}$$, of which 9-30% is made up of dark matter. Here, we use this result to constrain the the Milky Way's dark matter density profile, and discuss the implications for indirect dark matter searches. Furthermore uncertainties remain significant, these results favor dark matter distributions with a cusped density profile. For example, for a scale radius of 20 kpc and a local dark matter density of 0.4 GeV/cm$^3$, density profiles with an inner slope of 0.69 to 1.40 are favored, approximately centered around the standard NFW value. In contrast, profiles with large flat-density cores are disfavored by this information.« less

  6. Semi-empirical catalog of early-type galaxy-halo systems: dark matter density profiles, halo contraction and dark matter annihilation strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Kyu-Hyun; Kravtsov, Andrey V.; Frieman, Joshua A.

    With Sloan Digital Sky Survey galaxy data and halo data from up-to-date N-body simulations within the ΛCDM framework we construct a semi-empirical catalog (SEC) of early-type galaxy-halo systems by making a self-consistent bivariate statistical match of stellar mass (M{sub *}) and velocity dispersion (σ) with halo virial mass (M{sub vir}) as demonstrated here for the first time. We then assign stellar mass profile and velocity dispersion profile parameters to each system in the SEC using their observed correlations with M{sub *} and σ. Simultaneously, we solve for dark matter density profile of each halo using the spherical Jeans equation. Themore » resulting dark matter density profiles deviate in general from the dissipationless profile of Navarro-Frenk-White or Einasto and their mean inner density slope and concentration vary systematically with M{sub vir}. Statistical tests of the distribution of profiles at fixed M{sub vir} rule out the null hypothesis that it follows the distribution predicted by dissipationless N-body simulations for M{sub vir}∼<10{sup 13.5} {sup –} {sup 14.5} M{sub s}un. These dark matter profiles imply that dark matter density is, on average, enhanced significantly in the inner region of halos with M{sub vir}∼<10{sup 13.5} {sup –} {sup 14.5} M{sub s}un supporting halo contraction. The main characteristics of halo contraction are: (1) the mean dark matter density within the effective radius has increased by a factor varying systematically up to ≈ 3–4 at M{sub vir} = 10{sup 12} M{sub s}un, and (2) the inner density slope has a mean of (α) ≈ 1.3 with ρ{sub dm}(r)∝r{sup −α} and a halo-to-halo rms scatter of rms(α) ∼ 0.4–0.5 for 10{sup 12} M{sub s}un∼« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Kyu-Hyun; Kravtsov, Andrey V.; Frieman, Joshua A.

    With SDSS galaxy data and halo data from up-to-date N-body simulations we construct a semi-empirical catalog (SEC) of early-type systems by making a self-consistent bivariate statistical match of stellar mass (M_star) and velocity dispersion (sigma) with halo virial mass (M_vir). We then assign stellar mass profile and velocity dispersion profile parameters to each system in the SEC using their observed correlations with M_star and sigma. Simultaneously, we solve for dark matter density profile of each halo using the spherical Jeans equation. The resulting dark matter density profiles deviate in general from the dissipationless profile of NFW or Einasto and theirmore » mean inner density slope and concentration vary systematically with M_vir. Statistical tests of the distribution of profiles at fixed M_vir rule out the null hypothesis that it follows the distribution predicted by N-body simulations for M_vir ~< 10^{13.5-14.5} M_solar. These dark matter profiles imply that dark matter density is, on average, enhanced significantly in the inner region of halos with M_vir ~< 10^{13.5-14.5} M_solar supporting halo contraction. The main characteristics of halo contraction are: (1) the mean dark matter density within the effective radius has increased by a factor varying systematically up to ~ 3-4 at M_vir = 10^{12} M_solar, and (2) the inner density slope has a mean of ~ 1.3 with rho(r) ~ r^{-alpha} and a halo-to-halo rms scatter of rms(alpha) ~ 0.4-0.5 for 10^{12} M_solar ~< M_vir ~< 10^{13-14} M_solar steeper than the NFW profile (alpha=1). Based on our results we predict that halos of nearby elliptical and lenticular galaxies can, in principle, be promising targets for gamma-ray emission from dark matter annihilation.« less

  8. Bright gamma-ray Galactic Center excess and dark dwarfs: Strong tension for dark matter annihilation despite Milky Way halo profile and diffuse emission uncertainties

    NASA Astrophysics Data System (ADS)

    Abazajian, Kevork N.; Keeley, Ryan E.

    2016-04-01

    We incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center Extended gamma-ray excess (GCE) detected by the Fermi Gamma Ray Space Telescope. The range of particle annihilation rate and masses expand when including these unknowns. However, two of the most precise empirical determinations of the Milky Way halo's local density and density profile leave the signal region to be in considerable tension with dark matter annihilation searches from combined dwarf galaxy analyses for single-channel dark matter annihilation models. The GCE and dwarf tension can be alleviated if: one, the halo is very highly concentrated or strongly contracted; two, the dark matter annihilation signal differentiates between dwarfs and the GC; or, three, local stellar density measures are found to be significantly lower, like that from recent stellar counts, increasing the local dark matter density.

  9. The Structure of Dark Matter Halos in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    1995-07-01

    Recent observations indicate that dark matter halos have flat central density profiles. Cosmological simulations with nonbaryonic dark matter, however, predict self-similar halos with central density cusps. This contradiction has lead to the conclusion that dark matter must be baryonic. Here it is shown that the dark matter halos of dwarf spiral galaxies represent a one-parameter family with self-similar density profiles. The observed global halo parameters are coupled with each other through simple scaling relations which can be explained by the standard cold dark matter model if one assumes that all the halos formed from density fluctuations with the same primordial amplitude. We find that the finite central halo densities correlate with the other global parameters. This result rules out scenarios where the flat halo cores formed subsequently through violent dynamical processes in the baryonic component. These cores instead provide important information on the origin and nature of dark matter in dwarf galaxies.

  10. Einasto profiles and the dark matter power spectrum

    NASA Astrophysics Data System (ADS)

    Ludlow, Aaron D.; Angulo, Raúl E.

    2017-02-01

    We study the mass accretion histories (MAHs) and density profiles of dark matter haloes using N-body simulations of self-similar gravitational clustering from scale-free power spectra, P(k) ∝ kn. We pay particular attention to the density profile curvature, which we characterize using the shape parameter, α, of an Einasto profile. In agreement with previous findings, our results suggest that, despite vast differences in their MAHs, the density profiles of virialized haloes are remarkably alike. Nonetheless, clear departures from self-similarity are evident: For a given spectral index, α increases slightly but systematically with `peak height', ν ≡ δsc/σ(M, z), regardless of mass or redshift. More importantly, however, the `α-ν' relation depends on n: The steeper the initial power spectrum, the more gradual the curvature of both the mean MAHs and mean density profiles. These results are consistent with previous findings connecting the shapes of halo mass profiles and MAHs, and imply that dark matter haloes are not structurally self-similar but, through the merger history, retain a memory of the linear density field from which they form.

  11. Density profiles of supernova matter and determination of neutrino parameters

    NASA Astrophysics Data System (ADS)

    Chiu, Shao-Hsuan

    2007-08-01

    The flavor conversion of supernova neutrinos can lead to observable signatures related to the unknown neutrino parameters. As one of the determinants in dictating the efficiency of resonant flavor conversion, the local density profile near the Mikheyev-Smirnov-Wolfenstein (MSW) resonance in a supernova environment is, however, not so well understood. In this analysis, variable power-law functions are adopted to represent the independent local density profiles near the locations of resonance. It is shown that the uncertain matter density profile in a supernova, the possible neutrino mass hierarchies, and the undetermined 1-3 mixing angle would result in six distinct scenarios in terms of the survival probabilities of νe and ν¯e. The feasibility of probing the undetermined neutrino mass hierarchy and the 1-3 mixing angle with the supernova neutrinos is then examined using several proposed experimental observables. Given the incomplete knowledge of the supernova matter profile, the analysis is further expanded to incorporate the Earth matter effect. The possible impact due to the choice of models, which differ in the average energy and in the luminosity of neutrinos, is also addressed in the analysis.

  12. Head-on collision of multistate ultralight BEC dark matter configurations

    NASA Astrophysics Data System (ADS)

    Guzmán, F. S.; Avilez, Ana A.

    2018-06-01

    Density profiles of ultralight Bose-condensate dark matter inferred from numerical simulations of structure formation, ruled by the Gross-Pitaevskii-Poisson (GPP) system of equations, have a core-tail structure. Multistate equilibrium configurations of the GPP system, on the other hand, have a similar core-tail density profile. We now submit these multistate configurations to highly dynamical scenarios and show their potential as providers of appropriate density profiles of structures. We present the simulation of head-on collisions between two equilibrium configurations of the GPP system of equations, including the collision of ground state with multistate configurations. We study the regimes of solitonic and merger behavior and show generic properties of the dynamics of the system, including the relaxation process and attractor density profiles. We show that the merger of multistate configurations has the potential to produce core-tail density profiles, with the core dominated by the ground state and the halo dominated by an additional state.

  13. Emergence of a stellar cusp by a dark matter cusp in a low-mass compact ultrafaint dwarf galaxy

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki

    2017-06-01

    Recent observations have been discovering new ultrafaint dwarf galaxies as small as ˜20 pc in half-light radius and ˜3 km s-1 in line-of-sight velocity dispersion. In these galaxies, dynamical friction on a star against dark matter can be significant and alter their stellar density distribution. The effect can strongly depend on a central density profile of dark matter, I.e. cusp or core. In this study, I perform computations using a classical and a modern analytic formula and N-body simulations to study how dynamical friction changes a stellar density profile and how different it is between a cuspy and a cored dark matter halo. This study shows that, if a dark matter halo has a cusp, dynamical friction can cause shrivelling instability that results in emergence of a stellar cusp in the central region ≲2 pc. On the other hand, if it has a constant-density core, dynamical friction is significantly weaker and does not generate a stellar cusp even if the galaxy has the same line-of-sight velocity dispersion. In such a compact and low-mass galaxy, since the shrivelling instability by dynamical friction is inevitable if it has a dark matter cusp, absence of a stellar cusp implies that the galaxy has a dark matter core. I expect that this could be used to diagnose a dark matter density profile in these compact ultrafaint dwarf galaxies.

  14. Gravitationally Focused Dark Matter around Compact Stars

    NASA Astrophysics Data System (ADS)

    Bromley, Benjamin C.

    2011-12-01

    If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation may produce detectable γ-ray emission. Here, we discuss the possibility that an annihilation signal arises near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.

  15. An accurate analytic description of neutrino oscillations in matter

    NASA Astrophysics Data System (ADS)

    Akhmedov, E. Kh.; Niro, Viviana

    2008-12-01

    A simple closed-form analytic expression for the probability of two-flavour neutrino oscillations in a matter with an arbitrary density profile is derived. Our formula is based on a perturbative expansion and allows an easy calculation of higher order corrections. The expansion parameter is small when the density changes relatively slowly along the neutrino path and/or neutrino energy is not very close to the Mikheyev-Smirnov-Wolfenstein (MSW) resonance energy. Our approximation is not equivalent to the adiabatic approximation and actually goes beyond it. We demonstrate the validity of our results using a few model density profiles, including the PREM density profile of the Earth. It is shown that by combining the results obtained from the expansions valid below and above the MSW resonance one can obtain a very good description of neutrino oscillations in matter in the entire energy range, including the resonance region.

  16. The Baryonic and Dark Matter Distributions in Abell 401

    NASA Astrophysics Data System (ADS)

    Nevalainen, J.; Markevitch, M.; Forman, W.

    1999-11-01

    We combine spatially resolved ASCA temperature data with ROSAT imaging data to constrain the total mass distribution in the cluster A401, assuming that the cluster is in hydrostatic equilibrium, but without the assumption of gas isothermality. We obtain a total mass within the X-ray core (290 h-150 kpc) of 1.2+0.1-0.5×1014 h-150 Msolar at the 90% confidence level, 1.3 times larger than the isothermal estimate. The total mass within r500 (1.7 h-150 Mpc) is M500=0.9+0.3-0.2×1015 h-150 Msolar at 90% confidence, in agreement with the optical virial mass estimate, and 1.2 times smaller than the isothermal estimate. Our M500 value is 1.7 times smaller than that estimated using the mass-temperature scaling law predicted by simulations. The best-fit dark matter density profile scales as r-3.1 at large radii, which is consistent with the Navarro, Frenk & White (NFW) ``universal profile'' as well as the King profile of the galaxy density in A401. From the imaging data, the gas density profile is shallower than the dark matter profile, scaling as r-2.1 at large radii, leading to a monotonically increasing gas mass fraction with radius. Within r500 the gas mass fraction reaches a value of fgas=0.21+0.06-0.05 h-3/250 (90% confidence errors). Assuming that fgas (plus an estimate of the stellar mass) is the universal value of the baryon fraction, we estimate the 90% confidence upper limit of the cosmological matter density to be Ωm<0.31, in conflict with an Einstein-deSitter universe. Even though the NFW dark matter density profile is statistically consistent with the temperature data, its central temperature cusp would lead to convective instability at the center, because the gas density does not have a corresponding peak. One way to reconcile a cusp-shaped total mass profile with the observed gas density profile, regardless of the temperature data, is to introduce a significant nonthermal pressure in the center. Such a pressure must satisfy the hydrostatic equilibrium condition without inducing turbulence. Alternately, significant mass drop-out from the cooling flow would make the temperature less peaked and the NFW profile acceptable. However, the quality of data is not adequate to test this possibility.

  17. Static structure of chameleon dark matter as an explanation of dwarf spheroidal galaxy cores

    NASA Astrophysics Data System (ADS)

    Chanda, Prolay Krishna; Das, Subinoy

    2017-04-01

    We propose a novel mechanism that explains the cored dark matter density profile in recently observed dark matter rich dwarf spheroidal galaxies. In our scenario, dark matter particle mass decreases gradually as a function of distance towards the center of a dwarf galaxy due to its interaction with a chameleon scalar. At closer distance towards the Galactic center the strength of attractive scalar fifth force becomes much stronger than gravity and is balanced by the Fermi pressure of the dark matter cloud; thus, an equilibrium static configuration of the dark matter halo is obtained. Like the case of soliton star or fermion Q-star, the stability of the dark matter halo is obtained as the scalar achieves a static profile and reaches an asymptotic value away from the Galactic center. For simple scalar-dark matter interaction and quadratic scalar self-interaction potential, we show that dark matter behaves exactly like cold dark matter (CDM) beyond a few kpc away from the Galactic center but at closer distance it becomes lighter and Fermi pressure cannot be ignored anymore. Using Thomas-Fermi approximation, we numerically solve the radial static profile of the scalar field, fermion mass and dark matter energy density as a function of distance. We find that for fifth force mediated by an ultralight scalar, it is possible to obtain a flattened dark matter density profile towards the Galactic center. In our scenario, the fifth force can be neglected at distance r ≥1 kpc from the Galactic center and dark matter can be simply treated as heavy nonrelativistic particles beyond this distance, thus reproducing the success of CDM at large scales.

  18. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan

    We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster atmore » $z=1.06$. The arc system is notable for the presence of a bright central image. The source is a Lyman Break galaxy at $$z_s=2.39$$ and the mass enclosed within the 14 arc second radius Einstein ring is $$10^{14.2}$$ solar masses. We perform a full light profile reconstruction of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro-Frenk-White profile---with a free parameter for the inner density slope---we find that the break radius is $$270^{+48}_{-76}$$ kpc, and that the inner density falls with radius to the power $$-0.38\\pm0.04$$ at 68 percent confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter only simulations predict the inner density should fall as $$r^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two halo model can also reconstruct the data, with both clumps (density going as $$r^{-0.8}$$ and $$r^{-1.0}$$) much more consistent with predictions from dark matter only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less

  19. Density profile of dark matter haloes and galaxies in the HORIZON-AGN simulation: the impact of AGN feedback

    NASA Astrophysics Data System (ADS)

    Peirani, Sébastien; Dubois, Yohan; Volonteri, Marta; Devriendt, Julien; Bundy, Kevin; Silk, Joe; Pichon, Christophe; Kaviraj, Sugata; Gavazzi, Raphaël; Habouzit, Mélanie

    2017-12-01

    Using a suite of three large cosmological hydrodynamical simulations, HORIZON-AGN, HORIZON–NOAGN (no AGN feedback) and HORIZON-DM (no baryons), we investigate how a typical sub-grid model for AGN feedback affects the evolution of the inner density profiles of massive dark matter haloes and galaxies. Based on direct object-to-object comparisons, we find that the integrated inner mass and density slope differences between objects formed in these three simulations (hereafter, HAGN, HnoAGN and HDM) significantly evolve with time. More specifically, at high redshift (z ∼ 5), the mean central density profiles of HAGN and HnoAGN dark matter haloes tend to be much steeper than their HDM counterparts owing to the rapidly growing baryonic component and ensuing adiabatic contraction. By z ∼ 1.5, these mean halo density profiles in HAGN have flattened, pummelled by powerful AGN activity ('quasar mode'): the integrated inner mass difference gaps with HnoAGN haloes have widened, and those with HDM haloes have narrowed. Fast forward 9.5 billion years, down to z = 0, and the trend reverses: HAGN halo mean density profiles drift back to a more cusped shape as AGN feedback efficiency dwindles ('radio mode'), and the gaps in integrated central mass difference with HnoAGN and HDM close and broaden, respectively. On the galaxy side, the story differs noticeably. Averaged stellar profile central densities and inner slopes are monotonically reduced by AGN activity as a function of cosmic time, resulting in better agreement with local observations.

  20. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1 [Core or Cusps: The Central Dark Matter Profile of a Redshift One Strong Lensing Cluster with a Bright Central Image

    DOE PAGES

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan; ...

    2017-07-10

    Here, we report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec ismore » $$\\sim {10}^{14.2}\\ {M}_{\\odot }$$. We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro–Frenk–White profile—with a free parameter for the inner density slope—we find that the break radius is $${270}_{-76}^{+48}$$ kpc, and that the inner density falls with radius to the power –0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as $${r}^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as $${r}^{-0.8}$$ and $${r}^{-1.0}$$) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less

  1. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1 [Core or Cusps: The Central Dark Matter Profile of a Redshift One Strong Lensing Cluster with a Bright Central Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan

    Here, we report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec ismore » $$\\sim {10}^{14.2}\\ {M}_{\\odot }$$. We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro–Frenk–White profile—with a free parameter for the inner density slope—we find that the break radius is $${270}_{-76}^{+48}$$ kpc, and that the inner density falls with radius to the power –0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as $${r}^{-1}$$. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as $${r}^{-0.8}$$ and $${r}^{-1.0}$$) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.« less

  2. Effect of black holes in local dwarf spheroidal galaxies on gamma-ray constraints on dark matter annihilation

    NASA Astrophysics Data System (ADS)

    Gonzalez-Morales, Alma X.; Profumo, Stefano; Queiroz, Farinaldo S.

    2014-11-01

    Recent discoveries of optical signatures of black holes in dwarf galaxies indicates that low-mass galaxies can indeed host intermediate massive black holes. This motivates the assessment of the resulting effect on the host dark matter density profile, and the consequences for the constraints on the plane of the dark matter annihilation cross section versus mass, stemming from the nonobservation of gamma rays from local dwarf spheroidals with the Fermi Large Area Telescope. We compute the density profile using three different prescriptions for the black hole mass associated with a given spheroidal galaxy, and taking into account the cutoff to the density from dark matter pair-annihilation. We find that the limits on the dark matter annihilation rate from observations of individual dwarfs are enhanced by factors of a few up to 1 06 , depending on the specific galaxy, on the black hole mass prescription, and on the dark matter particle mass. We estimate limits from combined observations of a sample of 15 dwarfs, for a variety of assumptions on the dwarf black hole mass and on the dark matter density profile prior to adiabatic contraction. We find that if black holes are indeed present in local dwarf spheroidals, then, independent of assumptions, (i) the dark matter interpretation of the Galactic center gamma-ray excess would be conclusively ruled out, (ii) wino dark matter would be excluded up to masses of about 3 TeV, and (iii) vanilla thermal relic weakly interacting massive particles must be heavier than 100 GeV.

  3. Core or Cusps: The Central Dark Matter Profile of a Strong Lensing Cluster with a Bright Central Image at Redshift 1

    NASA Astrophysics Data System (ADS)

    Collett, Thomas E.; Buckley-Geer, Elizabeth; Lin, Huan; Bacon, David; Nichol, Robert C.; Nord, Brian; Morice-Atkinson, Xan; Amara, Adam; Birrer, Simon; Kuropatkin, Nikolay; More, Anupreeta; Papovich, Casey; Romer, Kathy K.; Tessore, Nicolas; Abbott, Tim M. C.; Allam, Sahar; Annis, James; Benoit-Lévy, Aurlien; Brooks, David; Burke, David L.; Carrasco Kind, Matias; Castander, Francisco Javier J.; D'Andrea, Chris B.; da Costa, Luiz N.; Desai, Shantanu; Diehl, H. Thomas; Doel, Peter; Eifler, Tim F.; Flaugher, Brenna; Frieman, Josh; Gerdes, David W.; Goldstein, Daniel A.; Gruen, Daniel; Gschwend, Julia; Gutierrez, Gaston; James, David J.; Kuehn, Kyler; Kuhlmann, Steve; Lahav, Ofer; Li, Ting S.; Lima, Marcos; Maia, Marcio A. G.; March, Marisa; Marshall, Jennifer L.; Martini, Paul; Melchior, Peter; Miquel, Ramon; Plazas, Andrs A.; Rykoff, Eli S.; Sanchez, Eusebio; Scarpine, Vic; Schindler, Rafe; Schubnell, Michael; Sevilla-Noarbe, Ignacio; Smith, Mathew; Sobreira, Flavia; Suchyta, Eric; Swanson, Molly E. C.; Tarle, Gregory; Tucker, Douglas L.; Walker, Alistair R.

    2017-07-01

    We report on SPT-CLJ2011-5228, a giant system of arcs created by a cluster at z = 1.06. The arc system is notable for the presence of a bright central image. The source is a Lyman break galaxy at z s = 2.39 and the mass enclosed within the Einstein ring of radius 14 arcsec is ˜ {10}14.2 {M}⊙ . We perform a full reconstruction of the light profile of the lensed images to precisely infer the parameters of the mass distribution. The brightness of the central image demands that the central total density profile of the lens be shallow. By fitting the dark matter as a generalized Navarro-Frenk-White profile—with a free parameter for the inner density slope—we find that the break radius is {270}-76+48 kpc, and that the inner density falls with radius to the power -0.38 ± 0.04 at 68% confidence. Such a shallow profile is in strong tension with our understanding of relaxed cold dark matter halos; dark matter-only simulations predict that the inner density should fall as {r}-1. The tension can be alleviated if this cluster is in fact a merger; a two-halo model can also reconstruct the data, with both clumps (density varying as {r}-0.8 and {r}-1.0) much more consistent with predictions from dark matter-only simulations. At the resolution of our Dark Energy Survey imaging, we are unable to choose between these two models, but we make predictions for forthcoming Hubble Space Telescope imaging that will decisively distinguish between them.

  4. What sets the central structure of dark matter haloes?

    NASA Astrophysics Data System (ADS)

    Ogiya, Go; Hahn, Oliver

    2018-02-01

    Dark matter (DM) haloes forming near the thermal cut-off scale of the density perturbations are unique, since they are the smallest objects and form through monolithic gravitational collapse, while larger haloes contrastingly have experienced mergers. While standard cold dark matter (CDM) simulations readily produce haloes that follow the universal Navarro-Frenk-White (NFW) density profile with an inner slope, ρ ∝ r-α, with α = 1, recent simulations have found that when the free-streaming cut-off expected for the CDM model is resolved, the resulting haloes follow nearly power-law density profiles of α ∼ 1.5. In this paper, we study the formation of density cusps in haloes using idealized N-body simulations of the collapse of proto-haloes. When the proto-halo profile is initially cored due to particle free-streaming at high redshift, we universally find ∼r-1.5 profiles irrespective of the proto-halo profile slope outside the core and large-scale non-spherical perturbations. Quite in contrast, when the proto-halo has a power-law profile, then we obtain profiles compatible with the NFW shape when the density slope of the proto-halo patch is shallower than a critical value, αini ∼ 0.3, while the final slope can be steeper for αini ≳ 0.3. We further demonstrate that the r-1.5 profiles are sensitive to small-scale noise, which gradually drives them towards an inner slope of -1, where they become resilient to such perturbations. We demonstrate that the r-1.5 solutions are in hydrostatic equilibrium, largely consistent with a simple analytic model, and provide arguments that angular momentum appears to determine the inner slope.

  5. Galaxy halo formation in the absence of violent relaxation and a universal density profile of the halo center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baushev, A. N., E-mail: baushev@gmail.com; Institut für Physik und Astronomie, Universität Potsdam, D-14476 Potsdam-Golm

    2014-05-01

    While N-body simulations testify to a cuspy profile of the central region of dark matter halos, observations favor a shallow, cored density profile of the central region of at least some spiral galaxies and dwarf spheroidals. We show that a central profile, very close to the observed one, inevitably forms in the center of dark matter halos if we make a supposition about a moderate energy relaxation of the system during the halo formation. If we assume the energy exchange between dark matter particles during the halo collapse is not too intensive, the profile is universal: it depends almost notmore » at all on the properties of the initial perturbation and is very akin, but not identical, to the Einasto profile with a small Einasto index n ∼ 0.5. We estimate the size of the 'central core' of the distribution, i.e., the extent of the very central region with a respectively gentle profile, and show that the cusp formation is unlikely, even if the dark matter is cold. The obtained profile is in good agreement with observational data for at least some types of galaxies but clearly disagrees with N-body simulations.« less

  6. The variation of rotation curve shapes as a signature of the effects of baryons on dark matter density profiles

    NASA Astrophysics Data System (ADS)

    Brook, Chris B.

    2015-12-01

    Rotation curves of galaxies show a wide range of shapes, which can be paramaterized as scatter in Vrot(1 kpc)/Vmax , i.e. the ratio of the rotation velocity measured at 1 kpc and the maximum measured rotation velocity. We examine whether the observed scatter can be accounted for by combining scatters in disc scalelengths, the concentration-halo mass relation, and the M⋆-Mhalo relation. We use these scatters to create model galaxy populations; when housed within dark matter haloes that have universal, Navarro, Frenk & White density profiles, the model does not match the lowest observed values of Vrot(1 kpc)/Vmax and has too little scatter in Vrot(1 kpc)/Vmax compared to observations. By contrast, a model using a mass-dependent dark matter profile, where the inner slope is determined by the ratio of M⋆/Mhalo, produces galaxies with low values of Vrot(1 kpc)/Vmax and a much larger scatter, both in agreement with observation. We conclude that the large observed scatter in Vrot(1 kpc)/Vmax favours density profiles that are significantly affected by baryonic processes. Alternative dark matter core formation models such as self-interacting dark matter may also account for the observed variation in rotation curve shapes, but these observations may provide important constraints in terms of core sizes, and whether they vary with halo mass and/or merger history.

  7. Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows.

    PubMed

    Governato, F; Brook, C; Mayer, L; Brooks, A; Rhee, G; Wadsley, J; Jonsson, P; Willman, B; Stinson, G; Quinn, T; Madau, P

    2010-01-14

    For almost two decades the properties of 'dwarf' galaxies have challenged the cold dark matter (CDM) model of galaxy formation. Most observed dwarf galaxies consist of a rotating stellar disk embedded in a massive dark-matter halo with a near-constant-density core. Models based on the dominance of CDM, however, invariably form galaxies with dense spheroidal stellar bulges and steep central dark-matter profiles, because low-angular-momentum baryons and dark matter sink to the centres of galaxies through accretion and repeated mergers. Processes that decrease the central density of CDM halos have been identified, but have not yet reconciled theory with observations of present-day dwarfs. This failure is potentially catastrophic for the CDM model, possibly requiring a different dark-matter particle candidate. Here we report hydrodynamical simulations (in a framework assuming the presence of CDM and a cosmological constant) in which the inhomogeneous interstellar medium is resolved. Strong outflows from supernovae remove low-angular-momentum gas, which inhibits the formation of bulges and decreases the dark-matter density to less than half of what it would otherwise be within the central kiloparsec. The analogues of dwarf galaxies-bulgeless and with shallow central dark-matter profiles-arise naturally in these simulations.

  8. The core-cusp problem: a matter of perspective

    NASA Astrophysics Data System (ADS)

    Genina, Anna; Benítez-Llambay, Alejandro; Frenk, Carlos S.; Cole, Shaun; Fattahi, Azadeh; Navarro, Julio F.; Oman, Kyle A.; Sawala, Till; Theuns, Tom

    2018-02-01

    The existence of two kinematically and chemically distinct stellar subpopulations in the Sculptor and Fornax dwarf galaxies offers the opportunity to constrain the density profile of their matter haloes by measuring the mass contained within the well-separated half-light radii of the two metallicity subpopulations. Walker and Peñarrubia have used this approach to argue that data for these galaxies are consistent with constant-density `cores' in their inner regions and rule out `cuspy' Navarro-Frenk-White (NFW) profiles with high statistical significance, particularly in the case of Sculptor. We test the validity of these claims using dwarf galaxies in the APOSTLE (A Project Of Simulating The Local Environment) Λ cold dark matter cosmological hydrodynamic simulations of analogues of the Local Group. These galaxies all have NFW dark matter density profiles and a subset of them develop two distinct metallicity subpopulations reminiscent of Sculptor and Fornax. We apply a method analogous to that of Walker and Peñarrubia to a sample of 50 simulated dwarfs and find that this procedure often leads to a statistically significant detection of a core in the profile when in reality there is a cusp. Although multiple factors contribute to these failures, the main cause is a violation of the assumption of spherical symmetry upon which the mass estimators are based. The stellar populations of the simulated dwarfs tend to be significantly elongated and, in several cases, the two metallicity populations have different asphericity and are misaligned. As a result, a wide range of slopes of the density profile are inferred depending on the angle from which the galaxy is viewed.

  9. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Steepening of the density profile under the action of a ponderomotive force during isothermal planar plasma expansion

    NASA Astrophysics Data System (ADS)

    Garanin, Sergey G.; Kir'yanov, Yu F.; Kochemasov, G. G.

    1990-06-01

    A theoretical investigation is reported of the deformation of the density profile of a plasma by a ponderomotive force under transient conditions. Initially, the structure of the density profile near the critical point coincides exactly with the solution of the steady-state problem. Plasma expansion is accompanied by growth of a spiky instability in the form of stimulated Brillouin scattering.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Kevin J.; Parke, Stephen J.

    Quantum mechanical interactions between neutrinos and matter along the path of propagation, the Wolfenstein matter effect, are of particular importance for the upcoming long-baseline neutrino oscillation experiments, specifically the Deep Underground Neutrino Experiment (DUNE). Here, we explore specifically what about the matter density profile can be measured by DUNE, considering both the shape and normalization of the profile between the neutrinos' origin and detection. Additionally, we explore the capability of a perturbative method for calculating neutrino oscillation probabilities and whether this method is suitable for DUNE. We also briefly quantitatively explore the ability of DUNE to measure the Earth's mattermore » density, and the impact of performing this measurement on measuring standard neutrino oscillation parameters.« less

  11. Cores in Dwarf Galaxies from Fermi Repulsion

    NASA Astrophysics Data System (ADS)

    Randall, Lisa; Scholtz, Jakub; Unwin, James

    2017-05-01

    We show that Fermi repulsion can lead to cored density profiles in dwarf galaxies for sub-keV fermionic dark matter. We treat the dark matter as a quasi-degenerate self-gravitating Fermi gas and calculate its density profile assuming hydrostatic equilibrium. We find that suitable dwarf galaxy cores of size ≳130 pc can be achieved for fermion dark matter with mass in the range of 70-400 eV. While in conventional dark matter scenarios such sub-keV thermal dark matter would be excluded by free streaming bounds, the constraints are ameliorated in models with dark matter at a lower temperature than conventional thermal scenarios, such as the Flooded Dark Matter model that we have previously considered. Modifying the arguments of Tremaine and Gunn, we derive a conservative lower bound on the mass of fermionic dark matter of 70 eV and a stronger lower bound from Lymanα clouds of about 470 eV, leading to slightly smaller cores than have been observed. We comment on this result and how the tension is relaxed in dark matter scenarios with non-thermal momentum distributions.

  12. Using voids to unscreen modified gravity

    NASA Astrophysics Data System (ADS)

    Falck, Bridget; Koyama, Kazuya; Zhao, Gong-Bo; Cautun, Marius

    2018-04-01

    The Vainshtein mechanism, present in many models of gravity, is very effective at screening dark matter haloes such that the fifth force is negligible and general relativity is recovered within their Vainshtein radii. Vainshtein screening is independent of halo mass and environment, in contrast to e.g. chameleon screening, making it difficult to test. However, our previous studies have found that the dark matter particles in filaments, walls, and voids are not screened by the Vainshtein mechanism. We therefore investigate whether cosmic voids, identified as local density minima using a watershed technique, can be used to test models of gravity that exhibit Vainshtein screening. We measure density, velocity, and screening profiles of stacked voids in cosmological N-body simulations using both dark matter particles and dark matter haloes as tracers of the density field. We find that the voids are completely unscreened, and the tangential velocity and velocity dispersion profiles of stacked voids show a clear deviation from Λ cold dark matter at all radii. Voids have the potential to provide a powerful test of gravity on cosmological scales.

  13. galstep: Initial conditions for spiral galaxy simulations

    NASA Astrophysics Data System (ADS)

    Ruggiero, Rafael

    2017-11-01

    galstep generates initial conditions for disk galaxy simulations with GADGET-2 (ascl:0003.001), RAMSES (ascl:1011.007) and GIZMO (ascl:1410.003), including a stellar disk, a gaseous disk, a dark matter halo and a stellar bulge. The first two components follow an exponential density profile, and the last two a Dehnen density profile with gamma=1 by default, corresponding to a Hernquist profile.

  14. The impact of baryonic discs on the shapes and profiles of self-interacting dark matter halos

    NASA Astrophysics Data System (ADS)

    Sameie, Omid; Creasey, Peter; Yu, Hai-Bo; Sales, Laura V.; Vogelsberger, Mark; Zavala, Jesús

    2018-06-01

    We employ isolated N-body simulations to study the response of self-interacting dark matter (SIDM) halos in the presence of the baryonic potentials. Dark matter self-interactions lead to kinematic thermalization in the inner halo, resulting in a tight correlation between the dark matter and baryon distributions. A deep baryonic potential shortens the phase of SIDM core expansion and triggers core contraction. This effect can be further enhanced by a large self-scattering cross section. We find the final SIDM density profile is sensitive to the baryonic concentration and the strength of dark matter self-interactions. Assuming a spherical initial halo, we also study evolution of the SIDM halo shape together with the density profile. The halo shape at later epochs deviates from spherical symmetry due to the influence of the non-spherical disc potential, and its significance depends on the baryonic contribution to the total gravitational potential, relative to the dark matter one. In addition, we construct a multi-component model for the Milky Way, including an SIDM halo, a stellar disc and a bulge, and show it is consistent with observations from stellar kinematics and streams.

  15. The Splashback Feature around DES Galaxy Clusters: Galaxy Density and Weak Lensing Profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chihway; et al.

    Splashback refers to the process of matter that is accreting onto a dark matter halo reaching its first orbital apocenter and turning around in its orbit. The cluster-centric radius at which this process occurs, r_sp, defines a halo boundary that is connected to the dynamics of the cluster, in contrast with other common halo boundary definitions such as R_200. A rapid decline in the matter density profile of the halo is expected near r_sp. We measure the galaxy number density and weak lensing mass profiles around RedMapper galaxy clusters in the first year Dark Energy Survey (DES) data. For amore » cluster sample with mean mass ~2.5 x 10^14 solar masses, we find strong evidence of a splashback-like steepening of the galaxy density profile and measure r_sp=1.16 +/- 0.08 Mpc/h, consistent with earlier SDSS measurements of More et al. (2016) and Baxter et al. (2017). Moreover, our weak lensing measurement demonstrates for the first time the existence of a splashback-like steepening of the matter profile of galaxy clusters. We measure r_sp=1.28 +/- 0.18 Mpc/h from the weak lensing data, in good agreement with our galaxy density measurements. Applying our analysis to different cluster and galaxy samples, we find that consistent with LambdaCDM simulations, r_sp scales with R_200m and does not evolve with redshift over the redshift range of 0.3--0.6. We also find that potential systematic effects associated with the RedMapper algorithm may impact the location of r_sp, in particular the choice of scale used to estimate cluster richness. We discuss progress needed to understand the systematic uncertainties and fully exploit forthcoming data from DES and future surveys, emphasizing the importance of more realistic mock catalogs and independent cluster samples.« less

  16. Astronomical Constraints on Quantum Cold Dark Matter

    NASA Astrophysics Data System (ADS)

    Spivey, Shane; Musielak, Z.; Fry, J.

    2012-01-01

    A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.

  17. The effect of random matter density perturbations on the large mixing angle solution to the solar neutrino problem

    NASA Astrophysics Data System (ADS)

    Guzzo, M. M.; Holanda, P. C.; Reggiani, N.

    2003-08-01

    The neutrino energy spectrum observed in KamLAND is compatible with the predictions based on the Large Mixing Angle realization of the MSW (Mikheyev-Smirnov-Wolfenstein) mechanism, which provides the best solution to the solar neutrino anomaly. From the agreement between solar neutrino data and KamLAND observations, we can obtain the best fit values of the mixing angle and square difference mass. When doing the fitting of the MSW predictions to the solar neutrino data, it is assumed the solar matter do not have any kind of perturbations, that is, it is assumed the the matter density monothonically decays from the center to the surface of the Sun. There are reasons to believe, nevertheless, that the solar matter density fluctuates around the equilibrium profile. In this work, we analysed the effect on the Large Mixing Angle parameters when the density matter randomically fluctuates around the equilibrium profile, solving the evolution equation in this case. We find that, in the presence of these density perturbations, the best fit values of the mixing angle and the square difference mass assume smaller values, compared with the values obtained for the standard Large Mixing Angle Solution without noise. Considering this effect of the random perturbations, the lowest island of allowed region for KamLAND spectral data in the parameter space must be considered and we call it very-low region.

  18. A Solution to ``Too Big to Fail''

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-10-01

    Its a tricky business to reconcile simulations of our galaxys formation with our current observations of the Milky Way and its satellites. In a recent study, scientists have addressed one discrepancy between simulations and observations: the so-called to big to fail problem.From Missing Satellites to Too Big to FailThe favored model of the universe is the lambda-cold-dark-matter (CDM) cosmological model. This model does a great job of correctly predicting the large-scale structure of the universe, but there are still a few problems with it on smaller scales.Hubble image of UGC 5497, a dwarf galaxy associated with Messier 81. In the missing satellite problem, simulations of galaxy formation predict that there should be more such satellite galaxies than we observe. [ESA/NASA]The first is the missing satellites problem: CDM cosmology predicts that galaxies like the Milky Way should have significantly more satellite galaxies than we observe. A proposed solution to this problem is the argument that there may exist many more satellites than weve observed, but these dwarf galaxies have had their stars stripped from them during tidal interactions which prevents us from being able to see them.This solution creates a new problem, though: the too big to fail problem. This problem states that many of the satellites predicted by CDM cosmology are simply so massive that theres no way they couldnt have visible stars. Another way of looking at it: the observed satellites of the Milky Way are not massive enough to be consistent with predictions from CDM.Artists illustration of a supernova, a type of stellar feedback that can modify the dark-matter distribution of a satellite galaxy. [NASA/CXC/M. Weiss]Density Profiles and Tidal StirringLed by Mihai Tomozeiu (University of Zurich), a team of scientists has published a study in which they propose a solution to the too big to fail problem. By running detailed cosmological zoom simulations of our galaxys formation, Tomozeiu and collaborators modeled the dark matter and the stellar content of the galaxy, tracking the formation and evolution of dark-matter subhalos.Based on the results of their simulations, the team argues that the too big to fail problem can be resolved by combining two effects:Stellar feedback in a satellite galaxy can modify its dark-matter distribution, lowering the dark-matter density in the galaxys center and creating a shallower density profile. Satellites with such shallow density profiles evolve differently than those typically modeled, which have a high concentration of dark matter in their centers.After these satellites fall into the Milky Ways potential, tidal effects such as shocks and stripping modify the mass distribution of both the dark matter and the baryons even further.Each curve represents a simulated satellites circular velocity (which corresponds to its total mass) at z=0. Left: results using typical dark-matter density profiles. Right: results using the shallower profiles expected when stellar feedback is included. Results from the shallower profiles are consistent with observed Milky-Way satellites(black crosses). [Adapted from Tomozeiu et al. 2016]A Match to ObservationsTomozeiu and collaborators found that when they used traditional density profiles to model the satellites, the satellites at z=0 in the simulation were much larger than those we observe around the Milky Way consistent with the too big to fail problem.When the team used shallower density profiles and took into account tidal effects, however, the simulations produced a distribution of satellites at z=0 that is consistent with what we observe.This study provides a tidy potential solution to the too big to fail problem, further strengthening the support for CDM cosmology.CitationMihai Tomozeiu et al 2016 ApJ 827 L15. doi:10.3847/2041-8205/827/1/L15

  19. On the observability of coupled dark energy with cosmic voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  20. Inversion method applied to the rotation curves of galaxies

    NASA Astrophysics Data System (ADS)

    Márquez-Caicedo, L. A.; Lora-Clavijo, F. D.; Sanabria-Gómez, J. D.

    2017-07-01

    We used simulated annealing, Montecarlo and genetic algorithm methods for matching both numerical data of density and velocity profiles in some low surface brigthness galaxies with theoretical models of Boehmer-Harko, Navarro-Frenk-White and Pseudo Isothermal Profiles for galaxies with dark matter halos. We found that Navarro-Frenk-White model does not fit at all in contrast with the other two models which fit very well. Inversion methods have been widely used in various branches of science including astrophysics (Charbonneau 1995, ApJS, 101, 309). In this work we have used three different parametric inversion methods (MonteCarlo, Genetic Algorithm and Simmulated Annealing) in order to determine the best fit of the observed data of the density and velocity profiles of a set of low surface brigthness galaxies (De Block et al. 2001, ApJ, 122, 2396) with three models of galaxies containing dark mattter. The parameters adjusted by the inversion methods were the central density and a characteristic distance in the Boehmer-Harko BH (Boehmer & Harko 2007, JCAP, 6, 25), Navarro-Frenk-White NFW (Navarro et al. 2007, ApJ, 490, 493) and Pseudo Isothermal Profile PI (Robles & Matos 2012, MNRAS, 422, 282). The results obtained showed that the BH and PI Profile dark matter galaxies fit very well for both the density and the velocity profiles, in contrast the NFW model did not make good adjustments to the profiles in any analized galaxy.

  1. Voids in cosmological simulations over cosmic time

    NASA Astrophysics Data System (ADS)

    Wojtak, Radosław; Powell, Devon; Abel, Tom

    2016-06-01

    We study evolution of voids in cosmological simulations using a new method for tracing voids over cosmic time. The method is based on tracking watershed basins (contiguous regions around density minima) of well-developed voids at low redshift, on a regular grid of density field. It enables us to construct a robust and continuous mapping between voids at different redshifts, from initial conditions to the present time. We discuss how the new approach eliminates strong spurious effects of numerical origin when voids' evolution is traced by matching voids between successive snapshots (by analogy to halo merger trees). We apply the new method to a cosmological simulation of a standard Λ-cold-dark-matter cosmological model and study evolution of basic properties of typical voids (with effective radii 6 h-1 Mpc < Rv < 20 h-1 Mpc at redshift z = 0) such as volumes, shapes, matter density distributions and relative alignments. The final voids at low redshifts appear to retain a significant part of the configuration acquired in initial conditions. Shapes of voids evolve in a collective way which barely modifies the overall distribution of the axial ratios. The evolution appears to have a weak impact on mutual alignments of voids implying that the present state is in large part set up by the primordial density field. We present evolution of dark matter density profiles computed on isodensity surfaces which comply with the actual shapes of voids. Unlike spherical density profiles, this approach enables us to demonstrate development of theoretically predicted bucket-like shape of the final density profiles indicating a wide flat core and a sharp transition to high-density void walls.

  2. Small scale clustering of late forming dark matter

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Corasaniti, P.-S.; Das, S.; Rasera, Y.

    2015-09-01

    We perform a study of the nonlinear clustering of matter in the late-forming dark matter (LFDM) scenario in which dark matter results from the transition of a nonminimally coupled scalar field from radiation to collisionless matter. A distinct feature of this model is the presence of a damped oscillatory cutoff in the linear matter power spectrum at small scales. We use a suite of high-resolution N-body simulations to study the imprints of LFDM on the nonlinear matter power spectrum, the halo mass and velocity functions and the halo density profiles. The model largely satisfies high-redshift matter power spectrum constraints from Lyman-α forest measurements, while it predicts suppressed abundance of low-mass halos (˜109- 1010 h-1 M⊙ ) at all redshifts compared to a vanilla Λ CDM model. The analysis of the LFDM halo velocity function shows a better agreement than the Λ CDM prediction with the observed abundance of low-velocity galaxies in the local volume. Halos with mass M ≳1011 h-1 M⊙ show minor departures of the density profiles from Λ CDM expectations, while smaller-mass halos are less dense, consistent with the fact that they form later than their Λ CDM counterparts.

  3. The dark matter of galaxy voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Lavaux, Guilhem; Wandelt, Benjamin D.; Weinberg, David H.; Warren, Michael S.

    2014-03-01

    How do observed voids relate to the underlying dark matter distribution? To examine the spatial distribution of dark matter contained within voids identified in galaxy surveys, we apply Halo Occupation Distribution models representing sparsely and densely sampled galaxy surveys to a high-resolution N-body simulation. We compare these galaxy voids to voids found in the halo distribution, low-resolution dark matter and high-resolution dark matter. We find that voids at all scales in densely sampled surveys - and medium- to large-scale voids in sparse surveys - trace the same underdensities as dark matter, but they are larger in radius by ˜20 per cent, they have somewhat shallower density profiles and they have centres offset by ˜ 0.4Rv rms. However, in void-to-void comparison we find that shape estimators are less robust to sampling, and the largest voids in sparsely sampled surveys suffer fragmentation at their edges. We find that voids in galaxy surveys always correspond to underdensities in the dark matter, though the centres may be offset. When this offset is taken into account, we recover almost identical radial density profiles between galaxies and dark matter. All mock catalogues used in this work are available at http://www.cosmicvoids.net.

  4. A Robust Mass Estimator for Dark Matter Subhalo Perturbations in Strong Gravitational Lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minor, Quinn E.; Kaplinghat, Manoj; Li, Nan

    A few dark matter substructures have recently been detected in strong gravitational lenses through their perturbations of highly magnified images. We derive a characteristic scale for lensing perturbations and show that they are significantly larger than the perturber’s Einstein radius. We show that the perturber’s projected mass enclosed within this radius, scaled by the log-slope of the host galaxy’s density profile, can be robustly inferred even if the inferred density profile and tidal radius of the perturber are biased. We demonstrate the validity of our analytic derivation using several gravitational lens simulations where the tidal radii and the inner log-slopesmore » of the density profile of the perturbing subhalo are allowed to vary. By modeling these simulated data, we find that our mass estimator, which we call the effective subhalo lensing mass, is accurate to within about 10% or smaller in each case, whereas the inferred total subhalo mass can potentially be biased by nearly an order of magnitude. We therefore recommend that the effective subhalo lensing mass be reported in future lensing reconstructions, as this will allow for a more accurate comparison with the results of dark matter simulations.« less

  5. Earth-mass haloes and the emergence of NFW density profiles

    NASA Astrophysics Data System (ADS)

    Angulo, Raul E.; Hahn, Oliver; Ludlow, Aaron D.; Bonoli, Silvia

    2017-11-01

    We simulate neutralino dark matter (χDM) haloes from their initial collapse, at ˜ earth mass, up to a few percent solar. Our results confirm that the density profiles of the first haloes are described by a ˜r-1.5 power law. As haloes grow in mass, their density profiles evolve significantly. In the central regions, they become shallower and reach on average ˜r-1, the asymptotic form of an NFW profile. Using non-cosmological controlled simulations, we observe that temporal variations in the gravitational potential caused by major mergers lead to a shallowing of the inner profile. This transformation is more significant for shallower initial profiles and for a higher number of merging systems. Depending on the merger details, the resulting profiles can be shallower or steeper than NFW in their inner regions. Interestingly, mergers have a much weaker effect when the profile is given by a broken power law with an inner slope of -1 (such as NFW or Hernquist profiles). This offers an explanation for the emergence of NFW-like profiles: after their initial collapse, r-1.5 χDM haloes suffer copious major mergers, which progressively shallows the profile. Once an NFW-like profile is established, subsequent merging does not change the profile anymore. This suggests that halo profiles are not universal but rather a combination of (1) the physics of the formation of the microhaloes and (2) their early merger history - both set by the properties of the dark matter particle - as well as (3) the resilience of NFW-like profiles to perturbations.

  6. MEASURING DARK MATTER PROFILES NON-PARAMETRICALLY IN DWARF SPHEROIDALS: AN APPLICATION TO DRACO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardel, John R.; Gebhardt, Karl; Fabricius, Maximilian H.

    2013-02-15

    We introduce a novel implementation of orbit-based (or Schwarzschild) modeling that allows dark matter density profiles to be calculated non-parametrically in nearby galaxies. Our models require no assumptions to be made about velocity anisotropy or the dark matter profile. The technique can be applied to any dispersion-supported stellar system, and we demonstrate its use by studying the Local Group dwarf spheroidal galaxy (dSph) Draco. We use existing kinematic data at larger radii and also present 12 new radial velocities within the central 13 pc obtained with the VIRUS-W integral field spectrograph on the 2.7 m telescope at McDonald Observatory. Ourmore » non-parametric Schwarzschild models find strong evidence that the dark matter profile in Draco is cuspy for 20 {<=} r {<=} 700 pc. The profile for r {>=} 20 pc is well fit by a power law with slope {alpha} = -1.0 {+-} 0.2, consistent with predictions from cold dark matter simulations. Our models confirm that, despite its low baryon content relative to other dSphs, Draco lives in a massive halo.« less

  7. The flat density profiles of massive, and relaxed galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popolo, A. Del, E-mail: adelpopolo@oact.inaf.it

    2014-07-01

    The present paper is an extension and continuation of Del Popolo (2012a) which studied the role of baryon physics on clusters of galaxies formation. In the present paper, we studied by means of the SIM introduced in Del Popolo (2009), the total and DM density profiles, and the correlations among different quantities, observed by Newman et al. (2012a,b), in seven massive and relaxed clusters, namely MS2137, A963, A383, A611, A2537, A2667, A2390. As already found in Del Popolo 2012a, the density profiles depend on baryonic fraction, angular momentum, and the angular momentum transferred from baryons to DM through dynamical friction.more » Similarly to Newman et al. (2012a,b), the total density profile, in the radius range 0.003–0.03r{sub 200}, has a mean total density profile in agreement with dissipationless simulations. The slope of the DM profiles of all clusters is flatter than -1. The slope, α, has a maximum value (including errors) of α = −0.88 in the case of A2390, and minimum value α = −0.14 for A2537. The baryonic component dominates the mass distribution at radii < 5–10 kpc, while the outer distribution is dark matter dominated. We found an anti-correlation among the slope α, the effective radius, R{sub e}, and the BCG mass, and a correlation among the core radius r{sub core}, and R{sub e}. Moreover, the mass in 100 kpc (mainly dark matter) is correlated with the mass inside 5 kpc (mainly baryons). The behavior of the total mass density profile, the DM density profile, and the quoted correlations can be understood in a double phase scenario. In the first dissipative phase the proto-BCG forms, and in the second dissipationless phase, dynamical friction between baryonic clumps (collapsing to the center) and the DM halo flattens the inner slope of the density profile. In simple terms, the large scatter in the inner slope from cluster to cluster, and the anti-correlation among the slope, α and R{sub e} is due to the fact that in order to have a total mass density profile which is NFW-like, clusters having more massive BCGs at their centers must contain less DM in their center. Consequently the inner profile has a flatter slope.« less

  8. THE DARK HALO-SPHEROID CONSPIRACY AND THE ORIGIN OF ELLIPTICAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remus, Rhea-Silvia; Burkert, Andreas; Dolag, Klaus

    2013-04-01

    Dynamical modeling and strong-lensing data indicate that the total density profiles of early-type galaxies are close to isothermal, i.e., {rho}{sub tot}{proportional_to}r {sup {gamma}} with {gamma} Almost-Equal-To -2. To understand the origin of this universal slope we study a set of simulated spheroids formed in isolated binary mergers as well as the formation within the cosmological framework. The total stellar plus dark matter density profiles can always be described by a power law with an index of {gamma} Almost-Equal-To -2.1 with a tendency toward steeper slopes for more compact, lower-mass ellipticals. In the binary mergers the amount of gas involved inmore » the merger determines the precise steepness of the slope. This agrees with results from the cosmological simulations where ellipticals with steeper slopes have a higher fraction of stars formed in situ. Each gas-poor merger event evolves the slope toward {gamma} {approx} -2, once this slope is reached further merger events do not change it anymore. All our ellipticals have flat intrinsic combined stellar and dark matter velocity dispersion profiles. We conclude that flat velocity dispersion profiles and total density distributions with a slope of {gamma} {approx} -2 for the combined system of stars and dark matter act as a natural attractor. The variety of complex formation histories as present in cosmological simulations, including major as well as minor merger events, is essential to generate the full range of observed density slopes seen for present-day elliptical galaxies.« less

  9. Internal dark matter structure of the most massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Le Brun, A. M. C.; Arnaud, M.; Pratt, G. W.; Teyssier, R.

    2018-01-01

    We investigate the evolution of the dark matter density profiles of the most massive galaxy clusters in the Universe. Using a `zoom-in' procedure on a large suite of cosmological simulations of total comoving volume of 3 (h - 1 Gpc)3, we study the 25 most massive clusters in four redshift slices from z ˜ 1 to the present. The minimum mass is M500 > 5.5 × 1014 M⊙ at z = 1. Each system has more than two million particles within r500. Once scaled to the critical density at each redshift, the dark matter profiles within r500 are strikingly similar from z ˜ 1 to the present day, exhibiting a low dispersion of 0.15 dex, and showing little evolution with redshift in the radial logarithmic slope and scatter. They have the running power-law shape typical of the Navarro-Frenk-White type profiles, and their inner structure, resolved to 3.8 h-1 comoving kpc at z = 1, shows no signs of converging to an asymptotic slope. Our results suggest that this type of profile is already in place at z > 1 in the highest-mass haloes in the Universe, and that it remains exceptionally robust to merging activity.

  10. Constraints on Dark Matter Annihilation by Synchrotron Emission based on Planck Data

    NASA Astrophysics Data System (ADS)

    Muanglay, Chalit; Wechakama, Maneenate; Cantlay, Brandon K.

    2017-09-01

    Synchrotron emission can be a good probe for dark matter particles in the Milky Way. We have investigated the production of electrons and positrons in the Milky Way within the context of dark matter annihilation. Upper limits on the relevant cross-section are obtained by comparing synchrotron emission in the microwave bands with Planck data. According to our results, the dark matter annihilation cross-section into electron-positron pairs should not be higher than the canonical value for a thermal relic if the mass of the dark matter candidate is smaller than a few GeV. In addition, we also look for constraints on the inner slope of dark matter density profile in the Milky Way. Our results indicate that the inner slope of dark matter profile is between 1 to 1.5.

  11. Tying dark matter to baryons with self-interactions.

    PubMed

    Kaplinghat, Manoj; Keeley, Ryan E; Linden, Tim; Yu, Hai-Bo

    2014-07-11

    Self-interacting dark matter (SIDM) models have been proposed to solve the small-scale issues with the collisionless cold dark matter paradigm. We derive equilibrium solutions in these SIDM models for the dark matter halo density profile including the gravitational potential of both baryons and dark matter. Self-interactions drive dark matter to be isothermal and this ties the core sizes and shapes of dark matter halos to the spatial distribution of the stars, a radical departure from previous expectations and from cold dark matter predictions. Compared to predictions of SIDM-only simulations, the core sizes are smaller and the core densities are higher, with the largest effects in baryon-dominated galaxies. As an example, we find a core size around 0.3 kpc for dark matter in the Milky Way, more than an order of magnitude smaller than the core size from SIDM-only simulations, which has important implications for indirect searches of SIDM candidates.

  12. Dark Matter Profiles in Dwarf Galaxies: A Statistical Sample Using High-Resolution Hα Velocity Fields from PCWI

    NASA Astrophysics Data System (ADS)

    Relatores, Nicole C.; Newman, Andrew B.; Simon, Joshua D.; Ellis, Richard; Truong, Phuongmai N.; Blitz, Leo

    2018-01-01

    We present high quality Hα velocity fields for a sample of nearby dwarf galaxies (log M/M⊙ = 8.4-9.8) obtained as part of the Dark Matter in Dwarf Galaxies survey. The purpose of the survey is to investigate the cusp-core discrepancy by quantifying the variation of the inner slope of the dark matter distributions of 26 dwarf galaxies, which were selected as likely to have regular kinematics. The data were obtained with the Palomar Cosmic Web Imager, located on the Hale 5m telescope. We extract rotation curves from the velocity fields and use optical and infrared photometry to model the stellar mass distribution. We model the total mass distribution as the sum of a generalized Navarro-Frenk-White dark matter halo along with the stellar and gaseous components. We present the distribution of inner dark matter density profile slopes derived from this analysis. For a subset of galaxies, we compare our results to an independent analysis based on CO observations. In future work, we will compare the scatter in inner density slopes, as well as their correlations with galaxy properties, to theoretical predictions for dark matter core creation via supernovae feedback.

  13. Testing feedback-modified dark matter haloes with galaxy rotation curves: estimation of halo parameters and consistency with ΛCDM scaling relations

    NASA Astrophysics Data System (ADS)

    Katz, Harley; Lelli, Federico; McGaugh, Stacy S.; Di Cintio, Arianna; Brook, Chris B.; Schombert, James M.

    2017-04-01

    Cosmological N-body simulations predict dark matter (DM) haloes with steep central cusps (e.g. NFW). This contradicts observations of gas kinematics in low-mass galaxies that imply the existence of shallow DM cores. Baryonic processes such as adiabatic contraction and gas outflows can, in principle, alter the initial DM density profile, yet their relative contributions to the halo transformation remain uncertain. Recent high-resolution, cosmological hydrodynamic simulations by Di Cintio et al. (DC14) predict that inner density profiles depend systematically on the ratio of stellar-to-DM mass (M*/Mhalo). Using a Markov Chain Monte Carlo approach, we test the NFW and the M*/Mhalo-dependent DC14 halo models against a sample of 147 galaxy rotation curves from the new Spitzer Photometry and Accurate Rotation Curves data set. These galaxies all have extended H I rotation curves from radio interferometry as well as accurate stellar-mass-density profiles from near-infrared photometry. The DC14 halo profile provides markedly better fits to the data compared to the NFW profile. Unlike NFW, the DC14 halo parameters found in our rotation-curve fits naturally fall within two standard deviations of the mass-concentration relation predicted by Λ cold dark matter (ΛCDM) and the stellar mass-halo mass relation inferred from abundance matching with few outliers. Halo profiles modified by baryonic processes are therefore more consistent with expectations from ΛCDM cosmology and provide better fits to galaxy rotation curves across a wide range of galaxy properties than do halo models that neglect baryonic physics. Our results offer a solution to the decade long cusp-core discrepancy.

  14. Dynamics of Dwarf Galaxies Disfavor Stellar-Mass Black Holes as Dark Matter.

    PubMed

    Koushiappas, Savvas M; Loeb, Abraham

    2017-07-28

    We study the effects of black hole dark matter on the dynamical evolution of stars in dwarf galaxies. We find that mass segregation leads to a depletion of stars in the center of dwarf galaxies and the appearance of a ring in the projected stellar surface density profile. Using Segue 1 as an example we show that current observations of the projected surface stellar density rule out at the 99.9% confidence level the possibility that more than 6% of the dark matter is composed of black holes with a mass of few tens of solar masses.

  15. ASCA observation of NGC 4636: Dark matter and metallicity gradient

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Loewenstein, M.; Awaki, H.; Makishima, K.; Matsushita, K.; Matsumoto, H.

    1994-01-01

    We present our analysis of ASCA PV phase observation of the elliptical galaxy NGC 4636. Solid state imaging spectrometer (SIS) spectra in six concentric annuli centered on NGC 4636 are used to derive temperature, metallicity, and column density profiles for the hot interstellar medium. Outside of the central 3 min the temperature is roughly constant at approximately 0.85 keV, while the metallicity decreases from greater than 0.36 solar at the center to less than 0.12 solar at R approximately 9 min. The implications of this gradient for elliptical galaxy formation and the enrichment of intracluster gas are discussed. We derive a detailed mass profile consistent with the stellar velocity dispersion and with ROSAT position sensitive proportional counter (PSPC) and ASCA SIS X-ray temperature profiles. We find that NGC 4636 becomes dark matter dominated at roughly the de Vaucouleurs radius, and, at r approximately 100 kpc, the ratio of dark to luminous matter density is approximately 80 and solar mass/solar luminosity approximately equal to 150. Evidence for the presence of a cooling flow is also discussed.

  16. Individualized Instruction in Science, Time-Space-Matter, Self-Directed Activities.

    ERIC Educational Resources Information Center

    Kuczma, R. M.

    As a supplement to Learning Activity Packages (LAP) on the time-space-matter subject, details are presented for self-directed activities. Major descriptions are given on the background of LAP characteristics, metric system, profile graph construction, spectroscope operation, radiant energy measurement, sunspot effects, density determination,…

  17. Mass discrepancy-acceleration relation: A universal maximum dark matter acceleration and implications for the ultralight scalar dark matter model

    NASA Astrophysics Data System (ADS)

    Ureña-López, L. Arturo; Robles, Victor H.; Matos, T.

    2017-08-01

    Recent analysis of the rotation curves of a large sample of galaxies with very diverse stellar properties reveals a relation between the radial acceleration purely due to the baryonic matter and the one inferred directly from the observed rotation curves. Assuming the dark matter (DM) exists, this acceleration relation is tantamount to an acceleration relation between DM and baryons. This leads us to a universal maximum acceleration for all halos. Using the latter in DM profiles that predict inner cores implies that the central surface density μDM=ρsrs must be a universal constant, as suggested by previous studies of selected galaxies, revealing a strong correlation between the density ρs and scale rs parameters in each profile. We then explore the consequences of the constancy of μDM in the context of the ultralight scalar field dark matter model (SFDM). We find that for this model μDM=648 M⊙ pc-2 and that the so-called WaveDM soliton profile should be a universal feature of the DM halos. Comparing with the data from the Milky Way and Andromeda satellites, we find that they are all consistent with a boson mass of the scalar field particle of the order of 10-21 eV /c2, which puts the SFDM model in agreement with recent cosmological constraints.

  18. The dark matter content of Local Group dwarf spheroidals

    NASA Astrophysics Data System (ADS)

    Collins, Michelle; PAndAS Team

    2016-01-01

    Dwarf spheroidal galaxies are the most dark matter dominated objects we have observed in the Universe. By measuring the dynamics of their stellar populations, we can hope to map out the shapes of their central density profiles, and compare these to expectations from simulations. In this poster, we will present the central kinematics of a range of dwarf galaxies around the Milky Way and Andromeda, taken as part of the PAndAS Keck II DEIMOS survey. We will highlight a number of unusual objects, which have either very high mass to light ratios - indicating they may be promising candidates for indirect detection experiments - or those with exceptionally low central densities, whose kinematic profiles suggest that these systems are out of dynamical equilibrium.

  19. A new method to quantify the effects of baryons on the matter power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Aurel; Teyssier, Romain, E-mail: aurel@physik.uzh.ch, E-mail: teyssier@physik.uzh.ch

    2015-12-01

    Future large-scale galaxy surveys have the potential to become leading probes for cosmology provided the influence of baryons on the total mass distribution is understood well enough. As hydrodynamical simulations strongly depend on details in the feedback implementations, no unique and robust predictions for baryonic effects currently exist. In this paper we propose a baryonic correction model that modifies the density field of dark-matter-only N-body simulations to mimic the effects of baryons from any underlying adopted feedback recipe. The model assumes haloes to consist of 4 components: 1- hot gas in hydrostatical equilibrium, 2- ejected gas from feedback processes, 3-more » central galaxy stars, and 4- adiabatically relaxed dark matter, which all modify the initial dark-matter-only density profiles. These altered profiles allow to define a displacement field for particles in N-body simulations and to modify the total density field accordingly. The main advantage of the baryonic correction model is to connect the total matter density field to the observable distribution of gas and stars in haloes, making it possible to parametrise baryonic effects on the matter power spectrum. We show that the most crucial quantities are the mass fraction of ejected gas and its corresponding ejection radius. The former controls how strongly baryons suppress the power spectrum, while the latter provides a measure of the scale where baryonic effects become important. A comparison with X-ray and Sunyaev-Zel'dovich cluster observations suggests that baryons suppress wave modes above k∼0.5 h/Mpc with a maximum suppression of 10-25 percent around k∼ 2 h/Mpc. More detailed observations of the gas in the outskirts of groups and clusters are required to decrease the large uncertainties of these numbers.« less

  20. Do satellite galaxies trace matter in galaxy clusters?

    NASA Astrophysics Data System (ADS)

    Wang, Chunxiang; Li, Ran; Gao, Liang; Shan, Huanyuan; Kneib, Jean-Paul; Wang, Wenting; Chen, Gang; Makler, Martin; Pereira, Maria E. S.; Wang, Lin; Maia, Marcio A. G.; Erben, Thomas

    2018-04-01

    The spatial distribution of satellite galaxies encodes rich information of the structure and assembly history of galaxy clusters. In this paper, we select a red-sequence Matched-filter Probabilistic Percolation cluster sample in SDSS Stripe 82 region with 0.1 ≤ z ≤ 0.33, 20 < λ < 100, and Pcen > 0.7. Using the high-quality weak lensing data from CS82 Survey, we constrain the mass profile of this sample. Then we compare directly the mass density profile with the satellite number density profile. We find that the total mass and number density profiles have the same shape, both well fitted by an NFW profile. The scale radii agree with each other within a 1σ error (r_s,gal=0.34_{-0.03}^{+0.04} Mpc versus r_s=0.37_{-0.10}^{+0.15} Mpc).

  1. Asymmetric mass models of disk galaxies. I. Messier 99

    NASA Astrophysics Data System (ADS)

    Chemin, Laurent; Huré, Jean-Marc; Soubiran, Caroline; Zibetti, Stefano; Charlot, Stéphane; Kawata, Daisuke

    2016-04-01

    Mass models of galactic disks traditionally rely on axisymmetric density and rotation curves, paradoxically acting as if their most remarkable asymmetric features, such as lopsidedness or spiral arms, were not important. In this article, we relax the axisymmetry approximation and introduce a methodology that derives 3D gravitational potentials of disk-like objects and robustly estimates the impacts of asymmetries on circular velocities in the disk midplane. Mass distribution models can then be directly fitted to asymmetric line-of-sight velocity fields. Applied to the grand-design spiral M 99, the new strategy shows that circular velocities are highly nonuniform, particularly in the inner disk of the galaxy, as a natural response to the perturbed gravitational potential of luminous matter. A cuspy inner density profile of dark matter is found in M 99, in the usual case where luminous and dark matter share the same center. The impact of the velocity nonuniformity is to make the inner profile less steep, although the density remains cuspy. On another hand, a model where the halo is core dominated and shifted by 2.2-2.5 kpc from the luminous mass center is more appropriate to explain most of the kinematical lopsidedness evidenced in the velocity field of M 99. However, the gravitational potential of luminous baryons is not asymmetric enough to explain the kinematical lopsidedness of the innermost regions, irrespective of the density shape of dark matter. This discrepancy points out the necessity of an additional dynamical process in these regions: possibly a lopsided distribution of dark matter.

  2. Evolution of density and velocity profiles of dark matter and dark energy in spherical voids

    NASA Astrophysics Data System (ADS)

    Novosyadlyj, Bohdan; Tsizh, Maksym; Kulinich, Yurij

    2017-02-01

    We analyse the evolution of cosmological perturbations which leads to the formation of large isolated voids in the Universe. We assume that initial perturbations are spherical and all components of the Universe (radiation, matter and dark energy) are continuous media with ideal fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations for every component in the comoving to cosmological background reference frame are obtained from equations of energy and momentum conservation and Einstein's ones and are integrated numerically. Initial conditions are set at the early stage of evolution in the radiation-dominated epoch, when the scale of perturbation is much larger than the particle horizon. Results show how the profiles of density and velocity of matter and dark energy are formed and how they depend on parameters of dark energy and initial conditions. In particular, it is shown that final matter density and velocity amplitudes change within range ˜4-7 per cent when the value of equation-of-state parameter of dark energy w vary in the range from -0.8 to -1.2, and change within ˜1 per cent only when the value of effective sound speed of dark energy vary over all allowable range of its values.

  3. The Galactic Isotropic γ-ray Background and Implications for Dark Matter

    NASA Astrophysics Data System (ADS)

    Campbell, Sheldon S.; Kwa, Anna; Kaplinghat, Manoj

    2018-06-01

    We present an analysis of the radial angular profile of the galacto-isotropic (GI) γ-ray flux-the statistically uniform flux in angular annuli centred on the Galactic centre. Two different approaches are used to measure the GI flux profile in 85 months of Fermi-LAT data: the BDS statistical method which identifies spatial correlations, and a new Poisson ordered-pixel method which identifies non-Poisson contributions. Both methods produce similar GI flux profiles. The GI flux profile is well-described by an existing model of bremsstrahlung, π0 production, inverse Compton scattering, and the isotropic background. Discrepancies with data in our full-sky model are not present in the GI component, and are therefore due to mis-modelling of the non-GI emission. Dark matter annihilation constraints based solely on the observed GI profile are close to the thermal WIMP cross section below 100 GeV, for fixed models of the dark matter density profile and astrophysical γ-ray foregrounds. Refined measurements of the GI profile are expected to improve these constraints by a factor of a few.

  4. Finite Temperature Density Profile in SFDM

    NASA Astrophysics Data System (ADS)

    Robles, Victor H.; Matos, T.

    Recent high-quality observations of low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. On the other hand the standard cold dark matter model simulations predict a more cuspy behavior. Feedback from star formation has been widely used to reconcile simulations with observations, this might be successful in field dwarf galaxies but its success in high mass LSB galaxies remains unclear. Additionally, including too much feedback in the simulations is a double-edged sword, in order to obtain a cored DM distribution from an initially cuspy one, feedback recipes require to remove a large quantity of baryons from the center of galaxies, however, other feedback recipes produce twice more satellite galaxies of a given luminosity and with much smaller mass to light ratios from those that are observed. Therefore, one DM profile that produces cores naturally and that does not require large amounts of feedback would be preferable. We find both requirements to be satisfied in the scalar field dark matter model. Here, we consider that the dark matter is an auto-interacting real scalar field in a thermal bath of temperature T with an initial Z 2 symmetric potential, as the universe expands the temperature drops so that the Z 2 symmetry is spontaneously broken and the field rolls down to a new minimum. We give an exact analytic solution to the Newtonian limit of this system and show both, that it satisfies the two desired requirements and that the rotation curve profile is not longer universal.

  5. Dwarf Galaxy Dark Matter Density Profiles Inferred from Stellar and Gas Kinematics

    NASA Astrophysics Data System (ADS)

    Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.; van den Bosch, Remco C. E.; Barentine, John C.; Bender, Ralf; Gebhardt, Karl; Hill, Gary J.; Murphy, Jeremy D.; Swaters, R. A.; Thomas, Jens; van de Ven, Glenn

    2014-07-01

    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the seven galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these three trends for feedback models. Determining the importance of these correlations will require further model developments and larger observational samples. This paper includes data obtained at The McDonald Observatory of The University of Texas at Austin.

  6. Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.

    2014-07-01

    We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the sevenmore » galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these three trends for feedback models. Determining the importance of these correlations will require further model developments and larger observational samples.« less

  7. Surface structure of neutron stars with high magnetic fields

    NASA Technical Reports Server (NTRS)

    Fushiki, I.; Gudmundsson, E. H.; Pethick, C. J.

    1989-01-01

    The equation of state of cold dense matter in strong magnetic fields is calculated in the Thomas-Fermi and Thomas-Fermi-Dirac approximations. For use in the latter calculation, a new expression is derived for the exchange energy of the uniform electron gas in a strong magnetic field. Detailed calculations of the density profile in the surface region of a neutron star are described for a variety of equations of state, and these show that the surface density profile is strongly affected by the magnetic field, irrespective of whether or not matter in a magnetic field has a condensed state bound with respect to isolated atoms. It is also shown that, as a consequence of the field dependence of the screening potential, magnetic fields can significantly increase nuclear reaction rates.

  8. A method for evaluating models that use galaxy rotation curves to derive the density profiles

    NASA Astrophysics Data System (ADS)

    de Almeida, Álefe O. F.; Piattella, Oliver F.; Rodrigues, Davi C.

    2016-11-01

    There are some approaches, either based on General Relativity (GR) or modified gravity, that use galaxy rotation curves to derive the matter density of the corresponding galaxy, and this procedure would either indicate a partial or a complete elimination of dark matter in galaxies. Here we review these approaches, clarify the difficulties on this inverted procedure, present a method for evaluating them, and use it to test two specific approaches that are based on GR: the Cooperstock-Tieu (CT) and the Balasin-Grumiller (BG) approaches. Using this new method, we find that neither of the tested approaches can satisfactorily fit the observational data without dark matter. The CT approach results can be significantly improved if some dark matter is considered, while for the BG approach no usual dark matter halo can improve its results.

  9. CLUMPY: A code for γ-ray signals from dark matter structures

    NASA Astrophysics Data System (ADS)

    Charbonnier, Aldée; Combet, Céline; Maurin, David

    2012-03-01

    We present the first public code for semi-analytical calculation of the γ-ray flux astrophysical J-factor from dark matter annihilation/decay in the Galaxy, including dark matter substructures. The core of the code is the calculation of the line of sight integral of the dark matter density squared (for annihilations) or density (for decaying dark matter). The code can be used in three modes: i) to draw skymaps from the Galactic smooth component and/or the substructure contributions, ii) to calculate the flux from a specific halo (that is not the Galactic halo, e.g. dwarf spheroidal galaxies) or iii) to perform simple statistical operations from a list of allowed DM profiles for a given object. Extragalactic contributions and other tracers of DM annihilation (e.g. positrons, anti-protons) will be included in a second release.

  10. Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud

    NASA Technical Reports Server (NTRS)

    Drlica-Wagner, Alex; Gomez-Vargas, German A.; Hewitt, John W.; Linden, Tim; Tibaldo, Luigi

    2014-01-01

    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (approximately 3 x 10 (sup -26) cubic centimeters per second) for dark matter masses less than or approximately 30 gigaelectronvolts annihilating via the B/B- bar oscillation or tau/antitau channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.

  11. Searching For Dark Matter Annihilation In The Smith High-Velocity Cloud

    DOE PAGES

    Drlica-Wagner, Alex; Gómez-Vargas, Germán A.; Hewitt, John W.; ...

    2014-06-27

    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use γ-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant γ-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation crossmore » section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (~3 × 10 -26 cm3 s -1) for dark matter masses . 30 GeV annihilating via the b¯b or τ⁺τ⁻ channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.« less

  12. Suppression of the multi-azimuthal-angle instability in dense neutrino gas during supernova accretion phase

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sovan; Mirizzi, Alessandro; Saviano, Ninetta; Seixas, David de Sousa

    2014-05-01

    It has been recently pointed out that by removing the axial symmetry in the "multi-angle effects" associated with the neutrino-neutrino interactions for supernova (SN) neutrinos a new multi-azimuthal-angle (MAA) instability would arise. In particular, for a flux ordering Fνe>Fν ¯e>Fνx, as expected during the SN accretion phase, this instability occurs in the normal neutrino mass hierarchy. However, during this phase, the ordinary matter density can be larger than the neutrino one, suppressing the self-induced conversions. In this regard, we investigate the matter suppression of the MAA effects, performing a linearized stability analysis of the neutrino equations of motion, in the presence of realistic SN density profiles. We compare these results with the numerical solution of the SN neutrino nonlinear evolution equations. Assuming axially symmetric distributions of neutrino momenta, we find that the large matter term strongly inhibits the MAA effects. In particular, the hindrance becomes stronger including realistic forward-peaked neutrino angular distributions. As a result, in our model for a 10.8 M⊙ iron-core SNe, MAA instability does not trigger any flavor conversion during the accretion phase. Instead, for a 8.8 M⊙ O-Ne-Mg core SN model, with lower matter density profile and less forward-peaked angular distributions, flavor conversions are possible also at early times.

  13. Systematics in lensing reconstruction: dark matter rings in the sky?

    NASA Astrophysics Data System (ADS)

    Ponente, P. P.; Diego, J. M.

    2011-11-01

    Context. Non-parametric lensing methods are a useful way of reconstructing the lensing mass of a cluster without making assumptions about the way the mass is distributed in the cluster. These methods are particularly powerful in the case of galaxy clusters with a large number of constraints. The advantage of not assuming implicitly that the luminous matter follows the dark matter is particularly interesting in those cases where the cluster is in a non-relaxed dynamical state. On the other hand, non-parametric methods have several limitations that should be taken into account carefully. Aims: We explore some of these limitations and focus on their implications for the possible ring of dark matter around the galaxy cluster CL0024+17. Methods: We project three background galaxies through a mock cluster of known radial profile density and obtain a map for the arcs (θ map). We also calculate the shear field associated with the mock cluster across the whole field of view (3.3 arcmin). Combining the positions of the arcs and the two-direction shear, we perform an inversion of the lens equation using two separate methods, the biconjugate gradient, and the quadratic programming (QADP) to reconstruct the convergence map of the mock cluster. Results: We explore the space of the solutions of the convergence map and compare the radial density profiles to the density profile of the mock cluster. When the inversion matrix algorithms are forced to find the exact solution, we encounter systematic effects resembling ring structures, that clearly depart from the original convergence map. Conclusions: Overfitting lensing data with a non-parametric method can produce ring-like structures similar to the alleged one in CL0024.

  14. Toroidal halos in a nontopological soliton model of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielke, Eckehard W.; Perez, Jose A. Velez

    2007-02-15

    Soliton type solutions of an axionlike scalar model with self-interaction are analyzed further as a toy model of dark matter halos. For a 'nonlinear superposition' of round and flattened configurations we found ringlike substructures in the density profile similarly as has been inferred for our Galaxy from the observed excess of the diffuse component of cosmic gamma rays.

  15. The effects of baryon physics, black holes and active galactic nucleus feedback on the mass distribution in clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Teyssier, Romain; Moore, Ben; Wentz, Tina

    2012-06-01

    The spatial distribution of matter in clusters of galaxies is mainly determined by the dominant dark matter component; however, physical processes involving baryonic matter are able to modify it significantly. We analyse a set of 500 pc resolution cosmological simulations of a cluster of galaxies with mass comparable to Virgo, performed with the AMR code RAMSES. We compare the mass density profiles of the dark, stellar and gaseous matter components of the cluster that result from different assumptions for the subgrid baryonic physics and galaxy formation processes. First, the prediction of a gravity-only N-body simulation is compared to that of a hydrodynamical simulation with standard galaxy formation recipes, and then all results are compared to a hydrodynamical simulation which includes thermal active galactic nucleus (AGN) feedback from supermassive black holes (SMBHs). We find the usual effects of overcooling and adiabatic contraction in the run with standard galaxy formation physics, but very different results are found when implementing SMBHs and AGN feedback. Star formation is strongly quenched, producing lower stellar densities throughout the cluster, and much less cold gas is available for star formation at low redshifts. At redshift z= 0 we find a flat density core of radius 10 kpc in both the dark and stellar matter density profiles. We speculate on the possible formation mechanisms able to produce such cores and we conclude that they can be produced through the coupling of different processes: (I) dynamical friction from the decay of black hole orbits during galaxy mergers; (II) AGN-driven gas outflows producing fluctuations of the gravitational potential causing the removal of collisionless matter from the central region of the cluster; (III) adiabatic expansion in response to the slow expulsion of gas from the central region of the cluster during the quiescent mode of AGN activity.

  16. The Very Small Scale Clustering of SDSS-II and SDSS-III Galaxies

    NASA Astrophysics Data System (ADS)

    Piscionere, Jennifer

    2015-01-01

    We measure the angular clustering of galaxies from the Sloan Digital Sky Survey Data Release 7 in order to probe the spatial distribution of satellite galaxies within their dark matter halos. Specifically, we measure the angular correlation function on very small scales (7 - 320‧‧) in a range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -21) that are constructed from the subset of SDSS that has been spectroscopically observed more than once (the so-called plate overlap region). We choose to measure angular clustering in this reduced survey footprint in order to minimize the effects of fiber collision incompleteness, which are otherwise substantial on these small scales. We model our clustering measurements using a fully numerical halo model that populates dark matter halos in N-body simulations to create realistic mock galaxy catalogs. The model has free parameters that specify both the number and spatial distribution of galaxies within their host halos. We adopt a flexible density profile for the spatial distribution of satellite galaxies that is similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the inner slope is allowed to vary. We find that the angular clustering of our most luminous samples (Mr < -20 and -21) suggests that luminous satellite galaxies have substantially steeper inner density profiles than NFW. Lower luminosity samples are less constraining, however, and are consistent with satellite galaxies having shallow density profiles. Our results confirm the findings of Watson et al. (2012) while using different clustering measurements and modeling methodology. With the new SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al., 2013), we can measure how the same class of galaxy evolves over time. The BOSS CMASS sample is of roughly constant stellar mass and number density out to z ˜ 0.6. The clustering of these samples appears to evolve very little with redshift, and each of the samples exhibit flattening of wp at roughly the same comoving distance of 100kpc.

  17. Pressure from dark matter annihilation and the rotation curve of spiral galaxies

    NASA Astrophysics Data System (ADS)

    Wechakama, M.; Ascasibar, Y.

    2011-05-01

    The rotation curves of spiral galaxies are one of the basic predictions of the cold dark matter paradigm, and their shape in the innermost regions has been hotly debated over the last decades. The present work shows that dark matter annihilation into electron-positron pairs may affect the observed rotation curve by a significant amount. We adopt a model-independent approach, where all the electrons and positrons are injected with the same initial energy E0˜mdmc2 in the range from 1 MeV to 1 TeV and the injection rate is constrained by INTEGRAL, Fermi and HESS data. The pressure of the relativistic electron-positron gas is determined by solving the diffusion-loss equation, considering inverse Compton scattering, synchrotron radiation, Coulomb collisions, bremsstrahlung and ionization. For values of the gas density and magnetic field that are representative of the Milky Way, it is estimated that pressure gradients are strong enough to balance gravity in the central parts if E0 < 1 GeV. The exact value depends somewhat on the astrophysical parameters, and it changes dramatically with the slope of the dark matter density profile. For very steep slopes, as those expected from adiabatic contraction, the rotation curves of spiral galaxies would be affected on ˜kpc scales for most values of E0. By comparing the predicted rotation curves with observations of dwarf and low surface brightness galaxies, we show that the pressure from dark matter annihilation may improve the agreement between theory and observations in some cases, but it also imposes severe constraints on the model parameters (most notably, the inner slope of halo density profile, as well as the mass and the annihilation cross-section of dark matter particles into electron-positron pairs).

  18. Gamma rays from dark matter subhalos revisited: Refining the predictions and constraints

    DOE PAGES

    Hooper, Dan; Witte, Samuel J.

    2017-04-11

    Utilizing data from the ELVIS and Via Lactea-II simulations, we characterize the local dark matter subhalo population, and use this information to refine the predictions for the gamma-ray fluxes arising from annihilating dark matter in this class of objects. We find that the shapes of nearby subhalos are significantly altered by tidal effects, and are generally not well described by NFW density profiles, instead prefering power-law profiles with an exponential cutoff. From the subhalo candidates detected by the Fermi Gamma-Ray Space Telescope, we place limits on the dark matter annihilation cross section that are only modestly weaker than those basedmore » on observations of dwarf galaxies. Furthermore, we also calculate the fraction of observable subhalos that are predicted to be spatially extended at a level potentially discernible to Fermi.« less

  19. Gamma rays from dark matter subhalos revisited: refining the predictions and constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Witte, Samuel J., E-mail: dhooper@fnal.gov, E-mail: switte@physics.ucla.edu

    2017-04-01

    Utilizing data from the ELVIS and Via Lactea-II simulations, we characterize the local dark matter subhalo population, and use this information to refine the predictions for the gamma-ray fluxes arising from annihilating dark matter in this class of objects. We find that the shapes of nearby subhalos are significantly altered by tidal effects, and are generally not well described by NFW density profiles, instead prefering power-law profiles with an exponential cutoff. From the subhalo candidates detected by the Fermi Gamma-Ray Space Telescope, we place limits on the dark matter annihilation cross section that are only modestly weaker than those basedmore » on observations of dwarf galaxies. We also calculate the fraction of observable subhalos that are predicted to be spatially extended at a level potentially discernible to Fermi.« less

  20. Gamma rays from dark matter subhalos revisited: Refining the predictions and constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooper, Dan; Witte, Samuel J.

    Utilizing data from the ELVIS and Via Lactea-II simulations, we characterize the local dark matter subhalo population, and use this information to refine the predictions for the gamma-ray fluxes arising from annihilating dark matter in this class of objects. We find that the shapes of nearby subhalos are significantly altered by tidal effects, and are generally not well described by NFW density profiles, instead prefering power-law profiles with an exponential cutoff. From the subhalo candidates detected by the Fermi Gamma-Ray Space Telescope, we place limits on the dark matter annihilation cross section that are only modestly weaker than those basedmore » on observations of dwarf galaxies. Furthermore, we also calculate the fraction of observable subhalos that are predicted to be spatially extended at a level potentially discernible to Fermi.« less

  1. The dark matter distribution of NGC 5921

    NASA Astrophysics Data System (ADS)

    Ali, Israa Abdulqasim Mohammed; Hashim, Norsiah; Abidin, Zamri Zainal

    2018-04-01

    We used the neutral atomic hydrogen data of the Very Large Array for the spiral galaxy NGC 5921 with z = 0.0045 at the distance of 22.4 Mpc, to investigate the nature of dark matter. The investigation was based on two theories, namely, dark matter and Modified Newtonian Dynamics (MOND). We presented the kinematic analysis of the rotation curve with two models of dark matter, namely, the Burkert and NFW profiles. The results revealed that the NFW halo model can reproduce the observed rotation curve, with χ 2_{red}≈ 1, while the Burkert model is unable to fit the observation data. Therefore, the dark matter density profile of NGC 5921 can be presented as a cuspy halo. We also tried to investigate the observed rotation curve of NGC 5921 with MOND, along with the possible assumption on baryonic matter and distance. We note that MOND is still incapable of mimicking the rotation curve with the observed data of the galaxy.

  2. Dissipative dark matter and the rotation curves of dwarf galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foot, R., E-mail: rfoot@unimelb.edu.au

    2016-07-01

    There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) Tully-Fisher relations. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless 'dark photon' (from an unbroken dark U(1) gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interactionmore » facilitates halo heating by enabling ordinary supernovae to be a source of these 'dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or 'equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and H α fluxes, and compare the resulting dark matter halo profiles with the rotation curve data for each dwarf galaxy in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.« less

  3. TIDAL STIRRING OF SATELLITES WITH SHALLOW DENSITY PROFILES PREVENTS THEM FROM BEING TOO BIG TO FAIL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomozeiu, Mihai; Mayer, Lucio; Quinn, Thomas, E-mail: mihai@physik.uzh.ch

    The “too big to fail” problem is revisited by studying the tidal evolution of populations of dwarf satellites with different density profiles. The high-resolution cosmological ΛCDM “ErisMod” set of simulations is used. These simulations can model both the stellar and dark matter components of the satellites, and their evolution under the action of the tides of a Milky Way (MW)-sized host halo at a force resolution better than 10 pc. The stronger tidal mass loss and re-shaping of the mass distribution induced in satellites with γ = 0.6 dark matter density distributions, as those resulting from the effect of feedbackmore » in hydrodynamical simulations of dwarf galaxy formation, are sufficient to bring the circular velocity profiles in agreement with the kinematics of MW’s dSphs. In contrast, in simulations in which the satellites retain cusps at z = 0 there are several “massive failures” with circular velocities in excess of the observational constraints. Various sources of deviations in the conventionally adopted relation between the circular velocity at the half-light radius and the one-dimensional line of sight velocity dispersions are found. Such deviations are caused by the response of circular velocity profiles to tidal effects, which also varies depending on the initially assumed inner density profile and by the complexity of the stellar kinematics, which include residual rotation and anisotropy. In addition, tidal effects naturally induce large deviations in the stellar mass–halo mass relation for halo masses below 10{sup 9} M {sub ⊙}, preventing any reliable application of the abundance matching technique to dwarf galaxy satellites.« less

  4. Resonantly produced 7 keV sterile neutrino dark matter models and the properties of Milky Way satellites.

    PubMed

    Abazajian, Kevork N

    2014-04-25

    Sterile neutrinos produced through a resonant Shi-Fuller mechanism are arguably the simplest model for a dark matter interpretation of the origin of the recent unidentified x-ray line seen toward a number of objects harboring dark matter. Here, I calculate the exact parameters required in this mechanism to produce the signal. The suppression of small-scale structure predicted by these models is consistent with Local Group and high-z galaxy count constraints. Very significantly, the parameters necessary in these models to produce the full dark matter density fulfill previously determined requirements to successfully match the Milky Way Galaxy's total satellite abundance, the satellites' radial distribution, and their mass density profile, or the "too-big-to-fail problem." I also discuss how further precision determinations of the detailed properties of the candidate sterile neutrino dark matter can probe the nature of the quark-hadron transition, which takes place during the dark matter production.

  5. Relativistic Dark Matter at the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amin, Mustafa A.; /Stanford U., Phys. Dept. /KIPAC, Menlo Park; Wizansky, Tommer

    2007-11-16

    In a large region of the supersymmetry parameter space, the annihilation cross section for neutralino dark matter is strongly dependent on the relative velocity of the incoming particles. We explore the consequences of this velocity dependence in the context of indirect detection of dark matter from the galactic center. We find that the increase in the annihilation cross section at high velocities leads to a flattening of the halo density profile near the galactic center and an enhancement of the annihilation signal.

  6. Distribution and possible immobilization of lead in a forest soil (Luvisol) profile.

    PubMed

    Sipos, Péter; Németh, Tibor; Mohai, Ilona

    2005-02-01

    Geochemical analyses using a sequential extraction method and lead adsorption studies were carried out in order to characterize the distribution and adsorption of lead on each genetic horizon of a Luvisol profile developed on a pelagic clayey aleurolite. Clay illuviation is the most important pedogenic process in the profile studied. Its clay mineralogy is characterized by chlorite/vermiculite species with increasing chlorite component downward. The amount of carbonate minerals strongly increases in the lower part of the profile resulting in an abrupt rise in soil pH within a small distance. The Pb content of the soil profile exceeds the natural geochemical background only in the Ao horizon, and its amount decreases with depth in the profile without correcting for differences in bulk density, suggesting the binding of Pb to soil organic matter. According to the sequential extraction analysis the organic matter and carbonate content of the soil have the most significant effect on lead distribution. This effect varies in the different soil horizons. Lead adsorption experiments were carried out on whole soil samples, soil clay fractions, as well as on their carbonate and organic matter free variant. The different soil horizons adsorb lead to different extents depending on their organic matter, clay mineral and carbonate content; and the mineralogical features of soil clays significantly affect their lead adsorption capacity. The clay fraction adsorbs 25% more lead than the whole soil, while in the calcareous subsoil a significant proportion of lead is precipitated due to the alkaline conditions. 10 and 5% of adsorbed Pb can be leached with distilled water in the organic matter and clay mineral dominated soil horizons, respectively. These results suggest that soil organic matter plays a decisive role in the adsorption of Pb, but the fixation by clay minerals is stronger.

  7. clustep: Initial conditions for galaxy cluster halo simulations

    NASA Astrophysics Data System (ADS)

    Ruggiero, Rafael

    2017-11-01

    clustep generates a snapshot in GADGET-2 (ascl:0003.001) format containing a galaxy cluster halo in equilibrium; this snapshot can also be read in RAMSES (ascl:1011.007) using the DICE patch. The halo is made of a dark matter component and a gas component, with the latter representing the ICM. Each of these components follows a Dehnen density profile, with gamma=0 or gamma=1. If gamma=1, then the profile corresponds to a Hernquist profile.

  8. Cosmological simulations of multicomponent cold dark matter.

    PubMed

    Medvedev, Mikhail V

    2014-08-15

    The nature of dark matter is unknown. A number of dark matter candidates are quantum flavor-mixed particles but this property has never been accounted for in cosmology. Here we explore this possibility from the first principles via extensive N-body cosmological simulations and demonstrate that the two-component dark matter model agrees with observational data at all scales. Substantial reduction of substructure and flattening of density profiles in the centers of dark matter halos found in simulations can simultaneously resolve several outstanding puzzles of modern cosmology. The model shares the "why now?" fine-tuning caveat pertinent to all self-interacting models. Predictions for direct and indirect detection dark matter experiments are made.

  9. Searching for the missing baryons in clusters

    PubMed Central

    Rasheed, Bilhuda; Bahcall, Neta; Bode, Paul

    2011-01-01

    Observations of clusters of galaxies suggest that they contain fewer baryons (gas plus stars) than the cosmic baryon fraction. This “missing baryon” puzzle is especially surprising for the most massive clusters, which are expected to be representative of the cosmic matter content of the universe (baryons and dark matter). Here we show that the baryons may not actually be missing from clusters, but rather are extended to larger radii than typically observed. The baryon deficiency is typically observed in the central regions of clusters (∼0.5 the virial radius). However, the observed gas-density profile is significantly shallower than the mass-density profile, implying that the gas is more extended than the mass and that the gas fraction increases with radius. We use the observed density profiles of gas and mass in clusters to extrapolate the measured baryon fraction as a function of radius and as a function of cluster mass. We find that the baryon fraction reaches the cosmic value near the virial radius for all groups and clusters above . This suggests that the baryons are not missing, they are simply located in cluster outskirts. Heating processes (such as shock-heating of the intracluster gas, supernovae, and Active Galactic Nuclei feedback) likely contribute to this expanded distribution. Upcoming observations should be able to detect these baryons. PMID:21321229

  10. Flattened halos in a nontopological soliton model of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mielke, Eckehard W.; Peralta, Humberto H.

    2004-12-15

    Soliton type solutions of a scalar model with a {phi}{sup 6} self-interaction are analyzed for their density profiles as toy model of dark matter halos. We construct exact solutions with nontrivial ellipticity due to angular momentum and propose a 'nonlinear superposition' of round and flattened halos in order to improve the scaling relations and the correspondence of the predicted rotation curves to the empirical Burkert fit.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  12. Pressure Support in Galaxy Disks: Impact on Rotation Curves and Dark Matter Density Profiles

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne J.; Stilp, Adrienne M.

    2010-09-01

    Rotation curves constrain a galaxy's underlying mass density profile, under the assumption that the observed rotation produces a centripetal force that exactly balances the inward force of gravity. However, most rotation curves are measured using emission lines from gas, which can experience additional forces due to pressure. In realistic galaxy disks, the gas pressure declines with radius, providing additional radial support to the disk. The measured tangential rotation speed will therefore tend to lag the true circular velocity of a test particle. The gas pressure is dominated by turbulence, and we evaluate its likely amplitude from recent estimates of the gas velocity dispersion and surface density. We show that where the amplitude of the rotation curve is comparable to the characteristic velocities of the interstellar turbulence, pressure support may lead to underestimates of the mass density of the underlying dark matter halo and the inner slope of its density profile. These effects may be significant for galaxies with rotation speeds lsim75 km s-1 but are unlikely to be significant in higher-mass galaxies. We find that pressure support can be sustained over long timescales, because any reduction in support due to the conversion of gas into stars is compensated for by an inward flow of gas. However, we point to many uncertainties in assessing the importance of pressure support in real or simulated galaxies. Thus, while pressure support may help to alleviate possible tensions between rotation curve observations and ΛCDM on kiloparsec scales, it should not be viewed as a definitive solution at this time.

  13. Constraining brane tension using rotation curves of galaxies

    NASA Astrophysics Data System (ADS)

    García-Aspeitia, Miguel A.; Rodríguez-Meza, Mario A.

    2018-04-01

    We present in this work a study of brane theory phenomenology focusing on the brane tension parameter, which is the main observable of the theory. We show the modifications steaming from the presence of branes in the rotation curves of spiral galaxies for three well known dark matter density profiles: Pseudo isothermal, Navarro-Frenk-White and Burkert dark matter density profiles. We estimate the brane tension parameter using a sample of high resolution observed rotation curves of low surface brightness spiral galaxies and a synthetic rotation curve for the three density profiles. Also, the fittings using the brane theory model of the rotation curves are compared with standard Newtonian models. We found that Navarro-Frenk-White model prefers lower values of the brane tension parameter, on the average λ ∼ 0.73 × 10‑3eV4, therefore showing clear brane effects. Burkert case does prefer higher values of the tension parameter, on the average λ ∼ 0.93 eV4 ‑ 46 eV4, i.e., negligible brane effects. Whereas pseudo isothermal is an intermediate case. Due to the low densities found in the galactic medium it is almost impossible to find evidence of the presence of extra dimensions. In this context, we found that our results show weaker bounds to the brane tension values in comparison with other bounds found previously, as the lower value found for dwarf stars composed of a polytropic equation of state, λ ≈ 104 MeV4.

  14. Density profiles of granular gases studied by molecular dynamics and Brownian bridges

    NASA Astrophysics Data System (ADS)

    Peñuñuri, F.; Montoya, J. A.; Carvente, O.

    2018-02-01

    Despite the inherent frictional forces and dissipative collisions, confined granular matter can be regarded as a system in a stationary state if we inject energy continuously. Under these conditions, both the density and the granular temperature are, in general, non-monotonic variables along the height of the container. In consequence, an analytical description of a granular system is hard to conceive. Here, by using molecular dynamics simulations, we measure the packing fraction profiles for a vertically vibrating three-dimensional granular system in several gaseous-like stationary states. We show that by using the Brownian bridge concept, the determined packing fraction profiles can be reproduced accurately and give a complete description of the distribution of the particles inside the simulation box.

  15. Halo ellipticity of GAMA galaxy groups from KiDS weak lensing

    NASA Astrophysics Data System (ADS)

    van Uitert, Edo; Hoekstra, Henk; Joachimi, Benjamin; Schneider, Peter; Bland-Hawthorn, Joss; Choi, Ami; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Hopkins, Andrew M.; Klaes, Dominik; Kuijken, Konrad; Nakajima, Reiko; Napolitano, Nicola R.; Schrabback, Tim; Valentijn, Edwin; Viola, Massimo

    2017-06-01

    We constrain the average halo ellipticity of ˜2600 galaxy groups from the Galaxy And Mass Assembly (GAMA) survey, using the weak gravitational lensing signal measured from the overlapping Kilo Degree Survey (KiDS). To do so, we quantify the azimuthal dependence of the stacked lensing signal around seven different proxies for the orientation of the dark matter distribution, as it is a priori unknown which one traces the orientation best. On small scales, the major axis of the brightest group/cluster member (BCG) provides the best proxy, leading to a clear detection of an anisotropic signal. In order to relate that to a halo ellipticity, we have to adopt a model density profile. We derive new expressions for the quadrupole moments of the shear field given an elliptical model surface mass density profile. Modelling the signal with an elliptical Navarro-Frenk-White profile on scales R < 250 kpc, and assuming that the BCG is perfectly aligned with the dark matter, we find an average halo ellipticity of ɛh = 0.38 ± 0.12, in fair agreement with results from cold dark matter only simulations. On larger scales, the lensing signal around the BCGs becomes isotropic and the distribution of group satellites provides a better proxy for the halo's orientation instead, leading to a 3σ-4σ detection of a non-zero halo ellipticity at 250 < R < 750 kpc. Our results suggest that the distribution of stars enclosed within a certain radius forms a good proxy for the orientation of the dark matter within that radius, which has also been observed in hydrodynamical simulations.

  16. Tully-Fisher relation, galactic rotation curves and dissipative mirror dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foot, R., E-mail: rfoot@unimelb.edu.au

    2014-12-01

    If dark matter is dissipative then the distribution of dark matter within galactic halos can be governed by dissipation, heating and hydrostatic equilibrium. Previous work has shown that a specific model, in the framework of mirror dark matter, can explain several empirical galactic scaling relations. It is shown here that this dynamical halo model implies a quasi-isothermal dark matter density, ρ(r) ≅ ρ{sub 0}r{sub 0}{sup 2}/(r{sup 2}+r{sub 0}{sup 2}), where the core radius, r{sub 0}, scales with disk scale length, r{sub D}, via r{sub 0}/kpc ≈ 1.4(r{sub D}/kpc). Additionally, the product ρ{sub 0}r{sub 0} is roughly constant, i.e. independent ofmore » galaxy size (the constant is set by the parameters of the model). The derived dark matter density profile implies that the galactic rotation velocity satisfies the Tully-Fisher relation, L{sub B}∝v{sup 3}{sub max}, where v{sub max} is the maximal rotational velocity. Examples of rotation curves resulting from this dynamics are given.« less

  17. Observing gas in Cosmic Web filaments to constrain simulations of cosmic structure formation

    NASA Astrophysics Data System (ADS)

    Wakker, Bart

    2016-10-01

    Cosmological simulations predict that dark matter and baryons condense into multi-Mpc filamentary structures, making up the Cosmic Web. This is outlined by dark matter halos, inside which 10% of baryons are concentrated to make stars in galaxies. The other 90% of the baryons remain gaseous, with about half located outside galaxy halos. They can be traced by Lyman alpha absorbers, whose HI column density is determined by a combination of gas density and the intensity of the extragalactic ionizing background (EGB). About 1000 HST orbits have been expended to map the 50% of baryons in galaxy halos. This contrasts with 37 orbits explicitly allocated to map the other 50% (our Cycle 18 program to observe 17 AGN projected onto a single filament at cz 3500 km/s). We propose a 68-orbit program to observe 40 AGN, creating a sample of 56 sightlines covering a second filament at cz 2500 km/s. Using this dataset we will do the following: (1) measure the intensity of the EGB to within about 50%; (2) confirm that the linewidth of Lya absorbers increases near the filament axis, suggesting increasing temperature or turbulence; (3) check our earlier finding that simulations predict a transverse density HI profile (which scales with the dark-matter profile) that is much broader than is indicated by the observations.

  18. New probe of dark-matter properties: gravitational waves from an intermediate-mass black hole embedded in a dark-matter minispike.

    PubMed

    Eda, Kazunari; Itoh, Yousuke; Kuroyanagi, Sachiko; Silk, Joseph

    2013-05-31

    An intermediate-mass black hole (IMBH) may have a dark-matter (DM) minihalo around it and develop a spiky structure within less than a parsec from the IMBH. When a stellar mass object is captured by the minihalo, it eventually infalls into such an IMBH due to gravitational wave backreaction which in turn could be observed directly by future space-borne gravitational wave experiments such as eLISA and NGO. In this Letter, we show that the gravitational wave (GW) detectability strongly depends on the radial profile of the DM distribution. So if the GW is detected, the power index, that is, the DM density distribution, would be determined very accurately. The DM density distribution obtained would make it clear how the IMBH has evolved from a seed black hole and whether the IMBH has experienced major mergers in the past. Unlike the γ-ray observations of DM annihilation, GW is just sensitive to the radial profile of the DM distribution and even to noninteracting DM. Hence, the effect we demonstrate here can be used as a new and powerful probe into DM properties.

  19. Dynamical constraints on the dark matter distribution in the Milky Way

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pato, Miguel; Iocco, Fabio; Bertone, Gianfranco, E-mail: migpato@gmail.com, E-mail: fabio.iocco.astro@gmail.com, E-mail: g.bertone@uva.nl

    2015-12-01

    An accurate knowledge of the dark matter distribution in the Milky Way is of crucial importance for galaxy formation studies and current searches for particle dark matter. In this paper we set new dynamical constraints on the Galactic dark matter profile by comparing the observed rotation curve, updated with a comprehensive compilation of kinematic tracers, with that inferred from a wide range of observation-based morphologies of the bulge, disc and gas. The generalised Navarro-Frenk-White (NFW) and Einasto dark matter profiles are fitted to the data in order to determine the favoured ranges of local density, slope and scale radius. Formore » a representative baryonic model, a typical local circular velocity v{sub 0}=230 km/s and a distance of the Sun to the Galactic centre R{sub 0}=8 kpc, we find a local dark matter density ρ{sub 0} = 0.420{sup +0.021}{sub −0.018} (2σ) ± 0.025 GeV/cm{sup 3} (ρ{sub 0} = 0.420{sup +0.019}{sub −0.021} (2σ) ± 0.026 GeV/cm{sup 3}) for NFW (Einasto), where the second error is an estimate of the systematic due to baryonic modelling. Apart from the Galactic parameters, the main sources of uncertainty inside and outside the solar circle are baryonic modelling and rotation curve measurements, respectively. Upcoming astronomical observations are expected to reduce all these uncertainties substantially over the coming years.« less

  20. Reconstructing the Dwarf Galaxy Progenitor from Tidal Streams Using MilkyWay@home

    NASA Astrophysics Data System (ADS)

    Newberg, Heidi; Shelton, Siddhartha

    2018-04-01

    We attempt to reconstruct the mass and radial profile of stars and dark matter in the dwarf galaxy progenitor of the Orphan Stream, using only information from the stars in the Orphan Stream. We show that given perfect data and perfect knowledge of the dwarf galaxy profile and Milky Way potential, we are able to reconstruct the mass and radial profiles of both the stars and dark matter in the progenitor to high accuracy using only the density of stars along the stream and either the velocity dispersion or width of the stream in the sky. To perform this test, we simulated the tidal disruption of a two component (stars and dark matter) dwarf galaxy along the orbit of the Orphan Stream. We then created a histogram of the density of stars along the stream and a histogram of either the velocity dispersion or width of the stream in the sky as a function of position along the stream. The volunteer supercomputer MilkyWay@home was given these two histograms, the Milky Way potential model, and the orbital parameters for the progenitor. N-body simulations were run, varying dwarf galaxy parameters and the time of disruption. The goodness-of-fit of the model to the data was determined using an Earth-Mover Distance algorithm. The parameters were optimized using Differential Evolution. Future work will explore whether currently available information on the Orphan Stream stars is sufficient to constrain its progenitor, and how sensitive the optimization is to our knowledge of the Milky Way potential and the density model of the dwarf galaxy progenitor, as well as a host of other real-life unknowns.

  1. Weak annihilation cusp inside the dark matter spike about a black hole.

    PubMed

    Shapiro, Stuart L; Shelton, Jessie

    2016-06-15

    We reinvestigate the effect of annihilations on the distribution of collisionless dark matter (DM) in a spherical density spike around a massive black hole. We first construct a very simple, pedagogic, analytic model for an isotropic phase space distribution function that accounts for annihilation and reproduces the "weak cusp" found by Vasiliev for DM deep within the spike and away from its boundaries. The DM density in the cusp varies as r -1/2 for s -wave annihilation, where r is the distance from the central black hole, and is not a flat "plateau" profile. We then extend this model by incorporating a loss cone that accounts for the capture of DM particles by the hole. The loss cone is implemented by a boundary condition that removes capture orbits, resulting in an anisotropic distribution function. Finally, we evolve an initial spike distribution function by integrating the Boltzmann equation to show how the weak cusp grows and its density decreases with time. We treat two cases, one for s -wave and the other for p -wave DM annihilation, adopting parameters characteristic of the Milky Way nuclear core and typical WIMP models for DM. The cusp density profile for p -wave annihilation is weaker, varying like ~ r -0.34 , but is still not a flat plateau.

  2. Power spectrum of dark matter substructure in strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Diaz Rivero, Ana; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2018-01-01

    Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter. Galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter substructures at cosmological distances from the Milky Way. Within the cold dark matter (CDM) paradigm, the number of low-mass subhalos within lens galaxies is expected to be large, implying that their contribution to the lensing convergence field is approximately Gaussian and could thus be described by their power spectrum. We develop here a general formalism to compute from first principles the substructure convergence power spectrum for different populations of dark matter subhalos. As an example, we apply our framework to two distinct subhalo populations: a truncated Navarro-Frenk-White subhalo population motivated by standard CDM, and a truncated cored subhalo population motivated by self-interacting dark matter (SIDM). We study in detail how the subhalo abundance, mass function, internal density profile, and concentration affect the amplitude and shape of the substructure power spectrum. We determine that the power spectrum is mostly sensitive to a specific combination of the subhalo abundance and moments of the mass function, as well as to the average tidal truncation scale of the largest subhalos included in the analysis. Interestingly, we show that the asymptotic slope of the substructure power spectrum at large wave number reflects the internal density profile of the subhalos. In particular, the SIDM power spectrum exhibits a characteristic steepening at large wave number absent in the CDM power spectrum, opening the possibility of using this observable, if at all measurable, to discern between these two scenarios.

  3. Suppression of Self-Induced Flavor Conversion in the Supernova Accretion Phase

    NASA Astrophysics Data System (ADS)

    Sarikas, Srdjan; Raffelt, Georg G.; Hüdepohl, Lorenz; Janka, Hans-Thomas

    2012-02-01

    Self-induced flavor conversions of supernova (SN) neutrinos can strongly modify the flavor-dependent fluxes. We perform a linearized flavor stability analysis with accretion-phase matter profiles of a 15M⊙ spherically symmetric model and corresponding neutrino fluxes. We use realistic energy and angle distributions, the latter deviating strongly from quasi-isotropic emission, thus accounting for both multiangle and multienergy effects. For our matter and neutrino density profile we always find stable conditions: flavor conversions are limited to the usual Mikheyev-Smirnov-Wolfenstein effect. In this case one may distinguish the neutrino mass hierarchy in a SN neutrino signal if the mixing angle θ13 is as large as suggested by recent experiments.

  4. Suppression of self-induced flavor conversion in the supernova accretion phase.

    PubMed

    Sarikas, Srdjan; Raffelt, Georg G; Hüdepohl, Lorenz; Janka, Hans-Thomas

    2012-02-10

    Self-induced flavor conversions of supernova (SN) neutrinos can strongly modify the flavor-dependent fluxes. We perform a linearized flavor stability analysis with accretion-phase matter profiles of a 15M[symbol: see text] spherically symmetric model and corresponding neutrino fluxes. We use realistic energy and angle distributions, the latter deviating strongly from quasi-isotropic emission, thus accounting for both multiangle and multienergy effects. For our matter and neutrino density profile we always find stable conditions: flavor conversions are limited to the usual Mikheyev-Smirnov-Wolfenstein effect. In this case one may distinguish the neutrino mass hierarchy in a SN neutrino signal if the mixing angle θ13 is as large as suggested by recent experiments.

  5. Theoretical Comparison Between Candidates for Dark Matter

    NASA Astrophysics Data System (ADS)

    McKeough, James; Hira, Ajit; Valdez, Alexandra

    2017-01-01

    Since the generally-accepted view among astrophysicists is that the matter component of the universe is mostly dark matter, the search for dark matter particles continues unabated. The Large Underground Xenon (LUX) improvements, aided by advanced computer simulations at the U.S. Department of Energy's Lawrence Berkeley National Laboratory's (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC) and Brown University's Center for Computation and Visualization (CCV), can potentially eliminate some particle models of dark matter. Generally, the proposed candidates can be put in three categories: baryonic dark matter, hot dark matter, and cold dark matter. The Lightest Supersymmetric Particle(LSP) of supersymmetric models is a dark matter candidate, and is classified as a Weakly Interacting Massive Particle (WIMP). Similar to the cosmic microwave background radiation left over from the Big Bang, there is a background of low-energy neutrinos in our Universe. According to some researchers, these may be the explanation for the dark matter. One advantage of the Neutrino Model is that they are known to exist. Dark matter made from neutrinos is termed ``hot dark matter''. We formulate a novel empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function adequately treats both void size and redshift, and describes the scale radius and the central density of voids. We started with a five-parameter model. Our research is mainly on LSP and Neutrino models.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Lan; Liu Chao; Zhao Gang

    To constrain the Galactic gravitational potential near the Sun ({approx}1.5 kpc), we derive and model the spatial and velocity distributions for a sample of 9000 K-dwarfs with spectra from SDSS/SEGUE, which yield radial velocities and abundances ([Fe/H] and [{alpha}/Fe]). We first derive the spatial density distribution for three abundance-selected sub-populations of stars accounting for the survey's selection function. The vertical profiles of these sub-populations are simple exponentials and their vertical dispersion profile is nearly isothermal. To model these data, we apply the 'vertical' Jeans equation, which relates the observable tracer number density and vertical velocity dispersion to the gravitational potentialmore » or vertical force. We explore a number of functional forms for the vertical force law, fit the dispersion and density profiles of all abundance-selected sub-populations simultaneously in the same potential, and explore all parameter co-variances using a Markov Chain Monte Carlo technique. Our fits constrain a disk mass scale height {approx}< 300 pc and the total surface mass density to be 67 {+-} 6 M{sub Sun} pc{sup -2} at |z| = 1.0 kpc of which the contribution from all stars is 42 {+-} 5 M{sub Sun} pc{sup -2} (assuming a contribution from cold gas of 13 M{sub Sun} pc{sup -2}). We find significant constraints on the local dark matter density of 0.0065 {+-} 0.0023 M{sub Sun} pc{sup -3} (0.25 {+-} 0.09 GeV cm{sup -3}). Together with recent experiments this firms up the best estimate of 0.0075 {+-} 0.0021 M{sub Sun} pc{sup -3} (0.28 {+-} 0.08 GeV cm{sup -3}), consistent with global fits of approximately round dark matter halos to kinematic data in the outskirts of the Galaxy.« less

  7. The Extragalactic Lens VLBI Imaging Survey (ELVIS): Investigating galaxy cores and black holes with gravitational lens central images

    NASA Astrophysics Data System (ADS)

    Boyce, Edward R.

    This thesis describes the Extragalactic Lens VLBI Imaging Survey (ELVIS), a search for central images in gravitational lenses. We present the first four ELVIS targets, for which we have radio VLBI observations with resolutions of a few milli-arcseconds and sensitivities of 15 - 38mJy. For PMN J1838-3427, CLASS B0739+366 and CLASS B0445+123 we have not detected any central images, but have set stringent upper limits on their flux densities. For CLASS B2319+051 we have made a tentative detection of a third radio source, which may be either a central image or radio emission from the lens galaxy. Using the upper limits on the central image flux densities, we gain new information about the matter distributions in the lens galaxies of these systems. We fit a broken power law model for the matter profile, and constrain the allowed break radii and inner index of this model. To demagnify the central images to the observed level the matter profiles must be slightly shallower than or steeper than isothermal, which is consistent with previous studies of early type galaxy profiles. The presence of a super-massive black hole weakens the constraints somewhat, but the profiles are still close to isothermal. Relative to previous work, we reduce the maximum sizes of shallow cores by factors of 2 to 3, and raise the indices of r 0( r -g central cusps by g = 0.05 - 0.35. If we take the source in B2319+051 to be a central image, then we select a narrow band of allowed break radii and inner indices, finding that a constant density core has size 150--380 pc, and a pure power law has index g = 1.5 - 1.67. Our constraints still allow sufficiently shallow profiles that some super-massive black holes may form central image pairs rather than eliminating the central image, and these image pairs may be detected with future instruments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  8. THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.

    2015-02-20

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increasesmore » for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  9. The SL2S galaxy-scale lens sample. V. dark matter halos and stellar IMF of massive early-type galaxies out to redshift 0.8

    DOE PAGES

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; ...

    2015-02-17

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  10. Dark Energy and Key Physical Parameters of Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Bisnovatyi-Kogan, G. S.

    We discuss the physics of clusters of galaxies embedded in the cosmic dark energy background and show that 1) the halo cut-off radius of a cluster like the Virgo cluster is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; 2) the halo averaged density is equal to two densities of dark energy; 3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile.

  11. Constraining heavy dark matter with cosmic-ray antiprotons

    NASA Astrophysics Data System (ADS)

    Cuoco, Alessandro; Heisig, Jan; Korsmeier, Michael; Krämer, Michael

    2018-04-01

    Cosmic-ray observations provide a powerful probe of dark matter annihilation in the Galaxy. In this paper we derive constraints on heavy dark matter from the recent precise AMS-02 antiproton data. We consider all possible annihilation channels into pairs of standard model particles. Furthermore, we interpret our results in the context of minimal dark matter, including higgsino, wino and quintuplet dark matter. We compare the cosmic-ray antiproton limits to limits from γ-ray observations of dwarf spheroidal galaxies and to limits from γ-ray and γ-line observations towards the Galactic center. While the latter limits are highly dependent on the dark matter density distribution and only exclude a thermal wino for cuspy profiles, the cosmic-ray limits are more robust, strongly disfavoring the thermal wino dark matter scenario even for a conservative estimate of systematic uncertainties.

  12. Golden gravitational lensing systems from the Sloan Lens ACS Survey - II. SDSS J1430+4105: a precise inner total mass profile from lensing alone

    NASA Astrophysics Data System (ADS)

    Eichner, Thomas; Seitz, Stella; Bauer, Anne

    2012-12-01

    We study the Sloan Lens ACS (SLACS) survey strong-lensing system SDSS J1430+4105 at zl = 0.285. The lensed source (zs = 0.575) of this system has a complex morphology with several subcomponents. Its subcomponents span a radial range from 4 to 10 kpc in the plane of the lens. Therefore, we can constrain the slope of the total projected mass profile around the Einstein radius from lensing alone. We measure a density profile that is slightly but not significantly shallower than isothermal at the Einstein radius. We decompose the mass of the lensing galaxy into a de Vaucouleurs component to trace the stars and an additional dark component. The spread of multiple-image components over a large radial range also allows us to determine the amplitude of the de Vaucouleurs and dark matter components separately. We get a mass-to-light ratio of M de Vauc LB ≈ (5.5±1.5) M⊙L⊙,B and a dark matter fraction within the Einstein radius of ≈20 to 40 per cent. Modelling the star formation history assuming composite stellar populations at solar metallicity to the galaxy's photometry yields a mass-to-light ratio of M, salp LB ≈ 4.0-1.3+0.6 M⊙L⊙,B and M, chab LB ≈ 2.3-0.8+0.3 M⊙L⊙,B for Salpeter and Chabrier initial mass functions, respectively. Hence, the mass-to-light ratio derived from lensing is more Salpeter like, in agreement with results for massive Coma galaxies and other nearby massive early-type galaxies. We examine the consequences of the galaxy group in which the lensing galaxy is embedded, showing that it has little influence on the mass-to-light ratio obtained for the de Vaucouleurs component of the lensing galaxy. Finally, we decompose the projected, azimuthally averaged 2D density distribution of the de Vaucouleurs and dark matter components of the lensing signal into spherically averaged 3D density profiles. We can show that the 3D dark and luminous matter density within the Einstein radius (REin ≈ 0.6 Reff) of this SLACS galaxy is similar to the values of Coma galaxies with the same velocity dispersions.

  13. The impact of baryonic matter on gravitational lensing by galaxy clusters

    NASA Astrophysics Data System (ADS)

    Lee, Brandyn E.; King, Lindsay; Applegate, Douglas; McCarthy, Ian

    2017-01-01

    Since the bulk of the matter comprising galaxy clusters exists in the form of dark matter, gravitational N-body simulations have historically been an effective way to investigate large scale structure formation and the astrophysics of galaxy clusters. However, upcoming telescopes such as the Large Synoptic Survey Telescope are expected to have lower systematic errors than older generations, reducing measurement uncertainties and requiring that astrophysicists better quantify the impact of baryonic matter on the cluster lensing signal. Here we outline the effects of baryonic processes on cluster density profiles and on weak lensing mass and concentration estimates. Our analysis is done using clusters grown in the suite of cosmological hydrodynamical simulations known as cosmo-OWLS.

  14. Precision cosmology with baryons: non-radiative hydrodynamics of galaxy groups

    NASA Astrophysics Data System (ADS)

    Rabold, Manuel; Teyssier, Romain

    2017-05-01

    The effect of baryons on the matter power spectrum is likely to have an observable effect for future galaxy surveys, like Euclid or Large Synoptic Survey Telescope (LSST). As a first step towards a fully predictive theory, we investigate the effect of non-radiative hydrodynamics on the structure of galaxy groups sized haloes, which contribute the most to the weak-lensing power spectrum. We perform high-resolution (more than one million particles per halo and one kilo-parsec resolution) non-radiative hydrodynamical zoom-in simulations of a sample of 16 haloes, comparing the profiles to popular analytical models. We find that the total mass profile is well fitted by a Navarro, Frenk & White model, with parameters slightly modified from the dark matter only simulation. We also find that the Komatsu & Seljak hydrostatic solution provides a good fit to the gas profiles, with however significant deviations, arising from strong turbulent mixing in the core and from non-thermal, turbulent pressure support in the outskirts. The turbulent energy follows a shallow, rising linear profile with radius, and correlates with the halo formation time. Using only three main structural halo parameters as variables (total mass, concentration parameter and central gas density), we can predict, with an accuracy better than 20 per cent, the individual gas density and temperature profiles. For the average total mass profile, which is relevant for power spectrum calculations, we even reach an accuracy of 1 per cent. The robustness of these predictions has been tested against resolution effects, different types of initial conditions and hydrodynamical schemes.

  15. THE CENTRAL SLOPE OF DARK MATTER CORES IN DWARF GALAXIES: SIMULATIONS VERSUS THINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Se-Heon; De Blok, W. J. G.; Brook, Chris

    2011-07-15

    We make a direct comparison of the derived dark matter (DM) distributions between hydrodynamical simulations of dwarf galaxies assuming a {Lambda}CDM cosmology and the observed dwarf galaxies sample from the THINGS survey in terms of (1) the rotation curve shape and (2) the logarithmic inner density slope {alpha} of mass density profiles. The simulations, which include the effect of baryonic feedback processes, such as gas cooling, star formation, cosmic UV background heating, and most importantly, physically motivated gas outflows driven by supernovae, form bulgeless galaxies with DM cores. We show that the stellar and baryonic mass is similar to thatmore » inferred from photometric and kinematic methods for galaxies of similar circular velocity. Analyzing the simulations in exactly the same way as the observational sample allows us to address directly the so-called cusp/core problem in the {Lambda}CDM model. We show that the rotation curves of the simulated dwarf galaxies rise less steeply than cold dark matter rotation curves and are consistent with those of the THINGS dwarf galaxies. The mean value of the logarithmic inner density slopes {alpha} of the simulated galaxies' DM density profiles is {approx}-0.4 {+-} 0.1, which shows good agreement with {alpha} = -0.29 {+-} 0.07 of the THINGS dwarf galaxies. The effect of non-circular motions is not significant enough to affect the results. This confirms that the baryonic feedback processes included in the simulations are efficiently able to make the initial cusps with {alpha} {approx}-1.0 to -1.5 predicted by DM-only simulations shallower and induce DM halos with a central mass distribution similar to that observed in nearby dwarf galaxies.« less

  16. Proton elastic scattering at 200 A MeV and high momentum transfers of 1.7-2.7 fm-1 as a probe of the nuclear matter density of 6He

    NASA Astrophysics Data System (ADS)

    Chebotaryov, S.; Sakaguchi, S.; Uesaka, T.; Akieda, T.; Ando, Y.; Assie, M.; Beaumel, D.; Chiga, N.; Dozono, M.; Galindo-Uribarri, A.; Heffron, B.; Hirayama, A.; Isobe, T.; Kaki, K.; Kawase, S.; Kim, W.; Kobayashi, T.; Kon, H.; Kondo, Y.; Kubota, Y.; Leblond, S.; Lee, H.; Lokotko, T.; Maeda, Y.; Matsuda, Y.; Miki, K.; Milman, E.; Motobayashi, T.; Mukai, T.; Nakai, S.; Nakamura, T.; Ni, A.; Noro, T.; Ota, S.; Otsu, H.; Ozaki, T.; Panin, V.; Park, S.; Saito, A.; Sakai, H.; Sasano, M.; Sato, H.; Sekiguchi, K.; Shimizu, Y.; Stefan, I.; Stuhl, L.; Takaki, M.; Taniue, K.; Tateishi, K.; Terashima, S.; Togano, Y.; Tomai, T.; Wada, Y.; Wakasa, T.; Wakui, T.; Watanabe, A.; Yamada, H.; Yang, Zh; Yasuda, M.; Yasuda, J.; Yoneda, K.; Zenihiro, J.

    2018-05-01

    Differential cross sections of p-^6He elastic scattering were measured in inverse kinematics at an incident energy of 200 A MeV, covering the high momentum transfer region of 1.7-2.7 fm^{-1}. The sensitivity of the elastic scattering at low and high momentum transfers to the density distribution was investigated quantitatively using relativistic impulse approximation calculations. In the high momentum transfer region, where the present data were taken, the differential cross section has an order of magnitude higher sensitivity to the inner part of the ^6He density relative to the peripheral part (15:1). This feature makes the obtained data valuable for the deduction of the inner part of the ^6He density. The data were compared to a set of calculations assuming different proton and neutron density profiles of ^6He. The data are well reproduced by the calculation assuming almost the same profiles of proton and neutron densities around the center of ^6He, and a proton profile reproducing the known point-proton radius of 1.94 fm. This finding is consistent with the assumption that the ^6He nucleus consists of a rigid α-like core with a two-neutron halo.

  17. Discussion on the energy content of the galactic dark matter Bose-Einstein condensate halo in the Thomas-Fermi approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Souza, J.C.C.; Pires, M.O.C., E-mail: jose.souza@ufabc.edu.br, E-mail: marcelo.pires@ufabc.edu.br

    We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.

  18. Impact of uncertain head tissue conductivity in the optimization of transcranial direct current stimulation for an auditory target

    NASA Astrophysics Data System (ADS)

    Schmidt, Christian; Wagner, Sven; Burger, Martin; van Rienen, Ursula; Wolters, Carsten H.

    2015-08-01

    Objective. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique to modify neural excitability. Using multi-array tDCS, we investigate the influence of inter-individually varying head tissue conductivity profiles on optimal electrode configurations for an auditory cortex stimulation. Approach. In order to quantify the uncertainty of the optimal electrode configurations, multi-variate generalized polynomial chaos expansions of the model solutions are used based on uncertain conductivity profiles of the compartments skin, skull, gray matter, and white matter. Stochastic measures, probability density functions, and sensitivity of the quantities of interest are investigated for each electrode and the current density at the target with the resulting stimulation protocols visualized on the head surface. Main results. We demonstrate that the optimized stimulation protocols are only comprised of a few active electrodes, with tolerable deviations in the stimulation amplitude of the anode. However, large deviations in the order of the uncertainty in the conductivity profiles could be noted in the stimulation protocol of the compensating cathodes. Regarding these main stimulation electrodes, the stimulation protocol was most sensitive to uncertainty in skull conductivity. Finally, the probability that the current density amplitude in the auditory cortex target region is supra-threshold was below 50%. Significance. The results suggest that an uncertain conductivity profile in computational models of tDCS can have a substantial influence on the prediction of optimal stimulation protocols for stimulation of the auditory cortex. The investigations carried out in this study present a possibility to predict the probability of providing a therapeutic effect with an optimized electrode system for future auditory clinical and experimental procedures of tDCS applications.

  19. The correlation between the sizes of globular cluster systems and their host dark matter haloes

    NASA Astrophysics Data System (ADS)

    Hudson, Michael J.; Robison, Bailey

    2018-07-01

    The sizes of entire systems of globular clusters (GCs) depend not only on the formation and destruction histories of the GCs themselves but also on the assembly, merger, and accretion history of the dark matter (DM) haloes that they inhabit. Recent work has shown a linear relation between total mass of GCs in the GC system and the mass of its host DM halo, calibrated from weak lensing. Here, we extend this to GC system sizes, by studying the radial density profiles of GCs around galaxies in nearby galaxy groups. We find that radial density profiles of the GC systems are well fit with a de Vaucouleurs profile. Combining our results with those from the literature, we find tight relationship (˜0.2 dex scatter) between the effective radius of the GC system and the virial radius (or mass) of its host DM halo, for haloes with masses greater than ˜1012 M⊙. The steep non-linear dependence of this relationship (R_{ {e, GCS}} ∝ R_{200}^{2.5 - 3} ∝ M_{200}^{0.8 - 1}) is currently not well understood, but is an important clue regarding the assembly history of DM haloes and of the GC systems that they host.

  20. The mass discrepancy acceleration relation in a ΛCDM context

    NASA Astrophysics Data System (ADS)

    Di Cintio, Arianna; Lelli, Federico

    2016-02-01

    The mass discrepancy acceleration relation (MDAR) describes the coupling between baryons and dark matter (DM) in galaxies: the ratio of total-to-baryonic mass at a given radius anticorrelates with the acceleration due to baryons. The MDAR has been seen as a challenge to the Λ cold dark matter (ΛCDM) galaxy formation model, while it can be explained by Modified Newtonian Dynamics. In this Letter, we show that the MDAR arises in a ΛCDM cosmology once observed galaxy scaling relations are taken into account. We build semi-empirical models based on ΛCDM haloes, with and without the inclusion of baryonic effects, coupled to empirically motivated structural relations. Our models can reproduce the MDAR: specifically, a mass-dependent density profile for DM haloes can fully account for the observed MDAR shape, while a universal profile shows a discrepancy with the MDAR of dwarf galaxies with M⋆ < 109.5 M⊙, a further indication suggesting the existence of DM cores. Additionally, we reproduce slope and normalization of the baryonic Tully-Fisher relation (BTFR) with 0.17 dex scatter. These results imply that in ΛCDM (I) the MDAR is driven by structural scaling relations of galaxies and DM density profile shapes, and (II) the baryonic fractions determined by the BTFR are consistent with those inferred from abundance-matching studies.

  1. X-Ray Emission from Supernovae in Dense Circumstellar Matter Environments: A Search for Collisionless Shock

    NASA Technical Reports Server (NTRS)

    Ofek, E.O; Fox, D.; Cenko, B.; Sullivan, M.; Gnat, O.; Frail A.; Horesh, A.; Corsi, A; Quimby, R. M.; Gehrels, N.; hide

    2012-01-01

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (so-called shock breakout) in optically thick (tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and -dominated shock in an optically thick wind must transform into 8. collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift-XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 type-IIn SNe, one type-Ibn SN and eiht hydrogen-poor super-luminous SNe (SLSN-I; SN 2005ap like). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSl\\l. Therefore, we suggest that their optical light curves are powered by shock breakout in CSM. We show that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock breakout model. We conclude that the light curves of some, but not all, type-IIn/Ibn SNe are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all the SLSN-I events, our X-ray limits are not deep enough and were typically obtained at too early times (i.e., near the SN maximum light) to conclude about their nature. Late time X-ray observations are required in order to further test if these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakOut in a wind profile. We argue that the time scale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. The optical light curves of SNe, for which the X-ray emission peaks at late times, are likely powered by the diffusion of shock energy from a dense CSM. We note that if the CSM density profile falls faster than a constant-rate wind density profile, then X-rays may escape at earlier times than estimated for the wind profile case. Furthermore, if the CSM have a region in which the density profile is very steep, relative to a steady wind density profile, or the CSM is neutral, then the radio free-free absorption may be low enough, and radio emission may be detected.

  2. Sub-saturation matter in compact stars: Nuclear modelling in the framework of the extended Thomas-Fermi theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    A recently introduced analytical model for the nuclear density profile [1] is implemented in the Extended Thomas-Fermi (ETF) energy density functional. This allows to (i) shed a new light on the issue of the sign of surface symmetry energy in nuclear mass formulas, as well as to (ii) show the importance of the in-medium corrections to the nuclear cluster energies in thermodynamic conditions relevant for the description of core-collapse supernovae and (proto)-neutron star crust.

  3. Sub-saturation matter in compact stars: Nuclear modelling in the framework of the extended Thomas-Fermi theory

    NASA Astrophysics Data System (ADS)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2015-02-01

    A recently introduced analytical model for the nuclear density profile [1] is implemented in the Extended Thomas-Fermi (ETF) energy density functional. This allows to (i) shed a new light on the issue of the sign of surface symmetry energy in nuclear mass formulas, as well as to (ii) show the importance of the in-medium corrections to the nuclear cluster energies in thermodynamic conditions relevant for the description of core-collapse supernovae and (proto)-neutron star crust.

  4. THE EXTREME SMALL SCALES: DO SATELLITE GALAXIES TRACE DARK MATTER?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Douglas F.; Berlind, Andreas A.; McBride, Cameron K.

    2012-04-10

    We investigate the radial distribution of galaxies within their host dark matter halos as measured in the Sloan Digital Sky Survey by modeling their small-scale clustering. Specifically, we model the Jiang et al. measurements of the galaxy two-point correlation function down to very small projected separations (10 h{sup -1} kpc {<=} r {<=} 400 h{sup -1} kpc), in a wide range of luminosity threshold samples (absolute r-band magnitudes of -18 up to -23). We use a halo occupation distribution framework with free parameters that specify both the number and spatial distribution of galaxies within their host dark matter halos. Wemore » assume one galaxy resides in the halo center and additional galaxies are considered satellites that follow a radial density profile similar to the dark matter Navarro-Frenk-White (NFW) profile, except that the concentration and inner slope are allowed to vary. We find that in low luminosity samples (M{sub r} < -19.5 and lower), satellite galaxies have radial profiles that are consistent with NFW. M{sub r} < -20 and brighter satellite galaxies have radial profiles with significantly steeper inner slopes than NFW (we find inner logarithmic slopes ranging from -1.6 to -2.1, as opposed to -1 for NFW). We define a useful metric of concentration, M{sub 1/10}, which is the fraction of satellite galaxies (or mass) that are enclosed within one-tenth of the virial radius of a halo. We find that M{sub 1/10} for low-luminosity satellite galaxies agrees with NFW, whereas for luminous galaxies it is 2.5-4 times higher, demonstrating that these galaxies are substantially more centrally concentrated within their dark matter halos than the dark matter itself. Our results therefore suggest that the processes that govern the spatial distribution of galaxies, once they have merged into larger halos, must be luminosity dependent, such that luminous galaxies become poor tracers of the underlying dark matter.« less

  5. Dark Matter or Modified Dynamics? Hints from Galaxy Kinematics

    NASA Astrophysics Data System (ADS)

    Gentile, G.

    2010-12-01

    I show two observational projects I am involved in, which are aimed at understanding better the existence and nature of dark matter, and also aimed at testing alternatives to galactic dark matter such as MOND (Modified Newtonian Dynamics). I present new HI observations of the nearby dwarf galaxy NGC 3741. This galaxy has an extremely extended HI disc (42 B-band exponential scalelengths). The distribution and kinematics are accurately derived by building model data cubes, which closely reproduce the observations. Mass modelling of the rotation curve shows that a cored dark matter halo or MOND provide very good fits, whereas Cold Dark Matter density profiles fail to fit the data. I also show new results about tidal dwarf galaxies, which within the CDM framework are expected to be dark matter-free but whose kinematics instead show a mass discrepancy, exactly of the magnitude that is expected in MOND (Modified Newtonian Dynamics).

  6. The real and apparent convergence of N-body simulations of the dark matter structures: Is the Navarro-Frenk-White profile real?

    NASA Astrophysics Data System (ADS)

    Baushev, A. N.

    2015-03-01

    While N-body simulations suggest a cuspy profile in the centra of the dark matter halos of galaxies, the majority of astronomical observations favor a relatively soft cored density distribution of these regions. The routine method of testing the convergence of N-body simulations (in particular, the negligibility of two-body scattering effect) is to find the conditions under which formed structures is insensitive to numerical parameters. The results obtained with this approach suggest a surprisingly minor role of the particle collisions: the central density profile remains untouched and close to the Navarro-Frenk-White shape, even if the simulation time significantly exceeds the collisional relaxation time τr . In order to check the influence of the unphysical test body collisions we use the Fokker-Planck equation. It turns out that a profile ρ ∝r-β where β ≃ 1 is an attractor: the Fokker-Planck diffusion transforms any reasonable initial distribution into it in a time shorter than τr , and then the cuspy profile should survive much longer than τr , since the Fokker-Planck diffusion is self-compensated if β ≃ 1 . Thus the purely numerical effect of test body scattering may create a stable NFW-like pseudosolution. Moreover, its stability may be mistaken for the simulation convergence. We present analytical estimations for this potential bias effect and call for numerical tests. For that purpose, we suggest a simple test that can be performed as the simulation progresses and would indicate the magnitude of the collisional influence and the veracity of the simulation results.

  7. What the Milky Way's dwarfs tell us about the Galactic Center extended gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Keeley, Ryan E.; Abazajian, Kevork N.; Kwa, Anna; Rodd, Nicholas L.; Safdi, Benjamin R.

    2018-05-01

    The Milky Way's Galactic Center harbors a gamma-ray excess that is a candidate signal of annihilating dark matter. Dwarf galaxies remain predominantly dark in their expected commensurate emission. In this work we quantify the degree of consistency between these two observations through a joint likelihood analysis. In doing so we incorporate Milky Way dark matter halo profile uncertainties, as well as an accounting of diffuse gamma-ray emission uncertainties in dark matter annihilation models for the Galactic Center extended gamma-ray excess (GCE) detected by the Fermi Gamma-Ray Space Telescope. The preferred range of annihilation rates and masses expands when including these unknowns. Even so, using two recent determinations of the Milky Way halo's local density leaves the GCE preferred region of single-channel dark matter annihilation models to be in strong tension with annihilation searches in combined dwarf galaxy analyses. A third, higher Milky Way density determination, alleviates this tension. Our joint likelihood analysis allows us to quantify this inconsistency. We provide a set of tools for testing dark matter annihilation models' consistency within this combined data set. As an example, we test a representative inverse Compton sourced self-interacting dark matter model, which is consistent with both the GCE and dwarfs.

  8. Self-similar infall models for cold dark matter haloes

    NASA Astrophysics Data System (ADS)

    Le Delliou, Morgan Patrick

    2002-04-01

    How can we understand the mechanisms for relaxation and the constitution of the density profile in CDM halo formation? Can the old Self-Similar Infall Model (SSIM) be made to contain all the elements essential for this understanding? In this work, we have explored and improved the SSIM, showing it can at once explain large N-body simulations and indirect observations of real haloes alike. With the use of a carefully-crafted simple shell code, we have followed the accretion of secondary infalls in different settings, ranging from a model for mergers to a distribution of angular momentum for the shells, through the modeling of a central black hole. We did not assume self-similar accretion from initial conditions but allowed for it to develop and used coordinates that make it evident. We found self-similar accretion to appear very prominently in CDM halo formation as an intermediate stable (quasi-equilibrium) stage of Large Scale Structure formation. Dark Matter haloes density profiles are shown to be primarily influenced by non-radial motion. The merger paradigm reveals itself through the SSIM to be a secondary but non-trivial factor in those density profiles: it drives the halo profile towards a unique attractor, but the main factor for universality is still the self-similarity. The innermost density cusp flattening observed in some dwarf and Low Surface Brightness galaxies finds a natural and simple explanation in the SSIM embedding a central black hole. Relaxation in cold collisionless collapse is clarified by the SSIM. It is a continuous process involving only the newly-accreted particles for just a few dynamical times. All memory of initial energy is not lost so relaxation is only moderately violent. A sharp cut off, or population inversion, originates in initial conditions and is maintained through relaxation. It characterises moderately violent relaxation in the system's Distribution Function. Finally, the SSIM has shown this relaxation to arise from phase space instability once the halo has been stirred enough through phase mixing. Extensions of these explorations are possible and expected to refine our understanding of the formation of dark halo density profiles. A link should be sought, for instance, between the present results on relaxation and the entropy of the system.

  9. Limits on the power-law mass and luminosity density profiles of elliptical galaxies from gravitational lensing systems

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Biesiada, Marek; Yao, Meng; Zhu, Zong-Hong

    2016-09-01

    We use 118 strong gravitational lenses observed by the SLACS, BOSS emission-line lens survey (BELLS), LSD and SL2S surveys to constrain the total mass profile and the profile of luminosity density of stars (light tracers) in elliptical galaxies up to redshift z ˜ 1. Assuming power-law density profiles for the total mass density, ρ = ρ0(r/r0)-α, and luminosity density, ν = ν0(r/r0)-δ, we investigate the power-law index and its first derivative with respect to the redshift. Using Monte Carlo simulations of the posterior likelihood taking the Planck's best-fitting cosmology as a prior, we find γ = 2.132 ± 0.055 with a mild trend ∂γ/∂zl = -0.067 ± 0.119 when α = δ = γ, suggesting that the total density profile of massive galaxies could have become slightly steeper over cosmic time. Furthermore, similar analyses performed on sub-samples defined by different lens redshifts and velocity dispersions indicate the need of treating low-, intermediate- and high-mass galaxies separately. Allowing δ to be a free parameter, we obtain α = 2.070 ± 0.031, ∂α/∂zl = -0.121 ± 0.078 and δ = 2.710 ± 0.143. The model in which mass traces light is rejected at >95 per cent confidence, and our analysis robustly indicates the presence of dark matter in the form of a mass component that is differently spatially extended than the light. In this case, intermediate-mass elliptical galaxies (200 km s-1 <σap ≤ 300 km s-1) show the best consistency with the singular isothermal sphere as an effective model of galactic lenses.

  10. The Outer Profile of the Draco Dwarf Spheroidal Galaxy: Measuring the Mass-Loss Rate

    NASA Astrophysics Data System (ADS)

    Armandroff, Taft; Pryor, Carlton; Olszewski, Edward

    1999-02-01

    The existence and properties of dark matter in dwarf galaxies have fundamental implications for cosmology and galaxy formation. We are engaged in a long-term effort to observe and model the structure, kinematics, and mass-to-light ratios of the Draco and UMi dwarf spheroidal (dSph) galaxies. Here we propose to extend our work with a search for outlying members and tidal tails of the Draco dSph galaxy, motivated by observational, theoretical, and technical advances. Recent sophisticated modeling of tidal interactions with the Galactic potential clarifies the interpretation of tidal tails and shows how to calculate the rate at which stars have been lost from a dSph or globular from the density profile of the tidal debris. Also, the radius of the transition between bound and unbound stars yields the outer boundary and total mass of the dark matter halos in the dSphs. While central mass densities and central mass-to-light ratios are generally available for dSphs, determination of their total masses (like those of any galaxy) has remained elusive. We will map a 24 square degree area along the major axis of Draco, plus six square degrees of background. Use of a 3-filter technique will result in an unprecedentedly clean census of distant Draco stars and, thus, a major-axis density profile to a radius of ~6°. Our long-term goal is to investigate the kinematics of the outer members and tidal-tail stars in order to compare in detail with the models.

  11. Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Bregman, Joel N.; Wang, Q. Daniel; Crain, Robert A.; Anderson, Michael E.

    2018-03-01

    The baryon content around local galaxies is observed to be much less than is needed in Big Bang nucleosynthesis. Simulations indicate that a significant fraction of these “missing baryons” may be stored in a hot tenuous circumgalactic medium (CGM) around massive galaxies extending to or even beyond the virial radius of their dark matter halos. Previous observations in X-ray and Sunyaev–Zel’dovich (SZ) signals claimed that ∼(1–50)% of the expected baryons are stored in a hot CGM within the virial radius. The large scatter is mainly caused by the very uncertain extrapolation of the hot gas density profile based on the detection in a small radial range (typically within 10%–20% of the virial radius). Here, we report stacking X-ray observations of six local isolated massive spiral galaxies from the CGM-MASS sample. We find that the mean density profile can be characterized by a single power law out to a galactocentric radius of ≈200 kpc (or ≈130 kpc above the 1σ background uncertainty), about half the virial radius of the dark matter halo. We can now estimate that the hot CGM within the virial radius accounts for (8 ± 4)% of the baryonic mass expected for the halos. Including the stars, the baryon fraction is (27 ± 16)%, or (39 ± 20)% by assuming a flattened density profile at r ≳ 130 kpc. We conclude that the hot baryons within the virial radius of massive galaxy halos are insufficient to explain the “missing baryons.”

  12. Testing the Bose-Einstein Condensate dark matter model at galactic cluster scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harko, Tiberiu; Liang, Pengxiang; Liang, Shi-Dong

    The possibility that dark matter may be in the form of a Bose-Einstein Condensate (BEC) has been extensively explored at galactic scale. In particular, good fits for the galactic rotations curves have been obtained, and upper limits for the dark matter particle mass and scattering length have been estimated. In the present paper we extend the investigation of the properties of the BEC dark matter to the galactic cluster scale, involving dark matter dominated astrophysical systems formed of thousands of galaxies each. By considering that one of the major components of a galactic cluster, the intra-cluster hot gas, is describedmore » by King's β-model, and that both intra-cluster gas and dark matter are in hydrostatic equilibrium, bound by the same total mass profile, we derive the mass and density profiles of the BEC dark matter. In our analysis we consider several theoretical models, corresponding to isothermal hot gas and zero temperature BEC dark matter, non-isothermal gas and zero temperature dark matter, and isothermal gas and finite temperature BEC, respectively. The properties of the finite temperature BEC dark matter cluster are investigated in detail numerically. We compare our theoretical results with the observational data of 106 galactic clusters. Using a least-squares fitting, as well as the observational results for the dark matter self-interaction cross section, we obtain some upper bounds for the mass and scattering length of the dark matter particle. Our results suggest that the mass of the dark matter particle is of the order of μ eV, while the scattering length has values in the range of 10{sup −7} fm.« less

  13. The co-evolution of total density profiles and central dark matter fractions in simulated early-type galaxies

    NASA Astrophysics Data System (ADS)

    Remus, Rhea-Silvia; Dolag, Klaus; Naab, Thorsten; Burkert, Andreas; Hirschmann, Michaela; Hoffmann, Tadziu L.; Johansson, Peter H.

    2017-01-01

    We present evidence from cosmological hydrodynamical simulations for a co-evolution of the slope of the total (dark and stellar) mass density profile, γtot, and the dark matter fraction within the half-mass radius, fDM, in early-type galaxies. The relation can be described as γtot = A fDM + B for all systems at all redshifts. The trend is set by the decreasing importance of gas dissipation towards lower redshifts and for more massive systems. Early-type galaxies are smaller, more concentrated, have lower fDM and steeper γtot at high redshifts and at lower masses for a given redshift; fDM and γtot are good indicators for growth by `dry' merging. The values for A and B change distinctively for different feedback models, and this relation can be used as a test for such models. A similar correlation exists between γtot and the stellar mass surface density Σ*. A model with weak stellar feedback and feedback from black holes is in best agreement with observations. All simulations, independent of the assumed feedback model, predict steeper γtot and lower fDM at higher redshifts. While the latter is in agreement with the observed trends, the former is in conflict with lensing observations, which indicate constant or decreasing γtot. This discrepancy is shown to be artificial: the observed trends can be reproduced from the simulations using observational methodology to calculate the total density slopes.

  14. Dynamics of a spherically symmetric inhomogeneous coupled dark energy model with coupling term proportional to non relatvistic matter

    NASA Astrophysics Data System (ADS)

    Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.

    2018-01-01

    The quasi-local scalar variables approach is applied to a spherically symmetric inhomogeneous Lemaître-Tolman-Bondi metric containing a mixture of non-relativistic cold dark matter and coupled dark energy with constant equation of state. The quasi-local coupling term considered is proportional to the quasi-local cold dark matter energy density and a quasi-local Hubble factor-like scalar via a coupling constant α . The autonomous numerical system obtained from the evolution equations is classified for different choices of the free parameters: the adiabatic constant of the dark energy w and α . The presence of a past attractor in a non-physical region of the energy densities phase-space of the system makes the coupling term non physical when the energy flows from the matter to the dark energy in order to avoid negative values of the dark energy density in the past. On the other hand, if the energy flux goes from dark energy to dark matter, the past attractor lies in a physical region. The system is also numerically solved for some interesting initial profiles leading to different configurations: an ever expanding mixture, a scenario where the dark energy is completely consumed by the non-relativistic matter by means of the coupling term, a scenario where the dark energy disappears in the inner layers while the outer layers expand as a mixture of both sources, and, finally, a structure formation toy model scenario, where the inner shells containing the mixture collapse while the outer shells expand.

  15. Dark energy and the structure of the Coma cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Bisnovatyi-Kogan, G. S.; Teerikorpi, P.; Valtonen, M. J.; Byrd, G. G.; Merafina, M.

    2013-05-01

    Context. We consider the Coma cluster of galaxies as a gravitationally bound physical system embedded in the perfectly uniform static dark energy background as implied by ΛCDM cosmology. Aims: We ask if the density of dark energy is high enough to affect the structure of a large and rich cluster of galaxies. Methods: We base our work on recent observational data on the Coma cluster, and apply our theory of local dynamical effects of dark energy, including the zero-gravity radius RZG of the local force field as the key parameter. Results: 1) Three masses are defined that characterize the structure of a regular cluster: the matter mass MM, the dark-energy effective mass MDE (<0), and the gravitating mass MG (=MM + MDE). 2) A new matter-density profile is suggested that reproduces the observational data well for the Coma cluster in the radius range from 1.4 Mpc to 14 Mpc and takes the dark energy background into account. 3) Using this profile, we calculate upper limits for the total size of the Coma cluster, R ≤ RZG ≈ 20 Mpc, and its total matter mass, MM ≲ MM(RZG) = 6.2 × 1015 M⊙. Conclusions: The dark energy antigravity affects the structure of the Coma cluster strongly at large radii R ≳ 14 Mpc and should be considered when its total mass is derived.

  16. THE INNER STRUCTURE OF DWARF-SIZED HALOS IN WARM AND COLD DARK MATTER COSMOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González-Samaniego, A.; Avila-Reese, V.; Colín, P.

    2016-03-10

    By means of N-body + hydrodynamic zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses M{sub v} = (2–3) × 10{sup 10} h{sup −1} M{sub ⊙} at z = 0, both in a warm dark matter (WDM) and cold dark matter (CDM) cosmology. The half-mode mass in the WDM power spectrum of our simulations is M{sub f} = 2 × 10{sup 10} h{sup −1} M{sub ⊙}. In the dark matter (DM) only simulations halo density profiles are well described by the Navarro–Frenk–White parametric fit in both cosmologies, though the WDM halos have concentrations lower bymore » factors of 1.5–2.0 than their CDM counterparts. In the hydrodynamic simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase space density profiles of the WDM halos but not of the CDM ones. The density slope, measured at ≈0.02R{sub v}, α{sub 0.02}, becomes shallow in periods of 2–5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global star formation (SF), M{sub s}/M{sub v} ratio, gas outflow, and internal specific angular momentum histories. We do not find any clear trends, but when α{sub 0.02} is shallower than −0.5, M{sub s}/M{sub v} is always between 0.25% and 1%. We conclude that the main reason for the formation of the shallow core is the presence of strong gas mass fluctuations inside the inner halo, which are a consequence of the feedback driven by a very bursty and sustained SF history in shallow gravitational potentials. Our WDM halos, which assemble late and are less concentrated than the CDM ones, obey these conditions. There are also (rare) CDM systems with extended mass assembly histories that obey these conditions and form shallow cores. The dynamical heating and expansion processes behind the DM core flattening apply also to the stars in such a way that the stellar age and metallicity gradients of the dwarfs are softened, their stellar half-mass radii strongly grow with time, and their central surface densities decrease.« less

  17. Mass Profile Decomposition of the Frontier Fields Cluster MACS J0416-2403: Insights on the Dark-matter Inner Profile

    NASA Astrophysics Data System (ADS)

    Annunziatella, M.; Bonamigo, M.; Grillo, C.; Mercurio, A.; Rosati, P.; Caminha, G.; Biviano, A.; Girardi, M.; Gobat, R.; Lombardi, M.; Munari, E.

    2017-12-01

    We present a high-resolution dissection of the two-dimensional total mass distribution in the core of the Hubble Frontier Fields galaxy cluster MACS J0416.1‑2403, at z = 0.396. We exploit HST/WFC3 near-IR (F160W) imaging, VLT/Multi Unit Spectroscopic Explorer spectroscopy, and Chandra data to separate the stellar, hot gas, and dark-matter mass components in the inner 300 kpc of the cluster. We combine the recent results of our refined strong lensing analysis, which includes the contribution of the intracluster gas, with the modeling of the surface brightness and stellar mass distributions of 193 cluster members, of which 144 are spectroscopically confirmed. We find that, moving from 10 to 300 kpc from the cluster center, the stellar to total mass fraction decreases from 12% to 1% and the hot gas to total mass fraction increases from 3% to 9%, resulting in a baryon fraction of approximatively 10% at the outermost radius. We measure that the stellar component represents ∼30%, near the cluster center, and 15%, at larger clustercentric distances, of the total mass in the cluster substructures. We subtract the baryonic mass component from the total mass distribution and conclude that within 30 kpc (∼3 times the effective radius of the brightest cluster galaxy) from the cluster center the surface mass density profile of the total mass and global (cluster plus substructures) dark-matter are steeper and that of the diffuse (cluster) dark-matter is shallower than an NFW profile. Our current analysis does not point to a significant offset between the cluster stellar and dark-matter components. This detailed and robust reconstruction of the inner dark-matter distribution in a larger sample of galaxy clusters will set a new benchmark for different structure formation scenarios.

  18. Probing dark matter annihilation in the Galaxy with antiprotons and gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuoco, Alessandro; Heisig, Jan; Korsmeier, Michael

    2017-10-01

    A possible hint of dark matter annihilation has been found in Cuoco, Korsmeier and Krämer (2017) from an analysis of recent cosmic-ray antiproton data from AMS-02 and taking into account cosmic-ray propagation uncertainties by fitting at the same time dark matter and propagation parameters. Here, we extend this analysis to a wider class of annihilation channels. We find consistent hints of a dark matter signal with an annihilation cross-section close to the thermal value and with masses in range between 40 and 130 GeV depending on the annihilation channel. Furthermore, we investigate in how far the possible signal is compatiblemore » with the Galactic center gamma-ray excess and recent observation of dwarf satellite galaxies by performing a joint global fit including uncertainties in the dark matter density profile. As an example, we interpret our results in the framework of the Higgs portal model.« less

  19. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    NASA Astrophysics Data System (ADS)

    Kim, J.; McGuffey, C.; Qiao, B.; Wei, M. S.; Grabowski, P. E.; Beg, F. N.

    2016-04-01

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.

  20. Nexus of the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; van de Weygaert, Rien; Jones, Bernard J. T.; Frenk, Carlos S.; Hellwing, Wojciech A.

    2015-01-01

    One of the important unknowns of current cosmology concerns the effects of the large scale distribution of matter on the formation and evolution of dark matter haloes and galaxies. One main difficulty in answering this question lies in the absence of a robust and natural way of identifying the large scale environments and their characteristics. This work summarizes the NEXUS+ formalism which extends and improves our multiscale scale-space MMF method. The new algorithm is very successful in tracing the Cosmic Web components, mainly due to its novel filtering of the density in logarithmic space. The method, due to its multiscale and hierarchical character, has the advantage of detecting all the cosmic structures, either prominent or tenuous, without preference for a certain size or shape. The resulting filamentary and wall networks can easily be characterized by their direction, thickness, mass density and density profile. These additional environmental properties allows to us to investigate not only the effect of environment on haloes, but also how it correlates with the environment characteristics.

  1. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.; McGuffey, C., E-mail: cmcguffey@ucsd.edu; Qiao, B.

    2016-04-15

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam depositionmore » profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.« less

  2. Studying the location of SACs and DACs regions in the environment of hot emission stars

    NASA Astrophysics Data System (ADS)

    Antoniou, A.; Danezis, E.; Lyratzi, E.; Popović, L. Č.; Dimitrijević, M. S.; Theodossiou, E.

    Hot emission stars (Oe and Be stars) present complex spectral line profiles, which are formed by a number of DACs and/or SACs. In order to explain and reproduce theoretically these complex line profiles we use the GR model (Gauss-Rotation model). This model presupposes that the regions, where the spectral lines are created, consist of a number of independent and successive absorbing or emitting density regions of matter. Here we are testing a new approach of the GR model, which supposes that the independent density regions are not successive. We use this new approach in the spectral lines of some Oe and Be stars and we compare the results of this method with the results deriving from the classical GR model that supposes successive regions.

  3. Vortex line in the unitary Fermi gas

    DOE PAGES

    Madeira, Lucas; Vitiello, Silvio A.; Gandolfi, Stefano; ...

    2016-04-06

    Here, we report diffusion Monte Carlo results for the ground state of unpolarized spin-1/2 fermions in a cylindrical container and properties of the system with a vortex-line excitation. The density profile of the system with a vortex line presents a nonzero density at the core. We also calculate the ground-state energy per particle, the superfluid pairing gap, and the excitation energy per particle. Finally, these simulations can be extended to calculate the properties of vortex excitations in other strongly interacting systems such as superfluid neutron matter using realistic nuclear Hamiltonians.

  4. Simulated X-ray galaxy clusters at the virial radius: Slopes of the gas density, temperature and surface brightness profiles

    NASA Astrophysics Data System (ADS)

    Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.

    2006-12-01

    Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 < Mvir < 3.4 × 1015Msolar, we have studied the density, temperature and X-ray surface brightness profiles of the intracluster medium in the regions around the virial radius. We have analysed the profiles in the radial range well above the cluster core, the physics of which are still unclear and matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.

  5. The Distribution and Annihilation of Dark Matter Around Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.

    2015-01-01

    We use a Monte Carlo code to calculate the geodesic orbits of test particles around Kerr black holes, generating a distribution function of both bound and unbound populations of dark matter (DM) particles. From this distribution function, we calculate annihilation rates and observable gamma-ray spectra for a few simple DM models. The features of these spectra are sensitive to the black hole spin, observer inclination, and detailed properties of the DM annihilation cross-section and density profile. Confirming earlier analytic work, we find that for rapidly spinning black holes, the collisional Penrose process can reach efficiencies exceeding 600%, leading to a high-energy tail in the annihilation spectrum. The high particle density and large proper volume of the region immediately surrounding the horizon ensures that the observed flux from these extreme events is non-negligible.

  6. X-ray Emission from Supernovae in Dense Circumstellar Matter Environments: a Search for Collisionless Shocks

    NASA Technical Reports Server (NTRS)

    Ofek, E. O.; Fox, D.; Cenko, Stephen B.; Sullivan, M; Gnat, O.; Frail, D. A.; Horesh, A.; Corsi, A.; Quimby, R. M.; Gehrels, N.; hide

    2013-01-01

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (the so-called shock breakout) in optically thick (Tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and radiation-dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift/XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 Type IIn SNe, one Type Ibn SN, and eight hydrogen-poor superluminous SNe (SLSN-I such as SN 2005ap). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSM. However, the X-ray emission from SN 2006jc can also be explained as originating in an optically thin region. Thus, we propose that the optical light curve of SN 2010jl is powered by shock breakout in CSM. We suggest that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock-breakout model.We conclude that the light curves of some, but not all, SNe IIn/Ibn are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all of the SLSN-I events, our X-ray limits are not deep enough and were typically obtained too early (i.e., near the SN maximum light) for definitive conclusions about their nature. Late-time X-ray observations are required in order to further test whether these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakout in a wind profile. We argue that the timescale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. In SNe whose X-ray emission slowly rises, and peaks at late times, the optical light curve is likely powered by the diffusion of shock energy in a dense CSM. We note that if the CSM density profile falls faster than a constant-rate wind-density profile, then X-rays may escape at earlier times than estimated for the wind-profile case. Furthermore, if the CSM has a region in which the density profile is very steep relative to a steady wind-density profile, or if the CSM is neutral, then the radio free-free absorption may be sufficiently low for radio emission to be detected.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Anthony M.; Williams, Liliya L.R.; Hjorth, Jens, E-mail: amyoung@astro.umn.edu, E-mail: llrw@astro.umn.edu, E-mail: jens@dark-cosmology.dk

    One usually thinks of a radial density profile as having a monotonically changing logarithmic slope, such as in NFW or Einasto profiles. However, in two different classes of commonly used systems, this is often not the case. These classes exhibit non-monotonic changes in their density profile slopes which we call oscillations for short. We analyze these two unrelated classes separately. Class 1 consists of systems that have density oscillations and that are defined through their distribution function f ( E ), or differential energy distribution N ( E ), such as isothermal spheres, King profiles, or DARKexp, a theoretically derivedmore » model for relaxed collisionless systems. Systems defined through f ( E ) or N ( E ) generally have density slope oscillations. Class 1 system oscillations can be found at small, intermediate, or large radii but we focus on a limited set of Class 1 systems that have oscillations in the central regions, usually at log( r / r {sub −2}) ∼< −2, where r {sub −2} is the largest radius where d log(ρ)/ d log( r ) = −2. We show that the shape of their N ( E ) can roughly predict the amplitude of oscillations. Class 2 systems which are a product of dynamical evolution, consist of observed and simulated galaxies and clusters, and pure dark matter halos. Oscillations in the density profile slope seem pervasive in the central regions of Class 2 systems. We argue that in these systems, slope oscillations are an indication that a system is not fully relaxed. We show that these oscillations can be reproduced by small modifications to N ( E ) of DARKexp. These affect a small fraction of systems' mass and are confined to log( r / r {sub −2}) ∼< 0. The size of these modifications serves as a potential diagnostic for quantifying how far a system is from being relaxed.« less

  8. Search for dark matter annihilation in the Galactic Center with IceCube-79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, newmore » and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. Here, no neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, Av>, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4•10 –24 cm 3 s –1, and ≃2.6•10 –23 cm 3 s –1 for the ν ν¯ channel, respectively.« less

  9. Search for dark matter annihilation in the Galactic Center with IceCube-79

    DOE PAGES

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; ...

    2015-10-15

    The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, newmore » and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. Here, no neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, Av>, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to ≃4•10 –24 cm 3 s –1, and ≃2.6•10 –23 cm 3 s –1 for the ν ν¯ channel, respectively.« less

  10. Baryons Matter: Why Luminous Satellite Galaxies have Reduced Central Masses

    NASA Astrophysics Data System (ADS)

    Zolotov, Adi; Brooks, Alyson M.; Willman, Beth; Governato, Fabio; Pontzen, Andrew; Christensen, Charlotte; Dekel, Avishai; Quinn, Tom; Shen, Sijing; Wadsley, James

    2012-12-01

    Using high-resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < MV < -8) satellite galaxies. These simulations resolve high-density regions, comparable to giant molecular clouds, where stars form. This resolution allows us to adopt a prescription for H2 formation and destruction that ties star formation to the presence of shielded, molecular gas. Before infall, supernova feedback from the clumpy, bursty star formation captured by this physically motivated model leads to reduced dark matter (DM) densities and shallower inner density profiles in the massive satellite progenitors (M vir >= 109 M ⊙, M * >= 107 M ⊙) compared with DM-only simulations. The progenitors of the lower mass satellites are unable to maintain bursty star formation histories, due to both heating at reionization and gas loss from initial star-forming events, preserving the steep inner density profile predicted by DM-only simulations. After infall, gas stripping from satellites reduces the total central masses of satellites simulated with DM+baryons relative to DM-only satellites. Additionally, enhanced tidal stripping after infall due to the baryonic disk acts to further reduce the central DM densities of the luminous satellites. Satellites that enter with cored DM halos are particularly vulnerable to the tidal effects of the disk, exacerbating the discrepancy in the central masses predicted by baryon+DM and DM-only simulations. We show that DM-only simulations, which neglect the highly non-adiabatic evolution of baryons described in this work, produce denser satellites with larger central velocities. We provide a simple correction to the central DM mass predicted for satellites by DM-only simulations. We conclude that DM-only simulations should be used with great caution when interpreting kinematic observations of the Milky Way's dwarf satellites.

  11. The dynamics of z ~ 1 clusters of galaxies from the GCLASS survey

    NASA Astrophysics Data System (ADS)

    Biviano, A.; van der Burg, R. F. J.; Muzzin, A.; Sartoris, B.; Wilson, G.; Yee, H. K. C.

    2016-10-01

    Context. The dynamics of clusters of galaxies and its evolution provide information on their formation and growth, on the nature of dark matter and on the evolution of the baryonic components. Poor observational constraints exist so far on the dynamics of clusters at redshift z > 0.8. Aims: We aim to constrain the internal dynamics of clusters of galaxies at redshift z ~ 1, namely their mass profile M(r), velocity anisotropy profile β(r), and pseudo-phase-space density profiles Q(r) and Qr(r), obtained from the ratio between the mass density profile and the third power of the (total and, respectively, radial) velocity dispersion profiles of cluster galaxies. Methods: We used the spectroscopic and photometric data-set of 10 clusters at 0.87 < z < 1.34 from the Gemini Cluster Astrophysics Spectroscopic Survey (GCLASS). We determined the individual cluster masses from their velocity dispersions, then stack the clusters in projected phase-space. We investigated the internal dynamics of this stack cluster, using the spatial and velocity distribution of its member galaxies. We determined the stack cluster M(r) using the MAMPOSSt method, and its β(r) by direct inversion of the Jeans equation. The procedures used to determine the two aforementioned profiles also allowed us to determine Q(r) and Qr(r). Results: Several M(r) models are statistically acceptable for the stack cluster (Burkert, Einasto, Hernquist, NFW). The stack cluster total mass concentration, c ≡ r200/r-2 = 4.0-0.6+1.0, is in agreement with theoretical expectations. The total mass distribution is less concentrated than both the cluster stellar-mass and the cluster galaxies distributions. The stack cluster β(r) indicates that galaxy orbits are isotropic near the cluster center and become increasingly radially elongated with increasing cluster-centric distance. Passive and star-forming galaxies have similar β(r). The observed β(r) is similar to that of dark matter particles in simulated cosmological halos. Q(r) and Qr(r) are almost power-law relations with slopes similar to those predicted from numerical simulations of dark matter halos. Conclusions: Comparing our results with those obtained for lower-redshift clusters, we conclude that the evolution of the concentration-total mass relation and pseudo-phase-space density profiles agree with the expectations from ΛCDM cosmological simulations. The fact that Q(r) and Qr(r) already follow the theoretical expectations in z ~ 1 clusters suggest these profiles are the result of rapid dynamical relaxation processes, such as violent relaxation. The different concentrations of the total and stellar mass distribution, and their subsequent evolution, can be explained by merging processes of central galaxies leading to the formation of the brightest cluster galaxy. The orbits of passive cluster galaxies appear to become more isotropic with time, while those of star-forming galaxies do not evolve, presumably because star-formation is quenched on a shorter timescale than that required for orbital isotropization.

  12. On the linearity of tracer bias around voids

    NASA Astrophysics Data System (ADS)

    Pollina, Giorgia; Hamaus, Nico; Dolag, Klaus; Weller, Jochen; Baldi, Marco; Moscardini, Lauro

    2017-07-01

    The large-scale structure of the Universe can be observed only via luminous tracers of the dark matter. However, the clustering statistics of tracers are biased and depend on various properties, such as their host-halo mass and assembly history. On very large scales, this tracer bias results in a constant offset in the clustering amplitude, known as linear bias. Towards smaller non-linear scales, this is no longer the case and tracer bias becomes a complicated function of scale and time. We focus on tracer bias centred on cosmic voids, I.e. depressions of the density field that spatially dominate the Universe. We consider three types of tracers: galaxies, galaxy clusters and active galactic nuclei, extracted from the hydrodynamical simulation Magneticum Pathfinder. In contrast to common clustering statistics that focus on auto-correlations of tracers, we find that void-tracer cross-correlations are successfully described by a linear bias relation. The tracer-density profile of voids can thus be related to their matter-density profile by a single number. We show that it coincides with the linear tracer bias extracted from the large-scale auto-correlation function and expectations from theory, if sufficiently large voids are considered. For smaller voids we observe a shift towards higher values. This has important consequences on cosmological parameter inference, as the problem of unknown tracer bias is alleviated up to a constant number. The smallest scales in existing data sets become accessible to simpler models, providing numerous modes of the density field that have been disregarded so far, but may help to further reduce statistical errors in constraining cosmology.

  13. The Phase-space Density Distribution of Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Williams, Liliya L. R.; Austin, Crystal; Barnes, Eric; Babul, Arif; Dalcanton, Julianne

    2004-12-01

    High resolution N-body simulations have all but converged on a common empirical form for the shape of the density profiles of halos, but the full understanding of the underlying physics of halo formation has eluded them so far. We investigate the formation and structure of dark matter halos using analytical and semi-analytical techniques. Our halos are formed via an extended secondary infall model (ESIM); they contain secondary perturbations and hence random tangential and ra- dial motions which affect the halo’s evolution at it undergoes shell-crossing and virialization. Even though the density profiles of NFW and ESIM halos are different their phase-space density distributions are the same: ρ σ3 ∝ r α , with α 1 875 over 3 decades in radius. We use two approaches to try to explain this “universal” slope: (1) The Jeans equation analysis yields many insights, however, does not answer why α 1 875. (2) The secondary infall model of the 1960’s £ ¤ and 1970’s, augmented by “thermal motions” of particles does predict that halos should have α 1 875. However, this relies on assumptions of spherical symmetry and slow accretion. While £ ¤ for ESIM halos these assumptions are justified, they most certainly break down for simulated halos which forms hierarchically. We speculate that our argument may apply to an “on-average” formation scenario of halos within merger-driven numerical simulations, and thereby explain why α 1 875 for NFW halos. Thus, ρ σ3 ∝ r 1 875 may be a generic feature of violent relaxation.

  14. CLASH: Weak-lensing shear-and-magnification analysis of 20 galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umetsu, Keiichi; Czakon, Nicole; Medezinski, Elinor

    2014-11-10

    We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 ≲ z ≲ 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked-shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ≅ 25 in the radial range of 200-3500 kpc h {sup –1}, providing integrated constraints on the halo profile shape and concentration-mass relation. The stacked tangential-shear signal is well described bymore » a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c{sub 200c}=4.01{sub −0.32}{sup +0.35} at an effective halo mass of M{sub 200c}=1.34{sub −0.09}{sup +0.10}×10{sup 15} M{sub ⊙}. We show that this is in excellent agreement with Λ cold dark matter (ΛCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is α{sub E}=0.191{sub −0.068}{sup +0.071}, which is consistent with the NFW-equivalent Einasto parameter of ∼0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data and measure cluster masses at several characteristic radii assuming an NFW density profile. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions, including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the ΛCDM model.« less

  15. Simultaneous Conduction and Valence Band Quantization in Ultrashallow High-Density Doping Profiles in Semiconductors

    NASA Astrophysics Data System (ADS)

    Mazzola, F.; Wells, J. W.; Pakpour-Tabrizi, A. C.; Jackman, R. B.; Thiagarajan, B.; Hofmann, Ph.; Miwa, J. A.

    2018-01-01

    We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.

  16. First test of Verlinde's theory of emergent gravity using weak gravitational lensing measurements

    NASA Astrophysics Data System (ADS)

    Brouwer, Margot M.; Visser, Manus R.; Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Valentijn, Edwin A.; Bilicki, Maciej; Blake, Chris; Brough, Sarah; Buddelmeijer, Hugo; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; Klaes, Dominik; Liske, Jochen; Loveday, Jon; McFarland, John; Nakajima, Reiko; Sifón, Cristóbal; Taylor, Edward N.

    2017-04-01

    Verlinde proposed that the observed excess gravity in galaxies and clusters is the consequence of emergent gravity (EG). In this theory, the standard gravitational laws are modified on galactic and larger scales due to the displacement of dark energy by baryonic matter. EG gives an estimate of the excess gravity (described as an apparent dark matter density) in terms of the baryonic mass distribution and the Hubble parameter. In this work, we present the first test of EG using weak gravitational lensing, within the regime of validity of the current model. Although there is no direct description of lensing and cosmology in EG yet, we can make a reasonable estimate of the expected lensing signal of low-redshift galaxies by assuming a background Lambda cold dark matter cosmology. We measure the (apparent) average surface mass density profiles of 33 613 isolated central galaxies and compare them to those predicted by EG based on the galaxies' baryonic masses. To this end, we employ the ˜180 deg2 overlap of the Kilo-Degree Survey with the spectroscopic Galaxy And Mass Assembly survey. We find that the prediction from EG, despite requiring no free parameters, is in good agreement with the observed galaxy-galaxy lensing profiles in four different stellar mass bins. Although this performance is remarkable, this study is only a first step. Further advancements on both the theoretical framework and observational tests of EG are needed before it can be considered a fully developed and solidly tested theory.

  17. Rotation curves of galaxies and the stellar mass-to-light ratio

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Khodadadi, Aziz; Ghari, Amir; Zonoozi, Akram Hasani; Kroupa, Pavel

    2018-03-01

    Mass models of a sample of 171 low- and high-surface brightness galaxies are presented in the context of the cold dark matter (CDM) theory using the NFW dark matter halo density distribution to extract a new concentration-viral mass relation (c - Mvir). The rotation curves (RCs) are calculated from the total baryonic matter based on the 3.6 μm-band surface photometry, the observed distribution of neutral hydrogen, and the dark halo, in which the three adjustable parameters are the stellar mass-to-light ratio, halo concentration and virial mass. Although accounting for a NFW dark halo profile can explain rotation curve observations, the implied c - Mvir relation from RC analysis strongly disagrees with that resulting from different cosmological simulations. Also, the M/L -color correlation of the studied galaxies is inconsistent with that expected from stellar population synthesis models with different stellar initial mass functions. Moreover, we show that the best-fitting stellar M/L - ratios of 51 galaxies (30% of our sample) have unphysically negative values in the framework of the ΛCDM theory. This can be interpreted as a serious crisis for this theory. This suggests either that the commonly used NFW halo profile, which is a natural result of ΛCDM cosmological structure formation, is not an appropriate profile for the dark halos of galaxies, or, new dark matter physics or alternative gravity models are needed to explain the rotational velocities of disk galaxies.

  18. Rotation curves of galaxies and the stellar mass-to-light ratio

    NASA Astrophysics Data System (ADS)

    Haghi, Hosein; Khodadadi, Aziz; Ghari, Amir; Zonoozi, Akram Hasani; Kroupa, Pavel

    2018-07-01

    Mass models of a sample of 171 low- and high-surface brightness galaxies are presented in the context of the cold dark matter (CDM) theory using the NFW dark matter halo density distribution to extract a new concentration-viral mass relation (c-Mvir). The rotation curves (RCs) are calculated from the total baryonic matter based on the 3.6 μm-band surface photometry, the observed distribution of neutral hydrogen, and the dark halo, in which the three adjustable parameters are the stellar mass-to-light ratio, halo concentration, and virial mass. Although accounting for a NFW dark halo profile can explain RC observations, the implied c-Mvir relation from RC analysis strongly disagrees with that resulting from different cosmological simulations. Also, the M/L-colour correlation of the studied galaxies is inconsistent with that expected from stellar population synthesis models with different stellar initial mass functions. Moreover, we show that the best-fitting stellar M/L ratios of 51 galaxies (30 per cent of our sample) have unphysically negative values in the framework of the ΛCDM theory. This can be interpreted as a serious crisis for this theory. This suggests either that the commonly used NFW halo profile, which is a natural result of ΛCDM cosmological structure formation, is not an appropriate profile for the dark haloes of galaxies, or, new dark matter physics or alternative gravity models are needed to explain the rotational velocities of disc galaxies.

  19. Concentrations of Simulated Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Child, Hillary

    2017-01-01

    We present the concentration-mass (c-M) relation of dark matter halos in two new high-volume high-resolution cosmological N-body simulations, Q Continuum and Outer Rim. Concentration describes the density of the central regions of halos; it is highest for low-mass halos at low redshift, decreasing at high mass and redshift. The shape of the c-M relation is an important probe of cosmology. We discuss the redshift dependence of the c-M relation, several different methods to determine concentrations of simulated halos, and potential sources of bias in concentration measurements. To connect to lensing observations, we stack halos, which also allows us to assess the suitability of the Navarro-Frenk-White profile and other profiles, such as Einasto, with an additional shape parameter. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144082.

  20. A Numerical Fit of Analytical to Simulated Density Profiles in Dark Matter Haloes

    NASA Astrophysics Data System (ADS)

    Caimmi, R.; Marmo, C.; Valentinuzzi, T.

    2005-06-01

    Analytical and geometrical properties of generalized power-law (GPL) density profiles are investigated in detail. In particular, a one-to-one correspondence is found between mathematical parameters (a scaling radius, r_0, a scaling density, rho_0, and three exponents, alpha, beta, gamma), and geometrical parameters (the coordinates of the intersection of the asymptotes, x_C, y_C, and three vertical intercepts, b, b_beta, b_gamma, related to the curve and the asymptotes, respectively): (r_0,rho_0,alpha,beta,gamma) <--> (x_C,y_C,b,b_beta,b_gamma). Then GPL density profiles are compared with simulated dark haloes (SDH) density profiles, and nonlinear least-absolute values and least-squares fits involving the above mentioned five parameters (RFSM5 method) are prescribed. More specifically, the sum of absolute values or squares of absolute logarithmic residuals, R_i= log rhoSDH(r_i)-log rhoGPL(r_i), is evaluated on 10^5 points making a 5- dimension hypergrid, through a few iterations. The size is progressively reduced around a fiducial minimum, and superpositions on nodes of earlier hypergrids are avoided. An application is made to a sample of 17 SDHs on the scale of cluster of galaxies, within a flat LambdaCDM cosmological model (Rasia et al. 2004). In dealing with the mean SDH density profile, a virial radius, rvir, averaged over the whole sample, is assigned, which allows the calculation of the remaining parameters. Using a RFSM5 method provides a better fit with respect to other methods. The geometrical parameters, averaged over the whole sample of best fitting GPL density profiles, yield (alpha,beta,gamma) approx(0.6,3.1,1.0), to be compared with (alpha,beta,gamma)=(1,3,1), i.e. the NFW density profile (Navarro et al. 1995, 1996, 1997), (alpha,beta,gamma)=(1.5,3,1.5) (Moore et al. 1998, 1999), (alpha,beta,gamma)=(1,2.5,1) (Rasia et al. 2004); and, in addition, gamma approx 1.5 (Hiotelis 2003), deduced from the application of a RFSM5 method, but using a different definition of scaled radius, or concentration; and gamma approx 1.2-1.3 deduced from more recent high-resolution simulations (Diemand et al. 2004, Reed et al. 2005). No evident correlation is found between SDH dynamical state (relaxed or merging) and asymptotic inner slope of the fitting logarithmic density profile or (for SDH comparable virial masses) scaled radius. Mean values and standard deviations of some parameters are calculated, and in particular the decimal logarithm of the scaled radius, xivir, reads < log xivir >=0.74 and sigma_s log xivir=0.15-0.17, consistent with previous results related to NFW density profiles. It provides additional support to the idea, that NFW density profiles may be considered as a convenient way to parametrize SDH density profiles, without implying that it necessarily produces the best possible fit (Bullock et al. 2001). A certain degree of degeneracy is found in fitting GPL to SDH density profiles. If it is intrinsic to the RFSM5 method or it could be reduced by the next generation of high-resolution simulations, still remains an open question.

  1. The electrosphere of macroscopc ""nuclei"": diffuse emissions in the MeV band from dark antimatter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, Michael Mcneil; Lawson, Kyle; Zhitnitsky, Ariel R

    2009-01-01

    Using a Thomas-Fermi model, we calculate the structure of the electrosphere of the quark antimatter nuggets postulated to comprise much of the dark matter. This provides a single self-consistent density profile from ultra-rel ativistic densities to the non-relativistic Boltzmann regime. We use this to present a microscopically justified calculation of several properties of the nuggets, including their net charge, and the ratio of MeV to 511 keV emissions from electron annihilation. We find that the calculated parameters agree with previous phenomenological estimates based on the observational supposition that the nuggets are a source of several unexplained diffuse emissions from themore » galaxy. This provides another nontrivial verification of the dark matter proposal. The structure of the electrosphere is quite general and will also be valid at the surface of strange-quark stars, should they exist.« less

  2. Linear velocity fields in non-Gaussian models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  3. Indirect detection constraints on s- and t-channel simplified models of dark matter

    NASA Astrophysics Data System (ADS)

    Carpenter, Linda M.; Colburn, Russell; Goodman, Jessica; Linden, Tim

    2016-09-01

    Recent Fermi-LAT observations of dwarf spheroidal galaxies in the Milky Way have placed strong limits on the gamma-ray flux from dark matter annihilation. In order to produce the strongest limit on the dark matter annihilation cross section, the observations of each dwarf galaxy have typically been "stacked" in a joint-likelihood analysis, utilizing optical observations to constrain the dark matter density profile in each dwarf. These limits have typically been computed only for singular annihilation final states, such as b b ¯ or τ+τ- . In this paper, we generalize this approach by producing an independent joint-likelihood analysis to set constraints on models where the dark matter particle annihilates to multiple final-state fermions. We interpret these results in the context of the most popular simplified models, including those with s- and t-channel dark matter annihilation through scalar and vector mediators. We present our results as constraints on the minimum dark matter mass and the mediator sector parameters. Additionally, we compare our simplified model results to those of effective field theory contact interactions in the high-mass limit.

  4. Dark Matter interpretation of low energy IceCube MESE excess

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chianese, M.; Miele, G.; Morisi, S., E-mail: chianese@na.infn.it, E-mail: miele@na.infn.it, E-mail: stefano.morisi@na.infn.it

    2017-01-01

    The 2-years MESE IceCube events show a slightly excess in the energy range 10–100 TeV with a maximum local statistical significance of 2.3σ, once a hard astrophysical power-law is assumed. A spectral index smaller than 2.2 is indeed suggested by multi-messenger studies related to p - p sources and by the recent IceCube analysis regarding 6-years up-going muon neutrinos. In the present paper, we propose a two-components scenario where the extraterrestrial neutrinos are explained in terms of an astrophysical power-law and a Dark Matter signal. We consider both decaying and annihilating Dark Matter candidates with different final states (quarks andmore » leptons) and different halo density profiles. We perform a likelihood-ratio analysis that provides a statistical significance up to 3.9σ for a Dark Matter interpretation of the IceCube low energy excess.« less

  5. Spatial interference patterns in the dynamics of a 2D Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Bera, Jayanta; Roy, Utpal

    2018-05-01

    Bose-Einstein condensate has become a highly tunable physical system, which is proven to mimic a number of interesting physical phenomena in condensed matter physics. We study the dynamics of a two-dimensional Bose Einstein condensate (BEC) in the presence of a flat harmonic confinement and time-dependent sharp potential peak. Condensate density can be meticulously controlled with time by tuning the physically relevant parameters: frequency of the harmonic trap, width of the peaks, frequency of their oscillations, initial density etc. By engineering various trap profile, we solve the system, numerically, and explore the resulting spatial interference patters.

  6. Dependence of GAMA galaxy halo masses on the cosmic web environment from 100 deg2 of KiDS weak lensing data

    NASA Astrophysics Data System (ADS)

    Brouwer, Margot M.; Cacciato, Marcello; Dvornik, Andrej; Eardley, Lizzie; Heymans, Catherine; Hoekstra, Henk; Kuijken, Konrad; McNaught-Roberts, Tamsyn; Sifón, Cristóbal; Viola, Massimo; Alpaslan, Mehmet; Bilicki, Maciej; Bland-Hawthorn, Joss; Brough, Sarah; Choi, Ami; Driver, Simon P.; Erben, Thomas; Grado, Aniello; Hildebrandt, Hendrik; Holwerda, Benne W.; Hopkins, Andrew M.; de Jong, Jelte T. A.; Liske, Jochen; McFarland, John; Nakajima, Reiko; Napolitano, Nicola R.; Norberg, Peder; Peacock, John A.; Radovich, Mario; Robotham, Aaron S. G.; Schneider, Peter; Sikkema, Gert; van Uitert, Edo; Verdoes Kleijn, Gijs; Valentijn, Edwin A.

    2016-11-01

    Galaxies and their dark matter haloes are part of a complex network of mass structures, collectively called the cosmic web. Using the tidal tensor prescription these structures can be classified into four cosmic environments: voids, sheets, filaments and knots. As the cosmic web may influence the formation and evolution of dark matter haloes and the galaxies they host, we aim to study the effect of these cosmic environments on the average mass of galactic haloes. To this end we measure the galaxy-galaxy lensing profile of 91 195 galaxies, within 0.039 < z < 0.263, from the spectroscopic Galaxy And Mass Assembly survey, using {˜ }100 ° ^2 of overlapping data from the Kilo-Degree Survey. In each of the four cosmic environments we model the contributions from group centrals, satellites and neighbouring groups to the stacked galaxy-galaxy lensing profiles. After correcting the lens samples for differences in the stellar mass distribution, we find no dependence of the average halo mass of central galaxies on their cosmic environment. We do find a significant increase in the average contribution of neighbouring groups to the lensing profile in increasingly dense cosmic environments. We show, however, that the observed effect can be entirely attributed to the galaxy density at much smaller scales (within 4 h-1 Mpc), which is correlated with the density of the cosmic environments. Within our current uncertainties we find no direct dependence of galaxy halo mass on their cosmic environment.

  7. Dynamic conductivity and plasmon profile of aluminum in the ultra-fast-matter regime

    NASA Astrophysics Data System (ADS)

    Dharma-wardana, M. W. C.

    2016-06-01

    We use an explicitly isochoric two-temperature theory to analyze recent x-ray laser scattering data for aluminum in the ultra-fast-matter (UFM) regime up to 6 eV. The observed surprisingly low conductivities are explained by including strong electron-ion scattering effects using the phase shifts calculated via the neutral-pseudo-atom model. The difference between the static conductivity for UFM-Al and equilibrium aluminum in the warm-dense matter state is clearly brought out by comparisons with available density-fucntional+molecular-dynamics simulations. Thus the applicability of the Mermin model to UFM is questioned. The static and dynamic conductivity, collision frequency, and the plasmon line shape, evaluated within the simplest Born approximation for UFM aluminum, are in good agreement with experiment.

  8. Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves

    NASA Astrophysics Data System (ADS)

    Kamada, Ayuki; Kaplinghat, Manoj; Pace, Andrew B.; Yu, Hai-Bo

    2017-09-01

    The rotation curves of spiral galaxies exhibit a diversity that has been difficult to understand in the cold dark matter (CDM) paradigm. We show that the self-interacting dark matter (SIDM) model provides excellent fits to the rotation curves of a sample of galaxies with asymptotic velocities in the 25 - 300 km /s range that exemplify the full range of diversity. We assume only the halo concentration-mass relation predicted by the CDM model and a fixed value of the self-interaction cross section. In dark-matter-dominated galaxies, thermalization due to self-interactions creates large cores and reduces dark matter densities. In contrast, thermalization leads to denser and smaller cores in more luminous galaxies and naturally explains the flatness of rotation curves of the highly luminous galaxies at small radii. Our results demonstrate that the impact of the baryons on the SIDM halo profile and the scatter from the assembly history of halos as encoded in the concentration-mass relation can explain the diverse rotation curves of spiral galaxies.

  9. Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves.

    PubMed

    Kamada, Ayuki; Kaplinghat, Manoj; Pace, Andrew B; Yu, Hai-Bo

    2017-09-15

    The rotation curves of spiral galaxies exhibit a diversity that has been difficult to understand in the cold dark matter (CDM) paradigm. We show that the self-interacting dark matter (SIDM) model provides excellent fits to the rotation curves of a sample of galaxies with asymptotic velocities in the 25-300  km/s range that exemplify the full range of diversity. We assume only the halo concentration-mass relation predicted by the CDM model and a fixed value of the self-interaction cross section. In dark-matter-dominated galaxies, thermalization due to self-interactions creates large cores and reduces dark matter densities. In contrast, thermalization leads to denser and smaller cores in more luminous galaxies and naturally explains the flatness of rotation curves of the highly luminous galaxies at small radii. Our results demonstrate that the impact of the baryons on the SIDM halo profile and the scatter from the assembly history of halos as encoded in the concentration-mass relation can explain the diverse rotation curves of spiral galaxies.

  10. CLASH: Joint analysis of strong-lensing, weak-lensing shear, and magnification data for 20 galaxy clusters*

    DOE PAGES

    Umetsu, Keiichi; Zitrin, Adi; Gruen, Daniel; ...

    2016-04-20

    Here, we present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters atmore » $$0.19\\lesssim z\\lesssim 0.69$$ selected from Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis combines constraints from 16-band Hubble Space Telescope observations and wide-field multi-color imaging taken primarily with Suprime-Cam on the Subaru Telescope, spanning a wide range of cluster radii (10''–16'). We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all of the clusters. We find the internal consistency of the ensemble mass calibration to be ≤5% ± 6% in the one-halo regime (200–2000 kpc h –1) compared to the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample of 16 clusters, we examine the concentration–mass (c–M) relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of $$c{| }_{z=0.34}=3.95\\pm 0.35$$ at M200c sime 14 × 1014 M⊙ and an intrinsic scatter of $$\\sigma (\\mathrm{ln}{c}_{200{\\rm{c}}})=0.13\\pm 0.06$$, which is in excellent agreement with Λ cold dark matter predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked lensing signal is detected at 33σ significance over the entire radial range ≤4000 kpc h –1, accounting for the effects of intrinsic profile variations and uncorrelated large-scale structure along the line of sight. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro–Frenk–White (NFW), Einasto, and DARKexp models, whereas the single power-law, cored isothermal and Burkert density profiles are disfavored by the data. We show that cuspy halo models that include the large-scale two-halo term provide improved agreement with the data. For the NFW halo model, we measure a mean concentration of $${c}_{200{\\rm{c}}}={3.79}_{-0.28}^{+0.30}$$ at $${M}_{200{\\rm{c}}}={14.1}_{-1.0}^{+1.0}\\times {10}^{14}\\;{M}_{\\odot }$$, demonstrating consistency between the complementary analysis methods.« less

  11. Soil ecology of a rock outcrop ecosystem: Abiotic stresses, soil respiration, and microbial community profiles in limestone cedar glades

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Advised by Dzantor, E. Kudjo

    2015-01-01

    Stress factors quantified by this research include shallow soil (depth to bedrock ranging from 2.4 to 22.6 cm), volumetric soil water content levels seasonally ranging from xeric (below 5%) to saturated (above 50%), and seasonally extreme ground-surface temperatures (above 48°C). Findings from this research indicate that spatial and temporal heterogeneity exists in limestone cedar glades in terms of abiotic stress factors and soil physical and chemical properties. Several such soil properties (e.g. soil depth, organic matter levels, pH, and particle size distribution) are spatially correlated. These soil properties were statistically related to ecological structures and functions such as vegetation patterns, soil respiration, the density of culturable heterotrophic microbes in soil and metabolic diversity of soil microbial community profiles. In general, zones within limestone cedar glades that had relatively shallow soil, alkaline pH, low levels of organic matter and high levels of silt also tended to have depressed rates of soil respiration and reduced densities and metabolic diversity of culturable heterotrophic soil microbes. Additionally, seasonally-relevant stress factors including soil water content and temperatures at or near the soil surface were related to the same set of ecological structures and functions.

  12. Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Albert, A.; Anderson, B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; hide

    2013-01-01

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma ray flux upper limits between 500MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10TeV into prototypical standard model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma ray background modeling, and assumed dark matter density profile.

  13. Coarse graining the distribution function of cold dark matter - II

    NASA Astrophysics Data System (ADS)

    Henriksen, R. N.

    2004-12-01

    We study analytically the coarse- and fine-grained distribution function (DF) established by the self-similar infall of collisionless matter. We find this function explicitly for isotropic and spherically symmetric systems in terms of cosmological initial conditions. The coarse-grained function is structureless and steady but the familiar phase-space sheet substructure is recovered in the fine-grained limit. By breaking the self-similarity of the halo infall we are able to argue for a central density flattening. In addition there will be an edge steepening. The best-fitting analytic density function is likely to be provided by a high-order polytrope fit smoothly to an outer power law of index -3 for isolated systems. There may be a transition to a -4 power law in the outer regions of tidally truncated systems. As we find that the central flattening is progressive in time, dynamically young systems such as galaxy clusters may well possess a Navarro, Frenk and White type density profile, while primordial dwarf galaxies, for example, are expected to have cores. This progressive flattening is expected to end either in the non-singular isothermal sphere, or in the non-singular metastable polytropic cores; as the DFs associated with each of these arise naturally in the bulk halo during the infall. We suggest, based on previous studies of the evolution of de-stabilized polytropes, that a collisionless system may pass through a family of polytropes of increasing order, finally approaching the limit of the non-singular isothermal sphere, if the `violent' collective relaxation is frequently re-excited by `merger' events. Thus central dominant (cD) galaxies, and indeed all bright galaxies that have grown in this fashion, should be in polytropic states. Our results suggest that no physics beyond that of wave-particle scattering is necessary to explain the nature of dark matter density profiles. However, this may be assisted by the scattering of particles from the centre of the system by the infall of dwarf galaxies, galactic nuclei or black holes (e.g. Nakano & Makino), all of which would restart pure dynamical relaxation.

  14. Characterizing Milky Way Tidal Streams and Dark Matter with MilkyWay@home

    NASA Astrophysics Data System (ADS)

    Newberg, Heidi Jo; Shelton, Siddhartha; Weiss, Jake

    2018-01-01

    MilkyWay@home is a 0.5 PetaFLOPS volunteer computing platform that is mapping out the density substructure of the Sagittarius Dwarf Tidal Stream, the so-called bifurcated portion of the Sagittarius Stream, and the Virgo Overdensity, using turnoff stars from the Sloan Digital Sky Survey. It is also using the density of stars along tidal streams such as the Orphan Stream to constrain properties of the dwarf galaxy progenitor of this stream, including the dark matter portion. Both of these programs are enabled by a specially-built optimization package that uses differential evolution or particle swarm methods to find the optimal model parameters to fit a set of data. To fit the density of tidal streams, 20 parameters are simultaneously fit to each 2.5-degree-wide stripe of SDSS data. Five parameters describing the stellar and dark matter profile of the Orphan Stream progenitor and the time that the dwarf galaxy has been evolved through the Galactic potential are used in an n-body simulation that is then fit to observations of the Orphan Stream. New results from MilkyWay@home will be presented. This project was supported by NSF grant AST 16-15688, the NASA/NY Space Grant fellowship, and contributions made by The Marvin Clan, Babette Josephs, Manit Limlamai, and the 2015 Crowd Funding Campaign to Support Milky Way Research.

  15. N-body simulations for f(R) gravity using a self-adaptive particle-mesh code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Gongbo; Koyama, Kazuya; Li Baojiu

    2011-02-15

    We perform high-resolution N-body simulations for f(R) gravity based on a self-adaptive particle-mesh code MLAPM. The chameleon mechanism that recovers general relativity on small scales is fully taken into account by self-consistently solving the nonlinear equation for the scalar field. We independently confirm the previous simulation results, including the matter power spectrum, halo mass function, and density profiles, obtained by Oyaizu et al.[Phys. Rev. D 78, 123524 (2008)] and Schmidt et al.[Phys. Rev. D 79, 083518 (2009)], and extend the resolution up to k{approx}20 h/Mpc for the measurement of the matter power spectrum. Based on our simulation results, we discussmore » how the chameleon mechanism affects the clustering of dark matter and halos on full nonlinear scales.« less

  16. Spectral split in a prompt supernova neutrino burst: Analytic three-flavor treatment

    NASA Astrophysics Data System (ADS)

    Dasgupta, Basudeb; Dighe, Amol; Mirizzi, Alessandro; Raffelt, Georg G.

    2008-06-01

    The prompt νe burst from a core-collapse supernova is subject to both matter-induced flavor conversions and strong neutrino-neutrino refractive effects. For the lowest-mass progenitors, leading to O-Ne-Mg core supernovae, the matter density profile can be so steep that the usual Mikheyev-Smirnov-Wolfenstein matter effects occur within the dense-neutrino region close to the neutrino sphere. In this case a “split” occurs in the emerging spectrum, i.e., the νe flavor survival probability shows a steplike feature. We explain this feature analytically as a spectral split prepared by the Mikheyev-Smirnov-Wolfenstein effect. In a three-flavor treatment, the steplike feature actually consists of two narrowly spaced splits. They are determined by two combinations of flavor-lepton numbers that are conserved under collective oscillations.

  17. Initialization of hydrodynamics in relativistic heavy ion collisions with an energy-momentum transport model

    NASA Astrophysics Data System (ADS)

    Naboka, V. Yu.; Akkelin, S. V.; Karpenko, Iu. A.; Sinyukov, Yu. M.

    2015-01-01

    A key ingredient of hydrodynamical modeling of relativistic heavy ion collisions is thermal initial conditions, an input that is the consequence of a prethermal dynamics which is not completely understood yet. In the paper we employ a recently developed energy-momentum transport model of the prethermal stage to study influence of the alternative initial states in nucleus-nucleus collisions on flow and energy density distributions of the matter at the starting time of hydrodynamics. In particular, the dependence of the results on isotropic and anisotropic initial states is analyzed. It is found that at the thermalization time the transverse flow is larger and the maximal energy density is higher for the longitudinally squeezed initial momentum distributions. The results are also sensitive to the relaxation time parameter, equation of state at the thermalization time, and transverse profile of initial energy density distribution: Gaussian approximation, Glauber Monte Carlo profiles, etc. Also, test results ensure that the numerical code based on the energy-momentum transport model is capable of providing both averaged and fluctuating initial conditions for the hydrodynamic simulations of relativistic nuclear collisions.

  18. Dark matter and global symmetries

    DOE PAGES

    Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.

    2016-08-03

    General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Sawmore » models. Here, assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O(1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime« less

  19. The Surface Density Profile of the Galactic Disk from the Terminal Velocity Curve

    NASA Astrophysics Data System (ADS)

    McGaugh, Stacy S.

    2016-01-01

    The mass distribution of the Galactic disk is constructed from the terminal velocity curve and the mass discrepancy-acceleration relation. Mass models numerically quantifying the detailed surface density profiles are tabulated. For R0 = 8 kpc, the models have stellar mass 5 < M* < 6 × 1010 {M}⊙ , scale length 2.0 ≤ Rd ≤ 2.9 kpc, LSR circular velocity 222 ≤ Θ0 ≤ 233 {km} {{{s}}}-1, and solar circle stellar surface density 34 ≤ Σd(R0) ≤ 61 {M}⊙ {{pc}}-2. The present interarm location of the solar neighborhood may have a somewhat lower stellar surface density than average for the solar circle. The Milky Way appears to be a normal spiral galaxy that obeys scaling relations like the Tully-Fisher relation, the size-mass relation, and the disk maximality-surface brightness relation. The stellar disk is maximal, and the spiral arms are massive. The bumps and wiggles in the terminal velocity curve correspond to known spiral features (e.g., the Centaurus arm is a ˜50% overdensity). The rotation curve switches between positive and negative over scales of hundreds of parsecs. The rms amplitude {< {| {dV}/{dR}| }2> }1/2≈ 14 {km} {{{s}}}-1 {{kpc}}-1, implying that commonly neglected terms in the Jeans equations may be nonnegligible. The spherically averaged local dark matter density is ρ0,DM ≈ 0.009 {M}⊙ {{pc}}-3 (0.34 {GeV} {{cm}}-3). Adiabatic compression of the dark matter halo may help reconcile the Milky Way with the c-V200 relation expected in ΛCDM while also helping to mitigate the too-big-to-fail problem, but it remains difficult to reconcile the inner bulge/bar-dominated region with a cuspy halo. We note that NGC 3521 is a near twin to the Milky Way, having a similar luminosity, scale length, and rotation curve.

  20. Particle Dark Matter constraints: the effect of Galactic uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benito, Maria; Bernal, Nicolás; Iocco, Fabio

    2017-02-01

    Collider, space, and Earth based experiments are now able to probe several extensions of the Standard Model of particle physics which provide viable dark matter candidates. Direct and indirect dark matter searches rely on inputs of astrophysical nature, such as the local dark matter density or the shape of the dark matter density profile in the target in object. The determination of these quantities is highly affected by astrophysical uncertainties. The latter, especially those for our own Galaxy, are ill-known, and often not fully accounted for when analyzing the phenomenology of particle physics models. In this paper we present amore » systematic, quantitative estimate of how astrophysical uncertainties on Galactic quantities (such as the local galactocentric distance, circular velocity, or the morphology of the stellar disk and bulge) propagate to the determination of the phenomenology of particle physics models, thus eventually affecting the determination of new physics parameters. We present results in the context of two specific extensions of the Standard Model (the Singlet Scalar and the Inert Doublet) that we adopt as case studies for their simplicity in illustrating the magnitude and impact of such uncertainties on the parameter space of the particle physics model itself. Our findings point toward very relevant effects of current Galactic uncertainties on the determination of particle physics parameters, and urge a systematic estimate of such uncertainties in more complex scenarios, in order to achieve constraints on the determination of new physics that realistically include all known uncertainties.« less

  1. Solving the small-scale structure puzzles with dissipative dark matter

    NASA Astrophysics Data System (ADS)

    Foot, Robert; Vagnozzi, Sunny

    2016-07-01

    Small-scale structure is studied in the context of dissipative dark matter, arising for instance in models with a hidden unbroken Abelian sector, so that dark matter couples to a massless dark photon. The dark sector interacts with ordinary matter via gravity and photon-dark photon kinetic mixing. Mirror dark matter is a theoretically constrained special case where all parameters are fixed except for the kinetic mixing strength, epsilon. In these models, the dark matter halo around spiral and irregular galaxies takes the form of a dissipative plasma which evolves in response to various heating and cooling processes. It has been argued previously that such dynamics can account for the inferred cored density profiles of galaxies and other related structural features. Here we focus on the apparent deficit of nearby small galaxies (``missing satellite problem"), which these dissipative models have the potential to address through small-scale power suppression by acoustic and diffusion damping. Using a variant of the extended Press-Schechter formalism, we evaluate the halo mass function for the special case of mirror dark matter. Considering a simplified model where Mbaryons propto Mhalo, we relate the halo mass function to more directly observable quantities, and find that for epsilon ≈ 2 × 10-10 such a simplified description is compatible with the measured galaxy luminosity and velocity functions. On scales Mhalo lesssim 108 Msolar, diffusion damping exponentially suppresses the halo mass function, suggesting a nonprimordial origin for dwarf spheroidal satellite galaxies, which we speculate were formed via a top-down fragmentation process as the result of nonlinear dissipative collapse of larger density perturbations. This could explain the planar orientation of satellite galaxies around Andromeda and the Milky Way.

  2. Explaining the density profile of self-gravitating systems by statistical mechanics

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Biao

    A self-gravitating system usually shows a quasi-universal density profile, such as the NFW profile of a simulated dark matter halo, the flat rotation curve of a spiral galaxy, the Sérsic profile of an elliptical galaxy, the King profile of a globular cluster and the exponential law of the stellar disk. It will be interesting if all of the above can be obtained from first principles. Based on the original work of White & Narayan (1987), we propose that if the self-bounded system is divided into infinite infinitesimal subsystems, the entropy of each subsystem can be maximized, but the whole system's gravity may just play the role of the wall, which may not increase the whole system's entropy S t , and finally S t may be the minimum among all of the locally maximized entropies (He & Kang 2010). For spherical systems with isotropic velocity dispersion, the form of the equation of state will be a hybrid of isothermal and adiabatic (Kang & He 2011). Hence this density profile can be approximated by a truncated isothermal sphere, which means that the total mass must be finite and our results can be consistent with observations (Kang & He 2011b). Our method requires that the mass and energy should be conserved, so we only compare our results with simulations of mild relaxation (i.e. the virial ratio is close to -1) of dissipationless collapse (Kang 2014), and the fitting also is well. The capacity can be calculated and is found not to be always negative as in previous works, and combining with calculations of the second order variation of the entropy, we find that the thermodynamical stability still can be true (Kang 2012) if the temperature tends to be zero. However, the cusp in the center of dark matter halos can not be explained, and more works will continue. The above work can be generalized to study the radial distribution of the disk (Kang 2015). The energy constraint automatically disappears in our variation, because angular momentum is much more important than energy for the disk-shape system. To simplify this issue, a toy model is taken: 2D gravity is adopted, then at large scale it will be consistent with a flat rotation curve; the bulge and the stellar disk are studied together. Then with constraints of mass and angular momentum, the calculated surface density can be consistent with the truncated, up-bended or standard exponential law. Therefore the radial distribution of the stellar disk may be determined by both the random and orbital motions of stars. In our fittings the central gravity is set to be nonzero to include the effect of asymmetric components.

  3. Chameleon scalar fields in relativistic gravitational backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk

    2009-05-15

    We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by ourmore » analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}« less

  4. A drop in the pond: the effect of rapid mass-loss on the dynamics and interaction rate of collisionless particles

    NASA Astrophysics Data System (ADS)

    Penoyre, Zephyr; Haiman, Zoltán

    2018-01-01

    In symmetric gravitating systems experiencing rapid mass-loss, particle orbits change almost instantaneously, which can lead to the development of a sharply contoured density profile, including singular caustics for collisionless systems. This framework can be used to model a variety of dynamical systems, such as accretion discs following a massive black hole merger and dwarf galaxies following violent early star formation feedback. Particle interactions in the high-density peaks seem a promising source of observable signatures of these mass-loss events (i.e. a possible EM counterpart for black hole mergers or strong gamma-ray emission from dark matter annihilation around young galaxies), because the interaction rate depends on the square of the density. We study post-mass-loss density profiles, both analytic and numerical, in idealized cases and present arguments and methods to extend to any general system. An analytic derivation is presented for particles on Keplerian orbits responding to a drop in the central mass. We argue that this case, with initially circular orbits, gives the most sharply contoured profile possible. We find that despite the presence of a set of singular caustics, the total particle interaction rate is reduced compared to the unperturbed system; this is a result of the overall expansion of the system dominating over the steep caustics. Finally, we argue that this result holds more generally, and the loss of central mass decreases the particle interaction rate in any physical system.

  5. The Distance to M54 using Infrared Photometry of RR Lyrae Variable Stars and the Implications of its Relation to the Sagittarius Dwarf Galaxy

    NASA Astrophysics Data System (ADS)

    Gupta, Arvind F.; Beaton, Rachael L.; Majewski, Steven R.; SMHASH Team

    2018-01-01

    CDM cosmological models predict that dark matter halo density profiles will have central cusps. Yet for many dwarf spheroidal galaxies (dSphs), this expectation is in contrast with observations of cored, rather than cusped, halos. This 'cusp-core problem' is apparent in the Sagittarius Dwarf Galaxy (Sgr), one of the largest satellites of the Milky Way. The globular cluster M54, one of several clusters associated with Sgr, coincides in on-sky position with the center of the main body of Sgr. While several studies find that M54 lies within the center of Sgr, other findings show that M54 is offset from the center by several kiloparsecs along our line of sight. The latter requires Sgr to have a cored dark matter distribution. In the presence of a cuspy halo, the orbit of M54 would have decayed via dynamical friction and the cluster would have fallen to the center of Sgr. A clear determination of the relation of the two bodies may help us better understand the distribution of dark matter in Sgr and other dSphs. Here we present a measurement of the distance modulus to M54 using a set of RR Lyrae variable stars in near-infrared Magellan data mid-infrared Spitzer data. The magnitudes of individual stars are measured using multi-epoch PSF photometry and light curve fitting. From precise RR Lyrae period-luminosity relations at these wavelengths, we then find the mean M54 distance modulus to be 17.126 ± 0.023 (ran) ± 0.080 (sys). Our result is consistent with a distance measurement to Sgr derived via nearly identical methods and thus also consistent with the expectation of a central cusp in the dark matter density profile of Sgr.

  6. Transition from ideal to viscous Mach cones in a kinetic transport approach

    NASA Astrophysics Data System (ADS)

    Bouras, I.; El, A.; Fochler, O.; Niemi, H.; Xu, Z.; Greiner, C.

    2012-04-01

    Using a microscopic transport model we investigate the evolution of conical structures originating from the supersonic projectile moving through the hot matter of ultrarelativistic particles. Using different scenarios for the interaction between projectile and matter, and different transport properties of the matter, we study the formation and structure of Mach cones. Especially, a dependence of the Mach cone angle on the details and rate of the energy deposition from projectile to the matter is investigated. Furthermore, the two-particle correlations extracted from the numerical calculations are compared to an analytical approximation. We find that the propagation of a high energetic particle through the matter does not lead to the appearance of a double peak structure as observed in the ultrarelativistic heavy-ion collision experiments. The reason is the strongly forward-peaked energy and momentum deposition in the head shock region. In addition, by adjusting the cross section we investigate the influence of the viscosity to the structure of Mach cones. A clear and unavoidable smearing of the profile depending on a finite ratio of shear viscosity to entropy density is clearly visible.

  7. Hierarchical formation of dark matter halos and the free streaming scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiyama, Tomoaki, E-mail: ishiyama@ccs.tsukuba.ac.jp

    2014-06-10

    The smallest dark matter halos are formed first in the early universe. According to recent studies, the central density cusp is much steeper in these halos than in larger halos and scales as ρ∝r {sup –(1.5-1.3)}. We present the results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. We confirmed early studies that the inner density cusps are steeper in halos at the free streaming scale. The cusp slope gradually becomes shallower as the halo mass increases. The slope of halosmore » 50 times more massive than the smallest halo is approximately –1.3. No strong correlation exists between the inner slope and the collapse epoch. The cusp slope of halos above the free streaming scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60-70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Microhalos could still exist in the present universe with the same steep density profiles.« less

  8. Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.; Albert, A.; Anderson, B.; ...

    2014-02-11

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via γ rays. We report on γ -ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in γ rays, and we present γ -ray flux upper limits between 500 MeVmore » and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. Furthermore, we set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10 TeV into prototypical standard model channels. We also find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse γ -ray background modeling, and assumed dark matter density profile.« less

  9. Particle tagging and its implications for stellar population dynamics

    NASA Astrophysics Data System (ADS)

    Le Bret, Theo; Pontzen, Andrew; Cooper, Andrew P.; Frenk, Carlos; Zolotov, Adi; Brooks, Alyson M.; Governato, Fabio; Parry, Owen H.

    2017-07-01

    We establish a controlled comparison between the properties of galactic stellar haloes obtained with hydrodynamical simulations and with 'particle tagging'. Tagging is a fast way to obtain stellar population dynamics: instead of tracking gas and star formation, it 'paints' stars directly on to a suitably defined subset of dark matter particles in a collisionless, dark-matter-only simulation. Our study shows that 'live' particle tagging schemes, where stellar masses are painted on to the dark matter particles dynamically throughout the simulation, can generate good fits to the hydrodynamical stellar density profiles of a central Milky Way-like galaxy and its most prominent substructure. Energy diffusion processes are crucial to reshaping the distribution of stars in infalling spheroidal systems and hence the final stellar halo. We conclude that the success of any particular tagging scheme hinges on this diffusion being taken into account, and discuss the role of different subgrid feedback prescriptions in driving this diffusion.

  10. Constraints on the dark matter neutralinos from the radio emissions of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Kiew, Ching-Yee; Hwang, Chorng-Yuan; Zainal Abibin, Zamri

    2017-05-01

    By assuming the dark matter to be composed of neutralinos, we used the detection of upper limit on diffuse radio emission in a sample of galaxy clusters to put constraint on the properties of neutralinos. We showed the upper limit constraint on <σv>-mχ space with neutralino annihilation through b\\bar{b} and μ+μ- channels. The best constraint is from the galaxy clusters A2199 and A1367. We showed the uncertainty due to the density profile and cluster magnetic field. The largest uncertainty comes from the uncertainty in dark matter spatial distribution. We also investigated the constraints on minimal Supergravity (mSUGRA) and minimal supersymmetric standard model (MSSM) parameter space by scanning the parameters using the darksusy package. By using the current radio observation, we managed to exclude 40 combinations of mSUGRA parameters. On the other hand, 573 combinations of MSSM parameters can be excluded by current observation.

  11. N-body simulations for f(R) gravity using a self-adaptive particle-mesh code

    NASA Astrophysics Data System (ADS)

    Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2011-02-01

    We perform high-resolution N-body simulations for f(R) gravity based on a self-adaptive particle-mesh code MLAPM. The chameleon mechanism that recovers general relativity on small scales is fully taken into account by self-consistently solving the nonlinear equation for the scalar field. We independently confirm the previous simulation results, including the matter power spectrum, halo mass function, and density profiles, obtained by Oyaizu [Phys. Rev. DPRVDAQ1550-7998 78, 123524 (2008)10.1103/PhysRevD.78.123524] and Schmidt [Phys. Rev. DPRVDAQ1550-7998 79, 083518 (2009)10.1103/PhysRevD.79.083518], and extend the resolution up to k˜20h/Mpc for the measurement of the matter power spectrum. Based on our simulation results, we discuss how the chameleon mechanism affects the clustering of dark matter and halos on full nonlinear scales.

  12. Radial-orbit instability in modified Newtonian dynamics

    NASA Astrophysics Data System (ADS)

    Nipoti, Carlo; Ciotti, Luca; Londrillo, Pasquale

    2011-07-01

    The stability of radially anisotropic spherical stellar systems in modified Newtonian dynamics (MOND) is explored by means of numerical simulations performed with the N-body code N-MODY. We find that Osipkov-Merritt MOND models require for stability larger minimum anisotropy radii than equivalent Newtonian systems (ENSs) with the dark matter, and also than purely baryonic Newtonian models with the same density profile. The maximum value for stability of the Fridman-Polyachenko-Shukhman parameter in MOND models is lower than in ENSs, but higher than in Newtonian models with no dark matter. We conclude that MOND systems are substantially more prone to radial-orbit instability than ENSs with dark matter, while they are able to support a larger amount of kinetic energy stored in radial orbits than purely baryonic Newtonian systems. An explanation of these results is attempted and their relevance to the MOND interpretation of the observed kinematics of globular clusters, dwarf spheroidal and elliptical galaxies is briefly discussed.

  13. Developmental cuprizone exposure impairs oligodendrocyte lineages differentially in cortical and white matter tissues and suppresses glutamatergic neurogenesis signals and synaptic plasticity in the hippocampal dentate gyrus of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abe, Hajime; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193; Saito, Fumiyo

    2016-01-01

    Developmental cuprizone (CPZ) exposure impairs rat hippocampal neurogenesis. Here, we captured the developmental neurotoxicity profile of CPZ using a region-specific expression microarray analysis in the hippocampal dentate gyrus, corpus callosum, cerebral cortex and cerebellar vermis of rat offspring exposed to 0, 0.1, or 0.4% CPZ in the maternal diet from gestation day 6 to postnatal day (PND) 21. Transcripts of those genes identified as altered were subjected to immunohistochemical analysis on PNDs 21 and 77. Our results showed that transcripts for myelinogenesis-related genes, including Cnp, were selectively downregulated in the cerebral cortex by CPZ at ≥ 0.1% or 0.4% onmore » PND 21. CPZ at 0.4% decreased immunostaining intensity for 2′,3′-cyclic-nucleotide 3′-phosphodiesterase (CNPase) and CNPase{sup +} and OLIG2{sup +} oligodendrocyte densities in the cerebral cortex, whereas CNPase immunostaining intensity alone was decreased in the corpus callosum. By contrast, a striking transcript upregulation for Klotho gene and an increased density of Klotho{sup +} oligodendrocytes were detected in the corpus callosum at ≥ 0.1%. In the dentate gyrus, CPZ at ≥ 0.1% or 0.4% decreased the transcript levels for Gria1, Grin2a and Ptgs2, genes related to the synapse and synaptic transmission, and the number of GRIA1{sup +} and GRIN2A{sup +} hilar γ-aminobutyric acid (GABA)-ergic interneurons and cyclooxygenase-2{sup +} granule cells. All changes were reversed at PND 77. Thus, developmental CPZ exposure reversibly decreased mature oligodendrocytes in both cortical and white matter tissues, and Klotho protected white matter oligodendrocyte growth. CPZ also reversibly targeted glutamatergic signals of GABAergic interneuron to affect dentate gyrus neurogenesis and synaptic plasticity in granule cells. - Highlights: • We examined developmental cuprizone (CPZ) neurotoxicity in maternally exposed rats. • Multiple brain region-specific global gene expression profiling was performed. • CPZ decreased mature oligodendrocytes in both cortical and white matter tissues. • Klotho protected oligodendrocyte growth specifically in white matter. • CPZ also impaired glutamatergic signals and synaptic plasticity in the hippocampus.« less

  14. SIDM on FIRE: hydrodynamical self-interacting dark matter simulations of low-mass dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Robles, Victor H.; Bullock, James S.; Elbert, Oliver D.; Fitts, Alex; González-Samaniego, Alejandro; Boylan-Kolchin, Michael; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Kereš, Dušan; Hayward, Christopher C.

    2017-12-01

    We compare a suite of four simulated dwarf galaxies formed in 1010 M⊙ haloes of collisionless cold dark matter (CDM) with galaxies simulated in the same haloes with an identical galaxy formation model but a non-zero cross-section for DM self-interactions. These cosmological zoom-in simulations are part of the Feedback In Realistic Environments (FIRE) project and utilize the FIRE-2 model for hydrodynamics and galaxy formation physics. We find the stellar masses of the galaxies formed in self-interacting dark matter (SIDM) with σ/m = 1 cm2 g-1 are very similar to those in CDM (spanning M⋆ ≈ 105.7-7.0M⊙) and all runs lie on a similar stellar mass-size relation. The logarithmic DM density slope (α = d log ρ/d log r) in the central 250-500 pc remains steeper than α = -0.8 for the CDM-Hydro simulations with stellar mass M⋆ ∼ 106.6 M⊙ and core-like in the most massive galaxy. In contrast, every SIDM hydrodynamic simulation yields a flatter profile, with α > -0.4. Moreover, the central density profiles predicted in SIDM runs without baryons are similar to the SIDM runs that include FIRE-2 baryonic physics. Thus, SIDM appears to be much more robust to the inclusion of (potentially uncertain) baryonic physics than CDM on this mass scale, suggesting that SIDM will be easier to falsify than CDM using low-mass galaxies. Our FIRE simulations predict that galaxies less massive than M⋆ ≲ 3 × 106 M⊙ provide potentially ideal targets for discriminating models, with SIDM producing substantial cores in such tiny galaxies and CDM producing cusps.

  15. Internal Kinematics of Groups of Galaxies in the Sloan Digital Sky Survey Data Release 7

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Jing, Y. P.; Mao, Shude; Han, Jiaxin; Peng, Qiuying; Yang, Xiaohu; Mo, H. J.; van den Bosch, Frank

    2012-10-01

    We present measurements of the velocity dispersion profile (VDP) for galaxy groups in the final data release of the Sloan Digital Sky Survey (SDSS). For groups of given mass, we estimate the redshift-space cross-correlation function (CCF) with respect to a reference galaxy sample, ξ(s)(rp , π), the projected CCF, wp (rp ), and the real-space CCF, ξcg(r). The VDP is then extracted from the redshift distortion in ξ(s)(rp , π), by comparing ξ(s)(rp , π) with ξcg(r). We find that the velocity dispersion (VD) within virial radius (R 200) shows a roughly flat profile, with a slight increase at radii below ~0.3R 200 for high-mass systems. The average VD within the virial radius, σ v , is a strongly increasing function of central galaxy mass. We apply the same methodology to N-body simulations with the concordance Λ cold dark matter cosmology but different values of the density fluctuation parameter σ8, and we compare the results to the SDSS results. We show that the σ v - M * relation from the data provides stringent constraints on both σ8 and σ ms , the dispersion in log M * of central galaxies at fixed halo mass. Our best-fitting model suggests σ8 = 0.86 ± 0.03 and σ ms = 0.16 ± 0.03. The slightly higher value of σ8 compared to the WMAP7 result might be due to a smaller matter density parameter assumed in our simulations. Our VD measurements also provide a direct measure of the dark matter halo mass for central galaxies of different luminosities and masses, in good agreement with the results obtained by Mandelbaum et al. from stacking the gravitational lensing signals of the SDSS galaxies.

  16. Search for gamma-ray emission from dark matter annihilation in the Small Magellanic Cloud with the Fermi Large Area Telescope

    DOE PAGES

    Caputo, Regina; Buckley, Matthew R.; Martin, Pierrick; ...

    2016-03-22

    The Small Magellanic Cloud (SMC) is the second-largest satellite galaxy of the Milky Way and is only 60 kpc away. As a nearby, massive, and dense object with relatively low astrophysical backgrounds, it is a natural target for dark matter indirect detection searches. In this work, we use six years of Pass 8 data from the Fermi Large Area Telescope to search for gamma-ray signals of dark matter annihilation in the SMC. Using data-driven fits to the gamma-ray backgrounds, and a combination of N-body simulations and direct measurements of rotation curves to estimate the SMC DM density profile, we found that themore » SMC was well described by standard astrophysical sources, and no signal from dark matter annihilation was detected. We set conservative upper limits on the dark matter annihilation cross section. Furthermore, these constraints are in agreement with stronger constraints set by searches in the Large Magellanic Cloud and approach the canonical thermal relic cross section at dark matter masses lower than 10 GeV in the bb¯ and τ +τ - channels.« less

  17. Generalization of Rindler Potential at Cluster Scales in Randers-Finslerian Spacetime: a Possible Explanation of the Bullet Cluster 1E0657-558?

    NASA Astrophysics Data System (ADS)

    Chang, Zhe; Li, Ming-Hua; Lin, Hai-Nan; Li, Xin

    2012-12-01

    The data of the Bullet Cluster 1E0657-558 released on November 15, 2006 reveal that the strong and weak gravitational lensing convergence κ-map has an 8σ offset from the Σ-map. The observed Σ-map is a direct measurement of the surface mass density of the Intracluster medium (ICM) gas. It accounts for 83% of the averaged mass-fraction of the system. This suggests a modified gravity theory at large distances different from Newton's inverse-square gravitational law. In this paper, as a cluster scale generalization of Grumiller's modified gravity model (Phys. Rev. Lett.105 (2010) 211303), we present a gravity model with a generalized linear Rindler potential in Randers-Finslerian spacetime without invoking any dark matter. The galactic limit of the model is qualitatively consistent with the MOND and Grumiller's. It yields approximately the flatness of the rotational velocity profile at the radial distance of several kpcs and gives the velocity scales for spiral galaxies at which the curves become flattened. Plots of convergence κ for a galaxy cluster show that the peak of the gravitational potential has chances to lie on the outskirts of the baryonic mass center. Assuming an isotropic and isothermal ICM gas profile with temperature T = 14.8 keV (which is the center value given by observations), we obtain a good match between the dynamical mass MT of the main cluster given by collisionless Boltzmann equation and that given by the King β-model. We also consider a Randers+dark matter scenario and a Λ-CDM model with the NFW dark matter distribution profile. We find that a mass ratio η between dark matter and baryonic matter about 6 fails to reproduce the observed convergence κ-map for the isothermal temperature T taking the observational center value.

  18. The Structure and Dark Halo Core Properties of Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Burkert, A.

    2015-08-01

    The structure and dark matter halo core properties of dwarf spheroidal galaxies (dSphs) are investigated. A double-isothermal (DIS) model of an isothermal, non-self-gravitating stellar system embedded in an isothermal dark halo core provides an excellent fit to the various observed stellar surface density distributions. The stellar core scale length a* is sensitive to the central dark matter density ρ0,d. The maximum stellar radius traces the dark halo core radius {r}c,d. The concentration c* of the stellar system, determined by a King profile fit, depends on the ratio of the stellar-to-dark-matter velocity dispersion {σ }*/{σ }d. Simple empirical relationships are derived that allow us to calculate the dark halo core parameters ρ0,d, {r}c,d, and σd given the observable stellar quantities σ*, a*, and c*. The DIS model is applied to the Milky Way’s dSphs. All dSphs closely follow the same universal dark halo scaling relations {ρ }0,d× {r}c,d={75}-45+85 M⊙ pc-2 that characterize the cores of more massive galaxies over a large range in masses. The dark halo core mass is a strong function of core radius, {M}c,d˜ {r}c,d2. Inside a fixed radius of ˜400 pc the total dark matter mass is, however, roughly constant with {M}d=2.6+/- 1.4× {10}7 M⊙, although outliers are expected. The dark halo core densities of the Galaxy’s dSphs are very high, with {ρ }0,d ≈ 0.2 M⊙ pc-3. dSphs should therefore be tidally undisturbed. Evidence for tidal effects might then provide a serious challenge for the CDM scenario.

  19. Dynamic wormhole solutions in Einstein-Cartan gravity

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Mohammad Reza; Ziaie, Amir Hadi

    2017-12-01

    In the present work, we investigate evolving wormhole configurations described by a constant redshift function in Einstein-Cartan theory. The matter content consists of a Weyssenhoff fluid along with an anisotropic matter which together generalize the anisotropic energy momentum tensor in general relativity in order to include the effects of intrinsic angular momentum (spin) of particles. Using a generalized Friedmann-Robertson-Walker spacetime, we derive analytical evolving wormhole geometries by assuming a particular equation of state for energy density and pressure profiles. We introduce exact asymptotically flat and anti-de Sitter spacetimes that admit traversable wormholes and respect energy conditions throughout the spacetime. The rate of expansion of these evolving wormholes is determined only by the Friedmann equation in the presence of spin effects.

  20. Entropy in Collisionless Self-gravitating Systems

    NASA Astrophysics Data System (ADS)

    Barnes, Eric; Williams, L.

    2010-01-01

    Collisionless systems, like simulated dark matter halos or gas-less elliptical galaxies, often times have properties suggesting that a common physical principle controls their evolution. For example, N-body simulations of dark matter halos present nearly scale-free density/velocity-cubed profiles. In an attempt to understand the origins of such relationships, we adopt a thermodynamics approach. While it is well-known that self-gravitating systems do not have physically realizable thermal equilibrium configurations, we are interested in the behavior of entropy as mechanical equilibrium is acheived. We will discuss entropy production in these systems from a kinetic theory point of view. This material is based upon work supported by the National Aeronautics and Space Administration under grant NNX07AG86G issued through the Science Mission Directorate.

  1. Whole-brain grey matter density predicts balance stability irrespective of age and protects older adults from falling.

    PubMed

    Boisgontier, Matthieu P; Cheval, Boris; van Ruitenbeek, Peter; Levin, Oron; Renaud, Olivier; Chanal, Julien; Swinnen, Stephan P

    2016-03-01

    Functional and structural imaging studies have demonstrated the involvement of the brain in balance control. Nevertheless, how decisive grey matter density and white matter microstructural organisation are in predicting balance stability, and especially when linked to the effects of ageing, remains unclear. Standing balance was tested on a platform moving at different frequencies and amplitudes in 30 young and 30 older adults, with eyes open and with eyes closed. Centre of pressure variance was used as an indicator of balance instability. The mean density of grey matter and mean white matter microstructural organisation were measured using voxel-based morphometry and diffusion tensor imaging, respectively. Mixed-effects models were built to analyse the extent to which age, grey matter density, and white matter microstructural organisation predicted balance instability. Results showed that both grey matter density and age independently predicted balance instability. These predictions were reinforced when the level of difficulty of the conditions increased. Furthermore, grey matter predicted balance instability beyond age and at least as consistently as age across conditions. In other words, for balance stability, the level of whole-brain grey matter density is at least as decisive as being young or old. Finally, brain grey matter appeared to be protective against falls in older adults as age increased the probability of losing balance in older adults with low, but not moderate or high grey matter density. No such results were observed for white matter microstructural organisation, thereby reinforcing the specificity of our grey matter findings. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cluster-lensing: A Python Package for Galaxy Clusters and Miscentering

    NASA Astrophysics Data System (ADS)

    Ford, Jes; VanderPlas, Jake

    2016-12-01

    We describe a new open source package for calculating properties of galaxy clusters, including Navarro, Frenk, and White halo profiles with and without the effects of cluster miscentering. This pure-Python package, cluster-lensing, provides well-documented and easy-to-use classes and functions for calculating cluster scaling relations, including mass-richness and mass-concentration relations from the literature, as well as the surface mass density {{Σ }}(R) and differential surface mass density {{Δ }}{{Σ }}(R) profiles, probed by weak lensing magnification and shear. Galaxy cluster miscentering is especially a concern for stacked weak lensing shear studies of galaxy clusters, where offsets between the assumed and the true underlying matter distribution can lead to a significant bias in the mass estimates if not accounted for. This software has been developed and released in a public GitHub repository, and is licensed under the permissive MIT license. The cluster-lensing package is archived on Zenodo. Full documentation, source code, and installation instructions are available at http://jesford.github.io/cluster-lensing/.

  3. The dark matter distribution of M87 and NGC 1399

    NASA Technical Reports Server (NTRS)

    Tsai, John C.

    1993-01-01

    Recent X-ray observations of clusters of galaxies indicate that, outside the innermost about 100 kpc region, the ratio of dark matter density to baryonic matter density declines with radius. We show that this result is consistent with a cold dark matter simulation, suggesting the presence of dissipationless dark matter in the observed clusters. This is contrary to previous suggestions that dissipational baryonic dark matter is required to explain the decline in the density ratio. The simulation further shows that, in the inner 100 kpc region, the density ratio should rise with radius. We confirm this property in M87 and NGC 1399, which are close enough to allow the determination of the density ratio in the required inner region. X-ray mappings of the dark matter distribution in clusters of galaxies are therefore consistent with the presence of dissipationless dark matter.

  4. Constraining self-interacting dark matter with scaling laws of observed halo surface densities

    NASA Astrophysics Data System (ADS)

    Bondarenko, Kyrylo; Boyarsky, Alexey; Bringmann, Torsten; Sokolenko, Anastasia

    2018-04-01

    The observed surface densities of dark matter halos are known to follow a simple scaling law, ranging from dwarf galaxies to galaxy clusters, with a weak dependence on their virial mass. Here we point out that this can not only be used to provide a method to determine the standard relation between halo mass and concentration, but also to use large samples of objects in order to place constraints on dark matter self-interactions that can be more robust than constraints derived from individual objects. We demonstrate our method by considering a sample of about 50 objects distributed across the whole halo mass range, and by modelling the effect of self-interactions in a way similar to what has been previously done in the literature. Using additional input from simulations then results in a constraint on the self-interaction cross section per unit dark matter mass of about σ/mχlesssim 0.3 cm2/g. We expect that these constraints can be significantly improved in the future, and made more robust, by i) an improved modelling of the effect of self-interactions, both theoretical and by comparison with simulations, ii) taking into account a larger sample of objects and iii) by reducing the currently still relatively large uncertainties that we conservatively assign to the surface densities of individual objects. The latter can be achieved in particular by using kinematic observations to directly constrain the average halo mass inside a given radius, rather than fitting the data to a pre-selected profile and then reconstruct the mass. For a velocity-independent cross-section, our current result is formally already somewhat smaller than the range 0.5‑5 cm2/g that has been invoked to explain potential inconsistencies between small-scale observations and expectations in the standard collisionless cold dark matter paradigm.

  5. Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; hide

    2012-01-01

    We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e- produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.

  6. Hot H2O Emission and Evidence for Turbulence in the Disk of a Young Star

    DTIC Science & Technology

    2004-03-01

    matter — infrared: stars — planetary systems: protoplanetary disks — stars: formation — stars: pre–main-sequence 1. INTRODUCTION The presence of hot...in disk gaps . Molecules other than CO are expected to exist at the temperatures and densities in the inner few AU of disks . Water should be very... protoplanetary disks . In addition, non-Gaussian line profiles might be ex- pected, given that a characteristic of turbulence seen in both laboratory experiments

  7. Density gradient centrifugation: Application to the separation of macerals of type I, II, and III sedimentary organic matter

    USGS Publications Warehouse

    Stankiewicz, B.A.; Kruge, M.A.; Crelling, J.C.; Salmon, G.L.

    1994-01-01

    Samples of organic matter from nine well-known geological units (Green River Fm., Tasmanian Tasmanite, Lower Toarcian Sh. of the Paris Basin, Duwi Fm., New Albany Sh., Monterey Fm., Herrin No. 6 coal, Eocene coal, and Miocene lignite from Kalimantan) were processed by density gradient centrifugation (DGC) to isolate the constituent macerals. Optimal separation, as well as the liberation of microcrystalline pyrite from the organic matter, was obtained by particle size minimization prior to DGC by treatment with liquid N2 and micronization in a fluid energy mill. The resulting small particle size limits the use of optical microscopy, thus microfluorimetry and analytical pyrolysis were also employed to assess the quality and purity of the fractions. Each of the samples exhibits one dominant DGC peak (corresponding to alginite in the Green River Fm., amorphinite in the Lower Toarcian Sh., vitrinite in the Herrin No. 6, etc.) which shifts from 1.05 g mL-1 for the Type I kerogens to between 1.18 and 1.23 g mL-1 for Type II and II-S. The characteristic densities for Type III organic matter are greater still, being 1.27 g mL-1 for the hydrogen-rich Eocene coal, 1.29 g mL-1 for the Carboniferous coal and 1.43 g mL-1 for the oxygen-rich Miocene lignite. Among Type II kerogens, the DGC profile represents a compositional continuum from undegraded alginite through (bacterial) degraded amorphinite; therefore chemical and optical properties change gradually with increasing density. The separation of useful quantities of macerals that occur in only minor amounts is difficult. Such separations require large amounts of starting material and require multiple processing steps. Complete maceral separation for some samples using present methods seems remote. Samples containing macerals with significant density differences due to heteroatom diversity (e.g., preferential sulfur or oxygen concentration in the one maceral), on the other hand, may be successfully separated (e.g., coals and Monterey kerogen). ?? 1994 American Chemical Society.

  8. Creation of a Mock Universe: Photometric Astronomy on Simulation

    NASA Astrophysics Data System (ADS)

    Nene, Ajinkya; Rodriguez, Aldo; Primack, Joel R.

    2016-01-01

    A major focus in astronomy is to understand how galaxies form and evolve in the Universe. The current model known as ΛCDM explains that galaxies form and evolve in halos composed of cold dark matter. In an effort to understand galactic processes in relation to halos, researchers have developed statistical methods to connect galaxies to their halos. One of these approaches is abundance matching: a technique in which the galaxy number density of a property is connected to a theoretical halo number density. In this study, we exploit the abundance matching technique and create a massive photometric mock catalog. We populate millions of dark matter halos in the Bolshoi-Planck Simulation with highly defined galaxies that each has: luminosities, magnitudes, fluxes, masses, and Sérsic profiles. Our catalog acts as an interface between cold dark matter theory and observations: astronomers can use this mock galaxy catalog to compare ΛCDM predictions to observations as well as constrain galaxy formation models. Using our catalog, we can make powerful predictions about both theoretical data and about future astronomical surveys. We demonstrate the usability of our catalog through angular power spectra. Specifically, we shed light on the controversial intrahalo light phenomena. We emphasize that this is the first catalog of this accuracy and size and has incredible potential for application.

  9. The Structure and Dynamics of Luminous and Dark Matter in the Early-Type Lens Galaxy of 0047-281 at z = 0.485

    NASA Astrophysics Data System (ADS)

    Koopmans, Léon V. E.; Treu, Tommaso

    2003-02-01

    We have measured the kinematic profile of the early-type (E/S0) lens galaxy in the system 0047-281 (z=0.485) with the Echelle Spectrograph and Imager (ESI) on the W. M. Keck II Telescope, as part of the Lenses Structure and Dynamics (LSD) Survey. The central velocity dispersion is σ=229+/-15 km s-1, and the dispersion profile is nearly flat to beyond one effective radius (Re). No significant streaming motion is found. Surface photometry of the lens galaxy is measured from Hubble Space Telescope images. From the offset from the local fundamental plane (FP), we measure an evolution of the effective mass-to-light ratio (M/L) of Δlog(M/LB)=-0.37+/-0.06 between z=0 and 0.485, consistent with the observed evolution of field E/S0 galaxies. (We assume h65=1, Ωm=0.3, and ΩΛ=0.7 throughout.) Gravitational lens models provide a mass of ME=(4.06+/-0.20)×1011h- 165 Msolar inside the Einstein radius of RE=(8.70+/-0.07)h-165 kpc. This allows us to break the degeneracy between velocity anisotropy and density profile typical of dynamical models for E/S0 galaxies. We find that constant-M/L models, even with strongly tangential anisotropy of the stellar velocity ellipsoid, are excluded at more than 99.9% CL. The total mass distribution inside RE can be described by a single power-law density profile, ρt~r-γ', with an effective slope γ'=1.90+0.05-0.23 (68% CL; +/-0.1 systematic error). Two-component models yield an upper limit (68% CL) of γ<=1.55(1.12) on the power-law slope of the dark matter density profile and a projected dark matter mass fraction of 0.41(0.54)+0.15-0.05(+0.09- 0.06) (68% CL) inside RE, for Osipkov-Merritt models with anisotropy radius ri=∞(Re). The stellar M*/L values derived from the FP agree well with the maximum allowed value from the isotropic dynamical models (i.e., the ``maximum-bulge solution''). The fact that both lens systems 0047-281 (z=0.485) and MG 2016+112 (z=1.004) are well described inside their Einstein radii by a constant-M*/L stellar mass distribution embedded in a nearly logarithmic potential-with an isotropic or a mildly radially anisotropic dispersion tensor-could indicate that E/S0 galaxies underwent little structural evolution at z<~1 and have a close-to-isothermal total mass distribution in their inner regions. Whether this conclusion can be generalized, however, requires the analysis of more systems. We briefly discuss our results in the context of E/S0 galaxy formation and cold dark matter simulations. Based on observations collected at W. M. Keck Observatory, which is operated jointly by the California Institute of Technology and the University of California, and with the NASA/ESA Hubble Space Telescope, obtained at STScI, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.

  10. Purely Dry Mergers do not Explain the Observed Evolution of Massive Early-type Galaxies since z ~ 1

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2014-05-01

    Several studies have suggested that the observed size evolution of massive early-type galaxies (ETGs) can be explained as a combination of dry mergers and progenitor bias, at least since z ~ 1. In this paper we carry out a new test of the dry-merger scenario based on recent lensing measurements of the evolution of the mass density profile of ETGs. We construct a theoretical model for the joint evolution of the size and mass density profile slope γ' driven by dry mergers occurring at rates given by cosmological simulations. Such dry-merger model predicts a strong decrease of γ' with cosmic time, inconsistent with the almost constant γ' inferred from observations in the redshift range 0 < z < 1. We then show with a simple toy model that a modest amount of cold gas in the mergers—consistent with the upper limits on recent star formation in ETGs—is sufficient to reconcile the model with measurements of γ'. By fitting for the amount of gas accreted during mergers, we find that models with dissipation are consistent with observations of the evolution in both size and density slope, if ~4% of the total final stellar mass arises from the gas accreted since z ~ 1. Purely dry merger models are ruled out at >99% CL. We thus suggest a scenario where the outer regions of massive ETGs grow by accretion of stars and dark matter, while small amounts of dissipation and nuclear star formation conspire to keep the mass density profile constant and approximately isothermal.

  11. Catalysis of partial chiral symmetry restoration by Δ matter

    NASA Astrophysics Data System (ADS)

    Takeda, Yusuke; Kim, Youngman; Harada, Masayasu

    2018-06-01

    We study the phase structure of dense hadronic matter including Δ (1232 ) as well as N (939 ) based on the parity partner structure, where the baryons have their chiral partners with a certain amount of chiral invariant masses. We show that, in symmetric matter, Δ enters into matter in the density region of about one to four times normal nuclear matter density, ρB˜1 -4 ρ0 . The onset density of Δ matter depends on the chiral invariant mass of Δ ,mΔ 0 : As mΔ 0 increases, the onset density becomes bigger. The stable Δ -nucleon matter is realized for ρB≳1.5 ρ0 , i.e., the phase transition from nuclear matter to Δ -nucleon matter is of first order for small mΔ 0, and it is of second order for large mΔ 0. We find that, associated with the phase transition, the chiral condensate changes very rapidly; i.e., the chiral symmetry restoration is accelerated by Δ matter. As a result of the accelerations, there appear N*(1535 ) and Δ (1700 ) , which are the chiral partners to N (939 ) and Δ (1232 ) , in high-density matter, signaling the partial chiral symmetry restoration. Furthermore, we find that complete chiral symmetry restoration itself is delayed by Δ matter. We also calculate the effective masses, pressure, and symmetry energy to study how the transition to Δ matter affects such physical quantities. We observe that the physical quantities change drastically at the transition density.

  12. Effects of probiotic supplementation in different nutrient density diets on growth performance, nutrient digestibility, blood profiles, fecal microflora and noxious gas emission in weaning pig.

    PubMed

    Lan, Ruixia; Tran, Hoainam; Kim, Inho

    2017-03-01

    Probiotics can serve as alternatives to antibiotics to increase the performance of weaning pigs, and the intake of probiotics is affected by dietary nutrient density. The objective of this study was to evaluate the effects of a probiotic complex in different nutrient density diets on growth performance, digestibility, blood profiles, fecal microflora and noxious gas emission in weaning pigs. From day 22 to day 42, both high-nutrient-density and probiotic complex supplementation diets increased (P < 0.05) the average daily gain. On day 42, the apparent total tract digestibility (ATTD) of dry matter, nitrogen and gross energy (GE), blood urea nitrogen concentration and NH 3 and H 2 S emissions were increased (P < 0.05) in pigs fed high-nutrient-density diets. Pigs fed probiotic complex supplementation diets had higher (P < 0.05) ATTD of GE than pigs fed non-supplemented diets. Fecal Lactobacillus counts were increased whereas Escherichia coli counts and NH 3 and H 2 S emissions were decreased (P < 0.05) in pigs fed probiotic complex supplementation diets. Interactive effects on average daily feed intake (ADFI) were observed from day 22 to day 42 and overall, where probiotic complex improved ADFI more dramatically in low-nutrient-density diets. The beneficial effects of probiotic complex (Bacillus coagulans, Bacillus licheniformis, Bacillus subtilis and Clostridium butyricum) supplementation on ADFI is more dramatic with low-nutrient-density diets. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. A multi-frequency analysis of possible dark matter contributions to M31 gamma-ray emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, G.; Colafrancesco, S., E-mail: geoffrey.beck@wits.ac.za, E-mail: sergio.colafrancesco@wits.ac.za

    We examine the possibility of a dark matter (DM) contribution to the recently observed gamma-ray spectrum seen in the M31 galaxy. In particular, we apply limits on Weakly Interacting Massive Particle DM annihilation cross-sections derived from the Coma galaxy cluster and the Reticulum II dwarf galaxy to determine the maximal flux contribution by DM annihilation to both the M31 gamma-ray spectrum and that of the Milky-Way Galactic Centre. We limit the energy range between 1 and 12 GeV in M31 and Galactic Centre spectra due to the limited range of former's data, as well as to encompass the high-energy gamma-raymore » excess observed in the latter target. In so doing, we will make use of Fermi-LAT data for all mentioned targets, as well as diffuse radio data for the Coma cluster. The multi-target strategy using both Coma and Reticulum II to derive cross-section limits, as well as multi-frequency data, ensures that our results are robust against the various uncertainties inherent in modelling of indirect DM emissions. Our results indicate that, when a Navarro-Frenk-White (or shallower) radial density profile is assumed, severe constraints can be imposed upon the fraction of the M31 and Galactic Centre spectra that can be accounted for by DM, with the best limits arising from cross-section constraints from Coma radio data and Reticulum II gamma-ray limits. These particular limits force all the studied annihilation channels to contribute 1% or less to the total integrated gamma-ray flux within both M31 and Galactic Centre targets. In contrast, considerably more, 10−100%, of the flux can be attributed to DM when a contracted Navarro-Frenk-White profile is assumed. This demonstrates how sensitive DM contributions to gamma-ray emissions are to the possibility of cored profiles in galaxies. The only channel consistently excluded for all targets and profiles (except for ∼ 10 GeV WIMPs) is the direct annihilation into photons. Finally, we discuss the ramifications of evidence in favour of cored halo density profiles for DM explanations of galactic gamma-ray emission.« less

  14. Observations of MilkyWay Dwarf Spheroidal galaxies with the Fermi-LAT detector and

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; Ackermann, M.; Ajello, M.

    We report on the observations of 14 dwarf spheroidal galaxies with the Fermi Gamma-Ray Space Telescope taken during the first 11 months of survey mode operations. The Fermi telescope, which is conducting an all-sky {gamma}-ray survey in the 20 MeV to >300 GeV energy range, provides a new opportunity to test particle dark matter models through the expected {gamma}-ray emission produced by pair annihilation of weakly interacting massive particles (WIMPs). Local Group dwarf spheroidal galaxies, the largest galactic substructures predicted by the cold dark matter scenario, are attractive targets for such indirect searches for dark matter because they are nearbymore » and among the most extreme dark matter dominated environments. No significant {gamma}-ray emission was detected above 100 MeV from the candidate dwarf galaxies. We determine upper limits to the {gamma}-ray flux assuming both power-law spectra and representative spectra from WIMP annihilation. The resulting integral flux above 100 MeV is constrained to be at a level below around 10{sup -9} photons cm{sup -2}s{sup -1}. Using recent stellar kinematic data, the {gamma}-ray flux limits are combined with improved determinations of the dark matter density profile in 8 of the 14 candidate dwarfs to place limits on the pair annihilation cross-section ofWIMPs in several widely studied extensions of the standard model, including its supersymmetric extension and other models that received recent attention. With the present data, we are able to rule out large parts of the parameter space where the thermal relic density is below the observed cosmological dark matter density and WIMPs (neutralinos here) are dominantly produced non-thermally, e.g. in models where supersymmetry breaking occurs via anomaly mediation. The {gamma}-ray limits presented here also constrain some WIMP models proposed to explain the Fermi and PAMELA e{sup +}e{sup -} data, including low-mass wino-like neutralinos and models with TeV masses pair-annihilating into muon-antimuon pairs.« less

  15. Exact Solution to Finite Temperature SFDM: Natural Cores without Feedback

    NASA Astrophysics Data System (ADS)

    Robles, Victor H.; Matos, T.

    2013-01-01

    Recent high-quality observations of low surface brightness (LSB) galaxies have shown that their dark matter (DM) halos prefer flat central density profiles. However, the standard cold dark matter model simulations predict a more cuspy behavior. One mechanism used to reconcile the simulations with the observed data is the feedback from star formation. While this mechanism may be successful in isolated dwarf galaxies, its success in LSB galaxies remains unclear. Additionally, the inclusion of too much feedback in the simulations is a double-edged sword—in order to obtain a cored DM distribution from an initially cuspy one, the feedback recipes usually require one to remove a large quantity of baryons from the center of the galaxies; however, some feedback recipes produce twice the number of satellite galaxies of a given luminosity and with much smaller mass-to-light ratios from those that are observed. Therefore, one DM profile that produces cores naturally and that does not require large amounts of feedback would be preferable. We find both requirements to be satisfied in the scalar field dark matter model. Here, we consider that DM is an auto-interacting real scalar field in a thermal bath at temperature T with an initial Z 2 symmetric potential. As the universe expands, the temperature drops so that the Z 2 symmetry is spontaneously broken and the field rolls down to a new minimum. We give an exact analytic solution to the Newtonian limit of this system, showing that it can satisfy the two desired requirements and that the rotation curve profile is no longer universal.

  16. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS. II. DEPENDENCE ON NATURE DARK MATTER AND GRAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Niño, Armando; Pichardo, Barbara; Valenzuela, Octavio

    Recent studies have presented evidence that the Milky Way global potential may be non-spherical. In this case, the assembling process of the Galaxy may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo, potentially originated by orbital resonances. We further investigate such a possibility, now considering potential models further away from ΛCDM halos, like scalar field dark matter halos and Modified Newtonian Dynamics (MOND), and including several other factors that may mimic the emergence and permanence of kinematic groups, such as a spherical and triaxial halo with an embedded disk potential. We find that regardless ofmore » the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND-like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mota, D. F.; Salzano, V.; Capozziello, S.

    We investigate whether there is any cosmological evidence for a scalar field with a mass and coupling to matter which change accordingly to the properties of the astrophysical system it ''lives in,'' without directly focusing on the underlying mechanism that drives the scalar field scale-dependent-properties. We assume a Yukawa type of coupling between the field and matter and also that the scalar-field mass grows with density, in order to overcome all gravity constraints within the Solar System. We analyze three different gravitational systems assumed as ''cosmological indicators'': supernovae type Ia, low surface brightness spiral galaxies and clusters of galaxies. Resultsmore » show (i) a quite good fit to the rotation curves of low surface brightness galaxies only using visible stellar and gas-mass components is obtained; (ii) a scalar field can fairly well reproduce the matter profile in clusters of galaxies, estimated by x-ray observations and without the need of any additional dark matter; and (iii) there is an intrinsic difficulty in extracting information about the possibility of a scale-dependent massive scalar field (or more generally about a varying gravitational constant) from supernovae type Ia.« less

  18. Simulated cosmic microwave background maps at 0.5 deg resolution: Unresolved features

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Hinshaw, G.; Bennett, C. L.

    1995-01-01

    High-contrast peaks in the cosmic microwave background (CMB) anisotropy can appear as unresolved sources to observers. We fit simluated CMB maps generated with a cold dark matter model to a set of unresolved features at instrumental resolution 0.5 deg-1.5 deg to derive the integral number density per steradian n (greater than absolute value of T) of features brighter than threshold temperature absolute value of T and compare the results to recent experiments. A typical medium-scale experiment observing 0.001 sr at 0.5 deg resolution would expect to observe one feature brighter than 85 micro-K after convolution with the beam profile, with less than 5% probability to observe a source brighter than 150 micro-K. Increasing the power-law index of primordial density perturbations n from 1 to 1.5 raises these temperature limits absolute value of T by a factor of 2. The MSAM features are in agreement with standard cold dark matter models and are not necessarily evidence for processes beyond the standard model.

  19. Two-component Jaffe models with a central black hole - I. The spherical case

    NASA Astrophysics Data System (ADS)

    Ciotti, Luca; Ziaee Lorzad, Azadeh

    2018-02-01

    Dynamical properties of spherically symmetric galaxy models where both the stellar and total mass density distributions are described by the Jaffe (1983) profile (with different scalelengths and masses) are presented. The orbital structure of the stellar component is described by Osipkov-Merritt anisotropy, and a black hole (BH) is added at the centre of the galaxy; the dark matter halo is isotropic. First, the conditions required to have a nowhere negative and monotonically decreasing dark matter halo density profile are derived. We then show that the phase-space distribution function can be recovered by using the Lambert-Euler W function, while in absence of the central BH only elementary functions appears in the integrand of the inversion formula. The minimum value of the anisotropy radius for consistency is derived in terms of the galaxy parameters. The Jeans equations for the stellar component are solved analytically, and the projected velocity dispersion at the centre and at large radii are also obtained analytically for generic values of the anisotropy radius. Finally, the relevant global quantities entering the Virial Theorem are computed analytically, and the fiducial anisotropy limit required to prevent the onset of Radial Orbit Instability is determined as a function of the galaxy parameters. The presented models, even though highly idealized, represent a substantial generalization of the models presented in Ciotti, and can be useful as starting point for more advanced modelling, the dynamics and the mass distribution of elliptical galaxies.

  20. Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abdallah, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Lui, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; Odaka, H.; Ohm, S.; Öttl, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Shafi, N.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spieß, F.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; H. E. S. S. Collaboration

    2016-09-01

    The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using γ -ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant γ -ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section ⟨σ v ⟩. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach ⟨σ v ⟩ values of 6 ×10-26 cm3 s-1 in the W+W- channel for a DM particle mass of 1.5 TeV, and 2 ×10-26 cm3 s-1 in the τ+τ- channel for a 1 TeV mass. For the first time, ground-based γ -ray observations have reached sufficient sensitivity to probe ⟨σ v ⟩ values expected from the thermal relic density for TeV DM particles.

  1. Distributions of Gas and Galaxies from Galaxy Clusters to Larger Scales

    NASA Astrophysics Data System (ADS)

    Patej, Anna

    2017-01-01

    We address the distributions of gas and galaxies on three scales: the outskirts of galaxy clusters, the clustering of galaxies on large scales, and the extremes of the galaxy distribution. In the outskirts of galaxy clusters, long-standing analytical models of structure formation and recent simulations predict the existence of density jumps in the gas and dark matter profiles. We use these features to derive models for the gas density profile, obtaining a simple fiducial model that is in agreement with both observations of cluster interiors and simulations of the outskirts. We next consider the galaxy density profiles of clusters; under the assumption that the galaxies in cluster outskirts follow similar collisionless dynamics as the dark matter, their distribution should show a steep jump as well. We examine the profiles of a low-redshift sample of clusters and groups, finding evidence for the jump in some of these clusters. Moving to larger scales where massive galaxies of different types are expected to trace the same large-scale structure, we present a test of this prediction by measuring the clustering of red and blue galaxies at z 0.6, finding low stochasticity between the two populations. These results address a key source of systematic uncertainty - understanding how target populations of galaxies trace large-scale structure - in galaxy redshift surveys. Such surveys use baryon acoustic oscillations (BAO) as a cosmological probe, but are limited by the expense of obtaining sufficiently dense spectroscopy. With the intention of leveraging upcoming deep imaging data, we develop a new method of detecting the BAO in sparse spectroscopic samples via cross-correlation with a dense photometric catalog. This method will permit the extension of BAO measurements to higher redshifts than possible with the existing spectroscopy alone. Lastly, we connect galaxies near and far: the Local Group dwarfs and the high redshift galaxies observed by Hubble and Spitzer. We examine how the local dwarfs may have appeared in the past and compare their properties to the detection limits of the upcoming James Webb Space Telescope (JWST), finding that JWST should be able to detect galaxies similar to the progenitors of a few of the brightest of the local galaxies, revealing a hitherto unobserved population of galaxies at high redshifts.

  2. Active Brownian particles near straight or curved walls: Pressure and boundary layers

    NASA Astrophysics Data System (ADS)

    Duzgun, Ayhan; Selinger, Jonathan V.

    2018-03-01

    Unlike equilibrium systems, active matter is not governed by the conventional laws of thermodynamics. Through a series of analytic calculations and Langevin dynamics simulations, we explore how systems cross over from equilibrium to active behavior as the activity is increased. In particular, we calculate the profiles of density and orientational order near straight or circular walls and show the characteristic width of the boundary layers. We find a simple relationship between the enhancements of density and pressure near a wall. Based on these results, we determine how the pressure depends on wall curvature and hence make approximate analytic predictions for the motion of curved tracers, as well as the rectification of active particles around small openings in confined geometries.

  3. Ultimate energy density of observable cold baryonic matter.

    PubMed

    Lattimer, James M; Prakash, Madappa

    2005-03-25

    We demonstrate that the largest measured mass of a neutron star establishes an upper bound to the energy density of observable cold baryonic matter. An equation of state-independent expression satisfied by both normal neutron stars and self-bound quark matter stars is derived for the largest energy density of matter inside stars as a function of their masses. The largest observed mass sets the lowest upper limit to the density. Implications from existing and future neutron star mass measurements are discussed.

  4. Vortical susceptibility of finite-density QCD matter

    DOE PAGES

    Aristova, A.; Frenklakh, D.; Gorsky, A.; ...

    2016-10-07

    Here, the susceptibility of finite-density QCD matter to vorticity is introduced, as an analog of magnetic susceptibility. It describes the spin polarization of quarks and antiquarks in finite-density QCD matter induced by rotation. We estimate this quantity in the chirally broken phase using the mixed gauge-gravity anomaly at finite baryon density. It is proposed that the vortical susceptibility of QCD matter is responsible for the polarization of Λ and Λ¯ hyperons observed recently in heavy ion collisions at RHIC by the STAR collaboration.

  5. Quantifying tidal stream disruption in a simulated Milky Way

    NASA Astrophysics Data System (ADS)

    Sandford, Emily; Küpper, Andreas H. W.; Johnston, Kathryn V.; Diemand, Jürg

    2017-09-01

    Simulations of tidal streams show that close encounters with dark matter subhaloes induce density gaps and distortions in on-sky path along the streams. Accordingly, observing disrupted streams in the Galactic halo would substantiate the hypothesis that dark matter substructure exists there, while in contrast, observing collimated streams with smoothly varying density profiles would place strong upper limits on the number density and mass spectrum of subhaloes. Here, we examine several measures of stellar stream 'disruption' and their power to distinguish between halo potentials with and without substructure and with different global shapes. We create and evolve a population of 1280 streams on a range of orbits in the Via Lactea II simulation of a Milky Way-like halo, replete with a full mass range of Λcold dark matter subhaloes, and compare it to two control stream populations evolved in smooth spherical and smooth triaxial potentials, respectively. We find that the number of gaps observed in a stellar stream is a poor indicator of the halo potential, but that (I) the thinness of the stream on-sky, (II) the symmetry of the leading and trailing tails and (III) the deviation of the tails from a low-order polynomial path on-sky ('path regularity') distinguish between the three potentials more effectively. We furthermore find that globular cluster streams on low-eccentricity orbits far from the galactic centre (apocentric radius ˜30-80 kpc) are most powerful in distinguishing between the three potentials. If they exist, such streams will shortly be discoverable and mapped in high dimensions with near-future photometric and spectroscopic surveys.

  6. Cosmology with void-galaxy correlations.

    PubMed

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  7. Strong orientation dependence of surface mass density profiles of dark haloes at large scales

    NASA Astrophysics Data System (ADS)

    Osato, Ken; Nishimichi, Takahiro; Oguri, Masamune; Takada, Masahiro; Okumura, Teppei

    2018-06-01

    We study the dependence of surface mass density profiles, which can be directly measured by weak gravitational lensing, on the orientation of haloes with respect to the line-of-sight direction, using a suite of N-body simulations. We find that, when major axes of haloes are aligned with the line-of-sight direction, surface mass density profiles have higher amplitudes than those averaged over all halo orientations, over all scales from 0.1 to 100 Mpc h-1 we studied. While the orientation dependence at small scales is ascribed to the halo triaxiality, our results indicate even stronger orientation dependence in the so-called two-halo regime, up to 100 Mpc h-1. The orientation dependence for the two-halo term is well approximated by a multiplicative shift of the amplitude and therefore a shift in the halo bias parameter value. The halo bias from the two-halo term can be overestimated or underestimated by up to ˜ 30 per cent depending on the viewing angle, which translates into the bias in estimated halo masses by up to a factor of 2 from halo bias measurements. The orientation dependence at large scales originates from the anisotropic halo-matter correlation function, which has an elliptical shape with the axis ratio of ˜0.55 up to 100 Mpc h-1. We discuss potential impacts of halo orientation bias on other observables such as optically selected cluster samples and a clustering analysis of large-scale structure tracers such as quasars.

  8. Dark energy and key physical parameters of clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Bisnovatyi-Kogan, G. S.; Chernin, A. D.

    2012-04-01

    We study physics of clusters of galaxies embedded in the cosmic dark energy background. Under the assumption that dark energy is described by the cosmological constant, we show that the dynamical effects of dark energy are strong in clusters like the Virgo cluster. Specifically, the key physical parameters of the dark mater halos in clusters are determined by dark energy: (1) the halo cut-off radius is practically, if not exactly, equal to the zero-gravity radius at which the dark matter gravity is balanced by the dark energy antigravity; (2) the halo averaged density is equal to two densities of dark energy; (3) the halo edge (cut-off) density is the dark energy density with a numerical factor of the unity order slightly depending on the halo profile. The cluster gravitational potential well in which the particles of the dark halo (as well as galaxies and intracluster plasma) move is strongly affected by dark energy: the maximum of the potential is located at the zero-gravity radius of the cluster.

  9. Constraints on dark matter annihilations from diffuse gamma-ray emission in the Galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakoli, Maryam; Evoli, Carmelo; Cholis, Ilias

    2014-01-01

    Recent advances in γ-ray cosmic ray, infrared and radio astronomy have allowed us to develop a significantly better understanding of the galactic medium properties in the last few years. In this work using the DRAGON code, that numerically solves the CR propagation equation and calculating γ-ray emissivities in a 2-dimensional grid enclosing the Galaxy, we study in a self consistent manner models for the galactic diffuse γ-ray emission. Our models are cross-checked to both the available CR and γ-ray data. We address the extend to which dark matter annihilations in the Galaxy can contribute to the diffuse γ-ray flux towardsmore » different directions on the sky. Moreover we discuss the impact that astrophysical uncertainties of non DM nature, have on the derived γ-ray limits. Such uncertainties are related to the diffusion properties on the Galaxy, the interstellar gas and the interstellar radiation field energy densities. Light ∼ 10 GeV dark matter annihilating dominantly to hadrons is more strongly constrained by γ-ray observations towards the inner parts of the Galaxy and influenced the most by assumptions of the gas distribution; while TeV scale DM annihilating dominantly to leptons has its tightest constraints from observations towards the galactic center avoiding the galactic disk plane, with the main astrophysical uncertainty being the radiation field energy density. In addition, we present a method of deriving constraints on the dark matter distribution profile from the diffuse γ-ray spectra. These results critically depend on the assumed mass of the dark matter particles and the type of its end annihilation products.« less

  10. A BARYONIC SOLUTION TO THE MISSING SATELLITES PROBLEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Alyson M.; Kuhlen, Michael; Zolotov, Adi

    2013-03-01

    It has been demonstrated that the inclusion of baryonic physics can alter the dark matter densities in the centers of low-mass galaxies, making the central dark matter slope more shallow than predicted in pure cold dark matter simulations. This flattening of the dark matter profile can occur in the most luminous subhalos around Milky Way mass galaxies. Zolotov et al. have suggested a correction to be applied to the central masses of dark matter-only satellites in order to mimic the affect of (1) the flattening of the dark matter cusp due to supernova feedback in luminous satellites and (2) enhancedmore » tidal stripping due to the presence of a baryonic disk. In this paper, we apply this correction to the z = 0 subhalo masses from the high resolution, dark matter-only Via Lactea II (VL2) simulation, and find that the number of massive subhalos is dramatically reduced. After adopting a stellar mass to halo mass relationship for the VL2 halos, and identifying subhalos that are (1) likely to be destroyed by stripping and (2) likely to have star formation suppressed by photo-heating, we find that the number of massive, luminous satellites around a Milky Way mass galaxy is in agreement with the number of observed satellites around the Milky Way or M31. We conclude that baryonic processes have the potential to solve the missing satellites problem.« less

  11. A Baryonic Solution to the Missing Satellites Problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Alyson M.; Kuhlen, Michael; Zolotov, Adi

    2013-03-01

    It has been demonstrated that the inclusion of baryonic physics can alter the dark matter densities in the centers of low-mass galaxies, making the central dark matter slope more shallow than predicted in pure cold dark matter simulations. This flattening of the dark matter profile can occur in the most luminous subhalos around Milky Way mass galaxies. Zolotov et al. have suggested a correction to be applied to the central masses of dark matter-only satellites in order to mimic the affect of (1) the flattening of the dark matter cusp due to supernova feedback in luminous satellites and (2) enhancedmore » tidal stripping due to the presence of a baryonic disk. In this paper, we apply this correction to the z = 0 subhalo masses from the high resolution, dark matter-only Via Lactea II (VL2) simulation, and find that the number of massive subhalos is dramatically reduced. After adopting a stellar mass to halo mass relationship for the VL2 halos, and identifying subhalos that are (1) likely to be destroyed by stripping and (2) likely to have star formation suppressed by photo-heating, we find that the number of massive, luminous satellites around a Milky Way mass galaxy is in agreement with the number of observed satellites around the Milky Way or M31. We conclude that baryonic processes have the potential to solve the missing satellites problem« less

  12. Robustness of dark matter constraints and interplay with collider searches for New Physics

    NASA Astrophysics Data System (ADS)

    Arbey, A.; Boudaud, M.; Mahmoudi, F.; Robbins, G.

    2017-11-01

    We study the implications of dark matter searches, together with collider constraints, on the phenomenological MSSM with neutralino dark matter and focus on the consequences of the related uncertainties in some detail. We consider, inter alia, the latest results from AMS-02, Fermi-LAT and XENON1T. In particular, we examine the impact of the choice of the dark matter halo profile, as well as the propagation model for cosmic rays, for dark matter indirect detection and show that the constraints on the MSSM differ by one to two orders of magnitude depending on the astrophysical hypotheses. On the other hand, our limited knowledge of the local relic density in the vicinity of the Earth and the velocity of Earth in the dark matter halo leads to a factor 3 in the exclusion limits obtained by direct detection experiments. We identified the astrophysical models leading to the most conservative and the most stringent constraints and for each case studied the complementarities with the latest LHC measurements and limits from Higgs, SUSY and monojet searches. We show that combining all data from dark matter searches and colliders, a large fraction of our supersymmetric sample could be probed. Whereas the direct detection constraints are rather robust under the astrophysical assumptions, the uncertainties related to indirect detection can have an important impact on the number of the excluded points.

  13. Constraints on the Galactic Halo Dark Matter From FERMI-LAT Diffuse Measurements

    DOE PAGES

    Ackermann, M.; Ajello, M.; Atwood, W. B.; ...

    2012-11-28

    For this study, we have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e +/e – produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limitsmore » is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. In conclusion, the resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.« less

  14. ALMA observations of lensed Herschel sources: testing the dark matter halo paradigm

    NASA Astrophysics Data System (ADS)

    Amvrosiadis, A.; Eales, S. A.; Negrello, M.; Marchetti, L.; Smith, M. W. L.; Bourne, N.; Clements, D. L.; De Zotti, G.; Dunne, L.; Dye, S.; Furlanetto, C.; Ivison, R. J.; Maddox, S. J.; Valiante, E.; Baes, M.; Baker, A. J.; Cooray, A.; Crawford, S. M.; Frayer, D.; Harris, A.; Michałowski, M. J.; Nayyeri, H.; Oliver, S.; Riechers, D. A.; Serjeant, S.; Vaccari, M.

    2018-04-01

    With the advent of wide-area submillimetre surveys, a large number of high-redshift gravitationally lensed dusty star-forming galaxies have been revealed. Because of the simplicity of the selection criteria for candidate lensed sources in such surveys, identified as those with S500 μm > 100 mJy, uncertainties associated with the modelling of the selection function are expunged. The combination of these attributes makes submillimetre surveys ideal for the study of strong lens statistics. We carried out a pilot study of the lensing statistics of submillimetre-selected sources by making observations with the Atacama Large Millimeter Array (ALMA) of a sample of strongly lensed sources selected from surveys carried out with the Herschel Space Observatory. We attempted to reproduce the distribution of image separations for the lensed sources using a halo mass function taken from a numerical simulation that contains both dark matter and baryons. We used three different density distributions, one based on analytical fits to the haloes formed in the EAGLE simulation and two density distributions [Singular Isothermal Sphere (SIS) and SISSA] that have been used before in lensing studies. We found that we could reproduce the observed distribution with all three density distributions, as long as we imposed an upper mass transition of ˜1013 M⊙ for the SIS and SISSA models, above which we assumed that the density distribution could be represented by a Navarro-Frenk-White profile. We show that we would need a sample of ˜500 lensed sources to distinguish between the density distributions, which is practical given the predicted number of lensed sources in the Herschel surveys.

  15. GRO: Black hole models for gamma ray bursts

    NASA Technical Reports Server (NTRS)

    Shaham, Jacob

    1993-01-01

    This grant deals with the production of gamma-ray bursts (GRB's) close to horizons of black holes (BH's), mainly via accretion of small chunks of matter onto extreme Kerr BH's. In the past year, we laid the ground work for actual calculations close to Kerr BH's. Because of technical reasons, actual work has only started very recently. Following the detailed list of research subprojects as per our original proposal, we have performed research in the following areas: spectrum calculation; burst dynamics; tidal capture and primordial cloud collapse; halo density profile; and capture of other objects.

  16. Kaon Condensation and the Non-Uniform Nuclear Matter

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiki; Tatsumi, Toshitaka; Voskresensky, Dmitri N.; Tanigawa, Tomonori; Chiba, Satoshi

    2004-04-01

    Non-uniform structures of nuclear matter are studied in a wide density-range. Using the density functional theory with a relativistic mean-field model, we examine non-uniform structures at sub-nuclear densities (nuclear "pastas") and at high densities, where kaon condensate is expected. We try to give a unified view about the change of the matter structure as density increases, carefully taking into account the Coulomb screening effects from the viewpoint of first-order phase transition.

  17. The impact of baryons on massive galaxy clusters: halo structure and cluster mass estimates

    NASA Astrophysics Data System (ADS)

    Henson, Monique A.; Barnes, David J.; Kay, Scott T.; McCarthy, Ian G.; Schaye, Joop

    2017-03-01

    We use the BAHAMAS (BAryons and HAloes of MAssive Systems) and MACSIS (MAssive ClusterS and Intercluster Structures) hydrodynamic simulations to quantify the impact of baryons on the mass distribution and dynamics of massive galaxy clusters, as well as the bias in X-ray and weak lensing mass estimates. These simulations use the subgrid physics models calibrated in the BAHAMAS project, which include feedback from both supernovae and active galactic nuclei. They form a cluster population covering almost two orders of magnitude in mass, with more than 3500 clusters with masses greater than 1014 M⊙ at z = 0. We start by characterizing the clusters in terms of their spin, shape and density profile, before considering the bias in both weak lensing and hydrostatic mass estimates. Whilst including baryonic effects leads to more spherical, centrally concentrated clusters, the median weak lensing mass bias is unaffected by the presence of baryons. In both the dark matter only and hydrodynamic simulations, the weak lensing measurements underestimate cluster masses by ≈10 per cent for clusters with M200 ≤ 1015 M⊙ and this bias tends to zero at higher masses. We also consider the hydrostatic bias when using both the true density and temperature profiles, and those derived from X-ray spectroscopy. When using spectroscopic temperatures and densities, the hydrostatic bias decreases as a function of mass, leading to a bias of ≈40 per cent for clusters with M500 ≥ 1015 M⊙. This is due to the presence of cooler gas in the cluster outskirts. Using mass weighted temperatures and the true density profile reduces this bias to 5-15 per cent.

  18. Higher gamma-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia.

    PubMed

    Joshi, Dipesh; Fung, Samantha J; Rothwell, Alice; Weickert, Cynthia Shannon

    2012-11-01

    In the orbitofrontal cortex (OFC), reduced gray matter volume and reduced glutamic acid decarboxylase 67kDa isoform (GAD67) messenger (m)RNA are found in schizophrenia; however, how these alterations relate to developmental pathology of interneurons is unclear. The present study therefore aimed to determine if increased interstitial white matter neuron (IWMN) density exists in the OFC; whether gamma-aminobutyric acid (GABA)ergic neuron density in OFC white matter was altered; and how IWMN density may be related to an early-expressed inhibitory neuron marker, Dlx1, in OFC gray matter in schizophrenia. IWMN densities were determined (38 schizophrenia and 38 control subjects) for neuronal nuclear antigen (NeuN+) and 65/67 kDa isoform of glutamic acid decarboxylase immunopositive (GAD65/67+) neurons. In situ hybridization was performed to determine Dlx1 and GAD67 mRNA expression in the OFC gray matter. NeuN and GAD65/67 immunopositive cell density was significantly increased in the superficial white matter in schizophrenia. Gray matter Dlx1 and GAD67 mRNA expression were reduced in schizophrenia. Dlx1 mRNA levels were negatively correlated with GAD65/67 IWMN density. Our study provides evidence that pathology of IWMNs in schizophrenia includes GABAergic interneurons and that increased IWMN density may be related to GABAergic deficits in the overlying gray matter. These findings provide evidence at the cellular level that the OFC is a site of pathology in schizophrenia and support the hypothesis that inappropriate migration of cortical inhibitory interneurons occurs in schizophrenia. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Haizhou; Zhang, Yanwen; Zhu, Zihua

    Single crystalline 6H-SiC samples were irradiated at 150 K using 2MeV Pt ions. Local volume swelling is determined by electron energy loss spectroscopy (EELS), a nearly sigmoidal dependence with irradiation dose is observed. The disorder profiles and ion distribution are determined by Rutherford backscattering spectrometry (RBS), transmission electron microscopy and secondary ion mass spectrum. Since the volume swelling reaches 12% over the damage region under high ion fluence, lattice expansion is considered and corrected during the data analysis of RBS spectra to obtain depth profiles. Projectile and damage profiles are estimated by SRIM (Stopping and Range of Ions in Matter).more » Comparing with the measured profiles, SRIM code significantly overestimates the electronic stopping power for the slow heavy Pt ions, and large derivations are observed in the predicted ion distribution and the damage profiles. Utilizing the reciprocity method that is based on the invariance of the inelastic excitation in ion atom collisions against interchange of projectile and target, much lower electronic stopping is deduced. A simple approach based on reducing the density of SiC target in SRIM simulation is proposed to compensate the overestimated SRIM electronic stopping power values. Better damage profile and ion range are predicted.« less

  20. Nonparametric estimates of drift and diffusion profiles via Fokker-Planck algebra.

    PubMed

    Lund, Steven P; Hubbard, Joseph B; Halter, Michael

    2014-11-06

    Diffusion processes superimposed upon deterministic motion play a key role in understanding and controlling the transport of matter, energy, momentum, and even information in physics, chemistry, material science, biology, and communications technology. Given functions defining these random and deterministic components, the Fokker-Planck (FP) equation is often used to model these diffusive systems. Many methods exist for estimating the drift and diffusion profiles from one or more identifiable diffusive trajectories; however, when many identical entities diffuse simultaneously, it may not be possible to identify individual trajectories. Here we present a method capable of simultaneously providing nonparametric estimates for both drift and diffusion profiles from evolving density profiles, requiring only the validity of Langevin/FP dynamics. This algebraic FP manipulation provides a flexible and robust framework for estimating stationary drift and diffusion coefficient profiles, is not based on fluctuation theory or solved diffusion equations, and may facilitate predictions for many experimental systems. We illustrate this approach on experimental data obtained from a model lipid bilayer system exhibiting free diffusion and electric field induced drift. The wide range over which this approach provides accurate estimates for drift and diffusion profiles is demonstrated through simulation.

  1. Manipulating matter rogue waves and breathers in Bose-Einstein condensates.

    PubMed

    Manikandan, K; Muruganandam, P; Senthilvelan, M; Lakshmanan, M

    2014-12-01

    We construct higher-order rogue wave solutions and breather profiles for the quasi-one-dimensional Gross-Pitaevskii equation with a time-dependent interatomic interaction and external trap through the similarity transformation technique. We consider three different forms of traps: (i) the time-independent expulsive trap, (ii) time-dependent monotonous trap, and (iii) time-dependent periodic trap. Our results show that when we change a parameter appearing in the time-independent or time-dependent trap the second- and third-order rogue waves transform into the first-order-like rogue waves. We also analyze the density profiles of breather solutions. Here we also show that the shapes of the breathers change when we tune the strength of the trap parameter. Our results may help to manage rogue waves experimentally in a BEC system.

  2. Carbon Characteristics and Biogeochemical Processes of Uranium Accumulating Organic Matter Rich Sediments in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Boye, K.; Noel, V.; Tfaily, M. M.; Dam, W. L.; Bargar, J.; Fendorf, S. E.

    2015-12-01

    Uranium plume persistence in groundwater aquifers is a problem on several former ore processing sites on floodplains in the upper Colorado River Basin. Earlier observations by our group and others at the Old Rifle Site, CO, have noted that U concentrations are highest in organic rich, fine-grained, and, therefore, diffusion limited sediment material. Due to the constantly evolving depositional environments of floodplains, surficial organic matter may become buried at various stages of decomposition, through sudden events such as overbank flooding and through the slower progression of river meandering. This creates a discontinuous subsurface distribution of organic-rich sediments, which are hotspots for microbial activity and thereby central to the subsurface cycling of contaminants (e.g. U) and biologically relevant elements (e.g. C, N, P, Fe). However, the organic matter itself is poorly characterized. Consequently, little is known about its relevance in driving biogeochemical processes that control U fate and transport in the subsurface. In an investigation of soil/sediment cores from five former uranium ore processing sites on floodplains distributed across the Upper Colorado River Basin we confirmed consistent co-enrichment of U with organic-rich layers in all profiles. However, using C K-edge X-ray Absorption Spectroscopy (XAS) coupled with Fourier-Transformed Ion-Cyclotron-Resonance Mass-Spectroscopy (FT-ICR-MS) on bulk sediments and density-separated organic matter fractions, we did not detect any chemical difference in the organic rich sediments compared to the surrounding coarser-grained aquifer material within the same profile, even though there were differences in organic matter composition between the 5 sites. This suggests that U retention and reduction to U(IV) is independent of C chemical composition on the bulk scale. Instead it appears to be the abundance of organic matter in combination with a limited O2 supply in the fine-grained material that stimulate anaerobic microbial processes responsible for U enrichment. Thus, the chemical composition of organic matter is subordinate to the physical environment and total organic matter content in controlling U reduction and retention processes.

  3. Distinguishing CDM dwarfs from SIDM dwarfs in baryonic simulations

    NASA Astrophysics Data System (ADS)

    Strickland, Emily; Fitts, Alex B.; Boylan-Kolchin, Michael

    2017-06-01

    Dwarf galaxies in the nearby Universe are the most dark-matter-dominated systems known. They are therefore natural probes of the nature of dark matter, which remains unknown. Our collaboration has performed several high-resolution cosmological zoom-in simulations of isolated dwarf galaxies. We simulate each galaxy in standard cold dark matter (ΛCDM) as well as self-interacting dark matter (SIDM, with a cross section of σ/m ~ 1 cm2/g), both with and without baryons, in order to identify distinguishing characteristics between the two. The simulations are run using GIZMO, a meshless-finite-mass hydrodynamical code, and are part of the Feedback in Realistic Environments (FIRE) project. By analyzing both the global properties and inner structure of the dwarfs in varying dark matter prescriptions, we provide a side-by-side comparison of isolated, dark-matter-dominated galaxies at the mass scale where differences in the two models of dark matter are thought to be the most obvious. We find that the edge of classical dwarfs and ultra-faint dwarfs (at stellar masses of ~105 solar masses) provides the clearest window for distinguishing between the two theories. At these low masses, our SIDM galaxies have a cored inner density profile, while their CDM counterparts have “cuspy” centers. The SIDM versions of each galaxy also have measurably lower stellar velocity dispersions than their CDM counterparts. Future observations of ultra faint dwarfs with JWST and 30-m telescopes will be able to discern whether such alternate theories of dark matter are viable.

  4. Dissipative hidden sector dark matter

    NASA Astrophysics Data System (ADS)

    Foot, R.; Vagnozzi, S.

    2015-01-01

    A simple way of explaining dark matter without modifying known Standard Model physics is to require the existence of a hidden (dark) sector, which interacts with the visible one predominantly via gravity. We consider a hidden sector containing two stable particles charged under an unbroken U (1 )' gauge symmetry, hence featuring dissipative interactions. The massless gauge field associated with this symmetry, the dark photon, can interact via kinetic mixing with the ordinary photon. In fact, such an interaction of strength ε ˜10-9 appears to be necessary in order to explain galactic structure. We calculate the effect of this new physics on big bang nucleosynthesis and its contribution to the relativistic energy density at hydrogen recombination. We then examine the process of dark recombination, during which neutral dark states are formed, which is important for large-scale structure formation. Galactic structure is considered next, focusing on spiral and irregular galaxies. For these galaxies we modeled the dark matter halo (at the current epoch) as a dissipative plasma of dark matter particles, where the energy lost due to dissipation is compensated by the energy produced from ordinary supernovae (the core-collapse energy is transferred to the hidden sector via kinetic mixing induced processes in the supernova core). We find that such a dynamical halo model can reproduce several observed features of disk galaxies, including the cored density profile and the Tully-Fisher relation. We also discuss how elliptical and dwarf spheroidal galaxies could fit into this picture. Finally, these analyses are combined to set bounds on the parameter space of our model, which can serve as a guideline for future experimental searches.

  5. An automated method measures variability in P-glycoprotein and ABCG2 densities across brain regions and brain matter.

    PubMed

    Kannan, Pavitra; Schain, Martin; Kretzschmar, Warren W; Weidner, Lora; Mitsios, Nicholas; Gulyás, Balázs; Blom, Hans; Gottesman, Michael M; Innis, Robert B; Hall, Matthew D; Mulder, Jan

    2017-06-01

    Changes in P-glycoprotein and ABCG2 densities may play a role in amyloid-beta accumulation in Alzheimer's disease. However, previous studies report conflicting results from different brain regions, without correcting for changes in vessel density. We developed an automated method to measure transporter density exclusively within the vascular space, thereby correcting for vessel density. We then examined variability in transporter density across brain regions, matter, and disease using two cohorts of post-mortem brains from Alzheimer's disease patients and age-matched controls. Changes in transporter density were also investigated in capillaries near plaques and on the mRNA level. P-glycoprotein density varied with brain region and matter, whereas ABCG2 density varied with brain matter. In temporal cortex, P-glycoprotein density was 53% lower in Alzheimer's disease samples than in controls, and was reduced by 35% in capillaries near plaque deposits within Alzheimer's disease samples. ABCG2 density was unaffected in Alzheimer's disease. No differences were detected at the transcript level. Our study indicates that region-specific changes in transporter densities can occur globally and locally near amyloid-beta deposits in Alzheimer's disease, providing an explanation for conflicting results in the literature. When differences in region and matter are accounted for, changes in density can be reproducibly measured using our automated method.

  6. The large-scale correlations of multicell densities and profiles: implications for cosmic variance estimates

    NASA Astrophysics Data System (ADS)

    Codis, Sandrine; Bernardeau, Francis; Pichon, Christophe

    2016-08-01

    In order to quantify the error budget in the measured probability distribution functions of cell densities, the two-point statistics of cosmic densities in concentric spheres is investigated. Bias functions are introduced as the ratio of their two-point correlation function to the two-point correlation of the underlying dark matter distribution. They describe how cell densities are spatially correlated. They are computed here via the so-called large deviation principle in the quasi-linear regime. Their large-separation limit is presented and successfully compared to simulations for density and density slopes: this regime is shown to be rapidly reached allowing to get sub-percent precision for a wide range of densities and variances. The corresponding asymptotic limit provides an estimate of the cosmic variance of standard concentric cell statistics applied to finite surveys. More generally, no assumption on the separation is required for some specific moments of the two-point statistics, for instance when predicting the generating function of cumulants containing any powers of concentric densities in one location and one power of density at some arbitrary distance from the rest. This exact `one external leg' cumulant generating function is used in particular to probe the rate of convergence of the large-separation approximation.

  7. Role of strangeness and isospin in low density expansions of hadronic matter

    NASA Astrophysics Data System (ADS)

    de Oliveira, Thamirys; Menezes, Débora P.; Pinto, Marcus B.; Gulminelli, Francesca

    2018-05-01

    We compare relativistic mean-field models with their low density expansion counterparts used to mimic nonrelativistic models by consistently expanding the baryonic scalar density in powers of the baryonic number density up to O (13 /3 ) , which goes two orders beyond the order considered in previous works. We show that, due to the nontrivial density dependence of the Dirac mass, the convergence of the expansion is very slow, and the validity of the nonrelativistic approximation is questionable even at subsaturation densities. In order to analyze the roles played by strangeness and isospin we consider n -Λ and n -p matter separately. Our results indicate that these degrees of freedom play quite different roles in the expansion mechanism and n -Λ matter can be better described by low density expansions than n -p matter in general.

  8. The super-NFW model: an analytic dynamical model for cold dark matter haloes and elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Lilley, Edward J.; Evans, N. Wyn; Sanders, Jason L.

    2018-05-01

    An analytic galaxy model with ρ ˜ r-1 at small radii and ρ ˜ r-3.5 at large radii is presented. The asymptotic density fall-off is slower than the Hernquist model, but faster than the Navarro-Frenk-White (NFW) profile for dark matter haloes, and so in accord with recent evidence from cosmological simulations. The model provides the zeroth-order term in a biorthornomal basis function expansion, meaning that axisymmetric, triaxial, and lopsided distortions can easily be added (much like the Hernquist model itself which is the zeroth-order term of the Hernquist-Ostriker expansion). The properties of the spherical model, including analytic distribution functions which are either isotropic, radially anisotropic, or tangentially anisotropic, are discussed in some detail. The analogue of the mass-concentration relation for cosmological haloes is provided.

  9. Gray matter morphological anomalies in the cerebellar vermis in first-episode schizophrenia patients with cognitive deficits.

    PubMed

    Wang, Jingjuan; Zhou, Li; Cui, Chunlei; Liu, Zhening; Lu, Jie

    2017-11-22

    Cognitive deficits are a core feature of early schizophrenia. However, the pathological foundations underlying cognitive deficits are still unknown. The present study examined the association between gray matter density and cognitive deficits in first-episode schizophrenia. Structural magnetic resonance imaging of the brain was performed in 34 first-episode schizophrenia patients and 21 healthy controls. Patients were divided into two subgroups according to working memory task performance. The three groups were well matched for age, gender, and education, and the two patient groups were also further matched for diagnosis, duration of illness, and antipsychotic treatment. Voxel-based morphometric analysis was performed to estimate changes in gray matter density in first-episode schizophrenia patients with cognitive deficits. The relationships between gray matter density and clinical outcomes were explored. Patients with cognitive deficits were found to have reduced gray matter density in the vermis and tonsil of cerebellum compared with patients without cognitive deficits and healthy controls, decreased gray matter density in left supplementary motor area, bilateral precentral gyrus compared with patients without cognitive deficits. Classifier results showed GMD in cerebellar vermis tonsil cluster could differentiate SZ-CD from controls, left supplementary motor area cluster could differentiate SZ-CD from SZ-NCD. Gray matter density values of the cerebellar vermis cluster in patients groups were positively correlated with cognitive severity. Decreased gray matter density in the vermis and tonsil of cerebellum may underlie early psychosis and serve as a candidate biomarker for schizophrenia with cognitive deficits.

  10. Equation of State for Isospin Asymmetric Nuclear Matter Using Lane Potential

    NASA Astrophysics Data System (ADS)

    Basu, D. N.; Chowdhury, P. Roy; Samanta, C.

    2006-10-01

    A mean field calculation for obtaining the equation of state (EOS) for symmetric nuclear matter from a density dependent M3Y interaction supplemented by a zero-range potential is described. The energy per nucleon is minimized to obtain the ground state of symmetric nuclear matter. The saturation energy per nucleon used for nuclear matter calculations is determined from the co-efficient of the volume term of Bethe--Weizsäcker mass formula which is evaluated by fitting the recent experimental and estimated atomic mass excesses from Audi--Wapstra--Thibault atomic mass table by minimizing the mean square deviation. The constants of density dependence of the effective interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The EOS of symmetric nuclear matter, thus obtained, provide reasonably good estimate of nuclear incompressibility. Once the constants of density dependence are determined, EOS for asymmetric nuclear matter is calculated by adding to the isoscalar part, the isovector component of the M3Y interaction that do not contribute to the EOS of symmetric nuclear matter. These EOS are then used to calculate the pressure, the energy density and the velocity of sound in symmetric as well as isospin asymmetric nuclear matter.

  11. Ultraviolet observations of cool stars. VIII - Interstellar matter toward Procyon

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Henry, R. C.; Moos, H. W.; Linsky, J. L.

    1978-01-01

    The profile of the chromospheric L-alpha emission line of the F5 IV-V star Procyon (Alpha CMi, d = 3.5 pc) has been measured using the high-resolution Princeton spectrometer aboard NASA's Copernicus satellite. L-alpha absorption lines of interstellar deuterium and hydrogen are distinctly present. The average number density of interstellar hydrogen along the line of sight is found to be 0.11 + or - 0.02 per cu cm, similar to the densities that have been found in the directions of the stars Epsilon Eri, Epsilon Ind, and Alpha Cen A. These stars are all within 3.5 pc of the earth. The ratio of deuterium to hydrogen in the direction of Procyon is found to be 1.3 (+1.2, -0.5) x 10 to the -5th.

  12. Dark matter and cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less

  13. Dark matter and cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations,more » such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.« less

  14. Dark matter and cosmology

    NASA Astrophysics Data System (ADS)

    Schramm, David N.

    1992-07-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold'' and ``hot'' non-baryonic candidates is shown to depend on the assumed ``seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  15. Dark matter and cosmology

    NASA Astrophysics Data System (ADS)

    Schramm, D. N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the omega = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between 'cold' and 'hot' non-baryonic candidates is shown to depend on the assumed 'seeds' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages, and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  16. Kinetic analysis of thermally relativistic flow with dissipation. II. Relativistic Boltzmann equation versus its kinetic models

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke; Matsumoto, Jun; Suzuki, Kojiro

    2011-06-01

    Thermally relativistic flow with dissipation was analyzed by solving the rarefied supersonic flow of thermally relativistic matter around a triangle prism by Yano and Suzuki [Phys. Rev. DPRVDAQ1550-7998 83, 023517 (2011)10.1103/PhysRevD.83.023517], where the Anderson-Witting (AW) model was used as a solver. In this paper, we solve the same problem, which was analyzed by Yano and Suzuki, using the relativistic Boltzmann equation (RBE). To solve the RBE, the conventional direct simulation Monte Carlo method for the nonrelativistic Boltzmann equation is extended to a new direct simulation Monte Carlo method for the RBE. Additionally, we solve the modified Marle (MM) model proposed by Yano-Suzuki-Kuroda for comparisons. The solution of the thermally relativistic shock layer around the triangle prism obtained using the relativistic Boltzmann equation is considered by focusing on profiles of macroscopic quantities, such as the density, velocity, temperature, heat flux and dynamic pressure along the stagnation streamline (SSL). Differences among profiles of the number density, velocity and temperature along the SSL obtained using the RBE, the AW and MM. models are described in the framework of the relativistic Navier-Stokes-Fourier law. Finally, distribution functions on the SSL obtained using the RBE are compared with those obtained using the AW and MM models. The distribution function inside the shock wave obtained using the RBE does not indicate a bimodal form, which is obtained using the AW and MM models, but a smooth deceleration of thermally relativistic matter inside a shock wave.

  17. The separate and combined effects of baryon physics and neutrino free streaming on large-scale structure

    NASA Astrophysics Data System (ADS)

    Mummery, Benjamin O.; McCarthy, Ian G.; Bird, Simeon; Schaye, Joop

    2017-10-01

    We use the cosmo-OWLS and bahamas suites of cosmological hydrodynamical simulations to explore the separate and combined effects of baryon physics (particularly feedback from active galactic nuclei, AGN) and free streaming of massive neutrinos on large-scale structure. We focus on five diagnostics: (I) the halo mass function, (II) halo mass density profiles, (III) the halo mass-concentration relation, (IV) the clustering of haloes and (v) the clustering of matter, and we explore the extent to which the effects of baryon physics and neutrino free streaming can be treated independently. Consistent with previous studies, we find that both AGN feedback and neutrino free streaming suppress the total matter power spectrum, although their scale and redshift dependences differ significantly. The inclusion of AGN feedback can significantly reduce the masses of groups and clusters, and increase their scale radii. These effects lead to a decrease in the amplitude of the mass-concentration relation and an increase in the halo autocorrelation function at fixed mass. Neutrinos also lower the masses of groups and clusters while having no significant effect on the shape of their density profiles (thus also affecting the mass-concentration relation and halo clustering in a qualitatively similar way to feedback). We show that, with only a small number of exceptions, the combined effects of baryon physics and neutrino free streaming on all five diagnostics can be estimated to typically better than a few per cent accuracy by treating these processes independently (I.e. by multiplying their separate effects).

  18. Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools

    DOE PAGES

    Hearin, Andrew P.; Campbell, Duncan; Tollerud, Erik; ...

    2017-10-20

    Here, we present the first stable release of Halotools (v0.2), a community-driven Python package designed to build and test models of the galaxy-halo connection. Halotools provides a modular platform for creating mock universes of galaxies starting from a catalog of dark matter halos obtained from a cosmological simulation. The package supports many of the common forms used to describe galaxy-halo models: the halo occupation distribution (HOD), the conditional luminosity function (CLF), abundance matching, and alternatives to these models that include effects such as environmental quenching or variable galaxy assembly bias. Satellite galaxies can be modeled to live in subhalos, ormore » to follow custom number density profiles within their halos, including spatial and/or velocity bias with respect to the dark matter profile. Here, the package has an optimized toolkit to make mock observations on a synthetic galaxy population, including galaxy clustering, galaxy-galaxy lensing, galaxy group identification, RSD multipoles, void statistics, pairwise velocities and others, allowing direct comparison to observations. Halotools is object-oriented, enabling complex models to be built from a set of simple, interchangeable components, including those of your own creation.« less

  19. Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo

    2014-04-01

    We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.

  20. Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hearin, Andrew P.; Campbell, Duncan; Tollerud, Erik

    Here, we present the first stable release of Halotools (v0.2), a community-driven Python package designed to build and test models of the galaxy-halo connection. Halotools provides a modular platform for creating mock universes of galaxies starting from a catalog of dark matter halos obtained from a cosmological simulation. The package supports many of the common forms used to describe galaxy-halo models: the halo occupation distribution (HOD), the conditional luminosity function (CLF), abundance matching, and alternatives to these models that include effects such as environmental quenching or variable galaxy assembly bias. Satellite galaxies can be modeled to live in subhalos, ormore » to follow custom number density profiles within their halos, including spatial and/or velocity bias with respect to the dark matter profile. Here, the package has an optimized toolkit to make mock observations on a synthetic galaxy population, including galaxy clustering, galaxy-galaxy lensing, galaxy group identification, RSD multipoles, void statistics, pairwise velocities and others, allowing direct comparison to observations. Halotools is object-oriented, enabling complex models to be built from a set of simple, interchangeable components, including those of your own creation.« less

  1. Developmental Patterns of Doublecortin Expression and White Matter Neuron Density in the Postnatal Primate Prefrontal Cortex and Schizophrenia

    PubMed Central

    Fung, Samantha J.; Joshi, Dipesh; Allen, Katherine M.; Sivagnanasundaram, Sinthuja; Rothmond, Debora A.; Saunders, Richard; Noble, Pamela L.; Webster, Maree J.; Shannon Weickert, Cynthia

    2011-01-01

    Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37) and matched controls (n = 37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia. PMID:21966452

  2. Edge Density Imaging: Mapping the Anatomic Embedding of the Structural Connectome Within the White Matter of the Human Brain

    PubMed Central

    Owen, Julia P.; Chang, Yi-Shin; Mukherjee, Pratik

    2015-01-01

    The structural connectome has emerged as a powerful tool to characterize the network architecture of the human brain and shows great potential for generating important new biomarkers for neurologic and psychiatric disorders. The edges of the cerebral graph traverse white matter to interconnect cortical and subcortical nodes, although the anatomic embedding of these edges is generally overlooked in the literature. Mapping the paths of the connectome edges could elucidate the relative importance of individual white matter tracts to the overall network topology of the brain and also lead to a better understanding of the effect of regionally-specific white matter pathology on cognition and behavior. In this work, we introduce edge density imaging (EDI), which maps the number of network edges that pass through every white matter voxel. Test-retest analysis shows good to excellent reliability for edge density (ED) measurements, with consistent results using different cortical and subcortical parcellation schemes and different diffusion MR imaging acquisition parameters. We also demonstrate that ED yields complementary information to both traditional and emerging voxel-wise metrics of white matter microstructure and connectivity, including fractional anisotropy, track density, fiber orientation dispersion and neurite density. Our results demonstrate spatially ordered variations of ED throughout the white matter, notably including greater ED in posterior than anterior cerebral white matter. The EDI framework is employed to map the white matter regions that are enriched with pathways connecting rich club nodes and also those with high densities of intra-modular and inter-modular edges. We show that periventricular white matter has particularly high ED and high densities of rich club edges, which is significant for diseases in which these areas are selectively affected, ranging from white matter injury of prematurity in infants to leukoaraiosis in the elderly. Using edge betweenness centrality, we identify specific white matter regions involved in a large number of shortest paths, some containing highly connected rich club edges while others are relatively isolated within individual modules. Overall, these findings reveal an intricate relationship between white matter anatomy and the structural connectome, motivating further exploration of EDI for biomarkers of cognition and behavior. PMID:25592996

  3. General circular velocity relation of a test particle in a 3D gravitational potential: application to the rotation curves analysis and total mass determination of UGC 8490 and UGC 9753

    NASA Astrophysics Data System (ADS)

    Repetto, P.; Martínez-García, E. E.; Rosado, M.; Gabbasov, R.

    2018-06-01

    In this paper, we derive a novel circular velocity relation for a test particle in a 3D gravitational potential applicable to every system of curvilinear coordinates, suitable to be reduced to orthogonal form. As an illustration of the potentiality of the determined circular velocity expression, we perform the rotation curves analysis of UGC 8490 and UGC 9753 and we estimate the total and dark matter mass of these two galaxies under the assumption that their respective dark matter haloes have spherical, prolate, and oblate spheroidal mass distributions. We employ stellar population synthesis models and the total H I density map to obtain the stellar and H I+He+metals rotation curves of both galaxies. The subtraction of the stellar plus gas rotation curves from the observed rotation curves of UGC 8490 and UGC 9753 generates the dark matter circular velocity curves of both galaxies. We fit the dark matter rotation curves of UGC 8490 and UGC 9753 through the newly established circular velocity formula specialized to the spherical, prolate, and oblate spheroidal mass distributions, considering the Navarro, Frenk, and White, Burkert, Di Cintio, Einasto, and Stadel dark matter haloes. Our principal findings are the following: globally, cored dark matter profiles Burkert and Einasto prevail over cuspy Navarro, Frenk, and White, and Di Cintio. Also, spherical/oblate dark matter models fit better the dark matter rotation curves of both galaxies than prolate dark matter haloes.

  4. The Prolate Dark Matter Halo of the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Chiba, Masashi

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi & Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  5. The baryonic self similarity of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alard, C., E-mail: alard@iap.fr

    2014-06-20

    The cosmological simulations indicates that dark matter halos have specific self-similar properties. However, the halo similarity is affected by the baryonic feedback. By using momentum-driven winds as a model to represent the baryon feedback, an equilibrium condition is derived which directly implies the emergence of a new type of similarity. The new self-similar solution has constant acceleration at a reference radius for both dark matter and baryons. This model receives strong support from the observations of galaxies. The new self-similar properties imply that the total acceleration at larger distances is scale-free, the transition between the dark matter and baryons dominatedmore » regime occurs at a constant acceleration, and the maximum amplitude of the velocity curve at larger distances is proportional to M {sup 1/4}. These results demonstrate that this self-similar model is consistent with the basics of modified Newtonian dynamics (MOND) phenomenology. In agreement with the observations, the coincidence between the self-similar model and MOND breaks at the scale of clusters of galaxies. Some numerical experiments show that the behavior of the density near the origin is closely approximated by a Einasto profile.« less

  6. The prolate dark matter halo of the Andromeda galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Kohei; Chiba, Masashi, E-mail: k.hayasi@astr.tohoku.ac.jp, E-mail: chiba@astr.tohoku.ac.jp

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for itsmore » dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.« less

  7. Cognitive dysfunctions in middle-aged type 2 diabetic patients and neuroimaging correlations: a cross-sectional study.

    PubMed

    García-Casares, Natalia; Jorge, Ricardo E; García-Arnés, Juan A; Acion, Laura; Berthier, Marcelo L; Gonzalez-Alegre, Pedro; Nabrozidis, Alejandro; Gutiérrez, Antonio; Ariza, María José; Rioja, Jose; González-Santos, Pedro

    2014-01-01

    The aim was to assess the neuropsychological performance of a group of middle-aged patients with well-controlled type 2 diabetes mellitus (T2DM) and to examine whether the neuropsychological deficits correlate with structural and functional brain alterations. We compared 25 subjects with T2DM aged 45-65 years with 25 control participants matched for age, gender, and educational level. The neuropsychological battery was designed to examine executive functions, attention, information processing speed, and verbal memory. Severity of depression was assessed using the Hamilton Depression Rating Scale and cardiovascular risk factors were assessed using the Framingham Cardiovascular Risk Profile Score. The presence of at least one APOEε4 allele was determined. Reduced gray matter density was analyzed using voxel-based morphometry and brain glucose metabolic changes were assessed by 18FDG-PET. T2DM subjects had significantly lower scores than subjects without T2DM in the Trail-making Test B (p < 0.004), Color-Word Stroop test (p < 0.005), Semantic Fluency (p < 0.006), Digit-Symbol modalities test (p < 0.02), Text Recall from the Wechsler Memory Scale (p < 0.0001), Rey-Osterrieth Complex Figure-copy (p < 0.004), and delayed reproduction (p < 0.03). Worse executive functions and memory functioning correlated predominantly with less gray matter density and reduced glucose metabolism in the orbital and prefrontal cortex, temporal (middle gyrus, parahippocampus and uncus), and cerebellum regions (p < 0.001). T2DM subjects presented cognitive dysfunctions compared with controls. Clinical-neuroimaging correlations corresponded to brain changes (reduced gray matter density and glucose metabolism) mainly in fronto-temporal areas.

  8. Neutrino Flavor Evolution in Turbulent Supernova Matter

    NASA Astrophysics Data System (ADS)

    Lund, Tina; Kneller, James P.

    In order to decode the neutrino burst signal from a Galactic core-collapse supernova and reveal the complicated inner workings of the explosion, we need a thorough understanding of the neutrino flavor evolution from the proto-neutron-star outwards. The flavor content of the signal evolves due to both neutrino collective effects and matter effects which can lead to a highly interesting interplay and distinctive spectral features. In this paper we investigate the supernova neutrino flavor evolution by including collective flavor effects, the evolution of the Mikheyev, Smirnov & Wolfenstein (MSW) matter conversions due to the shock wave passing through the star, and the impact of turbulence. The density profiles utilized in our calculations represent a 10.8 MG progenitor and comes from a 1D numerical simulation by Fischer et al.[1]. We find that small amplitude turbulence, up to 10% of the average potential, leads to a minimal modification of the signal, and the emerging neutrino spectra retain both collective and MSW features. However, when larger amounts of turbulence are added, 30% and 50%, the features of collective and shock wave effects in the high density resonance channel are almost completely obscured at late times. At the same time we find the other mixing channels - the low density resonance channel and the non-resonant channels - begin to develop turbulence signatures. Large amplitude turbulent motions in the outer layers of massive, iron core-collapse supernovae may obscure the most obvious fingerprints of collective and shock wave effects in the neutrino signal but cannot remove them completely, and additionally bring about new features in the signal. We illustrate how the progression of the shock wave is reflected in the changing survival probabilities over time, and we show preliminary results on how some of these collective and shock wave induced signatures appear in a detector signal.

  9. Investigations of the Local Supercluster velocity field. III. Tracing the backside infall with distance moduli from the direct Tully-Fisher relation

    NASA Astrophysics Data System (ADS)

    Ekholm, T.; Lanoix, P.; Teerikorpi, P.; Fouqué, P.; Paturel, G.

    2000-03-01

    We have extended the discussion of Paper II (Ekholm et al. \\cite{Ekholm99a}) to cover also the backside of the Local Supercluster (LSC) by using 96 galaxies within Theta <30degr from the adopted centre of LSC and with distance moduli from the direct B-band Tully-Fisher relation. In order to minimize the influence of the Malmquist bias we required log Vmax>2.1 and sigma B_T<0.2mag. We found out that if RVirgo<20 Mpc this sample fails to follow the expected dynamical pattern from the Tolman-Bondi (TB) model. When we compared our results with the Virgo core galaxies given by Federspiel et al. (\\cite{Federspiel98}) we were able to constrain the distance to Virgo: RVirgo=20-24 Mpc. When analyzing the TB-behaviour of the sample as seen from the origin of the metric as well as that with distances from the extragalactic Cepheid PL-relation we found additional support to the estimate RVirgo= 21 Mpc given in Paper II. Using a two-component mass-model we found a Virgo mass estimate MVirgo=(1.5 - 2)x Mvirial, where Mvirial=9.375*E14Msun for RVirgo= 21 Mpc. This estimate agrees with the conclusion in Paper I (Teerikorpi et al. \\cite{Teerikorpi92}). Our results indicate that the density distribution of luminous matter is shallower than that of the total gravitating matter when q0<= 0.5. The preferred exponent in the density power law, alpha ~2.5, agrees with recent theoretical work on the universal density profile of dark matter clustering in an Einstein-deSitter universe (Tittley & Couchman \\cite{Tittley99}).

  10. MASS ACCRETION AND ITS EFFECTS ON THE SELF-SIMILARITY OF GAS PROFILES IN THE OUTSKIRTS OF GALAXY CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Erwin T.; Nagai, Daisuke; Avestruz, Camille

    2015-06-10

    Galaxy clusters exhibit remarkable self-similar behavior which allows us to establish simple scaling relationships between observable quantities and cluster masses, making galaxy clusters useful cosmological probes. Recent X-ray observations suggested that self-similarity may be broken in the outskirts of galaxy clusters. In this work, we analyze a mass-limited sample of massive galaxy clusters from the Omega500 cosmological hydrodynamic simulation to investigate the self-similarity of the diffuse X-ray emitting intracluster medium (ICM) in the outskirts of galaxy clusters. We find that the self-similarity of the outer ICM profiles is better preserved if they are normalized with respect to the mean densitymore » of the universe, while the inner profiles are more self-similar when normalized using the critical density. However, the outer ICM profiles as well as the location of accretion shock around clusters are sensitive to their mass accretion rate, which causes the apparent breaking of self-similarity in cluster outskirts. We also find that the collisional gas does not follow the distribution of collisionless dark matter (DM) perfectly in the infall regions of galaxy clusters, leading to 10% departures in the gas-to-DM density ratio from the cosmic mean value. Our results have a number implications for interpreting observations of galaxy clusters in X-ray and through the Sunyaev–Zel’dovich effect, and their applications to cosmology.« less

  11. Cusps in the center of galaxies: a real conflict with observations or a numerical artefact of cosmological simulations?

    NASA Astrophysics Data System (ADS)

    Baushev, A. N.; del Valle, L.; Campusano, L. E.; Escala, A.; Muñoz, R. R.; Palma, G. A.

    2017-05-01

    Galaxy observations and N-body cosmological simulations produce conflicting dark matter halo density profiles for galaxy central regions. While simulations suggest a cuspy and universal density profile (UDP) of this region, the majority of observations favor variable profiles with a core in the center. In this paper, we investigate the convergency of standard N-body simulations, especially in the cusp region, following the approach proposed by [1]. We simulate the well known Hernquist model using the SPH code Gadget-3 and consider the full array of dynamical parameters of the particles. We find that, although the cuspy profile is stable, all integrals of motion characterizing individual particles suffer strong unphysical variations along the whole halo, revealing an effective interaction between the test bodies. This result casts doubts on the reliability of the velocity distribution function obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles in the cusp region. The same streams should appear in cosmological N-body simulations, being strong enough to change the shape of the cusp or even to create it. Our analysis, based on the Hernquist model and the standard SPH code, strongly suggests that the UDPs generally found by the cosmological N-body simulations may be a consequence of numerical effects. A much better understanding of the N-body simulation convergency is necessary before a `core-cusp problem' can properly be used to question the validity of the CDM model.

  12. Cusps in the center of galaxies: a real conflict with observations or a numerical artefact of cosmological simulations?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baushev, A.N.; Valle, L. del; Campusano, L.E.

    2017-05-01

    Galaxy observations and N-body cosmological simulations produce conflicting dark matter halo density profiles for galaxy central regions. While simulations suggest a cuspy and universal density profile (UDP) of this region, the majority of observations favor variable profiles with a core in the center. In this paper, we investigate the convergency of standard N-body simulations, especially in the cusp region, following the approach proposed by [1]. We simulate the well known Hernquist model using the SPH code Gadget-3 and consider the full array of dynamical parameters of the particles. We find that, although the cuspy profile is stable, all integrals ofmore » motion characterizing individual particles suffer strong unphysical variations along the whole halo, revealing an effective interaction between the test bodies. This result casts doubts on the reliability of the velocity distribution function obtained in the simulations. Moreover, we find unphysical Fokker-Planck streams of particles in the cusp region. The same streams should appear in cosmological N-body simulations, being strong enough to change the shape of the cusp or even to create it. Our analysis, based on the Hernquist model and the standard SPH code, strongly suggests that the UDPs generally found by the cosmological N-body simulations may be a consequence of numerical effects. A much better understanding of the N-body simulation convergency is necessary before a 'core-cusp problem' can properly be used to question the validity of the CDM model.« less

  13. Deadly Dark Matter Cusps versus Faint and Extended Star Clusters: Eridanus II and Andromeda XXV

    NASA Astrophysics Data System (ADS)

    Amorisco, Nicola C.

    2017-07-01

    The recent detection of two faint and extended star clusters in the central regions of two Local Group dwarf galaxies, Eridanus II and Andromeda XXV, raises the question of whether clusters with such low densities can survive the tidal field of cold dark matter halos with central density cusps. Using both analytic arguments and a suite of collisionless N-body simulations, I show that these clusters are extremely fragile and quickly disrupted in the presence of central cusps ρ ˜ {r}-α with α ≳ 0.2. Furthermore, the scenario in which the clusters were originally more massive and sank to the center of the halo requires extreme fine tuning and does not naturally reproduce the observed systems. In turn, these clusters are long lived in cored halos, whose central regions are safe shelters for α ≲ 0.2. The only viable scenario for hosts that have preserved their primordial cusp to the present time is that the clusters formed at rest at the bottom of the potential, which is easily tested by measurement of the clusters proper velocity within the host. This offers means to readily probe the central density profile of two dwarf galaxies as faint as {L}V˜ 5× {10}5 {L}⊙ and {L}V˜ 6× {10}4 {L}⊙ , in which stellar feedback is unlikely to be effective.

  14. Cosmological constraints from Chandra observations of galaxy clusters.

    PubMed

    Allen, Steven W

    2002-09-15

    Chandra observations of rich, relaxed galaxy clusters allow the properties of the X-ray gas and the total gravitating mass to be determined precisely. Here, we present results for a sample of the most X-ray luminous, dynamically relaxed clusters known. We show that the Chandra data and independent gravitational lensing studies provide consistent answers on the mass distributions in the clusters. The mass profiles exhibit a form in good agreement with the predictions from numerical simulations. Combining Chandra results on the X-ray gas mass fractions in the clusters with independent measurements of the Hubble constant and the mean baryonic matter density in the Universe, we obtain a tight constraint on the mean total matter density of the Universe, Omega(m), and an interesting constraint on the cosmological constant, Omega(Lambda). We also describe the 'virial relations' linking the masses, X-ray temperatures and luminosities of galaxy clusters. These relations provide a key step in linking the observed number density and spatial distribution of clusters to the predictions from cosmological models. The Chandra data confirm the presence of a systematic offset of ca. 40% between the normalization of the observed mass-temperature relation and the predictions from standard simulations. This finding leads to a significant revision of the best-fit value of sigma(8) inferred from the observed temperature and luminosity functions of clusters.

  15. The mass distribution and gravitational potential of the Milky Way

    NASA Astrophysics Data System (ADS)

    McMillan, Paul J.

    2017-02-01

    We present mass models of the Milky Way created to fit observational constraints and to be consistent with expectations from theoretical modelling. The method used to create these models is that demonstrated in our previous study, and we improve on those models by adding gas discs to the potential, considering the effects of allowing the inner slope of the halo density profile to vary, and including new observations of maser sources in the Milky Way amongst the new constraints. We provide a best-fitting model, as well as estimates of the properties of the Milky Way. Under the assumptions in our main model, we find that the Sun is R0 = 8.20 ± 0.09 kpc from the Galactic Centre, with the circular speed at the Sun being v0 = 232.8 ± 3.0 km s-1; and that the Galaxy has a total stellar mass of (54.3 ± 5.7) × 109 M⊙, a total virial mass of (1.30 ± 0.30) × 1012 M⊙ and a local dark-matter density of 0.40 ± 0.04 GeV cm-3, where the quoted uncertainties are statistical. These values are sensitive to our choice of priors and constraints. We investigate systematic uncertainties, which in some cases may be larger. For example, if we weaken our prior on R0, we find it to be 7.97 ± 0.15 kpc and that v0 = 226.8 ± 4.2 km s-1. We find that most of these properties, including the local dark-matter density, are remarkably insensitive to the assumed power-law density slope at the centre of the dark-matter halo. We find that it is unlikely that the local standard of rest differs significantly from that found under assumptions of axisymmetry. We have made code to compute the force from our potential, and to integrate orbits within it, publicly available.

  16. Time scale variation of NV resonance line profiles of HD203064

    NASA Astrophysics Data System (ADS)

    Strantzalis, A.

    2012-01-01

    Hot emission star, such as Be and Oe, present many spectral lines with very complex and peculiar profiles. Therefore, we cannot find a classical distribution to fit theoretically those physical line profiles. So, many physical parameters of the regions, where spectral lines are created, are difficult to estimate. Here, in this poster paper we study the UV NV (λλ 1238.821, 1242.804 A) resonance lines of the Be star HD203064 at three different dates. We using the Gauss-Rotation model, that proposed the idea that these complex profiles consist of a number of independent Discrete or Satellite Absorption Components (DACs, SACs). Our purpose is to calculate the values of a group of physical parameters as the apparent rotational, radial, and random velocities of the thermal motions of the ions. Also the Full Width at Half Maximum (FWHM) and the column density, as well as the absorbed energy of the independent regions of matter, which produce the main and the satellite components of the studied spectral lines. In addition, we determine the time scale variations of the above physical parameters.

  17. Constraint on the velocity dependent dark matter annihilation cross section from gamma-ray and kinematic observations of ultrafaint dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Bi, Xiao-Jun; Yin, Peng-Fei; Zhang, Xinmin

    2018-03-01

    Searching for γ rays from dwarf spheroidal galaxies (dSphs) is a promising approach to detect dark matter (DM) due to the high DM densities and low baryon components in dSphs. The Fermi-LAT observations from dSphs have set stringent constraints on the velocity independent annihilation cross section. However, the constraints from dSphs may change in velocity dependent annihilation scenarios because of the different velocity dispersions in galaxies. In this work, we study how to set constraints on the velocity dependent annihilation cross section from the combined Fermi-LAT observations of dSphs with the kinematic data. In order to calculate the γ ray flux from the dSph, the correlation between the DM density profile and velocity dispersion at each position should be taken into account. We study such correlation and the relevant uncertainty from kinematic observations by performing a Jeans analysis. Using the observational results of three ultrafaint dSphs with large J-factors, including Willman 1, Reticulum II, and Triangulum II, we set constraints on the p-wave annihilation cross section in the Galaxy as an example.

  18. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  19. In situ determination of Earth matter density in a neutrino factory

    NASA Astrophysics Data System (ADS)

    Minakata, Hisakazu; Uchinami, Shoichi

    2007-04-01

    We point out that an accurate in situ determination of the earth matter density ρ is possible in neutrino factory by placing a detector at the magic baseline, L=2π/GFNe where Ne denotes electron number density. The accuracy of matter density determination is excellent in a region of relatively large θ13 with fractional uncertainty δρ/ρ of about 0.43%, 1.3%, and ≲3% at 1σ CL at sin⁡22θ13=0.1, 10-2, and 3×10-3, respectively. At smaller θ13 the uncertainty depends upon the CP phase δ, but it remains small, 3% 7% in more than 3/4 of the entire region of δ at sin⁡22θ13=10-4. The results would allow us to solve the problem of obscured CP violation due to the uncertainty of earth matter density in a wide range of θ13 and δ. It may provide a test for the geophysical model of the earth, or it may serve as a method for a stringent test of the Mikheyev-Smirnov-Wolfenstein theory of neutrino propagation in matter once an accurate geophysical estimation of the matter density is available.

  20. Decreased gray matter volume in the left hippocampus and bilateral calcarine cortex in coal mine flood disaster survivors with recent onset PTSD.

    PubMed

    Zhang, Jian; Tan, Qingrong; Yin, Hong; Zhang, Xiaoliang; Huan, Yi; Tang, Lihua; Wang, Huaihai; Xu, Junqing; Li, Lingjiang

    2011-05-31

    Although limbic structure changes have been found in chronic and recent onset post-traumatic stress disorder (PTSD) patients, there are few studies about brain structure changes in recent onset PTSD patients after a single extreme and prolonged trauma. In the current study, 20 coal mine flood disaster survivors underwent magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) and region of interest (ROI) techniques were used to detect the gray matter and white matter volume changes in 10 survivors with recent onset PTSD and 10 survivors without PTSD. The correlation between the Clinician-Administered PTSD Scale (CAPS) and gray matter density in the ROI was also studied. Compared with survivors without PTSD, survivors with PTSD had significantly decreased gray matter volume and density in left anterior hippocampus, left parahippocampal gyrus, and bilateral calcarine cortex. The CAPS score correlated negatively with the gray matter density in bilateral calcarine cortex and left hippocampus in coal mine disaster survivors. Our study suggests that the gray matter volume and density of limbic structure decreased in recent onset PTSD patients who were exposed to extreme trauma. PTSD symptom severity was associated with gray matter density in calcarine cortex and hippocampus. 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Satellite accretion on to massive galaxies with central black holes

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Ma, Chung-Pei

    2007-02-01

    Minor mergers of galaxies are expected to be common in a hierarchical cosmology such as Λ cold dark matter. Though less disruptive than major mergers, minor mergers are more frequent and thus have the potential to affect galactic structure significantly. In this paper, we dissect the case-by-case outcome from a set of numerical simulations of a single satellite elliptical galaxy accreting on to a massive elliptical galaxy. We take care to explore cosmologically relevant orbital parameters and to set up realistic initial galaxy models that include all three relevant dynamical components: dark matter haloes, stellar bulges, and central massive black holes (BHs). The effects of several different parameters are considered, including orbital energy and angular momentum, satellite density and inner density profile, satellite-to-host mass ratio, and presence of a BH at the centre of the host. BHs play a crucial role in protecting the shallow stellar cores of the hosts, as satellites merging on to a host with a central BH are more strongly disrupted than those merging on to hosts without BHs. Orbital parameters play an important role in determining the degree of disruption: satellites on less-bound or more-eccentric orbits are more easily destroyed than those on more-bound or more-circular orbits as a result of an increased number of pericentric passages and greater cumulative effects of gravitational shocking and tidal stripping. In addition, satellites with densities typical of faint elliptical galaxies are disrupted relatively easily, while denser satellites can survive much better in the tidal field of the host. Over the range of parameters explored, we find that the accretion of a single satellite elliptical galaxy can result in a broad variety of changes, in both signs, in the surface brightness profile and colour of the central part of an elliptical galaxy. Our results show that detailed properties of the stellar components of merging satellites can strongly affect the properties of the remnants.

  2. Differential Lipid Profiles of Normal Human Brain Matter and Gliomas by Positive and Negative Mode Desorption Electrospray Ionization – Mass Spectrometry Imaging

    PubMed Central

    Pirro, Valentina; Hattab, Eyas M.; Cohen-Gadol, Aaron A.; Cooks, R. Graham

    2016-01-01

    Desorption electrospray ionization—mass spectrometry (DESI-MS) imaging was used to analyze unmodified human brain tissue sections from 39 subjects sequentially in the positive and negative ionization modes. Acquisition of both MS polarities allowed more complete analysis of the human brain tumor lipidome as some phospholipids ionize preferentially in the positive and others in the negative ion mode. Normal brain parenchyma, comprised of grey matter and white matter, was differentiated from glioma using positive and negative ion mode DESI-MS lipid profiles with the aid of principal component analysis along with linear discriminant analysis. Principal component–linear discriminant analyses of the positive mode lipid profiles was able to distinguish grey matter, white matter, and glioma with an average sensitivity of 93.2% and specificity of 96.6%, while the negative mode lipid profiles had an average sensitivity of 94.1% and specificity of 97.4%. The positive and negative mode lipid profiles provided complementary information. Principal component–linear discriminant analysis of the combined positive and negative mode lipid profiles, via data fusion, resulted in approximately the same average sensitivity (94.7%) and specificity (97.6%) of the positive and negative modes when used individually. However, they complemented each other by improving the sensitivity and specificity of all classes (grey matter, white matter, and glioma) beyond 90% when used in combination. Further principal component analysis using the fused data resulted in the subgrouping of glioma into two groups associated with grey and white matter, respectively, a separation not apparent in the principal component analysis scores plots of the separate positive and negative mode data. The interrelationship of tumor cell percentage and the lipid profiles is discussed, and how such a measure could be used to measure residual tumor at surgical margins. PMID:27658243

  3. Particulate Matter Speciation Profiles for Light-duty Gasoline Vehicles in the United States

    EPA Science Inventory

    Representative particulate matter (PM2.5) profiles for particles less than or equal to 2.5 micrometers are estimated from the Kansas City Light-Duty Vehicle Emissions Study for use in the US EPA’s vehicle emission model, the Motor Vehicle Emission Simulator (MOVES). The profiles ...

  4. Modified Gravity and its test on galaxy clusters

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theodorus M.; Morandi, Andrea; Limousin, Marceau

    2018-05-01

    The MOdified Gravity (MOG) theory of J. Moffat assumes a massive vector particle which causes a repulsive contribution to the tensor gravitation. For the galaxy cluster A1689 new data for the X-ray gas and the strong lensing properties are presented. Fits to MOG are possible by adjusting the galaxy density profile. However, this appears to work as an effective dark matter component, posing a serious problem for MOG. New gas and strong lensing data for the cluster A1835 support these conclusions and point at a tendency of the gas alone to overestimate the lensing effects in MOG theory.

  5. Astrocyte pathology in the ventral prefrontal white matter in depression.

    PubMed

    Rajkowska, Grazyna; Legutko, Beata; Moulana, Mohadetheh; Syed, Maryam; Romero, Damian G; Stockmeier, Craig A; Miguel-Hidalgo, Jose Javier

    2018-04-07

    Astrocyte functions in white matter are less well understood than in gray matter. Our recent study of white matter in ventral prefrontal cortex (vPFC) revealed alterations in expression of myelin-related genes in major depressive disorder (MDD). Since white matter astrocytes maintain myelin, we hypothesized that morphometry of these cells will be altered in MDD in the same prefrontal white matter region in which myelin-related genes are altered. White matter adjacent to vPFC was examined in 25 MDD and 21 control subjects. Density and size of GFAP-immunoreactive (-ir) astrocyte cell bodies was measured. The area fraction of GFAP-ir astrocytes (cell bodies + processes) was also estimated. GFAP mRNA expression was determined using qRT-PCR. The density of GFAP-ir astrocytes was also measured in vPFC white matter of rats subjected to chronic unpredictable stress (CUS) and control animals. Fibrous and smooth GFAP-ir astrocytes were distinguished in human white matter. The density of both types of astrocytes was significantly decreased in MDD. Area fraction of GFAP immunoreactivity was significantly decreased in MDD, but mean soma size remained unchanged. Expression of GFAP mRNA was significantly decreased in MDD. In CUS rats there was a significant decrease in astrocyte density in prefrontal white matter. The decrease in density and area fraction of white matter astrocytes and GFAP mRNA in MDD may be linked to myelin pathology previously noted in these subjects. Astrocyte pathology may contribute to axon disturbances in axon integrity reported by neuroimaging studies in MDD and interfere with signal conduction in the white matter. Copyright © 2018. Published by Elsevier Ltd.

  6. Statistics of cosmic density profiles from perturbation theory

    NASA Astrophysics Data System (ADS)

    Bernardeau, Francis; Pichon, Christophe; Codis, Sandrine

    2014-11-01

    The joint probability distribution function (PDF) of the density within multiple concentric spherical cells is considered. It is shown how its cumulant generating function can be obtained at tree order in perturbation theory as the Legendre transform of a function directly built in terms of the initial moments. In the context of the upcoming generation of large-scale structure surveys, it is conjectured that this result correctly models such a function for finite values of the variance. Detailed consequences of this assumption are explored. In particular the corresponding one-cell density probability distribution at finite variance is computed for realistic power spectra, taking into account its scale variation. It is found to be in agreement with Λ -cold dark matter simulations at the few percent level for a wide range of density values and parameters. Related explicit analytic expansions at the low and high density tails are given. The conditional (at fixed density) and marginal probability of the slope—the density difference between adjacent cells—and its fluctuations is also computed from the two-cell joint PDF; it also compares very well to simulations. It is emphasized that this could prove useful when studying the statistical properties of voids as it can serve as a statistical indicator to test gravity models and/or probe key cosmological parameters.

  7. Probing dark matter with star clusters: a dark matter core in the ultra-faint dwarf Eridanus II

    NASA Astrophysics Data System (ADS)

    Contenta, Filippo; Balbinot, Eduardo; Petts, James A.; Read, Justin I.; Gieles, Mark; Collins, Michelle L. M.; Peñarrubia, Jorge; Delorme, Maxime; Gualandris, Alessia

    2018-05-01

    We present a new technique to probe the central dark matter (DM) density profile of galaxies that harnesses both the survival and observed properties of star clusters. As a first application, we apply our method to the `ultra-faint' dwarf Eridanus II (Eri II) that has a lone star cluster ˜45 pc from its centre. Using a grid of collisional N-body simulations, incorporating the effects of stellar evolution, external tides and dynamical friction, we show that a DM core for Eri II naturally reproduces the size and the projected position of its star cluster. By contrast, a dense cusped galaxy requires the cluster to lie implausibly far from the centre of Eri II (>1 kpc), with a high inclination orbit that must be observed at a particular orbital phase. Our results, therefore, favour a DM core. This implies that either a cold DM cusp was `heated up' at the centre of Eri II by bursty star formation or we are seeing an evidence for physics beyond cold DM.

  8. Kaon condensation in dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, J.; Heiselberg, H.; Pandharipande, V. R.

    The kaon energy in neutron matter is calculated analytically with the Klein-Gordon equation, by making a Wigner-Seitz cell approximation and employing a K{sup -}N square well potential. The transition from the low density Lenz potential, proportional to scattering length, to the high density Hartree potential is found to begin at fairly low densities. Exact nonrelativistic calculations of the kaon energy in a simple cubic crystal of neutrons are used to test the Wigner-Seitz and the Ericson-Ericson approximation methods. In this case the frequently used Erickson-Erickson approximation is found to be fairly accurate up to twice nuclear matter density. All themore » calculations indicate that by {approx}4 times nuclear matter density the Hartree limit is reached. We also show that in the Hartree limit the energy of zero momentum kaons does not have relativistic energy dependent factors present in the low density expansions. The results indicate that the density for kaon condensation is higher than previously estimated.« less

  9. The MSW Effect and Matter Effects in Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Smirnov, A. Yu

    2005-01-01

    The MSW (Mikheyev-Smirnov-Wolfenstein) effect is the adiabatic or partially adiabatic neutrino flavor conversion in media with varying density. The main notions related to the effect, its dynamics and physical picture are reviewed. The large mixing MSW effect is realized inside the Sun providing a solution of the solar neutrino problem. The small mixing MSW effect driven by the 1 3 mixing can be realized for the supernova (SN) neutrinos. Inside collapsing stars new elements of the MSW dynamics may show up: non-oscillatory transition, non-adiabatic conversion, time dependent adiabaticity violation induced by shock waves. Effects of the resonance enhancement and the parametric enhancement of oscillations can be realized for atmospheric and accelerator neutrinos in the Earth. Precise results for neutrino oscillations in low density media with arbitrary density profile are presented and the attenuation effect is described. The area of applications is the solar and SN neutrinos inside the Earth, and the results are crucial for the neutrino oscillation tomography.

  10. The MSW Effect and Matter Effects in Neutrino Oscillations

    NASA Astrophysics Data System (ADS)

    Smirnov, A. Yu.

    2006-03-01

    The MSW (Mikheyev-Smirnov-Wolfenstein) effect is the adiabatic or partially adiabatic neutrino flavor conversion in media with varying density. The main notions related to the effect, its dynamics and physical picture are reviewed. The large mixing MSW effect is realized inside the Sun providing a solution of the solar neutrino problem. The small mixing MSW effect driven by the 1-3 mixing can be realized for the supernova (SN) neutrinos. Inside collapsing stars new elements of the MSW dynamics may show up: non-oscillatory transition, non-adiabatic conversion, time dependent adiabaticity violation induced by shock waves. Effects of the resonance enhancement and the parametric enhancement of oscillations can be realized for atmospheric and accelerator neutrinos in the Earth. Precise results for neutrino oscillations in low density media with arbitrary density profile are presented and the attenuation effect is described. The area of applications is the solar and SN neutrinos inside the Earth, and the results are crucial for the neutrino oscillation tomography.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Haizhou; Zhang, Yanwen; Zhu, Zihua

    Single crystalline 6H-SiC samples were irradiated at 150 K with 2 MeV Pt ions. The local volume swelling was determined by electron energy loss spectroscopy (EELS), and a nearly sigmoidal dependence on irradiation dose is observed. The disorder profiles and ion distribution were determined by Rutherford backscattering spectrometry (RBS), transmission electron microscopy, and secondary ion mass spectrometry. Since the volume swelling reaches 12% over the damage region at high ion fluence, the effect of lattice expansion is considered and corrected for in the analysis of RBS spectra to obtain depth profiles. Projectile and damage profiles are estimated by SRIM (Stoppingmore » and Range of Ions in Matter).When compared with the measured profiles, the SRIM code predictions of ion distribution and the damage profiles are underestimated due to significant overestimation of the electronic stopping power for the slow heavy Pt ions. By utilizing the reciprocity method, which is based on the invariance of the inelastic energy loss in ion-solid collisions against interchange of projectile and target atom, a much lower electronic stopping power is deduced. A simple approach, based on reducing the density of SiC target in SRIM simulation, is proposed to compensate the overestimated SRIM electronic stopping power values, which results in improved agreement between predicted and measured damage profiles and ion ranges.« less

  12. The correlation function of galaxy ellipticities produced by gravitational lensing

    NASA Technical Reports Server (NTRS)

    Miralda-Escude, Jordi

    1991-01-01

    The correlation of galaxy ellipticities produced by gravitational lensing is calculated as a function of the power spectrum of density fluctuations in the universe by generalizing an analytical method developed by Gunn (1967). The method is applied to a model where identical objects with spherically symmetric density profiles are randomly laid down in space, and to the cold dark matter model. The possibility of detecting this correlation is discussed. Although an ellipticity correlation can also be caused by an intrinsic alignment of the axes of galaxies belonging to a cluster or a supercluster, a method is suggested by which one type of correlation can be distinguished from another. The advantage of this ellipticity correlation is that it is one of the few astronomical observations that can directly probe large-scale mass fluctuations in the universe.

  13. Halo mass and weak galaxy-galaxy lensing profiles in rescaled cosmological N-body simulations

    NASA Astrophysics Data System (ADS)

    Renneby, Malin; Hilbert, Stefan; Angulo, Raúl E.

    2018-05-01

    We investigate 3D density and weak lensing profiles of dark matter haloes predicted by a cosmology-rescaling algorithm for N-body simulations. We extend the rescaling method of Angulo & White (2010) and Angulo & Hilbert (2015) to improve its performance on intra-halo scales by using models for the concentration-mass-redshift relation based on excursion set theory. The accuracy of the method is tested with numerical simulations carried out with different cosmological parameters. We find that predictions for median density profiles are more accurate than ˜5 % for haloes with masses of 1012.0 - 1014.5h-1 M⊙ for radii 0.05 < r/r200m < 0.5, and for cosmologies with Ωm ∈ [0.15, 0.40] and σ8 ∈ [0.6, 1.0]. For larger radii, 0.5 < r/r200m < 5, the accuracy degrades to ˜20 %, due to inaccurate modelling of the cosmological and redshift dependence of the splashback radius. For changes in cosmology allowed by current data, the residuals decrease to ≲ 2 % up to scales twice the virial radius. We illustrate the usefulness of the method by estimating the mean halo mass of a mock galaxy group sample. We find that the algorithm's accuracy is sufficient for current data. Improvements in the algorithm, particularly in the modelling of baryons, are likely required for interpreting future (dark energy task force stage IV) experiments.

  14. The DiskMass Survey. VII. The distribution of luminous and dark matter in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Martinsson, Thomas P. K.; Verheijen, Marc A. W.; Westfall, Kyle B.; Bershady, Matthew A.; Andersen, David R.; Swaters, Rob A.

    2013-09-01

    We present dynamically-determined rotation-curve mass decompositions of 30 spiral galaxies, which were carried out to test the maximum-disk hypothesis and to quantify properties of their dark-matter halos. We used measured vertical velocity dispersions of the disk stars to calculate dynamical mass surface densities (Σdyn). By subtracting our observed atomic and inferred molecular gas mass surface densities from Σdyn, we derived the stellar mass surface densities (Σ∗), and thus have absolute measurements of all dominant baryonic components of the galaxies. Using K-band surface brightness profiles (IK), we calculated the K-band mass-to-light ratio of the stellar disks (Υ∗ = Σ∗/IK) and adopted the radial mean (overline{mls}) for each galaxy to extrapolate Σ∗ beyond the outermost kinematic measurement. The derived overline{mls} of individual galaxies are consistent with all galaxies in the sample having equal Υ∗. We find a sample average and scatter of mlab overline{mls}mrab = 0.31 ± 0.07. Rotation curves of the baryonic components were calculated from their deprojected mass surface densities. These were used with circular-speed measurements to derive the structural parameters of the dark-matter halos, modeled as either a pseudo-isothermal sphere (pISO) or a Navarro-Frenk-White (NFW) halo. In addition to our dynamically determined mass decompositions, we also performed alternative rotation-curve decompositions by adopting the traditional maximum-disk hypothesis. However, the galaxies in our sample are submaximal, such that at 2.2 disk scale lengths (hR) the ratios between the baryonic and total rotation curves (Fb2.2hR) are less than 0.75. We find this ratio to be nearly constant between 1-6hR within individual galaxies. We find a sample average and scatter of mlab Fb2.2hRmrab = 0.57 ± 0.07, with trends of larger Fb2.2hR for more luminous and higher-surface-brightness galaxies. To enforce these being maximal, we need to scale Υ∗ by a factor 3.6 on average. In general, the dark-matter rotation curves are marginally better fit by a pISO than by an NFW halo. For the nominal-Υ∗ (submaximal) case, we find that the derived NFW-halo parameters have values consistent with ΛCDM N-body simulations, suggesting that the baryonic matter in our sample of galaxies has only had a minor effect on the dark-matter distribution. In contrast, maximum-Υ∗ decompositions yield halo-concentration parameters that are too low compared to the ΛCDM simulations. Appendix is available in electronic form at http://www.aanda.org

  15. Monitoring the deep western boundary current in the western North Pacific by echo intensity measured with lowered acoustic Doppler current profiler

    NASA Astrophysics Data System (ADS)

    Komaki, Kanae; Nagano, Akira

    2018-05-01

    Oxidation of iron and manganese ions is predominant in the oxygen-rich deep western boundary current (DWBC) within the Pacific Ocean. By the faster removal of particulate iron hydroxide and manganese oxide, densities of the particulate matters are considered to be lower in the DWBC than the interior region. To detect the density variation of suspended particles between the DWBC and interior regions, we analyzed echo intensity (EI) measured in the western North Pacific by hydrographic casts with a 300 kHz lowered acoustic Doppler current profiler (LADCP) in a whole water column. At depths greater than 3000 m ( 3000 dbar), EI is almost uniformly low between 12°N and 30°N but peaks sharply from 30°N to 35°N to a maximum north of 35°N. EI is found to be anomalously low in the DWBC compared to the background distribution. The DWBC pathways are identifiable by the low EI and high dissolved oxygen concentration. EI data by LADCPs and other acoustic instruments may be used to observe the temporal variations of the DWBC pathways.

  16. A distributed real-time model of degradation in a solid oxide fuel cell, part I: Model characterization

    NASA Astrophysics Data System (ADS)

    Zaccaria, V.; Tucker, D.; Traverso, A.

    2016-04-01

    Despite the high efficiency and flexibility of fuel cells, which make them an attractive technology for the future energy generation, their economic competitiveness is still penalized by their short lifetime, due to multiple degradation phenomena. As a matter of fact, electrochemical performance of solid oxide fuel cells (SOFCs) is reduced because of different degradation mechanisms, which depend on operating conditions, fuel and air contaminants, impurities in materials, and others. In this work, a real-time, one dimensional (1D) model of a SOFC is used to simulate the effects of voltage degradation in the cell. Different mechanisms are summarized in a simple empirical expression that relates degradation rate to cell operating parameters (current density, fuel utilization and temperature), on a localized basis. Profile distributions of different variables during cell degradation are analyzed. In particular, the effect of degradation on current density, temperature, and total resistance of the cell are investigated. An analysis of localized degradation effects shows how different parts of the cell degrade at a different time rate, and how the various profiles are redistributed along the cell as consequence of different degradation rates.

  17. Quark matter droplets in neutron stars

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.; Staubo, E. F.

    1993-01-01

    We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.

  18. Detection of a pair of prominent X-ray cavities in Abell 3847

    NASA Astrophysics Data System (ADS)

    Vagshette, Nilkanth D.; Naik, Sachindra; Patil, Madhav. K.; Sonkamble, Satish S.

    2017-04-01

    We present the results obtained from a detailed analysis of a deep Chandra observation of the bright FRII radio galaxy 3C 444 in Abell 3847 cluster. A pair of huge X-ray cavities are detected along the north and south directions from the centre of 3C 444. X-ray and radio images of the cluster reveal peculiar positioning of the cavities and radio bubbles. The radio lobes and X-ray cavities are apparently not spatially coincident and exhibit offsets by ˜61 and 77 kpc from each other along the north and south directions, respectively. Radial temperature and density profiles reveal the presence of a cool core in the cluster. Imaging and spectral studies showed the removal of substantial amount of matter from the core of the cluster by the radio jets. A detailed analysis of the temperature and density profiles showed the presence of a rarely detected elliptical shock in the cluster. Detection of inflating cavities at an average distance of ˜55 kpc from the centre implies that the central engine feeds a remarkable amount of radio power (˜6.3 × 1044 erg s-1) into the intra-cluster medium over ˜108 yr, the estimated age of cavity. The cooling luminosity of the cluster was estimated to be ˜8.30 × 1043 erg s-1 , which confirms that the AGN power is sufficient to quench the cooling. Ratios of mass accretion rate to Eddington and Bondi rates were estimated to be ˜0.08 and 3.5 × 104, respectively. This indicates that the black hole in the core of the cluster accretes matter through chaotic cold accretion.

  19. Dissipative dark matter halos: The steady state solution. II.

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2018-05-01

    Within the mirror dark matter model and dissipative dark matter models in general, halos around galaxies with active star formation (including spirals and gas-rich dwarfs) are dynamical: they expand and contract in response to heating and cooling processes. Ordinary type II supernovae (SNe) can provide the dominant heat source, which is possible if kinetic mixing interaction exists with strength ɛ ˜10-9- 10-10 . Dissipative dark matter halos can be modeled as a fluid governed by Euler's equations. Around sufficiently isolated and unperturbed galaxies the halo can relax to a steady state configuration, where heating and cooling rates locally balance and hydrostatic equilibrium prevails. These steady state conditions can be solved to derive the physical properties, including the halo density and temperature profiles, for model galaxies. Here, we consider idealized spherically symmetric galaxies within the mirror dark particle model, as in our earlier paper [Phys. Rev. D 97, 043012 (2018), 10.1103/PhysRevD.97.043012], but we assume that the local halo heating in the SN vicinity dominates over radiative sources. With this assumption, physically interesting steady state solutions arise which we compute for a representative range of model galaxies. The end result is a rather simple description of the dark matter halo around idealized spherically symmetric systems, characterized in principle by only one parameter, with physical properties that closely resemble the empirical properties of disk galaxies.

  20. Visual System Involvement in Patients with Newly Diagnosed Parkinson Disease.

    PubMed

    Arrigo, Alessandro; Calamuneri, Alessandro; Milardi, Demetrio; Mormina, Enricomaria; Rania, Laura; Postorino, Elisa; Marino, Silvia; Di Lorenzo, Giuseppe; Anastasi, Giuseppe Pio; Ghilardi, Maria Felice; Aragona, Pasquale; Quartarone, Angelo; Gaeta, Michele

    2017-12-01

    Purpose To assess intracranial visual system changes of newly diagnosed Parkinson disease in drug-naïve patients. Materials and Methods Twenty patients with newly diagnosed Parkinson disease and 20 age-matched control subjects were recruited. Magnetic resonance (MR) imaging (T1-weighted and diffusion-weighted imaging) was performed with a 3-T MR imager. White matter changes were assessed by exploring a white matter diffusion profile by means of diffusion-tensor imaging-based parameters and constrained spherical deconvolution-based connectivity analysis and by means of white matter voxel-based morphometry (VBM). Alterations in occipital gray matter were investigated by means of gray matter VBM. Morphologic analysis of the optic chiasm was based on manual measurement of regions of interest. Statistical testing included analysis of variance, t tests, and permutation tests. Results In the patients with Parkinson disease, significant alterations were found in optic radiation connectivity distribution, with decreased lateral geniculate nucleus V2 density (F, -8.28; P < .05), a significant increase in optic radiation mean diffusivity (F, 7.5; P = .014), and a significant reduction in white matter concentration. VBM analysis also showed a significant reduction in visual cortical volumes (P < .05). Moreover, the chiasmatic area and volume were significantly reduced (P < .05). Conclusion The findings show that visual system alterations can be detected in early stages of Parkinson disease and that the entire intracranial visual system can be involved. © RSNA, 2017 Online supplemental material is available for this article.

  1. From solid to liquid: Assessing the release of carbon from soil into solution in response to forest management

    NASA Astrophysics Data System (ADS)

    James, J. N.; Gross, C. D.; Butman, D. E.; Harrison, R. B.

    2016-12-01

    Dissolved organic matter (DOM) is a crucial conduit for internal cycling of carbon within soils as well as for the transfer of organic matter out of soil and into aquatic systems. Little is known about how the quantity, quality, lability and chemical characteristics of DOM changes in response to human management of forest soils. To examine the processes that release soil organic matter (SOM) into solution, we gathered samples from adjacent native and industrially managed Eucalyptus grandis plantation forests across Sao Paulo State, Brazil and from adjacent old-growth and Douglas-fir (Pseudotsuga menzisii) plantation forests in the coastal Pacific Northwest. Samples from each soil horizon were taken from soil profiles excavated to at least 1.5 m at each site. Water extractable organic matter (WEOM) was extracted twice from each sample using 0.5 M K2SO4 and Milli-Q water to quantify both dissolved and exchange phase organic matter. These extracts were measured for total organic carbon (TOC), 13C and 14C, and chemical characteristics were assessed by fluorescence spectroscopy (EEMs and SUVA254). At the same time, solid phase characteristics of the soil samples were quantified, including bulk density, pH, total carbon and nitrogen, microbial biomass, and 13C and 14C. Characterization of bulk SOM was undertaken by Fourier Transform Infrared Spectroscopy (FTIR) by subtracting mineral matrix spectra of each sample from the bulk spectra. Organic matter lability was assessed by incubations using difference in TOC for WEOM extracts and repeated measurement of CO2 efflux for bulk SOM. All together, these analyses permit a unique snapshot of the natural separation of organic matter from solid into liquid phase through the entire soil profile. Initial results reveal that small but measureable quantities of WEOM may be released from deep B and C horizons in soil, and that this material is labile to microbial decomposition. By identifying differences in SOM and DOM cycling due to forest management, this study aims to connect human management of terrestrial forest ecosystems to the transport of organic matter from surface and subsurface horizons to freshwater ecosystems, where it forms a major component of aquatic food webs.

  2. Phase transitions in core-collapse supernova matter at sub-saturation densities

    NASA Astrophysics Data System (ADS)

    Pais, Helena; Newton, William G.; Stone, Jirina R.

    2014-12-01

    Phase transitions in hot, dense matter in the collapsing cores of massive stars have an important impact on the core-collapse supernova mechanism as they absorb heat, disrupt homology, and so weaken the developing shock. We perform a three-dimensional, finite temperature Skyrme-Hartree-Fock (SHF) study of inhomogeneous nuclear matter to determine the critical density and temperature for the phase transition between the pasta phase and homogeneous matter and its properties. We employ four different parametrizations of the Skyrme nuclear energy-density functional, SkM*, SLy4, NRAPR, and SQMC700, which span a range of saturation-density symmetry energy behaviors constrained by a variety of nuclear experimental probes. For each of these interactions we calculate free energy, pressure, entropy, and chemical potentials in the range of particle number densities where the nuclear pasta phases are expected to exist, 0.02-0.12 fm-3, temperatures 2-8 MeV, and a proton fraction of 0.3. We find unambiguous evidence for a first-order phase transition to uniform matter, unsoftened by the presence of the pasta phases. No conclusive signs of a first-order phase transition between the pasta phases is observed, and it is argued that the thermodynamic quantities vary continuously right up to the first-order phase transition to uniform matter. We compare our results with thermodynamic spinodals calculated using the same Skyrme parametrizations, finding that the effect of short-range Coulomb correlations and quantum shell effects included in our model leads to the pasta phases existing at densities up to 0.01 fm-3 above the spinodal boundaries, thus increasing the transition density to uniform matter by the same amount. The transition density is otherwise shown to be insensitive to the symmetry energy at saturation density within the range constrained by the concordance of a variety of experimental constraints, and can be taken to be a well determined quantity.

  3. Is the continuous matter creation cosmology an alternative to ΛCDM?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabris, J.C.; Pacheco, J.A. de Freitas; Piattella, O.F., E-mail: fabris@pq.cnpq.br, E-mail: pacheco@oca.eu, E-mail: oliver.piattella@pq.cnpq.br

    2014-06-01

    The matter creation cosmology is revisited, including the evolution of baryons and dark matter particles. The creation process affects only dark matter and not baryons. The dynamics of the ΛCDM model can be reproduced only if two conditions are satisfied: 1) the entropy density production rate and the particle density variation rate are equal and 2) the (negative) pressure associated to the creation process is constant. However, the matter creation model predicts a present dark matter-to-baryon ratio much larger than that observed in massive X-ray clusters of galaxies, representing a potential difficulty for the model. In the linear regime, amore » fully relativistic treatment indicates that baryons are not affected by the creation process but this is not the case for dark matter. Both components evolve together at early phases but lately the dark matter density contrast decreases since the background tends to a constant value. This behaviour produces a negative growth factor, in disagreement with observations, being a further problem for this cosmology.« less

  4. Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope

    DOE PAGES

    Ackermann, M.; Ajello, M.; Allafort, A.; ...

    2010-05-20

    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~ 200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits excludemore » large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~ 5 over a smooth-halo assumption. Here, we also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. Finally, in this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.« less

  5. On specular reflectivity measurements in high and low-contrast relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Kemp, G. E.; Link, A.; Ping, Y.; McLean, H. S.; Patel, P. K.; Freeman, R. R.; Schumacher, D. W.; Tiedje, H. F.; Tsui, Y. Y.; Ramis, R.; Fedosejevs, R.

    2015-01-01

    Using both experiment and 2D3V particle-in-cell (PIC) simulations, we describe the use of specular reflectivity measurements to study relativistic (Iλ2 > 1018 W/cm2ṡμm2) laser-plasma interactions for both high and low-contrast 527 nm laser pulses on initially solid density aluminum targets. In the context of hot-electron generation, studies typically rely on diagnostics which, more-often-than-not, represent indirect processes driven by fast electrons transiting through solid density materials. Specular reflectivity measurements, however, can provide a direct measure of the interaction that is highly sensitive to how the EM fields and plasma profiles, critical input parameters for modeling of hot-electron generation, evolve near the interaction region. While the fields of interest occur near the relativistic critical electron density, experimental reflectivity measurements are obtained centimeters away from the interaction region, well after diffraction has fully manifested itself. Using a combination of PIC simulations with experimentally inspired conditions and an analytic, non-paraxial, pulse propagation algorithm, we calculate reflected pulse properties, both near and far from the interaction region, and compare with specular reflectivity measurements. The experiment results and PIC simulations demonstrate that specular reflectivity measurements are an extremely sensitive qualitative, and partially quantitative, indicator of initial laser/target conditions, ionization effects, and other details of intense laser-matter interactions. The techniques described can provide strong constraints on many systems of importance in ultra-intense laser interactions with matter.

  6. Deficits in Neurite Density Underlie White Matter Structure Abnormalities in First-Episode Psychosis.

    PubMed

    Rae, Charlotte L; Davies, Geoff; Garfinkel, Sarah N; Gabel, Matt C; Dowell, Nicholas G; Cercignani, Mara; Seth, Anil K; Greenwood, Kathryn E; Medford, Nick; Critchley, Hugo D

    2017-11-15

    Structural abnormalities across multiple white matter tracts are recognized in people with early psychosis, consistent with dysconnectivity as a neuropathological account of symptom expression. We applied advanced neuroimaging techniques to characterize microstructural white matter abnormalities for a deeper understanding of the developmental etiology of psychosis. Thirty-five first-episode psychosis patients, and 19 healthy controls, participated in a quantitative neuroimaging study using neurite orientation dispersion and density imaging, a multishell diffusion-weighted magnetic resonance imaging technique that distinguishes white matter fiber arrangement and geometry from changes in neurite density. Fractional anisotropy (FA) and mean diffusivity images were also derived. Tract-based spatial statistics compared white matter structure between patients and control subjects and tested associations with age, symptom severity, and medication. Patients with first-episode psychosis had lower regional FA in multiple commissural, corticospinal, and association tracts. These abnormalities predominantly colocalized with regions of reduced neurite density, rather than aberrant fiber bundle arrangement (orientation dispersion index). There was no direct relationship with active symptoms. FA decreased and orientation dispersion index increased with age in patients, but not control subjects, suggesting accelerated effects of white matter geometry change. Deficits in neurite density appear fundamental to abnormalities in white matter integrity in early psychosis. In the first application of neurite orientation dispersion and density imaging in psychosis, we found that processes compromising axonal fiber number, density, and myelination, rather than processes leading to spatial disruption of fiber organization, are implicated in the etiology of psychosis. This accords with a neurodevelopmental origin of aberrant brain-wide structural connectivity predisposing individuals to psychosis. Copyright © 2017 Society of Biological Psychiatry. All rights reserved.

  7. Comparative testing of dark matter models with 15 HSB and 15 LSB galaxies

    NASA Astrophysics Data System (ADS)

    Kun, E.; Keresztes, Z.; Simkó, A.; Szűcs, G.; Gergely, L. Á.

    2017-12-01

    Context. We assemble a database of 15 high surface brightness (HSB) and 15 low surface brightness (LSB) galaxies, for which surface brightness density and spectroscopic rotation curve data are both available and representative for various morphologies. We use this dataset to test the Navarro-Frenk-White, the Einasto, and the pseudo-isothermal sphere dark matter models. Aims: We investigate the compatibility of the pure baryonic model and baryonic plus one of the three dark matter models with observations on the assembled galaxy database. When a dark matter component improves the fit with the spectroscopic rotational curve, we rank the models according to the goodness of fit to the datasets. Methods: We constructed the spatial luminosity density of the baryonic component based on the surface brightness profile of the galaxies. We estimated the mass-to-light (M/L) ratio of the stellar component through a previously proposed color-mass-to-light ratio relation (CMLR), which yields stellar masses independent of the photometric band. We assumed an axissymetric baryonic mass model with variable axis ratios together with one of the three dark matter models to provide the theoretical rotational velocity curves, and we compared them with the dataset. In a second attempt, we addressed the question whether the dark component could be replaced by a pure baryonic model with fitted M/L ratios, varied over ranges consistent with CMLR relations derived from the available stellar population models. We employed the Akaike information criterion to establish the performance of the best-fit models. Results: For 7 galaxies (2 HSB and 5 LSB), neither model fits the dataset within the 1σ confidence level. For the other 23 cases, one of the models with dark matter explains the rotation curve data best. According to the Akaike information criterion, the pseudo-isothermal sphere emerges as most favored in 14 cases, followed by the Navarro-Frenk-White (6 cases) and the Einasto (3 cases) dark matter models. We find that the pure baryonic model with fitted M/L ratios falls within the 1σ confidence level for 10 HSB and 2 LSB galaxies, at the price of growing the M/Ls on average by a factor of two, but the fits are inferior compared to the best-fitting dark matter model.

  8. Real-time feedback control of the plasma density profile on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Mlynek, A.; Reich, M.; Giannone, L.; Treutterer, W.; Behler, K.; Blank, H.; Buhler, A.; Cole, R.; Eixenberger, H.; Fischer, R.; Lohs, A.; Lüddecke, K.; Merkel, R.; Neu, G.; Ryter, F.; Zasche, D.; ASDEX Upgrade Team

    2011-04-01

    The spatial distribution of density in a fusion experiment is of significant importance as it enters in numerous analyses and contributes to the fusion performance. The reconstruction of the density profile is therefore commonly done in offline data analysis. In this paper, we present an algorithm which allows for density profile reconstruction from the data of the submillimetre interferometer and the magnetic equilibrium in real-time. We compare the obtained results to the profiles yielded by a numerically more complex offline algorithm. Furthermore, we present recent ASDEX Upgrade experiments in which we used the real-time density profile for active feedback control of the shape of the density profile.

  9. Density Functional Calculations for the Neutron Star Matter at Subnormal Density

    NASA Astrophysics Data System (ADS)

    Kashiwaba, Yu; Nakatsukasa, Takashi

    The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.

  10. From hadrons to quarks in neutron stars: a review.

    PubMed

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; Powell, Philip D; Song, Yifan; Takatsuka, Tatsuyuki

    2018-05-01

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu-Jona-Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well understood nuclear matter regime at low densities and the quark matter regime at higher densities. The utility of such interpolations is driven by the present inability to calculate the dense matter equation of state in QCD from first principles. As we review, the parameters of effective quark models-which have direct relevance to the more general structure of the QCD phase diagram of dense and hot matter-are constrained by neutron star mass and radii measurements, in particular favoring large repulsive density-density and attractive diquark pairing interactions. We describe the structure of neutron stars constructed from the unified equations of states with crossover. Lastly we present the current equations of state-called 'QHC18' for quark-hadron crossover-in a parametrized form practical for neutron star modeling.

  11. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta

    2013-08-01

    We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure. Copyright © 2012 Wiley Periodicals, Inc.

  12. Codecaying Dark Matter.

    PubMed

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  13. Review of the fermionic dark matter model applied to galactic structures

    NASA Astrophysics Data System (ADS)

    Krut, A.; Argüelles, C. R.; Rueda, J.; Ruffini, R.

    2015-12-01

    Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion) is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.

  14. Review of the fermionic dark matter model applied to galactic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krut, A.; Argüelles, C. R.; Rueda, J.

    2015-12-17

    Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion)more » is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.« less

  15. Soil Mesocosm CO2 Emissions after 13C-glucose Addition, Soil Physical and Chemical Characteristics, and Microbial Biomass, Barrow, Alaska, 2014-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydia Vaughn; Biao Zhu; Carolin Bimueller

    Measurements made from a 2014-2016 field glucose addition experiment. Dataset includes measurements of surface trace gas emissions (Delta13C of ecosystem respiration and source-partitioned surface CO2 flux, CH4 flux, and GPP), soil profile information (concentrations of carbon, nitrogen, and soil microbial biomass carbon, Delta13C of soil organic matter and microbial biomass, gravimetric water content, and bulk density), soil mineral nitrogen availability, and field-measured soil temperature, air temperature and soil moisture. Experiment was conducted in a region of high-centered polygons on the BEO. Data will be available Fall 2017.

  16. Gypsum and organic matter distribution in a mixed construction and demolition waste sorting process and their possible removal from outputs.

    PubMed

    Montero, A; Tojo, Y; Matsuo, T; Matsuto, T; Yamada, M; Asakura, H; Ono, Y

    2010-03-15

    With insufficient source separation, construction and demolition (C&D) waste becomes a mixed material that is difficult to recycle. Treatment of mixed C&D waste generates residue that contains gypsum and organic matter and poses a risk of H(2)S formation in landfills. Therefore, removing gypsum and organic matter from the residue is vital. This study investigated the distribution of gypsum and organic matter in a sorting process. Heavy liquid separation was used to determine the density ranges in which gypsum and organic matter were most concentrated. The fine residue that was separated before shredding accounted for 27.9% of the waste mass and contained the greatest quantity of gypsum; therefore, most of the gypsum (52.4%) was distributed in this fraction. When this fine fraction was subjected to heavy liquid separation, 93% of the gypsum was concentrated in the density range of 1.59-2.28, which contained 24% of the total waste mass. Therefore, removing this density range after segregating fine particles should reduce the amount of gypsum sent to landfills. Organic matter tends to float as density increases; nevertheless, separation at 1.0 density could be more efficient. (c) 2009 Elsevier B.V. All rights reserved.

  17. Ultra-compact High Velocity Clouds as Minihalos and Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Faerman, Yakov; Sternberg, Amiel; McKee, Christopher F.

    2013-11-01

    We present dark matter minihalo models for the Ultra-Compact, High-Velocity H I Clouds (UCHVCs) recently discovered in the 21 cm ALFALFA survey. We assume gravitational confinement of 104 K H I gas by flat-cored dark-matter subhalos within the Local Group. We show that for flat cores, typical (median) tidally stripped cosmological subhalos at redshift z = 0 have dark-matter masses of ~107 M ⊙ within the central 300 pc (independent of total halo mass), consistent with the "Strigari mass scale" observed in low-luminosity dwarf galaxies. Flat-cored subhalos also resolve the mass discrepancy between simulated and observed satellites around the Milky Way. For the UCHVCs, we calculate the photoionization-limited hydrostatic gas profiles for any distance-dependent total observed H I mass and predict the associated (projected) H I half-mass radii, assuming the clouds are embedded in distant (d >~ 300 kpc) and unstripped subhalos. For a typical UCHVC (0.9 Jy km s-1), we predict physical H I half-mass radii of 0.18 to 0.35 kpc (or angular sizes of 0.'6 to 2.'1) for distances ranging from 300 kpc to 2 Mpc. As a consistency check, we model the gas-rich dwarf galaxy Leo T, for which there is a well-resolved H I column density profile and a known distance (420 kpc). For Leo T, we find that a subhalo with M 300 = 8 (± 0.2) × 106 M ⊙ best fits the observed H I profile. We derive an upper limit of P HIM <~ 150 cm-3 K for the pressure of any enveloping hot intergalactic medium gas at the distance of Leo T. Our analysis suggests that some of the UCHVCs may in fact constitute a population of 21 cm-selected but optically faint dwarf galaxies in the Local Group.

  18. From hadrons to quarks in neutron stars: a review

    NASA Astrophysics Data System (ADS)

    Baym, Gordon; Hatsuda, Tetsuo; Kojo, Toru; Powell, Philip D.; Song, Yifan; Takatsuka, Tatsuyuki

    2018-05-01

    In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors. We review here the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu–Jona–Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well understood nuclear matter regime at low densities and the quark matter regime at higher densities. The utility of such interpolations is driven by the present inability to calculate the dense matter equation of state in QCD from first principles. As we review, the parameters of effective quark models—which have direct relevance to the more general structure of the QCD phase diagram of dense and hot matter—are constrained by neutron star mass and radii measurements, in particular favoring large repulsive density-density and attractive diquark pairing interactions. We describe the structure of neutron stars constructed from the unified equations of states with crossover. Lastly we present the current equations of state—called ‘QHC18’ for quark-hadron crossover—in a parametrized form practical for neutron star modeling.

  19. Compact Stars with Sequential QCD Phase Transitions.

    PubMed

    Alford, Mark; Sedrakian, Armen

    2017-10-20

    Compact stars may contain quark matter in their interiors at densities exceeding several times the nuclear saturation density. We explore models of such compact stars where there are two first-order phase transitions: the first from nuclear matter to a quark-matter phase, followed at a higher density by another first-order transition to a different quark-matter phase [e.g., from the two-flavor color-superconducting (2SC) to the color-flavor-locked (CFL) phase]. We show that this can give rise to two separate branches of hybrid stars, separated from each other and from the nuclear branch by instability regions, and, therefore, to a new family of compact stars, denser than the ordinary hybrid stars. In a range of parameters, one may obtain twin hybrid stars (hybrid stars with the same masses but different radii) and even triplets where three stars, with inner cores of nuclear matter, 2SC matter, and CFL matter, respectively, all have the same mass but different radii.

  20. Galaxy dynamics and the mass density of the universe.

    PubMed

    Rubin, V C

    1993-06-01

    Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density.

  1. Galaxy dynamics and the mass density of the universe.

    PubMed Central

    Rubin, V C

    1993-01-01

    Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density. Images Fig. 3 Fig. 5 PMID:11607393

  2. Intermediate-mass Black Holes and Dark Matter at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lacroix, Thomas; Silk, Joseph

    2018-01-01

    Could there be a large population of intermediate-mass black holes (IMBHs) formed in the early universe? Whether primordial or formed in Population III, these are likely to be very subdominant compared to the dark matter density, but could seed early dwarf galaxy/globular cluster and supermassive black hole formation. Via survival of dark matter density spikes, we show here that a centrally concentrated relic population of IMBHs, along with ambient dark matter, could account for the Fermi gamma-ray “excess” in the Galactic center because of dark matter particle annihilations.

  3. Effects of Mean Flow Profiles on Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, Nanda Kishore

    2003-01-01

    The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.

  4. Time scale variation of MgII resonance lines of HD 41335 in UV region

    NASA Astrophysics Data System (ADS)

    Nikolaou, I.

    2012-01-01

    It is known that hot emission stars (Be and Oe) present peculiar and very complex spectral line profiles. Due to these perplexed lines that appear, it is difficult to actually fit a classical distribution to those physical profiles. Therefore many physical parameters of the regions, where these lines are created, can not be determined. In this paper, we study the Ultraviolet (UV) MgII (?? 2795.523, 2802.698 A) resonance lines of the HD 41335 star, at three different periods. Considering that these profiles consist of a number of independent Discrete or Satellite Absorption Components (DACs, SACs), we use the Gauss-Rotation model (GR-model). From this analysis we can estimate the values of a group of physical parameters, such as the apparent rotational and radial velocities, the random velocities of the thermal motions of the ions, as well as the Full Width at Half Maximum (FWHM), the column density and the absorbed energy of the independent regions of matter, which produce the main and the satellite components of the studied spectral lines. Eventually, we calculate the time scale variations of the above physical parameters.

  5. Compact Groups analysis using weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Chalela, Martín; Gonzalez, Elizabeth Johana; Garcia Lambas, Diego; Foëx, Gael

    2017-05-01

    We present a weak lensing analysis of a sample of Sloan Digital Sky Survey compact groups (CGs). Using the measured radial density contrast profile, we derive the average masses under the assumption of spherical symmetry, obtaining a velocity dispersion for the singular isothermal spherical model, σV = 270 ± 40 km s-1, and for the NFW model, R_{200}=0.53± 0.10 h_{70}^{-1} Mpc. We test three different definitions of CG centres to identify which best traces the true dark matter halo centre, concluding that a luminosity-weighted centre is the most suitable choice. We also study the lensing signal dependence on CG physical radius, group surface brightness and morphological mixing. We find that groups with more concentrated galaxy members show steeper mass profiles and larger velocity dispersions. We argue that both, a possible lower fraction of interloper and a true steeper profile, could be playing a role in this effect. Straightforward velocity dispersion estimates from member spectroscopy yield σV ≈ 230 km s-1 in agreement with our lensing results.

  6. Transcript analysis of laser capture microdissected white matter astrocytes and higher phenol sulfotransferase 1A1 expression during autoimmune neuroinflammation.

    PubMed

    Guillot, Flora; Garcia, Alexandra; Salou, Marion; Brouard, Sophie; Laplaud, David A; Nicot, Arnaud B

    2015-07-04

    Astrocytes, the most abundant cell population in mammal central nervous system (CNS), contribute to a variety of functions including homeostasis, metabolism, synapse formation, and myelin maintenance. White matter (WM) reactive astrocytes are important players in amplifying autoimmune demyelination and may exhibit different changes in transcriptome profiles and cell function in a disease-context dependent manner. However, their transcriptomic profile has not yet been defined because they are difficult to purify, compared to gray matter astrocytes. Here, we isolated WM astrocytes by laser capture microdissection (LCM) in a murine model of multiple sclerosis to better define their molecular profile focusing on selected genes related to inflammation. Based on previous data indicating anti-inflammatory effects of estrogen only at high nanomolar doses, we also examined mRNA expression for enzymes involved in steroid inactivation. Experimental autoimmune encephalomyelitis (EAE) was induced in female C57BL6 mice with MOG35-55 immunization. Fluorescence activated cell sorting (FACS) analysis of a portion of individual spinal cords at peak disease was used to assess the composition of immune cell infiltrates. Using custom Taqman low-density-array (TLDA), we analyzed mRNA expression of 40 selected genes from immuno-labeled laser-microdissected WM astrocytes from lumbar spinal cord sections of EAE and control mice. Immunohistochemistry and double immunofluorescence on control and EAE mouse spinal cord sections were used to confirm protein expression in astrocytes. The spinal cords of EAE mice were infiltrated mostly by effector/memory T CD4+ cells and macrophages. TLDA-based profiling of LCM-astrocytes identified EAE-induced gene expression of cytokines and chemokines as well as inflammatory mediators recently described in gray matter reactive astrocytes in other murine CNS disease models. Strikingly, SULT1A1, but not other members of the sulfotransferase family, was expressed in WM spinal cord astrocytes. Moreover, its expression was further increased in EAE. Immunohistochemistry on spinal cord tissues confirmed preferential expression of this enzyme in WM astrocytic processes but not in gray matter astrocytes. We described here for the first time the mRNA expression of several genes in WM astrocytes in a mouse model of multiple sclerosis. Besides expected pro-inflammatory chemokines and specific inflammatory mediators increased during EAE, we evidenced relative high astrocytic expression of the cytoplasmic enzyme SULT1A1. As the sulfonation activity of SULT1A1 inactivates estradiol among other phenolic substrates, its high astrocytic expression may account for the relative resistance of this cell population to the anti-neuroinflammatory effects of estradiol. Blocking the activity of this enzyme during neuroinflammation may thus help the injured CNS to maintain the anti-inflammatory activity of endogenous estrogens or limit the dose of estrogen co-regimens for therapeutical purposes.

  7. A question of separation: disentangling tracer bias and gravitational non-linearity with counts-in-cells statistics

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Feix, M.; Codis, S.; Pichon, C.; Bernardeau, F.; L'Huillier, B.; Kim, J.; Hong, S. E.; Laigle, C.; Park, C.; Shin, J.; Pogosyan, D.

    2018-02-01

    Starting from a very accurate model for density-in-cells statistics of dark matter based on large deviation theory, a bias model for the tracer density in spheres is formulated. It adopts a mean bias relation based on a quadratic bias model to relate the log-densities of dark matter to those of mass-weighted dark haloes in real and redshift space. The validity of the parametrized bias model is established using a parametrization-independent extraction of the bias function. This average bias model is then combined with the dark matter PDF, neglecting any scatter around it: it nevertheless yields an excellent model for densities-in-cells statistics of mass tracers that is parametrized in terms of the underlying dark matter variance and three bias parameters. The procedure is validated on measurements of both the one- and two-point statistics of subhalo densities in the state-of-the-art Horizon Run 4 simulation showing excellent agreement for measured dark matter variance and bias parameters. Finally, it is demonstrated that this formalism allows for a joint estimation of the non-linear dark matter variance and the bias parameters using solely the statistics of subhaloes. Having verified that galaxy counts in hydrodynamical simulations sampled on a scale of 10 Mpc h-1 closely resemble those of subhaloes, this work provides important steps towards making theoretical predictions for density-in-cells statistics applicable to upcoming galaxy surveys like Euclid or WFIRST.

  8. Correlation of ion and beam current densities in Kaufman thrusters.

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1973-01-01

    In the absence of direct impingement erosion, electrostatic thruster accelerator grid lifetime is defined by the charge exchange erosion that occurs at peak values of the ion beam current density. In order to maximize the thrust from an engine with a specified grid lifetime, the ion beam current density profile should therefore be as flat as possible. Knauer (1970) has suggested this can be achieved by establishing a radial plasma uniformity within the thruster discharge chamber; his tests with the radial field thruster provide an example of uniform plasma properties within the chamber and a flat ion beam profile occurring together. It is shown that, in particular, the ion density profile within the chamber determines the beam current density profile, and that a uniform ion density profile at the screen grid end of the discharge chamber should lead to a flat beam current density profile.

  9. Non-thermal pressure in the outskirts of Abell 2142

    NASA Astrophysics Data System (ADS)

    Fusco-Femiano, Roberto; Lapi, Andrea

    2018-03-01

    Clumping and turbulence are expected to affect the matter accreted on to the outskirts of galaxy clusters. To determine their impact on the thermodynamic properties of Abell 2142, we perform an analysis of the X-ray temperature data from XMM-Newton via our SuperModel, a state-of-the-art tool for investigating the astrophysics of the intracluster medium already tested on many individual clusters (since Cavaliere, Lapi & Fusco-Femiano 2009). Using the gas density profile corrected for clumpiness derived by Tchernin et al. (2016), we find evidence for the presence of a non-thermal pressure component required to sustain gravity in the cluster outskirts of Abell 2142, that amounts to about 30 per cent of the total pressure at the virial radius. The presence of the non-thermal component implies the gas fraction to be consistent with the universal value at the virial radius and the electron thermal pressure profile to be in good agreement with that inferred from the SZ data. Our results indicate that the presence of gas clumping and of a non-thermal pressure component are both necessary to recover the observed physical properties in the cluster outskirts. Moreover, we stress that an alternative method often exploited in the literature (included Abell 2142) to determine the temperature profile kBT = Pe/ne basing on a combination of the Sunyaev-Zel'dovich (SZ) pressure Pe and of the X-ray electron density ne does not allow us to highlight the presence of non-thermal pressure support in the cluster outskirts.

  10. A simulation of the intracluster medium with feedback from cluster galaxies

    NASA Technical Reports Server (NTRS)

    Metzler, Christopher A.; Evrard, August E.

    1994-01-01

    We detail method and report first results from a three-dimensional hydrodynamical and N-body simulation of the formation and evolution of a Coma-sized cluster of galaxies, with the intent of studying the history of the hot, X-ray emitting intracluster medium. Cluster gas, galaxies, and dark matter are included in the model. The galaxies and dark matter fell gravitational forces; the cluster gas also undergoes hydrodynamical effects such as shock heating and PdV work. For the first time in three dimensions, we include modeling of ejection of processed gas from the simulated galaxies by winds, including heating and heavy element enrichment. For comparison, we employ a `pure infall' simulation using the same initial conditions but with no galaxies or winds. We employ an extreme ejection history for galactic feedback in order to define the boundary of likely models. As expected, feedback raises the entropy of the intracluster gas, preventing it from collapsing to densities as high as those attained in the infall model. The effect is more pronounced in subclusters formed at high redshift. The cluster with feedback is always less X-ray luminous, but experiences more rapid luminosity evolution, than the pure infall cluster. Even employing an extreme ejection model, the final gas temperature is only approximately 15% larger than in the infall model. The radial temperature profile is very nearly isothermal within 1.5 Mpc. The cluster galaxies in the feedback model have a velocity dispersion approximately 15% lower than the dark matter. This results in the true ratio of specific energies in galaxies to gas being less than one, beta(sub spec) approximately 0.7. The infall model predicts beta(sub spec) approximately 1.2. Large excursions in these values occur over time, following the complex dynamical history of the cluster. The morphology of the X-ray emission is little affected by feedback. The emission profiles of both clusters are well described by the standard beta-model with beta(sub fit) approximately equal to 0.7 - 0.9. X-ray mass estimates based on the assumptions of hydrostatic equilibrium and the applicability of the beta-model are quite accurate in both cases. A strong, radial iron abundance gradient is present, which develops as a consequence of the steepening of the galaxy density profile over time. Spectroscopic observations using nonimaging detectors with wide (approximately 45 min) fields of view dramatically smear the gradient. Observations with arcminute resolution, made available with the ASCA satellite, would readily resolve the gradient.

  11. The relationship between the galactic matter distribution, cosmic ray dynamics, and gamma ray production

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Thompson, D. J.

    1976-01-01

    Theoretical considerations and analysis of the results of gamma ray astronomy suggest that the galactic cosmic rays are dynamically coupled to the interstellar matter through the magnetic fields, and hence the cosmic ray density should be enhanced where the matter density is greatest on the scale of galactic arms. This concept has been explored in a galactic model using recent 21 cm radio observations of the neutral hydrogen and 2.6 mm observations of carbon monoxide, which is considered to be a tracer of molecular hydrogen. The model assumes: (1) cosmic rays are galactic and not universal; (2) on the scale of galactic arms, the cosmic ray column (surface) density is proportional to the total interstellar gas column density; (3) the cosmic ray scale height is significantly larger than the scale height of the matter; and (4) ours is a spiral galaxy characterized by an arm to interarm density ratio of about 3:1.

  12. The maximal-density mass function for primordial black hole dark matter

    NASA Astrophysics Data System (ADS)

    Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson

    2018-04-01

    The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.

  13. Chameleon gravity, electrostatics, and kinematics in the outer galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourhasan, R.; Mann, R.B.; Afshordi, N.

    2011-12-01

    Light scalar fields are expected to arise in theories of high energy physics (such as string theory), and find phenomenological motivations in dark energy, dark matter, or neutrino physics. However, the coupling of light scalar fields to ordinary (or dark) matter is strongly constrained from laboratory, solar system, and astrophysical tests of the fifth force. One way to evade these constraints in dense environments is through the chameleon mechanism, where the field's mass steeply increases with ambient density. Consequently, the chameleonic force is only sourced by a thin shell near the surface of dense objects, which significantly reduces its magnitude.more » In this paper, we argue that thin-shell conditions are equivalent to ''conducting'' boundary conditions in electrostatics. As an application, we use the analogue of the method of images to calculate the back-reaction (or self-force) of an object around a spherical gravitational source. Using this method, we can explicitly compute the violation of the equivalence principle in the outskirts of galactic haloes (assuming an NFW dark matter profile): Intermediate mass satellites can be slower than their larger/smaller counterparts by as much as 10% close to a thin shell.« less

  14. Small scale temporal distribution of radiocesium in undisturbed coniferous forest soil: Radiocesium depth distribution profiles.

    PubMed

    Teramage, Mengistu T; Onda, Yuichi; Kato, Hiroaki

    2016-04-01

    The depth distribution of pre-Fukushima and Fukushima-derived (137)Cs in undisturbed coniferous forest soil was investigated at four sampling dates from nine months to 18 months after the Fukushima nuclear power plant accident. The migration rate and short-term temporal variability among the sampling profiles were evaluated. Taking the time elapsed since the peak deposition of pre-Fukushima (137)Cs and the median depth of the peaks, its downward displacement rates ranged from 0.15 to 0.67 mm yr(-1) with a mean of 0.46 ± 0.25 mm yr(-1). On the other hand, in each examined profile considerable amount of the Fukushima-derived (137)Cs was found in the organic layer (51%-92%). At this moment, the effect of time-distance on the downward distribution of Fukushima-derived (137)Cs seems invisible as its large portion is still found in layers where organic matter is maximal. This indicates that organic matter seems the primary and preferential sorbent of radiocesium that could be associated with the physical blockage of the exchanging sites by organic-rich dusts that act as a buffer against downward propagation of radiocesium, implying radiocesium to be remained in the root zone for considerable time period. As a result, this soil section can be a potential source of radiation dose largely due to high radiocesium concentration coupled with its low density. Generally, such kind of information will be useful to establish a dynamic safety-focused decision support system to ease and assist management actions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Density fractionation of forest soils: methodological questions and interpretation of incubation results and turnover time in an ecosystem context

    Treesearch

    Susan E. Crow; Christopher W. Swanston; Kate Lajtha; J. Renee Brooks; Heath Keirstead

    2007-01-01

    Soil organic matter (SOM) is often separated by physical means to simplify a complex matrix into discrete fractions. A frequent approach to isolating two or more fractions is based on differing particle densities and uses a high density liquid such as sodium polytungstate (SPT). Soil density fractions are often interpreted as organic matter pools with different carbon...

  16. Cosmic voids detection without density measurements

    NASA Astrophysics Data System (ADS)

    Elyiv, Andrii; Marulli, Federico; Pollina, Giorgia; Baldi, Marco; Branchini, Enzo; Cimatti, Andrea; Moscardini, Lauro

    2015-03-01

    Cosmic voids are effective cosmological probes to discriminate among competing world models. Their identification is generally based on density or geometry criteria that, because of their very nature, are prone to shot noise. We propose two void finders that are based on dynamical criterion to select voids in Lagrangian coordinates and minimize the impact of sparse sampling. The first approach exploits the Zel'dovich approximation to trace back in time the orbits of galaxies located in voids and their surroundings; the second uses the observed galaxy-galaxy correlation function to relax the objects' spatial distribution to homogeneity and isotropy. In both cases voids are defined as regions of the negative velocity divergence, which can be regarded as sinks of the back-in-time streamlines of the mass tracers. To assess the performance of our methods we used a dark matter halo mock catalogue CODECS, and compared the results with those obtained with the ZOBOV void finder. We find that the void divergence profiles are less scattered than the density ones and, therefore, their stacking constitutes a more accurate cosmological probe. The significance of the divergence signal in the central part of voids obtained from both our finders is 60 per cent higher than for overdensity profiles in the ZOBOV case. The ellipticity of the stacked void measured in the divergence field is closer to unity, as expected, than what is found when using halo positions. Therefore, our void finders are complementary to the existing methods, which should contribute to improve the accuracy of void-based cosmological tests.

  17. Decoherence in Neutrino Propagation Through Matter, and Bounds from IceCube/DeepCore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coloma, Pilar; Lopez-Pavon, Jacobo; Martinez-Soler, Ivan

    We revisit neutrino oscillations in matter considering the open quantum system framework which allows to introduce possible decoherence effects generated by New Physics in a phenomenological manner. We assume that the decoherence parametersmore » $$\\gamma_{ij}$$ may depend on the neutrino energy, as $$\\gamma_{ij}=\\gamma_{ij}^{0}(E/\\text{GeV})^n$$ $$(n = 0,\\pm1,\\pm2) $$. The case of non-uniform matter is studied in detail, both within the adiabatic approximation and in the more general non-adiabatic case. In particular, we develop a consistent formalism to study the non-adiabatic case dividing the matter profile into an arbitrary number of layers of constant densities. This formalism is then applied to explore the sensitivity of IceCube and DeepCore to this type of effects. Our study is the first atmospheric neutrino analysis where a consistent treatment of the matter effects in the three-neutrino case is performed in presence of decoherence. We show that matter effects are indeed extremely relevant in this context. We find that IceCube is able to considerably improve over current bounds in the solar sector ($$\\gamma_{21}$$) and in the atmospheric sector ($$\\gamma_{31}$$ and $$\\gamma_{32}$$) for $n=0,1,2$ and, in particular, by several orders of magnitude (between 3 and 9) for the $n=1,2$ cases. For $n=0$ we find $$\\gamma_{32},\\gamma_{31}< 4.0\\cdot10^{-24} (1.3\\cdot10^{-24})$$ GeV and $$\\gamma_{21}<1.3\\cdot10^{-24} (4.1\\cdot10^{-24})$$ GeV, for normal (inverted) mass ordering.« less

  18. Galactic propagation models consistent with the cosmic ray lifetime derived from Be-10 measurements

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.; Wefel, J. P.; Garcia-Munoz, M.; Simpson, J. A.

    1985-01-01

    Using a propagation calculation with energy dependent parameters, including the depletion of short pathlengths, and incorporating experimental nuclear excitation functions, the variation of the Be-10/Be9 ratio with the matter densities in two nested confinement regions is investigated. It is shown that there is no unique correspondence between a Be-10/Be9 measurement at low energy and the density of matter in the galaxy. Be-10/Be9 measurements at both low and high energy are needed to fully specify the matter densities.

  19. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    EPA Science Inventory

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  20. CARDIOPULMONARY GENE EXPRESSION PROFILES IN NORMO- AND SPONTANEOUSLY HYPERSENSITIVE (SH) RATS: IMPACT OF PARTICULATE MATTER (PM) EXPOSURE

    EPA Science Inventory

    CARDIOPULMONARY GENE EXPRESSION PROFILES IN NORMO- AND SPONTANEOUSLY HYPERTENSIVE (SH) RATS: IMPACT OF PARTICULATE MATTER (PM) EXPOSURE. SS Nadadur UP Kodavanti, Pulmonary Toxicology Branch, ETD, ORD, NHEERL, US Environmental Protection Agency, Research Triangle Park, NC 27711.

  1. Limbic grey matter changes in early Parkinson's disease.

    PubMed

    Li, Xingfeng; Xing, Yue; Schwarz, Stefan T; Auer, Dorothee P

    2017-05-02

    The purpose of this study was to investigate local and network-related changes of limbic grey matter in early Parkinson's disease (PD) and their inter-relation with non-motor symptom severity. We applied voxel-based morphometric methods in 538 T1 MRI images retrieved from the Parkinson's Progression Markers Initiative website. Grey matter densities and cross-sectional estimates of age-related grey matter change were compared between subjects with early PD (n = 366) and age-matched healthy controls (n = 172) within a regression model, and associations of grey matter density with symptoms were investigated. Structural brain networks were obtained using covariance analysis seeded in regions showing grey matter abnormalities in PD subject group. Patients displayed focally reduced grey matter density in the right amygdala, which was present from the earliest stages of the disease without further advance in mild-moderate disease stages. Right amygdala grey matter density showed negative correlation with autonomic dysfunction and positive with cognitive performance in patients, but no significant interrelations were found with anxiety scores. Patients with PD also demonstrated right amygdala structural disconnection with less structural connectivity of the right amygdala with the cerebellum and thalamus but increased covariance with bilateral temporal cortices compared with controls. Age-related grey matter change was also increased in PD preferentially in the limbic system. In conclusion, detailed brain morphometry in a large group of early PD highlights predominant limbic grey matter deficits with stronger age associations compared with controls and associated altered structural connectivity pattern. This provides in vivo evidence for early limbic grey matter pathology and structural network changes that may reflect extranigral disease spread in PD. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  2. Many-particle theory of nuclear systems with application to neutron star matter

    NASA Technical Reports Server (NTRS)

    Chakkalakal, D. A.; Yang, C. H.

    1974-01-01

    The energy-density relation was calculated for pure neutron matter in the density range relevant for neutron stars, using four different hard-core potentials. Calculations are also presented of the properties of the superfluid state of the neutron component, along with the superconducting state of the proton component and the effects of polarization in neutron star matter.

  3. Cold dark matter: Controversies on small scales.

    PubMed

    Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G

    2015-10-06

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.

  4. [Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize.

    PubMed

    Zhang, Lin Lin; Sun, Shi Jun; Chen, Zhi Jun; Jiang, Hao; Zhang, Xu Dong; Chi, Dao Cai

    2018-01-01

    In order to investigate the effect of different colored plastic film mulching and planting density on spring maize dry matter accumulation and yield in the rain-fed area of the Northeast China, a complete combination field experiment which was comprised by three types of mulching (non-mulching, transparent plastic film mulching and black plastic film mulching) and five densities (60000, 67500, 75000, 82500 and 90000 plants·hm -2 ), was conducted to analyze the water and heat effect, dry matter accumulation and yield of spring maize (Liangyu 99). The results showed that, compared with the other mulching treatments, the black plastic film mulching treatment significantly increased the maize dry matter accumulation and maize biomass by 3.2%-8.2%. In mature stage, the biomass increased firstly and then decreased with the increasing plant density. When planting density was 82500 plants·hm -2 , the biomass was the highest, which was 5.2%-28.3% higher than that of other plant density treatments. The mean soil temperature in prophase of transparent plastic film mulching treatment was 0.4-2.7 ℃ higher than that of other treatments, which accelerated the maize growth process and augmented the dry matter transportation amount (T), dry matter transportation efficiency (TE) and contribution rate of dry matter transportation to the grain yield (TC) of maize stalk and leaf. The T, TE, TC of leaf and leaf-stalk under 60000 plants·hm -2 treatment were the highest. The highest T, TE, TC of stalk were observed under 75000 plants·hm -2 treatment. In heading period, the water consumption and daily water consumption intensity of maize under the treatment of black film mulching were the largest, which were 9.4%-10.6% and 10.6%-24.5% higher than that of other mulching treatments, respectively. The highest water consumption and daily water consumption intensity were both obtained under 90000 plants·hm -2 treatment, which increased by 6.8%-15.7% and 7.0%-20.0% compared with other plant density treatments. The combination of black film mulching and density of 82500 plants·hm -2 significantly improved the water use efficiency of maize, which increased by 4.6%-40.9% compared with other treatments. In addition, it increased yield by 3.0%-39.7% compared with other treatments. At heading stage, the correlation between the dry matter amount of stalk and leaf and the yield and yield components was the biggest. Decreasing 1 kg·hm -2 dry matter amount of stalk and leaf would decrease the population yield by almost 0.79 kg·hm -2 . Decreasing 10% dry matter amount of stalk and leaf would decrease the yield by almost 10%. Based on increasing plant density, black film mulching was beneficial for increasing the dry matter accumulation and improving grain yield and water use efficiency of spring maize.

  5. The median density of the Universe

    NASA Astrophysics Data System (ADS)

    Stücker, Jens; Busch, Philipp; White, Simon D. M.

    2018-07-01

    Despite the fact that the mean matter density of the Universe has been measured to an accuracy of a few per cent within the standard Λcold dark matter (ΛCDM) paradigm, its median density is not known even to the order of magnitude. Typical points lie in low-density regions and are not part of a collapsed structure of any scale. Locally, the dark matter distribution is then simply a stretched version of that in the early Universe. In this single-stream regime, the distribution of unsmoothed density is sensitive to the initial power spectrum on all scales, in particular on very small scales, and hence to the nature of the dark matter. It cannot be estimated reliably using conventional cosmological simulations because of the enormous dynamic range involved, but a suitable excursion set procedure can be used instead. For the Planck cosmological parameters, a 100 GeV WIMP, corresponding to a free-streaming mass ˜10-6M⊙, results in a median density of ˜4 × 10-3 in units of the mean density, whereas a 10 μeV axion with free-streaming mass ˜10-12M⊙ gives ˜3 × 10-3, and warm dark matter (WDM) with a (thermal relic) mass of 1 keV gives ˜8 × 10-2. In CDM (but not in WDM) universes, single-stream regions are predicted to be topologically isolated by the excursion set formalism. A test by direct N-body simulations seems to confirm this prediction, although it is still subject to finite size and resolution effects. Unfortunately, it is unlikely that any of these properties is observable and so suitable for constraining the properties of dark matter.

  6. Frontotemporal white matter changes in amyotrophic lateral sclerosis.

    PubMed

    Abrahams, Sharon; Goldstein, Laura H; Suckling, John; Ng, Virginia; Simmons, Andy; Chitnis, Xavier; Atkins, Louise; Williams, Steve C R; Leigh, P N

    2005-03-01

    Cognitive dysfunction can occur in some patients with amyotrophic lateral sclerosis (ALS) who are not suffering from dementia. The most striking and consistent cognitive deficit has been found using tests of verbal fluency. ALS patients with verbal fluency deficits have shown functional imaging abnormalities predominantly in frontotemporal regions using positron emission tomography (PET). This study used automated volumetric voxel-based analysis of grey and white matter densities of structural magnetic resonance imaging (MRI) scans to explore the underlying pattern of structural cerebral change in nondemented ALS patients with verbal fluency deficits. Two groups of ALS patients, defined by the presence or absence of cognitive impairment on the basis of the Written Verbal Fluency Test (ALSi, cognitively impaired, n=11; ALSu, cognitively unimpaired n=12) were compared with healthy age matched controls (n=12). A comparison of the ALSi group with controls revealed significantly (p<0.002) reduced white matter volume in extensive motor and non-motor regions, including regions corresponding to frontotemporal association fibres. These patients demonstrated a corresponding cognitive profile of executive and memory dysfunction. Less extensive white matter reductions were revealed in the comparison of the ALSu and control groups in regions corresponding to frontal association fibres. White matter volumes were also found to correlate with performance on memory tests. There were no significant reductions in grey matter volume in the comparison of either patient group with controls. The structural white matter abnormalities in frontal and temporal regions revealed here may underlie the cognitive and functional imaging abnormalities previously reported in non-demented ALS patients. The results also suggest that extra-motor structural abnormalities may be present in ALS patients with no evidence of cognitive change. The findings support the hypothesis of a continuum of extra-motor cerebral and cognitive change in this disorder.

  7. Indirect searches of Galactic diffuse dark matter in INO-MagICAL detector

    DOE PAGES

    Khatun, Amina; Laha, Ranjan; Agarwalla, Sanjib Kumar

    2017-06-12

    Here, the signatures for the existence of dark matter are revealed only through its gravitational interaction. Theoretical arguments support that the Weakly Interacting Massive Particle (WIMP) can be a class of dark matter and it can annihilate and/or decay to Standard Model particles, among which neutrino is a favorable candidate. We show that the proposed 50 kt Magnetized Iron CALorimeter (MagICAL) detector under the India-based Neutrino Observatory (INO) project can play an important role in the indirect searches of Galactic diffuse dark matter in the neutrino and antineutrino mode separately. We present the sensitivity of 500 kt·yr MagICAL detector to set limits on the velocity-averaged self-annihilation cross-section (more » $$\\langle$$σv$$\\rangle$$) and decay lifetime (τ) of dark matter having mass in the range of 2 GeV ≤ m χ ≤ 90 GeV and 4 GeV ≤ m χ ≤ 180 GeV respectively, assuming no excess over the conventional atmospheric neutrino and antineutrino fluxes at the INO site. Our limits for low mass dark matter constrain the parameter space which has not been explored before. We show that MagICAL will be able to set competitive constraints, $$\\langle$$σv$$\\rangle$$ ≤ 1.87 × 10 -24 cm 3 s -1 for χχ→$$ν\\overline{v}$$ χχ→$$ν\\overline{v}$$ and τ ≥ 4.8 × 10 24s for χ → $$ν\\overline{v}$$ χ → $$ν\\overline{v}$$ at 90% C.L. (1 d.o.f.) for m χ = 10 GeV assuming the NFW as dark matter density profile.« less

  8. Indirect searches of Galactic diffuse dark matter in INO-MagICAL detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatun, Amina; Laha, Ranjan; Agarwalla, Sanjib Kumar

    Here, the signatures for the existence of dark matter are revealed only through its gravitational interaction. Theoretical arguments support that the Weakly Interacting Massive Particle (WIMP) can be a class of dark matter and it can annihilate and/or decay to Standard Model particles, among which neutrino is a favorable candidate. We show that the proposed 50 kt Magnetized Iron CALorimeter (MagICAL) detector under the India-based Neutrino Observatory (INO) project can play an important role in the indirect searches of Galactic diffuse dark matter in the neutrino and antineutrino mode separately. We present the sensitivity of 500 kt·yr MagICAL detector to set limits on the velocity-averaged self-annihilation cross-section (more » $$\\langle$$σv$$\\rangle$$) and decay lifetime (τ) of dark matter having mass in the range of 2 GeV ≤ m χ ≤ 90 GeV and 4 GeV ≤ m χ ≤ 180 GeV respectively, assuming no excess over the conventional atmospheric neutrino and antineutrino fluxes at the INO site. Our limits for low mass dark matter constrain the parameter space which has not been explored before. We show that MagICAL will be able to set competitive constraints, $$\\langle$$σv$$\\rangle$$ ≤ 1.87 × 10 -24 cm 3 s -1 for χχ→$$ν\\overline{v}$$ χχ→$$ν\\overline{v}$$ and τ ≥ 4.8 × 10 24s for χ → $$ν\\overline{v}$$ χ → $$ν\\overline{v}$$ at 90% C.L. (1 d.o.f.) for m χ = 10 GeV assuming the NFW as dark matter density profile.« less

  9. Grey matter morphological anomalies in the caudate head in first-episode psychosis patients with delusions of reference.

    PubMed

    Tao, Haojuan; Wong, Gloria H Y; Zhang, Huiran; Zhou, Yuan; Xue, Zhimin; Shan, Baoci; Chen, Eric Y H; Liu, Zhening

    2015-07-30

    Delusions of reference (DOR) are theoretically linked with aberrant salience and associative learning. Previous studies have shown that the caudate nucleus plays a critical role in the cognitive circuits of coding prediction errors and associative learning. The current study aimed at testing the hypothesis that abnormalities in the caudate nucleus may be involved in the neuroanatomical substrate of DOR. Structural magnetic resonance imaging of the brain was performed in 44 first-episode psychosis patients (with diagnoses of schizophrenia or schizophreniform disorder) and 25 healthy controls. Patients were divided into three groups according to symptoms: patients with DOR as prominent positive symptom; patients with prominent positive symptoms other than DOR; and patients with minimal positive symptoms. All groups were age-, gender-, and education-matched, and patient groups were matched for diagnosis, duration of illness, and antipsychotic treatment. Voxel-based morphometric analysis was performed to identify group differences in grey matter density. Relationships were explored between grey matter density and DOR. Patients with DOR were found to have reduced grey matter density in the caudate compared with patients without DOR and healthy controls. Grey matter density values of the left and right caudate head were negatively correlated with DOR severity. Decreased grey matter density in the caudate nucleus may underlie DOR in early psychosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Effects of supplemental copper on the serum lipid profile, meat quality, and carcass composition of goat kids.

    PubMed

    Huang, Yanling; Wang, Yong; Lin, Xi; Guo, Chunhua

    2014-06-01

    To evaluate the effects of copper (Cu) supplementation on the serum lipid profile, meat quality, and carcass composition of goat kids, thirty-five 3-4-month-old Jian Yang big-eared goat kids (BW 20.3±0.6 kg) were randomly assigned to one of seven dietary Cu treatments (n=5/treatment). The dietary Cu concentrations were: (1) control (no supplemental Cu), (2) 20 mg, (3) 40 mg, (4) 80 mg, (5) 160 mg, (6) 320 mg, and (7) 640 mg of supplemental Cu/kg dry matter (DM). Copper was supplemented as CuSO4.5H2O (25.2 % Cu). The goats were fed a high-concentrate basal diet with the different concentrations of supplemental Cu/kg DM for 96 days. The serum lipid profile was determined on day 51 and day 96. Meat quality and carcass composition of longissimus dorsi muscle were measured after the goats were slaughtered at 96 days. Serum total cholesterol, triglycerides, high density lipoprotein-cholesterol (HDL-C), and low density lipoprotein-cholesterol (LDL-C) were not affected by treatment (P>0.18). No differences were observed in drip loss, cooking loss, a* (redness/greenness) and b* (yellowness/blueness) values (P>0.17); however, the 24-h pH value (linear; P=0.0009) and L* (brightness) value (linear; P=0.0128) decreased, and shear force increased (linear; P=0.0005) as Cu supplementation increased. The intramuscular fat (%) increased (linear; P=0.001) as supplemental Cu increased. No differences (P>0.21) in the moisture, crude protein, and ash (%) were observed. Results of this study indicate that supplemental Cu does not modify the serum lipid profile; however, it can impact intramuscular fat content and the meat quality of goat kids.

  11. Revisiting the bulge-halo conspiracy - II. Towards explaining its puzzling dependence on redshift

    NASA Astrophysics Data System (ADS)

    Shankar, Francesco; Sonnenfeld, Alessandro; Grylls, Philip; Zanisi, Lorenzo; Nipoti, Carlo; Chae, Kyu-Hyun; Bernardi, Mariangela; Petrillo, Carlo Enrico; Huertas-Company, Marc; Mamon, Gary A.; Buchan, Stewart

    2018-04-01

    We carry out a systematic investigation of the total mass density profile of massive (log Mstar/M⊙ ˜ 11.5) early-type galaxies and its dependence on redshift, specifically in the range 0 ≲ z ≲ 1. We start from a large sample of Sloan Digital Sky Survey early-type galaxies with stellar masses and effective radii measured assuming two different profiles, de Vaucouleurs and Sérsic. We assign dark matter haloes to galaxies via abundance matching relations with standard ΛCDM profiles and concentrations. We then compute the total, mass-weighted density slope at the effective radius γ΄, and study its redshift dependence at fixed stellar mass. We find that a necessary condition to induce an increasingly flatter γ΄ at higher redshifts, as suggested by current strong lensing data, is to allow the intrinsic stellar profile of massive galaxies to be Sérsic and the input Sérsic index n to vary with redshift as n(z) ∝ (1 + z)δ, with δ ≲ -1. This conclusion holds irrespective of the input Mstar-Mhalo relation, the assumed stellar initial mass function (IMF), or even the chosen level of adiabatic contraction in the model. Secondary contributors to the observed redshift evolution of γ΄ may come from an increased contribution at higher redshifts of adiabatic contraction and/or bottom-light stellar IMFs. The strong lensing selection effects we have simulated seem not to contribute to this effect. A steadily increasing Sérsic index with cosmic time is supported by independent observations, though it is not yet clear whether cosmological hierarchical models (e.g. mergers) are capable of reproducing such a fast and sharp evolution.

  12. THE TEMPERATURE OF HOT GAS IN GALAXIES AND CLUSTERS: BARYONS DANCING TO THE TUNE OF DARK MATTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Steen H.; Maccio, Andrea V.; Romano-Diaz, Emilio

    2011-06-10

    The temperature profile of hot gas in galaxies and galaxy clusters is largely determined by the depth of the total gravitational potential and thereby by the dark matter (DM) distribution. We use high-resolution hydrodynamical simulations of galaxy formation to derive a surprisingly simple relation between the gas temperature and DM properties. We show that this relation holds not just for galaxy clusters but also for equilibrated and relaxed galaxies at radii beyond the central stellar-dominated region of typically a few kpc. It is then clarified how a measurement of the temperature and density of the hot gas component can leadmore » to an indirect measurement of the DM velocity anisotropy in galaxies. We also study the temperature relation for galaxy clusters in the presence of self-regulated, recurrent active galactic nuclei (AGNs), and demonstrate that this temperature relation even holds outside the inner region of {approx}30 kpc in clusters with an active AGN.« less

  13. The virialization density of peaks with general density profiles under spherical collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, Douglas; Loeb, Abraham, E-mail: dsrubin@physics.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    2013-12-01

    We calculate the non-linear virialization density, Δ{sub c}, of halos under spherical collapse from peaks with an arbitrary initial and final density profile. This is in contrast to the standard calculation of Δ{sub c} which assumes top-hat profiles. Given our formalism, the non-linear halo density can be calculated once the shape of the initial peak's density profile and the shape of the virialized halo's profile are provided. We solve for Δ{sub c} for halos in an Einstein de-Sitter and a ΛCDM universe. As examples, we consider power-law initial profiles as well as spherically averaged peak profiles calculated from the statisticsmore » of a Gaussian random field. We find that, depending on the profiles used, Δ{sub c} is smaller by a factor of a few to as much as a factor of 10 as compared to the density given by the standard calculation ( ≈ 200). Using our results, we show that, for halo finding algorithms that identify halos through an over-density threshold, the halo mass function measured from cosmological simulations can be enhanced at all halo masses by a factor of a few. This difference could be important when using numerical simulations to assess the validity of analytic models of the halo mass function.« less

  14. Galactoseismology and the local density of dark matter

    DOE PAGES

    Banik, Nilanjan; Widrow, Lawrence M.; Dodelson, Scott

    2016-10-08

    Here, we model vertical breathing mode perturbations in the Milky Way's stellar disc and study their effects on estimates of the local dark matter density, surface density, and vertical force. Evidence for these perturbations, which involve compression and expansion of the Galactic disc perpendicular to its midplane, come from the SEGUE, RAVE, and LAMOST surveys. We show that their existence may lead to systematic errors ofmore » $$10\\%$$ or greater in the vertical force $$K_z(z)$$ at $$|z|=1.1\\,{\\rm kpc}$$. These errors translate to $$\\gtrsim 25\\%$$ errors in estimates of the local dark matter density. Using different mono-abundant subpopulations as tracers offers a way out: if the inferences from all tracers in the Gaia era agree, then the dark matter determination will be robust. Disagreement in the inferences from different tracers will signal the breakdown of the unperturbed model and perhaps provide the means for determining the nature of the perturbation.« less

  15. [Soil meso- and micro-fauna community structures in different urban forest types in Shanghai, China.

    PubMed

    Jin, Shi Ke; Wang, Juan Juan; Zhu, Sha; Zhang, Qi; Li, Xiang; Zheng, Wen Jing; You, Wen Hui

    2016-07-01

    Soil meso- and micro-fauna of four urban forest types in Shanghai were investigated in four months which include April 2014, July 2014, October 2014 and January 2015. A total of 2190 soil fauna individuals which belong to 6 phyla, 15 classes and 22 groups were collected. The dominant groups were Nematoda and Arcari, accounting for 56.0% and 21.8% of the total in terms of individual numbers respectively. The common groups were Enchytraeidae, Rotatoria, Collembola and Hymenoptera and they accounted for 18.7% of the total in terms of individual numbers. There was a significant difference (P<0.05) among soil meso- and micro-fauna density in the four urban forest types and the largest density was found in Metasequoia glyptostroboides forest, the smallest in Cinnamomum camphora forest. The largest groupe number was found in near-nature forest, the smallest was found in M. glyptostroboides forest. There was obvious seasonal dynamics in each urban forest type and green space which had larger density in autumn and larger groupe number in summer and autumn. In soil profiles, the degree of surface accumulation of soil meso- and micro-fauna in C. camphora forest was higher than in other forests and the vertical distribution of soil meso- and micro-fauna in near-nature forest was relatively homogeneous in four layers. Density-group index was ranked as: near-nature forest (6.953)> C. camphora forest (6.351)> Platanus forest (6.313)>M. glyptostroboides forest (5.910). The community diversity of soil fauna in each vegetation type could be displayed preferably by this index. It could be inferred through redundancy analysis (RDA) that the soil bulk density, organic matter and total nitrogen were the main environmental factors influencing soil meso- and micro-fauna community structure in urban forest. The positive correlations occurred between the individual number of Arcari, Enchytraeidae and soil organic matter and total nitrogen, as well as between the individual number of Diptera larvae, Rotatoria and soil water content.

  16. Holographic Quark Matter and Neutron Stars.

    PubMed

    Hoyos, Carlos; Jokela, Niko; Rodríguez Fernández, David; Vuorinen, Aleksi

    2016-07-15

    We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding equation of state (EOS) is matched with state-of-the-art results for dense nuclear matter, we consistently observe a first-order phase transition at densities between 2 and 7 times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EOSs, we find maximal stellar masses in excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EOSs. Our calculation predicts that no quark matter exists inside neutron stars.

  17. Effects of Mean Flow Profiles on the Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, NandaKishore; Parthasarathy, Ramkumar N.

    2004-01-01

    The effects of the mean velocity profiles on the instability characteristics in the near-injector region of axisymmetric low density gas jets injected vertically upwards into a high-density gas medium were investigated using linear inviscid stability analysis. The flow was assumed to be isothermal and locally parallel. Three velocity profiles, signifying different changes in the mean velocity in the shear layer, were used in the analysis. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the instability for each set of mean profiles were delineated. At a large Froude number (negligible gravity), a critical density ratio was found for the three profiles at which the jet became absolutely unstable. The critical density ratio for each velocity profile was increased as the Froude number was reduced. A critical Froude number was found for the three sets of profiles, below which the jet was absolutely unstable for all the density ratios less than unity, which demarcated the jet flow into the momentum-driven regime and the buoyancy-driven regime.

  18. Prospects for Determining the Mass Distributions of Galaxy Clusters on Large Scales Using Weak Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Fong, M.; Bowyer, R.; Whitehead, A.; Lee, B.; King, L.; Applegate, D.; McCarthy, I.

    2018-05-01

    For more than two decades, the Navarro, Frenk, and White (NFW) model has stood the test of time; it has been used to describe the distribution of mass in galaxy clusters out to their outskirts. Stacked weak lensing measurements of clusters are now revealing the distribution of mass out to and beyond their virial radii, where the NFW model is no longer applicable. In this study we assess how well the parameterised Diemer & Kravstov (DK) density profile describes the characteristic mass distribution of galaxy clusters extracted from cosmological simulations. This is determined from stacked synthetic lensing measurements of the 50 most massive clusters extracted from the Cosmo-OWLS simulations, using the Dark Matter Only run and also the run that most closely matches observations. The characteristics of the data reflect the Weighing the Giants survey and data from the future Large Synoptic Survey Telescope (LSST). In comparison with the NFW model, the DK model favored by the stacked data, in particular for the future LSST data, where the number density of background galaxies is higher. The DK profile depends on the accretion history of clusters which is specified in the current study. Eventually however subsamples of galaxy clusters with qualities indicative of disparate accretion histories could be studied.

  19. Big-bang nucleosynthesis and the baryon density of the universe.

    PubMed

    Copi, C J; Schramm, D N; Turner, M S

    1995-01-13

    For almost 30 years, the predictions of big-bang nucleosynthesis have been used to test the big-bang model to within a fraction of a second of the bang. The agreement between the predicted and observed abundances of deuterium, helium-3, helium-4, and lithium-7 confirms the standard cosmology model and allows accurate determination of the baryon density, between 1.7 x 10(-31) and 4.1 x 10(-31) grams per cubic centimeter (corresponding to about 1 to 15 percent of the critical density). This measurement of the density of ordinary matter is pivotal to the establishment of two dark-matter problems: (i) most of the baryons are dark, and (ii) if the total mass density is greater than about 15 percent of the critical density, as many determinations indicate, the bulk of the dark matter must be "non-baryonic," composed of elementary particles left from the earliest moments.

  20. Neuroanatomical Predictors of Functional Outcome in Individuals at Ultra-High Risk for Psychosis

    PubMed Central

    Lin, Ashleigh; Yung, Alison R.; Koutsouleris, Nikolaos; Nelson, Barnaby; Cropley, Vanessa L.; Velakoulis, Dennis; McGorry, Patrick D.; Pantelis, Christos; Wood, Stephen J.

    2017-01-01

    Abstract Most individuals at ultra-high risk (UHR) for psychosis do not transition to frank illness. Nevertheless, many have poor clinical outcomes and impaired psychosocial functioning. This study used voxel-based morphometry to investigate if baseline grey and white matter brain densities at identification as UHR were associated with functional outcome at medium- to long-term follow-up. Participants were help-seeking UHR individuals (n = 109, 54M:55F) who underwent magnetic resonance imaging at baseline; functional outcome was assessed an average of 9.2 years later. Primary analysis showed that lower baseline grey matter density, but not white matter density, in bilateral frontal and limbic areas, and left cerebellar declive were associated with poorer functional outcome (Social and Occupational Functioning Assessment Scale [SOFAS]). These findings were independent of transition to psychosis or persistence of the at-risk mental state. Similar regions were significantly associated with lower self-reported levels of social functioning and increased negative symptoms at follow-up. Exploratory analyses showed that lower baseline grey matter densities in middle and inferior frontal gyri were significantly associated with decline in Global Assessment of Functioning (GAF) score over follow-up. There was no association between baseline grey matter density and IQ or positive symptoms at follow-up. The current findings provide novel evidence that those with the poorest functional outcomes have the lowest grey matter densities at identification as UHR, regardless of transition status or persistence of the at-risk mental state. Replication and validation of these findings may allow for early identification of poor functional outcome and targeted interventions. PMID:27369472

  1. Simulating the cold dark matter-neutrino dipole with TianNu

    DOE PAGES

    Inman, Derek; Yu, Hao-Ran; Zhu, Hong-Ming; ...

    2017-04-20

    Measurements of neutrino mass in cosmological observations rely on two-point statistics that are hindered by significant degeneracies with the optical depth and galaxy bias. The relative velocity effect between cold dark matter and neutrinos induces a large scale dipole in the matter density field and may be able to provide orthogonal constraints to standard techniques. In this paper, we numerically investigate this dipole in the TianNu simulation, which contains cold dark matter and 50 meV neutrinos. We first compute the dipole using a new linear response technique where we treat the displacement caused by the relative velocity as a phasemore » in Fourier space and then integrate the matter power spectrum over redshift. Then, we compute the dipole numerically in real space using the simulation density and velocity fields. We find excellent agreement between the linear response and N-body methods. Finally, utilizing the dipole as an observational tool requires two tracers of the matter distribution that are differently biased with respect to the neutrino density.« less

  2. Dynamic electron-ion collisions and nuclear quantum effects in quantum simulation of warm dense matter.

    PubMed

    Kang, Dongdong; Dai, Jiayu

    2018-02-21

    The structural, thermodynamic and transport properties of warm dense matter (WDM) are crucial to the fields of astrophysics and planet science, as well as inertial confinement fusion. WDM refers to the states of matter in a regime of temperature and density between cold condensed matter and hot ideal plasmas, where the density is from near-solid up to ten times solid density, and the temperature between 0.1 and 100 eV. In the WDM regime, matter exhibits moderately or strongly coupled, partially degenerate properties. Therefore, the methods used to deal with condensed matter and isolated atoms need to be properly validated for WDM. It is therefore a big challenge to understand WDM within a unified theoretical description with reliable accuracy. Here, we review the progress in the theoretical study of WDM with state-of-the-art simulations, i.e. quantum Langevin molecular dynamics and first principles path integral molecular dynamics. The related applications for WDM are also included.

  3. Dynamic electron-ion collisions and nuclear quantum effects in quantum simulation of warm dense matter

    NASA Astrophysics Data System (ADS)

    Kang, Dongdong; Dai, Jiayu

    2018-02-01

    The structural, thermodynamic and transport properties of warm dense matter (WDM) are crucial to the fields of astrophysics and planet science, as well as inertial confinement fusion. WDM refers to the states of matter in a regime of temperature and density between cold condensed matter and hot ideal plasmas, where the density is from near-solid up to ten times solid density, and the temperature between 0.1 and 100 eV. In the WDM regime, matter exhibits moderately or strongly coupled, partially degenerate properties. Therefore, the methods used to deal with condensed matter and isolated atoms need to be properly validated for WDM. It is therefore a big challenge to understand WDM within a unified theoretical description with reliable accuracy. Here, we review the progress in the theoretical study of WDM with state-of-the-art simulations, i.e. quantum Langevin molecular dynamics and first principles path integral molecular dynamics. The related applications for WDM are also included.

  4. Scaling of confinement and profiles in the EXTRAP T2 reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Welander, A.

    1999-01-01

    In the EXTRAP T2 reversed-field pinch the diagnostic techniques for the measurement of electron density and temperature include; Thomson scattering which gives values at three radial positions in the core (r/a = 0, 0.28, 0.56), Langmuir probes which give values at the edge (r/a > 0.9) and interferometry which gives a line-averaged density. The empirical scaling of electron density and temperature including profile information with global plasma parameters has been studied. The density profile is subject to large variations, with an average parabolic shape when the density is low and flatter shapes when the density is increased. The change in the profile shape can be attributed to a shift in the penetration length of neutrals from the vicinity of the wall. The temperature scales roughly as I/n1/2 where I is the plasma current and n is the density. The temperature profile is always quite flat with lower variations and there is a tendency for a flatter profile at higher temperatures.

  5. Aliphatic and aromatic plant biopolymer dynamics in soil particles isolated from sequential density fractionation

    NASA Astrophysics Data System (ADS)

    Caldwell, B.; Filley, T.; Sollins, P.; Lajtha, K.; Swanston, C.; Kleber, M.; Kramer, M.

    2007-12-01

    A recent multi-layer-based soil organic matter-mineral interaction mechanistic model to describe the nature of soil organic matter-mineral surface mechanism for soil organic matter stabilization predicts that proteinaceous and aliphatic materials establish the core of strong binding-interactions upon which other organic matter is layered. A key methodology providing data underpinning this hypothesis is sequential density fractionation where soil is partitioned into particles of increasing density with the assumption that a partial control on organic matter distribution through density series is the thickness of its layering. Four soils of varying mineralogy and texture were investigated for their biopolymer, isotopic, and mineralogical properties. Light fractions (<1.8 g/cm3), although dominanted by organic detritus, did not always contain the highest concentration of lignin and substituted fatty acids from cutin and suberin while heavier fractions, 1.8-2.6 g/cm3, exhibited a progressive decrease in concentration in plant derived biopolymers with density. Extractable lignin phenols exhibited a progressive oxidation state with density. The concentration of biopolymers roughly mirrored the C:N ratio of soil particles which dropped consistently with increasing particle density. Although, in all soils, both lignin phenols and SFA concentration generally decreased with increasing density the ratio SFA/lignin varied with density and depending upon the soil. All soils, except the oxisol, exhibited an increase in SFA with respect to lignin suggesting a selective stabilization of those material with respect to lignin. In the oxisol, which showed little variation in its hematite dominated mineralogy across density, SFA/lignin remained constant, potentially indicating a greater capacity to stabilize lignin in that system. Interestingly, the lignin oxidation state increased with density in the oxisol. Given the variation in soil character, the consistency in these trends it suggests a general phenomenon of progressive decay in plant derived material with thinness of mineral coating but an overall relative increase in aliphatic character-all consistent with the multi-layer model.

  6. Long-lived light mediator to dark matter and primordial small scale spectrum

    DOE PAGES

    Zhang, Yue

    2015-05-01

    We calculate the early universe evolution of perturbations in the dark matter energy density in the context of simple dark sector models containing a GeV scale light mediator. We consider the case that the mediator is long-lived, with lifetime up to a second, and before decaying it temporarily dominates the energy density of the universe. We show that for primordial perturbations that enter the horizon around this period, the interplay between linear growth during matter domination and collisional damping can generically lead to a sharp peak in the spectrum of dark matter density perturbation. Finally, as a result, the populationmore » of the smallest DM halos gets enhanced. Possible implications of this scenario are discussed.« less

  7. Using Voronoi Tessellations to identify groups in N-body Simulation

    NASA Astrophysics Data System (ADS)

    Gonzalez, R. E.; Theuns, T.

    Dark matter N-body simulations often use a friends-of-friends (FOF) group finder to link together particles above a specified density threshold. An over density of 200 picks-out objects that can be identified with virialised dark matter haloes, based on the spherical collapse model for the formation of structure. When the halo contains significant substructure, as is the case in very high resolution simulations, then FOF will simply link all substructure to the parent halo. Many cosmological simulations now also include gas and stars, and these are often distributed differently from the dark matter. It is then not clear whether the structures identified by FOF are very physical. Here we use Voronoi tesselations to identify structures in hydrodynamical cosmological simulations, that contain dark matter, gas and stars. This adaptive technique allows accurate estimates of densities, and density gradients, for a non-structured distribution of points. We discuss how these estimates allow us to identify structures in the dark matter that can be identified with haloes, and in the stars, to identify galaxies.

  8. Constraints on an annihilation signal from a core of constant dark matter density around the milky way center with H.E.S.S.

    PubMed

    Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Angüner, E O; Backes, M; Balenderan, S; Balzer, A; Barnacka, A; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Biteau, J; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Carrigan, S; Casanova, S; Chadwick, P M; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chrétien, M; Colafrancesco, S; Cologna, G; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fernandes, M V; Fernandez, D; Fiasson, A; Fontaine, G; Förster, A; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Grondin, M-H; Grudzińska, M; Hadasch, D; Häffner, S; Hahn, J; Harris, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hofverberg, P; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jahn, C; Jamrozy, M; Janiak, M; Jankowsky, F; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kaufmann, S; Khélifi, B; Kieffer, M; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Lopatin, A; Lu, C-C; Marandon, V; Marcowith, A; Marx, R; Maurin, G; Maxted, N; Mayer, M; McComb, T J L; Méhault, J; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niemiec, J; Nolan, S J; Oakes, L; Odaka, H; Ohm, S; Opitz, B; Ostrowski, M; Oya, I; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reichardt, I; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwarzburg, S; Schwemmer, S; Sol, H; Spanier, F; Spengler, G; Spies, F; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Valerius, K; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Völk, H J; Volpe, F; Vorster, M; Vuillaume, T; Wagner, S J; Wagner, P; Wagner, R M; Ward, M; Weidinger, M; Weitzel, Q; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zechlin, H-S

    2015-02-27

    An annihilation signal of dark matter is searched for from the central region of the Milky Way. Data acquired in dedicated on-off observations of the Galactic center region with H.E.S.S. are analyzed for this purpose. No significant signal is found in a total of ∼9  h of on-off observations. Upper limits on the velocity averaged cross section, ⟨σv⟩, for the annihilation of dark matter particles with masses in the range of ∼300  GeV to ∼10  TeV are derived. In contrast to previous constraints derived from observations of the Galactic center region, the constraints that are derived here apply also under the assumption of a central core of constant dark matter density around the center of the Galaxy. Values of ⟨σv⟩ that are larger than 3×10^{-24}  cm^{3}/s are excluded for dark matter particles with masses between ∼1 and ∼4  TeV at 95% C.L. if the radius of the central dark matter density core does not exceed 500 pc. This is the strongest constraint that is derived on ⟨σv⟩ for annihilating TeV mass dark matter without the assumption of a centrally cusped dark matter density distribution in the search region.

  9. Origin of ΔN{sub eff} as a result of an interaction between dark radiation and dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bjaelde, Ole Eggers; Das, Subinoy; Moss, Adam, E-mail: oeb@phys.au.dk, E-mail: subinoy@physik.rwth-aachen.de, E-mail: Adam.Moss@nottingham.ac.uk

    2012-10-01

    Results from the Wilkinson Microwave Anisotropy Probe (WMAP), Atacama Cosmology Telescope (ACT) and recently from the South Pole Telescope (SPT) have indicated the possible existence of an extra radiation component in addition to the well known three neutrino species predicted by the Standard Model of particle physics. In this paper, we explore the possibility of the apparent extra dark radiation being linked directly to the physics of cold dark matter (CDM). In particular, we consider a generic scenario where dark radiation, as a result of an interaction, is produced directly by a fraction of the dark matter density effectively decayingmore » into dark radiation. At an early epoch when the dark matter density is negligible, as an obvious consequence, the density of dark radiation is also very small. As the Universe approaches matter radiation equality, the dark matter density starts to dominate thereby increasing the content of dark radiation and changing the expansion rate of the Universe. As this increase in dark radiation content happens naturally after Big Bang Nucleosynthesis (BBN), it can relax the possible tension with lower values of radiation degrees of freedom measured from light element abundances compared to that of the CMB. We numerically confront this scenario with WMAP+ACT and WMAP+SPT data and derive an upper limit on the allowed fraction of dark matter decaying into dark radiation.« less

  10. Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools

    NASA Astrophysics Data System (ADS)

    Hearin, Andrew P.; Campbell, Duncan; Tollerud, Erik; Behroozi, Peter; Diemer, Benedikt; Goldbaum, Nathan J.; Jennings, Elise; Leauthaud, Alexie; Mao, Yao-Yuan; More, Surhud; Parejko, John; Sinha, Manodeep; Sipöcz, Brigitta; Zentner, Andrew

    2017-11-01

    We present the first stable release of Halotools (v0.2), a community-driven Python package designed to build and test models of the galaxy-halo connection. Halotools provides a modular platform for creating mock universes of galaxies starting from a catalog of dark matter halos obtained from a cosmological simulation. The package supports many of the common forms used to describe galaxy-halo models: the halo occupation distribution, the conditional luminosity function, abundance matching, and alternatives to these models that include effects such as environmental quenching or variable galaxy assembly bias. Satellite galaxies can be modeled to live in subhalos or to follow custom number density profiles within their halos, including spatial and/or velocity bias with respect to the dark matter profile. The package has an optimized toolkit to make mock observations on a synthetic galaxy population—including galaxy clustering, galaxy-galaxy lensing, galaxy group identification, RSD multipoles, void statistics, pairwise velocities and others—allowing direct comparison to observations. Halotools is object-oriented, enabling complex models to be built from a set of simple, interchangeable components, including those of your own creation. Halotools has an automated testing suite and is exhaustively documented on http://halotools.readthedocs.io, which includes quickstart guides, source code notes and a large collection of tutorials. The documentation is effectively an online textbook on how to build and study empirical models of galaxy formation with Python.

  11. Effect of hydrodynamical-simulation–inspired dark matter velocity profile on directional detection of dark matter

    DOE PAGES

    Laha, Ranjan

    2018-02-01

    Directional detection is an important way to detect dark matter. An input for these experiments is the dark matter velocity distribution. Recent hydrodynamical simulations have shown that the dark matter velocity distribution differs substantially from the Standard Halo Model. We study the impact of some of these updated velocity distributions in dark matter directional detection experiments. Here, we calculate the ratio of events required to confirm the forward-backward asymmetry and the existence of the ring of maximum recoil rate using different dark matter velocity distributions for 19F and Xe targets. We show that with the use of updated dark mattermore » velocity profiles, the forward-backward asymmetry and the ring of maximum recoil rate can be confirmed using a factor of ~ 2– 3 less events when compared to that using the Standard Halo Model.« less

  12. Effect of hydrodynamical-simulation–inspired dark matter velocity profile on directional detection of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laha, Ranjan

    Directional detection is an important way to detect dark matter. An input for these experiments is the dark matter velocity distribution. Recent hydrodynamical simulations have shown that the dark matter velocity distribution differs substantially from the Standard Halo Model. We study the impact of some of these updated velocity distributions in dark matter directional detection experiments. Here, we calculate the ratio of events required to confirm the forward-backward asymmetry and the existence of the ring of maximum recoil rate using different dark matter velocity distributions for 19F and Xe targets. We show that with the use of updated dark mattermore » velocity profiles, the forward-backward asymmetry and the ring of maximum recoil rate can be confirmed using a factor of ~ 2– 3 less events when compared to that using the Standard Halo Model.« less

  13. Baryonic impact on the dark matter orbital properties of Milky Way-sized haloes

    NASA Astrophysics Data System (ADS)

    Zhu, Qirong; Hernquist, Lars; Marinacci, Federico; Springel, Volker; Li, Yuexing

    2017-04-01

    We study the orbital properties of dark matter haloes by combining a spectral method and cosmological simulations of Milky Way-sized Galaxies. We compare the dynamics and orbits of individual dark matter particles from both hydrodynamic and N-body simulations, and find that the fraction of box, tube and resonant orbits of the dark matter halo decreases significantly due to the effects of baryons. In particular, the central region of the dark matter halo in the hydrodynamic simulation is dominated by regular, short-axis tube orbits, in contrast to the chaotic, box and thin orbits dominant in the N-body run. This leads to a more spherical dark matter halo in the hydrodynamic run compared to a prolate one as commonly seen in the N-body simulations. Furthermore, by using a kernel-based density estimator, we compare the coarse-grained phase-space densities of dark matter haloes in both simulations and find that it is lower by ˜0.5 dex in the hydrodynamic run due to changes in the angular momentum distribution, which indicates that the baryonic process that affects the dark matter is irreversible. Our results imply that baryons play an important role in determining the shape, kinematics and phase-space density of dark matter haloes in galaxies.

  14. Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.

    2017-03-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

  15. Adiabatic density perturbations and matter generation from the minimal supersymmetric standard model.

    PubMed

    Enqvist, Kari; Kasuya, Shinta; Mazumdar, Anupam

    2003-03-07

    We propose that the inflaton is coupled to ordinary matter only gravitationally and that it decays into a completely hidden sector. In this scenario both baryonic and dark matter originate from the decay of a flat direction of the minimal supersymmetric standard model, which is shown to generate the desired adiabatic perturbation spectrum via the curvaton mechanism. The requirement that the energy density along the flat direction dominates over the inflaton decay products fixes the flat direction almost uniquely. The present residual energy density in the hidden sector is typically shown to be small.

  16. Density dependence of the nuclear energy-density functional

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Panagiota; Park, Tae-Sun; Lim, Yeunhwan; Hyun, Chang Ho

    2018-01-01

    Background: The explicit density dependence in the coupling coefficients entering the nonrelativistic nuclear energy-density functional (EDF) is understood to encode effects of three-nucleon forces and dynamical correlations. The necessity for the density-dependent coupling coefficients to assume the form of a preferably small fractional power of the density ρ is empirical and the power is often chosen arbitrarily. Consequently, precision-oriented parametrizations risk overfitting in the regime of saturation and extrapolations in dilute or dense matter may lose predictive power. Purpose: Beginning with the observation that the Fermi momentum kF, i.e., the cubic root of the density, is a key variable in the description of Fermi systems, we first wish to examine if a power hierarchy in a kF expansion can be inferred from the properties of homogeneous matter in a domain of densities, which is relevant for nuclear structure and neutron stars. For subsequent applications we want to determine a functional that is of good quality but not overtrained. Method: For the EDF, we fit systematically polynomial and other functions of ρ1 /3 to existing microscopic, variational calculations of the energy of symmetric and pure neutron matter (pseudodata) and analyze the behavior of the fits. We select a form and a set of parameters, which we found robust, and examine the parameters' naturalness and the quality of resulting extrapolations. Results: A statistical analysis confirms that low-order terms such as ρ1 /3 and ρ2 /3 are the most relevant ones in the nuclear EDF beyond lowest order. It also hints at a different power hierarchy for symmetric vs. pure neutron matter, supporting the need for more than one density-dependent term in nonrelativistic EDFs. The functional we propose easily accommodates known or adopted properties of nuclear matter near saturation. More importantly, upon extrapolation to dilute or asymmetric matter, it reproduces a range of existing microscopic results, to which it has not been fitted. It also predicts a neutron-star mass-radius relation consistent with observations. The coefficients display naturalness. Conclusions: Having been already determined for homogeneous matter, a functional of the present form can be mapped onto extended Skyrme-type functionals in a straightforward manner, as we outline here, for applications to finite nuclei. At the same time, the statistical analysis can be extended to higher orders and for different microscopic (ab initio) calculations with sufficient pseudodata points and for polarized matter.

  17. Density profiles around A+B→C reaction-diffusion fronts in partially miscible systems: A general classification.

    PubMed

    Loodts, V; Trevelyan, P M J; Rongy, L; De Wit, A

    2016-10-01

    Various spatial density profiles can develop in partially miscible stratifications when a phase A dissolves with a finite solubility into a host phase containing a dissolved reactant B. We investigate theoretically the impact of an A+B→C reaction on such density profiles in the host phase and classify them in a parameter space spanned by the ratios of relative contributions to density and diffusion coefficients of the chemical species. While the density profile is either monotonically increasing or decreasing in the nonreactive case, reactions combined with differential diffusivity can create eight different types of density profiles featuring up to two extrema in density, at the reaction front or below it. We use this framework to predict various possible hydrodynamic instability scenarios inducing buoyancy-driven convection around such reaction fronts when they propagate parallel to the gravity field.

  18. Primordial inhomogeneities in the expanding universe. II - General features of spherical models at late times

    NASA Technical Reports Server (NTRS)

    Olson, D. W.; Silk, J.

    1979-01-01

    This paper studies the density profile that forms around a spherically symmetric bound central core immersed in a homogeneous-background k = 0 or k = -1 Friedmann-Robertson-Walker cosmological model, with zero pressure. Although the density profile in the linearized regime is almost arbitrary, in the nonlinear regime certain universal features of the density profile are obtained that are independent of the details of the initial conditions. The formation of 'halos' ('holes') with densities greater than (less than) the average cosmological density is discussed. It is shown that in most regions 'halos' form, and universal values are obtained for the slope of the ln (density)-ln (radius) profile in those 'halos' at late times, independently of the shape of the initial density profile. Restrictions are derived on where it is possible for 'holes' to exist at late times and on how such 'holes' must have evolved.

  19. Probing matter at extreme Gbar pressures at the NIF

    DOE PAGES

    Kritcher, A. L.; Doeppner, T.; Swift, D.; ...

    2013-12-04

    Here we describe a platform to measure the material properties, specifically the equation of state and electron temperature, at pressures of 100 Mbar to a Gbar at the National Ignition Facility (NIF). In our experiments we launch spherically convergent shock waves into solid CH, CD, or diamond samples using a hohlraum radiation drive, in an indirect drive laser geometry. X-ray radiography is applied to measure the shock speed and infer the mass density profile, enabling determination of the material pressure and Hugoniot equation of state. X-ray scattering is applied to measure the electron temperature through probing of the electron velocitymore » distribution via Doppler broadening.« less

  20. Cellular generators of the cortical auditory evoked potential initial component.

    PubMed

    Steinschneider, M; Tenke, C E; Schroeder, C E; Javitt, D C; Simpson, G V; Arezzo, J C; Vaughan, H G

    1992-01-01

    Cellular generators of the initial cortical auditory evoked potential (AEP) component were determined by analyzing laminar profiles of click-evoked AEPs, current source density, and multiple unit activity (MUA) in primary auditory cortex of awake monkeys. The initial AEP component is a surface-negative wave, N8, that peaks at 8-9 msec and inverts in polarity below lamina 4. N8 is generated by a lamina 4 current sink and a deeper current source. Simultaneous MUA is present from lower lamina 3 to the subjacent white matter. Findings indicate that thalamocortical afferents are a generator of N8 and support a role for lamina 4 stellate cells. Relationships to the human AEP are discussed.

  1. Generalized mass ordering degeneracy in neutrino oscillation experiments

    DOE PAGES

    Coloma, Pilar; Schwetz, Thomas

    2016-09-07

    Here, we consider the impact of neutral-current (NC) nonstandard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in the presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle θ 12 at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-1 corrections from NSI to the NC electron neutrino-quark interaction and can be tested in electronmore » neutrino NC scattering experiments.« less

  2. Under the sword of Damocles: plausible regeneration of dark matter cusps at the smallest galactic scales

    NASA Astrophysics Data System (ADS)

    Laporte, Chervin F. P.; Peñarrubia, Jorge

    2015-04-01

    We study the evolution of the dark matter (DM) halo profiles of dwarf galaxies driven by the accretion of DM substructures through controlled N-body experiments. Our initial conditions assume that early supernova feedback erases the primordial DM cusps of haloes with z = 0 masses of 109 - 1010 M⊙. The orbits and masses of the infalling substructures are borrowed from the Aquarius cosmological simulations. Our experiments show that a fraction of haloes that undergo 1:3 down to 1:30 mergers are susceptible to reform a DM cusp by z ≈ 0. Cusp regrowth is driven by the accretion of DM substructures that are dense enough to reach the central regions of the main halo before being tidally disrupted. The infall of substructures on the mean of the reported mass-concentration relation and a mass ratio above 1:6 systematically leads to cusp regrowth. Substructures with 1:6-1:8, and 1:8-1:30 only reform DM cusps if their densities are 1σ and 2σ above the mean, respectively. The merging time-scales of these dense, low-mass substructures is relatively long (5 - 11 Gyr), which may pose a time-scale problem for the longevity of DM cores in dwarfs galaxies and possibly explain the existence of dense dwarfs-like Draco. These results suggest that within cold dark matter a non-negligible level of scatter in the mass profiles of galactic haloes acted on by feedback is to be expected given the stochastic mass accretion histories of low-mass haloes and the diverse star formation histories observed in the Local Group dwarfs.

  3. Flooded Dark Matter and S level rise

    NASA Astrophysics Data System (ADS)

    Randall, Lisa; Scholtz, Jakub; Unwin, James

    2016-03-01

    Most dark matter models set the dark matter relic density by some interaction with Standard Model particles. Such models generally assume the existence of Standard Model particles early on, with the dark matter relic density a later consequence of those interactions. Perhaps a more compelling assumption is that dark matter is not part of the Standard Model sector and a population of dark matter too is generated at the end of inflation. This democratic assumption about initial conditions does not necessarily provide a natural value for the dark matter relic density, and furthermore superficially leads to too much entropy in the dark sector relative to ordinary matter. We address the latter issue by the late decay of heavy particles produced at early times, thereby associating the dark matter relic density with the lifetime of a long-lived state. This paper investigates what it would take for this scenario to be compatible with observations in what we call Flooded Dark Matter (FDM) models and discusses several interesting consequences. One is that dark matter can be very light and furthermore, light dark matter is in some sense the most natural scenario in FDM as it is compatible with larger couplings of the decaying particle. A related consequence is that the decay of the field with the smallest coupling and hence the longest lifetime dominates the entropy and possibly the matter content of the Universe, a principle we refer to as "Maximum Baroqueness". We also demonstrate that the dark sector should be colder than the ordinary sector, relaxing the most stringent free-streaming constraints on light dark matter candidates. We will discuss the potential implications for the core-cusp problem in a follow-up paper. The FDM framework will furthermore have interesting baryogenesis implications. One possibility is that dark matter is like the baryon asymmetry and both are simultaneously diluted by a late entropy dump. Alternatively, FDM is compatible with an elegant non-thermal leptogenesis implementation in which decays of a heavy right-handed neutrino lead to late time reheating of the Standard Model degrees of freedom and provide suitable conditions for creation of a lepton asymmetry.

  4. Density profile and fiber alignment in fiberboard from three southern hardwoods

    Treesearch

    George E. Woodson

    1977-01-01

    Density profile and fiber orientation were evaluated for their effects on selected mechanical properties of medium density fiberboard. Bending MOE and modulus of rigidity were predicted from density profiles established by x-ray radiography. Orthotropic ratios ranged from 1.19 to 2.32 for electrically aligned fiberboards from three southern hardwoods. Off-axis tensile...

  5. Light dark matter through assisted annihilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Ujjal Kumar; Maity, Tarak Nath; Ray, Tirtha Sankar, E-mail: ujjal@cts.iitkgp.ernet.in, E-mail: tarak.maity.physics@gmail.com, E-mail: tirthasankar.ray@gmail.com

    2017-03-01

    In this paper we investigate light dark matter scenarios where annihilation to Standard Model particles at tree-level is kinematically forbidden. In such cases annihilation can be aided by massive Standard Model-like species, called assisters , in the initial state that enhances the available phase space opening up novel tree-level processes. We investigate the feasibility of such non-standard assisted annihilation processes to reproduce the observed relic density of dark matter. We present a simple scalar dark matter-scalar assister model where this is realised. We find that if the dark matter and assister are relatively degenerate the required relic density can bemore » achieved for a keV-MeV scale dark matter. We briefly discuss the cosmological constraints on such dark matter scenarios.« less

  6. First Autonomous Bio-Optical Profiling Float in the Gulf of Mexico Reveals Dynamic Biogeochemistry in Deep Waters

    PubMed Central

    Green, Rebecca E.; Bower, Amy S.; Lugo-Fernández, Alexis

    2014-01-01

    Profiling floats equipped with bio-optical sensors well complement ship-based and satellite ocean color measurements by providing highly-resolved time-series data on the vertical structure of biogeochemical processes in oceanic waters. This is the first study to employ an autonomous profiling (APEX) float in the Gulf of Mexico for measuring spatiotemporal variability in bio-optics and hydrography. During the 17-month deployment (July 2011 to December 2012), the float mission collected profiles of temperature, salinity, chlorophyll fluorescence, particulate backscattering (bbp), and colored dissolved organic matter (CDOM) fluorescence from the ocean surface to a depth of 1,500 m. Biogeochemical variability was characterized by distinct depth trends and local “hot spots”, including impacts from mesoscale processes associated with each of the water masses sampled, from ambient deep waters over the Florida Plain, into the Loop Current, up the Florida Canyon, and eventually into the Florida Straits. A deep chlorophyll maximum (DCM) occurred between 30 and 120 m, with the DCM depth significantly related to the unique density layer ρ = 1023.6 (R2 = 0.62). Particulate backscattering, bbp, demonstrated multiple peaks throughout the water column, including from phytoplankton, deep scattering layers, and resuspension. The bio-optical relationship developed between bbp and chlorophyll (R2 = 0.49) was compared to a global relationship and could significantly improve regional ocean-color algorithms. Photooxidation and autochthonous production contributed to CDOM distributions in the upper water column, whereas in deep water, CDOM behaved as a semi-conservative tracer of water masses, demonstrating a tight relationship with density (R2 = 0.87). In the wake of the Deepwater Horizon oil spill, this research lends support to the use of autonomous drifting profilers as a powerful tool for consideration in the design of an expanded and integrated observing network for the Gulf of Mexico. PMID:24992646

  7. Many-particle theory of nuclear systems with application to neutron star matter

    NASA Technical Reports Server (NTRS)

    Chakkalakal, D. A.; Yang, C.

    1973-01-01

    The research is reported concerning energy-density relation for the normal state of neutron star matter, and the effects of superfluidity and polarization on neutron star matter. Considering constraints on variation, and the theory of quantum fluids, three methods for calculating the energy-density range are presented. The effects of polarization on neutron star structure, and polarization effects on condensation and superfluid-state energy are discussed.

  8. Soil microbial community profiles and functional diversity in limestone cedar glades

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Dzantor, E. Kudjo; Momen, Bahram

    2016-01-01

    Rock outcrop ecosystems, such as limestone cedar glades (LCGs), are known for their rare and endemic plant species adapted to high levels of abiotic stress. Soils in LCGs are thin (< 25 cm), soil-moisture conditions fluctuate seasonally between xeric and saturated, and summer soil temperatures commonly exceed 48 °C. The effects of these stressors on soil microbial communities (SMC) remain largely unstudied, despite the importance of SMC-plant interactions in regulating the structure and function of terrestrial ecosystems. SMC profiles and functional diversity were characterized in LCGs using community level physiological profiling (CLPP) and plate-dilution frequency assays (PDFA). Most-probable number (MPN) estimates and microbial substrate-utilization diversity (H) were positively related to soil thickness, soil organic matter (OM), soil water content, and vegetation density, and were diminished in alkaline soil relative to circumneutral soil. Soil nitrate showed no relationship to SMCs, suggesting lack of N-limitation. Canonical correlation analysis indicated strong correlations between microbial CLPP patterns and several physical and chemical properties of soil, primarily temperature at the ground surface and at 4-cm depth, and secondarily soil-water content, enabling differentiation by season. Thus, it was demonstrated that several well-described abiotic determinants of plant community structure in this ecosystem are also reflected in SMC profiles.

  9. Gray Matter Differences between Pediatric Obsessive-Compulsive Disorder Patients and High-Risk Siblings: A Preliminary Voxel-Based Morphometry Study

    PubMed Central

    Gilbert, Andrew R.; Keshavan, Matcheri S.; Diwadkar, Vaibhav; Nutche, Jeffrey; MacMaster, Frank; Easter, Phillip C.; Buhagiar, Christian J.; Rosenberg, David R.

    2008-01-01

    Neuroimaging studies have identified alterations in frontostriatal circuitry in OCD. Voxel-based morphometry (VBM) allows for the assessment of differences in gray matter density across the whole brain. VBM has not previously been used to examine regional gray matter density in pediatric OCD patients and the siblings of pediatric OCD patients. Volumetric magnetic resonance imaging (MRI) studies were conducted in 10 psychotropic-naïve pediatric patients with OCD, 10 unaffected siblings of pediatric patients with OCD, and 10 healthy controls. VBM analysis was conducted using SPM2. Statistical comparisons were performed with the general linear model, implementing small volume random field corrections for a priori regions of interest (anterior cingulate cortex or ACC, striatum and thalamus). VBM analysis revealed significantly lower gray matter density in OCD patients compared to healthy in the left ACC and bilateral medial superior frontal gyrus (SFG). Furthermore, a small volume correction was used to identify a significantly greater gray matter density in the right putamen in OCD patients as compared to unaffected siblings of OCD patients. These findings in patients, siblings, and healthy controls, although preliminary, suggest the presence of gray matter structural differences between affected subjects and healthy controls as well as between affected subjects and individuals at risk for OCD. PMID:18314272

  10. Evolution of the phase-space density and the Jeans scale for dark matter derived from the Vlasov-Einstein equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piattella, O.F.; Rodrigues, D.C.; Fabris, J.C.

    2013-11-01

    We discuss solutions of Vlasov-Einstein equation for collisionless dark matter particles in the context of a flat Friedmann universe. We show that, after decoupling from the primordial plasma, the dark matter phase-space density indicator Q = ρ/(σ{sub 1D}{sup 2}){sup 3/2} remains constant during the expansion of the universe, prior to structure formation. This well known result is valid for non-relativistic particles and is not ''observer dependent'' as in solutions derived from the Vlasov-Poisson system. In the linear regime, the inclusion of velocity dispersion effects permits to define a physical Jeans length for collisionless matter as function of the primordial phase-spacemore » density indicator: λ{sub J} = (5π/G){sup 1/2}Q{sup −1/3}ρ{sub dm}{sup −1/6}. The comoving Jeans wavenumber at matter-radiation equality is smaller by a factor of 2-3 than the comoving wavenumber due to free-streaming, contributing to the cut-off of the density fluctuation power spectrum at the lowest scales. We discuss the physical differences between these two scales. For dark matter particles of mass equal to 200 GeV, the derived Jeans mass is 4.3 × 10{sup −6}M{sub ⊙}.« less

  11. Morphometric brain characterization of refractory obsessive-compulsive disorder: diffeomorphic anatomic registration using exponentiated Lie algebra.

    PubMed

    Tang, Wanjie; Li, Bin; Huang, Xiaoqi; Jiang, Xiaoyu; Li, Fei; Wang, Lijuan; Chen, Taolin; Wang, Jinhui; Gong, Qiyong; Yang, Yanchun

    2013-10-01

    Few studies have used neuroimaging to characterize treatment-refractory obsessive-compulsive disorder (OCD). This study sought to explore gray matter structure in patients with treatment-refractory OCD and compare it with that of healthy controls. A total of 18 subjects with treatment-refractory OCD and 26 healthy volunteers were analyzed by MRI using a 3.0-T scanner and voxel-based morphometry (VBM). Diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL) was used to identify structural changes in gray matter associated with treatment-refractory OCD. A partial correlation model was used to analyze whether morphometric changes were associated with Yale-Brown Obsessive-Compulsive Scale scores and illness duration. Gray matter volume did not differ significantly between the two groups. Treatment-refractory OCD patients showed significantly lower gray matter density than healthy subjects in the left posterior cingulate cortex (PCC) and mediodorsal thalamus (MD) and significantly higher gray matter density in the left dorsal striatum (putamen). These changes did not correlate with symptom severity or illness duration. Our findings provide new evidence of deficits in gray matter density in treatment-refractory OCD patients. These patients may show characteristic density abnormalities in the left PCC, MD and dorsal striatum (putamen), which should be verified in longitudinal studies. © 2013. Published by Elsevier Inc. All rights reserved.

  12. Increased gray matter density in the parietal cortex of mathematicians: a voxel-based morphometry study.

    PubMed

    Aydin, K; Ucar, A; Oguz, K K; Okur, O O; Agayev, A; Unal, Z; Yilmaz, S; Ozturk, C

    2007-01-01

    The training to acquire or practicing to perform a skill, which may lead to structural changes in the brain, is called experience-dependent structural plasticity. The main purpose of this cross-sectional study was to investigate the presence of experience-dependent structural plasticity in mathematicians' brains, which may develop after long-term practice of mathematic thinking. Twenty-six volunteer mathematicians, who have been working as academicians, were enrolled in the study. We applied an optimized method of voxel-based morphometry in the mathematicians and the age- and sex-matched control subjects. We assessed the gray and white matter density differences in mathematicians and the control subjects. Moreover, the correlation between the cortical density and the time spent as an academician was investigated. We found that cortical gray matter density in the left inferior frontal and bilateral inferior parietal lobules of the mathematicians were significantly increased compared with the control subjects. Furthermore, increase in gray matter density in the right inferior parietal lobule of the mathematicians was strongly correlated with the time spent as an academician (r = 0.84; P < .01). Left-inferior frontal and bilateral parietal regions are involved in arithmetic processing. Inferior parietal regions are also involved in high-level mathematic thinking, which requires visuospatial imagery, such as mental creation and manipulation of 3D objects. The voxel-based morphometric analysis of mathematicians' brains revealed increased gray matter density in the cortical regions related to mathematic thinking. The correlation between cortical density increase and the time spent as an academician suggests experience-dependent structural plasticity in mathematicians' brains.

  13. Neuroanatomical Predictors of Functional Outcome in Individuals at Ultra-High Risk for Psychosis.

    PubMed

    Reniers, Renate L E P; Lin, Ashleigh; Yung, Alison R; Koutsouleris, Nikolaos; Nelson, Barnaby; Cropley, Vanessa L; Velakoulis, Dennis; McGorry, Patrick D; Pantelis, Christos; Wood, Stephen J

    2017-03-01

    Most individuals at ultra-high risk (UHR) for psychosis do not transition to frank illness. Nevertheless, many have poor clinical outcomes and impaired psychosocial functioning. This study used voxel-based morphometry to investigate if baseline grey and white matter brain densities at identification as UHR were associated with functional outcome at medium- to long-term follow-up. Participants were help-seeking UHR individuals (n = 109, 54M:55F) who underwent magnetic resonance imaging at baseline; functional outcome was assessed an average of 9.2 years later. Primary analysis showed that lower baseline grey matter density, but not white matter density, in bilateral frontal and limbic areas, and left cerebellar declive were associated with poorer functional outcome (Social and Occupational Functioning Assessment Scale [SOFAS]). These findings were independent of transition to psychosis or persistence of the at-risk mental state. Similar regions were significantly associated with lower self-reported levels of social functioning and increased negative symptoms at follow-up. Exploratory analyses showed that lower baseline grey matter densities in middle and inferior frontal gyri were significantly associated with decline in Global Assessment of Functioning (GAF) score over follow-up. There was no association between baseline grey matter density and IQ or positive symptoms at follow-up. The current findings provide novel evidence that those with the poorest functional outcomes have the lowest grey matter densities at identification as UHR, regardless of transition status or persistence of the at-risk mental state. Replication and validation of these findings may allow for early identification of poor functional outcome and targeted interventions. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    PubMed

    Dörfer, Corina; Kühn, Peter; Baumann, Frank; He, Jin-Sheng; Scholten, Thomas

    2013-01-01

    The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (<1.6 g cm(-3)) of free particulate organic matter (FPOM) and occluded particulate organic matter (OPOM), plus a heavy fraction (>1.6 g cm(-3)) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1). Higher SOC contents (320 g kg(-1)) were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1)). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth) account for 10.4 kg m(-2), compared to 3.4 kg m(-2) in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  15. Lepton flavor violation induced by dark matter

    NASA Astrophysics Data System (ADS)

    Arcadi, Giorgio; Ferreira, C. P.; Goertz, Florian; Guzzo, M. M.; Queiroz, Farinaldo S.; Santos, A. C. O.

    2018-04-01

    Guided by gauge principles we discuss a predictive and falsifiable UV complete model where the Dirac fermion that accounts for the cold dark matter abundance in our Universe induces the lepton flavor violation (LFV) decays μ →e γ and μ →e e e as well as μ -e conversion. We explore the interplay between direct dark matter detection, relic density, collider probes and lepton flavor violation to conclusively show that one may have a viable dark matter candidate yielding flavor violation signatures that can be probed in the upcoming experiments. In fact, keeping the dark matter mass at the TeV scale, a sizable LFV signal is possible, while reproducing the correct dark matter relic density and meeting limits from direct-detection experiments.

  16. Rotation curves of high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field dark matter

    NASA Astrophysics Data System (ADS)

    Bernal, T.; Fernández-Hernández, L. M.; Matos, T.; Rodríguez-Meza, M. A.

    2018-04-01

    Cold dark matter (CDM) has shown to be an excellent candidate for the dark matter (DM) of the Universe at large scales; however, it presents some challenges at the galactic level. The scalar field dark matter (SFDM), also called fuzzy, wave, Bose-Einstein condensate, or ultralight axion DM, is identical to CDM at cosmological scales but different at the galactic ones. SFDM forms core haloes, it has a natural cut-off in its matter power spectrum, and it predicts well-formed galaxies at high redshifts. In this work we reproduce the rotation curves of high-resolution low surface brightness (LSB) and SPARC galaxies with two SFDM profiles: (1) the soliton+NFW profile in the fuzzy DM (FDM) model, arising empirically from cosmological simulations of real, non-interacting scalar field (SF) at zero temperature, and (2) the multistate SFDM (mSFDM) profile, an exact solution to the Einstein-Klein-Gordon equations for a real, self-interacting SF, with finite temperature into the SF potential, introducing several quantum states as a realistic model for an SFDM halo. From the fits with the soliton+NFW profile, we obtained for the boson mass 0.212 < mψ/(10-23 eV/c2) < 27.0 and for the core radius 0.326 < rc/kpc < 8.96. From the combined analysis with the LSB galaxies, we obtained mψ = 0.554 × 10-23 eV, a result in tension with the severe cosmological constraints. Also, we show the analytical mSFDM model fits the observations as well as or better than the empirical soliton+NFW profile, and it reproduces naturally the wiggles present in some galaxies, being a theoretically motivated framework additional or alternative to the FDM profile.

  17. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tews, Ingo; Lattimer, James M.; Ohnishi, Akira

    We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S {sub 0}. In addition, for assumed values of S {sub 0} above this minimum, this bound impliesmore » both upper and lower limits to the symmetry energy slope parameter L , which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust–core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.« less

  18. Symmetry Parameter Constraints from a Lower Bound on Neutron-matter Energy

    NASA Astrophysics Data System (ADS)

    Tews, Ingo; Lattimer, James M.; Ohnishi, Akira; Kolomeitsev, Evgeni E.

    2017-10-01

    We propose the existence of a lower bound on the energy of pure neutron matter (PNM) on the basis of unitary-gas considerations. We discuss its justification from experimental studies of cold atoms as well as from theoretical studies of neutron matter. We demonstrate that this bound results in limits to the density-dependent symmetry energy, which is the difference between the energies of symmetric nuclear matter and PNM. In particular, this bound leads to a lower limit to the volume symmetry energy parameter S 0. In addition, for assumed values of S 0 above this minimum, this bound implies both upper and lower limits to the symmetry energy slope parameter L ,which describes the lowest-order density dependence of the symmetry energy. A lower bound on neutron-matter incompressibility is also obtained. These bounds are found to be consistent with both recent calculations of the energies of PNM and constraints from nuclear experiments. Our results are significant because several equations of state that are currently used in astrophysical simulations of supernovae and neutron star mergers, as well as in nuclear physics simulations of heavy-ion collisions, have symmetry energy parameters that violate these bounds. Furthermore, below the nuclear saturation density, the bound on neutron-matter energies leads to a lower limit to the density-dependent symmetry energy, which leads to upper limits to the nuclear surface symmetry parameter and the neutron-star crust-core boundary. We also obtain a lower limit to the neutron-skin thicknesses of neutron-rich nuclei. Above the nuclear saturation density, the bound on neutron-matter energies also leads to an upper limit to the symmetry energy, with implications for neutron-star cooling via the direct Urca process.

  19. Trunk density profile estimates from dual X-ray absorptiometry.

    PubMed

    Wicke, Jason; Dumas, Geneviève A; Costigan, Patrick A

    2008-01-01

    Accurate body segment parameters are necessary to estimate joint loads when using biomechanical models. Geometric methods can provide individualized data for these models but the accuracy of the geometric methods depends on accurate segment density estimates. The trunk, which is important in many biomechanical models, has the largest variability in density along its length. Therefore, the objectives of this study were to: (1) develop a new method for modeling trunk density profiles based on dual X-ray absorptiometry (DXA) and (2) develop a trunk density function for college-aged females and males that can be used in geometric methods. To this end, the density profiles of 25 females and 24 males were determined by combining the measurements from a photogrammetric method and DXA readings. A discrete Fourier transformation was then used to develop the density functions for each sex. The individual density and average density profiles compare well with the literature. There were distinct differences between the profiles of two of participants (one female and one male), and the average for their sex. It is believed that the variations in these two participants' density profiles were a result of the amount and distribution of fat they possessed. Further studies are needed to support this possibility. The new density functions eliminate the uniform density assumption associated with some geometric models thus providing more accurate trunk segment parameter estimates. In turn, more accurate moments and forces can be estimated for the kinetic analyses of certain human movements.

  20. Determining the Local Dark Matter Density with SDSS G-dwarf data

    NASA Astrophysics Data System (ADS)

    Silverwood, Hamish; Sivertsson, Sofia; Read, Justin; Bertone, Gianfranco; Steger, Pascal

    2018-04-01

    We present a determination of the local dark matter density derived using the integrated Jeans equation method presented in Silverwood et al. (2016) applied to SDSS-SEGUE G-dwarf data processed by Büdenbender et al. (2015). For our analysis we construct models for the tracer density, dark matter and baryon distribution, and tilt term (linking radial and vertical motions), and then calculate the vertical velocity dispersion using the integrated Jeans equation. These models are then fit to the data using MultiNest, and a posterior distribution for the local dark matter density is derived. We find the most reliable determination to come from the α-young population presented in Büdenbender et al. (2015), yielding a result of ρDM = 0.46+0.07 -0.09 GeV cm-3 = 0.012+0.001 -0.002 M⊙ pc-3. Our results also illuminate the path ahead for future analyses using Gaia DR2 data, highlighting which quantities will need to be determined and which assumptions could be relaxed.

  1. Interaction of clumpy dark matter with interstellar medium in astrophysical systems

    NASA Astrophysics Data System (ADS)

    Baushev, A. N.

    2012-02-01

    Contemporary cosmological conceptions suggest that the dark matter in haloes of galaxies and galaxy clusters has most likely a clumpy structure. If a stream of gas penetrates through it, a small-scale gravitational field created by the clumps disturbs the flow resulting in momentum exchange between the stream and the dark matter. In this article, we perform an analysis of this effect, based on the hierarchical halo model of the dark matter structure and Navarro-Frenk-White density profiles. We consider the clumps of various masses, from the smallest up to the highest ones M≥ 109 M⊙. It has been found that in any event the effect grows with the mass of the clump: not only the drag force ? acting on the clump but also its acceleration ? increases. We discuss various astrophysical systems. The mechanism proved to be ineffective in the case of galaxy or galaxy cluster collisions. On the other hand, it played an important role during the process of galaxy formation. As a result, the dark matter should have formed a more compact, oblate and faster rotating substructure in the halo of our Galaxy. We have shown that this thick disc should be more clumpy than the halo. This fact is very important for the indirect detection experiments since it is the clumps that give the main contribution to the annihilation signal. Our calculations show that the mechanism of momentum exchange between the dark and baryon matter is ineffective on the outskirts of the galactic halo. It means that the clumps from there were not transported to the thick disc, and this region should be more clumpy than the halo on the average.

  2. ApoE influences regional white-matter axonal density loss in Alzheimer's disease.

    PubMed

    Slattery, Catherine F; Zhang, Jiaying; Paterson, Ross W; Foulkes, Alexander J M; Carton, Amelia; Macpherson, Kirsty; Mancini, Laura; Thomas, David L; Modat, Marc; Toussaint, Nicolas; Cash, David M; Thornton, John S; Henley, Susie M D; Crutch, Sebastian J; Alexander, Daniel C; Ourselin, Sebastien; Fox, Nick C; Zhang, Hui; Schott, Jonathan M

    2017-09-01

    Mechanisms underlying phenotypic heterogeneity in young onset Alzheimer disease (YOAD) are poorly understood. We used diffusion tensor imaging and neurite orientation dispersion and density imaging (NODDI) with tract-based spatial statistics to investigate apolipoprotein (APOE) ε4 modulation of white-matter damage in 37 patients with YOAD (22, 59% APOE ε4 positive) and 23 age-matched controls. Correlation between neurite density index (NDI) and neuropsychological performance was assessed in 4 white-matter regions of interest. White-matter disruption was more widespread in ε4+ individuals but more focal (posterior predominant) in the absence of an ε4 allele. NODDI metrics indicate fractional anisotropy changes are underpinned by combinations of axonal loss and morphological change. Regional NDI in parieto-occipital white matter correlated with visual object and spatial perception battery performance (right and left, both p = 0.02), and performance (nonverbal) intelligence (WASI matrices, right, p = 0.04). NODDI provides tissue-specific microstructural metrics of white-matter tract damage in YOAD, including NDI which correlates with focal cognitive deficits, and APOEε4 status is associated with different patterns of white-matter neurodegeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Generalized skew-symmetric interfacial probability distribution in reflectivity and small-angle scattering analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zhang; Chen, Wei

    Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.

  4. Generalized skew-symmetric interfacial probability distribution in reflectivity and small-angle scattering analysis

    DOE PAGES

    Jiang, Zhang; Chen, Wei

    2017-11-03

    Generalized skew-symmetric probability density functions are proposed to model asymmetric interfacial density distributions for the parameterization of any arbitrary density profiles in the `effective-density model'. The penetration of the densities into adjacent layers can be selectively controlled and parameterized. A continuous density profile is generated and discretized into many independent slices of very thin thickness with constant density values and sharp interfaces. The discretized profile can be used to calculate reflectivities via Parratt's recursive formula, or small-angle scattering via the concentric onion model that is also developed in this work.

  5. Constraining the Assembly History of Massive Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Newman, Andrew

    2013-01-01

    Massive elliptical galaxies are interesting locations to test hierarchical galaxy formation models, because mergers are thought to play a very important role in their evolution. These systems continue their assembly long after their stellar populations are “dead.” Since z ~ 2, they have grown in mass by a factor of ~2 and in size by a factor of ~4. Dissipationless (“dry”) mergers involving low-mass systems are thought to drive much of this expansion. I have tracked the rate of size growth experienced by quiescent galaxies to z ~ 1.5 using dynamical mass measures, based on Keck spectroscopy, and to z ~ 2.5 using photometric mass and size estimates derived from WFC3/IR imaging in the CANDELS survey. I have also quantified the abundance of faint companion galaxies around the same sources, in order to compare the rate of size growth with the estimated frequency of mergers. While mergers with close companions may account for most of the size growth seen at z < 1, they appear to fall short of explaining the more rapid growth seen at higher redshifts. This suggests additional modes of growth may be required. A merger-rich assembly history will impact the distribution of stellar and dark mass within the galaxy. At the extreme end of the mass function, brightest cluster galaxies (BCGs) are interesting locations to study the effects of mergers, since their assembly is expected to be dominated by late, dry, minor stellar accretion. I will present measurements of the stellar and dark matter density profiles within 7 BCGs derived from resolved stellar kinematics and gravitational lensing. Remarkably, the stellar and dark components “conspire” to produce total density profiles remarkably close to those seen in simulations containing only collisionless cold dark matter. I will briefly describe how this intriguing result might be understood in the context of a merger-rich assembly.

  6. Chandra X-ray spectroscopy of focused wind in the Cygnus X-1 system: II. The non-dip spectrum in the low/hard state – modulations with orbital phase

    DOE PAGES

    Miskovicova, Ivica; Hell, Natalie; Hanke, Manfred; ...

    2016-05-25

    Accretion onto the black hole in the system HDE 226868/Cygnus X-1 is powered by the strong line-driven stellar wind of the O-type donor star. We study the X-ray properties of the stellar wind in the hard state of Cyg X-1, as determined using data from the Chandra High Energy Transmission Gratings. Large density and temperature inhomogeneities are present in the wind, with a fraction of the wind consisting of clumps of matter with higher density and lower temperature embedded in a photoionized gas. Absorption dips observed in the light curve are believed to be caused by these clumps. This workmore » concentrates on the non-dip spectra as a function of orbital phase. The spectra show lines of H-like and He-like ions of S, Si, Na, Mg, Al, and highly ionized Fe (Fe xvii–Fe xxiv). We measure velocity shifts, column densities, and thermal broadening of the line series. The excellent quality of these five observations allows us to investigate the orbital phase-dependence of these parameters. We show that the absorber is located close to the black hole. Doppler shifted lines point at a complex wind structure in this region, while emission lines seen in some observations are from a denser medium than the absorber. Here, the observed line profiles are phase-dependent. Their shapes vary from pure, symmetric absorption at the superior conjunction to P Cygni profiles at the inferior conjunction of the black hole.« less

  7. The Santiago-Harvard-Edinburgh-Durham void comparison - I. SHEDding light on chameleon gravity tests

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; Paillas, Enrique; Cai, Yan-Chuan; Bose, Sownak; Armijo, Joaquin; Li, Baojiu; Padilla, Nelson

    2018-05-01

    We present a systematic comparison of several existing and new void-finding algorithms, focusing on their potential power to test a particular class of modified gravity models - chameleon f(R) gravity. These models deviate from standard general relativity (GR) more strongly in low-density regions and thus voids are a promising venue to test them. We use halo occupation distribution (HOD) prescriptions to populate haloes with galaxies, and tune the HOD parameters such that the galaxy two-point correlation functions are the same in both f(R) and GR models. We identify both three-dimensional (3D) voids and two-dimensional (2D) underdensities in the plane of the sky to find the same void abundance and void galaxy number density profiles across all models, which suggests that they do not contain much information beyond galaxy clustering. However, the underlying void dark matter density profiles are significantly different, with f(R) voids being more underdense than GR ones, which leads to f(R) voids having a larger tangential shear signal than their GR analogues. We investigate the potential of each void finder to test f(R) models with near-future lensing surveys such as EUCLID and LSST. The 2D voids have the largest power to probe f(R) gravity, with an LSST analysis of tunnel (which is a new type of 2D underdensity introduced here) lensing distinguishing at 80 and 11σ (statistical error) f(R) models with parameters, |fR0| = 10-5 and 10-6, from GR.

  8. Sustainability assessment of traditional fisheries in Cau Hai lagoon (South China Sea).

    PubMed

    Marconi, Michele; Sarti, Massimo; Marincioni, Fausto

    2010-01-01

    Overfishing and progressive environmental degradation of the Vietnamese Cau Hai coastal lagoon appear to be threatening the ecological integrity and water quality of the largest estuarine complex of Southeast Asia. This study assessed the relationships between the density of traditional fisheries and organic matter sedimentary contents in Cau Hai lagoon. Data revealed that the density of stake traps (the most common fishing gear used in this lagoon), decreasing hydrodynamic energy in shallow water, causes the accumulation of a large fraction of organic matter refractory to degradation. The relationship between biopolymeric carbon (a proxy of availability of organic matter) and stake traps density fits a S-shape curve. The logistic equation calculated a stake traps density of 90 m of net per hectare, as the threshold over which maximum accumulation of organic matter occurs in Cau Hai. With such level of stake trap density, and assuming a theoretical stationary status of the lagoon, the time necessary for the system to reach hypoxic conditions has been calculated to be circa three weeks. We recommend that this density threshold should not be exceeded in the Cau Hai lagoon and that further analyses of organic loads in the sediment should be conducted to monitor the trophic conditions of this highly eutrophicated lagoon. 2010 Elsevier Ltd. All rights reserved.

  9. Propulsion Physics Under the Changing Density Field Model

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  10. Quantum foam, gravitational thermodynamics, and the dark sector

    NASA Astrophysics Data System (ADS)

    Ng, Y. Jack

    2017-05-01

    Is it possible that the dark sector (dark energy in the form of an effective dynamical cosmological constant, and dark matter) has its origin in quantum gravity? This talk sketches a positive response. Here specifically quantum gravity refers to the combined effect of quantum foam (or spacetime foam due to quantum fluctuations of spacetime) and gravitational thermodynamics. We use two simple independent gedankan experiments to show that the holographic principle can be understood intuitively as having its origin in the quantum fluctuations of spacetime. Applied to cosmology, this consideration leads to a dynamical cosmological constant of the observed magnitude, a result that can also be obtained for the present and recent cosmic eras by using unimodular gravity and causal set theory. Next we generalize the concept of gravitational thermodynamics to a spacetime with positive cosmological constant (like ours) to reveal the natural emergence, in galactic dynamics, of a critical acceleration parameter related to the cosmological constant. We are then led to construct a phenomenological model of dark matter which we call “modified dark matter” (MDM) in which the dark matter density profile depends on both the cosmological constant and ordinary matter. We provide observational tests of MDM by fitting the rotation curves to a sample of 30 local spiral galaxies with a single free parameter and by showing that the dynamical and observed masses agree in a sample of 93 galactic clusters. We also give a brief discussion of the possibility that quanta of both dark energy and dark matter are non-local, obeying quantum Boltzmann statistics (also called infinite statistics) as described by a curious average of the bosonic and fermionic algebras. If such a scenario is correct, we can expect some novel particle phenomenology involving dark matter interactions. This may explain why so far no dark matter detection experiments have been able to claim convincingly to have detected dark matter.

  11. Cold dark matter: Controversies on small scales

    PubMed Central

    Weinberg, David H.; Bullock, James S.; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H. G.

    2015-01-01

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way’s dwarf galaxy satellites. We review the current observational and theoretical status of these “small-scale controversies.” Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years. PMID:25646464

  12. Utility of a Multiparametric Quantitative MRI Model That Assesses Myelin and Edema for Evaluating Plaques, Periplaque White Matter, and Normal-Appearing White Matter in Patients with Multiple Sclerosis: A Feasibility Study.

    PubMed

    Hagiwara, A; Hori, M; Yokoyama, K; Takemura, M Y; Andica, C; Kumamaru, K K; Nakazawa, M; Takano, N; Kawasaki, H; Sato, S; Hamasaki, N; Kunimatsu, A; Aoki, S

    2017-02-01

    T1 and T2 values and proton density can now be quantified on the basis of a single MR acquisition. The myelin and edema in a voxel can also be estimated from these values. The purpose of this study was to evaluate a multiparametric quantitative MR imaging model that assesses myelin and edema for characterizing plaques, periplaque white matter, and normal-appearing white matter in patients with MS. We examined 3T quantitative MR imaging data from 21 patients with MS. The myelin partial volume, excess parenchymal water partial volume, the inverse of T1 and transverse T2 relaxation times (R1, R2), and proton density were compared among plaques, periplaque white matter, and normal-appearing white matter. All metrics differed significantly across the 3 groups ( P < .001). Those in plaques differed most from those in normal-appearing white matter. The percentage changes of the metrics in plaques and periplaque white matter relative to normal-appearing white matter were significantly more different from zero for myelin partial volume (mean, -61.59 ± 20.28% [plaque relative to normal-appearing white matter], and mean, -10.51 ± 11.41% [periplaque white matter relative to normal-appearing white matter]), and excess parenchymal water partial volume (13.82 × 10 3 ± 49.47 × 10 3 % and 51.33 × 10 2 ± 155.31 × 10 2 %) than for R1 (-35.23 ± 13.93% and -6.08 ± 8.66%), R2 (-21.06 ± 11.39% and -4.79 ± 6.79%), and proton density (23.37 ± 10.30% and 3.37 ± 4.24%). Multiparametric quantitative MR imaging captures white matter damage in MS. Myelin partial volume and excess parenchymal water partial volume are more sensitive to the MS disease process than R1, R2, and proton density. © 2017 by American Journal of Neuroradiology.

  13. Hot-electron surface retention in intense short-pulse laser-matter interactions.

    PubMed

    Mason, R J; Dodd, E S; Albright, B J

    2005-07-01

    Implicit hybrid plasma simulations predict that a significant fraction of the energy deposited into hot electrons can be retained near the surface of targets with steep density gradients illuminated by intense short-pulse lasers. This retention derives from the lateral transport of heated electrons randomly emitted in the presence of spontaneous magnetic fields arising near the laser spot, from geometric effects associated with a small hot-electron source, and from E fields arising in reaction to the ponderomotive force. Below the laser spot hot electrons are axially focused into a target by the B fields, and can filament in moderate Z targets by resistive Weibel-like instability, if the effective background electron temperature remains sufficiently low. Carefully engineered use of such retention in conjunction with ponderomotive density profile steepening could result in a reduced hot-electron range that aids fast ignition. Alternatively, such retention may disturb a deeper deposition needed for efficient radiography and backside fast ion generation.

  14. High-resolution imaging of a shock front in plastic by phase contrast imaging at LCLS

    NASA Astrophysics Data System (ADS)

    Beckwith, M.; Jiang, S.; Zhao, Y.; Schropp, A.; Fernandez-Panella, A.; Rinderknecht, H. G.; Wilks, S.; Fournier, K.; Galtier, E.; Xing, Z.; Granados, E.; Gamboa, E.; Glenzer, S. H.; Heimann, P.; Zastrau, U.; Cho, B. I.; Eggert, J. H.; Collins, G. W.; Ping, Y.

    2017-10-01

    Understanding the propagation of shock waves is important for many areas of high energy density physics, including inertial confinement fusion (ICF) and shock compression science. In order to probe the shock front structures in detail, a diagnostic capable of detecting both the small spatial and temporal changes in the material is required. Here we show the experiment using hard X-ray phase contrast imaging (PCI) to probe the shock wave propagation in polyimide with submicron spatial resolution. The experiment was performed at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Lightsource (LCLS). PCI together with the femtosecond time scales of x-ray free electron lasers enables the imaging of optically opaque materials that undergo rapid temporal and spatial changes. The result reveals the evolution of the density profile with time. Work performed under DOE Contract No. DE-AC52-07NA27344 with support from OFES Early Career and LLNL LDRD program.

  15. Hypernuclei and the hyperon problem in neutron stars

    DOE PAGES

    Bedaque, Paulo F.; Steiner, Andrew W.

    2015-08-17

    The likely presence ofmore » $$\\Lambda$$ baryons in dense hadronic matter tends to soften the equation of state to an extend that the observed heaviest neutron stars are difficult to explain. Here we analyze this "hyperon problem" with a phenomenological approach. First, we review what can be learned about the interaction of $$\\Lambda$$ particle with dense matter from the observed hypernuclei and extend this phenomenological analysis to asymmetric matter. We add to this the current knowledge on non-strange dense matter, including its uncertainties, to conclude that the interaction between $$\\Lambda$$s and dense matter has to become repulsive at densities below three times the nuclear saturation density.« less

  16. Lower grey matter density and functional connectivity in the anterior insula in smokers compared to never-smokers

    PubMed Central

    Stoeckel, Luke E.; Chai, Xiaoqian J.; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A. Eden

    2015-01-01

    Rationale While nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. Objectives (1) To evaluate grey matter density and functional connectivity of the anterior insula in cigarette smokers and never-smokers and (2) characterize how differences in these measures related to smoking behavior. Methods We compared structural MRI (grey matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never-smokers. Results Compared to controls, smokers had lower grey matter density in left anterior insula extending into inferior frontal and temporal cortex. Grey matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lateral prefrontal cortex) and semantic processing / emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. Conclusions There were differences in the anterior insula, a central region in the brain’s salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, was also associated with an aspect of smoking behavior (daily cigarettes smoked). PMID:25990865

  17. Lower gray matter density and functional connectivity in the anterior insula in smokers compared with never smokers.

    PubMed

    Stoeckel, Luke E; Chai, Xiaoqian J; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A Eden

    2016-07-01

    Although nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. This study aimed to (1) evaluate gray matter density and functional connectivity of the anterior insula in cigarette smokers and never smokers and (2) characterize how differences in these measures were related to smoking behavior. We compared structural magnetic resonance imaging (MRI) (gray matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never smokers. Compared with controls, smokers had lower gray matter density in left anterior insula extending into inferior frontal and temporal cortex. Gray matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lPFC) and semantic processing/emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. There were differences in the anterior insula, a central region in the brain's salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, were also associated with an aspect of smoking behavior (daily cigarettes smoked). © 2015 Society for the Study of Addiction.

  18. Non-stationary self-focusing of intense laser beam in plasma using ramp density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M.; Ghamari, F.

    2011-10-15

    The non-stationary self-focusing of high intense laser beam in under-dense plasma with upward increasing density ramp is investigated. The obtained results show that slowly increasing plasma density ramp is very important in enhancing laser self-focusing. Also, the spot size oscillations of laser beam in front and rear of the pulse for two different density profiles are shown. We have selected density profiles that already were used by Sadighi-Bonabi et al.[Phys. Plasmas 16, 083105 (2009)]. Ramp density profile causes the laser beam to become more focused and penetrations deeps into the plasma by reduction of diffraction effects. Our computations show moremore » reliable results in comparison to the previous works.« less

  19. New Views on Dark Matter from Emergent Gravity

    NASA Astrophysics Data System (ADS)

    Sun, Sichun; Zhang, Yun-Long

    2018-01-01

    We discuss a scenario that apparent dark matter comes from the induced gravity in the (3+1)- dimensional spacetime, which can be embedded into one higher dimensional flat spacetime. The stress tensor of dark energy and dark matter is identified with the Brown-York stress tensor on the hypersurface, and we find an interesting constraint relation between the dark matter and dark energy density parameter and baryonic density parameter. Our approach may show a new understanding for Verlinde's emergent gravity from higher dimensions. We also comment on some phenomenological implications, including gravitational wave solutions and MOND limit.

  20. The median density of the Universe

    NASA Astrophysics Data System (ADS)

    Stücker, Jens; Busch, Philipp; White, Simon D. M.

    2018-03-01

    Despite the fact that the mean matter density of the universe has been measured to an accuracy of a few percent within the standard ΛCDM paradigm, its median density is not known even to order of magnitude. Typical points lie in low-density regions and are not part of a collapsed structure of any scale. Locally, the dark matter distribution is then simply a stretched version of that in the early universe. In this single-stream regime, the distribution of unsmoothed density is sensitive to the initial power spectrum on all scales, in particular on very small scales, and hence to the nature of the dark matter. It cannot be estimated reliably using conventional cosmological simulations because of the enormous dynamic range involved, but a suitable excursion set procedure can be used instead. For the Planck cosmological parameters, a 100 GeV WIMP, corresponding to a free-streaming mass ˜10-6M⊙, results in a median density of ˜4 × 10-3 in units of the mean density, whereas a 10 μeV axion with free-streaming mass ˜10-12M⊙ gives ˜3 × 10-3, and Warm Dark Matter with a (thermal relic) mass of 1 keV gives ˜8 × 10-2. In CDM (but not in WDM) universes, single-stream regions are predicted to be topologically isolated by the excursion set formalism. A test by direct N-Body simulations seems to confirm this prediction, although it is still subject to finite size and resolution effects. Unfortunately, it is unlikely that any of these properties is observable and so suitable for constraining the properties of dark matter.

  1. Charged anisotropic matter with linear or nonlinear equation of state

    NASA Astrophysics Data System (ADS)

    Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi

    2010-08-01

    Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua’s method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (1019C) and maximum electric field intensities are very large (1023-1024statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.

  2. Self-Heating Dark Matter via Semiannihilation

    NASA Astrophysics Data System (ADS)

    Kamada, Ayuki; Kim, Hee Jung; Kim, Hyungjin; Sekiguchi, Toyokazu

    2018-03-01

    The freeze-out of dark matter (DM) depends on the evolution of the DM temperature. The DM temperature does not have to follow the standard model one, when the elastic scattering is not sufficient to maintain the kinetic equilibrium. We study the temperature evolution of the semiannihilating DM, where a pair of the DM particles annihilate into one DM particle and another particle coupled to the standard model sector. We find that the kinetic equilibrium is maintained solely via semiannihilation until the last stage of the freeze-out. After the freeze-out, semiannihilation converts the mass deficit to the kinetic energy of DM, which leads to nontrivial evolution of the DM temperature. We argue that the DM temperature redshifts like radiation as long as the DM self-interaction is efficient. We dub this novel temperature evolution as self-heating. Notably, the structure formation is suppressed at subgalactic scales like keV-scale warm DM but with GeV-scale self-heating DM if the self-heating lasts roughly until the matter-radiation equality. The long duration of the self-heating requires the large self-scattering cross section, which in turn flattens the DM density profile in inner halos. Consequently, self-heating DM can be a unified solution to apparent failures of cold DM to reproduce the observed subgalactic scale structure of the Universe.

  3. Detecting dark matter with imploding pulsars in the galactic center.

    PubMed

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  4. Dark matter annihilation at the galactic center

    NASA Astrophysics Data System (ADS)

    Linden, Tim

    Observations by the WMAP and PLANCK satellites have provided extraordinarily accurate observations on the densities of baryonic matter, dark matter, and dark energy in the universe. These observations indicate that our universe is composed of approximately five times as much dark matter as baryonic matter. However, efforts to detect a particle responsible for the energy density of dark matter have been unsuccessful. Theoretical models have indicated that a leading candidate for the dark matter is the lightest supersymmetric particle, which may be stable due to a conserved R-parity. This dark matter particle would still be capable of interacting with baryons via weak-force interactions in the early universe, a process which was found to naturally explain the observed relic abundance of dark matter today. These residual annihilations can persist, albeit at a much lower rate, in the present universe, providing a detectable signal from dark matter annihilation events which occur throughout the universe. Simulations calculating the distribution of dark matter in our galaxy almost universally predict the galactic center of the Milky Way Galaxy (GC) to provide the brightest signal from dark matter annihilation due to its relative proximity and large simulated dark matter density. Recent advances in telescope technology have allowed for the first multiwavelength analysis of the GC, with suitable effective exposure, angular resolution, and energy resolution in order to detect dark matter particles with properties similar to those predicted by the WIMP miracle. In this work, I describe ongoing efforts which have successfully detected an excess in gamma-ray emission from the region immediately surrounding the GC, which is difficult to describe in terms of standard diffuse emission predicted in the GC region. While the jury is still out on any dark matter interpretation of this excess, I describe several related observations which may indicate a dark matter origin. Finally, I discuss the role of future telescopes in differentiating a dark matter model from astrophysical emission.

  5. Variation in sensitivity, absorption and density of the central rod distribution with eccentricity.

    PubMed

    Tornow, R P; Stilling, R

    1998-01-01

    To assess the human rod photopigment distribution and sensitivity with high spatial resolution within the central +/-15 degrees and to compare the results of pigment absorption, sensitivity and rod density distribution (number of rods per square degree). Rod photopigment density distribution was measured with imaging densitometry using a modified Rodenstock scanning laser ophthalmoscope. Dark-adapted sensitivity profiles were measured with green stimuli (17' arc diameter, 1 degrees spacing) using a T ubingen manual perimeter. Sensitivity profiles were plotted on a linear scale and rod photopigment optical density distribution profiles were converted to absorption profiles of the rod photopigment layer. Both the absorption profile of the rod photopigment and the linear sensitivity profile for green stimuli show a minimum at the foveal center and increase steeply with eccentricity. The variation with eccentricity corresponds to the rod density distribution. Rod photopigment absorption profiles, retinal sensitivity profiles, and the rod density distribution are linearly related within the central +/-15 degrees. This is in agreement with theoretical considerations. Both methods, imaging retinal densitometry using a scanning laser ophthalmoscope and dark-adapted perimetry with small green stimuli, are useful for assessing the central rod distribution and sensitivity. However, at present, both methods have limitations. Suggestions for improving the reliability of both methods are given.

  6. Higher dimensional strange quark matter solutions in self creation cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Şen, R., E-mail: ramazansen-1991@hotmail.com; Aygün, S., E-mail: saygun@comu.edu.tr

    In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.

  7. DIFFERENTIAL GENE EXPRESSION PROFILES IN RAT TRACHAEL EPITHELIAL (RTE) CELLS IN RESPONSE TO COMBUSTION-SOURCE PARTICULATE MATTER (PM) AND VANADIUM (V) A PRIMARY METAL CONSTITUENT

    EPA Science Inventory

    Differential gene expression profiles in rat tracheal epithelial (RTE) cells in response to combustion-source particulate matter (PM) and vanadium (V) a primary metal constituent
    Srikanth S. Nadadur, Janice A. Dye and Daniel L. Costa, US EPA, ORD, NHEERL (ETD, Pulmonary Toxico...

  8. No signatures of black hole spin in the X-ray spectrum of the Seyfert 1 galaxy Fairall 9

    NASA Astrophysics Data System (ADS)

    Yaqoob, T.; Turner, T. J.; Tatum, M. M.; Trevor, M.; Scholtes, A.

    2016-11-01

    Fairall 9 is one of several type 1 active galactic nuclei for which it has been claimed that the angular momentum (or spin) of the supermassive black hole can be robustly measured, using the Fe Kα emission line and Compton-reflection continuum in the X-ray spectrum. The method rests upon the interpretation of the Fe Kα line profile and associated Compton-reflection continuum in terms of relativistic broadening in the strong gravity regime in the innermost regions of an accretion disc, within a few gravitational radii of the black hole. Here, we re-examine a Suzaku X-ray spectrum of Fairall 9 and show that a face-on toroidal X-ray reprocessor model involving only non-relativistic and mundane physics provides an excellent fit to the data. The Fe Kα line emission and Compton-reflection continuum are calculated self-consistently, the iron abundance is solar, and an equatorial column density of ˜ 1024 cm- 2 is inferred. In this scenario, neither the Fe Kα line nor the Compton-reflection continuum provides any information on the black hole spin. Whereas previous analyses have assumed an infinite column density for the distant-matter reprocessor, the shape of the reflection spectrum from matter with a finite column density eliminates the need for a relativistically broadened Fe Kα line. We find a 90 per cent confidence range in the Fe Kα line full width at half-maximum of 1895-6205 km s- 1, corresponding to a distance of ˜3100 to 33 380 gravitational radii from the black hole, or 0.015-0.49 pc for a black hole mass of ˜1-3 × 108 M⊙.

  9. Absorber Model: the Halo-like model for the Lyman-α forest

    NASA Astrophysics Data System (ADS)

    Iršič, Vid; McQuinn, Matthew

    2018-04-01

    We present a semi-analytic model for the Lyman-α forest that is inspired by the Halo Model. This model is built on the absorption line decomposition of the forest. Flux correlations are decomposed into those within each absorption line (the 1-absorber term) and those between separate lines (the 2-absorber term), treating the lines as biased tracers of the underlying matter fluctuations. While the nonlinear exponential mapping between optical depth and flux requires an infinite series of moments to calculate any statistic, we show that this series can be re-summed (truncating at the desired order in the linear matter overdensity). We focus on the z=2–3 line-of-sight power spectrum. Our model finds that 1-absorber term dominates the power on all scales, with most of its contribution coming from H I columns of 1014–1015 cm‑2, while the smaller 2-absorber contribution comes from lower columns that trace overdensities of a few. The prominence of the 1-absorber correlations indicates that the line-of-sight power spectrum is shaped principally by the lines' number densities and their absorption profiles, with correlations between lines contributing to a lesser extent. We present intuitive formulae for the effective optical depth as well as the large-scale limits of 1-absorber and 2-absorber terms, which simplify to integrals over the H I column density distribution with different equivalent-width weightings. With minimalist models for the bias of absorption systems and their peculiar velocity broadening, our model predicts values for the density bias and velocity gradient bias that are consistent with those found in simulations.

  10. How deep does disturbance go? The legacy of hurricanes on tropical forest soil biogeochemistry

    NASA Astrophysics Data System (ADS)

    Gutiérrez del Arroyo, O.; Silver, W. L.

    2016-12-01

    Ecosystem-scale disturbances, such as hurricanes and droughts, are periodic events with the capacity to cycle vast amounts of energy and matter. Such is the case of hurricanes in wet tropical forests, where intense winds defoliate the forest canopy and deposit large quantities of debris on the forest floor. These disturbances strongly affect soil biogeochemistry by altering soil moisture and temperature regimes, as well as litterfall, decomposition rates, and ultimately soil carbon (C) pools. Although these impacts are mostly concentrated near the soil surface, it is critical to consider the long-term effects on hurricanes on the deep soil profile, given the potential for soil C sequestration to occur at depth. Our study was conducted in the Canopy Trimming Experiment, an ongoing experiment within the Luquillo LTER in Puerto Rico. Ten years prior to our study, treatments including canopy trimming and debris deposition, independently and in combination, were imposed on 30 x 30 m plots within Tabonuco forests. We sampled 12 soil profiles (4 treatments, n=3) from 0 to 100 cm, at 10 cm intervals, and measured a suite of biogeochemical properties to explore treatment effects, as well as changes with depth. After a decade of recovery from the imposed treatments, there were no significant differences in soil moisture or soil pH among treatments at any depth, although significant changes with depth occurred for both variables. Iron concentrations, despite showing no treatment effects, decreased markedly with depth, highlighting the biogeochemical thresholds that occur along the soil profile. Notably, debris deposition resulted in significantly higher soil C, nitrogen (N), and phosphorus (P) concentrations in bulk soils, with effects being detected even at depths >50 cm. Moreover, density fractionation analyses of surface and deep soils revealed potential pathways for the measured increases in C, N, and P, including the accumulation of organic matter in the light fraction, as well as physiochemical interactions between organic molecules and minerals in the heavy fraction. Together, our data suggests that hurricane disturbances, by providing unusually large quantities of litterfall, can serve as a periodic subsidy of organic matter to the soil, which helps to maintain soil fertility and promote soil C sequestration.

  11. Validation of COSMIC radio occultation electron density profiles by incoherent scatter radar data

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina

    The COSMIC/FORMOSAT-3 is a joint US/Taiwan radio occultation mission consisting of six identical micro-satellites. Each microsatellite has a GPS Occultation Experiment payload to operate the ionospheric RO measurements. FS3/COSMIC data can make a positive impact on global ionosphere study providing essential information about height electron density distribu-tion. For correct using of the RO electron density profiles for geophysical analysis, modeling and other applications it is necessary to make validation of these data with electron density distributions obtained by another measurement techniques such as proven ground based facili-ties -ionosondes and IS radars. In fact as the ionosondes provide no direct information on the profile above the maximum electron density and the topside ionosonde profile is obtained by fitting a model to the peak electron density value, the COSMIC RO measurements can make an important contribution to the investigation of the topside part of the ionosphere. IS radars provide information about the whole electron density profile, so we can estimate the agreement of topside parts between two independent measurements. To validate the reliability of COS-MIC data we have used the ionospheric electron density profiles derived from IS radar located near Kharkiv, Ukraine (geographic coordinates: 49.6N, 36.3E, geomagnetic coordinates: 45.7N, 117.8E). The Kharkiv radar is a sole incoherent scatter facility on the middle latitudes of Eu-ropean region. The radar operates with 100-m zenith parabolic antenna at 158 MHz with peak transmitted power 2.0 MW. The Kharkiv IS radar is able to determine the heights-temporal distribution of ionosphere parameters in height range of 70-1500 km. At the ionosphere in-vestigation by incoherent scatter method there are directly measured the power spectrum (or autocorrelation function) of scattered signal. With using of rather complex procedure of the received signal processing it is possible to estimate the majority of the ionospheric parameters -density and kinetic temperature of electron and main ions, the plasma drift velocity and others. The comparison of RO reveals that usually COSMIC RO profiles are in a rather good agreement with ISR profiles both in the F2 layer peak electron density (NmF2) and the form of profiles. The coincidence of profiles is better in the cases when projection of the ray path of tangent points is closer to the ISR location. It is necessary to note that retrieved electron density profiles should not be interpreted as actual vertical profiles. The geographical location of the ray path tangent points at the top and at the bottom of a profile may differ by several hundred kilometers. So the spatial smearing of data takes place and RO technique represents an image of vertical and horizontal ionospheric structure. That is why the comparison with ground-based data has rather relative character. We derived quantitative parameters to char-acterize the differences of the compared profiles: the peak height difference, the relative peak density difference. Most of the compared profiles agree within error limits, depending on the accuracy of the occultation-and the radar-derived profiles. In general COSMIC RO profiles are in a good agreement with incoherent radar profiles both in the F2 layer peak electron density (NmF2) and the form of the profiles. The coincidence of COSMIC and incoherent radar pro-files is better in the cases when projection of the ray path tangent points is closer to the radar location. COSMIC measurements can be efficiently used to study the topside part of the iono-spheric electron density. To validate the reliability of the COSMIC ionospheric observations it must be done the big work on the analysis and statistical generalization of the huge data array (today the total number of ionospheric occultation is more than 2.300.000), but this technique is a very promising one to retrieve accurate profiles of the ionospheric electron density with ground-based measurements on a global scale. We acknowledge the Taiwan's National Space Organization (NSPO) and the University Corporation for Atmospheric Research (UCAR) for providing the COSMIC Data.

  12. The cosmological dependence of cluster density profiles

    NASA Technical Reports Server (NTRS)

    Crone, Mary M.; Evrard, August E.; Richstone, Douglas O.

    1994-01-01

    We use N-body simulations to study the shape of mean cluster density and velocity profiles in the nonlinear regime formed via gravitational instability. The dependence of the final structure on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k) varies as k(exp n). Einstein-de Sitter, open (Omega(sub 0) = 0.2 and 0.1) and flat, low density (Omega(sub 0) = 0.2 lambda(sub 0) = 0.8) models are examined, with initial spectral indices n = -2, -1 and 0. For each model, we stack clusters in an appropriately scaled manner to define an average density profile in the nonlinear regime. The profiles are well fit by a power law rho(r) varies as r(exp -alpha) for radii whereat the local density contrast is between 100 and 3000. This covers 99% of the cluster volume. We find a clear trend toward steeper slopes (larger alphas) with both increasing n and decreasing Omega(sub 0). The Omega(sub 0) dependence is partially masked by the n dependence; there is degeneracy in the values of alpha between the Einstein-de Sitter and flat, low-density cosmologies. However, the profile slopes in the open models are consistently higher than the Omega = 1 values for the range of n examined. Cluster density profiles are thus potentially useful cosmological diagnostics. We find no evidence for a constant density core in any of the models, although the density profiles do tend to flatten at small radii. Much of the flattening is due to the force softening required by the simulations. An attempt is made to recover the unsoftened profiles assuming angular momentum invariance. The recovered profiles in Einstein-de Sitter cosmologies are consistent with a pure power law up to the highest density contrasts (10(exp 6)) accessible with our resolution. The low-density models show significant deviation from a power law above density contrasts approximately 10(exp 5). We interpret this curvature as reflecting the non-scale-invariant nature of the background cosmology in these models. These results are at the limit of our resolution and so should be tested in the future using simulations with larger numbers of particles. Such simulations will also provide insight on the broader problem of understanding, in a statistical sense, the full phase space structure of collapsed, cosmological halos.

  13. Mapping Soil Organic Matter with Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our profile. Smaller interesting regions can also easily be selected from the hyperspectral images for more detailed study at microscopic scale.

  14. Streaked x-ray backlighting with twin-slit imager for study of density profile and trajectory of low-density foam target filled with deuterium liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiraga, H.; Mahigashi, N.; Yamada, T.

    2008-10-15

    Low-density plastic foam filled with liquid deuterium is one of the candidates for inertial fusion target. Density profile and trajectory of 527 nm laser-irradiated planer foam-deuterium target in the acceleration phase were observed with streaked side-on x-ray backlighting. An x-ray imager employing twin slits coupled to an x-ray streak camera was used to simultaneously observe three images of the target: self-emission from the target, x-ray backlighter profile, and the backlit target. The experimentally obtained density profile and trajectory were in good agreement with predictions by one-dimensional hydrodynamic simulation code ILESTA-1D.

  15. Peculiarities in velocity dispersion and surface density profiles of star clusters

    NASA Astrophysics Data System (ADS)

    Küpper, Andreas H. W.; Kroupa, Pavel; Baumgardt, Holger; Heggie, Douglas C.

    2010-10-01

    Based on our recent work on tidal tails of star clusters we investigate star clusters of a few 104Msolar by means of velocity dispersion profiles and surface density profiles. We use a comprehensive set of N-body computations of star clusters on various orbits within a realistic tidal field to study the evolution of these profiles with time, and ongoing cluster dissolution. From the velocity dispersion profiles we find that the population of potential escapers, i.e. energetically unbound stars inside the Jacobi radius, dominates clusters at radii above about 50 per cent of the Jacobi radius. Beyond 70 per cent of the Jacobi radius nearly all stars are energetically unbound. The velocity dispersion therefore significantly deviates from the predictions of simple equilibrium models in this regime. We furthermore argue that for this reason this part of a cluster cannot be used to detect a dark matter halo or deviations from the Newtonian gravity. By fitting templates to about 104 computed surface density profiles we estimate the accuracy which can be achieved in reconstructing the Jacobi radius of a cluster in this way. We find that the template of King works well for extended clusters on nearly circular orbits, but shows significant flaws in the case of eccentric cluster orbits. This we fix by extending this template with three more free parameters. Our template can reconstruct the tidal radius over all fitted ranges with an accuracy of about 10 per cent, and is especially useful in the case of cluster data with a wide radial coverage and for clusters showing significant extra-tidal stellar populations. No other template that we have tried can yield comparable results over this range of cluster conditions. All templates fail to reconstruct tidal parameters of concentrated clusters, however. Moreover, we find that the bulk of a cluster adjusts to the mean tidal field which it experiences and not to the tidal field at perigalacticon as has often been assumed in other investigations, i.e. a fitted tidal radius is a cluster's time average mean tidal radius and not its perigalactic one. Furthermore, we study the tidal debris in the vicinity of the clusters and find it to be well represented by a power law with a slope of -4 to -5. This steep slope we ascribe to the epicyclic motion of escaped stars in the tidal tails. Star clusters close to apogalacticon show a significantly shallower slope of up to -1, however. We suggest that clusters at apogalacticon can be identified by measuring this slope.

  16. Matter under extreme conditions experiments at the Linac Coherent Light Source

    DOE PAGES

    Glenzer, S. H.; Fletcher, L. B.; Galtier, E.; ...

    2015-12-10

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source (LCLS) is a new tool enabling accurate pump-probe measurements for studying the physical properties of matter in the high-energy density physics regime. This instrument combines the world’s brightest x-ray source, the LCLS x-ray beam, with high-power lasers consisting of two nanosecond Nd:glass laser beams and one short-pulse Ti:sapphire laser. These lasers produce short-lived states of matter with high pressures, high temperatures or high densities with properties that are important for applications in nuclear fusion research, laboratory astrophysics and the development of intense radiation sources. In the firstmore » experiments, we have performed highly accurate x-ray diffraction and x-ray Thomson scattering techniques on shock-compressed matter resolving the transition from compressed solid matter to a co-existence regime and into the warm dense matter state. Furthermore, these complex charged-particle systems are dominated by strong correlations and quantum effects. They exist in planetary interiors and laboratory experiments, e.g., during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions. Applying record peak brightness X rays resolves the ionic interactions at atomic (Ångstrom) scale lengths and measure the static structure factor, which is a key quantity for determining equation of state data and important transport coefficients. Simultaneously, spectrally resolved measurements of plasmon features provide dynamic structure factor information that yield temperature and density with unprecedented precision at micron-scale resolution in dynamic compression experiments. This set of studies demonstrates our ability to measure fundamental thermodynamic properties that determine the state of matter in the high-energy density physics regime.« less

  17. A Molecular Budget for a Peatland Based Upon 13C Solid-State Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Moody, Catherine S.; Worrall, Fred; Clay, Gareth D.; Burt, Tim P.; Apperley, David C.; Rose, Rob

    2018-02-01

    Peatlands can accumulate organic matter into long-term carbon (C) storage within the soil profile. This study used solid-state 13C nuclear magnetic resonance (13C-NMR) to investigate the transit of organic C through a peatland ecosystem to understand the molecular budget that accompanies the long-term accumulation of C. Samples of biomass, litter, peat soil profile, particulate organic matter, and dissolved organic matter (DOM) were taken from the Moor House National Nature Reserve, a peat-covered catchment in northern England where both the dry matter and C budget for the ecosystem were known. The results showed that: The interpretation of the 13C-NMR spectra shows that polysaccharides are preferentially removed through the ecosystem, while lignin components are preferentially retained and come to dominate the organic matter accumulated at depth in the profile. The DOM is derived from the oxidation of both biomass and the degradation of lignin, while the particulate organic matter is derived from erosion of the peat profile. The DOM is differentiated by its proportion of oxidized functional groups and not by its aromatic content. The changes in functionality leading to DOM production suggest side chain oxidation resulting in C-C cleavage/depolymerisation of lignin, a common reaction within white rot fungi. The 13C-NMR budget shows that O-alkyl functional groups are disproportionately lost between primary production and accumulation in the deep peat, while C-alkyl functional groups are disproportionately preserved. The carbon lost as gases (CO2 and CH4) was estimated to be composed of 93% polysaccharide-derived carbon and 7% lignin-derived carbon.

  18. Density effects on the electronic contribution to hydrogen Lyman alpha Stark profiles

    NASA Astrophysics Data System (ADS)

    Motapon, O.

    1998-01-01

    The quantum unified theory of Stark broadening (Tran Minh et al. 1975, Feautrier et al. 1976) is used to study the density effects on the electronic contribution to the hydrogen Lyman alpha lineshape. The contribution of the first angular momenta to the total profile is obtained by an extrapolation method, and the results agree with other approaches. The comparison made with Vidal et al. (1973) shows a good agreement; and the electronic profile is found to be linear in density for | Delta lambda right | greater than 8 Angstroms for densities below 10(17) cm(-3) , while the density dependence becomes more complex for | Delta lambda right | less than 8 Angstroms. The wing profiles are calculated at various temperatures scaling from 2500 to 40000K and a polynomial fit of these profiles is given.

  19. Aging of Secondary Organic Aerosol from β-Pinene: Changes in Chemical Composition, Density and Morphology

    NASA Astrophysics Data System (ADS)

    Sarrafzadeh, M.; Hastie, D. R.

    2013-12-01

    Biogenic volatile organic compounds (VOC) are emitted in large quantities into the atmosphere. These VOC, which includes β-pinene, can react to produce secondary organic aerosols (SOA), which contribute to a substantial fraction of ambient organic aerosols and are known to adversely affect visibility, climate and health. Despite this, the current knowledge regarding the SOA composition, their physical properties and the chemical aging processes they undergo in the atmosphere is limited. In this study, chemical aging of SOA generated from the photooxidation of β-pinene was investigated in the York University smog chamber. The formation and aging of both gas and particle phase products were analyzed using an atmospheric pressure chemical ionization triple quadrupole mass spectrometer. The density of secondary organic matter was also simultaneously measured over the course of the aging experiments, allowing us to improve our understanding in changes in particle composition that may occur. In addition, particle phase and shape was investigated for generated particles from β-pinene oxidation by scanning electron microscope (SEM). Results of this work, including particle density and morphology will be presented as well as comparisons of gas and particle phase products time profiles during aging.

  20. Wetting of heterogeneous substrates. A classical density-functional-theory approach

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Peter; Parry, Andrew O.; Rascón, Carlos; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim

    2017-11-01

    Wetting is a nucleation of a third phase (liquid) on the interface between two different phases (solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid-fluid and fluid-substrate intermolecular interactions leads to the appearance of a whole ``zoo'' of exciting interface phase transitions, associated with the formation of nano-droplets/bubbles, and thin films. Practical applications of wetting at small scales are numerous and include the design of lab-on-a-chip devices and superhydrophobic surfaces. In this talk, we will use a fully microscopic approach to explore the phase space of a planar wall, decorated with patches of different hydrophobicity, and demonstrate the highly non-trivial behaviour of the liquid-gas interface near the substrate. We will present fluid density profiles, adsorption isotherms and wetting phase diagrams. Our analysis is based on a formulation of statistical mechanics, commonly known as classical density-functional theory. It provides a computationally-friendly and rigorous framework, suitable for probing small-scale physics of classical fluids and other soft-matter systems. EPSRC Grants No. EP/L027186,EP/K503733;ERC Advanced Grant No. 247031.

  1. Group galaxy number density profiles far out: Is the `one-halo' term NFW out to >10 virial radii?

    NASA Astrophysics Data System (ADS)

    Trevisan, M.; Mamon, G. A.; Stalder, D. H.

    2017-10-01

    While the density profiles (DPs) of Lambda cold dark matter haloes obey the Navarro, Frenk & White (NFW) law out to roughly one virial radius, rvir, the structure of their outer parts is still poorly understood, because the one-halo term describing the halo itself is dominated by the two-halo term representing the other haloes picked up. Using a semi-analytical model, we measure the real-space one-halo number DP of groups out to 20rvir by assigning each galaxy to its nearest group above mass Ma, in units of the group rvir. If Ma is small (large), the outer DP of groups falls rapidly (slowly). We find that there is an optimal Ma for which the stacked DP resembles the NFW model to 0.1 dex accuracy out to 13 virial radii. We find similar long-range NFW surface DPs (out to 10rvir) in the Sloan Digital Sky Survey observations using a galaxy assignment scheme that combines the non-linear virialized regions of groups with their linear outer parts. The optimal Ma scales as the minimum mass of the groups that are stacked to a power 0.25-0.3. The NFW model thus does not solely originate from violent relaxation. Moreover, populating haloes with galaxies using halo occupation distribution models must proceed out to much larger radii than usually done.

  2. Galaxy clusters in the context of superfluid dark matter

    NASA Astrophysics Data System (ADS)

    Hodson, Alistair O.; Zhao, Hongsheng; Khoury, Justin; Famaey, Benoit

    2017-11-01

    Context. The mass discrepancy in the Universe has not been solved by the cold dark matter (CDM) or the modified Newtonian dynamics (MOND) paradigms so far. The problems and solutions of either scenario are mutually exclusive on large and small scales. It has recently been proposed, by assuming that dark matter is a superfluid, that MOND-like effects can be achieved on small scales whilst preserving the success of ΛCDM on large scales. Detailed models within this "superfluid dark matter" (SfDM) paradigm are yet to be constructed. Aims: Here, we aim to provide the first set of spherical models of galaxy clusters in the context of SfDM. We aim to determine whether the superfluid formulation is indeed sufficient to explain the mass discrepancy in galaxy clusters. Methods: The SfDM model is defined by two parameters. Λ can be thought of as a mass scale in the Lagrangian of the scalar field that effectively describes the phonons, and it acts as a coupling constant between the phonons and baryons. m is the mass of the DM particles. Based on these parameters, we outline the theoretical structure of the superfluid core and the surrounding "normal-phase" dark halo of quasi-particles. The latter are thought to encompass the largest part of galaxy clusters. Here, we set the SfDM transition at the radius where the density and pressure of the superfluid and normal phase coincide, neglecting the effect of phonons in the superfluid core. We then apply the formalism to a sample of galaxy clusters, and directly compare the SfDM predicted mass profiles to data. Results: We find that the superfluid formulation can reproduce the X-ray dynamical mass profile of clusters reasonably well, but with a slight under-prediction of the gravity in the central regions. This might be partly related to our neglecting of the effect of phonons in these regions. Two normal-phase halo profiles are tested, and it is found that clusters are better defined by a normal-phase halo resembling an Navarro-Frenk-White-like structure than an isothermal profile. Conclusions: In this first exploratory work on the topic, we conclude that depending on the amount of baryons present in the central galaxy and on the actual effect of phonons in the inner regions, this superfluid formulation could be successful in describing galaxy clusters. In the future, our model could be made more realistic by exploring non-sphericity and a more realistic SfDM to normal phase transition. The main result of this study is an estimate of the order of magnitude of the theory parameters for the superfluid formalism to be reasonably consistent with clusters. These values will have to be compared to the true values needed in galaxies.

  3. Impact of semi-annihilation of ℤ{sub 3} symmetric dark matter with radiative neutrino masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Mayumi; Toma, Takashi

    2014-09-08

    We investigate a ℤ{sub 3} symmetric model with two-loop radiative neutrino masses. Dark matter in the model is either a Dirac fermion or a complex scalar as a result of an unbroken ℤ{sub 3} symmetry. In addition to standard annihilation processes, semi-annihilation of the dark matter contributes to the relic density. We study the effect of the semi-annihilation in the model and find that those contributions are important to obtain the observed relic density. The experimental signatures in dark matter searches are also discussed, where some of them are expected to be different from the signatures of dark matter inmore » ℤ{sub 2} symmetric models.« less

  4. Impact of semi-annihilation of Z{sub 3} symmetric dark matter with radiative neutrino masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Mayumi; Toma, Takashi, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@durham.ac.uk

    2014-09-01

    We investigate a Z{sub 3} symmetric model with two-loop radiative neutrino masses. Dark matter in the model is either a Dirac fermion or a complex scalar as a result of an unbroken Z{sub 3} symmetry. In addition to standard annihilation processes, semi-annihilation of the dark matter contributes to the relic density. We study the effect of the semi-annihilation in the model and find that those contributions are important to obtain the observed relic density. The experimental signatures in dark matter searches are also discussed, where some of them are expected to be different from the signatures of dark matter inmore » Z{sub 2} symmetric models.« less

  5. Neural network evaluation of reflectometry density profiles for control purposes

    NASA Astrophysics Data System (ADS)

    Santos, J.; Nunes, F.; Manso, M.; Nunes, I.

    1999-01-01

    Broadband reflectometry is a diagnostic that is able to measure the density profile with high spatial and temporal resolutions, therefore it can be used to improve the performance of advanced tokamak operation modes and to supplement or correct the magnetics for plasma position control. To perform these tasks real-time processing is needed. Here we present a method that uses a neural network to make a fast evaluation of radial positions for selected density layers. Typical ASDEX Upgrade density profiles were used to generate the simulated network training and test sets. It is shown that the method has the potential to meet the tight timing requirements of control applications with the required accuracy. The network is also able to provide an accurate estimation of the position of density layers below the first density layer which is probed by an O-mode reflectometer, provided that it is trained with a realistic density profile model.

  6. Simplified phenomenology for colored dark sectors

    NASA Astrophysics Data System (ADS)

    El Hedri, Sonia; Kaminska, Anna; de Vries, Maikel; Zurita, Jose

    2017-04-01

    We perform a general study of the relic density and LHC constraints on simplified models where the dark matter coannihilates with a strongly interacting particle X. In these models, the dark matter depletion is driven by the self-annihilation of X to pairs of quarks and gluons through the strong interaction. The phenomenology of these scenarios therefore only depends on the dark matter mass and the mass splitting between dark matter and X as well as the quantum numbers of X. In this paper, we consider simplified models where X can be either a scalar, a fermion or a vector, as well as a color triplet, sextet or octet. We compute the dark matter relic density constraints taking into account Sommerfeld corrections and bound state formation. Furthermore, we examine the restrictions from thermal equilibrium, the lifetime of X and the current and future LHC bounds on X pair production. All constraints are comprehensively presented in the mass splitting versus dark matter mass plane. While the relic density constraints can lead to upper bounds on the dark matter mass ranging from 2 TeV to more than 10 TeV across our models, the prospective LHC bounds range from 800 to 1500 GeV. A full coverage of the strongly coannihilating dark matter parameter space would therefore require hadron colliders with significantly higher center-of-mass energies.

  7. Cosmology with a stiff matter era

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2015-11-01

    We consider the possibility that the Universe is made of a dark fluid described by a quadratic equation of state P =K ρ2 , where ρ is the rest-mass density and K is a constant. The energy density ɛ =ρ c2+K ρ2 is the sum of two terms: a rest-mass term ρ c2 that mimics "dark matter" (P =0 ) and an internal energy term u =K ρ2=P that mimics a "stiff fluid" (P =ɛ ) in which the speed of sound is equal to the speed of light. In the early universe, the internal energy dominates and the dark fluid behaves as a stiff fluid (P ˜ɛ , ɛ ∝a-6). In the late universe, the rest-mass energy dominates and the dark fluid behaves as pressureless dark matter (P ≃0 , ɛ ∝a-3). We provide a simple analytical solution of the Friedmann equations for a universe undergoing a stiff matter era, a dark matter era, and a dark energy era due to the cosmological constant. This analytical solution generalizes the Einstein-de Sitter solution describing the dark matter era, and the Λ CDM model describing the dark matter era and the dark energy era. Historically, the possibility of a primordial stiff matter era first appeared in the cosmological model of Zel'dovich where the primordial universe is assumed to be made of a cold gas of baryons. A primordial stiff matter era also occurs in recent cosmological models where dark matter is made of relativistic self-gravitating Bose-Einstein condensates (BECs). When the internal energy of the dark fluid mimicking stiff matter is positive, the primordial universe is singular like in the standard big bang theory. It expands from an initial state with a vanishing scale factor and an infinite density. We consider the possibility that the internal energy of the dark fluid is negative (while, of course, its total energy density is positive), so that it mimics anti-stiff matter. This happens, for example, when the BECs have an attractive self-interaction with a negative scattering length. In that case, the primordial universe is nonsingular and bouncing like in loop quantum cosmology. At t =0 , the scale factor is finite and the energy density is equal to zero. The universe first has a phantom behavior where the energy density increases with the scale factor, then a normal behavior where the energy density decreases with the scale factor. For the sake of generality, we consider a cosmological constant of arbitrary sign. When the cosmological constant is positive, the Universe asymptotically reaches a de Sitter regime where the scale factor increases exponentially rapidly with time. This can account for the accelerating expansion of the Universe that we observe at present. When the cosmological constant is negative (anti-de Sitter), the evolution of the Universe is cyclic. Therefore, depending on the sign of the internal energy of the dark fluid and on the sign of the cosmological constant, we obtain analytical solutions of the Friedmann equations describing singular and nonsingular expanding, bouncing, or cyclic universes.

  8. Universal analytical scattering form factor for shell-, core-shell, or homogeneous particles with continuously variable density profile shape.

    PubMed

    Foster, Tobias

    2011-09-01

    A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society

  9. Skyrme interaction to second order in nuclear matter

    NASA Astrophysics Data System (ADS)

    Kaiser, N.

    2015-09-01

    Based on the phenomenological Skyrme interaction various density-dependent nuclear matter quantities are calculated up to second order in many-body perturbation theory. The spin-orbit term as well as two tensor terms contribute at second order to the energy per particle. The simultaneous calculation of the isotropic Fermi-liquid parameters provides a rigorous check through the validity of the Landau relations. It is found that published results for these second order contributions are incorrect in most cases. In particular, interference terms between s-wave and p-wave components of the interaction can contribute only to (isospin or spin) asymmetry energies. Even with nine adjustable parameters, one does not obtain a good description of the empirical nuclear matter saturation curve in the low density region 0\\lt ρ \\lt 2{ρ }0. The reason for this feature is the too strong density-dependence {ρ }8/3 of several second-order contributions. The inclusion of the density-dependent term \\frac{1}{6}{t}3{ρ }1/6 is therefore indispensable for a realistic description of nuclear matter in the Skyrme framework.

  10. Novel use of UV broad-band excitation and stretched exponential function in the analysis of fluorescent dissolved organic matter: study of interaction between protein and humic-like components

    NASA Astrophysics Data System (ADS)

    Panigrahi, Suraj Kumar; Mishra, Ashok Kumar

    2017-09-01

    A combination of broad-band UV radiation (UV A and UV B; 250-400 nm) and a stretched exponential function (StrEF) has been utilised in efforts towards convenient and sensitive detection of fluorescent dissolved organic matter (FDOM). This approach enables accessing the gross fluorescence spectral signature of both protein-like and humic-like components in a single measurement. Commercial FDOM components are excited with the broad-band UV excitation; the variation of spectral profile as a function of varying component ratio is analysed. The underlying fluorescence dynamics and non-linear quenching of amino acid moieties are studied with the StrEF (exp(-V[Q] β )). The complex quenching pattern reflects the inner filter effect (IFE) as well as inter-component interactions. The inter-component interactions are essentially captured through the ‘sphere of action’ and ‘dark complex’ models. The broad-band UV excitation ascertains increased excitation energy, resulting in increased population density in the excited state and thereby resulting in enhanced sensitivity.

  11. Properties of ion temperature gradient and trapped electron modes in tokamak plasmas with inverted density profiles

    NASA Astrophysics Data System (ADS)

    Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.

    2017-12-01

    We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.

  12. Tuning the density profile of surface-grafted hyaluronan and the effect of counter-ions.

    PubMed

    Berts, Ida; Fragneto, Giovanna; Hilborn, Jöns; Rennie, Adrian R

    2013-07-01

    The present paper investigates the structure and composition of grafted sodium hyaluronan at a solid-liquid interface using neutron reflection. The solvated polymer at the surface could be described with a density profile that decays exponentially towards the bulk solution. The density profile of the polymer varied depending on the deposition protocol. A single-stage deposition resulted in denser polymer layers, while layers created with a two-stage deposition process were more diffuse and had an overall lower density. Despite the diffuse density profile, two-stage deposition leads to a higher surface excess. Addition of calcium ions causes a strong collapse of the sodium hyaluronan chains, increasing the polymer density near the surface. This effect is more pronounced on the sample prepared by two-stage deposition due to the initial less dense profile. This study provides an understanding at a molecular level of how surface functionalization alters the structure and how surface layers respond to changes in calcium ions in the solvent.

  13. [Effects of ex situ rice straw incorporation on organic matter content and main physical properties of hilly red soil].

    PubMed

    Zhu, Han-hua; Huang, Dao-you; Liu, Shou-long; Zhu, Qi-hong

    2007-11-01

    Two typical land-use types, i.e., newly cultivated slope land and mellow upland, were selected to investigate the effects of ex situ rice straw incorporation on the organic matter content, field water-holding capacity, bulk density, and porosity of hilly red soil, and to approach the correlations between these parameters. The results showed that ex situ incorporation of rice straw increased soil organic matter content, ameliorated soil physical properties, and improved soil water storage. Comparing with non-fertilization and applying chemical fertilizers, ex situ incorporation of rice straw increased the contents of organic matter (5.8%-28.9%) and > 0.25 mm water-stable aggregates in 0-20 cm soil layer, and increased the field water-holding capacity (6.8%-16.2%) and porosity (4.8%-7.7%) significantly (P < 0.05) while decreased the bulk density (4.5%-7.5%) in 10-15 cm soil layer. The organic matter content in 0-20 cm soil layer was significantly correlated to the bulk density, porosity, and field water-holding capacity in 10-15 cm soil layer (P < 0.01), and the field water-holding capacity in 0-20 cm and 10-15 cm soil layers was significantly correlated to the bulk density and porosity in these two layers (P < 0.05).

  14. Perturbation theory for BAO reconstructed fields: One-loop results in the real-space matter density field

    NASA Astrophysics Data System (ADS)

    Hikage, Chiaki; Koyama, Kazuya; Heavens, Alan

    2017-08-01

    We compute the power spectrum at one-loop order in standard perturbation theory for the matter density field to which a standard Lagrangian baryonic acoustic oscillation (BAO) reconstruction technique is applied. The BAO reconstruction method corrects the bulk motion associated with the gravitational evolution using the inverse Zel'dovich approximation (ZA) for the smoothed density field. We find that the overall amplitude of one-loop contributions in the matter power spectrum substantially decreases after reconstruction. The reconstructed power spectrum thereby approaches the initial linear spectrum when the smoothed density field is close enough to linear, i.e., the smoothing scale Rs≳10 h-1 Mpc . On smaller Rs, however, the deviation from the linear spectrum becomes significant on large scales (k ≲Rs-1 ) due to the nonlinearity in the smoothed density field, and the reconstruction is inaccurate. Compared with N-body simulations, we show that the reconstructed power spectrum at one-loop order agrees with simulations better than the unreconstructed power spectrum. We also calculate the tree-level bispectrum in standard perturbation theory to investigate non-Gaussianity in the reconstructed matter density field. We show that the amplitude of the bispectrum significantly decreases for small k after reconstruction and that the tree-level bispectrum agrees well with N-body results in the weakly nonlinear regime.

  15. Pasta phases in core-collapse supernova matter

    NASA Astrophysics Data System (ADS)

    Pais, Helena; Chiacchiera, Silvia; Providência, Constança

    2016-04-01

    The pasta phase in core-collapse supernova matter (finite temperatures and fixed proton fractions) is studied within relativistic mean field models. Three different calculations are used for comparison, the Thomas-Fermi (TF), the Coexisting Phases (CP) and the Compressible Liquid Drop (CLD) approximations. The effects of including light clusters in nuclear matter and the densities at which the transitions between pasta configurations and to uniform matter occur are also investigated. The free energy and pressure, in the space of particle number densities and temperatures expected to cover the pasta region, are calculated. Finally, a comparison with a finite temperature Skyrme-Hartree-Fock calculation is drawn.

  16. Nuclear ``pasta'' formation

    NASA Astrophysics Data System (ADS)

    Schneider, A. S.; Horowitz, C. J.; Hughto, J.; Berry, D. K.

    2013-12-01

    The formation of complex nonuniform phases of nuclear matter, known as nuclear pasta, is studied with molecular dynamics (MD) simulations containing 51200 nucleons. A phenomenological nuclear interaction is used that reproduces the saturation binding energy and density of nuclear matter. Systems are prepared at an initial density of 0.10fm-3 and then the density is decreased by expanding the simulation volume at different rates to densities of 0.01fm-3 or less. An originally uniform system of nuclear matter is observed to form spherical bubbles (“swiss cheese”), hollow tubes, flat plates (“lasagna”), thin rods (“spaghetti”) and, finally, nearly spherical nuclei with decreasing density. We explicitly observe nucleation mechanisms, with decreasing density, for these different pasta phase transitions. Topological quantities known as Minkowski functionals are obtained to characterize the pasta shapes. Different pasta shapes are observed depending on the expansion rate. This indicates nonequilibrium effects. We use this to determine the best ways to obtain lower energy states of the pasta system from MD simulations and to place constraints on the equilibration time of the system.

  17. A quantitative approach to the topology of large-scale structure. [for galactic clustering computation

    NASA Technical Reports Server (NTRS)

    Gott, J. Richard, III; Weinberg, David H.; Melott, Adrian L.

    1987-01-01

    A quantitative measure of the topology of large-scale structure: the genus of density contours in a smoothed density distribution, is described and applied. For random phase (Gaussian) density fields, the mean genus per unit volume exhibits a universal dependence on threshold density, with a normalizing factor that can be calculated from the power spectrum. If large-scale structure formed from the gravitational instability of small-amplitude density fluctuations, the topology observed today on suitable scales should follow the topology in the initial conditions. The technique is illustrated by applying it to simulations of galaxy clustering in a flat universe dominated by cold dark matter. The technique is also applied to a volume-limited sample of the CfA redshift survey and to a model in which galaxies reside on the surfaces of polyhedral 'bubbles'. The topology of the evolved mass distribution and 'biased' galaxy distribution in the cold dark matter models closely matches the topology of the density fluctuations in the initial conditions. The topology of the observational sample is consistent with the random phase, cold dark matter model.

  18. The Evolution of Dwarf Galaxy Satellites with Different Dark Matter Density Profiles in the ErisMod Simulations. I. The Early Infalls

    NASA Astrophysics Data System (ADS)

    Tomozeiu, Mihai; Mayer, Lucio; Quinn, Thomas

    2016-02-01

    We present the first simulations of tidal stirring of dwarf galaxies in the Local Group carried out in a fully cosmological context. We use the ErisDARK cosmological simulation of a Milky Way (MW)-sized galaxy to identify some of the most massive subhalos (Mvir > 108 M⊙) that fall into the main host before z = 2. Subhalos are replaced before infall with extremely high-resolution models of dwarf galaxies comprising a faint stellar disk embedded in a dark matter halo. The set of models contains cuspy halos as well as halos with “cored” profiles (with the cusp coefficient γ = 0.6) consistent with recent results of hydrodynamical simulations of dwarf galaxy formation. The simulations are then run to z = 0 with as many as 54 million particles and resolutions as small as ∼4 pc using the new parallel N-body code ChaNGa. The stellar components of all satellites are significantly affected by tidal stirring, losing stellar mass, and undergoing a morphological transformation toward a pressure supported spheroidal system. However, while some remnants with cuspy halos maintain significant rotational flattening and disk-like features, all the shallow halo models achieve vrot/σ⋆ < 0.5 and round shapes typical of dSph satellites of the MW and M31. Mass loss is also enhanced in the latter, and remnants can reach luminosities and velocity dispersions as low as those of ultra-faint dwarfs.

  19. Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hearin, Andrew P.; Campbell, Duncan; Tollerud, Erik

    We present the first stable release of Halotools (v0.2), a community-driven Python package designed to build and test models of the galaxy-halo connection. Halotools provides a modular platform for creating mock universes of galaxies starting from a catalog of dark matter halos obtained from a cosmological simulation. The package supports many of the common forms used to describe galaxy-halo models: the halo occupation distribution, the conditional luminosity function, abundance matching, and alternatives to these models that include effects such as environmental quenching or variable galaxy assembly bias. Satellite galaxies can be modeled to live in subhalos or to follow custommore » number density profiles within their halos, including spatial and/or velocity bias with respect to the dark matter profile. The package has an optimized toolkit to make mock observations on a synthetic galaxy population—including galaxy clustering, galaxy–galaxy lensing, galaxy group identification, RSD multipoles, void statistics, pairwise velocities and others—allowing direct comparison to observations. Halotools is object-oriented, enabling complex models to be built from a set of simple, interchangeable components, including those of your own creation. Halotools has an automated testing suite and is exhaustively documented on http://halotools.readthedocs.io, which includes quickstart guides, source code notes and a large collection of tutorials. The documentation is effectively an online textbook on how to build and study empirical models of galaxy formation with Python.« less

  20. An iterative reconstruction of cosmological initial density fields

    NASA Astrophysics Data System (ADS)

    Hada, Ryuichiro; Eisenstein, Daniel J.

    2018-05-01

    We present an iterative method to reconstruct the linear-theory initial conditions from the late-time cosmological matter density field, with the intent of improving the recovery of the cosmic distance scale from the baryon acoustic oscillations (BAOs). We present tests using the dark matter density field in both real and redshift space generated from an N-body simulation. In redshift space at z = 0.5, we find that the reconstructed displacement field using our iterative method are more than 80% correlated with the true displacement field of the dark matter particles on scales k < 0.10h Mpc-1. Furthermore, we show that the two-point correlation function of our reconstructed density field matches that of the initial density field substantially better, especially on small scales (<40h-1 Mpc). Our redshift-space results are improved if we use an anisotropic smoothing so as to account for the reduced small-scale information along the line of sight in redshift space.

  1. Cerebral morphology and dopamine D2/D3receptor distribution in humans: A combined [18F]fallypride and voxel-based morphometry study

    PubMed Central

    Woodward, Neil D.; Zald, David H.; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M. Sib; Baldwin, Ronald M.; Cowan, Ronald L.; Li, Rui; Kessler, Robert M.

    2009-01-01

    The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D2/D3 ligand [18F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BPND) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BPND were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BPND throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BPND and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BPND were observed. Overall, grey matter density appeared more strongly correlated with BPND than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [18F]fallypride BPND in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization. PMID:19457373

  2. Cerebral morphology and dopamine D2/D3 receptor distribution in humans: a combined [18F]fallypride and voxel-based morphometry study.

    PubMed

    Woodward, Neil D; Zald, David H; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M Sib; Baldwin, Ronald M; Cowan, Ronald L; Li, Rui; Kessler, Robert M

    2009-05-15

    The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D(2)/D(3) ligand [(18)F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BP(ND)) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BP(ND) were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BP(ND) throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BP(ND) and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BP(ND) were observed. Overall, grey matter density appeared more strongly correlated with BP(ND) than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [(18)F]fallypride BP(ND) in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization.

  3. Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M.; Ghamari, F.

    2012-10-15

    By using a transient density profile, we have demonstrated stationary self-focusing of an electromagnetic Gaussian beam in cold quantum plasma. The paper is devoted to the prospects of using upward increasing ramp density profile of an inhomogeneous nonlinear medium with quantum effects in self-focusing mechanism of high intense laser beam. We have found that the upward ramp density profile in addition to quantum effects causes much higher oscillation and better focusing of laser beam in cold quantum plasma in comparison to that in the classical relativistic case. Our computational results reveal the importance and influence of formation of electron densitymore » profiles in enhancing laser self-focusing.« less

  4. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even an overdense region, with a low density contrast ~1.

  5. First results of the SOL reflectometer on Alcator C-Mod.

    PubMed

    Lau, C; Hanson, G; Lin, Y; Wilgen, J; Wukitch, S; Labombard, B; Wallace, G

    2012-10-01

    A swept-frequency X-mode reflectometer has been built on Alcator C-Mod to measure the scrape-off layer (SOL) density profiles adjacent to the lower hybrid launcher. The reflectometer system operates between 100 and 146 GHz at sweep rates from 10 μs to 1 ms and covers a density range of ∼10(16)-10(20) m(-3) at B(0) = 5-5.4 T. This paper discusses the analysis of reflectometer density profiles and presents first experimental results of SOL density profile modifications due to the application of lower hybrid range-of-frequencies power to L-mode discharges. Comparison between density profiles measured by the X-mode reflectometer and scanning Langmuir probes is also shown.

  6. Analysis of lipoprotein profiles of healthy cats by gel-permeation high-performance liquid chromatography

    PubMed Central

    MIZUTANI, Hisashi; SAKO, Toshinori; OKUDA, Hiroko; ARAI, Nobuaki; KURIYAMA, Koji; MORI, Akihiro; YOSHIMURA, Itaru; KOYAMA, Hidekazu

    2016-01-01

    Density gradient ultracentrifugation (DGUC) and gel electrophoresis are conventionally used to obtain lipoprotein profiles of animals. We recently applied high-performance liquid chromatography with a gel permeation column (GP-HPLC) and an on-line dual enzymatic system to dogs for lipoprotein profile analysis. We compared the GP-HPLC with DGUC as a method to obtain a feline lipoprotein profile. The lipoprotein profiles showed large and small peaks, which corresponded to high-density lipoprotein (HDL) and low-density lipoprotein (LDL), respectively, whereas very low-density lipoprotein (VLDL) and chylomicron (CM) were only marginally detected. This profile was very similar to that of dogs reported previously. Healthy cats also had a small amount of cholesterol-rich particles distinct from the normal LDL or HDL profile. There was no difference in lipoprotein profiles between the sexes, but males had a significantly larger LDL particle size (P=0.015). This study shows the feasibility of GP-HPLC for obtaining accurate lipoprotein profiles with small sample volumes and provides valuable reference data for healthy cats that should facilitate diagnoses. PMID:27170431

  7. Age-Related Effects and Sex Differences in Gray Matter Density, Volume, Mass, and Cortical Thickness from Childhood to Young Adulthood.

    PubMed

    Gennatas, Efstathios D; Avants, Brian B; Wolf, Daniel H; Satterthwaite, Theodore D; Ruparel, Kosha; Ciric, Rastko; Hakonarson, Hakon; Gur, Raquel E; Gur, Ruben C

    2017-05-17

    Developmental structural neuroimaging studies in humans have long described decreases in gray matter volume (GMV) and cortical thickness (CT) during adolescence. Gray matter density (GMD), a measure often assumed to be highly related to volume, has not been systematically investigated in development. We used T1 imaging data collected on the Philadelphia Neurodevelopmental Cohort to study age-related effects and sex differences in four regional gray matter measures in 1189 youths ranging in age from 8 to 23 years. Custom T1 segmentation and a novel high-resolution gray matter parcellation were used to extract GMD, GMV, gray matter mass (GMM; defined as GMD × GMV), and CT from 1625 brain regions. Nonlinear models revealed that each modality exhibits unique age-related effects and sex differences. While GMV and CT generally decrease with age, GMD increases and shows the strongest age-related effects, while GMM shows a slight decline overall. Females have lower GMV but higher GMD than males throughout the brain. Our findings suggest that GMD is a prime phenotype for the assessment of brain development and likely cognition and that periadolescent gray matter loss may be less pronounced than previously thought. This work highlights the need for combined quantitative histological MRI studies. SIGNIFICANCE STATEMENT This study demonstrates that different MRI-derived gray matter measures show distinct age and sex effects and should not be considered equivalent but complementary. It is shown for the first time that gray matter density increases from childhood to young adulthood, in contrast with gray matter volume and cortical thickness, and that females, who are known to have lower gray matter volume than males, have higher density throughout the brain. A custom preprocessing pipeline and a novel high-resolution parcellation were created to analyze brain scans of 1189 youths collected as part of the Philadelphia Neurodevelopmental Cohort. A clear understanding of normal structural brain development is essential for the examination of brain-behavior relationships, the study of brain disease, and, ultimately, clinical applications of neuroimaging. Copyright © 2017 the authors 0270-6474/17/375065-09$15.00/0.

  8. Sensitivity projections for dark matter searches with the Fermi large area telescope

    NASA Astrophysics Data System (ADS)

    Charles, E.; Sánchez-Conde, M.; Anderson, B.; Caputo, R.; Cuoco, A.; Di Mauro, M.; Drlica-Wagner, A.; Gomez-Vargas, G. A.; Meyer, M.; Tibaldo, L.; Wood, M.; Zaharijas, G.; Zimmer, S.; Ajello, M.; Albert, A.; Baldini, L.; Bechtol, K.; Bloom, E. D.; Ceraudo, F.; Cohen-Tanugi, J.; Digel, S. W.; Gaskins, J.; Gustafsson, M.; Mirabal, N.; Razzano, M.

    2016-06-01

    The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of the γ-ray sky have come to prominence over the last few years, because of the excellent sensitivity of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 meV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this report we describe methods used to search for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. We also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, considering both statistical and systematic uncertainties. We project the expected sensitivities of each search method for 10 and 15 years of LAT data taking. In particular, we find that the sensitivity of searches targeting dwarf galaxies, which provide the best limits currently, will improve faster than the square root of observing time. Current LAT limits for dwarf galaxies using six years of data reach the thermal relic level for masses up to 120 GeV for the b b ¯ annihilation channel for reasonable dark matter density profiles. With projected discoveries of additional dwarfs, these limits could extend to about 250 GeV. With as much as 15 years of LAT data these searches would be sensitive to dark matter annihilations at the thermal relic cross section for masses to greater than 400 GeV (200 GeV) in the b b ¯ (τ+τ-) annihilation channels.

  9. Apparent nutrient digestibility of two raw diets in domestic kittens.

    PubMed

    Hamper, Beth A; Kirk, Claudia A; Bartges, Joseph W

    2016-12-01

    The aim of the study was to evaluate overall dry matter, organic matter, crude protein, crude fat and gross energy digestibility of a feline commercial raw diet and a homemade raw diet compared with a canned, heat-processed diet. Six domestic shorthair kittens (20-28 weeks old) were fed three different diets in a Latin square crossover design. Diet A was a commercially available, canned, heat-processed diet. Diet B was a complete commercial, prefrozen, raw diet (commercial raw), and diet C was a raw diet supplement mixed with ground raw meat obtained locally (homemade raw). Both diets A and B were formulated to meet nutritional profile levels for cats at all life stages. Kittens were given specific diet amounts to maintain a 2-4% weight increase per week. Food was measured before and after feedings to determine the amount eaten, and all feces were collected, weighed and frozen prior to submission. Composite food samples and all feces were submitted to a national laboratory for proximate analysis of crude protein, crude fiber, ash, crude fat, moisture and caloric density. Significantly higher digestibility of dry matter (P <0.001), organic matter (P <0.001), crude protein (P <0.001) and gross energy (P <0.001) was seen in the raw diets compared with the heat-processed diets. This difference resulted in significantly less fecal matter (P <0.001) despite similar levels of intake and kcal ingested, and evidence of no difference in fecal scores. Higher dry matter, organic matter and protein digestibility was seen in two commercial raw diets compared with a heat-processed diet. Digestibility differences could have been due to variance in dietary protein, fat and carbohydrate concentrations between the diets, variance in dietary ingredients or quality, alterations in protein structure secondary to heat processing, as well as alterations in gastrointestinal flora. Future research examining digestibility in diets with the same macronutrient proportions and ingredients, and mechanisms for any differences, is warranted. © The Author(s) 2015.

  10. Sensitivity projections for dark matter dearches with the Fermi large area telescope

    DOE PAGES

    Charles, E.; M. Sanchez-Conde; Anderson, B.; ...

    2016-05-20

    The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of themore » $$\\gamma$$-ray sky have come to prominence over the last few years, because of the excellent sensitivity of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 MeV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this report we describe methods used to search for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. We also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, considering both statistical and systematic uncertainties. We project the expected sensitivities of each search method for 10 and 15 years of LAT data taking. In particular, we find that the sensitivity of searches targeting dwarf galaxies, which provide the best limits currently, will improve faster than the square root of observing time. Current LAT limits for dwarf galaxies using six years of data reach the thermal relic level for masses up to 120 GeV for the $$b\\bar{b}$$ annihilation channel for reasonable dark matter density profiles. With projected discoveries of additional dwarfs, these limits could extend to about 250 GeV. With as much as 15 years of LAT data these searches would be sensitive to dark matter annihilations at the thermal relic cross section for masses to greater than 400 GeV (200 GeV) in the $$b\\bar{b}$$ ($$\\tau^+ \\tau^-$$) annihilation channels.« less

  11. Sensitivity projections for dark matter dearches with the Fermi large area telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, E.; M. Sanchez-Conde; Anderson, B.

    The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of themore » $$\\gamma$$-ray sky have come to prominence over the last few years, because of the excellent sensitivity of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 MeV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this report we describe methods used to search for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. We also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, considering both statistical and systematic uncertainties. We project the expected sensitivities of each search method for 10 and 15 years of LAT data taking. In particular, we find that the sensitivity of searches targeting dwarf galaxies, which provide the best limits currently, will improve faster than the square root of observing time. Current LAT limits for dwarf galaxies using six years of data reach the thermal relic level for masses up to 120 GeV for the $$b\\bar{b}$$ annihilation channel for reasonable dark matter density profiles. With projected discoveries of additional dwarfs, these limits could extend to about 250 GeV. With as much as 15 years of LAT data these searches would be sensitive to dark matter annihilations at the thermal relic cross section for masses to greater than 400 GeV (200 GeV) in the $$b\\bar{b}$$ ($$\\tau^+ \\tau^-$$) annihilation channels.« less

  12. Neutron matter within QCD sum rules

    NASA Astrophysics Data System (ADS)

    Cai, Bao-Jun; Chen, Lie-Wen

    2018-05-01

    The equation of state (EOS) of pure neutron matter (PNM) is studied in QCD sum rules (QCDSRs ). It is found that the QCDSR results on the EOS of PNM are in good agreement with predictions by current advanced microscopic many-body theories. Moreover, the higher-order density terms in quark condensates are shown to be important to describe the empirical EOS of PNM in the density region around and above nuclear saturation density although they play a minor role at subsaturation densities. The chiral condensates in PNM are also studied, and our results indicate that the higher-order density terms in quark condensates, which are introduced to reasonably describe the empirical EOS of PNM at suprasaturation densities, tend to hinder the appearance of chiral symmetry restoration in PNM at high densities.

  13. Neutron stars interiors: Theory and reality

    NASA Astrophysics Data System (ADS)

    Stone, J. R.

    2016-03-01

    There are many fascinating processes in the universe which we observe in more detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in a core-collapse supernova explosion, one of the most violent events in the universe. As a result, the densest objects in the universe, neutron stars and/or black holes, are created. The physical basis of these events should be understood in line with observation. Unfortunately, available data do not provide adequate constraints for many theoretical models of dense matter. One of the most open areas of research is the composition of matter in the cores of neutron stars. Unambiguous fingerprints for the appearance and evolution of particular components, such as strange baryons and mesons, with increasing density, have not been identified. In particular, the hadron-quark phase transition remains a subject of intensive research. In this contribution we briefly survey the most promising observational and theoretical directions leading to progress in understanding high density matter in neutron stars. A possible way forward in modeling high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model makes connection between hadronic structure and the underlying quark make-up. It offers a natural explanation for the saturation of nuclear force and treats high-density matter, containing the full baryon octet, in terms of four uniquely defined parameters adjusted to properties of symmetric nuclear matter at saturation.

  14. AutoLens: Automated Modeling of a Strong Lens's Light, Mass and Source

    NASA Astrophysics Data System (ADS)

    Nightingale, J. W.; Dye, S.; Massey, Richard J.

    2018-05-01

    This work presents AutoLens, the first entirely automated modeling suite for the analysis of galaxy-scale strong gravitational lenses. AutoLens simultaneously models the lens galaxy's light and mass whilst reconstructing the extended source galaxy on an adaptive pixel-grid. The method's approach to source-plane discretization is amorphous, adapting its clustering and regularization to the intrinsic properties of the lensed source. The lens's light is fitted using a superposition of Sersic functions, allowing AutoLens to cleanly deblend its light from the source. Single component mass models representing the lens's total mass density profile are demonstrated, which in conjunction with light modeling can detect central images using a centrally cored profile. Decomposed mass modeling is also shown, which can fully decouple a lens's light and dark matter and determine whether the two component are geometrically aligned. The complexity of the light and mass models are automatically chosen via Bayesian model comparison. These steps form AutoLens's automated analysis pipeline, such that all results in this work are generated without any user-intervention. This is rigorously tested on a large suite of simulated images, assessing its performance on a broad range of lens profiles, source morphologies and lensing geometries. The method's performance is excellent, with accurate light, mass and source profiles inferred for data sets representative of both existing Hubble imaging and future Euclid wide-field observations.

  15. Big bang nucleosynthesis - The standard model and alternatives

    NASA Technical Reports Server (NTRS)

    Schramm, David N.

    1991-01-01

    The standard homogeneous-isotropic calculation of the big bang cosmological model is reviewed, and alternate models are discussed. The standard model is shown to agree with the light element abundances for He-4, H-2, He-3, and Li-7 that are available. Improved observational data from recent LEP collider and SLC results are discussed. The data agree with the standard model in terms of the number of neutrinos, and provide improved information regarding neutron lifetimes. Alternate models are reviewed which describe different scenarios for decaying matter or quark-hadron induced inhomogeneities. The baryonic density relative to the critical density in the alternate models is similar to that of the standard model when they are made to fit the abundances. This reinforces the conclusion that the baryonic density relative to critical density is about 0.06, and also reinforces the need for both nonbaryonic dark matter and dark baryonic matter.

  16. Evaluation of a Magnetically-Filtered Faraday Probe for Measuring the ion Current Density Profile of a Hall Thruster

    DTIC Science & Technology

    2004-07-01

    The ability of a magnetically-filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is...MFFP, boxed Faraday probe (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operated over the

  17. Halo modelling in chameleon theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu, E-mail: lucas.lombriser@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: baojiu.li@durham.ac.uk

    2014-03-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on localmore » scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.« less

  18. The formation of disc galaxies in high-resolution moving-mesh cosmological simulations

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker

    2014-01-01

    We present cosmological hydrodynamical simulations of eight Milky Way-sized haloes that have been previously studied with dark matter only in the Aquarius project. For the first time, we employ the moving-mesh code AREPO in zoom simulations combined with a comprehensive model for galaxy formation physics designed for large cosmological simulations. Our simulations form in most of the eight haloes strongly disc-dominated systems with realistic rotation curves, close to exponential surface density profiles, a stellar mass to halo mass ratio that matches expectations from abundance matching techniques, and galaxy sizes and ages consistent with expectations from large galaxy surveys in the local Universe. There is no evidence for any dark matter core formation in our simulations, even so they include repeated baryonic outflows by supernova-driven winds and black hole quasar feedback. For one of our haloes, the object studied in the recent `Aquila' code comparison project, we carried out a resolution study with our techniques, covering a dynamic range of 64 in mass resolution. Without any change in our feedback parameters, the final galaxy properties are reassuringly similar, in contrast to other modelling techniques used in the field that are inherently resolution dependent. This success in producing realistic disc galaxies is reached, in the context of our interstellar medium treatment, without resorting to a high density threshold for star formation, a low star formation efficiency, or early stellar feedback, factors deemed crucial for disc formation by other recent numerical studies.

  19. Hot and dense matter beyond relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Zhang, Xilin; Prakash, Madappa

    2016-05-01

    Properties of hot and dense matter are calculated in the framework of quantum hadrodynamics by including contributions from two-loop (TL) diagrams arising from the exchange of isoscalar and isovector mesons between nucleons. Our extension of mean field theory (MFT) employs the same five density-independent coupling strengths which are calibrated using the empirical properties at the equilibrium density of isospin-symmetric matter. Results of calculations from the MFT and TL approximations are compared for conditions of density, temperature, and proton fraction encountered in the study of core-collapse supernovae, young and old neutron stars, and mergers of compact binary stars. The TL results for the equation of state (EOS) of cold pure neutron matter at sub- and near-nuclear densities agree well with those of modern quantum Monte Carlo and effective field-theoretical approaches. Although the high-density EOS in the TL approximation for cold and β -equilibrated neutron-star matter is substantially softer than its MFT counterpart, it is able to support a 2 M⊙ neutron star required by recent precise determinations. In addition, radii of 1.4 M⊙ stars are smaller by ˜1 km than those obtained in MFT and lie in the range indicated by analysis of astronomical data. In contrast to MFT, the TL results also give a better account of the single-particle or optical potentials extracted from analyses of medium-energy proton-nucleus and heavy-ion experiments. In degenerate conditions, the thermal variables are well reproduced by results of Landau's Fermi-liquid theory in which density-dependent effective masses feature prominently. The ratio of the thermal components of pressure and energy density expressed as Γth=1 +(Pth/ɛth) , often used in astrophysical simulations, exhibits a stronger dependence on density than on proton fraction and temperature in both MFT and TL calculations. The prominent peak of Γth at supranuclear density found in MFT is, however, suppressed in TL calculations. This outcome is analogous to results of nonrelativistic models when exchange contributions from finite-range interactions are included in addition to those of contact interactions.

  20. Gray Matter Density Negatively Correlates with Duration of Heroin Use in Young Lifetime Heroin-Dependent Individuals

    ERIC Educational Resources Information Center

    Yuan, Yi; Zhu, Zude; Shi, Jinfu; Zou, Zhiling; Yuan, Fei; Liu, Yijun; Lee, Tatia M. C.; Weng, Xuchu

    2009-01-01

    Numerous studies have documented cognitive impairments and hypoactivity in the prefrontal and anterior cingulate cortices in drug users. However, the relationships between opiate dependence and brain structure changes in heroin users are largely unknown. In the present study, we measured the density of gray matter (DGM) with voxel-based…

  1. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    PubMed

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  2. GalMod: A Galactic Synthesis Population Model

    NASA Astrophysics Data System (ADS)

    Pasetto, Stefano; Grebel, Eva K.; Chiosi, Cesare; Crnojević, Denija; Zeidler, Peter; Busso, Giorgia; Cassarà, Letizia P.; Piovan, Lorenzo; Tantalo, Rosaria; Brogliato, Claudio

    2018-06-01

    We present a new Galaxy population synthesis Model, GalMod. GalMod is a star-count model featuring an asymmetric bar/bulge as well as spiral arms and related extinction. The model, initially introduced in Pasetto et al., has been here completed with a central bar, a new bulge description, new disk vertical profiles, and several new bolometric corrections. The model can generate synthetic mock catalogs of visible portions of the Milky Way, external galaxies like M31, or N-body simulation initial conditions. At any given time, e.g., at a chosen age of the Galaxy, the model contains a sum of discrete stellar populations, namely the bulge/bar, disk, and halo. These populations are in turn the sum of different components: the disk is the sum of the spiral arms, thin disks, a thick disk, and various gas components, while the halo is the sum of a stellar component, a hot coronal gas, and a dark-matter component. The Galactic potential is computed from these population density profiles and used to generate detailed kinematics by considering up to the first four moments of the collisionless Boltzmann equation. The same density profiles are then used to define the observed color–magnitude diagrams in a user-defined field of view (FoV) from an arbitrary solar location. Several photometric systems have been included and made available online, and no limits on the size of the FoV are imposed thus allowing full-sky simulations, too. Finally, we model the extinction by adopting a dust model with advanced ray-tracing solutions. The model's Web page (and tutorial) can be accessed at www.GalMod.org and support is provided at Galaxy.Model@yahoo.com.

  3. Astrophysical uncertainties on the local dark matter distribution and direct detection experiments

    NASA Astrophysics Data System (ADS)

    Green, Anne M.

    2017-08-01

    The differential event rate in weakly interacting massive particle (WIMP) direct detection experiments depends on the local dark matter density and velocity distribution. Accurate modelling of the local dark matter distribution is therefore required to obtain reliable constraints on the WIMP particle physics properties. Data analyses typically use a simple standard halo model which might not be a good approximation to the real Milky Way (MW) halo. We review observational determinations of the local dark matter density, circular speed and escape speed and also studies of the local dark matter distribution in simulated MW-like galaxies. We discuss the effects of the uncertainties in these quantities on the energy spectrum and its time and direction dependence. Finally, we conclude with an overview of various methods for handling these astrophysical uncertainties.

  4. Time-dependent Hartree-Fock approach to nuclear ``pasta'' at finite temperature

    NASA Astrophysics Data System (ADS)

    Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.

    2013-05-01

    We present simulations of neutron-rich matter at subnuclear densities, like supernova matter, with the time-dependent Hartree-Fock approximation at temperatures of several MeV. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. This matter evolves into spherical, rod-like, and slab-like shapes and mixtures thereof. The simulations employ a full Skyrme interaction in a periodic three-dimensional grid. By an improved morphological analysis based on Minkowski functionals, all eight pasta shapes can be uniquely identified by the sign of only two valuations, namely the Euler characteristic and the integral mean curvature. In addition, we propose the variance in the cell density distribution as a measure to distinguish pasta matter from uniform matter.

  5. Choline and its metabolites are differently associated with cardiometabolic risk factors, history of cardiovascular disease, and MRI-documented cerebrovascular disease in older adults12

    PubMed Central

    Zhang, Shucha; Bhadelia, Rafeeque A; Johnson, Elizabeth J; Lichtenstein, Alice H; Rogers, Gail T; Rosenberg, Irwin H; Smith, Caren E; Zeisel, Steven H

    2017-01-01

    Background: There is a potential role of choline in cardiovascular and cerebrovascular disease through its involvement in lipid and one-carbon metabolism. Objective: We evaluated the associations of plasma choline and choline-related compounds with cardiometabolic risk factors, history of cardiovascular disease, and cerebrovascular pathology. Design: A cross-sectional subset of the Nutrition, Aging, and Memory in Elders cohort who had undergone MRI of the brain (n = 296; mean ± SD age: 73 ± 8.1 y) was assessed. Plasma concentrations of free choline, betaine, and phosphatidylcholine were measured with the use of liquid-chromatography–stable-isotope dilution–multiple-reaction monitoring–mass spectrometry. A volumetric analysis of MRI was used to determine the cerebrovascular pathology (white-matter hyperintensities and small- and large-vessel infarcts). Multiple linear and logistic regression models were used to examine relations of plasma measures with cardiometabolic risk factors, history of cardiovascular disease, and radiologic evidence of cerebrovascular pathology. Results: Higher concentrations of plasma choline were associated with an unfavorable cardiometabolic risk-factor profile [lower high-density lipoprotein (HDL) cholesterol, higher total homocysteine, and higher body mass index (BMI)] and greater odds of large-vessel cerebral vascular disease or history of cardiovascular disease but lower odds of small-vessel cerebral vascular disease. Conversely, higher concentrations of plasma betaine were associated with a favorable cardiometabolic risk-factor profile [lower low-density lipoprotein (LDL) cholesterol and triglycerides] and lower odds of diabetes. Higher concentrations of plasma phosphatidylcholine were associated with characteristics of both a favorable cardiometabolic risk-factor profile (higher HDL cholesterol, lower BMI, lower C-reactive protein, lower waist circumference, and lower odds of hypertension and diabetes) and an unfavorable profile (higher LDL cholesterol and triglycerides). Conclusion: Choline and its metabolites have differential associations with cardiometabolic risk factors and subtypes of vascular disease, thereby suggesting differing roles in the pathogenesis of cardiovascular and cerebral large-vessel disease compared with that of small-vessel disease. PMID:28356272

  6. Light impurity transport in JET ILW L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Bonanomi, N.; Mantica, P.; Giroud, C.; Angioni, C.; Manas, P.; Menmuir, S.; Contributors, JET

    2018-03-01

    A series of experimental observations of light impurity profiles was carried out in JET (Joint European Torus) ITER-like wall (ILW) L-mode plasmas in order to investigate their transport mechanisms. These discharges feature the presence of 3He, Be, C, N, Ne, whose profiles measured by active Charge Exchange diagnostics are compared with quasi-linear and non-linear gyro-kinetic simulations. The peaking of 3He density follows the electron density peaking, Be and Ne are also peaked, while the density profiles of C and N are flat in the mid plasma region. Gyro-kinetic simulations predict peaked density profiles for all the light impurities studied and at all the radial positions considered, and fail predicting the flat or hollow profiles observed for C and N at mid radius in our cases.

  7. Higgs enhancement for the dark matter relic density

    NASA Astrophysics Data System (ADS)

    Harz, Julia; Petraki, Kalliopi

    2018-04-01

    We consider the long-range effect of the Higgs on the density of thermal-relic dark matter. While the electroweak gauge boson and gluon exchange have been previously studied, the Higgs is typically thought to mediate only contact interactions. We show that the Sommerfeld enhancement due to a 125 GeV Higgs can deplete TeV-scale dark matter significantly and describe how the interplay between the Higgs and other mediators influences this effect. We discuss the importance of the Higgs enhancement in the minimal supersymmetric standard model and its implications for experiments.

  8. Neutrinophilic two Higgs doublet model with dark matter under an alternative U(1)_{B-L} gauge symmetry

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki; Okada, Hiroshi

    2018-03-01

    We propose a Dirac type active neutrino with rank two mass matrix and a Majorana fermion dark matter candidate with an alternative local U(1)_{B-L} extension of neutrinophilic two Higgs doublet model. Our dark matter candidate can be stabilized due to charge assignment under the gauge symmetry without imposing extra discrete Z_2 symmetry and the relic density is obtained from an Z' boson exchanging process. Taking into account collider constraints on the Z' boson mass and coupling, we estimate the relic density.

  9. Density-induced suppression of the {alpha}-particle condensate in nuclear matter and the structure of {alpha}-cluster states in nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funaki, Y.; Horiuchi, H.; International Institute for Advanced Studies, Kizugawa 619-0225

    2008-06-15

    At low densities, with decreasing temperatures, in symmetric nuclear matter {alpha} particles are formed, which eventually give raise to a quantum condensate with four-nucleon {alpha}-like correlations (quartetting). Starting with a model of {alpha} matter, where undistorted {alpha} particles interact via an effective interaction such as the Ali-Bodmer potential, the suppression of the condensate fraction at zero temperature with increasing density is considered. Using a Jastrow-Feenberg approach, it is found that the condensate fraction vanishes near saturation density. Additionally, the modification of the internal state of the {alpha} particle due to medium effects will further reduce the condensate. In finite systems,more » an enhancement of the S-state wave function of the center-of-mass orbital of {alpha}-particle motion is considered as the correspondence to the condensate. Wave functions have been constructed for self-conjugate 4n nuclei that describe the condensate state but are fully antisymmetrized on the nucleonic level. These condensate-like cluster wave functions have been successfully applied to describe properties of low-density states near the n{alpha} threshold. Comparison with orthogonality condition model calculations in {sup 12}C and {sup 16}O shows strong enhancement of the occupation of the S-state center-of-mass orbital of the {alpha} particles. This enhancement is decreasing if the baryon density increases, similar to the density-induced suppression of the condensate fraction in {alpha} matter. The ground states of {sup 12}C and {sup 16}O show no enhancement at all, thus a quartetting condensate cannot be formed at saturation densities.« less

  10. Universe without dark energy: Cosmic acceleration from dark matter-baryon interactions

    NASA Astrophysics Data System (ADS)

    Berezhiani, Lasha; Khoury, Justin; Wang, Junpu

    2017-06-01

    Cosmic acceleration is widely believed to require either a source of negative pressure (i.e., dark energy), or a modification of gravity, which necessarily implies new degrees of freedom beyond those of Einstein gravity. In this paper we present a third possibility, using only dark matter (DM) and ordinary matter. The mechanism relies on the coupling between dark matter and ordinary matter through an effective metric. Dark matter couples to an Einstein-frame metric, and experiences a matter-dominated, decelerating cosmology up to the present time. Ordinary matter couples to an effective metric that depends also on the DM density, in such a way that it experiences late-time acceleration. Linear density perturbations are stable and propagate with arbitrarily small sound speed, at least in the case of "pressure" coupling. Assuming a simple parametrization of the effective metric, we show that our model can successfully match a set of basic cosmological observables, including luminosity distance, baryon acoustic oscillation measurements, angular-diameter distance to last scattering, etc. For the growth history of density perturbations, we find an intriguing connection between the growth factor and the Hubble constant. To get a growth history similar to the Λ CDM prediction, our model predicts a higher H0, closer to the value preferred by direct estimates. On the flip side, we tend to overpredict the growth of structures whenever H0 is comparable to the Planck preferred value. The model also tends to predict larger redshift-space distortions at low redshift than Λ CDM .

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, Andrew W.; Lattimer, James M.; Brown, Edward F.

    We investigate constraints on neutron star structure arising from the assumptions that neutron stars have crusts, that recent calculations of pure neutron matter limit the equation of state of neutron star matter near the nuclear saturation density, that the high-density equation of state is limited by causality and the largest high-accuracy neutron star mass measurement, and that general relativity is the correct theory of gravity. We explore the role of prior assumptions by considering two classes of equation of state models. In a first, the intermediate- and high-density behavior of the equation of state is parameterized by piecewise polytropes. Inmore » the second class, the high-density behavior of the equation of state is parameterized by piecewise continuous line segments. The smallest density at which high-density matter appears is varied in order to allow for strong phase transitions above the nuclear saturation density. We critically examine correlations among the pressure of matter, radii, maximum masses, the binding energy, the moment of inertia, and the tidal deformability, paying special attention to the sensitivity of these correlations to prior assumptions about the equation of state. It is possible to constrain the radii of 1.4 solar mass neutron stars to be larger than 10 km, even without consideration of additional astrophysical observations, for example, those from photospheric radius expansion bursts or quiescent low-mass X-ray binaries. We are able to improve the accuracy of known correlations between the moment of inertia and compactness as well as the binding energy and compactness. Furthermore, we also demonstrate the existence of a correlation between the neutron star binding energy and the moment of inertia.« less

  12. Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia.

    PubMed

    Ohm, D T; Kim, G; Gefen, T; Rademaker, A; Weintraub, S; Bigio, E H; Mesulam, M-M; Rogalski, E; Geula, C

    2018-04-21

    Primary progressive aphasia (PPA) is a clinical syndrome characterized by selective language impairments associated with focal cortical atrophy favouring the language dominant hemisphere. PPA is associated with Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) and significant accumulation of activated microglia. Activated microglia can initiate an inflammatory cascade that may contribute to neurodegeneration, but their quantitative distribution in cortical white matter and their relationship with cortical atrophy remain unknown. We investigated white matter activated microglia and their association with grey matter atrophy in 10 PPA cases with either AD or FTLD-TDP pathology. Activated microglia were quantified with optical density measures of HLA-DR immunoreactivity in two regions with peak cortical atrophy, and one nonatrophied region within the language dominant hemisphere of each PPA case. Nonatrophied contralateral homologues of the language dominant regions were examined for hemispheric asymmetry. Qualitatively, greater densities of activated microglia were observed in cortical white matter when compared to grey matter. Quantitative analyses revealed significantly greater densities of activated microglia in the white matter of atrophied regions compared to nonatrophied regions in the language dominant hemisphere (P < 0.05). Atrophied regions of the language dominant hemisphere also showed significantly more activated microglia compared to contralateral homologues (P < 0.05). White matter activated microglia accumulate more in atrophied regions in the language dominant hemisphere of PPA. While microglial activation may constitute a response to neurodegenerative processes in white matter, the resultant inflammatory processes may also exacerbate disease progression and contribute to cortical atrophy. © 2018 British Neuropathological Society.

  13. Surface currents associated with external kink modes in tokamak plasmas during a major disruption

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Bhattacharjee, A.

    2017-10-01

    The surface current on the plasma-vacuum interface during a disruption event involving kink instability can play an important role in driving current into the vacuum vessel. However, there have been disagreements over the nature or even the sign of the surface current in recent theoretical calculations based on idealized step-function background plasma profiles. We revisit such calculations by replacing step-function profiles with more realistic profiles characterized by a strong but finite gradient along the radial direction. It is shown that the resulting surface current is no longer a delta-function current density, but a finite and smooth current density profile with an internal structure, concentrated within the region with a strong plasma pressure gradient. Moreover, this current density profile has peaks of both signs, unlike the delta-function case with a sign opposite to, or the same as the plasma current. We show analytically and numerically that such current density can be separated into two parts, with one of them, called the convective current density, describing the transport of the background plasma density by the displacement, and the other part that remains, called the residual current density. It is argued that consideration of both types of current density is important and can resolve past controversies.

  14. Implications of two-component dark matter induced by forbidden channels and thermal freeze-out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Mayumi; Toma, Takashi, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@tum.de

    2017-01-01

    We consider a model of two-component dark matter based on a hidden U(1) {sub D} symmetry, in which relic densities of the dark matter are determined by forbidden channels and thermal freeze-out. The hidden U(1) {sub D} symmetry is spontaneously broken to a residual Z{sub 4} symmetry, and the lightest Z{sub 4} charged particle can be a dark matter candidate. Moreover, depending on the mass hierarchy in the dark sector, we have two-component dark matter. We show that the relic density of the lighter dark matter component can be determined by forbidden annihilation channels which require larger couplings compared tomore » the normal freeze-out mechanism. As a result, a large self-interaction of the lighter dark matter component can be induced, which may solve small scale problems of ΛCDM model. On the other hand, the heavier dark matter component is produced by normal freeze-out mechanism. We find that interesting implications emerge between the two dark matter components in this framework. We explore detectabilities of these dark matter particles and show some parameter space can be tested by the SHiP experiment.« less

  15. Tuning strain of granular matter by basal assisted Couette shear

    NASA Astrophysics Data System (ADS)

    Zhao, Yiqiu; Barés, Jonathan; Zheng, Hu; Behringer, Robert

    2017-06-01

    We present a novel Couette shear apparatus capable of generating programmable azimuthal strain inside 2D granular matter under Couette shear. The apparatus consists of 21 independently movable concentric rings and two boundary wheels with frictional racks. This makes it possible to quasistatically shear the granular matter not only from the boundaries but also from the bottom. We show that, by specifying the collective motion of wheels and rings, the apparatus successfully generates the desired strain profile inside the sample granular system, which is composed of about 2000 photoelastic disks. The motion and stress of each particle is captured by an imaging system utilizing reflective photoelasticimetry. This apparatus provides a novel method to investigate shear jamming properties of granular matter with different interior strain profiles and unlimited strain amplitudes.

  16. Comprehensive asymmetric dark matter model

    NASA Astrophysics Data System (ADS)

    Lonsdale, Stephen J.; Volkas, Raymond R.

    2018-05-01

    Asymmetric dark matter (ADM) is motivated by the similar cosmological mass densities measured for ordinary and dark matter. We present a comprehensive theory for ADM that addresses the mass density similarity, going beyond the usual ADM explanations of similar number densities. It features an explicit matter-antimatter asymmetry generation mechanism, has one fully worked out thermal history and suggestions for other possibilities, and meets all phenomenological, cosmological and astrophysical constraints. Importantly, it incorporates a deep reason for why the dark matter mass scale is related to the proton mass, a key consideration in ADM models. Our starting point is the idea of mirror matter, which offers an explanation for dark matter by duplicating the standard model with a dark sector related by a Z2 parity symmetry. However, the dark sector need not manifest as a symmetric copy of the standard model in the present day. By utilizing the mechanism of "asymmetric symmetry breaking" with two Higgs doublets in each sector, we develop a model of ADM where the mirror symmetry is spontaneously broken, leading to an electroweak scale in the dark sector that is significantly larger than that of the visible sector. The weak sensitivity of the ordinary and dark QCD confinement scales to their respective electroweak scales leads to the necessary connection between the dark matter and proton masses. The dark matter is composed of either dark neutrons or a mixture of dark neutrons and metastable dark hydrogen atoms. Lepton asymmetries are generated by the C P -violating decays of heavy Majorana neutrinos in both sectors. These are then converted by sphaleron processes to produce the observed ratio of visible to dark matter in the universe. The dynamics responsible for the kinetic decoupling of the two sectors emerges as an important issue that we only partially solve.

  17. On the large-scale structures formed by wakes of open cosmic strings

    NASA Technical Reports Server (NTRS)

    Hara, Tetsuya; Morioka, Shoji; Miyoshi, Shigeru

    1990-01-01

    Large-scale structures of the universe have been variously described as sheetlike, filamentary, cellular, bubbles or spongelike. Recently cosmic strings became one of viable candidates for a galaxy formation scenario, and some of the large-scale structures seem to be simply explained by the open cosmic strings. According to this scenario, sheets are wakes which are traces of moving open cosmic strings where dark matter and baryonic matter have accumulated. Filaments are intersections of such wakes and high density regions are places where three wakes intersect almost orthogonally. The wakes formed at t sub eq become the largest surface density among all wakes, where t sub eq is the epoch when matter density equals to radiation density. If we assume that there is one open cosmic string per each horizon, then it can be explained that the typical distances among wakes, filaments and clusters are also approx. 10(exp 2) Mpc. This model does not exclude a much more large scale structure. Open cosmic string may move even now and accumulate cold dark matter after its traces. However, the surface density is much smaller than the ones formed at t sub eq. From this model, it is expected that the typical high density region will have extended features such as six filaments and three sheets and be surrounded by eight empty regions (voids). Here, the authors are mainly concerned with such structures and have made numerical simulations for the formation of such large scale structures.

  18. The fate, distribution, and toxicity of lindane in tests with Chironomus riparius: effects of bioturbation and sediment organic matter content.

    PubMed

    Goedkoop, Willem; Peterson, Märit

    2003-01-01

    In this laboratory study, we address the effect of Chironomus bioturbation (0, 2,000, 6,000, and 18,000 ind/m2) and sediment organic matter content (10, 20, and 40%) on the fate, distribution, and bioavailability of 14C-lindane under standardized conditions in toxicity tests with artificial sediment. The results show that both Chironomus burrowing activity and sediment organic matter strongly modify test conditions. Larval mortality and development were inversely related with Chironomus densities and lindane concentration. Sediment organic matter content affected larval development rates but not mortality. Partitioning of lindane between the sediment, overlying water, and interstitial water was affected negatively by Chironomus larval densities: however, sediment partitioning was positively affected by sediment organic matter content. Bioturbation by Chironomus resulted in a remobilization of particle-associated lindane to the interstitial and overlying water, implying an increase in the bioavailability of the test compound. Strong positive relationships were found between Chironomus densities and lindane concentrations in interstitial water. The presence of Chironomus also resulted in lower label recovery. Label recovery on sediment particles ranged from 49 to 61% of initially added label in microcosms without Chironomus, from 41 to 56% at low larval densities, and from 15 to 50% at high larval densities. These results show that large discrepancies may exist between nominal test concentrations (from test compound additions) and true exposure concentrations even under standardized test conditions, which can introduce a relatively large error term in risk assessments. Calculations show that volatilization may be a quantitatively important sink for test compounds.

  19. Effects of pressing schedule on formation of vertical density profile for MDF panels

    Treesearch

    Zhiyong Cai; James H. Muehl; Jerrold E. Winandy

    2006-01-01

    A fundamental understanding of mat consolidation during hot pressing will help to optimize the medium-density fiberboard (MDF) manufacturing process by increasing productivity, improving product quality, and enhancing durability. Effects of panel density, fiber moisture content (MC), and pressing schedule on formation of vertical density profile (VDP) during hot...

  20. A technique for routinely updating the ITU-R database using radio occultation electron density profiles

    NASA Astrophysics Data System (ADS)

    Brunini, Claudio; Azpilicueta, Francisco; Nava, Bruno

    2013-09-01

    Well credited and widely used ionospheric models, such as the International Reference Ionosphere or NeQuick, describe the variation of the electron density with height by means of a piecewise profile tied to the F2-peak parameters: the electron density,, and the height, . Accurate values of these parameters are crucial for retrieving reliable electron density estimations from those models. When direct measurements of these parameters are not available, the models compute the parameters using the so-called ITU-R database, which was established in the early 1960s. This paper presents a technique aimed at routinely updating the ITU-R database using radio occultation electron density profiles derived from GPS measurements gathered from low Earth orbit satellites. Before being used, these radio occultation profiles are validated by fitting to them an electron density model. A re-weighted Least Squares algorithm is used for down-weighting unreliable measurements (occasionally, entire profiles) and to retrieve and values—together with their error estimates—from the profiles. These values are used to monthly update the database, which consists of two sets of ITU-R-like coefficients that could easily be implemented in the IRI or NeQuick models. The technique was tested with radio occultation electron density profiles that are delivered to the community by the COSMIC/FORMOSAT-3 mission team. Tests were performed for solstices and equinoxes seasons in high and low-solar activity conditions. The global mean error of the resulting maps—estimated by the Least Squares technique—is between and elec/m for the F2-peak electron density (which is equivalent to 7 % of the value of the estimated parameter) and from 2.0 to 5.6 km for the height (2 %).

Top