Science.gov

Sample records for matter non-standard halos

  1. Dwarf Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Colín, P.; Klypin, A.; Valenzuela, O.; Gottlöber, Stefan

    2004-09-01

    We study properties of dark matter halos at high redshifts z=2-10 for a vast range of masses with the emphasis on dwarf halos with masses of 107-109 h-1 Msolar. We find that the density profiles of relaxed dwarf halos are well fitted by the Navarro, Frenk, & White (NFW) profile and do not have cores. We compute the halo mass function and the halo spin parameter distribution and find that the former is very well reproduced by the Sheth & Tormen model, while the latter is well fitted by a lognormal distribution with λ0=0.042 and σλ=0.63. We estimate the distribution of concentrations for halos in a mass range that covers 6 orders of magnitude, from 107 to 1013 h-1 Msolar, and find that the data are well reproduced by the model of Bullock et al. The extrapolation of our results to z=0 predicts that present-day isolated dwarf halos should have a very large median concentration of ~35. We measure the subhalo circular velocity functions for halos with masses that range from 4.6×109 to 1013 h-1 Msolar and find that they are similar when normalized to the circular velocity of the parent halo. Dwarf halos studied in this paper are many orders of magnitude smaller than well-studied cluster- and Milky Way-sized halos. Yet, in all respects the dwarfs are just downscaled versions of the large halos. They are cuspy and, as expected, more concentrated. They have the same spin parameter distribution and follow the same mass function that was measured for large halos.

  2. Computation of the halo mass function using physical collapse parameters: application to non-standard cosmologies

    SciTech Connect

    Achitouv, I.; Weller, J.; Wagner, C.; Rasera, Y. E-mail: cwagner@MPA-Garching.MPG.DE E-mail: yann.rasera@obspm.fr

    2014-10-01

    In this article we compare the halo mass function predicted by the excursion set theory with a drifting diffusive barrier against the results of N-body simulations for several cosmological models. This includes the standard ΛCDM case for a large range of halo masses, models with different types of primordial non-Gaussianity, and the Ratra-Peebles quintessence model of Dark Energy. We show that in all those cosmological scenarios, the abundance of dark matter halos can be described by a drifting diffusive barrier, where the two parameters describing the barrier have physical content. In the case of the Gaussian ΛCDM, the statistics are precise enough to actually predict those parameters at different redshifts from the initial conditions. Furthermore, we found that the stochasticity in the barrier is non-negligible making the simple deterministic spherical collapse model a bad approximation even at very high halo masses. We also show that using the standard excursion set approach with a barrier inspired by peak patches leads to inconsistent predictions of the halo mass function.

  3. Unbound particles in dark matter halos

    SciTech Connect

    Behroozi, Peter S.; Loeb, Abraham; Wechsler, Risa H.

    2013-06-13

    We investigate unbound dark matter particles in halos by tracing particle trajectories in a simulation run to the far future (a = 100). We find that the traditional sum of kinetic and potential energies is a very poor predictor of which dark matter particles will eventually become unbound from halos. We also study the mass fraction of unbound particles, which increases strongly towards the edges of halos, and decreases significantly at higher redshifts. We discuss implications for dark matter detection experiments, precision calibrations of the halo mass function, the use of baryon fractions to constrain dark energy, and searches for intergalactic supernovae.

  4. A combined study of source, detector and matter non-standard neutrino interactions at DUNE

    NASA Astrophysics Data System (ADS)

    Blennow, Mattias; Choubey, Sandhya; Ohlsson, Tommy; Pramanik, Dipyaman; Raut, Sushant K.

    2016-08-01

    We simultaneously investigate source, detector and matter non-standard neutrino interactions at the proposed DUNE experiment. Our analysis is performed using a Markov Chain Monte Carlo exploring the full parameter space. We find that the sensitivity of DUNE to the standard oscillation parameters is worsened due to the presence of non-standard neutrino interactions. In particular, there are degenerate solutions in the leptonic mixing angle θ 23 and the Dirac CP-violating phase δ. We also compute the expected sensitivities at DUNE to the non-standard interaction parameters. We find that the sensitivities to the matter non-standard interaction parameters are substantially stronger than the current bounds (up to a factor of about 15). Furthermore, we discuss correlations between the source/detector and matter non-standard interaction parameters and find a degenerate solution in θ 23. Finally, we explore the effect of statistics on our results.

  5. Dark matter particles in the galactic halo

    SciTech Connect

    Bernabei, R. Belli, P.; Montecchia, F.; Nozzoli, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Prosperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, J. M.; Sheng, X. D.; Ye, Z. P.

    2009-12-15

    Arguments on the investigation of the DarkMatter particles in the galactic halo are addressed. Recent results obtained by exploiting the annual modulation signature are summarized and the perspectives are discussed.

  6. Dark energy and dark matter haloes

    NASA Astrophysics Data System (ADS)

    Kuhlen, Michael; Strigari, Louis E.; Zentner, Andrew R.; Bullock, James S.; Primack, Joel R.

    2005-02-01

    We investigate the effect of dark energy on the density profiles of dark matter haloes with a suite of cosmological N-body simulations and use our results to test analytic models. We consider constant equation of state models, and allow both w>=-1 and w < -1. Using five simulations with w ranging from -1.5 to -0.5, and with more than ~1600 well-resolved haloes each, we show that the halo concentration model of Bullock et al. accurately predicts the median concentrations of haloes over the range of w, halo masses and redshifts that we are capable of probing. We find that the Bullock et al. model works best when halo masses and concentrations are defined relative to an outer radius set by a cosmology-dependent virial overdensity. For a fixed power spectrum normalization and fixed-mass haloes, larger values of w lead to higher concentrations and higher halo central densities, both because collapse occurs earlier and because haloes have higher virial densities. While precise predictions of halo densities are quite sensitive to various uncertainties, we make broad comparisons to galaxy rotation curve data. At fixed power spectrum normalization (fixed σ8), w > -1 quintessence models seem to exacerbate the central density problem relative to the standard w=-1 model. For example, models with w~=- 0.5 seem disfavoured by the data, which can be matched only by allowing extremely low normalizations, σ8<~ 0.6. Meanwhile w < -1 models help to reduce the apparent discrepancy. We confirm that the halo mass function of Jenkins et al. provides an excellent approximation to the abundance of haloes in our simulations and extend its region of validity to include models with w < -1.

  7. On physical scales of dark matter halos

    SciTech Connect

    Zemp, Marcel

    2014-09-10

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.

  8. Concentrations of Simulated Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Child, Hillary

    2017-01-01

    We present the concentration-mass (c-M) relation of dark matter halos in two new high-volume high-resolution cosmological N-body simulations, Q Continuum and Outer Rim. Concentration describes the density of the central regions of halos; it is highest for low-mass halos at low redshift, decreasing at high mass and redshift. The shape of the c-M relation is an important probe of cosmology. We discuss the redshift dependence of the c-M relation, several different methods to determine concentrations of simulated halos, and potential sources of bias in concentration measurements. To connect to lensing observations, we stack halos, which also allows us to assess the suitability of the Navarro-Frenk-White profile and other profiles, such as Einasto, with an additional shape parameter. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144082.

  9. Mapping Dark Matter Halos with Stellar Kinematics

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy; Gebhardt, K.; Greene, J. E.; Graves, G.

    2013-07-01

    Galaxies of all sizes form and evolve in the centers of dark matter halos. As these halos constitute the large majority of the total mass of a galaxy, dark matter certainly plays a central role in the galaxy's formation and evolution. Yet despite our understanding of the importance of dark matter, observations of the extent and shape of dark matter halos have been slow in coming. The paucity of data is particularly acute in elliptical galaxies. Happily, concerted effort over the past several years by a number of groups has been shedding light on the dark matter halos around galaxies over a wide range in mass. The development of new instrumentation and large surveys, coupled with the tantalizing evidence for a direct detection of dark matter from the AMS experiment, has brought on a golden age in the study of galactic scale dark matter halos. I report on results using extended stellar kinematics from integrated light to dynamically model massive elliptical galaxies in the local universe. I use the integral field power of the Mitchell Spectrograph to explore the kinematics of stars to large radii (R > 2.5 r_e). Once the line-of-sight stellar kinematics are measured, I employ orbit-based, axisymmetric dynamical modeling to explore a range of dark matter halo parameterizations. Globular cluster kinematics at even larger radii are used to further constrain the dynamical models. The dynamical models also return information on the anisotropy of the stars which help to further illuminate the primary formation mechanisms of the galaxy. Specifically, I will show dynamical modeling results for the first and second rank galaxies in the Virgo Cluster, M49 and M87. Although similar in total luminosity and ellipticity, these two galaxies show evidence for different dark matter halo shapes, baryon to dark matter fractions, and stellar anisotropy profiles. Moreover, the stellar velocity dispersion at large radii in M87 is significantly higher than the globular clusters at the same

  10. Halo cold dark matter and microlensing

    SciTech Connect

    Gates, Evalyn; Turner, Michael S.

    1993-12-01

    There is good evidence that most of the baryons in the Universe are dark and some evidence that most of the matter in the Universe is nonbaryonic with cold dark matter (cdm) being a promising possibility. We discuss expectations for the abundance of baryons and cdm in the halo of our galaxy and locally. We show that in plausible cdm models the local density of cdm is at least $10^{-25}\\gcmm3$. We also discuss what one can learn about the the local cdm density from microlensing of stars in the LMC by dark stars in the halo and, based upon a suite of reasonable two-component halo models, conclude that microlensing is not a sensitive probe of the local cdm density.

  11. Dark energy and extended dark matter halos

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.

    2012-03-01

    The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even

  12. Substructure of fuzzy dark matter haloes

    NASA Astrophysics Data System (ADS)

    Du, Xiaolong; Behrens, Christoph; Niemeyer, Jens C.

    2017-02-01

    We derive the halo mass function (HMF) for fuzzy dark matter (FDM) by solving the excursion set problem explicitly with a mass-dependent barrier function, which has not been done before. We find that compared to the naive approach of the Sheth-Tormen HMF for FDM, our approach has a higher cutoff mass and the cutoff mass changes less strongly with redshifts. Using merger trees constructed with a modified version of the Lacey & Cole formalism that accounts for suppressed small-scale power and the scale-dependent growth of FDM haloes and the semi-analytic GALACTICUS code, we study the statistics of halo substructure including the effects from dynamical friction and tidal stripping. We find that if the dark matter is a mixture of cold dark matter (CDM) and FDM, there will be a suppression on the halo substructure on small scales which may be able to solve the missing satellites problem faced by the pure CDM model. The suppression becomes stronger with increasing FDM fraction or decreasing FDM mass. Thus, it may be used to constrain the FDM model.

  13. Stability of BEC galactic dark matter halos

    NASA Astrophysics Data System (ADS)

    Guzmán, F. S.; Lora-Clavijo, F. D.; González-Avilés, J. J.; Rivera-Paleo, F. J.

    2013-09-01

    In this paper we show that spherically symmetric BEC dark matter halos, with the sin r/r density profile, that accurately fit galactic rotation curves and represent a potential solution to the cusp-core problem are unstable. We do this by introducing back the density profiles into the fully time-dependent Gross-Pitaevskii-Poisson system of equations. Using numerical methods to track the evolution of the system, we found that these galactic halos lose mass at an approximate rate of half of its mass in a time scale of dozens of Myr. We consider this time scale is enough as to consider these halos are unstable and unlikely to be formed. We provide some arguments to show that this behavior is general and discuss some other drawbacks of the model that restrict its viability.

  14. Asymmetric dark matter annihilation as a test of non-standard cosmologies

    SciTech Connect

    Gelmini, Graciela B.; Huh, Ji-Haeng; Rehagen, Thomas E-mail: jhhuh@physics.ucla.edu

    2013-08-01

    We show that the relic abundance of the minority component of asymmetric dark matter can be very sensitive to the expansion rate of the Universe and the temperature of transition between a non-standard pre-Big Bang Nucleosynthesis cosmological phase and the standard radiation dominated phase, if chemical decoupling happens before this transition. In particular, because the annihilation cross section of asymmetric dark matter is typically larger than that of symmetric dark matter in the standard cosmology, the decrease in relic density of the minority component in non-standard cosmologies with respect to the majority component may be compensated by the increase in annihilation cross section, so that the annihilation rate at present of asymmetric dark matter, contrary to general belief, could be larger than that of symmetric dark matter in the standard cosmology. Thus, if the annihilation cross section of the asymmetric dark matter candidate is known, the annihilation rate at present, if detectable, could be used to test the Universe before Big Bang Nucleosynthesis, an epoch from which we do not yet have any data.

  15. Stellar discs in Aquarius dark matter haloes

    NASA Astrophysics Data System (ADS)

    DeBuhr, Jackson; Ma, Chung-Pei; White, Simon D. M.

    2012-10-01

    We investigate the gravitational interactions between live stellar discs and their dark matter haloes, using Λ cold dark matter haloes similar in mass to that of the Milky Way taken from the Aquarius Project. We introduce the stellar discs by first allowing the haloes to respond to the influence of a growing rigid disc potential from z = 1.3 to 1.0. The rigid potential is then replaced with star particles which evolve self-consistently with the dark matter particles until z = 0.0. Regardless of the initial orientation of the disc, the inner parts of the haloes contract and change from prolate to oblate as the disc grows to its full size. When the disc's normal is initially aligned with the major axis of the halo at z = 1.3, the length of the major axis contracts and becomes the minor axis by z = 1.0. Six out of the eight discs in our main set of simulations form bars, and five of the six bars experience a buckling instability that results in a sudden jump in the vertical stellar velocity dispersion and an accompanying drop in the m = 2 Fourier amplitude of the disc surface density. The bars are not destroyed by the buckling but continue to grow until the present day. Bars are largely absent when the disc mass is reduced by a factor of 2 or more; the relative disc-to-halo mass is therefore a primary factor in bar formation and evolution. A subset of the discs is warped at the outskirts and contains prominent non-coplanar material with a ring-like structure. Many discs reorient by large angles between z = 1 and 0, following a coherent reorientation of their inner haloes. Larger reorientations produce more strongly warped discs, suggesting a tight link between the two phenomena. The origins of bars and warps appear independent: some discs with strong bars show little disturbances at the outskirts, while the discs with the weakest bars show severe warps.

  16. Stellar Spirals in Triaxial Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Hu, Shaoran; Sijacki, Debora

    2017-03-01

    Two-armed grand-design spirals may form if the shape of its dark matter halo changes abruptly enough. The feasibility of such a mechanism is tested in realistic simulations. The interplay of such externally-driven spirals and self-induced transient spirals is then studied. Subhaloes are also found to lead to transient grand-design spiral structures when they impact the disk.

  17. Dark-Matter Halos of Tenuous Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    A series of recent deep-imaging surveys has revealed dozens of lurking ultra-diffuse galaxies (UDGs) in nearby galaxy clusters. A new study provides key information to help us understand the origins of these faint giants.What are UDGs?There are three main possibilities for how UDGs galaxies with the sizes of giants, but luminosities no brighter than those of dwarfs formed:They are tidal dwarfs, created in galactic collisions when streams of matter were pulled away from the parent galaxies and halos to form dwarfs.They are descended from normal galaxies and were then altered by tidal interactions with the galaxy cluster.They are ancient remnant systems large galaxies whose gas was swept away, putting an early halt to star formation. The gas removal did not, however, affect their large dark matter halos, which permitted them to survive in the cluster environment.The key to differentiating between these options is to obtain mass measurements for the UDGs how large are their dark matter halos? In a recent study led by Michael Beasley (Institute of Astrophysics of the Canary Islands, University of La Laguna), a team of astronomers has determined a clever approach for measuring these galaxies masses: examine their globular clusters.Masses from Globular ClustersVCC 1287s mass measurements put it outside of the usual halo-mass vs. stellar-mass relationships for nearby galaxies: it has a significantly higher halo mass than is normal, given its stellar mass. [Adapted from Beasley et al. 2016]Beasley and collaborators selected one UDG, VCC 1287, from the Virgo galaxy cluster, and they obtained spectra of the globular clusters around it using the OSIRIS spectrograph on the Great Canary Telescope. They then determined VCC 1287s total halo mass in two ways: first by using the dynamics of the globular clusters, and then by relying on a relation between total globular cluster mass and halo mass.The two masses they found are in good agreement with each other; both are around 80

  18. Halos of unified dark matter scalar field

    SciTech Connect

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino E-mail: nicola.bartolo@pd.infn.it

    2008-05-15

    We investigate the static and spherically symmetric solutions of Einstein's equations for a scalar field with a non-canonical kinetic term, assumed to provide both the dark matter and dark energy components of the Universe. In particular, we give a prescription to obtain solutions (dark halos) whose rotation curve v{sub c}(r) is in good agreement with observational data. We show that there exist suitable scalar field Lagrangians that allow us to describe the cosmological background evolution and the static solutions with a single dark fluid.

  19. Baryonic Distributions in Galaxy Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Richards, Emily E.

    2016-01-01

    Understanding the role and significance of dark matter in the evolution of baryonic components (i.e., conversion of the gaseous disk into stars) is a critical aspect for realistic models of galaxy evolution. In an effort to address fundamental questions regarding the growth and distribution of stellar disks in dark matter halos in a statistical manner, we have undertaken a project correlating structural properties and star formation activity with the dark matter properties of the host galaxy. The project uses a statistical sample of 45 nearby galaxies which are optimally suited for rotation curve decomposition analysis. The dataset includes deep Spitzer 3.6μm images to trace the stellar distribution, neutral and ionized gas rotation curves to trace the total mass distribution, and optical images to examine the dominant stellar populations. Using a sub-set of galaxies from the full sample, we find that the distribution of the baryonic mass relative to the total mass is roughly self-similar in more massive galaxies when normalized by the average stellar disk scale length measured at 3.6μm. We additionally observe an emerging trend between total baryonic mass and the radius at which the total mass distribution transitions from baryon-dominated to dark matter-dominated. However, we find no significant correlation between the distribution of dark matter and structural properties of the stellar disk, such as changes in color or star formation activity.

  20. Halo-Independent Comparison of Direct Dark Matter Detection Data

    DOE PAGES

    Del Nobile, Eugenio

    2014-01-01

    We review the halo-independent formalism that allows comparing data from different direct dark matter detection experiments without making assumptions on the properties of the dark matter halo. We apply this method to spin-independent WIMP-nuclei interactions, for both isospin-conserving and isospin-violating couplings, and to WIMPs interacting through an anomalous magnetic moment.

  1. The Angular Momentum Distribution within Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Chen, D.; Jing, Y.

    We study the angular momentum profile of dark matter halos for a statistical sample drawn from a set of high-resolution cosmological simulations of 2563 particles. Two typical Cold Dark Matter (CDM) models have been analyzed, and the halos are selected to have at least 3× 104 particles in order to reliably measure the angular momentum profile. In contrast with the recent claims of Bullock et al. (2001), we find that the degree of misalignment of angular momentum within a halo is very high. About 50 percent of halos have more than 10 percent of halo mass in the mass of negative angular momentum j. After the mass of negative j is excluded, the cumulative mass function M(halos (˜ 50%) which exhibit systematic deviations from the universal function. Our results, however, are broadly in good agreement with the recent work of van den Bosch et al. (2002). We also study the angular momentum profile of halos in a Warm Dark Matter (WDM) model and a Self-Interacting Dark Matter (SIDM) model. We find that the angular momentum profile of halos in the WDM is statistically indistinguishable from that in the CDM model, but the angular momentum of halos in the SIDM is reduced by the self-interaction of dark matter.

  2. Angular Momentum Profiles of Warm Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Bullock, James S.; Kravtsov, and Andrey V.; Colín, Pedro

    2002-01-01

    We compare the specific angular momentum profiles of virialized dark halos in cold dark matter (CDM) and warm dark matter (WDM) models, using high-resolution dissipationless simulations. The simulations were initialized using the same set of modes, except on small scales, where the power was suppressed in WDM below the filtering length. Remarkably, WDM as well as CDM halos are well described by the two-parameter angular momentum profile of Bullock and coworkers, even though the halo masses are below the filtering scale of the WDM. Although the best-fit shape parameters change quantitatively for individual halos in the two simulations, we find no systematic variation in profile shapes as a function of the dark matter type. The scatter in shape parameters is significantly smaller for the WDM halos, suggesting that substructure and/or merging history plays a role in producing scatter about the mean angular momentum distribution, but that the average angular momentum profiles of halos originate from larger scale phenomena or a mechanism associated with the virialization process. The known mismatch between the angular momentum distributions of dark halos and disk galaxies is, therefore, present in WDM as well as CDM models. Our WDM halos tend to have a less coherent (more misaligned) angular momentum structure and smaller spin parameters than do their CDM counterparts, although we caution that this result is based on a small number of halos.

  3. Optimal linear reconstruction of dark matter from halo catalogues

    SciTech Connect

    Cai, Yan -Chuan; Bernstein, Gary; Sheth, Ravi K.

    2011-04-01

    The dark matter lumps (or "halos") that contain galaxies have locations in the Universe that are to some extent random with respect to the overall matter distributions. We investigate how best to estimate the total matter distribution from the locations of the halos. We derive the weight function w(M) to apply to dark-matter haloes that minimizes the stochasticity between the weighted halo distribution and its underlying mass density field. The optimal w(M) depends on the range of masses of halos being used. While the standard biased-Poisson model of the halo distribution predicts that bias weighting is optimal, the simple fact that the mass is comprised of haloes implies that the optimal w(M) will be a mixture of mass-weighting and bias-weighting. In N-body simulations, the Poisson estimator is up to 15× noisier than the optimal. Optimal weighting could make cosmological tests based on the matter power spectrum or cross-correlations much more powerful and/or cost effective.

  4. Optimal linear reconstruction of dark matter from halo catalogues

    DOE PAGES

    Cai, Yan -Chuan; Bernstein, Gary; Sheth, Ravi K.

    2011-04-01

    The dark matter lumps (or "halos") that contain galaxies have locations in the Universe that are to some extent random with respect to the overall matter distributions. We investigate how best to estimate the total matter distribution from the locations of the halos. We derive the weight function w(M) to apply to dark-matter haloes that minimizes the stochasticity between the weighted halo distribution and its underlying mass density field. The optimal w(M) depends on the range of masses of halos being used. While the standard biased-Poisson model of the halo distribution predicts that bias weighting is optimal, the simple factmore » that the mass is comprised of haloes implies that the optimal w(M) will be a mixture of mass-weighting and bias-weighting. In N-body simulations, the Poisson estimator is up to 15× noisier than the optimal. Optimal weighting could make cosmological tests based on the matter power spectrum or cross-correlations much more powerful and/or cost effective.« less

  5. N-body dark matter haloes with simple hierarchical histories

    NASA Astrophysics Data System (ADS)

    Jiang, Lilian; Helly, John C.; Cole, Shaun; Frenk, Carlos S.

    2014-05-01

    We present a new algorithm which groups the subhaloes found in cosmological N-body simulations by structure finders such as SUBFIND into dark matter haloes whose formation histories are strictly hierarchical. One advantage of these `Dhaloes' over the commonly used friends-of-friends (FoF) haloes is that they retain their individual identity in the cases when FoF haloes are artificially merged by tenuous bridges of particles or by an overlap of their outer diffuse haloes. Dhaloes are thus well suited for modelling galaxy formation and their merger trees form the basis of the Durham semi-analytic galaxy formation model, GALFORM. Applying the Dhalo construction to the Λ cold dark matter Millennium II Simulation, we find that approximately 90 per cent of Dhaloes have a one-to-one, bijective match with a corresponding FoF halo. The remaining 10 per cent are typically secondary components of large FoF haloes. Although the mass functions of both types of haloes are similar, the mass of Dhaloes correlates much more tightly with the virial mass, M200, than FoF haloes. Approximately 80 per cent of FoF and bijective and non-bijective Dhaloes are relaxed according to standard criteria. For these relaxed haloes, all three types have similar concentration-M200 relations and, at fixed mass, the concentration distributions are described accurately by log-normal distributions.

  6. The prolate dark matter halo of the Andromeda galaxy

    SciTech Connect

    Hayashi, Kohei; Chiba, Masashi E-mail: chiba@astr.tohoku.ac.jp

    2014-07-01

    We present new limits on the global shape of the dark matter halo in the Andromeda galaxy using and generalizing non-spherical mass models developed by Hayashi and Chiba and compare our results with theoretical predictions of cold dark matter (CDM) models. This is motivated by the fact that CDM models predict non-spherical virialized dark halos, which reflect the process of mass assembly in the galactic scale. Applying our models to the latest kinematic data of globular clusters and dwarf spheroidal galaxies in the Andromeda halo, we find that the most plausible cases for Andromeda yield a prolate shape for its dark halo, irrespective of assumed density profiles. We also find that this prolate dark halo in Andromeda is consistent with theoretical predictions in which the satellites are distributed anisotropically and preferentially located along major axes of their host halos. It is a reflection of the intimate connection between galactic dark matter halos and the cosmic web. Therefore, our result is profound in understanding internal dynamics of halo tracers in Andromeda, such as orbital evolutions of tidal stellar streams, which play important roles in extracting the abundance of CDM subhalos through their dynamical effects on stream structures.

  7. Testing gravity using the environmental dependence of dark matter halos.

    PubMed

    Zhao, Gong-Bo; Li, Baojiu; Koyama, Kazuya

    2011-08-12

    In this Letter, we investigate the environmental dependence of dark matter halos in theories which attempt to explain the accelerated expansion of the Universe by modifying general relativity (GR). Using high-resolution N-body simulations in f(R) gravity models which recover GR in dense environments by virtue of the chameleon mechanism, we find a significant difference, which depends on the environment, between the lensing and dynamical masses of dark matter halos. This environmental dependence of the halo properties can be used as a smoking gun to test GR observationally.

  8. EFFECT OF DARK MATTER HALO SUBSTRUCTURES ON GALAXY ROTATION CURVES

    SciTech Connect

    Roy, Nirupam

    2010-11-01

    In this paper, the effect of halo substructures on galaxy rotation curves is investigated using a simple model of dark matter clustering. A dark matter halo density profile is developed based only on the scale-free nature of clustering that leads to a statistically self-similar distribution of the substructures at the galactic scale. A semi-analytical method is used to derive rotation curves for such a clumpy dark matter density profile. It is found that the halo substructures significantly affect the galaxy velocity field. Based on the fractal geometry of the halo, this self-consistent model predicts a Navarro-Frenk-White-like rotation curve and a scale-free power spectrum of the rotation velocity fluctuations.

  9. SECULAR DAMPING OF STELLAR BARS IN SPINNING DARK MATTER HALOS

    SciTech Connect

    Long, Stacy; Shlosman, Isaac; Heller, Clayton

    2014-03-01

    We demonstrate using numerical simulations of isolated galaxies that growth of stellar bars in spinning dark matter halos is heavily suppressed in the secular phase of evolution. In a representative set of models, we show that for values of the cosmological spin parameter λ ≳ 0.03, bar growth (in strength and size) becomes increasingly quenched. Furthermore, the slowdown of the bar pattern speed weakens considerably with increasing λ until it ceases completely. The terminal structure of the bars is affected as well, including extent and shape of their boxy/peanut bulges. The essence of this effect lies in the modified angular momentum exchange between the disk and the halo facilitated by the bar. For the first time we have demonstrated that a dark matter halo can emit and not purely absorb angular momentum. Although the halo as a whole is not found to emit, the net transfer of angular momentum from the disk to the halo is significantly reduced or completely eliminated. The paradigm shift implies that the accepted view that disks serve as sources of angular momentum and halos serve as sinks must be revised. Halos with λ ≳ 0.03 are expected to form a substantial fraction, based on the lognormal distribution of λ. The dependence of secular bar evolution on halo spin, therefore, implies profound corollaries for the cosmological evolution of galactic disks.

  10. STATISTICS OF DARK MATTER HALOS FROM THE EXCURSION SET APPROACH

    SciTech Connect

    Lapi, A.; Salucci, P.; Danese, L.

    2013-08-01

    We exploit the excursion set approach in integral formulation to derive novel, accurate analytic approximations of the unconditional and conditional first crossing distributions for random walks with uncorrelated steps and general shapes of the moving barrier; we find the corresponding approximations of the unconditional and conditional halo mass functions for cold dark matter (DM) power spectra to represent very well the outcomes of state-of-the-art cosmological N-body simulations. In addition, we apply these results to derive, and confront with simulations, other quantities of interest in halo statistics, including the rates of halo formation and creation, the average halo growth history, and the halo bias. Finally, we discuss how our approach and main results change when considering random walks with correlated instead of uncorrelated steps, and warm instead of cold DM power spectra.

  11. Effective Dark Matter Halo Catalog in f (R ) Gravity

    NASA Astrophysics Data System (ADS)

    He, Jian-hua; Hawken, Adam J.; Li, Baojiu; Guzzo, Luigi

    2015-08-01

    We introduce the idea of an effective dark matter halo catalog in f (R ) gravity, which is built using the effective density field. Using a suite of high resolution N -body simulations, we find that the dynamical properties of halos, such as the distribution of density, velocity dispersion, specific angular momentum and spin, in the effective catalog of f (R ) gravity closely mimic those in the cold dark matter model with a cosmological constant (Λ CDM ). Thus, when using effective halos, an f (R ) model can be viewed as a Λ CDM model. This effective catalog therefore provides a convenient way for studying the baryonic physics, the galaxy halo occupation distribution and even semianalytical galaxy formation in f (R ) cosmologies.

  12. Prospects for detecting supersymmetric dark matter in the Galactic halo.

    PubMed

    Springel, V; White, S D M; Frenk, C S; Navarro, J F; Jenkins, A; Vogelsberger, M; Wang, J; Ludlow, A; Helmi, A

    2008-11-06

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model.

  13. THE BLACK HOLE–DARK MATTER HALO CONNECTION

    SciTech Connect

    Sabra, Bassem M.; Saliba, Charbel; Akl, Maya Abi; Chahine, Gilbert

    2015-04-10

    We explore the connection between the central supermassive black holes (SMBH) in galaxies and the dark matter halo through the relation between the masses of the SMBHs and the maximum circular velocities of the host galaxies, as well as the relationship between stellar velocity dispersion of the spheroidal component and the circular velocity. Our assumption here is that the circular velocity is a proxy for the mass of the dark matter halo. We rely on a heterogeneous sample containing galaxies of all types. The only requirement is that the galaxy has a direct measurement of the mass of its SMBH and a direct measurement of its circular velocity and its velocity dispersion. Previous studies have analyzed the connection between the SMBH and dark matter halo through the relationship between the circular velocity and the bulge velocity dispersion, with the assumption that the bulge velocity dispersion stands in for the mass of the SMBH, via the well-established SMBH mass–bulge velocity dispersion relation. Using intermediate relations may be misleading when one is studying them to decipher the active ingredients of galaxy formation and evolution. We believe that our approach will provide a more direct probe of the SMBH and the dark matter halo connection. We find that the correlation between the mass of SMBHs and the circular velocities of the host galaxies is extremely weak, leading us to state the dark matter halo may not play a major role in regulating the black hole growth in the present Universe.

  14. Concentration, ellipsoidal collapse, and the densest dark matter haloes

    NASA Astrophysics Data System (ADS)

    Okoli, Chiamaka; Afshordi, Niayesh

    2016-03-01

    The smallest dark matter haloes are the first objects to form in the hierarchical structure formation of cold dark matter (CDM) cosmology and are expected to be the densest and most fundamental building blocks of CDM structures in our Universe. Nevertheless, the physical characteristics of these haloes have stayed illusive, as they remain well beyond the current resolution of N-body simulations (at redshift zero). However, they dominate the predictions (and uncertainty) in expected dark matter annihilation signal, amongst other astrophysical observables. Using the conservation of total energy and the ellipsoidal collapse framework, we can analytically find the mean and scatter of concentration c and 1D velocity dispersion σ1d for haloes of different virial mass M200. Both c and σ _1d/M_{200}^{1/3} are in good agreement with numerical results within the regime probed by simulations - slowly decreasing functions of mass that approach constant values at large masses. In particular, the predictions for the 1D velocity dispersion of cluster mass haloes are surprisingly robust as the inverse heat capacity of cosmological haloes crosses zero at M200 ˜ 1014 M⊙. However, we find that current extrapolations from simulations to smallest CDM haloes dramatically depend on the assumed profile (e.g. NFW versus Einasto) and fitting function, which is why theoretical considerations, such as the one presented here, can significantly constrain the range of feasible predictions.

  15. The Angular Momentum of Baryons and Dark Matter Halos Revisited

    NASA Technical Reports Server (NTRS)

    Kimm, Taysun; Devriendt, Julien; Slyz, Adrianne; Pichon, Christophe; Kassin, Susan A.; Dubois, Yohan

    2011-01-01

    Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive-mesh refinement (AMR), we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r = 0.1R(sub vir). In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/R(sub vir) > 0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons (gas and stars) remains close to that of dark matter halos. Indeed, our simulations indicate that any differential loss of angular momentum amplitude between the two components is minor even though dark matter halos continuously lose between half and two-thirds of their specific angular momentum modulus as they evolve. In light of our results, a substantial revision of the standard theory of disc formation seems to be required. We propose a new scenario where gas efficiently carries the angular momentum generated

  16. Halo-independent tests of dark matter annual modulation signals

    SciTech Connect

    Herrero-Garcia, Juan

    2015-09-02

    New halo-independent lower bounds on the product of the dark matter-nucleon scattering cross section and the local dark matter density that are valid for annual modulations of dark matter direct detection signals are derived. They are obtained by making use of halo-independent bounds based on an expansion of the rate on the Earth’s velocity that were derived in previous works. In combination with astrophysical measurements of the local energy density, an observed annual modulation implies a lower bound on the cross section that is independent of the velocity distribution and that must be fulfilled by any particle physics model. In order to illustrate the power of the bounds we apply them to DAMA/LIBRA data and obtain quite strong results when compared to the standard halo model predictions. We also extend the bounds to the case of multi-target detectors.

  17. The Structure and Evolution of Cold Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Diemand, Jürg; Moore, Ben

    2011-02-01

    In the standard cosmological model a mysterious cold dark matter (CDM) component dominates the formation of structures. Numerical studies of the f ormation of CDM halos have produced several robust results that allow unique tests of the hierarchical clustering paradigm. Universal properties of halos, including their mass profiles and substructure properties are roughly consistent with observational data from the scales of dwarf galaxies to galaxy clusters. Resolving the fine grained structure of halos has enabled us to make predictions for ongoing and planned direct and indirect dark matter detection experiments. While simulations of pure CDM halos are now very accurate and in good agreement (recently claimed discrepancies are addressed in detail in this review), we are still unable to make robust, quantitative predictions about galaxy formation and about how the dark matter distribution changes in the process. Whilst discrepancies between observations and simulations have been the subject of much debate in the literature, galaxy formation and evolution needs to be understood in more detail in order to fully test the CDM paradigm. Whatever the true nature of the dark matter particle is, its clustering properties must not be too different from a cold neutralino like particle to maintain all the successes of the model in matching large scale structure data and the global properties of halos which are mostly in good agreement with observations.

  18. A correlation between spin parameter and dark matter halo mass

    NASA Astrophysics Data System (ADS)

    Knebe, A.; Power, C.

    2011-01-01

    Using a set of high-resolution dark matter only cosmological simulations we found a correlation between the dark matter halo mass M and its spin parameter λ for objects forming at redshifts z > 10: the spin parameter decreases with increasing mass. However, halos forming at later times do not exhibit such a strong correlation, in agreement with the findings of previous studies. While we presented such a correlation in a previous study using the Bullock et al. (2001) spin parameter defintion we now defer to the classical definition showing that the results are independent of the definition.

  19. Dark matter annihilation in the first galaxy haloes

    NASA Astrophysics Data System (ADS)

    Schön, S.; Mack, K. J.; Avram, C. A.; Wyithe, J. S. B.; Barberio, E.

    2015-08-01

    We investigate the impact of energy released from self-annihilating dark matter (DM) on heating of gas in the small, high-redshift DM haloes thought to host the first stars. A supersymmetric (SUSY)-neutralino-like particle is implemented as our DM candidate. The PYTHIA code is used to model the final, stable particle distributions produced during the annihilation process. We use an analytic treatment in conjunction with the code MEDEA2 to find the energy transfer and subsequent partition into heating, ionizing and Lyman α photon components. We consider a number of halo density models, DM particle masses and annihilation channels. We find that the injected energy from DM exceeds the binding energy of the gas within a 105-106 M⊙ halo at redshifts above 20, preventing star formation in early haloes in which primordial gas would otherwise cool. Thus we find that DM annihilation could delay the formation of the first galaxies.

  20. WEIGHING THE GALACTIC DARK MATTER HALO: A LOWER MASS LIMIT FROM THE FASTEST HALO STAR KNOWN

    SciTech Connect

    Przybilla, Norbert; Tillich, Alfred; Heber, Ulrich; Scholz, Ralf-Dieter

    2010-07-20

    The mass of the Galactic dark matter halo is under vivid discussion. A recent study by Xue et al. revised the Galactic halo mass downward by a factor of {approx}2 relative to previous work, based on the line-of-sight velocity distribution of {approx}2400 blue horizontal-branch (BHB) halo stars. The observations were interpreted with a statistical approach using cosmological galaxy formation simulations, as only four of the six-dimensional phase-space coordinates were determined. Here we concentrate on a close investigation of the stars with the highest negative radial velocity from that sample. For one star, SDSSJ153935.67+023909.8 (J1539+0239 for short), we succeed in measuring a significant proper motion, i.e., full phase-space information is obtained. We confirm the star to be a Population II BHB star from an independent quantitative analysis of the Sloan Digital Sky Survey (SDSS) spectrum-providing the first non-LTE (NLTE) study of any halo BHB star-and reconstruct its three-dimensional trajectory in the Galactic potential. J1539+0239 turns out to be the fastest halo star known to date, with a Galactic rest-frame velocity of 694{sup +300}{sub -221} km s{sup -1} (full uncertainty range from Monte Carlo error propagation) at its current position. The extreme kinematics of the star allows a significant lower limit to be put on the halo mass in order to keep it bound, of M {sub halo} {>=} 1.7{sup +2.3}{sub -1.1} x 10{sup 12} M{sub sun}. We conclude that the Xue et al. results tend to underestimate the true halo mass as their most likely mass value is consistent with our analysis only at a level of 4%. However, our result confirms other studies that make use of the full phase-space information.

  1. Halo-independent methods for inelastic dark matter scattering

    SciTech Connect

    Bozorgnia, Nassim; Schwetz, Thomas; Herrero-Garcia, Juan; Zupan, Jure E-mail: juan.a.herrero@uv.es E-mail: jure.zupan@cern.ch

    2013-07-01

    We present halo-independent methods to analyze the results of dark matter direct detection experiments assuming inelastic scattering. We focus on the annual modulation signal reported by DAMA/LIBRA and present three different halo-independent tests. First, we compare it to the upper limit on the unmodulated rate from XENON100 using (a) the trivial requirement that the amplitude of the annual modulation has to be smaller than the bound on the unmodulated rate, and (b) a bound on the annual modulation amplitude based on an expansion in the Earth's velocity. The third test uses the special predictions of the signal shape for inelastic scattering and allows for an internal consistency check of the data without referring to any astrophysics. We conclude that a strong conflict between DAMA/LIBRA and XENON100 in the framework of spin-independent inelastic scattering can be established independently of the local properties of the dark matter halo.

  2. Axionic dark matter signatures in various halo models

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.; Semertzidis, Y. K.

    2017-02-01

    In the present work we study possible signatures in the Axion Dark Matter searches. We focus on the dependence of the expected width in resonant cavities for various popular halo models, leading to standard velocity distributions, e.g. Maxwell-Boltzmann, as well as phase-mixed and non-virialized axionic dark matter (flows, caustic rings). We study, in particular, the time dependence of the resonance width (modulation) arising from such models. We find that the difference between the maximum (in June) and the minimum (in December) can vary by about 10% in the case of standard halos. In the case of mixed phase halos the variation is a bit bigger and for caustic rings the maximum is expected to occur a bit later. Experimentally such a modulation is observable with present technology.

  3. Particle ejection during mergers of dark matter halos

    SciTech Connect

    Carucci, Isabella P.; Sparre, Martin; Hansen, Steen H.; Joyce, Michael E-mail: sparre@dark-cosmology.dk E-mail: joyce@lpnhe.in2p3.fr

    2014-06-01

    Dark matter halos are built from accretion and merging. During merging some of the dark matter particles may be ejected with velocities higher than the escape velocity. We use both N-body simulations and single-particle smooth-field simulations to demonstrate that rapid changes to the mean field potential are responsible for such ejection, and in particular that dynamical friction plays no significant role in it. Studying a range of minor mergers, we find that typically between 5–15% of the particles from the smaller of the two merging structures are ejected. We also find that the ejected particles originate essentially from the small halo, and more specifically are particles in the small halo which pass later through the region in which the merging occurs.

  4. Systematic uncertainties from halo asphericity in dark matter searches

    SciTech Connect

    Bernal, Nicolás; Forero-Romero, Jaime E.; Garani, Raghuveer; Palomares-Ruiz, Sergio E-mail: je.forero@uniandes.edu.co E-mail: sergio.palomares.ruiz@ific.uv.es

    2014-09-01

    Although commonly assumed to be spherical, dark matter halos are predicted to be non-spherical by N-body simulations and their asphericity has a potential impact on the systematic uncertainties in dark matter searches. The evaluation of these uncertainties is the main aim of this work, where we study the impact of aspherical dark matter density distributions in Milky-Way-like halos on direct and indirect searches. Using data from the large N-body cosmological simulation Bolshoi, we perform a statistical analysis and quantify the systematic uncertainties on the determination of local dark matter density and the so-called J factors for dark matter annihilations and decays from the galactic center. We find that, due to our ignorance about the extent of the non-sphericity of the Milky Way dark matter halo, systematic uncertainties can be as large as 35%, within the 95% most probable region, for a spherically averaged value for the local density of 0.3-0.4 GeV/cm {sup 3}. Similarly, systematic uncertainties on the J factors evaluated around the galactic center can be as large as 10% and 15%, within the 95% most probable region, for dark matter annihilations and decays, respectively.

  5. Cold dark matter. 1: The formation of dark halos

    NASA Technical Reports Server (NTRS)

    Gelb, James M.; Bertschinger, Edmund

    1994-01-01

    We use numerical simulations of critically closed cold dark matter (CDM) models to study the effects of numerical resolution on observable quantities. We study simulations with up to 256(exp 3) particles using the particle-mesh (PM) method and with up to 144(exp 3) particles using the adaptive particle-particle-mesh (P3M) method. Comparisons of galaxy halo distributions are made among the various simulations. We also compare distributions with observations, and we explore methods for identifying halos, including a new algorithm that finds all particles within closed contours of the smoothed density field surrounding a peak. The simulated halos show more substructure than predicted by the Press-Schechter theory. We are able to rule out all omega = 1 CDM models for linear amplitude sigma(sub 8) greater than or approximately = 0.5 because the simulations produce too many massive halos compared with the observations. The simulations also produce too many low-mass halos. The distribution of halos characterized by their circular velocities for the P3M simulations is in reasonable agreement with the observations for 150 km/s less than or = V(sub circ) less than or = 350 km/s.

  6. The abundance and environment of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Metuki, Ofer; Libeskind, Noam I.; Hoffman, Yehuda

    2016-07-01

    An open question in cosmology and the theory of structure formation is to what extent does environment affect the properties of galaxies and haloes. The present paper aims at shedding light on this problem. The paper focuses on the analysis of a dark matter only simulation and it addresses the issue of how the environment affects the abundance of haloes, which are assigned four attributes: their virial mass, an ambient density calculated with an aperture that scales with Rvir (ΔM), a fixed-aperture (ΔR) ambient density, and a cosmic web classification (i.e. voids, sheets, filaments, and knots, as defined by the V-web algorithm). ΔM is the mean density around a halo evaluated within a sphere of a radius of 5Rvir, where Rvir is the virial radius. ΔR is the density field Gaussian smoothed with R = 4 h-1 Mpc, evaluated at the centre of the halo. The main result of the paper is that the difference between haloes in different web elements stems from the difference in their mass functions, and does not depend on their adaptive-aperture ambient density. A dependence on the fixed-aperture ambient density is induced by the cross-correlation between the mass of a halo and its fixed-aperture ambient density.

  7. Dynamical evolution of primordial dark matter haloes through mergers

    NASA Astrophysics Data System (ADS)

    Ogiya, Go; Nagai, Daisuke; Ishiyama, Tomoaki

    2016-09-01

    Primordial dark matter (DM) haloes are the smallest gravitationally bound DM structures from which the first stars, black holes and galaxies form and grow in the early universe. However, their structures are sensitive to the free streaming scale of DM, which in turn depends on the nature of DM particles. In this work, we test the hypothesis that the slope of the central cusps in primordial DM haloes near the free streaming scale depends on the nature of merging process. By combining and analysing data from a cosmological simulation with the cutoff in the small-scale matter power spectrum as well as a suite of controlled, high-resolution simulations of binary mergers, we find that (1) the primordial DM haloes form preferentially through major mergers in radial orbits; (2) their central DM density profile is more susceptible to a merging process compared to that of galaxy- and cluster-sized DM haloes; (3) consecutive major mergers drive the central density slope to approach the universal form characterized by the Navarro-Frenk-White profile, which is shown to be robust to the impacts of mergers and serves an attractor solution for the density structure of DM haloes. Our work highlights the importance of dynamical processes on the structure formation during the Dark Ages.

  8. The Adiabatic Contraction of Dark Matter Halos in Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Jesseit, R.; Burkert, A.; Naab, T.

    The flatness of rotation curves in the outer parts of galaxies led to the postulation of a dark component to compensate for the missing mass. The origin of this component is still unknown. Bahcall & Soneira first pointed out in 1985 that a unique ratio for disk to halo mass is needed to produce the flat and featureless rotation curves in agreement with observations. They called this the disk-halo conspiracy. To explain this conspiracy Blumenthal et al. proposed that an adiabtically forming baryonic disk can influence the density structure of its surrounding dark halo. They assumed that the time scale of the baryonic infall is very slow such and the change of mass inside the orbit of a dark matter particle is neglegible. They further assumed that the dark matter particles revolve on circular orbits and are dissipationless. In this case their radial action integral is an adiabatic invariant during the contraction. Blumenthal et al. could find the final density profile of the dark matter, if the final distribution of the baryonic matter is known, through an iterative algorithm. We tested the above assumptions using collisionless N-body simulations. We set up a dark matter halo with a Hernquist density profile and analytically added the potential of an exponential disk. Initially the disk had a very large scale length compared to the halo scale length. During the simulation we reduced the sclae length of the disk and followed the evolution of the dark component. We examined different contraction speeds as well as different combinations of disk mass and scale lenght. We find that the theoretical prediction for the adiabatic contraction is

  9. Dark matter halo environment for primordial star formation

    NASA Astrophysics Data System (ADS)

    de Souza, R. S.; Ciardi, B.; Maio, U.; Ferrara, A.

    2013-01-01

    We study the statistical properties (such as shape and spin) of high-z haloes likely hosting the first (PopIII) stars with cosmological simulations including detailed gas physics. In the redshift range considered (11 < z < 16) the average sphericity is = 0.3 ± 0.1, and for more than 90 per cent of haloes the triaxiality parameter is T ≲ 0.4, showing a clear preference for oblateness over prolateness. Larger haloes in the simulation tend to be both more spherical and prolate: we find s∝Mαsh and T∝MαTh, with αs ≈ 0.128 and αT = 0.276 at z = 11. The spin distributions of dark matter and gas are considerably different at z = 16, with the baryons rotating slower than the dark matter. At lower redshift, instead, the spin distributions of dark matter and gas track each other almost perfectly, as a consequence of a longer time interval available for momentum redistribution between the two components. The spin of both the gas and dark matter follows a lognormal distribution, with a mean value at z = 16 of <λ> = 0.0184, virtually independent of halo mass. This is in good agreement with previous studies. Using the results of two feedback models (MT1 and MT2) by McKee & Tan and mapping our halo spin distribution into a PopIII initial mass function (IMF), we find that at high z, the IMF closely tracks the spin lognormal distribution. Depending on the feedback model, though, the distribution can be centred at ≈ 65 M⊙ (MT1) or ≈ 140 M⊙ (MT2). At later times, model MT1 evolves into a bimodal distribution with a second prominent peak located at 35-40 M⊙ as a result of the non-linear relation between rotation and halo mass. We conclude that the dark matter halo properties might be a key factor shaping the IMF of the first stars.

  10. Analytical and numerical studies of dark matter halos

    NASA Astrophysics Data System (ADS)

    Austin, Crystal Gayle

    This dissertation focuses on the evolution and structure of dark matter halos of galaxies, groups and clusters of galaxies. I explore the dependence of the final halo's properties on the initial conditions and the physical processes that guide the halo to equilibrium, with special focus on the power-law nature of the r/s 3 profile, where r is the density profile and s is the velocity dispersion profile. As the astronomy community does not yet fully understand these processes, this research expands our understanding of collisionless, gravitationally-interacting systems. In the initial chapters, I study the collisionless semi-analytic halo simulations and show that the final properties are sensitive to the initial conditions, such as the power-spectra filtering scale, the secondary velocities' magnitudes and directions, and the accretion rate. The general conclusions are that semi-analytic halos are in hydrostatic equilibrium and have a power-law r/s 3 profile. If there were discontinuities in the initial conditions, the power-law feature in r/s 3 breaks. Because of this, hydrostatic equilibrium is a less restrictive condition than the r/s 3 profile. These halos can recover from moderate discontinuities by either correcting a single profile by sacrificing other quantities or by sufficient post-accretion. Finally, I compare collisionless semi-analytic and N-body simulations directly. This novel comparison is useful because these techniques use different physics to collapse the proto-halo. The physical differences between these two methods are used to determine causes of the final halo profiles. Specifically, I find the NFW density profile and power-law r/s 3 are due to the slow rate of evolution, which is determined from the initial conditions and cosmology. The density slope-velocity anisotropy relationship is dependent, rather, on the physical processes (notably the radial orbit instability) and three-dimensional evolution used to collapse the proto-halos. We also

  11. Self-Interacting Dark Matter Halos and the Gravothermal Catastrophe

    NASA Astrophysics Data System (ADS)

    Balberg, Shmuel; Shapiro, Stuart L.; Inagaki, Shogo

    2002-04-01

    We study the evolution of an isolated spherical halo of self-interacting dark matter (SIDM) in the gravothermal fluid formalism. We show that the thermal relaxation time tr of an SIDM halo with the central density and velocity dispersion of a typical dwarf galaxy is significantly shorter than its age. We find a self-similar solution for the evolution of an SIDM halo in the limit where the mean free path between collisions, λ, is longer than the gravitational scale height H everywhere. Typical halos formed in this long mean free path regime relax to a quasi-stationary gravothermal density profile characterized by a nearly homogeneous core and a power-law halo where ρ~r-2.19. We solve the more general time-dependent problem and show that the contracting core evolves to sufficiently high density that λ inevitably becomes smaller than H in the innermost region. The core undergoes secular collapse to a singular state (the ``gravothermal catastrophe'') in a time tcoll~290tr, which is longer than the Hubble time for a typical dark matter-dominated galaxy core at the present epoch. Our model calculations are consistent with previous more detailed N-body simulations for SIDM, providing a simple physical interpretation of their results and extending them to higher spatial resolution and longer evolution times. At late times, mass loss from the contracting dense inner core to the ambient halo is significantly moderated, so that the final mass of the inner core may be appreciable when it becomes relativistic and radially unstable to dynamical collapse to a black hole.

  12. Do dark matter halos explain lensing peaks?

    NASA Astrophysics Data System (ADS)

    Zorrilla Matilla, José Manuel; Haiman, Zoltán; Hsu, Daniel; Gupta, Arushi; Petri, Andrea

    2016-10-01

    We have investigated a recently proposed halo-based model, Camelus, for predicting weak-lensing peak counts, and compared its results over a collection of 162 cosmologies with those from N-body simulations. While counts from both models agree for peaks with S /N >1 (where S /N is the ratio of the peak height to the r.m.s. shape noise), we find ≈50 % fewer counts for peaks near S /N =0 and significantly higher counts in the negative S /N tail. Adding shape noise reduces the differences to within 20% for all cosmologies. We also found larger covariances that are more sensitive to cosmological parameters. As a result, credibility regions in the {Ωm,σ8} are ≈30 % larger. Even though the credible contours are commensurate, each model draws its predictive power from different types of peaks. Low peaks, especially those with 2 3 ). Our results confirm the importance of using a cosmology-dependent covariance with at least a 14% improvement in parameter constraints. We identified the covariance estimation as the main driver behind differences in inference, and suggest possible ways to make Camelus even more useful as a highly accurate peak count emulator.

  13. Galaxy halos and the nature of dark matter

    NASA Astrophysics Data System (ADS)

    Moore, Ben

    1995-07-01

    One of the few observational facts that we know about dark matter is that within about one tenth of the virial radius, the dark halos of some galaxies have density profiles which fall with the radius as ρ(r)~rn, where n~=0. Any successful dark matter candidate must be able to reproduce these observations. Cold dark matter (CDM) particles interact primarily by gravity and therefore cluster with no preferred scale, hence galaxy halos are predicted to have singular density profiles with approximately isothermal power law slopes on all scales (Filmore & Goldreich 1984, Bertschinger 1985). The theoretical predictions do not take account of the irregular merging and virialisation processes taking place during structure formation. Therefore, we must compare the observations with numerical N-body simulations which are ideally suited for this type of problem and have just begun to probe structure formation on these scales. The highest resolution simulations (Dubinski & Carlberg 1991, Warren et al. 1992, Carlberg 1993, Crone et al. 1994) produce halo density profiles which fall too steeply to match the data (Moore 1994, Flores & Primack 1994). Moreover, Crone et al. (1994) claim that after correcting for force softening the density profiles match the analytic predictions. If these results are confirmed by higher resolution studies then we can reject the hypothesis that the dark matter is a cold, dissipationless particle. However, there is some disagreement between the results of the above authors and the slightly lower resolution studies of Katz & White (1993) and Navarro, Frenk & White (1994).

  14. A NEW MODEL FOR DARK MATTER HALOS HOSTING QUASARS

    SciTech Connect

    Cen, Renyue; Safarzadeh, Mohammadtaher

    2015-01-10

    A new model for quasar-hosting dark matter halos, meeting two physical conditions, is put forth. First, significant interactions are taken into consideration to trigger quasar activities. Second, satellites in very massive halos at low redshift are removed from consideration due to their deficiency in cold gas. We analyze the Millennium Simulation to find halos that meet these two conditions and simultaneously match two-point auto-correlation functions of quasars and cross-correlation functions between quasars and galaxies at z = 0.5-3.2. The masses of the quasar hosts found decrease with decreasing redshift, with the mass thresholds being [(2-5) × 10{sup 12}, (2-5) × 10{sup 11}, (1-3) × 10{sup 11}] M {sub ☉} for median luminosities of ∼[10{sup 46}, 10{sup 46}, 10{sup 45}] erg s{sup –1} at z = (3.2, 1.4, 0.53), respectively, an order of magnitude lower than those inferred based on halo occupation distribution modeling. In this model, quasar hosts are primarily massive central halos at z ≥ 2-3 but increasingly dominated by lower mass satellite halos experiencing major interactions toward lower redshift. However, below z = 1, satellite halos in groups more massive than ∼2 × 10{sup 13} M {sub ☉} do not host quasars. Whether for central or satellite halos, imposing the condition of significant interactions substantially boosts the clustering strength compared to the total population with the same mass cut. The inferred lifetimes of quasars at z = 0.5-3.2 of 3-30 Myr are in agreement with observations. Quasars at z ∼ 2 would be hosted by halos of mass ∼5 × 10{sup 11} M {sub ☉} in this model, compared to ∼3 × 10{sup 12} M {sub ☉} previously thought, which would help reconcile with the observed, otherwise puzzling high covering fractions for Lyman limit systems around quasars.

  15. Chandra's Find of Lonely Halo Raises Questions About Dark Matter

    NASA Astrophysics Data System (ADS)

    2004-10-01

    Dark matter continues to confound astronomers, as NASA's Chandra X-ray Observatory demonstrated with the detection of an extensive envelope of dark matter around an isolated elliptical galaxy. This discovery conflicts with optical data that suggest a dearth of dark matter around similar galaxies, and raises questions about how galaxies acquire and keep such dark matter halos. The observed galaxy, known as NGC 4555, is unusual in that it is a fairly large, elliptical galaxy that is not part of a group or cluster of galaxies. In a paper to be published in the November 1, 2004 issue of the Monthly Notices of the Royal Astronomical Society, Ewan O'Sullivan of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA and Trevor Ponman of the University of Birmingham, United Kingdom, use the Chandra data to show that the galaxy is embedded in a cloud of 10-million-degree-Celsius gas. X-ray/Optical Composite of NGC 4555 X-ray/Optical Composite of NGC 4555 This hot gas cloud has a diameter of about 400,000 light years, about twice that of the visible galaxy. An enormous envelope, or halo, of dark matter is needed to confine the hot cloud to the galaxy. The total mass of the dark matter halo is about ten times the combined mass of the stars in the galaxy, and 300 times the mass of the hot gas cloud. A growing body of evidence indicates that dark matter - which interacts with itself and "normal" matter only through gravity - is the dominant form of matter in the universe. According to the popular "cold dark matter" theory, dark matter consists of mysterious particles left over from the dense early universe that were moving slowly when galaxies and galaxy clusters began to form. "The observed properties of NGC 4555 confirm that elliptical galaxies can posses dark matter halos of their own, regardless of their environment," said O'Sullivan. "This raises an important question: what determines whether elliptical galaxies have dark matter halos?" DSS Optical Image of NGC

  16. The Power Spectrum Dependence of Dark Matter Halo Concentrations

    NASA Astrophysics Data System (ADS)

    Eke, Vincent R.; Navarro, Julio F.; Steinmetz, Matthias

    2001-06-01

    High-resolution N-body simulations are used to examine the power spectrum dependence of the concentration of galaxy-sized dark matter halos. It is found that dark halo concentrations depend on the amplitude of mass fluctuations as well as on the ratio of power between small and virial mass scales. This finding is consistent with the original results of Navarro, Frenk, and White (NFW) and allows their model to be extended to include power spectra substantially different from cold dark matter (CDM). In particular, the single-parameter model presented here fits the concentration dependence on halo mass for truncated power spectra, such as those expected in the warm dark matter scenario, and predicts a stronger redshift dependence for the concentration of CDM halos than proposed by NFW. The latter conclusion confirms recent suggestions by Bullock and coworkers, although this new modeling differs from theirs in detail. These findings imply that observational limits on the concentration, such as those provided by estimates of the dark matter content within individual galaxies, may be used to constrain the amplitude of mass fluctuations on galactic and subgalactic scales. The constraints on ΛCDM models posed by the dark mass within the solar circle in the Milky Way and by the zero point of the Tully-Fisher relation are revisited, with the result that neither data set is clearly incompatible with the ``concordance'' (Ω0=0.3, Λ0=0.7, σ8=0.9) ΛCDM cosmogony. This conclusion differs from that reached recently by Navarro and Steinmetz, a disagreement that can be traced to inconsistencies in the normalization of the ΛCDM power spectrum used in that work.

  17. Gravitational collapse of Bose-Einstein condensate dark matter halos

    NASA Astrophysics Data System (ADS)

    Harko, Tiberiu

    2014-04-01

    We study the mechanisms of the gravitational collapse of the Bose-Einstein condensate dark matter halos, described by the zero temperature time-dependent nonlinear Schrödinger equation (the Gross-Pitaevskii equation), with repulsive interparticle interactions. By using a variational approach, and by choosing an appropriate trial wave function, we reformulate the Gross-Pitaevskii equation with spherical symmetry as Newton's equation of motion for a particle in an effective potential, which is determined by the zero-point kinetic energy, the gravitational energy, and the particles interaction energy, respectively. The velocity of the condensate is proportional to the radial distance, with a time-dependent proportionality function. The equation of motion of the collapsing dark matter condensate is studied by using both analytical and numerical methods. The collapse of the condensate ends with the formation of a stable configuration, corresponding to the minimum of the effective potential. The radius and the mass of the resulting dark matter object are obtained, as well as the collapse time of the condensate. The numerical values of these global astrophysical quantities, characterizing condensed dark matter systems, strongly depend on the two parameters describing the condensate, the mass of the dark matter particle, and of the scattering length, respectively. The stability of the condensate under small perturbations is also studied, and the oscillations frequency of the halo is obtained. Hence these results show that the gravitational collapse of the condensed dark matter halos can lead to the formation of stable astrophysical systems with both galactic and stellar sizes.

  18. SELF-SIMILAR SOLUTIONS OF TRIAXIAL DARK MATTER HALOS

    SciTech Connect

    Lithwick, Yoram; Dalal, Neal

    2011-06-20

    We investigate the collapse and the internal structure of dark matter halos. We consider halo formation from initially scale-free perturbations, for which gravitational collapse is self-similar. Fillmore and Goldreich and Bertschinger solved the one-dimensional (i.e., spherically symmetric) case. We generalize their results by formulating the three-dimensional self-similar equations. We solve the equations numerically and analyze the similarity solutions in detail, focusing on the internal density profiles of the collapsed halos. By decomposing the total density into subprofiles of particles that collapse coevally, we identify two effects as the main determinants of the internal density structure of halos: adiabatic contraction and the shape of a subprofile shortly after collapse; the latter largely reflects the triaxiality of the subprofile. We develop a simple model that describes the results of our three-dimensional simulations. In a companion paper, we apply this model to more realistic cosmological fluctuations, and thereby explain the origin of the nearly universal (NFW-like) density profiles found in N-body simulations.

  19. The evolution of the galaxy content of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Contreras, S.; Zehavi, I.; Baugh, C. M.; Padilla, N.; Norberg, P.

    2017-03-01

    We use the halo occupation distribution (HOD) framework to characterize the predictions from two independent galaxy formation models for the galactic content of dark matter haloes and its evolution with redshift. Our galaxy samples correspond to a range of fixed number densities defined by stellar mass and span 0 ≤ z ≤ 3. We find remarkable similarities between the model predictions. Differences arise at low galaxy number densities which are sensitive to the treatment of heating of the hot halo by active galactic nuclei. The evolution of the form of the HOD can be described in a relatively simple way, and we model each HOD parameter using its value at z = 0 and an additional evolutionary parameter. In particular, we find that the ratio between the characteristic halo masses for hosting central and satellite galaxies can serve as a sensitive diagnostic for galaxy evolution models. Our results can be used to test and develop empirical studies of galaxy evolution, and can facilitate the construction of mock galaxy catalogues for future surveys.

  20. Precision measurement of the local bias of dark matter halos

    SciTech Connect

    Lazeyras, Titouan; Wagner, Christian; Schmidt, Fabian; Baldauf, Tobias E-mail: cwagner@mpa-garching.mpg.de E-mail: fabians@mpa-garching.mpg.de

    2016-02-01

    We present accurate measurements of the linear, quadratic, and cubic local bias of dark matter halos, using curved 'separate universe' N-body simulations which effectively incorporate an infinite-wavelength overdensity. This can be seen as an exact implementation of the peak-background split argument. We compare the results with the linear and quadratic bias measured from the halo-matter power spectrum and bispectrum, and find good agreement. On the other hand, the standard peak-background split applied to the Sheth and Tormen (1999) and Tinker et al. (2008) halo mass functions matches the measured linear bias parameter only at the level of 10%. The prediction from the excursion set-peaks approach performs much better, which can be attributed to the stochastic moving barrier employed in the excursion set-peaks prediction. We also provide convenient fitting formulas for the nonlinear bias parameters b{sub 2}(b{sub 1}) and b{sub 3}(b{sub 1}), which work well over a range of redshifts.

  1. Stochastic gravitational wave background from cold dark matter halos

    SciTech Connect

    Carbone, Carmelita; Baccigalupi, Carlo; Matarrese, Sabino

    2006-03-15

    The current knowledge of cosmological structure formation suggests that Cold Dark Matter (CDM) halos possess a nonspherical density profile, implying that cosmic structures can be potential sources of gravitational waves via power transfer from scalar perturbations to tensor metric modes in the nonlinear regime. By means of a previously developed mathematical formalism and a triaxial collapse model, we numerically estimate the stochastic gravitational-wave background generated by CDM halos during the fully nonlinear stage of their evolution. Our results suggest that the energy density associated with this background is comparable to that produced by primordial tensor modes at frequencies {nu}{approx_equal}10{sup -18}-10{sup -17} Hz if the energy scale of inflation is V{sup 1/4}{approx_equal}1-2x10{sup 15} GeV, and that these gravitational waves could give rise to several cosmological effects, including secondary CMB anisotropy and polarization.

  2. HaloSat: A CubeSat to Map the Distribution of Baryonic Matter in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Miles, Drew M.

    2016-04-01

    Approximately half of predicted baryonic matter in the Milky Way remains unidentified. One possible explanation for the location of this missing matter is in an extended Galactic halo. HaloSat is a CubeSat that aims to constrain the mass and distribution of the halo’s baryonic matter by obtaining an all-sky map of O VII and O VIII emission in the hot gas associated with the halo of the Milky Way. HaloSat offers an improvement in the quality of measurements of oxygen line emission over existing X-ray observatories and an observation plan dedicated to mapping the hot gas in the Galactic halo. In addition to the missing baryon problem, HaloSat will assign a portion of its observations to the solar wind charge exchange (SWCX) in order to calibrate models of SCWX emission. We present here the current status of HaloSat and the progression of instrument development in anticipation of a 2018 launch.

  3. Mapping stellar content to dark matter haloes - II. Halo mass is the main driver of galaxy quenching

    NASA Astrophysics Data System (ADS)

    Zu, Ying; Mandelbaum, Rachel

    2016-04-01

    We develop a simple yet comprehensive method to distinguish the underlying drivers of galaxy quenching, using the clustering and galaxy-galaxy lensing of red and blue galaxies in Sloan Digital Sky Survey. Building on the iHOD framework developed by Zu & Mandelbaum, we consider two quenching scenarios: (1) a `halo' quenching model in which halo mass is the sole driver for turning off star formation in both centrals and satellites; and (2) a `hybrid' quenching model in which the quenched fraction of galaxies depends on their stellar mass, while the satellite quenching has an extra dependence on halo mass. The two best-fitting models describe the red galaxy clustering and lensing equally well, but halo quenching provides significantly better fits to the blue galaxies above 1011 h-2 M⊙. The halo quenching model also correctly predicts the average halo mass of the red and blue centrals, showing excellent agreement with the direct weak lensing measurements of locally brightest galaxies. Models in which quenching is not tied to halo mass, including an age-matching model in which galaxy colour depends on halo age at fixed M*, fail to reproduce the observed halo mass for massive blue centrals. We find similar critical halo masses responsible for the quenching of centrals and satellites (˜1.5 × 1012 h-1 M⊙), hinting at a uniform quenching mechanism for both, e.g. the virial shock heating of infalling gas. The success of the iHOD halo quenching model provides strong evidence that the physical mechanism that quenches star formation in galaxies is tied principally to the masses of their dark matter haloes rather than the properties of their stellar components.

  4. Signatures of dark matter halo expansion in galaxy populations

    NASA Astrophysics Data System (ADS)

    Brook, Chris B.; Di Cintio, Arianna

    2015-10-01

    Dark matter cores within galaxy haloes can be formed by energy feedback from star-forming regions: an energy balance suggests that the maximum core formation efficiency arises in galaxies with Mstar ˜ 108.5 M⊙. We show that a model population of galaxies, in which the density profile has been modified by such baryonic feedback, is able to explain the observed galaxy velocity function and Tully-Fisher relations significantly better than a model in which a universal cuspy density profile is assumed. Alternative models, namely warm or self-interacting dark matter, also provide a better match to these observed relations than a universal profile model does, but make different predictions for how halo density profiles vary with mass compared to the baryonic feedback case. We propose that different core formation mechanisms may be distinguished based on the imprint they leave on galaxy populations over a wide range of mass. Within the current observational data we find evidence of the expected signatures of the mass dependence of core formation generated by baryonic feedback.

  5. An MCMC fitting method for triaxial dark matter haloes

    NASA Astrophysics Data System (ADS)

    Corless, Virginia L.; King, Lindsay J.

    2008-11-01

    Measuring the 3D distribution of mass on galaxy cluster scales is a crucial test of the Λ cold dark matter (ΛCDM) model, providing constraints on the behaviour of dark matter. Recent work investigating mass distributions of individual galaxy clusters (e.g. Abell 1689) using weak and strong gravitational lensing has revealed potential inconsistencies between the predictions of structure formation models relating halo mass to concentration and those relationships as measured in massive clusters. However, such analyses employ simple spherical halo models while a growing body of work indicates that triaxial 3D halo structure is both common and important in parameter estimates. Though lensing is sensitive only to 2D projected structure and is thus incapable of independently constraining 3D models, the very strong assumptions about the symmetry of the lensing halo implied with circular or perturbative elliptical Navarro, Frenk & White (NFW) models are not physically motivated and lead to incorrect parameter estimates with significantly underestimated error bars. We here introduce a Markov Chain Monte Carlo (MCMC) method to fit fully triaxial models to weak lensing data that gives parameter and error estimates that fully incorporate the true uncertainty present in nature. Using weak lensing data alone, the fits are sensitive to the Bayesian priors on axis ratio; we explore the impact of various general and physically motivated priors, and emphasize the need for future work combining lensing data with other data types to fully constrain the 3D structure of galaxy clusters. Applying the MCMC triaxial fitting method to a population of NFW triaxial lenses drawn from the shape distribution of structure formation simulations, we find that including triaxiality cannot explain a population of massive, highly concentrated clusters within the framework of ΛCDM, but easily explains rare cases of apparently massive, highly concentrated, very efficient lensing clusters. Our MCMC

  6. THE COSMIC HISTORY OF THE SPIN OF DARK MATTER HALOS WITHIN THE LARGE-SCALE STRUCTURE

    SciTech Connect

    Trowland, Holly E.; Lewis, Geraint F.; Bland-Hawthorn, Joss

    2013-01-10

    We use N-body simulations to investigate the evolution of the orientation and magnitude of dark matter halo angular momentum within the large-scale structure since z = 3. We look at the evolution of the alignment of halo spins with filaments and with each other, as well as the spin parameter, which is a measure of the magnitude of angular momentum. It was found that the angular momentum vectors of dark matter halos at high redshift have a weak tendency to be orthogonal to filaments and high-mass halos have a stronger orthogonal alignment than low-mass halos. Since z = 1, the spins of low-mass halos have become weakly aligned parallel to filaments, whereas high-mass halos kept their orthogonal alignment. This recent parallel alignment of low-mass halos casts doubt on tidal torque theory as the sole mechanism for the buildup of angular momentum. We see evidence for bulk flows and the broadening of filaments over time in the alignments of halo spin and velocities. We find a significant alignment of the spin of neighboring dark matter halos only at very small separations, r < 0.3 Mpc h {sup -1}, which is driven by substructure. A correlation of the spin parameter with halo mass is confirmed at high redshift.

  7. Fingerprints of the initial conditions on the density profiles of cold and warm dark matter haloes

    NASA Astrophysics Data System (ADS)

    Polisensky, E.; Ricotti, M.

    2015-06-01

    We use N-body simulations of dark matter haloes in cold dark matter (CDM) and a large set of different warm dark matter (WDM) cosmologies to demonstrate that the spherically averaged density profile of dark matter haloes has a shape that depends on the power spectrum of matter perturbations. Density profiles are steeper in WDM but become shallower at r < 0.01Rvir. Virialization isotropizes the velocity dispersion in the inner regions of the halo but does not erase the memory of the initial conditions in phase space. The location of the observed deviations from CDM in the density profile and in phase space can be directly related to the ratio between the halo mass and the filtering mass and are most evident in small mass haloes, even for a 34 keV thermal relic WDM. The rearrangement of mass within the haloes supports analytic models of halo structure that include angular momentum. We also find evidence of a dependence of the slope of the inner density profile in CDM cosmologies on the halo mass with more massive haloes exhibiting steeper profiles, in agreement with the model predictions and with previous simulation results. Our work complements recent studies of microhaloes near the filtering scale in CDM and strongly argue against a universal shape for the density profile.

  8. The angular momentum distribution within haloes in different dark matter models

    NASA Astrophysics Data System (ADS)

    Chen, D. N.; Jing, Y. P.

    2002-10-01

    We study the angular momentum profile of dark matter haloes for a statistical sample drawn from a set of high-resolution cosmological simulations of 2563 particles. Two typical cold dark matter (CDM) models have been analysed, and the haloes are selected to have at least 3 × 104 particles in order to measure the angular momentumprofile reliably. In contrast with the recent claims of Bullock et al., we find that the degree of misalignment of angular momentum within a halo is very high. Approximately 50 per cent of haloes have more than 10 per cent of the halo mass in the mass of negative angular momentum j. After the mass of negative j is excluded, the cumulative mass function M(haloes (~50 per cent) that exhibit systematic deviations from the universal function. Our results, however, are broadly in good agreement with a recent work of van den Bosch et al. We also study the angular momentum profile of haloes in a warm dark matter (WDM) model and a self-interacting dark matter (SIDM) model. We find that the angular momentum profile of haloes in the WDM is statistically indistinguishable from that in the CDM model, but the angular momentum of haloes in the SIDM is reduced by the self-interaction of dark matter.

  9. Detecting the Disruption of Dark-Matter Halos with Stellar Streams.

    PubMed

    Bovy, Jo

    2016-03-25

    Narrow stellar streams in the Milky Way halo are uniquely sensitive to dark-matter subhalos, but many of these subhalos may be tidally disrupted. I calculate the interaction between stellar and dark-matter streams using analytical and N-body calculations, showing that disrupting objects can be detected as low-concentration subhalos. Through this effect, we can constrain the lumpiness of the halo as well as the orbit and present position of individual dark-matter streams. This will have profound implications for the formation of halos and for direct- and indirect-detection dark-matter searches.

  10. Small-scale Substructure in Dark Matter Haloes: Where Does Galaxy Formation Come to an End?

    NASA Astrophysics Data System (ADS)

    Taylor, J. E.; Silk, J.; Babul, A.

    2004-07-01

    Models of structure formation based on cold dark matter predict that most of the small dark matter haloes that first formed at high redshift would have merged into larger systems by the present epoch. Substructure in present-day haloes preserves the remains of these ancient systems, providing the only direct information we may ever have about the low-mass end of the power spectrum. We describe some recent attempts to model halo substructure down to very small masses, using a semi-analytic model of halo formation. We make a preliminary comparison between the model predictions, observations of substructure in lensed systems, and the properties of local satellite galaxies.

  11. Three-point galaxy-galaxy lensing as a probe of dark matter halo shapes

    SciTech Connect

    Adhikari, Susmita; Chue, Chun Yin Ricky; Dalal, Neal E-mail: chue2@illinois.edu

    2015-01-01

    We propose a method to measure the ellipticities of dark matter halos using the lens-shear-shear 3-point correlation function. This method is immune to effects of galaxy-halo misalignments that can potentially limit 2-point galaxy-galaxy lensing measurements of halo anisotropy. Using a simple model for the projected mass distributions of dark matter halos, we construct an ellipticity estimator that sums over all possible triangular configurations of the 3-point function. By applying our estimator to halos from N-body simulations, we find that systematic errors in the recovered ellipticity will be at the ∼< 5% fractional level. We estimate that future imaging surveys like LSST will have sufficient statistics to detect halo ellipticities using 3-point lensing.

  12. CALET's sensitivity to Dark Matter annihilation in the galactic halo

    SciTech Connect

    Motz, H.; Asaoka, Y.; Torii, S.; Bhattacharyya, S. E-mail: yoichi.asaoka@aoni.waseda.jp E-mail: saptashwab@ruri.waseda.jp

    2015-12-01

    CALET (Calorimetric Electron Telescope), installed on the ISS in August 2015, directly measures the electron+positron cosmic rays flux up to 20 TeV. With its proton rejection capability of 1 : 10{sup 5} and an aperture of 1200 cm{sup 2·} sr, it will provide good statistics even well above one TeV, while also featuring an energy resolution of 2%, which allows it to detect fine structures in the spectrum. Such structures may originate from Dark Matter annihilation or decay, making indirect Dark Matter search one of CALET's main science objectives among others such as identification of signatures from nearby supernova remnants, study of the heavy nuclei spectra and gamma astronomy. The latest results from AMS-02 on positron fraction and total electron+positron flux can be fitted with a parametrization including a single pulsar as an extra power law source with exponential cut-off, which emits an equal amount of electrons and positrons. This single pulsar scenario for the positron excess is extrapolated into the TeV region and the expected CALET data for this case are simulated. Based on this prediction for CALET data, the sensitivity of CALET to Dark Matter annihilation in the galactic halo has been calculated. It is shown that CALET could significantly improve the limits compared to current data, especially for those Dark Matter candidates that feature a large fraction of annihilation directly into e{sup +} + e{sup −}, such as the LKP (Lightest Kaluza-Klein particle)

  13. The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations

    NASA Astrophysics Data System (ADS)

    Chan, T. K.; Kereš, D.; Oñorbe, J.; Hopkins, P. F.; Muratov, A. L.; Faucher-Giguère, C.-A.; Quataert, E.

    2015-12-01

    We study the distribution of cold dark matter (CDM) in cosmological simulations from the FIRE (Feedback In Realistic Environments) project, for M* ˜ 104-11 M⊙ galaxies in Mh ˜ 109-12 M⊙ haloes. FIRE incorporates explicit stellar feedback in the multiphase interstellar medium, with energetics from stellar population models. We find that stellar feedback, without `fine-tuned' parameters, greatly alleviates small-scale problems in CDM. Feedback causes bursts of star formation and outflows, altering the DM distribution. As a result, the inner slope of the DM halo profile (α) shows a strong mass dependence: profiles are shallow at Mh ˜ 1010-1011 M⊙ and steepen at higher/lower masses. The resulting core sizes and slopes are consistent with observations. This is broadly consistent with previous work using simpler feedback schemes, but we find steeper mass dependence of α, and relatively late growth of cores. Because the star formation efficiency M*/Mh is strongly halo mass dependent, a rapid change in α occurs around Mh ˜ 1010 M⊙ (M* ˜ 106-107 M⊙), as sufficient feedback energy becomes available to perturb the DM. Large cores are not established during the period of rapid growth of haloes because of ongoing DM mass accumulation. Instead, cores require several bursts of star formation after the rapid build-up has completed. Stellar feedback dramatically reduces circular velocities in the inner kpc of massive dwarfs; this could be sufficient to explain the `Too Big To Fail' problem without invoking non-standard DM. Finally, feedback and baryonic contraction in Milky Way-mass haloes produce DM profiles slightly shallower than the Navarro-Frenk-White profile, consistent with the normalization of the observed Tully-Fisher relation.

  14. Evidence of lensing of the cosmic microwave background by dark matter halos.

    PubMed

    Madhavacheril, Mathew; Sehgal, Neelima; Allison, Rupert; Battaglia, Nick; Bond, J Richard; Calabrese, Erminia; Caligiuri, Jerod; Coughlin, Kevin; Crichton, Devin; Datta, Rahul; Devlin, Mark J; Dunkley, Joanna; Dünner, Rolando; Fogarty, Kevin; Grace, Emily; Hajian, Amir; Hasselfield, Matthew; Hill, J Colin; Hilton, Matt; Hincks, Adam D; Hlozek, Renée; Hughes, John P; Kosowsky, Arthur; Louis, Thibaut; Lungu, Marius; McMahon, Jeff; Moodley, Kavilan; Munson, Charles; Naess, Sigurd; Nati, Federico; Newburgh, Laura; Niemack, Michael D; Page, Lyman A; Partridge, Bruce; Schmitt, Benjamin; Sherwin, Blake D; Sievers, Jon; Spergel, David N; Staggs, Suzanne T; Thornton, Robert; Van Engelen, Alexander; Ward, Jonathan T; Wollack, Edward J

    2015-04-17

    We present evidence of the gravitational lensing of the cosmic microwave background by 10(13) solar mass dark matter halos. Lensing convergence maps from the Atacama Cosmology Telescope Polarimeter (ACTPol) are stacked at the positions of around 12 000 optically selected CMASS galaxies from the SDSS-III/BOSS survey. The mean lensing signal is consistent with simulated dark matter halo profiles and is favored over a null signal at 3.2σ significance. This result demonstrates the potential of microwave background lensing to probe the dark matter distribution in galaxy group and galaxy cluster halos.

  15. Hierarchical formation of dark matter halos and the free streaming scale

    SciTech Connect

    Ishiyama, Tomoaki

    2014-06-10

    The smallest dark matter halos are formed first in the early universe. According to recent studies, the central density cusp is much steeper in these halos than in larger halos and scales as ρ∝r {sup –(1.5-1.3)}. We present the results of very large cosmological N-body simulations of the hierarchical formation and evolution of halos over a wide mass range, beginning from the formation of the smallest halos. We confirmed early studies that the inner density cusps are steeper in halos at the free streaming scale. The cusp slope gradually becomes shallower as the halo mass increases. The slope of halos 50 times more massive than the smallest halo is approximately –1.3. No strong correlation exists between the inner slope and the collapse epoch. The cusp slope of halos above the free streaming scale seems to be reduced primarily due to major merger processes. The concentration, estimated at the present universe, is predicted to be 60-70, consistent with theoretical models and earlier simulations, and ruling out simple power law mass-concentration relations. Microhalos could still exist in the present universe with the same steep density profiles.

  16. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS

    SciTech Connect

    Rojas-Nino, Armando; Valenzuela, Octavio; Pichardo, Barbara; Aguilar, Luis A. E-mail: barbara@astro.unam.mx

    2012-10-01

    Assuming the dark matter halo of the Milky Way to be a non-spherical potential (i.e., triaxial, prolate, oblate), we show how the assembling process of the Milky Way halo may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo. In contrast with tidal streams, which are associated with recent satellite accretion events, these stellar kinematic groups will typically show inhomogeneous chemical and stellar population properties. However, they may be dominated by a single accretion event for certain mass assembling histories. If the detection of these peculiar kinematic stellar groups were confirmed, they would be the smoking gun for the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.

  17. How does gas cool in dark matter haloes?

    NASA Astrophysics Data System (ADS)

    Viola, M.; Monaco, P.; Borgani, S.; Murante, G.; Tornatore, L.

    2008-01-01

    In order to study the process of cooling in dark matter haloes and assess how well simple models can represent it, we run a set of radiative smoothed particle hydrodynamics (SPH) simulations of isolated haloes, with gas sitting initially in hydrostatic equilibrium within Navarro-Frenk-White potential wells. Simulations include radiative cooling and a scheme to convert high-density cold gas particles into collisionless stars, neglecting any astrophysical source of energy feedback. After having assessed the numerical stability of the simulations, we compare the resulting evolution of the cooled mass with the predictions of the classical cooling model of White & Frenk and of the cooling model proposed in the MORGANA code of galaxy formation. We find that the classical model predicts fractions of cooled mass which, after about 2 central cooling times, are about one order of magnitude smaller than those found in simulations. Although this difference decreases with time, after 8 central cooling times, when simulations are stopped, the difference still amounts to a factor of 2-3. We ascribe this difference to the lack of validity of the assumption that a mass shell takes one cooling time, as computed on the initial conditions, to cool to very low temperature. Indeed, we find from simulations that cooling SPH particles take most time in travelling, at roughly constant temperature and increasing density, from their initial position to a central cooling region, where they quickly cool down to ~104 K. We show that in this case the total cooling time is shorter than that computed on the initial conditions, as a consequence of the stronger radiative losses associated to the higher density experienced by these particles. As a consequence the mass cooling flow is stronger than that predicted by the classical model. The MORGANA model, which computes the cooling rate as an integral over the contribution of cooling shells and does not make assumptions on the time needed by shells to

  18. Correlation Analysis between Spin, Velocity Shear, and Vorticity of Baryonic and Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Liu, L. L.

    2016-05-01

    Using cosmological hydrodynamic simulations, we investigate the alignments between velocity shear, vorticity, and the spin of dark matter halos, and study the correlation between baryonic and dark matter. We find that (1) mis-alignment between vorticity of baryonic and dark matter would develop on scales < 0.2h-1 Mpc; (2) the vorticity of baryonic matter exhibits stronger alignment/anti-alignment with the eigenvectors of velocity shear than that of dark matter; (3) small/massive halos spinning parallel/perpendicular to the host filaments are sensitive to the identification of cosmic web, simulation box size, and resolution. These factors might complicate the connection between the spins of dark matter halos and galaxies, and affect the correlation signal of the alignments of galaxy spin with nearby large-scale structures.

  19. THE SPIN AND ORIENTATION OF DARK MATTER HALOS WITHIN COSMIC FILAMENTS

    SciTech Connect

    Zhang Youcai; Yang Xiaohu; Lin Weipeng; Faltenbacher, Andreas; Springel, Volker; Wang Huiyuan

    2009-11-20

    Clusters, filaments, sheets, and voids are the building blocks of the cosmic web. Forming dark matter halos respond to these different large-scale environments, and this in turn affects the properties of galaxies hosted by the halos. It is therefore important to understand the systematic correlations of halo properties with the morphology of the cosmic web, as this informs both about galaxy formation physics and possible systematics of weak lensing studies. In this study, we present and compare two distinct algorithms for finding cosmic filaments and sheets, a task which is far less well established than the identification of dark matter halos or voids. One method is based on the smoothed dark matter density field and the other uses the halo distributions directly. We apply both techniques to one high-resolution N-body simulation and reconstruct the filamentary/sheet like network of the dark matter density field. We focus on investigating the properties of the dark matter halos inside these structures, in particular, on the directions of their spins and the orientation of their shapes with respect to the directions of the filaments and sheets. We find that both the spin and the major axes of filament halos with masses approx<10{sup 13} h {sup -1} M{sub sun} are preferentially aligned with the direction of the filaments. The spins and major axes of halos in sheets tend to lie parallel to the sheets. There is an opposite mass dependence of the alignment strength for the spin (negative) and major (positive) axes, i.e. with increasing halo mass the major axis tends to be more strongly aligned with the direction of the filament, whereas the alignment between halo spin and filament becomes weaker with increasing halo mass. The alignment strength as a function of the distance to the most massive node halo indicates that there is a transit large-scale environment impact: from the two-dimensional collapse phase of the filament to the three-dimensional collapse phase of the

  20. Concentration, spin and shape of dark matter haloes: scatter and the dependence on mass and environment

    NASA Astrophysics Data System (ADS)

    Macciò, Andrea V.; Dutton, Aaron A.; van den Bosch, Frank C.; Moore, Ben; Potter, Doug; Stadel, Joachim

    2007-06-01

    We use a series of cosmological N-body simulations for a flat Λ cold dark matter (ΛCDM) cosmology to investigate the structural properties of dark matter haloes, at redshift zero, in the mass range 3 × 109h-1 <~ Mvir <~ 3 × 1013h-1Msolar. These properties include the concentration parameter, c, the spin parameter, λ, and the mean axis ratio, . For the concentration-mass relation we find c ~ M-0.11vir in agreement with the model proposed by Bullock et al., but inconsistent with the alternative model of Eke et al. The normalization of the concentration-mass relation, however, is 15 per cent lower than suggested by Bullock et al. The results for λ and are in good agreement with previous studies, when extrapolated to the lower halo masses probed here, while c and λ are anticorrelated, in that high-spin haloes have, on average, lower concentrations. In an attempt to remove unrelaxed haloes from the sample, we compute for each halo the offset parameter, xoff, defined as the distance between the most bound particle and the centre of mass, in units of the virial radius. Removing haloes with large xoff increases the mean concentration by ~10 per cent, lowers the mean spin parameter by ~15 per cent, and removes the most prolate haloes. In addition, it largely removes the anticorrelation between c and λ, though not entirely. We also investigate the relation between halo properties and their large-scale environment density. For low-mass haloes we find that more concentrated haloes live in denser environments than their less concentrated counterparts of the same mass, consistent with recent correlation function analyses. Note, however, that the trend is weak compared to the scatter. For the halo spin parameters we find no environment dependence, while there is a weak indication that the most spherical haloes reside in slightly denser environments. Finally, using a simple model for disc galaxy formation we show that haloes that host low surface brightness galaxies are

  1. THE GROWTH OF GALAXY STELLAR MASS WITHIN DARK MATTER HALOS

    SciTech Connect

    Zehavi, Idit; Patiri, Santiago; Zheng Zheng

    2012-02-20

    We study the evolution of stellar mass in galaxies as a function of host halo mass, using the 'MPA' and 'Durham' semi-analytic models, implemented on the Millennium Run simulation. For both models, the stellar mass of the central galaxies increases rapidly with halo mass at the low-mass end and more slowly in halos of larger masses at the three redshifts probed (z {approx} 0, 1, 2). About 45% of the stellar mass in central galaxies in present-day halos less massive than {approx}10{sup 12} h{sup -1} M{sub Sun} is already in place at z {approx} 1, and this fraction increases to {approx}65% for more massive halos. The baryon conversion efficiency into stars has a peaked distribution with halo mass, and the peak location shifts toward lower mass from z {approx} 1 to z {approx} 0. The stellar mass in low-mass halos grows mostly by star formation since z {approx} 1, while in high-mass halos most of the stellar mass is assembled by mergers, reminiscent of 'downsizing'. We compare our findings to empirical results from the Sloan Digital Sky Survey and DEEP2 surveys utilizing galaxy clustering measurements to study galaxy evolution. The theoretical predictions are in qualitative agreement with these phenomenological results, but there are large discrepancies. The most significant one concerns the number of stars already in place in the progenitor galaxies at z {approx} 1, which is about a factor of two larger in both semi-analytic models. We demonstrate that methods studying galaxy evolution from the galaxy-halo connection are powerful in constraining theoretical models and can guide future efforts of modeling galaxy evolution. Conversely, semi-analytic models serve an important role in improving such methods.

  2. The mass-concentration-redshift relation of cold and warm dark matter haloes

    NASA Astrophysics Data System (ADS)

    Ludlow, Aaron D.; Bose, Sownak; Angulo, Raúl E.; Wang, Lan; Hellwing, Wojciech A.; Navarro, Julio F.; Cole, Shaun; Frenk, Carlos S.

    2016-08-01

    We use a suite of cosmological simulations to study the mass-concentration-redshift relation, c(M, z), of dark matter haloes. Our simulations include standard Λ-cold dark matter (CDM) models, and additional runs with truncated power spectra, consistent with a thermal warm dark matter (WDM) scenario. We find that the mass profiles of CDM and WDM haloes are self-similar and well approximated by the Einasto profile. The c(M, z) relation of CDM haloes is monotonic: concentrations decrease with increasing virial mass at fixed redshift, and decrease with increasing redshift at fixed mass. The mass accretion histories (MAHs) of CDM haloes are also scale-free, and can be used to infer concentrations directly. These results do not apply to WDM haloes: their MAHs are not scale-free because of the characteristic scale imposed by the power spectrum suppression. Further, the WDM c(M, z) relation is non-monotonic: concentrations peak at a mass scale dictated by the truncation scale, and decrease at higher and lower masses. We show that the assembly history of a halo can still be used to infer its concentration, provided that the total mass of its progenitors is considered (the `collapsed mass history'; CMH), rather than just that of its main ancestor. This exploits the scale-free nature of CMHs to derive a simple scaling that reproduces the mass-concentration-redshift relation of both CDM and WDM haloes over a vast range of halo masses and redshifts. Our model therefore provides a robust account of the mass, redshift, cosmology and power spectrum dependence of dark matter halo concentrations.

  3. Response of Dark Matter Halos to Condensation of Baryons: Cosmological Simulations and Improved Adiabatic Contraction Model

    NASA Astrophysics Data System (ADS)

    Gnedin, Oleg Y.; Kravtsov, Andrey V.; Klypin, Anatoly A.; Nagai, Daisuke

    2004-11-01

    The cooling of gas in the centers of dark matter halos is expected to lead to a more concentrated dark matter distribution. The response of dark matter to the condensation of baryons is usually calculated using the model of adiabatic contraction, which assumes spherical symmetry and circular orbits. In contrast, halos in the hierarchical structure formation scenarios grow via multiple violent mergers and accretion along filaments, and particle orbits in the halos are highly eccentric. We study the effects of the cooling of gas in the inner regions of halos using high-resolution cosmological simulations that include gas dynamics, radiative cooling, and star formation. We find that the dissipation of gas indeed increases the density of dark matter and steepens its radial profile in the inner regions of halos compared to the case without cooling. For the first time, we test the adiabatic contraction model in cosmological simulations and find that the standard model systematically overpredicts the increase of dark matter density in the inner 5% of the virial radius. We show that the model can be improved by a simple modification of the assumed invariant from M(r)r to M(r)r, where r and r are the current and orbit-averaged particle positions. This modification approximately accounts for orbital eccentricities of particles and reproduces simulation profiles to within 10%-20%. We present analytical fitting functions that accurately describe the transformation of the dark matter profile in the modified model and can be used for interpretation of observations.

  4. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS. II. DEPENDENCE ON NATURE DARK MATTER AND GRAVITY

    SciTech Connect

    Rojas-Niño, Armando; Pichardo, Barbara; Valenzuela, Octavio; Martínez-Medina, Luis A. E-mail: octavio@astro.unam.mx

    2015-05-20

    Recent studies have presented evidence that the Milky Way global potential may be non-spherical. In this case, the assembling process of the Galaxy may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo, potentially originated by orbital resonances. We further investigate such a possibility, now considering potential models further away from ΛCDM halos, like scalar field dark matter halos and Modified Newtonian Dynamics (MOND), and including several other factors that may mimic the emergence and permanence of kinematic groups, such as a spherical and triaxial halo with an embedded disk potential. We find that regardless of the density profile (DM nature), kinematic groups only appear in the presence of a triaxial halo potential. For the case of a MOND-like gravity theory no kinematic structure is present. We conclude that the detection of these kinematic stellar groups could confirm the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.

  5. Testing the Caustic Ring Dark Matter Halo Model Against Observations in the Milky Way

    NASA Astrophysics Data System (ADS)

    Dumas, Julie; Newberg, Heidi Jo; Niedzielski, Bethany; Susser, Adam; Thompson, Jeffery M.; Weiss, Jake; Lewis, Kim M.

    2016-06-01

    One prediction of axion dark matter models is they can form Bose-Einstein condensates and rigid caustic rings as a halo collapses in the non-linear regime. In this thesis, we undertake the first study of a caustic ring model for the Milky Way halo (Duffy & Sikivie 2008), paying particular attention to observational consequences. We first present the formalism for calculating the gravitational acceleration of a caustic ring halo. The caustic ring dark matter theory reproduces a roughly logarithmic halo, with large perturbations near the rings. We show that this halo can reasonably match the known Galactic rotation curve. We are not able to confirm or rule out an association between the positions of the caustic rings and oscillations in the observed rotation curve, due to insufficient rotation curve data. We explore the effects of dark matter caustic rings on dwarf galaxy tidal disruption with N-body simulations. Simulations of the Sagittarius (Sgr) dwarf galaxy in a caustic ring halo potential, with disk and bulge parameters that are tuned to match the Galactic rotation curve, match observations of the Sgr trailing tidal tails as far as 90 kpc from the Galactic center. Like the Navarro-Frenk-White (NFW) halo, they are, however, unable to match the leading tidal tail. None of the caustic, NFW, or triaxial logarithmic halos are able to simultaneously match observations of the leading and trailing arms of the Sagittarius stream. We further show that simulations of dwarf galaxies that move through caustic rings are qualitatively similar to those moving in a logarithmic halo. This research was funded by NSF grant AST 10-09670, the NASA-NY Space Grant, and the American Fellowship from AAUW.

  6. Statistics of dark matter halos in the excursion set peak framework

    SciTech Connect

    Lapi, A.; Danese, L. E-mail: danese@sissa.it

    2014-07-01

    We derive approximated, yet very accurate analytical expressions for the abundance and clustering properties of dark matter halos in the excursion set peak framework; the latter relies on the standard excursion set approach, but also includes the effects of a realistic filtering of the density field, a mass-dependent threshold for collapse, and the prescription from peak theory that halos tend to form around density maxima. We find that our approximations work excellently for diverse power spectra, collapse thresholds and density filters. Moreover, when adopting a cold dark matter power spectra, a tophat filtering and a mass-dependent collapse threshold (supplemented with conceivable scatter), our approximated halo mass function and halo bias represent very well the outcomes of cosmological N-body simulations.

  7. Gravothermal collapse of self-interacting dark matter halos and the origin of massive black holes.

    PubMed

    Balberg, Shmuel; Shapiro, Stuart L

    2002-03-11

    Black hole formation is an inevitable consequence of relativistic core collapse following the gravothermal catastrophe in self-interacting dark matter (SIDM) halos. Very massive SIDM halos form supermassive black holes (SMBHs) > or about 10(6)M(middle dot in circle) directly. Smaller halos believed to form by redshift z = 5 produce seed black holes of (10(2)-10(3))M(middle dot in circle) which can merge and/or accrete to reach the observational SMBH range. This scenario for SMBH formation requires no baryons, no prior star formation, and no other black hole seed mechanism.

  8. Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence

    NASA Astrophysics Data System (ADS)

    Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing

    2016-07-01

    Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.

  9. Cosmic web alignments with the shape, angular momentum and peculiar velocities of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Forero-Romero, Jaime E.; Contreras, Sergio; Padilla, Nelson

    2014-09-01

    We study the alignment of dark matter haloes with the cosmic web characterized by the tidal and velocity shear fields. We focus on the alignment of their shape, angular momentum and peculiar velocities. We use a cosmological N-body simulation that allows us to study dark matter haloes spanning almost five orders of magnitude in mass (109-1014) h-1 M⊙ and spatial scales of (0.5-1.0) h-1 Mpc to define the cosmic web. The strongest alignment is measured for halo shape along the smallest tidal eigenvector, e.g. along filaments and walls, with a signal that gets stronger as the halo mass increases. In the case of the velocity shear field only massive haloes >1012 h-1 M⊙ tend to have their shapes aligned along the largest tidal eigenvector, i.e. perpendicular to filaments and walls. For the angular momentum we find alignment signals only for haloes more massive than 1012 h-1 M⊙ both in the tidal and velocity shear fields where the preferences is to be parallel to the middle eigenvector; perpendicular to filaments and parallel to walls. Finally, the peculiar velocities show a strong alignment along the smallest tidal eigenvector for all halo masses; haloes move along filaments and walls. The same alignment is present with the velocity shear, albeit weaker and only for haloes less massive than 1012 h-1 M⊙. Our results show that the two different algorithms used to define the cosmic web describe different physical aspects of non-linear collapse and should be used in a complementary way to understand the cosmic web influence on galaxy evolution.

  10. Imprint of primordial non-Gaussianity on dark matter halo profiles

    SciTech Connect

    Dizgah, Azadeh Moradinezhad; Dodelson, Scott; Riotto, Antonio

    2013-09-01

    We study the impact of primordial non-Gaussianity on the density profile of dark matter halos by using the semi-analytical model introduced recently by Dalal {\\it et al.} which relates the peaks of the initial linear density field to the final density profile of dark matter halos. Models with primordial non-Gaussianity typically produce an initial density field that differs from that produced in Gaussian models. We use the path-integral formulation of excursion set theory to calculate the non-Gaussian corrections to the peak profile and derive the statistics of the peaks of non-Gaussian density field. In the context of the semi-analytic model for halo profiles, currently allowed values for primordial non-Gaussianity would increase the shapes of the inner dark matter profiles, but only at the sub-percent level except in the very innermost regions.

  11. Core-halo mass relation of ultralight axion dark matter from merger history

    NASA Astrophysics Data System (ADS)

    Du, Xiaolong; Behrens, Christoph; Niemeyer, Jens C.; Schwabe, Bodo

    2017-02-01

    In the context of structure formation with ultralight axion dark matter, we offer an alternative explanation for the mass relation of solitonic cores and their host halos observed in numerical simulations. Our argument is based entirely on the mass gain that occurs during major mergers of binary cores and largely independent of the initial core-halo mass relation assigned to hosts that have just collapsed. We find a relation between the halo mass Mh and corresponding core mass Mc, Mc∝Mh2 β -1, where (1 -β ) is the core mass loss fraction. Following the evolution of core masses in stochastic merger trees, we find empirical evidence for our model. Our results are useful for statistically modeling the effects of dark matter cores on the properties of galaxies and their substructures in axion dark matter cosmologies.

  12. ARE HALO-LIKE SOLAR CORONAL MASS EJECTIONS MERELY A MATTER OF GEOMETRIC PROJECTION EFFECTS?

    SciTech Connect

    Kwon, Ryun-Young; Zhang, Jie; Vourlidas, Angelos

    2015-02-01

    We investigated the physical nature of halo coronal mass ejections (CMEs) based on the stereoscopic observations from the two STEREO spacecraft, Ahead and Behind (hereafter A and B), and the SOHO spacecraft. Sixty-two halo CMEs occurred as observed by SOHO LASCO C2 for the three-year period from 2010 to 2012 during which the separation angles between SOHO and STEREO were nearly 90°. In such quadrature configuration, the coronagraphs of STEREO, COR2-A and -B, showed the side view of those halo CMEs seen by C2. It has been widely believed that the halo appearance of a CME is caused by the geometric projection effect, i.e., a CME moves along the Sun-observer line. In other words, it would appear as a non-halo CME if viewed from the side. However, to our surprise, we found that 41 out of 62 events (66%) were observed as halo CMEs by all coronagraphs. This result suggests that a halo CME is not just a matter of the propagating direction. In addition, we show that a CME propagating normal to the line of sight can be observed as a halo CME due to the associated fast magnetosonic wave or shock front. We conclude that the apparent width of CMEs, especially halos or partial halos is driven by the existence and the extent of the associated waves or shocks and does not represent an accurate measure of the CME ejecta size. This effect needs to be taken into careful consideration in space weather predictions and modeling efforts.

  13. The redshift dependence of the structure of massive Λ cold dark matter haloes

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Navarro, Julio F.; Cole, Shaun; Frenk, Carlos S.; White, Simon D. M.; Springel, Volker; Jenkins, Adrian; Neto, Angelo F.

    2008-06-01

    We use two very large cosmological simulations to study how the density profiles of relaxed Λ cold dark matter dark haloes depend on redshift and on halo mass. We confirm that these profiles deviate slightly but systematically from the NFW form and are better approximated by the empirical formula, d logρ/d logr ~ rα, first used by Einasto to fit star counts in the Milky Way. The best-fitting value of the additional shape parameter, α, increases gradually with mass, from α ~ 0.16 for present-day galaxy haloes to α ~ 0.3 for the rarest and most massive clusters. Halo concentrations depend only weakly on mass at z = 0, and this dependence weakens further at earlier times. At z ~ 3 the average concentration of relaxed haloes does not vary appreciably over the mass range accessible to our simulations (M >~ 3 × 1011h-1Msolar). Furthermore, in our biggest simulation, the average concentration of the most massive, relaxed haloes is constant at ~ 3.5-4 for 0 <= z <= 3. These results agree well with those of Zhao et al. and support the idea that halo densities reflect the density of the universe at the time they formed, as proposed by Navarro, Frenk & White. With their original parameters, the NFW prescription overpredicts halo concentrations at high redshift. This shortcoming can be reduced by modifying the definition of halo formation time, although the evolution of the concentrations of Milky Way mass haloes is still not reproduced well. In contrast, the much-used revisions of the NFW prescription by Bullock et al. and Eke, Navarro & Steinmetz predict a steeper drop in concentration at the highest masses and stronger evolution with redshift than are compatible with our numerical data. Modifying the parameters of these models can reduce the discrepancy at high masses, but the overly rapid redshift evolution remains. These results have important implications for currently planned surveys of distant clusters.

  14. STOCHASTIC MODEL OF THE SPIN DISTRIBUTION OF DARK MATTER HALOS

    SciTech Connect

    Kim, Juhan; Choi, Yun-Young; Kim, Sungsoo S.; Lee, Jeong-Eun

    2015-09-15

    We employ a stochastic approach to probing the origin of the log-normal distributions of halo spin in N-body simulations. After analyzing spin evolution in halo merging trees, it was found that a spin change can be characterized by a stochastic random walk of angular momentum. Also, spin distributions generated by random walks are fairly consistent with those directly obtained from N-body simulations. We derived a stochastic differential equation from a widely used spin definition and measured the probability distributions of the derived angular momentum change from a massive set of halo merging trees. The roles of major merging and accretion are also statistically analyzed in evolving spin distributions. Several factors (local environment, halo mass, merging mass ratio, and redshift) are found to influence the angular momentum change. The spin distributions generated in the mean-field or void regions tend to shift slightly to a higher spin value compared with simulated spin distributions, which seems to be caused by the correlated random walks. We verified the assumption of randomness in the angular momentum change observed in the N-body simulation and detected several degrees of correlation between walks, which may provide a clue for the discrepancies between the simulated and generated spin distributions in the voids. However, the generated spin distributions in the group and cluster regions successfully match the simulated spin distribution. We also demonstrated that the log-normality of the spin distribution is a natural consequence of the stochastic differential equation of the halo spin, which is well described by the Geometric Brownian Motion model.

  15. Supernova explosions in magnetized, primordial dark matter haloes

    NASA Astrophysics Data System (ADS)

    Seifried, D.; Banerjee, R.; Schleicher, D.

    2014-05-01

    The first supernova explosions are potentially relevant sources for the production of the first large-scale magnetic fields. For this reason, we present a set of high-resolution simulations studying the effect of supernova explosions on magnetized, primordial haloes. We focus on the evolution of an initially small-scale magnetic field formed during the collapse of the halo. We vary the degree of magnetization, the halo mass, and the amount of explosion energy in order to account for expected variations as well as to infer systematical dependences of the results on initial conditions. Our simulations suggest that core collapse supernovae with an explosion energy of 1051 erg and more violent pair instability supernovae with 1053 erg are able to disrupt haloes with masses up to about 106 and 107 M⊙, respectively. The peak of the magnetic field spectra shows a continuous shift towards smaller k-values, i.e. larger length scales, over time reaching values as low as k = 4. On small scales, the magnetic energy decreases at the cost of the energy on large scales resulting in a well-ordered magnetic field with a strength up to ˜10-8 G depending on the initial conditions. The coherence length of the magnetic field inferred from the spectra reaches values up to 250 pc in agreement with those obtained from autocorrelation functions. We find the coherence length to be as large as 50 per cent of the radius of the supernova bubble. Extrapolating this relation to later stages, we suggest that significantly strong magnetic fields with coherence lengths as large as 1.5 kpc could be created. We discuss possible implications of our results on processes like recollapse of the halo, first galaxy formation, and the magnetization of the intergalactic medium.

  16. Profiles of dark matter haloes at high redshift

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.

    2001-08-01

    I study the evolution of halo density profiles as a function of time in the SCDM and ΛCDM cosmologies. Following Del PopoloQ1, I calculate the concentration parameter c=rv /a and study its time evolution. For a given halo mass, I find that c(z)~1/(1+z) in both the ΛCDM and SCDM cosmology, in agreement with the analytic model of Bullock et al.Q1 and N-body simulations. In both models, a(z) is roughly constant. The present model predicts a stronger evolution of c(z) with respect to the Navarro, Frenk & WhiteQ1 model. Finally I show some consequences of the results on galaxy modelling.

  17. DARK MATTER HALOS IN GALAXIES AND GLOBULAR CLUSTER POPULATIONS

    SciTech Connect

    Hudson, Michael J.; Harris, Gretchen L.; Harris, William E.

    2014-05-20

    We combine a new, comprehensive database for globular cluster populations in all types of galaxies with a new calibration of galaxy halo masses based entirely on weak lensing. Correlating these two sets of data, we find that the mass ratio η ≡ M {sub GCS}/M {sub h} (total mass in globular clusters, divided by halo mass) is essentially constant at (η) ∼ 4 × 10{sup –5}, strongly confirming earlier suggestions in the literature. Globular clusters are the only known stellar population that formed in essentially direct proportion to host galaxy halo mass. The intrinsic scatter in η appears to be at most 0.2 dex; we argue that some of this scatter is due to differing degrees of tidal stripping of the globular cluster systems between central and satellite galaxies. We suggest that this correlation can be understood if most globular clusters form at very early stages in galaxy evolution, largely avoiding the feedback processes that inhibited the bulk of field-star formation in their host galaxies. The actual mean value of η also suggests that about one-fourth of the initial gas mass present in protogalaxies collected into giant molecular clouds large enough to form massive, dense star clusters. Finally, our calibration of (η) indicates that the halo masses of the Milky Way and M31 are (1.2 ± 0.5) × 10{sup 12} M {sub ☉} and (3.9 ± 1.8) × 10{sup 12} M {sub ☉}, respectively.

  18. Models of dark matter halos based on statistical mechanics: The classical King model

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri; Lemou, Mohammed; Méhats, Florian

    2015-03-01

    We consider the possibility that dark matter halos are described by the Fermi-Dirac distribution at finite temperature. This is the case if dark matter is a self-gravitating quantum gas made of massive neutrinos at statistical equilibrium. This is also the case if dark matter can be treated as a self-gravitating collisionless gas experiencing Lynden-Bell's type of violent relaxation. In order to avoid the infinite mass problem and carry out a rigorous stability analysis, we consider the fermionic King model. In this paper, we study the nondegenerate limit leading to the classical King model. This model was initially introduced to describe globular clusters. We propose to apply it also to large dark matter halos where quantum effects are negligible. We determine the caloric curve and study the thermodynamical stability of the different configurations. Equilibrium states exist only above a critical energy Ec in the microcanonical ensemble and only above a critical temperature Tc in the canonical ensemble. For E matter halos. Because of collisions and evaporation, the central density increases while the slope of the halo density profile decreases until an instability takes place. We show that large dark matter halos are relatively well described by the King model at, or close to, the point of marginal microcanonical stability. At that point, the King model generates a density profile that can be approximated by the modified Hubble profile. This profile has a flat core and decreases as r-3 at large distances, like the observational Burkert profile. Less steep halos are unstable. For large halos, the flat core is due to finite temperature effects, not to quantum mechanics. We argue that statistical

  19. Ecology of dark matter haloes -II. Effects of interactions on the alignment of halo pairs

    NASA Astrophysics Data System (ADS)

    L'Huillier, Benjamin; Park, Changbom; Kim, Juhan

    2017-01-01

    We use the Horizon Run 4 cosmological N-body simulation to study the effects of distant and close interactions on the alignments of the shapes, spins, and orbits of targets haloes with their neighbours, and their dependence on the local density environment and neighbour separation. Interacting targets have a significantly lower spin and higher sphericity and oblateness than all targets. Interacting pairs initially have anti-parallel spins, but the spins develop parallel alignment as time goes on. Neighbours tend to evolve in the plane of rotation of the target, and in the direction of the major axis of prolate haloes. Moreover, interactions are preferentially radial, while pairs with non-radial orbits are preferentially prograde. The alignment signals are stronger at high-mass and for close separations, and independent on the large-scale density. Positive alignment signals are found at redshifts up to 4, and increase with decreasing redshifts. Moreover, the orbits tend to become prograde at low redshift, while no alignment is found at high redshift (z = 4).

  20. How baryonic feedback processes can affect dark matter halos: a stochastic model

    NASA Astrophysics Data System (ADS)

    Freundlich, J.; El-Zant, A.; Combes, F.

    2016-12-01

    Feedback processes from stars and active galactic nuclei result in gas density fluctuations which can contribute to `heating' dark matter haloes, decrease their density at the center and hence form more realistic `cores' than the steep `cusps' predicted by cold dark matter (CDM) simulations. We present a theoretical model deriving this effect from first principles: stochastic density variations in the gas distribution perturb the gravitational potential and hence affect the halo particles. We analytically derive the velocity dispersion imparted to the CDM particles and the corresponding relaxation time, and further perform numerical simulations to show that the assumed process can indeed lead to the formation of a core in an initially cuspy halo within a timescale comparable to the derived relaxation time. This suggests that feedback-induced cusp-core transformations observed in hydrodynamic simulations of galaxy formation may be understood and parametrized in relatively simple terms.

  1. On the Shape of Dark Matter Halos in Milky Way-like Galaxies

    NASA Astrophysics Data System (ADS)

    Dai, Biwei; Robertson, Brant E.; Madau, Piero

    2017-01-01

    Recent constraints on the shape of the Milky Way’s gravitational potential show that its dark matter halo is close to spherical, inconsistent with the predictions from collisionless N-body simulations of cosmological structure formation. Motivated by this result, we measure the shape of the dark matter halo in Eris, a 120pc-resolution cosmological hydrodynamical simulation of a close analogy of the Milky Way. We construct a set of bi-orthogonal density-potential pair bases by solving the Sturm-Liouville equation, and apply them to represent compactly the detailed structure of the Eris gravitational potential. Assuming that the isodensity and isopotential contours are elliptical, we measure their shape as a function of radius and find that dissipation increases their sphericity beyond what is found in collisionless simulations. We also analyze the Eris halo shape as a function of redshift, demonstrating that the shape has been stable for more than a billion years.

  2. Is Sextans dwarf galaxy in a scalar field dark matter halo?

    SciTech Connect

    Lora, V.; Magaña, Juan E-mail: juan.magana@uv.cl

    2014-09-01

    The Bose-Einstein condensate/scalar field dark matter model, considers that the dark matter is composed by spinless-ultra-light particles which can be described by a scalar field. This model is an alternative model to the Λ-cold dark matter paradigm, and therefore should be studied at galactic and cosmological scales. Dwarf spheroidal galaxies have been very useful when studying any dark matter theory, because the dark matter dominates their dynamics. In this paper we study the Sextans dwarf spheroidal galaxy, embedded in a scalar field dark matter halo. We explore how the dissolution time-scale of the stellar substructures in Sextans, constrain the mass, and the self-interacting parameter of the scalar field dark matter boson. We find that for masses in the range (0.12< m{sub φ}<8) ×10{sup -22} eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the stellar substructures in Sextans, and small enough mass to be compatible with dynamical limits. If the self-interacting parameter is distinct to zero, then the mass of the boson could be as high as m{sub φ}≈2×10{sup -21} eV, but it would correspond to an unrealistic low mass for the Sextans dark matter halo . Therefore, the Sextans dwarf galaxy could be embedded in a scalar field/BEC dark matter halo with a preferred self-interacting parameter equal to zero.

  3. Understanding the core-halo relation of quantum wave dark matter from 3D simulations.

    PubMed

    Schive, Hsi-Yu; Liao, Ming-Hsuan; Woo, Tak-Pong; Wong, Shing-Kwong; Chiueh, Tzihong; Broadhurst, Tom; Hwang, W-Y Pauchy

    2014-12-31

    We examine the nonlinear structure of gravitationally collapsed objects that form in our simulations of wavelike cold dark matter, described by the Schrödinger-Poisson (SP) equation with a particle mass ∼10(-22)  eV. A distinct gravitationally self-bound solitonic core is found at the center of every halo, with a profile quite different from cores modeled in the warm or self-interacting dark matter scenarios. Furthermore, we show that each solitonic core is surrounded by an extended halo composed of large fluctuating dark matter granules which modulate the halo density on a scale comparable to the diameter of the solitonic core. The scaling symmetry of the SP equation and the uncertainty principle tightly relate the core mass to the halo specific energy, which, in the context of cosmological structure formation, leads to a simple scaling between core mass (Mc) and halo mass (Mh), Mc∝a(-1/2)Mh(1/3), where a is the cosmic scale factor. We verify this scaling relation by (i) examining the internal structure of a statistical sample of virialized halos that form in our 3D cosmological simulations and by (ii) merging multiple solitons to create individual virialized objects. Sufficient simulation resolution is achieved by adaptive mesh refinement and graphic processing units acceleration. From this scaling relation, present dwarf satellite galaxies are predicted to have kiloparsec-sized cores and a minimum mass of ∼10(8)M⊙, capable of solving the small-scale controversies in the cold dark matter model. Moreover, galaxies of 2×10(12)M⊙ at z=8 should have massive solitonic cores of ∼2×10(9)M⊙ within ∼60  pc. Such cores can provide a favorable local environment for funneling the gas that leads to the prompt formation of early stellar spheroids and quasars.

  4. Surface density of dark matter haloes on galactic and cluster scales

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Cardone, V. F.; Belvedere, G.

    2013-02-01

    In this paper, we analysed the correlation between the central surface density and the halo core radius of galaxies, and cluster of galaxies dark matter (DM) haloes, in the framework of the secondary infall model. We used Del Popolo secondary infall model taking into account ordered and random angular momentum, dynamical friction and DM adiabatic contraction to calculate the density profile of haloes, and then these profiles are used to determine the surface density of DM haloes. The main result is that r* (the halo characteristic radius) is not a universal quantity as claimed by Donato et al. and Gentile et al. On the contrary, we find a correlation with the halo mass M200 in agreement with Cardone & Tortora, Boyarsky et al. and Napolitano, Romanowsky & Tortora, but with a significantly smaller scatter, namely 0.16 ± 0.05. We also consider the baryon column density finding this latter being indeed a constant for low-mass systems, such as dwarfs, but correlating with mass with a slope of α = 0.18 ± 0.05. In the case of the surface density of DM for a system composed only of DM, as in dissipationless simulations, we get α = 0.20 ± 0.05. These results leave little room for the recently claimed universality of (dark and stellar) column density.

  5. Models of dark matter halos based on statistical mechanics: The fermionic King model

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri; Lemou, Mohammed; Méhats, Florian

    2015-12-01

    We discuss the nature of phase transitions in the fermionic King model which describes tidally truncated quantum self-gravitating systems. This distribution function takes into account the escape of high-energy particles and has a finite mass. On the other hand, the Pauli exclusion principle puts an upper bound on the phase-space density of the system and stabilizes it against gravitational collapse. As a result, there exists a statistical equilibrium state for all accessible values of energy and temperature. We plot the caloric curves and investigate the nature of phase transitions as a function of the degeneracy parameter in both microcanonical and canonical ensembles, extending the work of Chavanis [Int. J. Mod. Phys. B 20, 3113 (2006)] for box-confined configurations. We consider stable and metastable states and emphasize the importance of the latter for systems with long-range interactions. Phase transitions can take place between a "gaseous" phase unaffected by quantum mechanics and a "condensed" phase dominated by quantum mechanics. The phase diagram exhibits two critical points, one in each ensemble, beyond which the phase transitions disappear. There also exists a region of negative specific heats and a situation of ensemble inequivalence for sufficiently large systems. In the microcanonical ensemble, gravitational collapse (gravothermal catastrophe) results in the formation of a small degenerate object containing a small mass. This is accompanied by the expulsion of a hot envelope containing a large mass. In the canonical ensemble, gravitational collapse (isothermal collapse) leads to a small degenerate object containing almost all the mass. It is surrounded by a tenuous envelope. We apply the fermionic King model to the case of dark matter halos made of massive neutrinos following the work of de Vega, Salucci, and Sanchez [Mon. Not. R. Astron. Soc. 442, 2717 (2014)]. The gaseous phase describes large halos and the condensed phase describes dwarf halos

  6. Halo-independent upper limits on the dark matter scattering cross section with nucleons

    NASA Astrophysics Data System (ADS)

    Wild, Sebastian; Ferrer, Francesc; Ibarra, Alejandro

    2016-05-01

    We present a novel method that allows to derive an upper limit on the scattering cross section of dark matter with nucleons which is independent of the velocity distribution. To this end, we combine null results from direct detection experiments and neutrino telescopes, and use the fact that taken together, these classes of experiments probe the whole range of possible dark matter velocities. The resulting halo-independent upper limits on the dark matter scattering cross section are remarkably strong, and can be used to robustly rule out models of dark matter, without the need to invoke specific assumptions about the local velocity distribution.

  7. Observational probes of the connection between Star Formation Efficiency and Dark Matter halo mass of galaxies

    NASA Astrophysics Data System (ADS)

    Kalinova, Veselina; Colombo, Dario; Rosolowsky, Erik

    2015-08-01

    Modern simulations predict that the stellar mass and the star formation efficiency of a galaxy are tightly linked to the dark matter (DM) halo mass of that galaxy. This prediction relies on a specific model of galaxy evolution and so testing this prediction directly tests our best models of galaxy formation and evolution. Recent DM numerical studies propose relationships between star formation efficiency and the DM halo mass with two domains based on SF feedback (low-mass) vs. AGN feedback (high-mass), see Moster et al. (2013). The observational probe of such parameters in the relationship imply globally important physics that are fundamental as, e.g., the star formation law (e.g., Kennicutt et al., 1998), the universal depletion time (Leroy et al. 2008), and the origin of the cold gas phase with respect to the stellar disc (Davis et al.2011). Thus, we can directly measure whether this parameterization is correct by estimating the stellar mass, star formation efficiency and dynamical (DM) mass for a set of galaxies at strategically selected points to test if they fall on the predicted relationship.We use CO data from the Extragalactic Database for Galaxy Evolution survey (EDGE) in conjunction with archival 21-cm data and spectroscopic data from Calar Alto Legacy Integral Field spectroscopy Area survey (CALIFA) to measure the stellar vs. halo mass and star-formation-efficiency vs. halo mass relations of the galaxies. We also analyze archival 21-cm spectra to estimate rotation speeds, atomic gas masses and halo masses for a set of EDGE galaxies. Data from CALIFA are used for high quality star formation efficiency and stellar mass measurements. By linking these three parameters - stellar mass, star formation efficiency (SFE) and DM halo mass - we can test the simulation models of how the gas is cooling in the potential wells of the dark matter halos and then forms stars.

  8. The dark matter distribution function and halo thermalization from the Eddington equation in galaxies

    NASA Astrophysics Data System (ADS)

    de Vega, H. J.; Sanchez, N. G.

    2016-05-01

    We find the distribution function f(E) for dark matter (DM) halos in galaxies and the corresponding equation of state from the (empirical) DM density profiles derived from observations. We solve for DM in galaxies the analogous of the Eddington equation originally used for the gas of stars in globular clusters. The observed density profiles are a good realistic starting point and the distribution functions derived from them are realistic. We do not make any assumption about the DM nature, the methods developed here apply to any DM kind, though all results are consistent with warm dark matter (WDM). With these methods we find: (i) Cored density profiles behaving quadratically for small distances ρ(r)= r → 0ρ(0) - Kr2 produce distribution functions which are finite and positive at the halo center while cusped density profiles always produce divergent distribution functions at the center. (ii) Cored density profiles produce approximate thermal Boltzmann distribution functions for r ≲ 3rh where rh is the halo radius. (iii) Analytic expressions for the dispersion velocity and the pressure are derived yielding at each halo point an ideal DM gas equation of state with local temperature T(r) ≡ mv2(r)/3. T(r) turns out to be constant in the same region where the distribution function is thermal and exhibits the same temperature within the percent. The self-gravitating DM gas can thermalize despite being collisionless because it is an ergodic system. (iv) The DM halo can be consistently considered at local thermal equilibrium with: (a) a constant temperature T(r) = T0 for r ≲ 3rh, (b) a space dependent temperature T(r) for 3rh < r ≲ Rvirial, which slowly decreases with r. That is, the DM halo is realistically a collisionless self-gravitating thermal gas for r ≲ Rvirial. (v) T(r) outside the halo radius nicely follows the decrease of the circular velocity squared.

  9. The shape of dark matter haloes - V. Analysis of observations of edge-on galaxies

    NASA Astrophysics Data System (ADS)

    Peters, S. P. C.; van der Kruit, P. C.; Allen, R. J.; Freeman, K. C.

    2017-01-01

    In previous papers in this series, we measured the stellar and H I content in a sample of edge-on galaxies. In the present paper, we perform a simultaneous rotation curve and vertical force field gradient decomposition for five of these edge-on galaxies. The rotation curve decomposition provides a measure of the radial dark matter potential, while the vertical force field gradient provides a measure of the vertical dark matter potential. We fit dark matter halo models to these potentials. Using our H I self-absorption results, we find that a typical dark matter halo has a less dense core (0.094 ± 0.230 M⊙ pc-3) than that for an optically thin H I model (0.150 ± 0.124 M⊙ pc-3). The H I self-absorption dark matter halo has a longer scale-length Rc of 1.42 ± 3.48 kpc, versus 1.10 ± 1.81 kpc for the optically thin H I model. The median halo shape is spherical at q = 1.0 ± 0.6 for self-absorbing H I, while it is prolate at q = 1.5 ± 0.6 for the optically thin case. Our best results were obtained for ESO 274-G001 and UGC 7321, for which we were able to measure the velocity dispersion in Paper III. These two galaxies have very different halo shapes, with one oblate and one strongly prolate. Overall, we find that the many assumptions required make this type of analysis susceptible to errors.

  10. An accurate tool for the fast generation of dark matter halo catalogues

    NASA Astrophysics Data System (ADS)

    Monaco, P.; Sefusatti, E.; Borgani, S.; Crocce, M.; Fosalba, P.; Sheth, R. K.; Theuns, T.

    2013-08-01

    We present a new parallel implementation of the PINpointing Orbit Crossing-Collapsed HIerarchical Objects (PINOCCHIO) algorithm, a quick tool, based on Lagrangian Perturbation Theory, for the hierarchical build-up of dark matter (DM) haloes in cosmological volumes. To assess its ability to predict halo correlations on large scales, we compare its results with those of an N-body simulation of a 3 h-1 Gpc box sampled with 20483 particles taken from the MICE suite, matching the same seeds for the initial conditions. Thanks to the Fastest Fourier Transforms in the West (FFTW) libraries and to the relatively simple design, the code shows very good scaling properties. The CPU time required by PINOCCHIO is a tiny fraction (˜1/2000) of that required by the MICE simulation. Varying some of PINOCCHIO numerical parameters allows one to produce a universal mass function that lies in the range allowed by published fits, although it underestimates the MICE mass function of Friends-of-Friends (FoF) haloes in the high-mass tail. We compare the matter-halo and the halo-halo power spectra with those of the MICE simulation and find that these two-point statistics are well recovered on large scales. In particular, when catalogues are matched in number density, agreement within 10 per cent is achieved for the halo power spectrum. At scales k > 0.1 h Mpc-1, the inaccuracy of the Zel'dovich approximation in locating halo positions causes an underestimate of the power spectrum that can be modelled as a Gaussian factor with a damping scale of d = 3 h-1 Mpc at z = 0, decreasing at higher redshift. Finally, a remarkable match is obtained for the reduced halo bispectrum, showing a good description of non-linear halo bias. Our results demonstrate the potential of PINOCCHIO as an accurate and flexible tool for generating large ensembles of mock galaxy surveys, with interesting applications for the analysis of large galaxy redshift surveys.

  11. Studying generalised dark matter interactions with extended halo-independent methods

    SciTech Connect

    Kahlhoefer, Felix; Wild, Sebastian

    2016-10-20

    The interpretation of dark matter direct detection experiments is complicated by the fact that neither the astrophysical distribution of dark matter nor the properties of its particle physics interactions with nuclei are known in detail. To address both of these issues in a very general way we develop a new framework that combines the full formalism of non-relativistic effective interactions with state-of-the-art halo-independent methods. This approach makes it possible to analyse direct detection experiments for arbitrary dark matter interactions and quantify the goodness-of-fit independent of astrophysical uncertainties. We employ this method in order to demonstrate that the degeneracy between astrophysical uncertainties and particle physics unknowns is not complete. Certain models can be distinguished in a halo-independent way using a single ton-scale experiment based on liquid xenon, while other models are indistinguishable with a single experiment but can be separated using combined information from several target elements.

  12. Studying generalised dark matter interactions with extended halo-independent methods

    NASA Astrophysics Data System (ADS)

    Kahlhoefer, Felix; Wild, Sebastian

    2016-10-01

    The interpretation of dark matter direct detection experiments is complicated by the fact that neither the astrophysical distribution of dark matter nor the properties of its particle physics interactions with nuclei are known in detail. To address both of these issues in a very general way we develop a new framework that combines the full formalism of non-relativistic effective interactions with state-of-the-art halo-independent methods. This approach makes it possible to analyse direct detection experiments for arbitrary dark matter interactions and quantify the goodness-of-fit independent of astrophysical uncertainties. We employ this method in order to demonstrate that the degeneracy between astrophysical uncertainties and particle physics unknowns is not complete. Certain models can be distinguished in a halo-independent way using a single ton-scale experiment based on liquid xenon, while other models are indistinguishable with a single experiment but can be separated using combined information from several target elements.

  13. Large-scale structure after COBE: Peculiar velocities and correlations of cold dark matter halos

    NASA Technical Reports Server (NTRS)

    Zurek, Wojciech H.; Quinn, Peter J.; Salmon, John K.; Warren, Michael S.

    1994-01-01

    Large N-body simulations on parallel supercomputers allow one to simultaneously investigate large-scale structure and the formation of galactic halos with unprecedented resolution. Our study shows that the masses as well as the spatial distribution of halos on scales of tens of megaparsecs in a cold dark matter (CDM) universe with the spectrum normalized to the anisotropies detected by Cosmic Background Explorer (COBE) is compatible with the observations. We also show that the average value of the relative pairwise velocity dispersion sigma(sub v) - used as a principal argument against COBE-normalized CDM models-is significantly lower for halos than for individual particles. When the observational methods of extracting sigma(sub v) are applied to the redshift catalogs obtained from the numerical experiments, estimates differ significantly between different observation-sized samples and overlap observational estimates obtained following the same procedure.

  14. Constraints on baryonic dark matter in the Galactic halo and Local Group

    NASA Technical Reports Server (NTRS)

    Richstone, Douglas; Gould, Andrew; Guhathakurta, Puragra; Flynn, Chris

    1992-01-01

    A four-color method and deep CCD data are used to search for very faint metal-poor stars in the direction of the south Galactic pole. The results make it possible to limit the contribution of ordinary old, metal-poor stars to the dynamical halo of the Galaxy or to the Local Group. The ratio of the mass of the halo to its ordinary starlight must be more than about 2000, unless the halo is very small. For the Local Group, this ratio is greater than about 400. If this local dark matter is baryonic, the process of compact-object formation must produce very few 'impurities' in the form of stars similar to those found in globular clusters. The expected number of unbound stars with MV not greater than 6 within 100 pc of the sun is less than 1 based on the present 90-percent upper limit to the Local Group starlight.

  15. Low-redshift Lyman-alpha absorption lines and the dark matter halos of disk galaxies

    NASA Technical Reports Server (NTRS)

    Maloney, Philip

    1992-01-01

    Ultraviolet observations of the low-redshift quasar 3C 273 using the Hubble Space Telescope have revealed many more Lyman-alpha absorption lines than would be expected from extrapolation of the absorption systems seen toward QSOs at z about 2. It is shown here that these absorption lines can plausibly be produced by gas at large radii in the disks of spiral and irregular galaxies; the gas is confined by the dark matter halos and ionized and heated by the extragalactic radiation field. This scenario does not require the extragalactic ionizing radiation field to decline as rapidly with decreasing z as the QSO emissivity. Observations of Ly-alpha absorption through the halos of known galaxies at low redshift will constrain both the extragalactic background and the properties of galactic halos.

  16. CONSTRAINTS ON THE SHAPE OF THE MILKY WAY DARK MATTER HALO FROM THE SAGITTARIUS STREAM

    SciTech Connect

    Vera-Ciro, Carlos; Helmi, Amina

    2013-08-10

    We propose a new model for the dark matter halo of the Milky Way that fits the properties of the stellar stream associated with the Sagittarius dwarf galaxy. Our dark halo is oblate with q{sub z} = 0.9 for r {approx}< 10 kpc, and can be made to follow the Law and Majewski model at larger radii. However, we find that the dynamical perturbations induced by the Large Magellanic Cloud on the orbit of Sgr cannot be neglected when modeling its streams. When taken into account, this leads us to constrain the Galaxy's outer halo shape to have minor-to-major axis ratio >(c/a){sub {Phi}} = 0.8 and intermediate-to-major axis ratio (b/a){sub {Phi}} = 0.9, in good agreement with cosmological expectations.

  17. SCALING LAWS FOR DARK MATTER HALOS IN LATE-TYPE AND DWARF SPHEROIDAL GALAXIES

    SciTech Connect

    Kormendy, John; Freeman, K. C. E-mail: kenneth.freeman@anu.edu.au

    2016-02-01

    Dark matter (DM) halos of Sc–Im and dwarf spheroidal (dSph) galaxies satisfy scaling laws: halos in lower-luminosity galaxies have smaller core radii, higher central densities, and smaller velocity dispersions. These results are based on maximum-disk rotation curve decompositions for giant galaxies and Jeans equation analysis for dwarfs. (1) We show that spiral, Im, and Sph galaxies with absolute magnitudes M{sub V} > −18 form a sequence of decreasing baryon-to-DM surface density with decreasing luminosity. We suggest that this is a sequence of decreasing baryon retention versus supernova-driven losses or decreasing baryon capture after cosmological reionization. (2) The structural differences between S+Im and Sph galaxies are small. Both are affected mostly by the physics that controls baryon depletion. (3) There is a linear correlation between the maximum rotation velocities of baryonic disks and the outer circular velocities V{sub circ} of test particles in their DM halos. Baryons become unimportant at V{sub circ} = 42 ± 4 km s{sup −1}. Smaller galaxies are dim or dark. (4) We find that, absent baryon “depletion” and with all baryons converted into stars, dSph galaxies would be brighter by ∼4.6 mag and dIm galaxies would be brighter by ∼3.5 mag. Both have DM halos that are massive enough to help to solve the “too big to fail” problem with DM galaxy formation. (5) We suggest that there exist many galaxies that are too dark to be discovered by current techniques, as required by cold DM theory. (6) Central surface densities of DM halos are constant from M{sub B} ∼ −5 to −22. This implies a Faber–Jackson law with halo mass M ∝ (halo dispersion){sup 4}.

  18. Simulations of isolated dwarf galaxies formed in dark matter halos with different mass assembly histories

    SciTech Connect

    González-Samaniego, A.; Avila-Reese, V.; Rodríguez-Puebla, A.; Valenzuela, O.; Colín, P.

    2014-04-10

    We present zoom-in N-body/hydrodynamics resimulations of dwarf galaxies formed in isolated cold dark matter (CDM) halos with the same virial mass (M{sub v} ≈ 2.5 × 10{sup 10} M {sub ☉}) at redshift z = 0. Our goals are to (1) study the mass assembly histories (MAHs) of the halo, stellar, and gaseous components; and (2) explore the effects of the halo MAHs on the stellar/baryonic assembly of simulated dwarfs. Overall, the dwarfs are roughly consistent with observations. More specific results include: (1) the stellar-to-halo mass ratio remains roughly constant since z ∼ 1, i.e., the stellar MAHs closely follow halo MAHs. (2) The evolution of the galaxy gas fractions, f{sub g} , are episodic, showing that the supernova-driven outflows play an important role in regulating f{sub g} —and hence, the star formation rate (SFR)—however, in most cases, a large fraction of the gas is ejected from the halo. (3) The star formation histories are episodic with changes in the SFRs, measured every 100 Myr, of factors of 2-10 on average. (4) Although the dwarfs formed in late assembled halos show more extended SF histories, their z = 0 specific SFRs are still below observations. (5) The inclusion of baryons most of the time reduces the virial mass by 10%-20% with respect to pure N-body simulations. Our results suggest that rather than increasing the strength of the supernova-driven outflows, processes that reduce the star formation efficiency could help to solve the potential issues faced by CDM-based simulations of dwarfs, such as low values of the specific SFR and high stellar masses.

  19. Globular clusters, satellite galaxies and stellar haloes from early dark matter peaks

    NASA Astrophysics Data System (ADS)

    Moore, Ben; Diemand, Juerg; Madau, Piero; Zemp, Marcel; Stadel, Joachim

    2006-05-01

    The Milky Way contains several distinct old stellar components that provide a fossil record of its formation. We can understand their spatial distribution and kinematics in a hierarchical formation scenario by associating the protogalactic fragments envisaged by Searle & Zinn (1978) with the rare peaks able to cool gas in the cold dark matter density field collapsing at redshift z > 10. We use hierarchical structure formation simulations to explore the kinematics and spatial distribution of these early star-forming structures in galaxy haloes today. Most of the protogalaxies rapidly merge, their stellar contents and dark matter becoming smoothly distributed and forming the inner Galactic halo. The metal-poor globular clusters and old halo stars become tracers of this early evolutionary phase, centrally biased and naturally reproducing the observed steep fall off with radius. The most outlying peaks fall in late and survive to the present day as satellite galaxies. The observed radial velocity dispersion profile and the local radial velocity anisotropy of Milky Way halo stars are successfully reproduced in this model. If this epoch of structure formation coincides with a suppression of further cooling into lower sigma peaks then we can reproduce the rarity, kinematics and spatial distribution of satellite galaxies as suggested by Bullock, Kravtsov & Weinberg (2000). Reionization at z= 12 +/- 2 provides a natural solution to the missing satellites problem. Measuring the distribution of globular clusters and halo light on scales from galaxies to clusters could be used to constrain global versus local reionization models. If reionization occurs contemporary, our model predicts a constant frequency of blue globulars relative to the host halo mass, except for dwarf galaxies where the average relative frequencies become smaller.

  20. Neutrino propagation in the Galactic dark matter halo

    NASA Astrophysics Data System (ADS)

    de Salas, P. F.; Lineros, R. A.; Tórtola, M.

    2016-12-01

    Neutrino oscillations are a widely observed and well-established phenomenon. It is also well known that deviations with respect to flavor conversion probabilities in vacuum arise due to neutrino interactions with matter. In this work, we analyze the impact of new interactions between neutrinos and the dark matter present in the Milky Way on the neutrino oscillation pattern. The dark matter-neutrino interaction is modeled by using an effective coupling proportional to the Fermi constant GF with no further restrictions on its flavor structure. For the galactic dark matter profile we consider a homogeneous distribution as well as several density profiles, estimating in all cases the size of the interaction required to get an observable effect at different neutrino energies. Our discussion is mainly focused in the PeV neutrino energy range, to be explored in observatories like IceCube and KM3NeT. The obtained results may be interpreted in terms of a light O (sub -eV - keV ) or weakly interacting massive particlelike dark matter particle or as a new interaction with a mediator of O (sub -eV - keV ) mass.

  1. Off-center dark matter halo leading to strong central disk lopsidedness

    NASA Astrophysics Data System (ADS)

    Prasad, Chaitanya; Jog, Chanda J.

    2017-03-01

    There is increasing evidence from simulations and observations that the center of the dark matter halo in a Milky Way-type galaxy could be off-center by a few 100 pc with respect to the galactic disk. We study the effect of such an offset halo on the orbits and kinematics in the central few kpc of the disk via a simple, analytical model. The equations of motion in the disk plane can be written in terms of the potentials of the disk and halo when they are concentric, and a perturbation term arising due to the offset halo. We show that this perturbation potential has an m = 1 azimuthal variation, or is lopsided, and its magnitude increases at small radii. On solving these equations, we find that the perturbed orbit shows a large deviation, 40% in radius at R = 1.5 kpc, and also strong kinematical lopsidedness. Thus, even a small halo offset of 350 pc can induce surprisingly strong spatial and kinematical lopsidedness in the central region within a 3 kpc radius. The disk lopsidedness would have important implications for the evolution of this region; for example, it could help fuel the central active galactic nucleus.

  2. Systematic problems with using dark matter simulations to model stellar halos

    SciTech Connect

    Bailin, Jeremy; Bell, Eric F.; Valluri, Monica; Stinson, Greg S.; Debattista, Victor P.; Couchman, H. M. P.; Wadsley, James

    2014-03-10

    The limits of available computing power have forced models for the structure of stellar halos to adopt one or both of the following simplifying assumptions: (1) stellar mass can be 'painted' onto dark matter (DM) particles in progenitor satellites; (2) pure DM simulations that do not form a luminous galaxy can be used. We estimate the magnitude of the systematic errors introduced by these assumptions using a controlled set of stellar halo models where we independently vary whether we look at star particles or painted DM particles, and whether we use a simulation in which a baryonic disk galaxy forms or a matching pure DM simulation that does not form a baryonic disk. We find that the 'painting' simplification reduces the halo concentration and internal structure, predominantly because painted DM particles have different kinematics from star particles even when both are buried deep in the potential well of the satellite. The simplification of using pure DM simulations reduces the concentration further, but increases the internal structure, and results in a more prolate stellar halo. These differences can be a factor of 1.5-7 in concentration (as measured by the half-mass radius) and 2-7 in internal density structure. Given this level of systematic uncertainty, one should be wary of overinterpreting differences between observations and the current generation of stellar halo models based on DM-only simulations when such differences are less than an order of magnitude.

  3. White Dwarfs:. Contributors and Tracers of the Galactic Dark-Matter Halo

    NASA Astrophysics Data System (ADS)

    Koopmans, L. V. E.; Blandford, R. D.

    2002-03-01

    We examine the claim by Oppenheimer et al. (2001) that the local halo density of white dwarfs is an order of magnitude higher than previously thought. As it stands, the observational data support the presence of a kinematically distinct population of halo white dwarfs at the >99% confidence level. A maximum-likelihood analysis gives a radial velocity dispersion of σ hU = 150+80-40\\ km s-1 and an asymmetric drift of ν ha = 176+102-80\\ km s-1, for a Schwarzschild velocity distribution function with σU:σV:σW = 1:2/3:1/2. Halo white dwarfs have a local number density of 1.1+2.1-0.7 × 10-4\\ pc-3, which amounts to 0.8+1.6-0.5 per cent of the nominal local dark-matter halo density and is 5.0+9.5-3.2 times (90% C.L.) higher and thus only marginally in agreement with previous estimates. We discuss several direct consequences of this white-dwarf population (e.g. microlensing) and postulate a potential mechanism to eject young white dwarfs from the disc to the halo, through the orbital instabilities in triple or multiple stellar systems.

  4. A model for halo formation with axion mixed dark matter

    NASA Astrophysics Data System (ADS)

    Marsh, David J. E.; Silk, Joseph

    2014-01-01

    There are several issues to do with dwarf galaxy predictions in the standard Λ cold dark matter (ΛCDM) cosmology that have suscitated much recent debate about the possible modification of the nature of dark matter as providing a solution. We explore a novel solution involving ultralight axions that can potentially resolve the missing satellites problem, the cusp-core problem and the `too big to fail' problem. We discuss approximations to non-linear structure formation in dark matter models containing a component of ultralight axions across four orders of magnitude in mass, 10-24 ≲ ma ≲ 10-20 eV, a range too heavy to be well constrained by linear cosmological probes such as the cosmic microwave background and matter power spectrum, and too light/non-interacting for other astrophysical or terrestrial axion searches. We find that an axion of mass ma ≈ 10-21 eV contributing approximately 85 per cent of the total dark matter can introduce a significant kpc scale core in a typical Milky Way satellite galaxy in sharp contrast to a thermal relic with a transfer function cut off at the same scale, while still allowing such galaxies to form in significant number. Therefore, ultralight axions do not suffer from the Catch 22 that applies to using a warm dark matter as a solution to the small-scale problems of CDM. Our model simultaneously allows formation of enough high-redshift galaxies to allow reconciliation with observational constraints, and also reduces the maximum circular velocities of massive dwarfs so that baryonic feedback may more plausibly resolve the predicted overproduction of massive Milky Way Galaxy dwarf satellites.

  5. Dark-matter haloes and the M-σ relation for supermassive black holes

    NASA Astrophysics Data System (ADS)

    Larkin, Adam C.; McLaughlin, Dean E.

    2016-10-01

    We develop models of two-component spherical galaxies to establish scaling relations linking the properties of spheroids at z = 0 (total stellar masses, effective radii Re and velocity dispersions within Re) to the properties of their dark-matter haloes at both z = 0 and higher redshifts. Our main motivation is the widely accepted idea that the accretion-driven growth of supermassive black holes (SMBHs) in protogalaxies is limited by quasar-mode feedback and gas blow-out. The SMBH masses, MBH, should then be connected to the dark-matter potential wells at the redshift zqso of the blow-out. We specifically consider the example of a power-law dependence on the maximum circular speed in a protogalactic dark-matter halo: M_{BH}∝ V^4_{d,pk}, as could be expected if quasar-mode feedback were momentum-driven. For haloes with a given Vd,pk at a given zqso ≥ 0, our model scaling relations give a typical stellar velocity dispersion σap(Re) at z = 0. Thus, they transform a theoretical MBH-Vd,pk relation into a prediction for an observable MBH-σap(Re) relation. We find the latter to be distinctly non-linear in log-log space. Its shape depends on the generic redshift evolution of haloes in a Λ cold dark matter cosmology and the systematic variation of stellar-to-dark matter mass fraction at z = 0, in addition to any assumptions about the physics underlying the MBH-Vd,pk relation. Despite some clear limitations of the form we use for MBH versus Vd,pk, and even though we do not include any SMBH growth through dry mergers at low redshift, our results for MBH-σap(Re) compare well to data for local early types if we take zqso ˜ 2-4.

  6. The formation and evolution of dark matter halos early in cosmic history

    NASA Astrophysics Data System (ADS)

    Ernest, Alllan David; Collins, Matthew P.

    2015-08-01

    Observational evidence points to the formation of super-massive black holes, heavy elements and halo structure much earlier in cosmic history than expected [1], and this is challenging for Lambda Cold Dark Matter (LCDM) theory. However, if photon scattering cross sections were less than expected it becomes possible for halos to form at earlier times and relax the tensions that exist with LCDM theory. This may indeed be the case: it has recently been shown [2,3] that photon-particle scattering cross sections vary significantly with the eigenspectral distribution of the scattering particle in deep gravity wells, an effect that depends on the degree of localization of the particle wavefunction and the proximity of the halo to thermal equilibrium. Cross sections tend to be lower the larger and deeper the gravitational well. This purely quantum effect means that accepted cross sections, as measured on Earth and used to determine the rate and timing of halo formation, may not be applicable to deep gravity wells, not only at the present epoch but throughout cosmic history.By combining reduced photon scattering cross sections with Carr’s primordial black hole mass spectrum formulation[4] calculated at the last phase transition (t = 1 s), it is possible to provide a scenario of halo formation that enables galaxies and halos to form much earlier in cosmic history, yet maintain consistency with cosmic microwave background observations and primordial nucleosynthesis. In addition this scenario provides a unified model relating globular clusters, dwarf spheroidal galaxies and bulges, enables an understanding of the black hole-bulge/black hole-dark halo relations, and enables prediction of dark to visible matter, based on the physical parameters of a halo. This scenario will be presented and discussed.[1] Xue-Bing Wu et al, 2015, Nature, 518,512-515 doi: 10.1038/nature14241[2] Ernest A. D., 2009, J. Phys. A: Math. Theor. 42 115207, 115208[3] Ernest A. D, 2012, in Advances in

  7. Testing feedback-modified dark matter haloes with galaxy rotation curves: estimation of halo parameters and consistency with ΛCDM scaling relations

    NASA Astrophysics Data System (ADS)

    Katz, Harley; Lelli, Federico; McGaugh, Stacy S.; Di Cintio, Arianna; Brook, Chris B.; Schombert, James M.

    2017-04-01

    Cosmological N-body simulations predict dark matter (DM) haloes with steep central cusps (e.g. NFW). This contradicts observations of gas kinematics in low-mass galaxies that imply the existence of shallow DM cores. Baryonic processes such as adiabatic contraction and gas outflows can, in principle, alter the initial DM density profile, yet their relative contributions to the halo transformation remain uncertain. Recent high-resolution, cosmological hydrodynamic simulations by Di Cintio et al. (DC14) predict that inner density profiles depend systematically on the ratio of stellar-to-DM mass (M*/Mhalo). Using a Markov Chain Monte Carlo approach, we test the NFW and the M*/Mhalo-dependent DC14 halo models against a sample of 147 galaxy rotation curves from the new Spitzer Photometry and Accurate Rotation Curves data set. These galaxies all have extended H I rotation curves from radio interferometry as well as accurate stellar-mass-density profiles from near-infrared photometry. The DC14 halo profile provides markedly better fits to the data compared to the NFW profile. Unlike NFW, the DC14 halo parameters found in our rotation-curve fits naturally fall within two standard deviations of the mass-concentration relation predicted by Λ cold dark matter (ΛCDM) and the stellar mass-halo mass relation inferred from abundance matching with few outliers. Halo profiles modified by baryonic processes are therefore more consistent with expectations from ΛCDM cosmology and provide better fits to galaxy rotation curves across a wide range of galaxy properties than do halo models that neglect baryonic physics. Our results offer a solution to the decade long cusp-core discrepancy.

  8. Dark matter annihilation and decay from non-spherical dark halos in galactic dwarf satellites

    NASA Astrophysics Data System (ADS)

    Hayashi, Kohei; Ichikawa, Koji; Matsumoto, Shigeki; Ibe, Masahiro; Ishigaki, Miho N.; Sugai, Hajime

    2016-09-01

    The dwarf spheroidal galaxies (dSphs) in the Milky Way are the primary targets in the indirect searches for particle dark matter. To set robust constraints on candidate dark matter particles, understanding the dark halo structure of these systems is of substantial importance. In this paper, we first evaluate the astrophysical factors for dark matter annihilation and decay for 24 dSphs, taking into account a non-spherical dark halo, using generalized axisymmetric mass models based on axisymmetric Jeans equations. First, from a fitting analysis of the most recent kinematic data available, our axisymmetric mass models are a much better fit than previous spherical ones, thus, our work should be the most realistic and reliable estimator for astrophysical factors. Secondly, we find that among analysed dSphs, the ultra-faint dwarf galaxies Triangulum II and Ursa Major II are the most promising but large uncertain targets for dark matter annihilation while the classical dSph Draco is the most robust and detectable target for dark matter decay. It is also found that the non-sphericity of luminous and dark components influences the estimate of astrophysical factors, even though these factors largely depend on the sample size, the prior range of parameters and the spatial extent of the dark halo. Moreover, owing to these effects, the constraints on the dark matter annihilation cross-section are more conservative than those of previous spherical works. These results are important for optimizing and designing dark matter searches in current and future multi-messenger observations by space and ground-based telescopes.

  9. Positron line radiation from halo WIMP annihilations as a dark matter signature

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Wilczek, Frank

    1989-01-01

    We suggest a new signature for dark matter annihilation in the halo: high energy positron line radiation. Because the cosmic ray positron spectrum falls rapidly with energy, e+'s from halo WIMP annihilations can be a significant, clean signal for very massive WIMP's (approx. greater than 30 GeV). In the case that the e+e- annihilation channel has an appreciable branch, the e+ signal should be above background in a future detector, such as have been proposed for ASTROMAG, and of potential importance as a dark matter signature. A significant e+e- branching ratio can occur for neutralinos or Dirac neutrinos. High-energy, continuum positron radiation may also be an important signature for massive neutralino annihilations, especially near or above the threshold of the W+W- and ZoZo annihilation channels.

  10. Simultaneous orbit fitting of stellar streams: Constraining the galactic dark matter halo

    NASA Astrophysics Data System (ADS)

    Willett, Benjamin Arthur

    2010-12-01

    The Milky Way Galaxy serves as a laboratory for testing models of galaxy formation. Discovering the nature of dark matter is often cited as the second most important problem in astrophysics, preceded only by dark energy. Mapping the structure and dynamics of the Milky Way Galaxy can tell us how galaxies form, and place constraints on the properties of dark matter. We can map the distribution of dark matter in the Milky Way using tidal streams, collections of stars that have been gravitationally stripped from satellite dwarf galaxies and globular clusters. By knowing the positions and velocities of these stars, and assuming they came from a compact source, we can follow them back in time and constrain the shape of the Milky Way dark matter halo. This Thesis presents a method that allows us to constrain the parameters of a static Galactic gravitational potential using the data from any number of tidal debris streams. The method is tested on simulated tidal streams, and successfully recovers the original model parameters in most cases. The importance of simultaneously fitting the measured rotation curve of the Milky Way is explored, and the strengths and weaknesses of the algorithm are discussed. The orbit fitting algorithm is applied independently to the Stream of Grillmair and Dionatos (GD-1), the Orphan Stream, and the Cetus Polar Stream (CPS). We show that no known globular cluster or dwarf galaxy in the Milky Way has kinematics consistent with being the progenitor of the GD-1 stream. The Orphan Stream constrains the Milky Way dark matter halo as having a mass at the low end of previous measurements, giving a best fit halo speed of vhalo = 73 +/- 24 km s-1, compared to typical values of vhalo ≈ 115 km s -1. A lower halo speed implies a less massive halo. The GD-1 and Orphan streams are then fit simultaneously with the Sagittarius Dwarf Tidal Stream (Sgr), within a triaxial dark matter halo. Results for restricted triaxial cases are shown to be consistent with

  11. Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Brandt, Theresa J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P A.; Casandjian, J. M.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cuoco, A.; Guiriec, Sylvain Germain; McEnery, Julie E.; Scargle. J. D.; Troja, Eleonora

    2012-01-01

    We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e- produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.

  12. CONSTRAINTS ON THE GALACTIC HALO DARK MATTER FROM FERMI-LAT DIFFUSE MEASUREMENTS

    SciTech Connect

    Ackermann, M.; Ajello, M.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Buson, S.; Bellazzini, R.; Bregeon, J.; Bonamente, E.; Brandt, T. J.; Brigida, M.; Bruel, P.; and others

    2012-12-20

    We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e {sup +}/e {sup -} produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.

  13. FASTPM: a new scheme for fast simulations of dark matter and haloes

    NASA Astrophysics Data System (ADS)

    Feng, Yu; Chu, Man-Yat; Seljak, Uroš; McDonald, Patrick

    2016-12-01

    We introduce FASTPM, a highly scalable approximated particle mesh (PM) N-body solver, which implements the PM scheme enforcing correct linear displacement (1LPT) evolution via modified kick and drift factors. Employing a two-dimensional domain decomposing scheme, FASTPM scales extremely well with a very large number of CPUs. In contrast to Comoving-Lagrangian (COLA) approach, we do not require to split the force or track separately the 2LPT solution, reducing the code complexity and memory requirements. We compare FASTPM with different number of steps (Ns) and force resolution factor (B) against three benchmarks: halo mass function from friends-of-friends halo finder; halo and dark matter power spectrum; and cross-correlation coefficient (or stochasticity), relative to a high-resolution TREEPM simulation. We show that the modified time stepping scheme reduces the halo stochasticity when compared to COLA with the same number of steps and force resolution. While increasing Ns and B improves the transfer function and cross-correlation coefficient, for many applications FASTPM achieves sufficient accuracy at low Ns and B. For example, Ns = 10 and B = 2 simulation provides a substantial saving (a factor of 10) of computing time relative to Ns = 40, B = 3 simulation, yet the halo benchmarks are very similar at z = 0. We find that for abundance matched haloes the stochasticity remains low even for Ns = 5. FASTPM compares well against less expensive schemes, being only 7 (4) times more expensive than 2LPT initial condition generator for Ns = 10 (Ns = 5). Some of the applications where FASTPM can be useful are generating a large number of mocks, producing non-linear statistics where one varies a large number of nuisance or cosmological parameters, or serving as part of an initial conditions solver.

  14. THE INNER STRUCTURE OF DWARF-SIZED HALOS IN WARM AND COLD DARK MATTER COSMOLOGIES

    SciTech Connect

    González-Samaniego, A.; Avila-Reese, V.; Colín, P.

    2016-03-10

    By means of N-body + hydrodynamic zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses M{sub v} = (2–3) × 10{sup 10} h{sup −1} M{sub ⊙} at z = 0, both in a warm dark matter (WDM) and cold dark matter (CDM) cosmology. The half-mode mass in the WDM power spectrum of our simulations is M{sub f} = 2 × 10{sup 10} h{sup −1} M{sub ⊙}. In the dark matter (DM) only simulations halo density profiles are well described by the Navarro–Frenk–White parametric fit in both cosmologies, though the WDM halos have concentrations lower by factors of 1.5–2.0 than their CDM counterparts. In the hydrodynamic simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase space density profiles of the WDM halos but not of the CDM ones. The density slope, measured at ≈0.02R{sub v}, α{sub 0.02}, becomes shallow in periods of 2–5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global star formation (SF), M{sub s}/M{sub v} ratio, gas outflow, and internal specific angular momentum histories. We do not find any clear trends, but when α{sub 0.02} is shallower than −0.5, M{sub s}/M{sub v} is always between 0.25% and 1%. We conclude that the main reason for the formation of the shallow core is the presence of strong gas mass fluctuations inside the inner halo, which are a consequence of the feedback driven by a very bursty and sustained SF history in shallow gravitational potentials. Our WDM halos, which assemble late and are less concentrated than the CDM ones, obey these conditions. There are also (rare) CDM systems with extended mass assembly histories that obey these conditions and form shallow cores. The dynamical heating and expansion processes behind the DM core flattening apply also to the stars in such a way that the stellar age and metallicity gradients of the

  15. Pairwise velocities of dark matter haloes: a test for the Λ cold dark matter model using the bullet cluster

    NASA Astrophysics Data System (ADS)

    Thompson, Robert; Nagamine, Kentaro

    2012-02-01

    The existence of a bullet cluster (such as 1E 0657-56) poses a challenge to the concordance Λ cold dark matter (ΛCDM) model. Here we investigate the velocity distribution of dark matter (DM) halo pairs in large N-body simulations with differing box sizes (250 h-1 Mpc? Gpc) and resolutions. We examine various basic statistics such as the halo masses, pairwise halo velocities (v12), collisional angles and pair separation distances. We then compare our results to the initial conditions required to reproduce the observational properties of 1E 0657-56 in non-cosmological hydrodynamical simulations. We find that the high-velocity tail of the v12 distribution extends to greater velocities as we increase the simulation box size. We also find that the number of high v12 pairs increases as we increase the particle count and resolution with a fixed box size; however, this increase is mostly due to lower mass haloes which do not match the observed masses of 1E 0657-56. We find that the redshift evolution effect is not very strong for the v12 distribution function between z= 0.0 and z˜ 0.5. We identify some pairs whose v12 resemble the required initial conditions, however, even the best candidates have either wrong halo mass ratios or too large separations. Our simulations suggest that it is very difficult to produce such initial conditions at z= 0.0, 0.296 and 0.489 in comoving volumes as large as (2 h-1 Gpc)3. Based on the extrapolation of our cumulative v12 function, we find that one needs a simulation with a comoving box size of (4.48 h-1 Gpc)3 and 22403 DM particles in order to produce at least one pair of haloes that resembles the required v12 and observed masses of 1E 0657-56. From our simulated v12 probability distribution function, we find that the probability of finding a halo pair with v12≥ 3000 km s-1 and masses ? to be 2.76 × 10-8 at z= 0.489. We conclude that either 1E 0657-56 is incompatible with the concordance ΛCDM universe or the initial conditions

  16. Self-Gravitating System of Semidegenerated Fermions as Central Objects and Dark Matter Halos in Galaxies

    NASA Astrophysics Data System (ADS)

    Fraga, Bernardo M. O.; Argüelles, Carlos R.; Ruffini, Remo

    2013-01-01

    We propose a unified model for dark matter haloes and central galactic objects as a self-gravitating system of semidegenerated fermions in thermal equilibrium. We consider spherical symmetry and then we solve the equations of gravitational equilibrium using the Fermi integrals in a dimensionless manner, obtaining the density profile and velocity curve. We also obtain scaling laws for the observables of the system and show that, for a wide range of our parameters, our model is consistent with the so called universality of the surface density of dark matter.

  17. Bounds on Neutrino Non-Standard Interactions

    SciTech Connect

    Fernandez-Martinez, Enrique

    2010-03-30

    We review the present model independent bounds on neutrino non-standard interactions both at neutrino production and detection and in its interactions with matter. For matter non-standard interactions the direct bounds are rather weak. However, matter non-standard interactions are related by gauge invariance to the production and detection ones as well as to flavour changing processes involving charged leptons. Taking into account these relations much stronger bounds of at least O(10{sup -2}) can be derived unless significant fine tunings are implemented. Testing non-standard interactions at this level at future neutrino oscillation facilities is challenging but still feasible at very ambitious proposals such as the Neutrino Factory.

  18. Nonsingular Density Profiles of Dark Matter Halos and Strong Gravitational Lensing

    NASA Astrophysics Data System (ADS)

    Chen, Da-Ming

    2005-08-01

    We use the statistics of strong gravitational lenses to investigate whether mass profiles with a flat density core are supported. The probability for lensing by halos modeled by a nonsingular truncated isothermal sphere (NTIS) with image separations greater than a certain value (ranging from 0" to 10") is calculated. NTIS is an analytical model for the postcollapse equilibrium structure of virialized objects derived by Shapiro, Iliev, & Raga. This profile has a soft core and matches quite well with the mass profiles of dark matter-dominated dwarf galaxies deduced from their observed rotation curves. It also agrees well with the NFW (Navarro-Frenk-White) profile at all radii outside of a few NTIS core radii. Unfortunately, comparing the results with those for singular lensing halos (NFW and SIS + NFW) and strong lensing observations, the probabilities for lensing by NTIS halos are far too low. As this result is valid for any other nonsingular density profile (with a large core radius), we conclude that nonsingular density profiles (with a large core radius) for CDM halos are ruled out by statistics of strong gravitational lenses.

  19. Distribution function approach to redshift space distortions. Part V: perturbation theory applied to dark matter halos

    SciTech Connect

    Vlah, Zvonimir; Seljak, Uroš; Okumura, Teppei; Desjacques, Vincent E-mail: seljak@physik.uzh.ch E-mail: Vincent.Desjacques@unige.ch

    2013-10-01

    Numerical simulations show that redshift space distortions (RSD) introduce strong scale dependence in the power spectra of halos, with ten percent deviations relative to linear theory predictions even on relatively large scales (k < 0.1h/Mpc) and even in the absence of satellites (which induce Fingers-of-God, FoG, effects). If unmodeled these effects prevent one from extracting cosmological information from RSD surveys. In this paper we use Eulerian perturbation theory (PT) and Eulerian halo biasing model and apply it to the distribution function approach to RSD, in which RSD is decomposed into several correlators of density weighted velocity moments. We model each of these correlators using PT and compare the results to simulations over a wide range of halo masses and redshifts. We find that with an introduction of a physically motivated halo biasing, and using dark matter power spectra from simulations, we can reproduce the simulation results at a percent level on scales up to k ∼ 0.15h/Mpc at z = 0, without the need to have free FoG parameters in the model.

  20. The Nature of Dark Matter and the Density Profile and Central Behavior of Relaxed Halos

    NASA Astrophysics Data System (ADS)

    Salvador-Solé, Eduard; Manrique, Alberto; González-Casado, Guillermo; Hansen, Steen H.

    2007-09-01

    We show that the two basic assumptions of the model recently proposed by Manrique and coworkers for the universal density profile of cold dark matter (CDM) halos, namely, that these objects grow inside out during periods of smooth accretion and that their mass profile and its radial derivatives are all continuous functions, are both well understood in terms of the very nature of CDM. Those two assumptions allow one to derive the typical density profile of halos of a given mass from the accretion rate characteristic of the particular cosmology. This profile was shown by Manrique and coworkers to recover the results of numerical simulations. In the present paper, we investigate its behavior beyond the ranges covered by present-day N-body simulations. We find that the central asymptotic logarithmic slope depends crucially on the shape of the power spectrum of density perturbations: it is equal to a constant negative value for power-law spectra and has central cores for the standard CDM power spectrum. The predicted density profile in the CDM case is well fitted by the 3D Sérsic profile over at least 10 decades in halo mass. The values of the Sérsic parameters depend on the mass of the structure considered. A practical procedure is provided that allows one to infer the typical values of the best NFW or Sérsic fitting law parameters for halos of any mass and redshift in any given standard CDM cosmology.

  1. Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Heymans, C.; Lombriser, L.; Peacock, J. A.; Steele, O. I.; Winther, H. A.

    2016-06-01

    We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead et al. We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases, we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo-model method can predict the non-linear matter power spectrum measured from simulations of parametrized w(a) dark energy models at the few per cent level for k < 10 h Mpc-1, and we present theoretically motivated extensions to cover non-minimally coupled scalar fields, massive neutrinos and Vainshtein screened modified gravity models that result in few per cent accurate power spectra for k < 10 h Mpc-1. For chameleon screened models, we achieve only 10 per cent accuracy for the same range of scales. Finally, we use our halo model to investigate degeneracies between different extensions to the standard cosmological model, finding that the impact of baryonic feedback on the non-linear matter power spectrum can be considered independently of modified gravity or massive neutrino extensions. In contrast, considering the impact of modified gravity and massive neutrinos independently results in biased estimates of power at the level of 5 per cent at scales k > 0.5 h Mpc-1. An updated version of our publicly available HMCODE can be found at https://github.com/alexander-mead/hmcode.

  2. Joint constraints on the Galactic dark matter halo and GC from hypervelocity stars

    NASA Astrophysics Data System (ADS)

    Rossi, Elena M.; Marchetti, T.; Cacciato, M.; Kuiack, M.; Sari, R.

    2017-01-01

    The mass assembly history of the Milky Way can inform both theory of galaxy formation and the underlying cosmological model. Thus, observational constraints on the properties of both its baryonic and dark matter contents are sought. Here we show that hypervelocity stars (HVSs) can in principle provide such constraints. We model the observed velocity distribution of HVSs, produced by tidal break-up of stellar binaries caused by Sgr A*. Considering a Galactic Centre (GC) binary population consistent with that inferred in more observationally accessible regions, a fit to current HVS data with significance level >5% can only be obtained if the escape velocity from the GC to 50 kpc is V_G ≲ 850 km s-1, regardless of the enclosed mass distribution. When a NFW matter density profile for the dark matter halo is assumed, haloes with V_G ≲ 850 km s-1are in agreement with predictions in the ΛCDM model and that a subset of models around M200 ˜ 0.5 - 1.5 × 1012M⊙ and r_s ≲ 35 kpc can also reproduce Galactic circular velocity data. HVS data alone cannot currently exclude potentials with VG > 850 km s-1. Finally, specific constraints on the halo mass from HVS data are highly dependent on the assumed baryonic mass potentials. This first attempt to simultaneously constrain GC and dark halo properties is primarily hampered by the paucity and quality of data. It nevertheless demonstrates the potential of our method, that may be fully realised with the ESA Gaia mission.

  3. CFHTLenS: weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment

    NASA Astrophysics Data System (ADS)

    Schrabback, Tim; Hilbert, Stefan; Hoekstra, Henk; Simon, Patrick; van Uitert, Edo; Erben, Thomas; Heymans, Catherine; Hildebrandt, Hendrik; Kitching, Thomas D.; Mellier, Yannick; Miller, Lance; Van Waerbeke, Ludovic; Bett, Philip; Coupon, Jean; Fu, Liping; Hudson, Michael J.; Joachimi, Benjamin; Kilbinger, Martin; Kuijken, Konrad

    2015-12-01

    We present weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment. Using data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), we measure the weighted-average ratio of the aligned projected ellipticity components of galaxy matter haloes and their embedded galaxies, fh, split by galaxy type. We then compare our observations to measurements taken from the Millennium Simulation, assuming different models of galaxy-halo misalignment. Using the Millennium Simulation, we verify that the statistical estimator used removes contamination from cosmic shear. We also detect an additional signal in the simulation, which we interpret as the impact of intrinsic shape-shear alignments between the lenses and their large-scale structure environment. These alignments are likely to have caused some of the previous observational constraints on fh to be biased high. From CFHTLenS, we find fh = -0.04 ± 0.25 for early-type galaxies, which is consistent with current models for the galaxy-halo misalignment predicting fh ≃ 0.20. For late-type galaxies we measure f_h=0.69_{-0.36}^{+0.37} from CFHTLenS. This can be compared to the simulated results which yield fh ≃ 0.02 for misaligned late-type models.

  4. The Dark Matter Halos of Massive, Relaxed Galaxy Clusters Observed With Chandra

    SciTech Connect

    Schmidt, Robert W.; Allen, S.W.; /KIPAC, Menlo Park

    2006-10-11

    We use the Chandra X-ray Observatory to study the dark matter halos of 34 massive, dynamically relaxed galaxy clusters, spanning the redshift range 0.06 < z < 0.7. The observed dark matter and total mass (dark-plus-luminous matter) profiles can be approximated by the Navarro Frenk & White (hereafter NFW) model for cold dark matter (CDM) halos; for {approx} 80 percent of the clusters, the NFW model provides a statistically acceptable fit. In contrast, the singular isothermal sphere model can, in almost every case, be completely ruled out. We observe a well-defined mass-concentration relation for the clusters with a normalization and intrinsic scatter in good agreement with the predictions from simulations. The slope of the mass-concentration relation, c {infinity} M{sub vir}{sup a}/(1 + z){sup b} with a = -0.41 {+-} 0.11 at 95 percent confidence, is steeper than the value a {approx} -0.1 predicted by CDM simulations for lower mass halos. With the slope a included as a free fit parameter, the redshift evolution of the concentration parameter, b = 0.54 {+-} 0.47 at 95 percent confidence, is also slower than, but marginally consistent with, the same simulations (b {approx} 1). Fixing a {approx} -0.1 leads to an apparent evolution that is significantly slower, b = 0.20 {+-} 0.45, although the goodness of fit in this case is significantly worse. Using a generalized NFW model, we find the inner dark matter density slope, a, to be consistent with unity at 95 percent confidence for the majority of clusters. Combining the results for all clusters for which the generalized NFW model provides a good description of the data, we measure ? = 0.88 {+-} 0.29 at 95 percent confidence, in agreement with CDM model predictions.

  5. Structure of dark matter halos in warm dark matter models and in models with long-lived charged massive particles

    SciTech Connect

    Kamada, Ayuki; Yoshida, Naoki; Kohri, Kazunori; Takahashi, Tomo E-mail: naoki.yoshida@phys.s.u-tokyo.ac.jp E-mail: tomot@cc.saga-u.ac.jp

    2013-03-01

    We study the formation of non-linear structures in warm dark matter (WDM) models and in a long-lived charged massive particle (CHAMP) model. CHAMPs with a decay lifetime of about 1 yr induce characteristic suppression in the matter power spectrum at subgalactic scales through acoustic oscillations in the thermal background. We explore structure formation in such a model. We also study three WDM models, where the dark matter particles are produced through the following mechanisms: i) WDM particles are produced in the thermal background and then kinematically decoupled; ii) WDM particles are fermions produced by the decay of thermal heavy bosons; and iii) WDM particles are produced by the decay of non-relativistic heavy particles. We show that the linear matter power spectra for the three models are all characterised by the comoving Jeans scale at the matter-radiation equality. Furthermore, we can also describe the linear matter power spectrum for the long-lived CHAMP model in terms of a suitably defined characteristic cut-off scale k{sub Ch}, similarly to the WDM models. We perform large cosmological N-body simulations to study the non-linear growth of structures in these four models. We compare the halo mass functions, the subhalo mass functions, and the radial distributions of subhalos in simulated Milky Way-size halos. For the characteristic cut-off scale k{sub cut} = 51 h Mpc{sup −1}, the subhalo abundance ( ∼ 10{sup 9}M{sub sun}) is suppressed by a factor of ∼ 10 compared with the standard ΛCDM model. We then study the models with k{sub cut} ≅ 51, 410, 820 h Mpc{sup −1}, and confirm that the halo and the subhalo abundances and the radial distributions of subhalos are indeed similar between the different WDM models and the long-lived CHAMP model. The result suggests that the cut-off scale k{sub cut} not only characterises the linear power spectra but also can be used to predict the non-linear clustering properties. The radial distribution of subhalos

  6. Dark-ages Reionization & Galaxy Formation Simulation VIII. Suppressed growth of dark matter halos during the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Qin, Yuxiang; Duffy, Alan R.; Mutch, Simon J.; Poole, Gregory B.; Geil, Paul M.; Angel, Paul W.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-01-01

    We investigate how the hydrostatic suppression of baryonic accretion affects the growth rate of dark matter halos during the Epoch of Reionization. By comparing halo properties in a simplistic hydrodynamic simulation in which gas only cools adiabatically, with its collisionless equivalent, we find that halo growth is slowed as hydrostatic forces prevent gas from collapsing. In our simulations, at the high redshifts relevant for reionization (between ˜6 and ˜11), halos that host dwarf galaxies (≲ 109M⊙) can be reduced by up to a factor of 2 in mass due to the hydrostatic pressure of baryons. Consequently, the inclusion of baryonic effects reduces the amplitude of the low mass tail of the halo mass function by factors of 2 to 4. In addition, we find that the fraction of baryons in dark matter halos hosting dwarf galaxies at high redshift never exceeds ˜90% of the cosmic baryon fraction. When implementing baryonic processes, including cooling, star formation, supernova feedback and reionization, the suppression effects become more significant with further reductions of ˜30% to 60%. Although convergence tests suggest that the suppression may become weaker in higher resolution simulations, this suppressed growth will be important for semi-analytic models of galaxy formation, in which the halo mass inherited from an underlying N-body simulation directly determines galaxy properties. Based on the adiabatic simulation, we provide tables to account for these effects in N-body simulations, and present a modification of the halo mass function along with explanatory analytic calculations.

  7. The accretion history of dark matter haloes - I. The physical origin of the universal function

    NASA Astrophysics Data System (ADS)

    Correa, Camila A.; Wyithe, J. Stuart B.; Schaye, Joop; Duffy, Alan R.

    2015-06-01

    Understanding the universal accretion history of dark matter haloes is the first step towards determining the origin of their structure. We use the extended Press-Schechter formalism to derive the halo mass accretion history from the growth rate of initial density perturbations. We show that the halo mass history is well described by an exponential function of redshift in the high-redshift regime. However, in the low-redshift regime the mass history follows a power law because the growth of density perturbations is halted in the dark energy dominated era due to the accelerated expansion of the Universe. We provide an analytic model that follows the expression {M(z)=M0(1+z)^{af(M0)}e^{-f(M0)z}}, where M0 = M(z = 0), a depends on cosmology and f(M0) depends only on the linear matter power spectrum. The analytic model does not rely on calibration against numerical simulations and is suitable for any cosmology. We compare our model with the latest empirical models for the mass accretion history in the literature and find very good agreement. We provide numerical routines for the model online (available at https://bitbucket.org/astroduff/commah).

  8. The clustering of baryonic matter. II: halo model and hydrodynamic simulations

    SciTech Connect

    Fedeli, C.; Semboloni, E.; Velliscig, M.; Daalen, M. Van; Schaye, J.; Hoekstra, H. E-mail: sembolon@strw.leidenuniv.nl E-mail: daalen@strw.leidenuniv.nl E-mail: hoekstra@strw.leidenuniv.nl

    2014-08-01

    We recently developed a generalization of the halo model in order to describe the spatial clustering properties of each mass component in the Universe, including hot gas and stars. In this work we discuss the complementarity of the model with respect to a set of cosmological simulations including hydrodynamics of different kinds. We find that the mass fractions and density profiles measured in the simulations do not always succeed in reproducing the simulated matter power spectra, the reason being that the latter encode information from a much larger range in masses than that accessible to individually resolved structures. In other words, this halo model allows one to extract information on the growth of structures from the spatial clustering of matter, that is complementary with the information coming from the study of individual objects. We also find a number of directions for improvement of the present implementation of the model, depending on the specific application one has in mind. The most relevant one is the necessity for a scale dependence of the bias of the diffuse gas component, which will be interesting to test with future detections of the Warm-Hot Intergalactic Medium. This investigation confirms the possibility to gain information on the physics of galaxy and cluster formation by studying the clustering of mass, and our next work will consist of applying the halo model to use future high-precision cosmic shear surveys to this end.

  9. Earth-mass dark-matter haloes as the first structures in the early Universe.

    PubMed

    Diemand, J; Moore, B; Stadel, J

    2005-01-27

    The Universe was nearly smooth and homogeneous before a redshift of z = 100, about 20 million years after the Big Bang. After this epoch, the tiny fluctuations imprinted upon the matter distribution during the initial expansion began to collapse because of gravity. The properties of these fluctuations depend on the unknown nature of dark matter, the determination of which is one of the biggest challenges in present-day science. Here we report supercomputer simulations of the concordance cosmological model, which assumes neutralino dark matter (at present the preferred candidate), and find that the first objects to form are numerous Earth-mass dark-matter haloes about as large as the Solar System. They are stable against gravitational disruption, even within the central regions of the Milky Way. We expect over 10(15) to survive within the Galactic halo, with one passing through the Solar System every few thousand years. The nearest structures should be among the brightest sources of gamma-rays (from particle-particle annihilation).

  10. The clustering of baryonic matter. I: a halo-model approach

    SciTech Connect

    Fedeli, C.

    2014-04-01

    In this paper I generalize the halo model for the clustering of dark matter in order to produce the power spectra of the two main baryonic matter components in the Universe: stars and hot gas. As a natural extension, this can be also used to describe the clustering of all mass. According to the design of the halo model, the large-scale power spectra of the various matter components are physically connected with the distribution of each component within bound structures and thus, ultimately, with the complete set of physical processes that drive the formation of galaxies and galaxy clusters. Besides being practical for cosmological and parametric studies, the semi-analytic model presented here has also other advantages. Most importantly, it allows one to understand on physical ground what is the relative contribution of each matter component to the total clustering of mass as a function of scale, and thus it opens an interesting new window to infer the distribution of baryons through high precision cosmic shear measurements. This is particularly relevant for future wide-field photometric surveys such as Euclid. In this work the concept of the model and its uncertainties are illustrated in detail, while in a companion paper we use a set of numerical hydrodynamic simulations to show a practical application and to investigate where the model itself needs to be improved.

  11. NIHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes

    NASA Astrophysics Data System (ADS)

    Dutton, Aaron A.; Macciò, Andrea V.; Dekel, Avishai; Wang, Liang; Stinson, Gregory; Obreja, Aura; Di Cintio, Arianna; Brook, Chris; Buck, Tobias; Kang, Xi

    2016-09-01

    We use ˜100 cosmological galaxy formation `zoom-in' simulations using the smoothed particle hydrodynamics code GASOLINE to study the effect of baryonic processes on the mass profiles of cold dark matter haloes. The haloes in our study range from dwarf (M200 ˜ 1010 M⊙) to Milky Way (M200 ˜ 1012 M⊙) masses. Our simulations exhibit a wide range of halo responses, primarily varying with mass, from expansion to contraction, with up to factor ˜10 changes in the enclosed dark matter mass at 1 per cent of the virial radius. Confirming previous studies, the halo response is correlated with the integrated efficiency of star formation: ɛSF ≡ (Mstar/M200)/(Ωb/Ωm). In addition, we report a new correlation with the compactness of the stellar system: ɛR ≡ r1/2/R200. We provide an analytic formula depending on ɛSF and ɛR for the response of cold dark matter haloes to baryonic processes. An observationally testable prediction is that, at fixed mass, larger galaxies experience more halo expansion, while the smaller galaxies more halo contraction. This diversity of dark halo response is captured by a toy model consisting of cycles of adiabatic inflow (causing contraction) and impulsive gas outflow (causing expansion). For net outflow, or equal inflow and outflow fractions, f, the overall effect is expansion, with more expansion with larger f. For net inflow, contraction occurs for small f (large radii), while expansion occurs for large f (small radii), recovering the phenomenology seen in our simulations. These regularities in the galaxy formation process provide a step towards a fully predictive model for the structure of cold dark matter haloes.

  12. THE INTERGALACTIC STELLAR POPULATION FROM MERGERS OF ELLIPTICAL GALAXIES WITH DARK MATTER HALOS

    SciTech Connect

    Gonzalez-Garcia, A. Cesar; Stanghellini, Letizia; Manchado, Arturo

    2010-02-20

    We present simulations of dry-merger encounters between pairs of elliptical galaxies with dark matter halos. The aim of these simulations is to study the intergalactic (IG) stellar populations produced in both parabolic and hyperbolic encounters. We model progenitor galaxies with total-to-luminous mass ratios M{sub T} /M{sub L}= 3 and 11. The initial mass of the colliding galaxies are chosen so that M{sub 1}/M{sub 2} = 1 and 10. The model galaxies are populated by particles representing stars, as in Stanghellini et al., and dark matter. Merger remnants resulting from these encounters display a population of unbounded particles, both dark and luminous. The number of particles becoming unbounded depends on orbital configuration, with hyperbolic encounters producing a larger luminous intracluster population than parabolic encounters. Furthermore, in simulations with identical orbital parameters, a lower M{sub T} /M{sub L} of the colliding galaxies produces a larger fraction of unbounded luminous particles. For each modeled collision, the fraction of unbounded to initial stellar mass is the same in all mass bins considered, similarly to what we found previously by modeling encounters of galaxies without dark halos. The fraction of IG to total luminosity resulting from our simulations is {approx}4% and {approx}6% for dark-to-bright mass ratios of 10 and 2, respectively. These unbounded-to-total luminous fractions are down from the 17% that we had previously found in the case of no dark halos. Our results are in broad agreement with IG light observed in groups of galaxies, while the results of our previous models without dark halos better encompass observed intracluster populations. We suggest a possible formation scenario of IG stars.

  13. Halo-independent direct detection of momentum-dependent dark matter

    SciTech Connect

    Cherry, John F.; Frandsen, Mads T.; Shoemaker, Ian M. E-mail: frandsen@cp3-origins.net

    2014-10-01

    We show that the momentum dependence of dark matter interactions with nuclei can be probed in direct detection experiments without knowledge of the dark matter velocity distribution. This is one of the few properties of DM microphysics that can be determined with direct detection alone, given a signal of dark matter in multiple direct detection experiments with different targets. Long-range interactions arising from the exchange of a light mediator are one example of momentum-dependent DM. For data produced from the exchange of a massless mediator we find for example that the mediator mass can be constrained to be ∼< 10 MeV for DM in the 20-1000 GeV range in a halo-independent manner.

  14. A new direction for dark matter research: intermediate-mass compact halo objects

    NASA Astrophysics Data System (ADS)

    Chapline, George F.; Frampton, Paul H.

    2016-11-01

    The failure to find evidence for elementary particles that could serve as the constituents of dark matter brings to mind suggestions that dark matter might consist of massive compact objects (MACHOs). In particular, it has recently been argued that MACHOs with masses > 15Msolar may have been prolifically produced at the onset of the big bang. Although a variety of astrophysical signatures for primordial MACHOs with masses in this range have been discussed in the literature, we favor a strategy that uses the potential for magnification of stars outside our galaxy due to gravitational microlensing of these stars by MACHOs in the halo of our galaxy. We point out that the effect of the motion of the Earth on the shape of the micro-lensing brightening curves provides a promising approach to testing over the course of next several years the hypothesis that dark matter consists of massive compact objects.

  15. The Space Motion of Leo I: The Mass of the Milky Way's Dark Matter Halo

    NASA Astrophysics Data System (ADS)

    Boylan-Kolchin, Michael; Bullock, James S.; Sohn, Sangmo Tony; Besla, Gurtina; van der Marel, Roeland P.

    2013-05-01

    We combine our Hubble Space Telescope measurement of the proper motion of the Leo I dwarf spheroidal galaxy (presented in a companion paper) with the highest resolution numerical simulations of Galaxy-size dark matter halos in existence to constrain the mass of the Milky Way's dark matter halo (M vir, MW). Despite Leo I's large Galactocentric space velocity (200 km s-1) and distance (261 kpc), we show that it is extremely unlikely to be unbound if Galactic satellites are associated with dark matter substructure, as 99.9% of subhalos in the simulations are bound to their host. The observed position and velocity of Leo I strongly disfavor a low-mass Milky Way: if we assume that Leo I is the least bound of the Milky Way's classical satellites, then we find that M vir, MW > 1012 M ⊙ at 95% confidence for a variety of Bayesian priors on M vir, MW. In lower mass halos, it is vanishingly rare to find subhalos at 261 kpc moving as fast as Leo I. Should an additional classical satellite be found to be less bound than Leo I, this lower limit on M vir, MW would increase by 30%. Imposing a mass-weighted ΛCDM prior, we find a median Milky Way virial mass of M vir, MW = 1.6 × 1012 M ⊙, with a 90% confidence interval of [1.0-2.4] × 1012 M ⊙. We also confirm a strong correlation between subhalo infall time and orbital energy in the simulations and show that proper motions can aid significantly in interpreting the infall times and orbital histories of satellites.

  16. THE SPACE MOTION OF LEO I: THE MASS OF THE MILKY WAY'S DARK MATTER HALO

    SciTech Connect

    Boylan-Kolchin, Michael; Bullock, James S.; Sohn, Sangmo Tony; Van der Marel, Roeland P.; Besla, Gurtina

    2013-05-10

    We combine our Hubble Space Telescope measurement of the proper motion of the Leo I dwarf spheroidal galaxy (presented in a companion paper) with the highest resolution numerical simulations of Galaxy-size dark matter halos in existence to constrain the mass of the Milky Way's dark matter halo (M{sub vir,MW}). Despite Leo I's large Galactocentric space velocity (200 km s{sup -1}) and distance (261 kpc), we show that it is extremely unlikely to be unbound if Galactic satellites are associated with dark matter substructure, as 99.9% of subhalos in the simulations are bound to their host. The observed position and velocity of Leo I strongly disfavor a low-mass Milky Way: if we assume that Leo I is the least bound of the Milky Way's classical satellites, then we find that M{sub vir,MW} > 10{sup 12} M{sub Sun} at 95% confidence for a variety of Bayesian priors on M{sub vir,MW}. In lower mass halos, it is vanishingly rare to find subhalos at 261 kpc moving as fast as Leo I. Should an additional classical satellite be found to be less bound than Leo I, this lower limit on M{sub vir,MW} would increase by 30%. Imposing a mass-weighted {Lambda}CDM prior, we find a median Milky Way virial mass of M{sub vir,MW} = 1.6 Multiplication-Sign 10{sup 12} M{sub Sun }, with a 90% confidence interval of [1.0-2.4] Multiplication-Sign 10{sup 12} M{sub Sun }. We also confirm a strong correlation between subhalo infall time and orbital energy in the simulations and show that proper motions can aid significantly in interpreting the infall times and orbital histories of satellites.

  17. HOW IMPORTANT IS THE DARK MATTER HALO FOR BLACK HOLE GROWTH?

    SciTech Connect

    Volonteri, Marta; Gueltekin, Kayhan; Natarajan, Priyamvada

    2011-08-20

    In this paper, we examine whether the properties of central black holes in galactic nuclei correlate with their host dark matter halos. We analyze the entire sample of galaxies where black hole mass, velocity dispersion {sigma}, and asymptotic circular velocity V{sub c} have all been measured. We fit M{sub BH}-{sigma} and M{sub BH}-V{sub c} to a power law, and find that in both relationships the scatter and slope are similar. This model-independent analysis suggests that although the black hole masses are not uniquely determined by dark matter halo mass, when considered for the current sample as a whole, the M{sub BH}-V{sub c} correlation may be as strong (or as weak) as M{sub BH}-{sigma}. Although the data are sparse, there appears to be more scatter in the correlation for both {sigma} and V{sub c} at the low-mass end. This is not unexpected given our current understanding of galaxy and black hole assembly. In fact, there are several compelling reasons that account for this: (1) supermassive black hole (SMBH) formation is likely less efficient in low-mass galaxies with large angular momentum content, (2) SMBH growth is less efficient in low-mass disk galaxies that have not experienced major mergers, and (3) dynamical effects, such as gravitational recoil, increase scatter preferentially at the low-mass end. Therefore, the recent observational claim of the absence of central SMBHs in bulgeless, low-mass galaxies, or deviations from the correlations defined by high-mass black holes in large galaxies today is, in fact, predicated by current models of black hole growth. We show how this arises as a direct consequence of the coupling between dark matter halos and central black holes at the earliest epochs.

  18. Glow in the dark matter: observing galactic halos with scattered light.

    PubMed

    Davis, Jonathan H; Silk, Joseph

    2015-02-06

    We consider the observation of diffuse halos of light around the discs of spiral galaxies, as a probe of the interaction cross section between dark matter (DM) and photons. Using the galaxy M101 as an example, we show that for a scattering cross section at the level of 10(-23)(m/GeV)  cm(2) or greater dark matter in the halo will scatter light out from the more luminous center of the disc to larger radii, contributing to an effective increased surface brightness at the edges of the observed area on the sky. This allows us to set an upper limit on the DM-photon cross section using data from the Dragonfly instrument. We then show how to improve this constraint, and the potential for discovery, by combining the radial profile of DM-photon scattering with measurements at multiple wavelengths. Observation of diffuse light presents a new and potentially powerful way to probe the interactions of dark matter with photons, a way that is complementary to existing searches.

  19. Made-to-measure dark matter haloes, elliptical galaxies and dwarf galaxies in action coordinates

    NASA Astrophysics Data System (ADS)

    Williams, A. A.; Evans, N. W.

    2015-04-01

    We provide a family of action-based distribution functions (DFs) for the double power-law family of densities often used to model galaxies. The DF itself is a double power law in combinations of the actions, and reduces to the pure power-law case at small and large radii. Our method enables the velocity anisotropy of the model to be tuned, and so the anisotropy in the inner and outer parts can be specified for the application in hand. We provide self-consistent DFs for the Hernquist and Jaffe models - both with everywhere isotropic velocity dispersions, and with kinematics that gradually become more radially anisotropic on moving outwards. We also carry out this exercise for a cored dark matter model. These are tailored to represent dark haloes and elliptical galaxies, respectively, with kinematic properties inferred from simulations or observational data. Finally, we relax a cored luminous component within a dark matter halo to provide a self-consistent model of a dwarf spheroidal embedded in dark matter. The DFs provide us with non-rotating spherical stellar systems, but one of the virtues of working with actions is the relative ease with which such models can be converted into axisymmetry and triaxiality.

  20. Charge and matter form factors of two-neutron halo nuclei in halo effective field theory at next-to-leading order

    NASA Astrophysics Data System (ADS)

    Vanasse, Jared

    2017-02-01

    By using halo effective field theory (EFT), an expansion in Rcore/Rhalo , where Rcore is the radius of the core and Rhalo the radius of the halo nucleus, the charge and neutron form factors of the two-neutron halo nuclei 11Li, 14Be, and 22C are calculated to next-to-leading order (NLO) by treating them as an effective three-body system. From the form factors, the point-charge and point-matter radii, inter-neutron distances, and neutron opening angles are extracted. Agreement is found with existing experimental extractions. Results are given for the point-charge and point-matter radii for arbitrary neutron core scattering effective range ρc n, which can be used for predictions once ρc n is measured. Estimates for ρc n are also used to make NLO predictions. Finally, the point-charge radii of this work are compared with other halo-EFT predictions, and setting the core mass equal to the neutron mass the point-charge radius is found to agree with an analytical prediction in the unitary limit.

  1. Measuring the Shape and Orientation of the Galactic Dark-Matter Halo using Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Gnedin, Oleg

    2009-07-01

    We propose to obtain high-resolution images of five hypervelocity stars in the Galactic halo in order to establish the first-epoch astrometric frame for them, as a part of a long-term program to measure precise proper motions. The origin of these recently discovered stars, all with positive radial velocities above 540 km/s, is consistent only with being ejected from the deep potential well of the massive black hole at the Galactic center. The deviations of their space motions from purely radial trajectories probe the departures from spherical symmetry of the Galactic potential, mainly due to the triaxiality of the dark-matter halo. Reconstructing the full three-dimensional space motion of the hypervelocity stars, through astrometric proper motions, provides a unique opportunity to measure the shape and orientation of the dark halo. The hypervelocity stars allow measurement of the potential up to 75 kpc from the center, independently of and at larger distances than are afforded by tidal streams of satellite galaxies such as the Sagittarius dSph galaxy. HVS3 may be associated with the LMC, rather then the Galactic center, and would therefore present a case for a supermassive black hole at the center of the LMC. We request one orbit with ACS/WFC for each of the five hypervelocity stars to establish their current positions relative to background galaxies. We will request a repeated observation of these stars in Cycle 17, which will conclusively measure the astrometric proper motions.

  2. Measuring the Shape and Orientation of the Galactic Dark-Matter Halo using Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Gnedin, Oleg

    2006-07-01

    We propose to obtain high-resolution images of five hypervelocity stars in the Galactic halo in order to establish the first-epoch astrometric frame for them, as a part of a long-term program to measure precise proper motions. The origin of these recently discovered stars, all with positive radial velocities above 540 km/s, is consistent only with being ejected from the deep potential well of the massive black hole at the Galactic center. The deviations of their space motions from purely radial trajectories probe the departures from spherical symmetry of the Galactic potential, mainly due to the triaxiality of the dark-matter halo. Reconstructing the full three-dimensional space motion of the hypervelocity stars, through astrometric proper motions, provides a unique opportunity to measure the shape and orientation of the dark halo. The hypervelocity stars allow measurement of the potential up to 75 kpc from the center, independently of and at larger distances than are afforded by tidal streams of satellite galaxies such as the Sagittarius dSph galaxy. HVS3 may be associated with the LMC, rather then the Galactic center, and would therefore present a case for a supermassive black hole at the center of the LMC. We request one orbit with ACS/WFC for each of the five hypervelocity stars to establish their current positions relative to background galaxies. We will request a repeated observation of these stars in Cycle 17, which will conclusively measure the astrometric proper motions.

  3. Stellar Mass Versus Stellar Velocity Dispersion: Which is Better for Linking Galaxies to Their Dark Matter Halos?

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Wang, Lixin; Jing, Y. P.

    2013-01-01

    It was recently suggested that compared to its stellar mass (M *), the central stellar velocity dispersion (σ*) of a galaxy might be a better indicator for its host dark matter halo mass. Here we test this hypothesis by estimating the dark matter halo mass for central galaxies in groups as a function of M * and σ*. For this we have estimated the redshift-space cross-correlation function (CCF) between the central galaxies at given M * and σ* and a reference galaxy sample, from which we determine both the projected CCF, wp (rp ), and the velocity dispersion profile. A halo mass is then obtained from the average velocity dispersion within the virial radius. At fixed M *, we find very weak or no correlation between halo mass and σ*. In contrast, strong mass dependence is clearly seen even when σ* is limited to a narrow range. Our results thus firmly demonstrate that the stellar mass of central galaxies is still a good (if not the best) indicator for dark matter halo mass, better than the stellar velocity dispersion. The dependence of galaxy clustering on σ* at fixed M *, as recently discovered by Wake et al., may be attributed to satellite galaxies, for which the tidal stripping occurring within halos has stronger effect on stellar mass than on central stellar velocity dispersion.

  4. Dark Matter annihilations in halos and high-redshift sources of reionization of the universe

    NASA Astrophysics Data System (ADS)

    Poulin, Vivian; Serpico, Pasquale D.; Lesgourgues, Julien

    2015-12-01

    It is well known that annihilations in the homogeneous fluid of dark matter (DM) can leave imprints in the cosmic microwave background (CMB) anisotropy power spectrum. However, the relevance of DM annihilations in halos for cosmological observables is still subject to debate, with previous works reaching different conclusions on this point. Also, all previous studies used a single type of parameterization for the astrophysical reionization, and included no astrophysical source for the heating of the intergalactic medium. In this work, we revisit these problems. When standard approaches are adopted, we find that the ionization fraction does exhibit a very particular (and potentially constraining) pattern, but the currently measurable τreio is left almost unchanged: in agreement with most of the previous literature, for plausible halo models we find that the modification of the signal with respect to the one coming from annihilations in the smooth background is tiny, below cosmic variance within currently allowed parameter space. However, if different and probably more realistic treatments of the astrophysical sources of reionization and heating are adopted, a more pronounced effect of the DM annihilation in halos is possible. We thus conclude that within currently adopted baseline models the impact of the virialised DM structures cannot be uncovered by CMB power spectra measurements, but a larger impact is possible if peculiar models are invoked for the redshift evolution of the DM annihilation signal or different assumptions are made for the astrophysical contributions. A better understanding (both theoretical and observational) of the reionization and temperature history of the universe, notably via the 21 cm signal, seems the most promising way for using halo formation as a tool in DM searches, improving over the sensitivity of current cosmological probes.

  5. Dark Matter annihilations in halos and high-redshift sources of reionization of the universe

    SciTech Connect

    Poulin, Vivian; Serpico, Pasquale D.; Lesgourgues, Julien E-mail: Pasquale.Serpico@lapth.cnrs.fr

    2015-12-01

    It is well known that annihilations in the homogeneous fluid of dark matter (DM) can leave imprints in the cosmic microwave background (CMB) anisotropy power spectrum. However, the relevance of DM annihilations in halos for cosmological observables is still subject to debate, with previous works reaching different conclusions on this point. Also, all previous studies used a single type of parameterization for the astrophysical reionization, and included no astrophysical source for the heating of the intergalactic medium. In this work, we revisit these problems. When standard approaches are adopted, we find that the ionization fraction does exhibit a very particular (and potentially constraining) pattern, but the currently measurable τ{sub reio} is left almost unchanged: in agreement with most of the previous literature, for plausible halo models we find that the modification of the signal with respect to the one coming from annihilations in the smooth background is tiny, below cosmic variance within currently allowed parameter space. However, if different and probably more realistic treatments of the astrophysical sources of reionization and heating are adopted, a more pronounced effect of the DM annihilation in halos is possible. We thus conclude that within currently adopted baseline models the impact of the virialised DM structures cannot be uncovered by CMB power spectra measurements, but a larger impact is possible if peculiar models are invoked for the redshift evolution of the DM annihilation signal or different assumptions are made for the astrophysical contributions. A better understanding (both theoretical and observational) of the reionization and temperature history of the universe, notably via the 21 cm signal, seems the most promising way for using halo formation as a tool in DM searches, improving over the sensitivity of current cosmological probes.

  6. ANISOTROPIC LOCATIONS OF SATELLITE GALAXIES: CLUES TO THE ORIENTATIONS OF GALAXIES WITHIN THEIR DARK MATTER HALOS

    SciTech Connect

    Agustsson, Ingolfur; Brainerd, Tereasa G. E-mail: brainerd@bu.ed

    2010-02-01

    We investigate the locations of the satellites of relatively isolated host galaxies in the Sloan Digital Sky Survey and the Millennium Run simulation. Provided we use two distinct prescriptions to embed luminous galaxies within the simulated dark matter halos (ellipticals share the shapes of their halos, while disks have angular momenta that are aligned with the net angular momenta of their halos), we find a fair agreement between observation and theory. Averaged over scales r{sub p} <= 500 kpc, the satellites of red, high-mass hosts with low star formation rates are found preferentially near the major axes of their hosts. In contrast, the satellites of blue, low-mass hosts with low star formation rates show little to no anisotropy when averaged over the same scale. The difference between the locations of the satellites of red and blue hosts cannot be explained by the effects of interlopers in the data. Instead, it is caused primarily by marked differences in the dependence of the mean satellite location, (phi), on the projected distance at which the satellites are found. We also find that the locations of red, high-mass satellites with low star formation rates show considerably more anisotropy than do the locations of blue, low-mass satellites with high star formation rates. There are two contributors to this result. First, the blue satellites have only recently arrived within their hosts' halos, while the red satellites arrived in the far distant past. Second, the sample of blue satellites is heavily contaminated by interlopers, which suppresses the measured anisotropy compared to the intrinsic anisotropy.

  7. WSRT HI imaging of candidate gas-bearing dark matter halos in the Local Group

    NASA Astrophysics Data System (ADS)

    Adams, Elizabeth A.; Oosterloo, Tom; Cannon, John M.; Giovanelli, Riccardo; Haynes, Martha P.

    2016-01-01

    A long standing problem in cosmology is the mismatch between the number of low mass dark matter halos predicted by simulations and the number of low mass galaxies observed in the Local Group. We recently presented a set of isolated ultra-compact high velocity clouds (UCHVCs) identified within the dataset of the Arecibo Legacy Fast ALFA (ALFALFA) HI line survey that are consistent with representing low mass gas-bearing dark matter halos within the Local Group (Adams+ 2013). At distances of ~1 Mpc, the UCHVCs have HI masses of ~10^5 Msun and indicative dynamical masses of ~10^7 Msun. The HI diameters of the UCHVCs range from 4' to 20', or 1 to 6 kpc at a distance of 1 Mpc. We have selected the most compact and isolated UCHVCs with the highest average column densities as representing the best galaxy candidates. These systems have been observed with the Westerbork Synthesis Radio Telescope (WSRT) to enable higher spatial resolution studies of the HI distribution. From these data, the sources break into two clear categories. Two of the sources maintain a smooth HI morphology at higher resolution, show a velocity gradient and have the highest peak column densities of the sample, indicating they are good candidates to represent gas in dark matter halos. In fact, one of these sources, AGC 198606, has a tentative stellar counterpart detection (Janesh+ 2015). Nine of the sources break into clumps at higher angular resolution, show no ordered velocity motion, and have significantly lower peak column densities, indicating they are likely Galactic halo HI clouds. One source straddles the two categories with a relatively smooth HI morphology and some evidence for ordered velocity motion while having a lower peak column density. These observations show that higher resolution HI data is a good way to address the galaxy hypothesis for isolated HI clouds, and future HI surveys with phased-array feeds on interferometers, such as Apertif, will be able to directly detect and

  8. Dark Matter Haloes: an Additional Criterion for the Choice of Fitting Density Profiles

    NASA Astrophysics Data System (ADS)

    Caimmi, R.; Marmo, C.

    2004-12-01

    Simulated dark matter haloes are fitted by self-similar, universal density profiles, where the scaled parameters depend only on a scaled (truncation) radius, Xi=R/r0, which, in turn, is supposed to be independent of the mass and the formation redshift. The further assumption of a lognormal distribution (for a selected mass bin) of the scaled radius, or concentration, in agreement with the data from a large statistical sample of simulated haloes (Bullock et al. 2001), allows (at least to a first approximation) a normal or lognormal distribution for other scaled parameters, via the same procedure which leads to the propagation of the errors. A criterion is proposed for the choice of the best fitting density profile, with regard to a set of high-resolution simulations, where some averaging procedure on scaled density profiles has been performed, in connection with a number of fitting density profiles. To this aim, a minimum value of the ratio, | x\\overline{η}|/ σs,\\overline{η}= |\\overline{η}- η*|/σs,\\overline{η}, is required to yield the best fit, where \\overline{η} is the arithmetic mean over the whole set; η* is its counterpart related to the fitting density profile; σs,\\overline{η} is the standard deviation from the mean; and η is a selected, scaled i.e. dimensionless parameter. The above criterion is applied to a pair of sets each made of a dozen of high-resolution simulations, FM01 (Fukushige and Makino 2001) and KLA01 (Klypin et al. 2001), in connection with two currently used fitting density profiles, NFW (e.g. Navarro et al. 1997) and MOA (e.g. Moore et al. 1999), where the dependence of the scaled radius on the mass and the formation redshift may be neglected to a first extent. With regard to FM01 and KLA01 samples, the best fits turn out to be MOA and NFW, respectively. In addition, the above results also hold in dealing with rms errors derived via the propagation of the errors, with regard to the distributions of scaled parameters. The

  9. Scaling relations of halo cores for self-interacting dark matter

    SciTech Connect

    Lin, Henry W.; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2016-03-01

    Using a simple analytic formalism, we demonstrate that significant dark matter self-interactions produce halo cores that obey scaling relations nearly independent of the underlying particle physics parameters such as the annihilation cross section and the mass of the dark matter particle. For dwarf galaxies, we predict that the core density ρ{sub c} and the core radius r{sub c} should obey ρ{sub c} r{sub c} ≈ 41 M{sub ⊙} pc{sup −2} with a weak mass dependence ∼ M{sup 0.2}. Remarkably, such a scaling relation has recently been empirically inferred. Scaling relations involving core mass, core radius, and core velocity dispersion are predicted and agree well with observational data. By calibrating against numerical simulations, we predict the scatter in these relations and find them to be in excellent agreement with existing data. Future observations can test our predictions for different halo masses and redshifts.

  10. Evidence of turbulence-like universality in the formation of galaxy-sized dark matter haloes

    NASA Astrophysics Data System (ADS)

    Caretta, C. A.; Rosa, R. R.; de Campos Velho, H. F.; Ramos, F. M.; Makler, M.

    2008-08-01

    Context: Although the theoretical understanding of nonlinear gravitational clustering has greatly advanced in the last decades, in particular by improvements in numerical N-body simulations, the physics behind this process is not fully elucidated. Aims: The main goal of this work is the study of the possibility of a turbulent-like physical process in the formation of structures, galaxies and clusters of galaxies, by the action of gravity alone. Methods: We use simulation data from the Virgo Consortium, in ten redshift snapshots (from 0 to 10). From this we identify galaxy-sized and cluster-sized dark matter haloes, by using a FoF algorithm and applying a boundedness criterion, and study the gravitational potential energy spectra. Results: We find that the galaxy-sized halo energy spectrum follows closely a Kolmogorov power law, similar to the behaviour of dynamically turbulent processes in fluids. Conclusions: This means that the gravitational clustering of dark matter may admit a turbulent-like representation. Part of the calculations made use of the NEC SX4/8A supercomputer at the CeNaPAD Ambiental, CPTEC/INPE, Brasil.

  11. Modeling the Gravitational Potential of a Cosmological Dark Matter Halo with Stellar Streams

    NASA Astrophysics Data System (ADS)

    Sanderson, Robyn E.; Hartke, Johanna; Helmi, Amina

    2017-02-01

    Stellar streams result from the tidal disruption of satellites and star clusters as they orbit a host galaxy, and can be very sensitive probes of the gravitational potential of the host system. We select and study narrow stellar streams formed in a Milky-Way-like dark matter halo of the Aquarius suite of cosmological simulations, to determine if these streams can be used to constrain the present day characteristic parameters of the halo’s gravitational potential. We find that orbits integrated in both spherical and triaxial static Navarro–Frenk–White potentials reproduce the locations and kinematics of the various streams reasonably well. To quantify this further, we determine the best-fit potential parameters by maximizing the amount of clustering of the stream stars in the space of their actions. We show that using our set of Aquarius streams, we recover a mass profile that is consistent with the spherically averaged dark matter profile of the host halo, although we ignored both triaxiality and time evolution in the fit. This gives us confidence that such methods can be applied to the many streams that will be discovered by the Gaia mission to determine the gravitational potential of our Galaxy.

  12. TIDAL STREAM MORPHOLOGY AS AN INDICATOR OF DARK MATTER HALO GEOMETRY: THE CASE OF PALOMAR 5

    SciTech Connect

    Pearson, Sarah; Johnston, Kathryn V.; Price-Whelan, Adrian M.; Küpper, Andreas H. W.

    2015-01-20

    This paper presents an example where the morphology of a single stellar stream can be used to rule out a specific galactic potential form without the need for velocity information. We investigate the globular cluster Palomar 5 (Pal 5), which is tidally disrupting into a cold, thin stream mapped over 22 deg on the sky with a typical width of 0.7 deg. We generate models of this stream by fixing Pal 5's present-day position, distance, and radial velocity via observations, while allowing its proper motion to vary. In a spherical dark matter halo we easily find models that fit the observed morphology. However, no plausible Pal 5 model could be found in the triaxial potential of Law and Majewski, which has been proposed to explain the properties of the Sagittarius stream. In this case, the long, thin, and curved morphology of the Pal 5 stream alone can be used to rule out such a potential configuration. Pal 5-like streams in this potential are either too straight, missing the curvature of the observations, or show an unusual morphology which we dub stream-fanning: a signature sensitive to the triaxiality of a potential. We conclude that the mere existence of other thin tidal streams must provide broad constraints on the orientation and shape of the dark matter halo they inhabit.

  13. Enhanced tidal stripping of satellites in the galactic halo from dark matter self-interactions

    NASA Astrophysics Data System (ADS)

    Dooley, Gregory A.; Peter, Annika H. G.; Vogelsberger, Mark; Zavala, Jesús; Frebel, Anna

    2016-09-01

    We investigate the effects of self-interacting dark matter (SIDM) on the tidal stripping and evaporation of satellite galaxies in a Milky Way-like host. We use a suite of five zoom-in, dark-matter-only simulations, two with velocity-independent SIDM cross-sections, two with velocity-dependent SIDM cross-sections, and one cold dark matter (CDM) simulation for comparison. After carefully assigning stellar mass to satellites at infall, we find that stars are stripped at a higher rate in SIDM than in CDM. In contrast, the total bound dark matter mass-loss rate is minimally affected, with subhalo evaporation having negligible effects on satellites for viable SIDM models. Centrally located stars in SIDM haloes disperse out to larger radii as cores grow. Consequently, the half-light radius of satellites increases, stars become more vulnerable to tidal stripping, and the stellar mass function is suppressed. We find that the ratio of core radius to tidal radius accurately predicts the relative strength of enhanced SIDM stellar stripping. Velocity-independent SIDM models show a modest increase in the stellar stripping effect with satellite mass, whereas velocity-dependent SIDM models show a large increase in this effect towards lower masses, making observations of ultrafaint dwarfs prime targets for distinguishing between and constraining SIDM models. Due to small cores in the largest satellites of velocity-dependent SIDM, no identifiable imprint is left on the all-sky properties of the stellar halo. While our results focus on SIDM, the main physical mechanism of enhanced tidal stripping of stars apply similarly to satellites with cores formed via other means.

  14. Galaxy Mergers and Dark Matter Halo Mergers in LCDM: Mass, Redshift, and Mass-Ratio Dependence

    SciTech Connect

    Stewart, Kyle R.; Bullock, James S.; Barton, Elizabeth J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2009-08-03

    We employ a high-resolution LCDM N-body simulation to present merger rate predictions for dark matter halos and investigate how common merger-related observables for galaxies - such as close pair counts, starburst counts, and the morphologically disturbed fraction - likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We provide a simple 'universal' fitting formula that describes our derived merger rates for dark matter halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density-matching to associate halos with galaxies. For example, we find that the instantaneous merger rate of m/M > 0.3 mass ratio events into typical L {approx}> fL{sub *} galaxies follows the simple relation dN/dt {approx_equal} 0.03(1+f)Gyr{sup -1} (1+z){sup 2.1}. Despite the rapid increase in merger rate with redshift, only a small fraction of > 0.4L{sub *} high-redshift galaxies ({approx} 3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t < 100 Myr). This suggests that short-lived, merger-induced bursts of star formation should not contribute significantly to the global star formation rate at early times, in agreement with observational indications. In contrast, a fairly high fraction ({approx} 20%) of those z = 2 galaxies should have experienced a morphologically transformative merger within a virial dynamical time. We compare our results to observational merger rate estimates from both morphological indicators and pair-fraction based determinations between z = 0-2 and show that they are consistent with our predictions. However, we emphasize that great care must be made in these comparisons because the predicted observables depend very sensitively on galaxy luminosity, redshift, overall mass ratio, and uncertain relaxation timescales for merger remnants. We show that the majority of bright galaxies at z = 3 should have undergone a major

  15. SELF-SIMILAR DYNAMICAL RELAXATION OF DARK MATTER HALOS IN AN EXPANDING UNIVERSE

    SciTech Connect

    Lapi, A.; Cavaliere, A.

    2011-12-20

    We investigate the structure of cold dark matter halos using advanced models of spherical collapse and accretion in an expanding universe. These are based on solving time-dependent equations for the moments of the phase-space distribution function in the fluid approximation; our approach includes non-radial random motions and, most importantly, an advanced treatment of both dynamical relaxation effects that take place in the infalling matter: phase-mixing associated with shell crossing and collective collisions related to physical clumpiness. We find self-similar solutions for the spherically averaged profiles of mass density {rho}(r), pseudo phase-space density Q(r), and anisotropy parameter {beta}(r). These profiles agree with the outcomes of state-of-the-art N-body simulations in the radial range currently probed by the latter; at smaller radii, we provide specific predictions. In the perspective provided by our self-similar solutions, we link the halo structure to its two-stage growth history and propose the following picture. During the early fast collapse of the inner region dominated by a few merging clumps, efficient dynamical relaxation plays a key role in producing closely universal mass density and pseudo phase-space density profiles; in particular, these are found to depend only weakly on the detailed shape of the initial perturbation and the related collapse times. The subsequent inside-out growth of the outer regions feeds on the slow accretion of many small clumps and diffuse matter; thus the outskirts are only mildly affected by dynamical relaxation but are more sensitive to asymmetries and cosmological variance.

  16. A novel approach to derive halo-independent limits on dark matter properties

    SciTech Connect

    Ferrer, Francesc; Ibarra, Alejandro; Wild, Sebastian

    2015-09-21

    We propose a method that allows to place an upper limit on the dark matter elastic scattering cross section with nucleons which is independent of the velocity distribution. Our approach combines null results from direct detection experiments with indirect searches at neutrino telescopes, and goes beyond previous attempts to remove astrophysical uncertainties in that it directly constrains the particle physics properties of the dark matter. The resulting halo-independent upper limits on the scattering cross section of dark matter are remarkably strong and reach σ{sub SI}{sup p}≲10{sup −43} (10{sup −42}) cm{sup 2} and σ{sub SD}{sup p}≲10{sup −37} (3×10{sup −37}) cm{sup 2}, for dark matter particles of m{sub DM}∼1 TeV annihilating into W{sup +}W{sup −} (bb-bar), assuming ρ{sub loc}=0.3 GeV/cm{sup 3}.

  17. Supermassive black holes do not correlate with dark matter haloes of galaxies.

    PubMed

    Kormendy, John; Bender, Ralf

    2011-01-20

    Supermassive black holes have been detected in all galaxies that contain bulge components when the galaxies observed were close enough that the searches were feasible. Together with the observation that bigger black holes live in bigger bulges, this has led to the belief that black-hole growth and bulge formation regulate each other. That is, black holes and bulges coevolve. Therefore, reports of a similar correlation between black holes and the dark matter haloes in which visible galaxies are embedded have profound implications. Dark matter is likely to be non-baryonic, so these reports suggest that unknown, exotic physics controls black-hole growth. Here we show, in part on the basis of recent measurements of bulgeless galaxies, that there is almost no correlation between dark matter and parameters that measure black holes unless the galaxy also contains a bulge. We conclude that black holes do not correlate directly with dark matter. They do not correlate with galaxy disks, either. Therefore, black holes coevolve only with bulges. This simplifies the puzzle of their coevolution by focusing attention on purely baryonic processes in the galaxy mergers that make bulges.

  18. A novel approach to derive halo-independent limits on dark matter properties

    SciTech Connect

    Ferrer, Francesc; Ibarra, Alejandro; Wild, Sebastian E-mail: ibarra@tum.de

    2015-09-01

    We propose a method that allows to place an upper limit on the dark matter elastic scattering cross section with nucleons which is independent of the velocity distribution. Our approach combines null results from direct detection experiments with indirect searches at neutrino telescopes, and goes beyond previous attempts to remove astrophysical uncertainties in that it directly constrains the particle physics properties of the dark matter. The resulting halo-independent upper limits on the scattering cross section of dark matter are remarkably strong and reach σ{sub SI}{sup p} ∼< 10{sup −43} (10{sup −42}) cm{sup 2} and σ{sub SD}{sup p} ∼< 10{sup −37} (3× 10{sup −37}) cm{sup 2}, for dark matter particles of m{sub DM} ∼ 1 TeV annihilating into W{sup +}W{sup −} (b b-bar ), assuming ρ{sub loc}=0.3 GeV/cm{sup 3}.

  19. Separating galaxies from the cluster dark matter halo in Abell 611

    NASA Astrophysics Data System (ADS)

    Monna, A.; Seitz, S.; Geller, M. J.; Zitrin, A.; Mercurio, A.; Suyu, S. H.; Postman, M.; Fabricant, D. G.; Hwang, H. S.; Koekemoer, A.

    2017-03-01

    We investigate the mass content of galaxies in the core of the galaxy cluster Abell 611. We perform a strong lensing analysis of the cluster core and use velocity dispersion measurements for individual cluster members as additional constraints. Despite the small number of multiply-imaged systems and cluster members with central velocity dispersions available in the core of A611, the addition of velocity dispersion measurements leads to tighter constraints on the mass associated with the galaxy component, and as a result, on the mass associated with the dark matter halo. Without the spectroscopic velocity dispersions, we would overestimate the mass of the galaxy component by a factor of ∼1.5, or, equivalently, we would underestimate the mass of the cluster dark halo by ∼5 per cent. We perform an additional lensing analysis using surface brightness (SB) reconstruction of the tangential giant arc. This approach improves the constraints on the mass parameters of the five galaxies close to the arc by a factor up to ∼10. The resulting parameters are in good agreement with the σ-rtr scaling relation derived in the pointlike analysis. The galaxy velocity dispersions resulting from the SB analysis are consistent at the 1σ confidence level with the spectroscopic measurements. In contrast, the truncation radii for 2-3 galaxies depart significantly from the galaxy scaling relation and suggest differences in the stripping history from galaxy to galaxy.

  20. The derivation of constraints on the msugra parameter space from the entropy of dark matter halos

    SciTech Connect

    Cabral-Rosetti, L. G.; Mondragon, M.; Nellen, L.; Nunez, D.; Sussmann, R.; Zavala, J.

    2009-04-20

    We derive an expression for the entropy of a present dark matter halo described by a Navarro-Frenk-White modified model with a central core. We obtain an expression for the relic abundance of neutralinos by comparing this entropy of the halo with the value it had during the freeze-out era. Using WMAP observations, we constrain the parameter space for mSUGRA models. Combining our results with the usual abundance criteria, we are able to discriminate clearly among different validity regions for tan {beta} values. For this, we require both criteria to be consistent within a 2{sigma} bound of the WMAP observations for the relic density: 0.112<{omega}h{sup 2}<0.122. We find that for sgn {mu} = +1, small values of tan {beta} are not favored; only for tan {beta}{approx}50 are both criteria significantly consistent. Both criteria allow us to put a lower bound on the neutralino mass, m{sub {chi}}{>=}141 GeV.

  1. Particle Dark Matter in the galactic halo: results from DAMA/LIBRA

    SciTech Connect

    Bernabei, R.; Belli, P.; Nozzoli, F.; Montecchia, F.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Presperi, D.; Cerulli, R.; Dai, C. J.; He, H. L.; Kuang, H. H.; Ma, X. H.; Sheng, X. D.

    2010-02-10

    The DAMA/LIBRA experiment at the Gran Sasso National Laboratory of the I.N.F.N. has confirmed with higher sensitivity the model independent evidence for Dark Matter (DM) particles in the galactic halo obtained by the former DAMA/NaI experiment by investigating the DM annual modulation signature. Considering the data collected by DAMA/LIBRA together with the data collected by the former DAMA/NaI (cumulative exposure of 0.82 tonxyr) a confidence level of 8.2 sigma has been achieved. The experiment is in data taking; a first upgrading of the set-up has been carried out in Spetember 2008 and a second one--aiming to decrease the experimental energy threshold--is foreseen in September 2010.

  2. Observational evidence for a connection between supermassive black holes and dark matter haloes

    NASA Astrophysics Data System (ADS)

    Baes, Maarten; Buyle, Pieter; Hau, George K. T.; Dejonghe, Herwig

    2003-06-01

    We present new velocity dispersion measurements of a sample of 12 spiral galaxies for which extended rotation curves are available. These data are used to refine a recently discovered correlation between the circular velocity and the central velocity dispersion of spiral galaxies. We find a slightly steeper slope for our larger sample, confirm the negligible intrinsic scatter on this correlation and find a striking agreement with the corresponding relation for elliptical galaxies. We combine this correlation with the well-known MBH-σ relation to obtain a tight correlation between the circular velocities of galaxies and the masses of the supermassive black holes they host. This correlation is the observational evidence for an intimate link between dark matter haloes and supermassive black holes. Apart from being an important ingredient for theoretical models of galaxy formation and evolution, the relation between MBH and circular velocity can serve as a practical tool to estimate black hole masses in spiral galaxies.

  3. The Lyman-alpha glow of gas falling into the dark matter halo of a z = 3 galaxy.

    PubMed

    Weidinger, Michael; Møller, Palle; Fynbo, Johan Peter Uldall

    2004-08-26

    Quasars are the visible signatures of gas falling into the deep potential well of super-massive black holes in the centres of distant galaxies. It has been suggested that quasars are formed when two massive galaxies collide and merge, leading to the prediction that quasars should be found in the centres of regions of largest overdensity in the early Universe. In dark matter (DM)-dominated models of the early Universe, massive DM halos are predicted to attract the surrounding gas, which falls towards their centres. The neutral gas is not detectable in emission by itself, but gas falling into the ionizing cone of such a quasar will glow in the Lyman-alpha line of hydrogen, effectively imaging the DM halo. Here we present a Lyalpha image of a DM halo at redshift z = 3, along with a two-dimensional spectrum of the gaseous halo. Our observations are best understood in the context of the standard model for DM haloes; we infer a mass of (2 - 7) x 10(12) solar masses (M(\\circ)) for the halo.

  4. The density of dark matter haloes of early-type galaxies in low-density environments

    NASA Astrophysics Data System (ADS)

    Corsini, E. M.; Wegner, G. A.; Thomas, J.; Saglia, R. P.; Bender, R.

    2017-04-01

    New photometric and long-slit spectroscopic observations are presented for NGC 7113, PGC 1852, and PGC 67207 which are three bright galaxies residing in low-density environments. The surface-brightness distribution is analysed from the KS-band images taken with adaptive optics at the Gemini North Telescope and the ugriz-band images from the Sloan Digital Sky Survey while the line-of-sight stellar velocity distribution and line-strength Lick indices inside the effective radius are measured along several position angles. The age, metallicity, and α-element abundance of the galaxies are estimated from single stellar-population models. In spite of the available morphological classification, images show that PGC 1852 is a barred spiral which we do not further consider for mass modelling. The structural parameters of the two early-type galaxies NGC 7113 and PGC 67207 are obtained from a two-dimensional photometric decomposition and the mass-to-light ratio of all the (luminous and dark) mass that follows the light is derived from orbit-based axisymmetric dynamical modelling together with the mass density of the dark matter halo. The dynamically derived mass that follows the light is about a factor of 2 larger than the stellar mass derived using stellar-population models with Kroupa initial mass function. Both galaxies have a lower content of halo dark matter with respect to early-type galaxies in high-density environments and in agreement with the predictions of semi-analytical models of galaxy formation.

  5. Extended maximum likelihood halo-independent analysis of dark matter direct detection data

    SciTech Connect

    Gelmini, Graciela B.; Georgescu, Andreea; Gondolo, Paolo; Huh, Ji-Haeng

    2015-11-24

    We extend and correct a recently proposed maximum-likelihood halo-independent method to analyze unbinned direct dark matter detection data. Instead of the recoil energy as independent variable we use the minimum speed a dark matter particle must have to impart a given recoil energy to a nucleus. This has the advantage of allowing us to apply the method to any type of target composition and interaction, e.g. with general momentum and velocity dependence, and with elastic or inelastic scattering. We prove the method and provide a rigorous statistical interpretation of the results. As first applications, we find that for dark matter particles with elastic spin-independent interactions and neutron to proton coupling ratio f{sub n}/f{sub p}=−0.7, the WIMP interpretation of the signal observed by CDMS-II-Si is compatible with the constraints imposed by all other experiments with null results. We also find a similar compatibility for exothermic inelastic spin-independent interactions with f{sub n}/f{sub p}=−0.8.

  6. Constraining the mSUGRA (minimal supergravity) parameter space using the entropy of dark matter halos

    SciTech Connect

    Nunez, Dario; Zavala, Jesus; Nellen, Lukas; Sussman, Roberto A; Cabral-Rosetti, Luis G; Mondragon, Myriam E-mail: jzavala@nucleares.unam.mx E-mail: lukas@nucleares.unam.mx E-mail: lgcabral@ciidet.edu.mx; Collaboration: For the Instituto Avanzado de Cosmologia, IAC

    2008-05-15

    We derive an expression for the entropy of a dark matter halo described using a Navarro-Frenk-White model with a core. The comparison of this entropy with that of dark matter in the freeze-out era allows us to constrain the parameter space in mSUGRA models. Moreover, combining these constraints with the ones obtained from the usual abundance criterion and demanding that these criteria be consistent with the 2{sigma} bounds for the abundance of dark matter: 0.112{<=}{Omega}{sub DM}h{sup 2}{<=}0.122, we are able to clearly identify validity regions among the values of tan{beta}, which is one of the parameters of the mSUGRA model. We found that for the regions of the parameter space explored, small values of tan{beta} are not favored; only for tan {beta} Asymptotically-Equal-To 50 are the two criteria significantly consistent. In the region where the two criteria are consistent we also found a lower bound for the neutralino mass, m{sub {chi}}{>=}141 GeV.

  7. Dark matter and halo bispectrum in redshift space: theory and applications

    SciTech Connect

    Gil-Marín, Héctor; Percival, Will; Wagner, Christian; Noreña, Jorge; Verde, Licia E-mail: cwagner@mpa-garching.mpg.de E-mail: liciaverde@icc.ub.edu

    2014-12-01

    We present a phenomenological modification of the standard perturbation theory prediction for the bispectrum in redshift space that allows us to extend the model to mildly non-linear scales over a wide range of redshifts, z≤1.5. Our model require 18 free parameters that are fitted to N-body simulations using the shapes k{sub 2}/k{sub 1}=1, 1.5, 2.0, 2.5. We find that we can describe the bispectrum of dark matter particles with ∼5% accuracy for k{sub i}∼<0.10 h/Mpc at z=0, for k{sub i}∼<0.15 h/Mpc at z=0.5, for k{sub i}∼<0.17 h/Mpc at z=1.0 and for k{sub i}∼<0.20 h/Mpc at z=1.5. For very squeezed triangles with k{sub 1}=k{sub 2}∼>0.1 hMpc{sup -1} and k{sub 3}≤0.02 hMpc{sup -1}, however, neither SPT nor the proposed fitting formula are able to describe the measured dark matter bispectrum with this accuracy. We show that the fitting formula is sufficiently general that can be applied to other intermediate shapes such as k{sub 2}/k{sub 1}=1.25, 1.75, and 2.25. We also test that the fitting formula is able to describe with similar accuracy the bispectrum of cosmologies with different Ω{sub m}, in the range 0.2∼< Ω{sub m} ∼< 0.4, and consequently with different values of the logarithmic grow rate f at z=0, 0.4∼< f(z=0) ∼< 0.6. We apply this new formula to recover the bias parameters, f and σ{sub 8}, by combining the redshift space power spectrum monopole and quadrupole with the bispectrum monopole for both dark matter particles and haloes. We find that the combination of these three statistics can break the degeneracy between b{sub 1}, f and σ{sub 8}. For dark matter particles the new model can be used to recover f and σ{sub 8} with ∼1% accuracy. For dark matter haloes we find that f and σ{sub 8} present larger systematic shifts, ∼10%. The systematic offsets arise because of limitations in the modelling of the interplay between bias and redshift space distortions, and represent a limitation as the statistical errors of

  8. Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies

    SciTech Connect

    Villaescusa-Navarro, Francisco; Viel, Matteo; Marulli, Federico; Castorina, Emanuele; Sefusatti, Emiliano; Saito, Shun E-mail: federico.marulli3@unibo.it E-mail: branchin@fis.uniroma3.it E-mail: esefusat@ictp.it

    2014-03-01

    By using a suite of large box-size N-body simulations that incorporate massive neutrinos as an extra set of particles, with total masses of 0.15, 0.30, and 0.60 eV, we investigate the impact of neutrino masses on the spatial distribution of dark matter haloes and on the distribution of galaxies within the haloes. We compute the bias between the spatial distribution of dark matter haloes and the overall matter and cold dark matter distributions using statistical tools such as the power spectrum and the two-point correlation function. Overall we find a scale-dependent bias on large scales for the cosmologies with massive neutrinos. In particular, we find that the bias decreases with the scale, being this effect more important for higher neutrino masses and at high redshift. However, our results indicate that the scale-dependence in the bias is reduced if the latter is computed with respect to the cold dark matter distribution only. We find that the value of the bias on large scales is reasonably well reproduced by the Tinker fitting formula once the linear cold dark matter power spectrum is used, instead of the total matter power spectrum. We also investigate whether scale-dependent bias really comes from purely neutrino's effect or from nonlinear gravitational collapse of haloes. For this purpose, we address the Ω{sub ν}-σ{sub 8} degeneracy and find that such degeneracy is not perfect, implying that neutrinos imprint a slight scale dependence on the large-scale bias. Finally, by using a simple halo occupation distribution (HOD) model, we investigate the impact of massive neutrinos on the distribution of galaxies within dark matter haloes. We use the main galaxy sample in the Sloan Digital Sky Survey (SDSS) II Data Release 7 to investigate if the small-scale galaxy clustering alone can be used to discriminate among different cosmological models with different neutrino masses. Our results suggest that different choices of the HOD parameters can reproduce the

  9. ON THE ORIGIN OF THE ANGULAR MOMENTUM PROPERTIES OF GAS AND DARK MATTER IN GALACTIC HALOS AND ITS IMPLICATIONS

    SciTech Connect

    Sharma, Sanjib; Bland-Hawthorn, Joss; Steinmetz, Matthias

    2012-05-10

    We perform a set of non-radiative hydrodynamical simulations of merging spherical halos in order to understand the angular momentum (AM) properties of the galactic halos seen in cosmological simulations. The universal shape of AM distributions seen in simulations is found to be generically produced as a result of mergers. The universal shape is such that it has an excess of low AM material and hence cannot explain the exponential structure of disk galaxies. A resolution to this is suggested by the spatial distribution of low AM material which is found to be in the center and a conical region close to the axis of rotation. A mechanism that preferentially discards the material in the center and prevents the material along the poles from falling onto the disk is proposed as a solution. We implement a simple geometric criterion for the selective removal of low AM material and show that in order for 90% of halos to host exponential disks one has to reject at least 40% of material. Next, we explore the physical mechanisms responsible for distributing the AM within the halo during a merger. For dark matter there is an inside-out transfer of AM, whereas for gas there is an outside-in transfer, which is due to differences between collisionless and gas dynamics. This is responsible for the spin parameter {lambda} and the shape parameter {alpha} of AM distributions being higher for gas compared to dark matter. We also explain the apparent high spin of dark matter halos undergoing mergers and show that a criterion stricter than what is currently used would be required to detect such unrelaxed halos. Finally, we demonstrate that the misalignment of AM between gas and dark matter only occurs when the intrinsic spins of the merging halos are not aligned with the orbital AM of the system. The self-misalignment (orientation of AM when measured in radial shells not being constant), which could be the cause of warps and anomalous rotation in disks galaxies, also occurs under similar

  10. Using Dark Matter Haloes to Learn about Cosmic Acceleration: A New Proposal for a Universal Mass Function

    NASA Technical Reports Server (NTRS)

    Prescod-Weinstein, Chanda; Afshordi, Niayesh

    2011-01-01

    Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit or overpredict the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement a modified Press-Schechter formalism, which relates the linear overdensities to the abundance of dark matter haloes at the same time. We critically examine the universality of the Press-Schechter formalism for different cosmologies, and show that the halo abundance is best correlated with spherical linear overdensity at 94% of collapse (or observation) time. We then extend this argument to ellipsoidal collapse (which decreases the fractional time of best correlation for small haloes), and show that our results agree with deviations from modified Press-Schechter formalism seen in simulated mass functions. This provides a novel universal prescription to measure linear density evolution, based on current and future observations of cluster (or dark matter) halo mass function. In particular, even observations of cluster abundance in a single epoch will constrain the entire history of linear growth of cosmological of perturbations.

  11. "Invisible" Galactic Halos.

    ERIC Educational Resources Information Center

    Lugt, Karel Vander

    1993-01-01

    Develops a simple core-halo model of a galaxy that exhibits the main features of observed rotation curves and quantitatively illustrates the need to postulate halos of dark matter. Uses only elementary mechanics. (Author/MVL)

  12. The role of Dark Matter sub-halos in the non-thermal emission of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Marchegiani, Paolo; Colafrancesco, Sergio

    2016-11-01

    Annihilation of Dark Matter (DM) particles has been recognized as one of the possible mechanisms for the production of non-thermal particles and radiation in galaxy clusters. Previous studies have shown that, while DM models can reproduce the spectral properties of the radio halo in the Coma cluster, they fail in reproducing the shape of the radio halo surface brightness because they produce a shape that is too concentrated towards the center of the cluster with respect to the observed one. However, in previous studies the DM distribution was modeled as a single spherically symmetric halo, while the DM distribution in Coma is found to have a complex and elongated shape. In this work we calculate a range of non-thermal emissions in the Coma cluster by using the observed distribution of DM sub-halos. We find that, by including the observed sub-halos in the DM model, we obtain a radio surface brightness with a shape similar to the observed one, and that the sub-halos boost the radio emission by a factor between 5 and 20%, thus allowing to reduce the gap between the annihilation cross section required to reproduce the radio halo flux and the upper limits derived from other observations, and that this gap can be explained by realistic values of the boosting factor due to smaller substructures. Models with neutralino mass of 9 GeV and composition τ+ τ-, and mass of 43 GeV and composition b bar b can fit the radio halo spectrum using the observed properties of the magnetic field in Coma, and do not predict a gamma-ray emission in excess compared to the recent Fermi-LAT upper limits. These findings make these DM models viable candidate to explain the origin of radio halos in galaxy clusters, avoiding the problems connected to the excessive gamma-ray emission expected from proton acceleration in most of the currently proposed models, where the acceleration of particles is directly or indirectly connected to events related to clusters merging. Therefore, DM models deserve

  13. An Off-center Density Peak in the Milky Way's Dark Matter Halo?

    NASA Astrophysics Data System (ADS)

    Kuhlen, Michael; Guedes, Javiera; Pillepich, Annalisa; Madau, Piero; Mayer, Lucio

    2013-03-01

    We show that the position of the central dark matter (DM) density peak may be expected to differ from the dynamical center of the Galaxy by several hundred parsecs. In Eris, a high-resolution cosmological hydrodynamics simulation of a realistic Milky-Way-analog disk galaxy, this offset is 300-400 pc (~3 gravitational softening lengths) after z = 1. In its dissipationless DM-only twin simulation ErisDark, as well as in the Via Lactea II and GHalo simulations, the offset remains below one softening length for most of its evolution. The growth of the DM offset coincides with a flattening of the central DM density profile in Eris inward of ~1 kpc, and the direction from the dynamical center to the point of maximum DM density is correlated with the orientation of the stellar bar, suggesting a bar-halo interaction as a possible explanation. A DM density offset of several hundred parsecs greatly affects expectations of the DM annihilation signals from the Galactic center. It may also support a DM annihilation interpretation of recent reports by Weniger and Su & Finkbeiner of highly significant 130 GeV gamma-ray line emission from a region 1.°5 (~200 pc projected) away from Sgr A* in the Galactic plane.

  14. AN OFF-CENTER DENSITY PEAK IN THE MILKY WAY'S DARK MATTER HALO?

    SciTech Connect

    Kuhlen, Michael; Guedes, Javiera; Pillepich, Annalisa; Madau, Piero; Mayer, Lucio

    2013-03-01

    We show that the position of the central dark matter (DM) density peak may be expected to differ from the dynamical center of the Galaxy by several hundred parsecs. In Eris, a high-resolution cosmological hydrodynamics simulation of a realistic Milky-Way-analog disk galaxy, this offset is 300-400 pc ({approx}3 gravitational softening lengths) after z = 1. In its dissipationless DM-only twin simulation ErisDark, as well as in the Via Lactea II and GHalo simulations, the offset remains below one softening length for most of its evolution. The growth of the DM offset coincides with a flattening of the central DM density profile in Eris inward of {approx}1 kpc, and the direction from the dynamical center to the point of maximum DM density is correlated with the orientation of the stellar bar, suggesting a bar-halo interaction as a possible explanation. A DM density offset of several hundred parsecs greatly affects expectations of the DM annihilation signals from the Galactic center. It may also support a DM annihilation interpretation of recent reports by Weniger and Su and Finkbeiner of highly significant 130 GeV gamma-ray line emission from a region 1. Degree-Sign 5 ({approx}200 pc projected) away from Sgr A* in the Galactic plane.

  15. Transition between order and chaos in a composite disk galaxy model with a massive nucleus and a dark matter halo

    NASA Astrophysics Data System (ADS)

    Caranicolas, Nicolaos D.; Zotos, Euaggelos E.

    2013-02-01

    We investigate the transition from regular to chaotic motion in a composite galaxy model with a disk-halo, a massive dense nucleus and a dark halo component. We obtain relationships connecting the critical value of the mass of the nucleus or the critical value of the angular momentum Lzc, with the mass Mh of the dark halo, where the transition from regular motion to chaos occurs. We also present 3D diagrams connecting the mass of nucleus the energy and the percentage of stars that can show chaotic motion. The fraction of the chaotic orbits observed in the (r,pr) phase plane, as a function of the mass of the dark halo is also computed. We use a semi-numerical method, that is a combination of theoretical and numerical procedure. The theoretical results obtained using the version 8.0 of the Mathematica package, while all the numerical calculations were made using a Bulirsch-Stöer FORTRAN routine in double precision. The results can be obtained in semi-numerical or numerical form and give good description for the connection of the physical quantities entering the model and the transition between regular and chaotic motion. We observe that the mass of the dark halo, the mass of the dense nucleus and the Lz component of the angular momentum, are important physical quantities, as they are linked to the regular or chaotic character of orbits in disk galaxies described by the model. Our numerical experiments suggest, that the amount of the dark matter plays an important role in disk galaxies represented by the model, as the mass of the halo affects, not only the regular or chaotic nature of motion but it is also connected with the existence of the different families of regular orbits. Comparison of the present results with earlier work is also presented.

  16. Discussion on the energy content of the galactic dark matter Bose-Einstein condensate halo in the Thomas-Fermi approximation

    SciTech Connect

    De Souza, J.C.C.; Pires, M.O.C. E-mail: marcelo.pires@ufabc.edu.br

    2014-03-01

    We show that the galactic dark matter halo, considered composed of an axionlike particles Bose-Einstein condensate [6] trapped by a self-graviting potential [5], may be stable in the Thomas-Fermi approximation since appropriate choices for the dark matter particle mass and scattering length are made. The demonstration is performed by means of the calculation of the potential, kinetic and self-interaction energy terms of a galactic halo described by a Boehmer-Harko density profile. We discuss the validity of the Thomas-Fermi approximation for the halo system, and show that the kinetic energy contribution is indeed negligible.

  17. The Non-Standard Mission

    DTIC Science & Technology

    2016-06-13

    rotation, but issues concerning the selection of units for non-standard mission still exist five years later. 15. SUBJECT TERMS 16. SECURITY...preparing our soldiers has improved since the first rotation, but issues concerning the selection of units for non-standard mission still exist five...our brigade headquarters for a separate mission. I was the Operations NCO for the battalion and had already been selected to serve as the Rear

  18. Cosmic rays in a dynamical halo. I - Age and matter traversal distributions and anisotropy for nuclei. II - Electrons

    NASA Technical Reports Server (NTRS)

    Owens, A. J.; Jokipii, J. R.

    1977-01-01

    Recent measurements of the mean lifetime of galactic cosmic rays (at least 10 million yr) have suggested a dynamical halo model of cosmic-ray confinement to the Galaxy. A one-dimensional version of the model is analyzed to determine the ranges of parameters required to give self-consistent values of the mean lifetime, matter traversed, anisotropy, and interstellar gamma-ray flux. It is found that the ranges of the parameters are: disk scale height of 4000-10,000 pc, average convection velocity of no more than 60 km/s, and diffusion coefficient of (3-10) by 10 to the 28th power sq cm/sec for particles with charges of the order of 10 GV. Some consequences for this model of a much shorter lifetime are also discussed. The energy spectrum and spatial distribution of electrons in the dynamical halo model are considered. A gradual steepening of the electron energy spectrum beginning at several GeV energy is found, as indicated by observations. The decrease of electron density with height in the halo depends on the particle energy and may be much steeper than that for nuclei. The models give a halo with a scale height of the order of 3 kpc for several-GeV electrons, which is shown to be consistent with radio observations.

  19. Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data

    NASA Astrophysics Data System (ADS)

    Viola, M.; Cacciato, M.; Brouwer, M.; Kuijken, K.; Hoekstra, H.; Norberg, P.; Robotham, A. S. G.; van Uitert, E.; Alpaslan, M.; Baldry, I. K.; Choi, A.; de Jong, J. T. A.; Driver, S. P.; Erben, T.; Grado, A.; Graham, Alister W.; Heymans, C.; Hildebrandt, H.; Hopkins, A. M.; Irisarri, N.; Joachimi, B.; Loveday, J.; Miller, L.; Nakajima, R.; Schneider, P.; Sifón, C.; Verdoes Kleijn, G.

    2015-10-01

    The Kilo-Degree Survey is an optical wide-field survey designed to map the matter distribution in the Universe using weak gravitational lensing. In this paper, we use these data to measure the density profiles and masses of a sample of ˜1400 spectroscopically identified galaxy groups and clusters from the Galaxy And Mass Assembly survey. We detect a highly significant signal (signal-to-noise-ratio ˜120), allowing us to study the properties of dark matter haloes over one and a half order of magnitude in mass, from M ˜ 1013-1014.5 h-1 M⊙. We interpret the results for various subsamples of groups using a halo model framework which accounts for the mis-centring of the brightest cluster galaxy (used as the tracer of the group centre) with respect to the centre of the group's dark matter halo. We find that the density profiles of the haloes are well described by an NFW profile with concentrations that agree with predictions from numerical simulations. In addition, we constrain scaling relations between the mass and a number of observable group properties. We find that the mass scales with the total r-band luminosity as a power law with slope 1.16 ± 0.13 (1σ) and with the group velocity dispersion as a power law with slope 1.89 ± 0.27 (1σ). Finally, we demonstrate the potential of weak lensing studies of groups to discriminate between models of baryonic feedback at group scales by comparing our results with the predictions from the Cosmo-OverWhelmingly Large Simulations project, ruling out models without AGN feedback.

  20. DARK MATTER CORES IN THE FORNAX AND SCULPTOR DWARF GALAXIES: JOINING HALO ASSEMBLY AND DETAILED STAR FORMATION HISTORIES

    SciTech Connect

    Amorisco, N. C.; Zavala, J.; De Boer, T. J. L.

    2014-02-20

    We combine the detailed star formation histories of the Fornax and Sculptor dwarf spheroidals with the mass assembly history of their dark matter (DM) halo progenitors to estimate if the energy deposited by Type II supernovae (SNe II) is sufficient to create a substantial DM core. Assuming the efficiency of energy injection of the SNe II into DM particles is ε{sub gc} = 0.05, we find that a single early episode, z ≳ z {sub infall}, that combines the energy of all SNe II due to explode over 0.5 Gyr is sufficient to create a core of several hundred parsecs in both Sculptor and Fornax. Therefore, our results suggest that it is energetically plausible to form cores in cold dark matter (CDM) halos via early episodic gas outflows triggered by SNe II. Furthermore, based on CDM merger rates and phase-space density considerations, we argue that the probability of a subsequent complete regeneration of the cusp is small for a substantial fraction of dwarf-size halos.

  1. Dynamics of groups around interacting double ellipticals: Measuring dark matter haloes

    NASA Technical Reports Server (NTRS)

    Quintana, H.

    1990-01-01

    Binary galaxies, as binary stars, are important to measure masses, as suggested by Page (1952). Because three orbit parameters are measurable for galaxies at one instant of time, severe uncertainties remain in the orbit and mass determinations. These uncertainties can partly be overcome by statistical studies of selected samples and/or n-body simulations. Close double galaxies (and isolated galaxies) could also be useful to estimate dynamical masses if we can find test particles around them. Interacting elliptical pairs or dumb-bell galaxies are found with a large range, between 0-1200 km s(exp -1), of relative radial velocities. Standard 2-body orbit calculations, highly uncertain due to projection factors, suggest for the largest velocity differences very large galaxy masses, if the systems are bound and stationary. However, recent n-body simulations model these binaries as galaxies captured from hyperbolic orbits, requiring masses of order a few times 10(exp 11) solar maximum (Borne et al. 1988), but producing systems that are short lived. A different picture appears when we study observationally the dynamical mass of interacting double ellipticals using faint satellite galaxies. These satellites contribute little luminosity and, presumably, little mass to the system. The authors present results of two such groups, basically forming systems of test particles, around the dumb-bells NGC 4782/3 and IC 5049. They also briefly discuss the satellite group around the central dumb-bell in the cluster Sersic 40/6. Apparently, they detect large quantities of dark matter in the vicinity of these dumb-bell galaxies, because the system masses of approx. 4.5 times 10(exp 13) solar mass and 8 times 10(exp 13) solar mass for NGC 4782/3 and IC 5049, respectively, are quite high. Likewise, the mass of the Sersic 40/6 inner core is 7 times 10(exp 13) solar mass. The possibility that a common massive dark matter halo increases the merging times of these types of galaxies is

  2. A simple model to link the properties of quasars to the properties of dark matter haloes out to high redshift

    NASA Astrophysics Data System (ADS)

    Croton, Darren J.

    2009-04-01

    We present a simple model of how quasars occupy dark matter haloes from z = 0 to 5 using the observed mBH-σ relation and quasar luminosity functions. This provides a way for observers to statistically infer host halo masses for quasar observations using luminosity and redshift alone. Our model is deliberately simple and sidesteps any need to explicitly describe the physics. In spite of its simplicity, the model reproduces many key observations and has predictive power: (i) model quasars have the correct luminosity function (by construction) and spatial clustering (by consequence); (ii) we predict high-redshift quasars of a given luminosity live in less massive dark matter haloes than the same luminosity quasars at low redshifts; (iii) we predict a factor of ~5 more 108.5Msolar black holes at z ~ 2 than is currently observed; (iv) we predict a factor of ~20 evolution in the amplitude of the mBH-Mhalo relation between z = 5 and the present day; (v) we expect luminosity-dependent quasar lifetimes of between tQ ~ 107 and 108yr, but which may become as short as 105-6yr for quasars brighter than L* and (vi) while little luminosity-dependent clustering evolution is expected at z <~ 1, increasingly strong evolution is predicted for L > L* quasars at higher redshifts. These last two results arise from the narrowing distribution of halo masses that quasars occupy as the Universe ages. We also deconstruct both `downsizing' and `upsizing' trends predicted by the model at different redshifts and space densities. Importantly, this work illustrates how current observations cannot distinguish between more complicated physically motivated quasar models and our simple phenomenological approach. It highlights the opportunities such methodologies provide.

  3. Unveiling hidden black holes in the cosmic web: Dark matter halos of WISE quasars from Planck CMB lensing

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan

    The WISE and Planck surveys have now produced groundbreaking data sets which, in concert, can be exploited to obtain revolutionary constraints on the evolution of structure in the Universe. One particularly powerful application of WISE has been to uncover millions of the previously "hidden" obscured quasars, rapidly growing supermassive black holes that are shrouded in gas and dust and so are not detectable using traditional ground-based optical and near-IR techniques. Recently, Planck has produced the most precise all-sky map to date of dark matter structures via the lensing of the cosmic microwave background (CMB). We propose to combine these data sets to obtain a uniquely powerful measurement of the link between rapidly growing black holes and their host dark matter structures, by cross-correlating the density field of WISE-selected quasars with the CMB lensing convergence maps obtained from Planck. This proposal will build on our current ADAP program (NNX12AE38G), which studies the host dark matter halos of WISE-selected quasars via spatial clustering. NNX12AE38G involves a detailed characterization of the redshifts, luminosities, and spectral energy distributions of WISE-selected quasars and uses new techniques to measure how quasars cluster around themselves. NNX12AE38G has contributed to more than 10 journal articles and 5 conference proceedings. Building on our current work, an even more complete understanding of the link between black holes and their host dark matter structures is possible if we employ an independent method for measuring the clustering bias (and thus characteristic halo mass) of the quasar population. This has recently become possible using CMB lensing maps. In the past two years, our team has conducted an initial analysis covering 2500 square degrees using WISE-selected quasars and lensing maps from the South Pole Telescope (Geach, Hickox, Myers et al., 2013), and have implemented this technique with Planck over part of the SDSS region

  4. The link between the assembly of the inner dark matter halo and the angular momentum evolution of galaxies in the EAGLE simulation

    NASA Astrophysics Data System (ADS)

    Zavala, Jesús; Frenk, Carlos S.; Bower, Richard; Schaye, Joop; Theuns, Tom; Crain, Robert A.; Trayford, James W.; Schaller, Matthieu; Furlong, Michelle

    2016-08-01

    We explore the co-evolution of the specific angular momentum of dark matter haloes and the cold baryons that comprise the galaxies within. We study over 2000 galaxies within the reference cosmological hydrodynamical simulation of the `Evolution and Assembly of GaLaxies and their Environments' (EAGLE) project. We employ a methodology within which the evolutionary history of a system is specified by the time-evolving properties of the Lagrangian particles that define it at z = 0. We find a strong correlation between the evolution of the specific angular momentum of today's stars (cold gas) and that of the inner (whole) dark matter halo they are associated with. This link is particularly strong for the stars formed before the epoch of maximum expansion and subsequent collapse of the central dark matter halo (turnaround). Spheroids are assembled primarily from stars formed prior to turnaround, and suffer a net loss of angular momentum associated with the strong merging activity during the assembly of the inner dark matter halo. Stellar discs retain their specific angular momentum since they are comprised of stars formed mainly after turnaround, from gas that mostly preserves the high specific angular momentum it acquired by tidal torques during the linear growth of the halo. Since the specific angular momentum loss of the stars is tied to the galaxy's morphology today, it may be possible to use our results to predict, statistically, the maximum loss of specific angular momentum of the inner part of a halo given the morphology of the galaxy it hosts.

  5. Taking Halo-Independent Dark Matter Methods Out of the Bin

    DOE PAGES

    Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2014-10-30

    We develop a new halo-independent strategy for analyzing emerging DM hints, utilizing the method of extended maximum likelihood. This approach does not require the binning of events, making it uniquely suited to the analysis of emerging DM direct detection hints. It determines a preferred envelope, at a given confidence level, for the DM velocity integral which best fits the data using all available information and can be used even in the case of a single anomalous scattering event. All of the halo-independent information from a direct detection result may then be presented in a single plot, allowing simple comparisons betweenmore » multiple experiments. This results in the halo-independent analogue of the usual mass and cross-section plots found in typical direct detection analyses, where limit curves may be compared with best-fit regions in halo-space. The method is straightforward to implement, using already-established techniques, and its utility is demonstrated through the first unbinned halo-independent comparison of the three anomalous events observed in the CDMS-Si detector with recent limits from the LUX experiment.« less

  6. Taking Halo-Independent Dark Matter Methods Out of the Bin

    SciTech Connect

    Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2014-10-30

    We develop a new halo-independent strategy for analyzing emerging DM hints, utilizing the method of extended maximum likelihood. This approach does not require the binning of events, making it uniquely suited to the analysis of emerging DM direct detection hints. It determines a preferred envelope, at a given confidence level, for the DM velocity integral which best fits the data using all available information and can be used even in the case of a single anomalous scattering event. All of the halo-independent information from a direct detection result may then be presented in a single plot, allowing simple comparisons between multiple experiments. This results in the halo-independent analogue of the usual mass and cross-section plots found in typical direct detection analyses, where limit curves may be compared with best-fit regions in halo-space. The method is straightforward to implement, using already-established techniques, and its utility is demonstrated through the first unbinned halo-independent comparison of the three anomalous events observed in the CDMS-Si detector with recent limits from the LUX experiment.

  7. Taking Halo-independent dark matter methods out of the bin

    SciTech Connect

    Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew E-mail: ykahn@mit.edu

    2014-10-01

    We develop a new halo-independent strategy for analyzing emerging DM hints, utilizing the method of extended maximum likelihood. This approach does not require the binning of events, making it uniquely suited to the analysis of emerging DM direct detection hints. It determines a preferred envelope, at a given confidence level, for the DM velocity integral which best fits the data using all available information and can be used even in the case of a single anomalous scattering event. All of the halo-independent information from a direct detection result may then be presented in a single plot, allowing simple comparisons between multiple experiments. This results in the halo-independent analogue of the usual mass and cross-section plots found in typical direct detection analyses, where limit curves may be compared with best-fit regions in halo-space. The method is straightforward to implement, using already-established techniques, and its utility is demonstrated through the first unbinned halo-independent comparison of the three anomalous events observed in the CDMS-Si detector with recent limits from the LUX experiment.

  8. Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters.

    PubMed

    Kaplinghat, Manoj; Tulin, Sean; Yu, Hai-Bo

    2016-01-29

    Astrophysical observations spanning dwarf galaxies to galaxy clusters indicate that dark matter (DM) halos are less dense in their central regions compared to expectations from collisionless DM N-body simulations. Using detailed fits to DM halos of galaxies and clusters, we show that self-interacting DM (SIDM) may provide a consistent solution to the DM deficit problem across all scales, even though individual systems exhibit a wide diversity in halo properties. Since the characteristic velocity of DM particles varies across these systems, we are able to measure the self-interaction cross section as a function of kinetic energy and thereby deduce the SIDM particle physics model parameters. Our results prefer a mildly velocity-dependent cross section, from σ/m≈2  cm^{2}/g on galaxy scales to σ/m≈0.1  cm^{2}/g on cluster scales, consistent with the upper limits from merging clusters. Our results dramatically improve the constraints on SIDM models and may allow the masses of both DM and dark mediator particles to be measured even if the dark sector is completely hidden from the standard model, which we illustrate for the dark photon model.

  9. Dark matter constraints from the Fermi/LAT Extragalactic Gamma-ray Background and the role of halo substructure

    NASA Astrophysics Data System (ADS)

    Sanchez-Conde, Miguel Angel

    2012-05-01

    After almost four years of operation, Fermi/LAT has measured the Extragalactic Gamma-ray Background (EGB) with unprecedented sensitivity, furthermore extending, for the first time, the EGB spectrum down to 100 MeV and up to several hundred GeV. Although a large variety of extragalactic objects are expected to contribute to the EGB, according to recent estimates the sum of their different contributions is not enough to explain the measured EGB. Gamma-rays from annihilation products of supersymmetric dark matter (DM) particles may account for this missing emission. In this talk, I will discuss on the parameter space allowed for DM annihilation in the most recent EGB spectrum by Fermi/LAT. At present, the key ingredient in the determination of the expected contribution of DM annihilation to the EGB is the so-called substructure boost factor, thus special attention will be given to this parameter. Substructure boosts are related to the amount of DM subhalos hosted by larger DM halos. Up to now, attempts to precisely calculate it both analytically and/or making use of N-body cosmological simulations have failed due to the difficulty of examining in detail the properties of the smallest DM halos. Indeed, the DM contribution to the EGB can vary over several orders of magnitude depending on the assumed DM substructure model. Here, I will present a DM substructure model which is based on our current knowledge of DM halo formation and evolution in the framework of the state-of-the-art ΛCDM cosmological model. This model makes possible to confidently calculate substructure boosts for halos of different masses. After applying it, the uncertainty bands that bracket the contribution of DM annihilation to the EGB will become not only substantially narrower but also better physically motivated. The use of such a more sophisticated DM substructure model makes possible to assess other crucial EGB aspects as well.

  10. Small scale anisotropies of UHECRs from super-heavy halo dark matter

    SciTech Connect

    P. Blasi; R. K. Sheth

    2001-10-23

    The decay of very heavy metastable relics of the Early Universe can produce ultra-high energy cosmic rays (UHECRs) in the halo of our own Galaxy. In this model, no Greisen-Zatsepin-Kuzmin cutoff is expected because of the short propagation distances. They show here that, as a consequence of the hierarchical build up of the halo, this scenario predicts the existence of small scale anisotropies in the arrival directions of UHECRs, in addition to a large scale anisotropy, known from previous studies. They also suggest some other observable consequences of this scenario which will be testable with upcoming experiments, as Auguer, EUSO and OWL.

  11. High Resolution Simulations for Hierarchical Formation of Dark Matter Halos Hosting Galaxies and AGNs at High Redshift

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tomoaki

    2015-08-01

    We present the evolution of dark matter halos in six large cosmological N-body simulations, called the ν2GC (New Numerical Galaxy Catalog) simulations on the basis of the LCDM cosmology consistent with observational results obtained by the Planck satellite. The largest simulation consists of 81923 (550 billion) dark matter particles in a box of 1.12h-1Gpc (a mass resolution of 2.20×108 h-1M⊙). Among simulations utilizing boxes larger than 1h-1Gpc, our simulation yields the highest resolution simulation that has ever been achieved. Compared with the Millennium simulation (Springel et al. 2005), our simulation offers the advantages of a mass resolution that is four times better and a spatial volume that is 11 times larger. A ν2GC simulation with the smallest box consists of eight billions particles in a box of 70h-1Mpc (a mass resolution of 3.44×106 -1M⊙). These simulations can follow the evolution of halos over masses of eight orders of magnitude, from small dwarf galaxies to massive clusters. Using the unprecedentedly high resolution and powerful statistics of the ν2GC simulations, we provide statistical results of the halo mass function, mass accretion rate, formation redshift, and merger statistics, and present accurate fitting functions for the Planck cosmology, from redshift 10 to 0. By combining the ν2GC simulations with our new semi-analytic galaxy formation model, we are able to prepare mock catalogs of galaxies and active galactic nuclei, which will be made publicly available in the near future.

  12. The redshift evolution of the distribution of star formation among dark matter halos as seen in the infrared

    NASA Astrophysics Data System (ADS)

    Béthermin, Matthieu; Wang, Lingyu; Doré, Olivier; Lagache, Guilaine; Sargent, Mark; Daddi, Emanuele; Cousin, Morgane; Aussel, Hervé

    2013-09-01

    Recent studies have revealed a strong correlation between the star formation rate (SFR) and stellar mass of the majority of star-forming galaxies, the so-called star-forming main sequence. An empirical modeling approach (the 2-SFM framework) that distinguishes between the main sequence and rarer starburst galaxies is capable of reproducing most statistical properties of infrared galaxies, such as number counts, luminosity functions, and redshift distributions. In this paper, we extend this approach by establishing a connection between stellar mass and halo mass with the technique of abundance matching. Based on a few simple assumptions and a physically motivated formalism, our model successfully predicts the (cross-)power spectra of the cosmic infrared background (CIB), the cross-correlation between CIB and cosmic microwave background (CMB) lensing, and the correlation functions of bright, resolved infrared galaxies measured by Herschel, Planck, ACT, and SPT. We use this model to infer the redshift distribution of CIB-anisotropies and of the CIB × CMB lensing signal, as well as the level of correlation between CIB-anisotropies at different wavelengths. We study the link between dark matter halos and star-forming galaxies in the framework of our model. We predict that more than 90% of cosmic star formation activity occurs in halos with masses between 1011.5 and 1013.5 M⊙. If taking subsequent mass growth of halos into account, this implies that the majority of stars were initially (at z > 3) formed in the progenitors of clusters (Mh(z = 0) > 1013.5 M⊙), then in groups (1012.5 < Mh(z = 0) < 1013.5 M⊙) at 0.5 < z < 3, and finally in Milky-Way-like halos (1011.5 < Mh(z = 0) < 1012.5 M⊙) at z < 0.5. At all redshifts, the dominant contribution to the SFR density stems from halos of mass ~1012 M⊙, in which the instantaneous star formation efficiency - defined here as the ratio between SFR and baryonic accretion rate - is maximal (~70%). The strong redshift

  13. Neutrino Non-standard Interactions

    NASA Astrophysics Data System (ADS)

    Girardelli, David; Guzzo, Marcelo

    The quantum neutrino oscillation phenomenon is not perfectly described by the actual standard physics models. Experimental results of different neutrino sources like reactors, accelerators and supernovae, indicate a non-negligible flux error if compared to the predicted theoretical models. This work aims to propose different non-standard neutrino in- teractions and predict LBNE potential in analyze it. That approach could give a better understanding of the quantum neutrino oscillation phenomenon. As an example, we can use the weak leptonic number violation that generate new interactions that is not possible using the Standard Model. This violation is directly related with a change in the Flavor neutrino Hamiltonian and consequently connected with the quantum neutrino oscillation.

  14. On the origin of Sérsic profiles of galaxies and Einasto profiles of dark-matter halos

    NASA Astrophysics Data System (ADS)

    Nipoti, Carlo

    2017-03-01

    The surface-brightness profiles of galaxies I(R) and the density profiles of dark-matter halos ρ(r) are well represented by the same analytic function, named after either Sérsic, I~e -(R/R *)1/m , or Einasto, ρ~e -(r/r *)α , where R * and r * are characteristic radii. Systems with high Sérsic index m (or low Einasto index α) have steep central profiles and shallow outer profiles, while systems with low m (or high α) have shallow central profiles and steep profiles in the outskirts. We present the results of idealized numerical experiments which suggest that the origin of these profiles can be traced back to the initial density fluctuation field: high-α (low-m) systems form in smooth regions via few mergers, while low-α (high-m) systems form in clumpy regions via several mergers.

  15. Dark-ages reionization and galaxy formation simulation - II. Spin and concentration parameters for dark matter haloes during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Angel, Paul W.; Poole, Gregory B.; Ludlow, Aaron D.; Duffy, Alan R.; Geil, Paul M.; Mutch, Simon J.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-06-01

    We use high-resolution N-body simulations to study the concentration and spin parameters of dark matter haloes in the mass range 108 M⊙ h-1 < M < 1011 M⊙ h-1 and redshifts 5 < z < 10, corresponding to the haloes of galaxies thought to be responsible for reionization. We build a subsample of equilibrium haloes and contrast their properties to the full population that also includes unrelaxed systems. Concentrations are calculated by fitting both NFW and Einasto profiles to the spherically averaged density profiles of individual haloes. After removing haloes that are out of equilibrium, we find a z > 5 concentration-mass (c(M)) relation that is almost flat and well described by a simple power law for both NFW and Einasto fits. The intrinsic scatter around the mean relation is Δcvir ˜ 1 (or 20 per cent) at z = 5. We also find that the analytic model proposed by Ludlow et al. reproduces the mass and redshift dependence of halo concentrations. Our best-fitting Einasto shape parameter, α, depends on peak height, ν, in a manner that is accurately described by α = 0.0070ν2 + 0.1839. The distribution of the spin parameter, λ, has a weak dependence on equilibrium state; λ peaks at roughly ˜0.033 for our relaxed sample, and at ˜0.04 for the full population. The spin-virial mass relation has a mild negative correlation at high redshift.

  16. Probing the Truncation of Galaxy Dark Matter Halos in High-Density Environments from Hydrodynamical N-Body Simulations

    NASA Astrophysics Data System (ADS)

    Limousin, Marceau; Sommer-Larsen, Jesper; Natarajan, Priyamvada; Milvang-Jensen, Bo

    2009-05-01

    We analyze high-resolution, N-body hydrodynamical simulations of fiducial galaxy clusters to probe tidal stripping of the dark matter subhalos. These simulations include a prescription for star formation allowing us to track the fate of the stellar component as well. We investigate the effect of tidal stripping on cluster galaxies hosted in these dark matter subhalos as a function of projected cluster-centric radius. To quantify the extent of the dark matter halos of cluster galaxies, we introduce the half-mass radius r 1/2 as a diagnostic, and study its evolution with projected cluster-centric distance R as a function of redshift. We find a well-defined trend for (r 1/2, R): the closer the galaxies are to the center of the cluster, the smaller the half-mass radius. Interestingly, this trend is inferred in all redshift frames examined in this work ranging from z = 0 to z = 0.7. At z = 0, galaxy halos in the central regions of clusters are found to be highly truncated, with the most compact half-mass radius of 10 kpc. We also find that r 1/2 depends on luminosity and we present scaling relations of r 1/2 with galaxy luminosity. The corresponding total mass of the cluster galaxies is also found to increase with projected cluster-centric distance and luminosity, but with more scatter than the (r 1/2, R) trend. Comparing the distribution of stellar mass to total mass for cluster galaxies, we find that the dark matter component is preferentially stripped, whereas the stellar component is much less affected by tidal forces. We compare these results with galaxy-galaxy lensing probes of r 1/2 and find qualitative agreement. Future surveys with space-based telescopes such as DUNE and SNAP, that combine wide-field and high-resolution imaging, will be able to probe the predicted (r 1/2, R) relation observationally.

  17. The rarity of Dark Matter Halos in medium-sized walls of the cosmic web

    NASA Astrophysics Data System (ADS)

    Goh, Tze; Primack, Joel R.; Lee, Christoph; Aragon-Calvo, Miguel A.; Behroozi, Peter

    2017-01-01

    In 2014, Marshall McCall mapped out our Local Sheet, the cosmic wall containing the Milk Way and Andromeda galaxies. We use the large new Bolshoi-Planck cosmological simulation to investigate how rare our type of Local Sheet is, with 2 nearby halos like those of Milky Way and Andromeda. The conclusion of our investigation is that the occurrence of a pair of galaxies the size of Milky Way and Andromeda near the center of a wall 8 mpc in diameter, with the pair of galaxies within 0.7 mpc/h of each other, is very rare : it makes up only 0.05% of all walls in the simulation.

  18. Cosmic-ray antiprotons, positrons, and gamma rays from halo dark matter annihilation

    NASA Technical Reports Server (NTRS)

    Rudaz, S.; Stecker, F. W.

    1988-01-01

    The subject of cosmic ray antiproton production is reexamined by considering other choices for the nature of the Majorana fermion chi other than the photino considered in a previous article. The calculations are extended to include cosmic-ray positrons and cosmic gamma rays as annihilation products. Taking chi to be a generic higgsino or simply a heavy Majorana neutrino with standard couplings to the Z-zero boson allows the previous interpretation of the cosmic antiproton data to be maintained. In this case also, the annihilation cross section can be calculated independently of unknown particle physics parameters. Whereas the relic density of photinos with the choice of parameters in the previous paper turned out to be only a few percent of the closure density, the corresponding value for Omega in the generic higgsino or Majorana case is about 0.2, in excellent agreement with the value associated with galaxies and one which is sufficient to give the halo mass.

  19. WEAK GRAVITATIONAL LENSING AS A PROBE OF PHYSICAL PROPERTIES OF SUBSTRUCTURES IN DARK MATTER HALOS

    SciTech Connect

    Shirasaki, Masato

    2015-02-01

    We propose a novel method to select satellite galaxies in outer regions of galaxy groups or clusters using weak gravitational lensing. The method is based on the theoretical expectation that the tangential shear pattern around satellite galaxies would appear with negative values at an offset distance from the center of the main halo. We can thus locate the satellite galaxies statistically with an offset distance of several lensing smoothing scales by using the standard reconstruction of surface mass density maps from weak lensing observation. We test the idea using high-resolution cosmological simulations. We show that subhalos separated from the center of the host halo are successfully located even without assuming the position of the center. For a number of such subhalos, the characteristic mass and offset length can be also estimated on a statistical basis. We perform a Fisher analysis to show how well upcoming weak lensing surveys can constrain the mass density profile of satellite galaxies. In the case of the Large Synoptic Survey Telescope with a sky coverage of 20,000 deg{sup 2}, the mass of the member galaxies in the outer region of galaxy clusters can be constrained with an accuracy of ∼0.1 dex for galaxy clusters with mass 10{sup 14} h {sup –1} M {sub ☉} at z = 0.15. Finally we explore the detectability of tidal stripping features for subhalos having a wide range of masses of 10{sup 11}-10{sup 13} h {sup –1} M {sub ☉}.

  20. A 14.6 Arcsecond Quasar Lens Split by a Massive Dark Matter Halo

    SciTech Connect

    Inada, N; Oguri, M; Pindor, B; Hennawi, J; Chiu, K; Zheng, W; Ichikawa, S; Gregg, M; Becker, R; Suto, Y; Strauss, M; Turner, E; Keeton, C; Annis, J; Castander, F; Eisenstein, D; Frieman, J; Fukugita, M; Gunn, J; Johnston, D; Kent, S; Nichol, R; Richards, G; Rix, H; Sheldon, E; Bahcall, N; Brinkmann, J; Ivezic, Z; Lamb, D; Mckay, T; Schneider, D; York, D

    2003-12-04

    Gravitational lensing is a powerful tool to study the distribution of dark matter in the universe. The cold dark matter model of structure formation predicts the existence of quasars gravitationally lensed by concentrations of dark matter so massive that the quasar images would be split by over 7 inches. However, numerous searches for large-separation lensed quasars have been unsuccessful; all of the roughly 70 lensed quasars known to date, such as Q0957+561, have smaller splittings, and can be explained in terms of galaxy scale concentrations of baryonic matter that have undergone dissipative collapse. Here they report the discovery of the first large-separation lensed quasar, SDSS J1004+4112, with a maximum separation of 14.62 inches; at this separation, the lensing object must be dominated by dark matter. While gravitationally lensed galaxies of even large separation are known, large-separation quasars are more useful cosmological probes because of the simplicity of the resulting lens systems. The discovery in their current quasar sample is fully consistent with the theoretical expectations based on the cold dark matter model.

  1. Connecting massive galaxies to dark matter haloes in BOSS - I. Is galaxy colour a stochastic process in high-mass haloes?

    NASA Astrophysics Data System (ADS)

    Saito, Shun; Leauthaud, Alexie; Hearin, Andrew P.; Bundy, Kevin; Zentner, Andrew R.; Behroozi, Peter S.; Reid, Beth A.; Sinha, Manodeep; Coupon, Jean; Tinker, Jeremy L.; White, Martin; Schneider, Donald P.

    2016-08-01

    We use subhalo abundance matching (SHAM) to model the stellar mass function (SMF) and clustering of the Baryon Oscillation Spectroscopic Survey (BOSS) `CMASS' sample at z ˜ 0.5. We introduce a novel method which accounts for the stellar mass incompleteness of CMASS as a function of redshift, and produce CMASS mock catalogues which include selection effects, reproduce the overall SMF, the projected two-point correlation function wp, the CMASS dn/dz, and are made publicly available. We study the effects of assembly bias above collapse mass in the context of `age matching' and show that these effects are markedly different compared to the ones explored by Hearin et al. at lower stellar masses. We construct two models, one in which galaxy colour is stochastic (`AbM' model) as well as a model which contains assembly bias effects (`AgM' model). By confronting the redshift dependent clustering of CMASS with the predictions from our model, we argue that that galaxy colours are not a stochastic process in high-mass haloes. Our results suggest that the colours of galaxies in high-mass haloes are determined by other halo properties besides halo peak velocity and that assembly bias effects play an important role in determining the clustering properties of this sample.

  2. Prospects for annihilating dark matter in the inner galactic halo by the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Lefranc, Valentin; Moulin, Emmanuel; Panci, Paolo; Silk, Joseph

    2015-06-01

    We compute the sensitivity to dark matter annihilations for the forthcoming large Cherenkov Telescope Array (CTA) in several primary channels and over a range of dark matter masses from 50 GeV up to 80 TeV. For all channels, we include inverse Compton scattering of e± by dark matter annihilations on the ambient photon background, which yields substantial contributions to the overall γ -ray flux. We improve the analysis over previous work by: (i) implementing a spectral and morphological analysis of the γ -ray emission; (ii) taking into account the most up-to-date cosmic ray background obtained from a full CTA Monte Carlo simulation and a description of the diffuse astrophysical emission; and (iii) including the systematic uncertainties in the rich observational CTA data sets. We find that our spectral and morphological analysis improves the CTA sensitivity by roughly a factor 2. For the hadronic channels, CTA will be able to probe thermal dark matter candidates over a broad range of masses if the systematic uncertainties in the data sets will be controlled better than the percent level. For the leptonic modes, the CTA sensitivity will be well below the thermal value of the annihilation cross-section. In this case, even with larger systematics, thermal dark matter candidates up to masses of a few TeV will be easily studied.

  3. Analytical derivation of the radial distribution function in spherical dark matter halos

    NASA Astrophysics Data System (ADS)

    Eilersen, Andreas; Hansen, Steen H.; Zhang, Xingyu

    2017-01-01

    The velocity distribution of dark matter near the Earth is important for an accurate analysis of the signals in terrestrial detectors. This distribution is typically extracted from numerical simulations. Here we address the possibility of deriving the velocity distribution function analytically. We derive a differential equation which is a function of radius and the radial component of the velocity. Under various assumptions this can be solved, and we compare the solution with the results from controlled numerical simulations. Our findings complement the previously derived tangential velocity distribution. We hereby demonstrate that the entire distribution function, below ˜0.7vesc, can be derived analytically for spherical and equilibrated dark matter structures.

  4. Relations between the Sizes of Galaxies and Their Dark Matter Halos at Redshifts 0 < z < 3

    NASA Astrophysics Data System (ADS)

    Huang, Kuang-Han; Fall, S. Michael; Ferguson, Henry C.; van der Wel, Arjen; Grogin, Norman; Koekemoer, Anton; Lee, Seong-Kook; Pérez-González, Pablo G.; Wuyts, Stijn

    2017-03-01

    We derive relations between the effective radii R eff of galaxies and the virial radii R 200c of their dark matter halos over the redshift range 0 < z < 3. For galaxies, we use the measured sizes from deep images taken with Hubble Space Telescope for the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey; for halos, we use the inferred sizes from abundance matching to cosmological dark matter simulations via a stellar mass–halo mass (SMHM) relation. For this purpose, we derive a new SMHM relation based on the same selection criteria and other assumptions as for our sample of galaxies with size measurements. As a check on the robustness of our results, we also derive R eff–R 200c relations for three independent SMHM relations from the literature. We find that galaxy R eff is proportional on average to halo R 200c , confirming and extending to high redshifts the z = 0 results of Kravtsov. Late-type galaxies (with low Sérsic index and high specific star formation rate (sSFR)) follow a linear R eff–R 200c relation, with effective radii at 0.5 < z < 3 close to those predicted by simple models of disk formation; at z < 0.5, the sizes of late-type galaxies appear to be slightly below this prediction. Early-type galaxies (with high Sérsic index and low sSFR) follow a roughly parallel R eff–R 200c relation, ∼0.2–0.3 dex below the one for late-type galaxies. Our observational results, reinforced by recent hydrodynamical simulations, indicate that galaxies grow quasi-homologously with their dark matter halos.

  5. Constraining the Cosmic Ray Electron Distribution and the Halo Dark Matter from the High Energy Gamma-Ray Background

    NASA Astrophysics Data System (ADS)

    Chary, R.; Wright, E. L.

    2000-10-01

    We present an independent estimate of the high latitude (|b|>20 deg) contribution to the E>30 MeV gamma-ray background from Galactic nucleon-nucleon, electron bremsstrahlung and inverse Compton processes. In particular, the inverse Compton contribution has been estimated for different cosmic ray electron distributions and after factoring in the anisotropy in the interstellar radiation field and the anisotropic Klein-Nishina scattering cross section. We find that the emission from the inverse Compton process when the anisotropy in the radiation field is included can be higher by up to 50% when compared to estimates that adopt an isotropic radiation field. Simulated inverse Compton maps with a cosmic ray electron distribution represented by a ``pill box'' extending up to a distance of 5 kpc above the Galactic plane provide better fits to the EGRET intensity maps suggesting that the cosmic ray halo may be larger than previously thought. Fitting for the Galactic components of gamma-ray emission confirms the existence of an isotropic component with an intensity that can be represented by the form 27.7*(E/MeV)-2.16 ph m-2 s-1 sr-1 MeV-1, in excellent agreement with previous estimates. The spectrum of the isotropic component further argues strongly in favor of unresolved gamma-ray blazars being the source of this emission. Introduction of an anisotropic component improves the quality of the fits. However, this component, which could potentially arise from the dark matter in the Galactic halo, is not well characterized by a single power law which might be associated with any single dark matter candidate. It has an intensity of about a third of the isotropic background above E > 100 MeV at the level of 3*10-2 ph m-2 s-1 sr-1. The best fit power law spectrum to this component has a photon index of -1.7. Based on the intensity and spectrum of the anisotropic component we derive upper limits of 109Msun for the mass of cold, baryonic gas within the solar circle and a primordial

  6. Non-standard structure formation scenarios

    NASA Astrophysics Data System (ADS)

    Knebe, Alexander; Little, Brett; Islam, Ranty; Devriendt, Julien; Mahmood, Asim; Silk, Joe

    2003-04-01

    Observations on galactic scales seem to be in contradiction with recent high resolution N-body simulations. This so-called cold dark matter (CDM) crisis has been addressed in several ways, ranging from a change in fundamental physics by introducing self-interacting cold dark matter particles to a tuning of complex astrophysical processes such as global and/or local feedback. All these efforts attempt to soften density profiles and reduce the abundance of satellites in simulated galaxy halos. In this contribution we are exploring the differences between a Warm Dark Matter model and a CDM model where the power on a certain scale is reduced by introducing a narrow negative feature (`dip'). This dip is placed in a way so as to mimic the loss of power in the WDM model: both models have the same integrated power out to the scale where the power of the Dip model rises to the level of the unperturbed CDM spectrum again. Using N-body simulations we show that that the new Dip model appears to be a viable alternative to WDM while being based on different physics: where WDM requires the introduction of a new particle species the Dip stems from anon-standard inflationary period. If we are looking for an alternative to the currently challenged standard ΛCDM structure formation scenario, neither the ΛWDM nor the new Dip model can be ruled out with respect to the analysis presented in this contribution. They both make very similar predictions and the degeneracy between them can only be broken with observations yet to come.

  7. Halo Shape and its Relation to Environment

    NASA Astrophysics Data System (ADS)

    Gottlöber, S.; Turchaninov, V.

    Using high resolution DM simulations we study the shape of dark matter halos. Halos become more spherical with decreasing mass. This trend is even more pronounced for the inner part of the halo. Angular momentum and shape are correlated. The angular momenta of neighboring halos are correlated.

  8. A halo-independent lower bound on the dark matter capture rate in the Sun from a direct detection signal

    SciTech Connect

    Blennow, Mattias; Herrero-Garcia, Juan; Schwetz, Thomas

    2015-05-21

    We show that a positive signal in a dark matter (DM) direct detection experiment can be used to place a lower bound on the DM capture rate in the Sun, independent of the DM halo. For a given particle physics model and DM mass we obtain a lower bound on the capture rate independent of the local DM density, velocity distribution, galactic escape velocity, as well as the scattering cross section. We illustrate this lower bound on the capture rate by assuming that upcoming direct detection experiments will soon obtain a significant signal. When comparing the lower bound on the capture rate with limits on the high-energy neutrino flux from the Sun from neutrino telescopes, we can place upper limits on the branching fraction of DM annihilation channels leading to neutrinos. With current data from IceCube and Super-Kamiokande non-trivial limits can be obtained for spin-dependent interactions and direct annihilations into neutrinos. In some cases also annihilations into ττ or bb start getting constrained. For spin-independent interactions current constraints are weak, but they may become interesting for data from future neutrino telescopes.

  9. A Numerical Fit of Analytical to Simulated Density Profiles in Dark Matter Haloes

    NASA Astrophysics Data System (ADS)

    Caimmi, R.; Marmo, C.; Valentinuzzi, T.

    2005-06-01

    Analytical and geometrical properties of generalized power-law (GPL) density profiles are investigated in detail. In particular, a one-to-one correspondence is found between mathematical parameters (a scaling radius, r_0, a scaling density, rho_0, and three exponents, alpha, beta, gamma), and geometrical parameters (the coordinates of the intersection of the asymptotes, x_C, y_C, and three vertical intercepts, b, b_beta, b_gamma, related to the curve and the asymptotes, respectively): (r_0,rho_0,alpha,beta,gamma) <--> (x_C,y_C,b,b_beta,b_gamma). Then GPL density profiles are compared with simulated dark haloes (SDH) density profiles, and nonlinear least-absolute values and least-squares fits involving the above mentioned five parameters (RFSM5 method) are prescribed. More specifically, the sum of absolute values or squares of absolute logarithmic residuals, R_i= log rhoSDH(r_i)-log rhoGPL(r_i), is evaluated on 10^5 points making a 5- dimension hypergrid, through a few iterations. The size is progressively reduced around a fiducial minimum, and superpositions on nodes of earlier hypergrids are avoided. An application is made to a sample of 17 SDHs on the scale of cluster of galaxies, within a flat LambdaCDM cosmological model (Rasia et al. 2004). In dealing with the mean SDH density profile, a virial radius, rvir, averaged over the whole sample, is assigned, which allows the calculation of the remaining parameters. Using a RFSM5 method provides a better fit with respect to other methods. The geometrical parameters, averaged over the whole sample of best fitting GPL density profiles, yield (alpha,beta,gamma) approx(0.6,3.1,1.0), to be compared with (alpha,beta,gamma)=(1,3,1), i.e. the NFW density profile (Navarro et al. 1995, 1996, 1997), (alpha,beta,gamma)=(1.5,3,1.5) (Moore et al. 1998, 1999), (alpha,beta,gamma)=(1,2.5,1) (Rasia et al. 2004); and, in addition, gamma approx 1.5 (Hiotelis 2003), deduced from the application of a RFSM5 method, but using a different

  10. Caustics of 1/r{sup n} binary gravitational lenses: from galactic haloes to exotic matter

    SciTech Connect

    Bozza, V.; Melchiorre, C. E-mail: cmelchiorre@unisa.it

    2016-03-01

    We investigate the caustic topologies for binary gravitational lenses made up of two objects whose gravitational potential declines as 1/r{sup n}. With n<1 this corresponds to power-law dust distributions like the singular isothermal sphere. The n>1 regime can be obtained with some violations of the energy conditions, one famous example being the Ellis wormhole. Gravitational lensing provides a natural arena to distinguish and identify such exotic objects in our Universe. We find that there are still three topologies for caustics as in the standard Schwarzschild binary lens, with the main novelty coming from the secondary caustics of the close topology, which become huge at higher n. After drawing caustics by numerical methods, we derive a large amount of analytical formulae in all limits that are useful to provide deeper insight in the mathematics of the problem. Our study is useful to better understand the phenomenology of galaxy lensing in clusters as well as the distinct signatures of exotic matter in complex systems.

  11. Cosmic Questions: Galactic Halos, Cold Dark Matter and the End of Time

    NASA Astrophysics Data System (ADS)

    Morris, Richard

    1995-08-01

    Did the Big Bang really happen? Is space infinite? When did time begin? In this "superb new book" (San Francisco Chronicle), acclaimed science writer Richard Morris probes a host of far-reaching questions about the fundamental nature of the universe. The result is a masterful exploration of the newest discoveries and theories in the field of cosmology-the study of the origin, structure, and evolution of the universe. With dramatic flair and enthusiasm, he introduces us to the intriguing world of cosmic strings and quark nuggets, shadow matter and imaginary time. He brings emerging theoretical concepts into clear focus, offering keen insight into science's most puzzling riddles, the very questions that have challenged and confounded humankind through the ages. Featuring a thorough explanation of the breakthrough voyage of NASA's Cosmic Background Explorer (COBE) and its effects on the Big Bang theory, this remarkable book is a fascinating journey along the cutting edge of cosmological discovery. Praise for Richard Morris... "Mr. Morris's genius is an ability to reveal the wonderful. --Kansas City Star "Morris does a clearer job explaining Hawking than Hawking did." --Library Journal

  12. Evolution and statistics of non-sphericity of dark matter halos from cosmological N-body simulation

    NASA Astrophysics Data System (ADS)

    Suto, Daichi; Kitayama, Tetsu; Nishimichi, Takahiro; Sasaki, Shin; Suto, Yasushi

    2016-12-01

    We revisit the non-sphericity of cluster-mass-scale halos from cosmological N-body simulation on the basis of triaxial modeling. In order to understand the difference between the simulation results and the conventional ellipsoidal collapse model (EC), we first consider the evolution of individual simulated halos. The major difference between EC and the simulation becomes appreciable after the turnaround epoch. Moreover, it is sensitive to the individual evolution history of each halo. Despite such strong dependence on individual halos, the resulting non-sphericity of halos exhibits weak but robust mass dependence in a statistical fashion; massive halos are more spherical up to the turnaround, but gradually become less spherical by z = 0. This is clearly inconsistent with the EC prediction: massive halos are usually more spherical. In addition, at z = 0, inner regions of the simulated halos are less spherical than outer regions; that is, the density distribution inside the halos is highly inhomogeneous and therefore not self-similar (concentric ellipsoids with the same axis ratio and orientation). This is also inconsistent with the homogeneous density distribution that is commonly assumed in EC. Since most of previous fitting formulae for the probability distribution function (PDF) of the axis ratio of triaxial ellipsoids have been constructed under the self-similarity assumption, they are not accurate. Indeed, we compute the PDF of the projected axis ratio a1/a2 directly from the simulation data without the self-similarity assumption, and find that it is very sensitive to the assumption. The latter needs to be carefully taken into account in direct comparison with observations, and therefore we provide an empirical fitting formula for the PDF of a1/a2. Our preliminary analysis suggests that the derived PDF of a1/a2 roughly agrees with the current weak-lensing observations. More importantly, the present results will be useful for future exploration of the non

  13. Submillimetre galaxies reside in dark matter haloes with masses greater than 3 × 10(11) solar masses.

    PubMed

    Amblard, Alexandre; Cooray, Asantha; Serra, Paolo; Altieri, B; Arumugam, V; Aussel, H; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Chapin, E; Clements, D L; Conley, A; Conversi, L; Dowell, C D; Dwek, E; Eales, S; Elbaz, D; Farrah, D; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Khostovan, A A; Lagache, G; Levenson, L; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Marsden, G; Mitchell-Wynne, K; Nguyen, H T; O'Halloran, B; Oliver, S J; Omont, A; Page, M J; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rangwala, N; Roseboom, I G; Rowan-Robinson, M; Portal, M Sánchez; Schulz, B; Scott, Douglas; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Symeonidis, M; Trichas, M; Tugwell, K; Vaccari, M; Valiante, E; Valtchanov, I; Vieira, J D; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2011-02-24

    The extragalactic background light at far-infrared wavelengths comes from optically faint, dusty, star-forming galaxies in the Universe with star formation rates of a few hundred solar masses per year. These faint, submillimetre galaxies are challenging to study individually because of the relatively poor spatial resolution of far-infrared telescopes. Instead, their average properties can be studied using statistics such as the angular power spectrum of the background intensity variations. A previous attempt at measuring this power spectrum resulted in the suggestion that the clustering amplitude is below the level computed with a simple ansatz based on a halo model. Here we report excess clustering over the linear prediction at arcminute angular scales in the power spectrum of brightness fluctuations at 250, 350 and 500 μm. From this excess, we find that submillimetre galaxies are located in dark matter haloes with a minimum mass, M(min), such that log(10)[M(min)/M(⊙)] = 11.5(+0.7)(-0.2) at 350 μm, where M(⊙) is the solar mass. This minimum dark matter halo mass corresponds to the most efficient mass scale for star formation in the Universe, and is lower than that predicted by semi-analytical models for galaxy formation.

  14. Concentration, spin and shape of dark matter haloes as a function of the cosmological model: WMAP1, WMAP3 and WMAP5 results

    NASA Astrophysics Data System (ADS)

    Macciò, Andrea V.; Dutton, Aaron A.; van den Bosch, Frank C.

    2008-12-01

    We investigate the effects of changes in the cosmological parameters between the Wilkinson Microwave Anisotropy Probe (WMAP) 1st, 3rd and 5th year results on the structure of dark matter haloes. We use a set of simulations that cover five decades in halo mass ranging from the scales of dwarf galaxies (Vc ~ 30 km s-1) to clusters of galaxies (Vc ~ 1000 km s-1). We find that the concentration mass relation is a power law in all three cosmologies. However, the slope is shallower and the zero-point is lower moving from WMAP1 to WMAP5 to WMAP3. For haloes of mass logM200/[h-1Msolar] = 10, 12 and 14 the differences in the concentration parameter between WMAP1 and WMAP3 are a factor of 1.55, 1.41 and 1.29, respectively. As we show, this brings the central densities of dark matter haloes in good agreement with the central densities of dwarf and low surface brightness galaxies inferred from their rotation curves, for both the WMAP3 and WMAP5 cosmologies. We also show that none of the existing toy models for the concentration-mass relation can reproduce our simulation results over the entire range of masses probed. In particular, the model of Bullock et al. fails at the higher mass end (M >~ 1013h-1Msolar), while the NFW model of Navarro, Frenk and White fails dramatically at the low-mass end (M <~ 1012h-1Msolar). We present a new model, based on a simple modification of that of Bullock et al., which reproduces the concentration-mass relations in our simulations over the entire range of masses probed (1010 <~ M <~ 1015h-1Msolar). Haloes in the WMAP3 cosmology (at a fixed mass) are more flatted compared to the WMAP1 cosmology, with a medium to long axis ration reduced by ~10 per cent. Finally, we show that the distribution of halo spin parameters is the same for all three cosmologies.

  15. Constraining dark matter halo profiles and galaxy formation models using spiral arm morphology. II. Dark and stellar mass concentrations for 13 nearby face-on galaxies

    SciTech Connect

    Seigar, Marc S.; Davis, Benjamin L.; Berrier, Joel; Kennefick, Daniel

    2014-11-01

    We investigate the use of spiral arm pitch angles as a probe of disk galaxy mass profiles. We confirm our previous result that spiral arm pitch angles (P) are well correlated with the rate of shear (S) in disk galaxy rotation curves. We use this correlation to argue that imaging data alone can provide a powerful probe of galactic mass distributions out to large look-back times. We then use a sample of 13 galaxies, with Spitzer 3.6 μm imaging data and observed Hα rotation curves, to demonstrate how an inferred shear rate coupled with a bulge-disk decomposition model and a Tully-Fisher-derived velocity normalization can be used to place constraints on a galaxy's baryon fraction and dark matter halo profile. Finally, we show that there appears to be a trend (albeit a weak correlation) between spiral arm pitch angle and halo concentration. We discuss implications for the suggested link between supermassive black hole (SMBH) mass and dark halo concentration, using pitch angle as a proxy for SMBH mass.

  16. FORMATION HISTORY OF METAL-POOR HALO STARS WITH THE HIERARCHICAL MODEL AND THE EFFECT OF INTERSTELLAR MATTER ACCRETION ON THE MOST METAL-POOR STARS

    SciTech Connect

    Komiya, Yutaka; Habe, Asao; Suda, Takuma; Fujimoto, Masayuki Y.

    2010-07-01

    We investigate star formation and chemical evolution in the early universe by considering the merging history of the Galaxy in the {Lambda} cold dark matter scenario according to the extended Press-Schechter theory. We give some possible constraints from comparisons with observation of extremely metal-poor (EMP) stars, made available by the recent large-scale surveys and by the follow-up high-resolution spectroscopy. We demonstrate that (1) the hierarchical structure formation can explain the characteristics of the observed metallicity distribution function including a break around [Fe/H] = -4; (2) a high-mass initial mass function (IMF) of peak mass {approx}10 M{sub sun} with the contribution of binaries, derived from the statistics of carbon-enhanced EMP stars, predicts the frequency of low-mass survivors consistent with the number of EMP stars observed for -4 {approx_lt} [Fe/H] {approx_lt} -2.5; (3) the stars formed from primordial gas before the first supernova (SN) explosions in their host mini-halos are assigned to the hyper metal-poor (HMP) stars with [Fe/H] {approx} -5; and (4) there is no indication of significant changes in the IMF and the binary contribution at metallicities -4 {approx_gt} [Fe/H] {approx_gt} -2.5, or even larger, as far as the field stars of the Galactic halo are concerned. We further study the effects of surface pollution through the accretion of interstellar matter (ISM) along the chemical and dynamical evolution of the Galaxy for low-mass Population III and EMP survivors. Because of the shallower potential of smaller halos, the accretion of ISM in the mini-halos in which these stars were born dominates the surface metal pollution. This can account for the surface iron abundances as observed for the HMP stars if the cooling and concentration of gas in their birth mini-halos are taken into account. We also study the feedback effect from the very massive Population III stars. The metal pre-pollution by pair-instability SNe is shown to be

  17. GALACTIC WARPS IN TRIAXIAL HALOS

    SciTech Connect

    Jeon, Myoungwon; Kim, Sungsoo S.; Ann, Hong Bae E-mail: sungsoo.kim@khu.ac.kr

    2009-05-10

    We study the behavior of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: (1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and (2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behavior and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The nonaxisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behavior of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.

  18. Weak Lensing with the Hyper Suprime-Cam Survey: Connecting the Mass Profiles of Massive Galaxies with their Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Leauthaud, Alexie; HSC Survey Collaboration

    2017-01-01

    The HSC survey is an ambitious multi-wavelength (g,r,i,z,y) weak-lensing program to map out 1400 square degrees of the sky with the 8.2m Subaru Telescope to a 5 sigma point-source depth of i~26 mag. This is a truly unique combination of deep imaging over a wide area which makes this a well suited data-set for studying the mass profiles and assembly histories of the most rare and massive galaxies in the universe. Furthermore, the lensing capabilities of HSC means that we can tie the luminous properties of massive galaxies to the properties of their dark matter halos. With 240 deg^2 of excellent quality imaging data already in hand, I will show that HSC can simultaneously map the light profiles of massive galaxies out to 100 kpc and characterize the profiles of their host dark matter halos to radii greater than 10 Mpc. By comparing with modern hydrodynamic simulations of galaxy formation, I will show that the combination of these two measurements provides strong observational constraints on the strength of feedback mechanisms in massive galaxies.

  19. The SL2S galaxy-scale lens sample. V. dark matter halos and stellar IMF of massive early-type galaxies out to redshift 0.8

    DOE PAGES

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; ...

    2015-02-17

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  20. THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8

    SciTech Connect

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; Suyu, Sherry H.; Gavazzi, Raphaël; Auger, Matthew W.; Nipoti, Carlo

    2015-02-20

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.

  1. The SL2S galaxy-scale lens sample. V. dark matter halos and stellar IMF of massive early-type galaxies out to redshift 0.8

    SciTech Connect

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; Suyu, Sherry H.; Gavazzi, Raphaël; Auger, Matthew W.; Nipoti, Carlo

    2015-02-17

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the inner 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.

  2. The SL2S Galaxy-scale Lens Sample. V. Dark Matter Halos and Stellar IMF of Massive Early-type Galaxies Out to Redshift 0.8

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; Suyu, Sherry H.; Gavazzi, Raphaël; Auger, Matthew W.; Nipoti, Carlo

    2015-02-01

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.

  3. Fermi 130 GeV gamma-ray excess and dark matter annihilation in sub-haloes and in the Galactic centre

    SciTech Connect

    Tempel, Elmo; Hektor, Andi; Raidal, Martti E-mail: andi.hektor@cern.ch

    2012-09-01

    We analyze publicly available Fermi-LAT high-energy gamma-ray data and confirm the existence of clear spectral feature peaked at E{sub γ} = 130 GeV. Scanning over the Galaxy we identify several disconnected regions where the observed excess originates from. Our best optimized fit is obtained for the central region of Galaxy with a clear peak at 130 GeV with local statistical significance 4.5σ. The observed excess is not correlated with Fermi bubbles. We compute the photon spectra induced by dark matter annihilations into two and four standard model particles, the latter via two light intermediate states, and fit the spectra with data. Since our fits indicate sharper and higher signal peak than in the previous works, data favors dark matter direct two-body annihilation channels into photons or other channels giving only line-like spectra. If Einasto halo profile correctly predicts the central cusp of Galaxy, dark matter annihilation cross-section to two photons is of order ten percent of the standard thermal freeze-out cross-section. The large dark matter two-body annihilation cross-section to photons may signal a new resonance that should be searched for at the CERN LHC experiments.

  4. An Unusual Lunar Halo

    ERIC Educational Resources Information Center

    Cardon, Bartley L.

    1977-01-01

    Discusses a photograph of an unusual combination of lunar halos: the 22-degree refraction halo, the circumscribed halo, and a reflection halo. Deduces the form and orientations of the ice crystals responsible for the observed halo features. (MLH)

  5. Status of non-standard neutrino interactions.

    PubMed

    Ohlsson, Tommy

    2013-04-01

    The phenomenon of neutrino oscillations has been established as the leading mechanism behind neutrino flavor transitions, providing solid experimental evidence that neutrinos are massive and lepton flavors are mixed. Here we review sub-leading effects in neutrino flavor transitions known as non-standard neutrino interactions (NSIs), which is currently the most explored description for effects beyond the standard paradigm of neutrino oscillations. In particular, we report on the phenomenology of NSIs and their experimental and phenomenological bounds as well as an outlook for future sensitivity and discovery reach.

  6. Non-standard symmetries and quantum anomalies

    SciTech Connect

    Visinescu, Anca; Visinescu, Mihai

    2008-08-31

    Quantum anomalies are investigated on curved spacetimes. The intimate relation between Killing-Yano tensors and non-standard symmetries is pointed out. The gravitational anomalies are absent if the hidden symmetry is associated to a Killing-Yano tensor. The axial anomaly in a background gravitational field is directly related with the index of the Dirac operator. In the Dirac theory on curved spaces, Killing-Yano tensors generate Dirac-type operators involved in interesting algebraic structures. The general results are applied to the 4-dimensional Euclidean Taub-NUT space.

  7. Origins of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn V.

    2016-08-01

    This contribution reviews ideas about the origins of stellar halos. It includes discussion of the theoretical understanding of and observational evidence for stellar populations formed ``in situ'' (meaning formed in orbits close to their current ones), ``kicked-out'' (meaning formed in the inner galaxy in orbits unlike their current ones) and ``accreted'' (meaning formed in a dark matter halo other than the one they currently occupy). At this point there is general agreement that a significant fraction of any stellar halo population is likely ``accreted''. There is modest evidence for the presence of a ``kicked-out'' population around both the Milky Way and M31. Our theoretical understanding of and the observational evidence for an ``in situ'' population are less clear.

  8. Renormalized halo bias

    SciTech Connect

    Assassi, Valentin; Baumann, Daniel; Green, Daniel; Zaldarriaga, Matias E-mail: dbaumann@damtp.cam.ac.uk E-mail: matiasz@ias.edu

    2014-08-01

    This paper provides a systematic study of renormalization in models of halo biasing. Building on work of McDonald, we show that Eulerian biasing is only consistent with renormalization if non-local terms and higher-derivative contributions are included in the biasing model. We explicitly determine the complete list of required bias parameters for Gaussian initial conditions, up to quartic order in the dark matter density contrast and at leading order in derivatives. At quadratic order, this means including the gravitational tidal tensor, while at cubic order the velocity potential appears as an independent degree of freedom. Our study naturally leads to an effective theory of biasing in which the halo density is written as a double expansion in fluctuations and spatial derivatives. We show that the bias expansion can be organized in terms of Galileon operators which aren't renormalized at leading order in derivatives. Finally, we discuss how the renormalized bias parameters impact the statistics of halos.

  9. Effects of center offset and noise on weak-lensing derived concentration-mass relation of dark matter halos

    SciTech Connect

    Du, Wei; Fan, Zuhui

    2014-04-10

    With the halo catalog from the Millennium Simulation, we analyze the weak-lensing measured density profiles for clusters of galaxies, paying attention to the determination of the concentration-mass (c-M) relation, which can be biased by the center offset, selection effect, and shape noise from intrinsic ellipticities of background galaxies. Several different methods of locating the center of a cluster from weak-lensing effects alone are explored. We find that, for intermediate redshift clusters, the highest peak from our newly proposed two-scale smoothing method applied to the reconstructed convergence field, first with a smoothing scale of 2' and then 0.'5, corresponds best to the true center. Assuming the parameterized Navarro-Frenk-White profile, we fit the reduced tangential shear signals around different centers identified by different methods. It is shown that, for the ensemble median values, a center offset larger than one scale radius r{sub s} can bias the derived mass and concentration significantly lower than the true values, especially for low-mass halos. However, the existence of noise can compensate for the offset effect and reduce the systematic bias, although the scatter of mass and concentration becomes considerably larger. Statistically, the bias effect of center offset on the c-M relation is insignificant if an appropriate center finding method is adopted. On the other hand, noise from intrinsic ellipticities can bias the c-M relation derived from a sample of weak-lensing analyzed clusters if a simple χ{sup 2} fitting method is used. To properly account for the scatter and covariance between c and M, we apply a Bayesian method to improve the statistical analysis of the c-M relation. It is shown that this new method allows us to derive the c-M relation with significantly reduced biases.

  10. The surface density of haloes

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Lee, Xi-Guo

    We study the correlation between the central surface density and the core radius of the dark matter haloes of galaxies and clusters of galaxies. We find that the surface density within the halo characteristic radius r* is not a universal quantity as claimed by some authors (e.g., Milgrom 2009), but it correlates with several physical quantities (e.g., the halo mass M200, and the magnitude MB). The slope of the surface density-mass relation is 0.18 ± 0.05, leaving small room to the possibility of a constant surface density. Finally, we compare the results with MOND predictions.

  11. Massive Halos in Millennium Gas Simulations: Multivariate Scaling Relations

    NASA Astrophysics Data System (ADS)

    Stanek, R.; Rasia, E.; Evrard, A. E.; Pearce, F.; Gazzola, L.

    2010-06-01

    The joint likelihood of observable cluster signals reflects the astrophysical evolution of the coupled baryonic and dark matter components in massive halos, and its knowledge will enhance cosmological parameter constraints in the coming era of large, multiwavelength cluster surveys. We present a computational study of intrinsic covariance in cluster properties using halo populations derived from Millennium Gas Simulations (MGS). The MGS are re-simulations of the original 500 h -1 Mpc Millennium Simulation performed with gas dynamics under two different physical treatments: shock heating driven by gravity only (GO) and a second treatment with cooling and preheating (PH). We examine relationships among structural properties and observable X-ray and Sunyaev-Zel'dovich (SZ) signals for samples of thousands of halos with M 200 >= 5 × 1013 h -1 M sun and z < 2. While the X-ray scaling behavior of PH model halos at low redshift offers a good match to local clusters, the model exhibits non-standard features testable with larger surveys, including weakly running slopes in hot gas observable-mass relations and ~10% departures from self-similar redshift evolution for 1014 h -1 M sun halos at redshift z ~ 1. We find that the form of the joint likelihood of signal pairs is generally well described by a multivariate, log-normal distribution, especially in the PH case which exhibits less halo substructure than the GO model. At fixed mass and epoch, joint deviations of signal pairs display mainly positive correlations, especially the thermal SZ effect paired with either hot gas fraction (r = 0.88/0.69 for PH/GO at z = 0) or X-ray temperature (r = 0.62/0.83). The levels of variance in X-ray luminosity, temperature, and gas mass fraction are sensitive to the physical treatment, but offsetting shifts in the latter two measures maintain a fixed 12% scatter in the integrated SZ signal under both gas treatments. We discuss halo mass selection by signal pairs, and find a minimum mass

  12. Halo scale predictions of symmetron modified gravity

    SciTech Connect

    Clampitt, Joseph; Jain, Bhuvnesh; Khoury, Justin E-mail: bjain@physics.upenn.edu

    2012-01-01

    We offer predictions of symmetron modified gravity in the neighborhood of realistic dark matter halos. The predictions for the fifth force are obtained by solving the nonlinear symmetron equation of motion in the spherical NFW approximation. In addition, we compare the three major known screening mechanisms: Vainshtein, Chameleon, and Symmetron around such dark matter halos, emphasizing the significant differences between them and highlighting observational tests which exploit these differences. Finally, we demonstrate the host halo environmental screening effect (''blanket screening'') on smaller satellite halos by solving for the modified forces around a density profile which is the sum of satellite and approximate host components.

  13. FROM GALAXY CLUSTERS TO ULTRA-FAINT DWARF SPHEROIDALS: A FUNDAMENTAL CURVE CONNECTING DISPERSION-SUPPORTED GALAXIES TO THEIR DARK MATTER HALOS

    SciTech Connect

    Tollerud, Erik J.; Bullock, James S.; Wolf, Joe; Graves, Genevieve J. E-mail: bullock@uci.edu E-mail: graves@astro.berkeley.edu

    2011-01-10

    We examine scaling relations of dispersion-supported galaxies over more than eight orders of magnitude in luminosity by transforming standard fundamental plane parameters into a space of mass, radius, and luminosity. The radius variable r{sub 1/2} is the deprojected (three-dimensional) half-light radius, the mass variable M{sub 1/2} is the total gravitating mass within this radius, and L{sub 1/2} is half the luminosity. We find that from ultra-faint dwarf spheroidals to giant cluster spheroids, dispersion-supported galaxies scatter about a one-dimensional 'fundamental curve' through this MRL space. The mass-radius-luminosity relation transitions from M{sub 1/2} {approx} r{sup 1.44}{sub 1/2} {approx} L{sup 0.30}{sub 1/2} for the faintest dwarf spheroidal galaxies to M{sub 1/2} {approx} r{sup 1.42}{sub 1/2} {approx} L{sup 3.2}{sub 1/2} for the most luminous galaxy cluster spheroids. The weakness of the M{sub 1/2} - L{sub 1/2} slope on the faint end may imply that potential well depth limits galaxy formation in small galaxies, while the stronger dependence on L{sub 1/2} on the bright end suggests that baryonic physics limits galaxy formation in massive galaxies. The mass-radius projection of this curve can be compared to median dark matter halo mass profiles of {Lambda}CDM halos in order to construct a virial mass-luminosity relationship (M{sub vir}-L) for galaxies that spans seven orders of magnitude in M{sub vir}. Independent of any global abundance or clustering information, we find that (spheroidal) galaxy formation needs to be most efficient in halos of M{sub vir} {approx} 10{sup 12} M{sub sun} and to become inefficient above and below this scale. Moreover, this profile matching technique for deriving the M{sub vir}-L is most accurate at the high- and low-luminosity extremes (where dark matter fractions are highest) and is therefore quite complementary to statistical approaches that rely on having a well-sampled luminosity function. We also consider the

  14. Brown dwarfs as dark galactic halos

    NASA Technical Reports Server (NTRS)

    Adams, Fred C.; Walker, Terry P.

    1990-01-01

    The possibility that the dark matter in galactic halos can consist of brown dwarf stars is considered. The radiative signature for such halos consisting solely of brown dwarfs is calculated, and the allowed range of brown dwarf masses, the initial mass function (IMF), the stellar properties, and the density distribution of the galactic halo are discussed. The prediction emission from the halo is compared with existing observations. It is found that, for any IMF of brown dwarfs below the deuterium burning limit, brown dwarf halos are consistent with observations. Brown dwarf halos cannot, however, explain the recently observed near-IR background. It is shown that future satellite missions will either detect brown dwarf halos or place tight constraints on the allowed range of the IMF.

  15. Halo Density Reduction by Baryonic Settling?

    NASA Astrophysics Data System (ADS)

    Jardel, J. R.; Sellwood, J. A.

    2009-02-01

    We test the proposal by El-Zant et al. that the dark matter density of halos could be reduced through dynamical friction acting on heavy baryonic clumps in the early stages of galaxy formation. Using N-body simulations, we confirm that the inner halo density cusp is flattened to 0.2 of the halo break radius by the settling of a single clump of mass gsim0.5% of the halo mass. We also find that an ensemble of 50 clumps, each having masses gsim0.2%, can flatten the cusp to almost the halo break radius on a timescale of ~9 Gyr, for a Navarro-Frenk-White profile halo of concentration 15. We summarize some of the difficulties that need to be overcome if this mechanism is to resolve the apparent conflict between the observed inner densities of galaxy halos and the predictions of ΛCDM.

  16. Halo model and halo properties in Galileon gravity cosmologies

    SciTech Connect

    Barreira, Alexandre; Li, Baojiu; Hellwing, Wojciech A.; Baugh, Carlton M.; Lombriser, Lucas; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: llo@roe.ac.uk E-mail: silvia.pascoli@durham.ac.uk

    2014-04-01

    We investigate the performance of semi-analytical modelling of large-scale structure in Galileon gravity cosmologies using results from N-body simulations. We focus on the Cubic and Quartic Galileon models that provide a reasonable fit to CMB, SNIa and BAO data. We demonstrate that the Sheth-Tormen mass function and linear halo bias can be calibrated to provide a very good fit to our simulation results. We also find that the halo concentration-mass relation is well fitted by a power law. The nonlinear matter power spectrum computed in the halo model approach is found to be inaccurate in the mildly nonlinear regime, but captures reasonably well the effects of the Vainshtein screening mechanism on small scales. In the Cubic model, the screening mechanism hides essentially all of the effects of the fifth force inside haloes. In the case of the Quartic model, the screening mechanism leaves behind residual modifications to gravity, which make the effective gravitational strength time-varying and smaller than the standard value. Compared to normal gravity, this causes a deficiency of massive haloes and leads to a weaker matter clustering on small scales. For both models, we show that there are realistic halo occupation distributions of Luminous Red Galaxies that can match both the observed large-scale clustering amplitude and the number density of these galaxies.

  17. Reionization histories of Milky Way mass halos

    SciTech Connect

    Li, Tony Y.; Wechsler, Risa H.; Abel, Tom; Alvarez, Marcelo A. E-mail: rwechsler@stanford.edu E-mail: malvarez@cita.utoronto.ca

    2014-04-20

    We investigate the connection between the reionization era and the present-day universe by examining the mass reionization histories of z = 0 dark matter halos. In a 600{sup 3} Mpc{sup 3} volume, we combine a dark matter N-body simulation with a three-dimensional seminumerical reionization model. This tags each particle with a reionization redshift, so that individual present-day halos can be connected to their reionization histories and environments. We find that the vast majority of present-day halos with masses larger than ∼ few × 10{sup 11} M {sub ☉} reionize earlier than the rest of the universe. We also find significant halo-to-halo diversity in mass reionization histories, and find that in realistic inhomogeneous models, the material within a given halo is not expected to reionize at the same time. In particular, the scatter in reionization times within individual halos is typically larger than the scatter among halos. From our fiducial reionization model, we find that the typical 68% scatter in reionization times within halos is ∼115 Myr for 10{sup 12±0.25} M {sub ☉} halos, decreasing slightly to ∼95 Myr for 10{sup 15±0.25} M {sub ☉} halos. We find a mild correlation between reionization history and environment: halos with shorter reionization histories are typically in more clustered environments, with the strongest trend on a scale of ∼20 Mpc. Material in Milky Way mass halos with short reionization histories is preferentially reionized in relatively large H II regions, implying reionization mostly by sources external to the progenitors of the present-day halo. We investigate the impact on our results of varying the reionization model parameters, which span a range of reionization scenarios with varying timing and morphology.

  18. Smooth halos in the cosmic web

    NASA Astrophysics Data System (ADS)

    Gaite, José

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ``smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  19. Smooth halos in the cosmic web

    SciTech Connect

    Gaite, José

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  20. Haloes gone MAD: The Halo-Finder Comparison Project

    NASA Astrophysics Data System (ADS)

    Knebe, Alexander; Knollmann, Steffen R.; Muldrew, Stuart I.; Pearce, Frazer R.; Aragon-Calvo, Miguel Angel; Ascasibar, Yago; Behroozi, Peter S.; Ceverino, Daniel; Colombi, Stephane; Diemand, Juerg; Dolag, Klaus; Falck, Bridget L.; Fasel, Patricia; Gardner, Jeff; Gottlöber, Stefan; Hsu, Chung-Hsing; Iannuzzi, Francesca; Klypin, Anatoly; Lukić, Zarija; Maciejewski, Michal; McBride, Cameron; Neyrinck, Mark C.; Planelles, Susana; Potter, Doug; Quilis, Vicent; Rasera, Yann; Read, Justin I.; Ricker, Paul M.; Roy, Fabrice; Springel, Volker; Stadel, Joachim; Stinson, Greg; Sutter, P. M.; Turchaninov, Victor; Tweed, Dylan; Yepes, Gustavo; Zemp, Marcel

    2011-08-01

    We present a detailed comparison of fundamental dark matter halo properties retrieved by a substantial number of different halo finders. These codes span a wide range of techniques including friends-of-friends, spherical-overdensity and phase-space-based algorithms. We further introduce a robust (and publicly available) suite of test scenarios that allow halo finder developers to compare the performance of their codes against those presented here. This set includes mock haloes containing various levels and distributions of substructure at a range of resolutions as well as a cosmological simulation of the large-scale structure of the universe. All the halo-finding codes tested could successfully recover the spatial location of our mock haloes. They further returned lists of particles (potentially) belonging to the object that led to coinciding values for the maximum of the circular velocity profile and the radius where it is reached. All the finders based in configuration space struggled to recover substructure that was located close to the centre of the host halo, and the radial dependence of the mass recovered varies from finder to finder. Those finders based in phase space could resolve central substructure although they found difficulties in accurately recovering its properties. Through a resolution study we found that most of the finders could not reliably recover substructure containing fewer than 30-40 particles. However, also here the phase-space finders excelled by resolving substructure down to 10-20 particles. By comparing the halo finders using a high-resolution cosmological volume, we found that they agree remarkably well on fundamental properties of astrophysical significance (e.g. mass, position, velocity and peak of the rotation curve). We further suggest to utilize the peak of the rotation curve, vmax, as a proxy for mass, given the arbitrariness in defining a proper halo edge. Airport code for Madrid, Spain

  1. Halo-independent tests of dark matter direct detection signals: local DM density, LHC, and thermal freeze-out

    SciTech Connect

    Blennow, Mattias; Herrero-Garcia, Juan; Schwetz, Thomas; Vogl, Stefan E-mail: juhg@kth.se E-mail: stefan.vogl@fysik.su.se

    2015-08-01

    From an assumed signal in a Dark Matter (DM) direct detection experiment a lower bound on the product of the DM-nucleon scattering cross section and the local DM density is derived, which is independent of the local DM velocity distribution. This can be combined with astrophysical determinations of the local DM density. Within a given particle physics model the bound also allows a robust comparison of a direct detection signal with limits from the LHC. Furthermore, the bound can be used to formulate a condition which has to be fulfilled if the particle responsible for the direct detection signal is a thermal relic, regardless of whether it constitutes all DM or only part of it. We illustrate the arguments by adopting a simplified DM model with a Z' mediator and assuming a signal in a future xenon direct detection experiment.

  2. Halo-independent tests of dark matter direct detection signals: local DM density, LHC, and thermal freeze-out

    SciTech Connect

    Blennow, Mattias; Herrero-Garcia, Juan; Schwetz, Thomas; Vogl, Stefan

    2015-08-19

    From an assumed signal in a Dark Matter (DM) direct detection experiment a lower bound on the product of the DM-nucleon scattering cross section and the local DM density is derived, which is independent of the local DM velocity distribution. This can be combined with astrophysical determinations of the local DM density. Within a given particle physics model the bound also allows a robust comparison of a direct detection signal with limits from the LHC. Furthermore, the bound can be used to formulate a condition which has to be fulfilled if the particle responsible for the direct detection signal is a thermal relic, regardless of whether it constitutes all DM or only part of it. We illustrate the arguments by adopting a simplified DM model with a Z{sup ′} mediator and assuming a signal in a future xenon direct detection experiment.

  3. On the first crossing distributions in fractional Brownian motion and the mass function of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Hiotelis, Nicos; Del Popolo, Antonino

    2017-03-01

    We construct an integral equation for the first crossing distributions for fractional Brownian motion in the case of a constant barrier and we present an exact analytical solution. Additionally we present first crossing distributions derived by simulating paths from fractional Brownian motion. We compare the results of the analytical solutions with both those of simulations and those of some approximated solutions which have been used in the literature. Finally, we present multiplicity functions for dark matter structures resulting from our analytical approach and we compare with those resulting from N-body simulations. We show that the results of analytical solutions are in good agreement with those of path simulations but differ significantly from those derived from approximated solutions. Additionally, multiplicity functions derived from fractional Brownian motion are poor fits of the those which result from N-body simulations. We also present comparisons with other models which are exist in the literature and we discuss different ways of improving the agreement between analytical results and N-body simulations.

  4. The Spatial Clustering of ROSAT All-Sky Survey Active Galactic Nuclei. IV. More Massive Black Holes Reside in More Massive Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Krumpe, Mirko; Miyaji, Takamitsu; Husemann, Bernd; Fanidakis, Nikos; Coil, Alison L.; Aceves, Hector

    2015-12-01

    This is the fourth paper in a series that reports on our investigation of the clustering properties of active galactic nuclei (AGNs) identified in the ROSAT All-Sky Survey and Sloan Digital Sky Survey (SDSS). In this paper we investigate the cause of the X-ray luminosity dependence of the clustering of broad-line, luminous AGNs at 0.16\\lt z\\lt 0.36. We fit the Hα line profile in the SDSS spectra for all X-ray and optically selected broad-line AGNs, determine the mass of the supermassive black hole (SMBH), {M}{BH}, and infer the accretion rate relative to Eddington (L/{L}{EDD}). Since {M}{BH} and L/{L}{EDD} are correlated, we create AGN subsamples in one parameter while maintaining the same distribution in the other parameter. In both the X-ray and optically selected AGN samples, we detect a weak clustering dependence with {M}{BH} and no statistically significant dependence on L/{L}{EDD}. We find a difference of up to 2.7σ when comparing the objects that belong to the 30% least and 30% most massive {M}{BH} subsamples, in that luminous broad-line AGNs with more massive black holes reside in more massive parent dark matter halos at these redshifts. These results provide evidence that higher accretion rates in AGNs do not necessarily require dense galaxy environments, in which more galaxy mergers and interactions are expected to channel large amounts of gas onto the SMBH. We also present semianalytic models that predict a positive {M}{DMH} dependence on {M}{BH}, which is most prominent at {M}{BH}˜ {10}8-9 {M}⊙ .

  5. Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abdallah, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Hahn, J.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Lui, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; Odaka, H.; Ohm, S.; Öttl, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seyffert, A. S.; Shafi, N.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spieß, F.; Stawarz, L.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Tuffs, R.; van der Walt, J.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; H. E. S. S. Collaboration

    2016-09-01

    The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using γ -ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant γ -ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section ⟨σ v ⟩. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach ⟨σ v ⟩ values of 6 ×10-26 cm3 s-1 in the W+W- channel for a DM particle mass of 1.5 TeV, and 2 ×10-26 cm3 s-1 in the τ+τ- channel for a 1 TeV mass. For the first time, ground-based γ -ray observations have reached sufficient sensitivity to probe ⟨σ v ⟩ values expected from the thermal relic density for TeV DM particles.

  6. Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with H.E.S.S.

    PubMed

    Abdallah, H; Abramowski, A; Aharonian, F; Ait Benkhali, F; Akhperjanian, A G; Angüner, E; Arrieta, M; Aubert, P; Backes, M; Balzer, A; Barnard, M; Becherini, Y; Becker Tjus, J; Berge, D; Bernhard, S; Bernlöhr, K; Birsin, E; Blackwell, R; Böttcher, M; Boisson, C; Bolmont, J; Bordas, P; Bregeon, J; Brun, F; Brun, P; Bryan, M; Bulik, T; Capasso, M; Carr, J; Casanova, S; Chakraborty, N; Chalme-Calvet, R; Chaves, R C G; Chen, A; Chevalier, J; Chrétien, M; Colafrancesco, S; Cologna, G; Condon, B; Conrad, J; Couturier, C; Cui, Y; Davids, I D; Degrange, B; Deil, C; deWilt, P; Djannati-Ataï, A; Domainko, W; Donath, A; Drury, L O'C; Dubus, G; Dutson, K; Dyks, J; Dyrda, M; Edwards, T; Egberts, K; Eger, P; Ernenwein, J-P; Eschbach, S; Farnier, C; Fegan, S; Fernandes, M V; Fiasson, A; Fontaine, G; Förster, A; Funk, S; Füßling, M; Gabici, S; Gajdus, M; Gallant, Y A; Garrigoux, T; Giavitto, G; Giebels, B; Glicenstein, J F; Gottschall, D; Goyal, A; Grondin, M-H; Grudzińska, M; Hadasch, D; Hahn, J; Hawkes, J; Heinzelmann, G; Henri, G; Hermann, G; Hervet, O; Hillert, A; Hinton, J A; Hofmann, W; Hoischen, C; Holler, M; Horns, D; Ivascenko, A; Jacholkowska, A; Jamrozy, M; Janiak, M; Jankowsky, D; Jankowsky, F; Jingo, M; Jogler, T; Jouvin, L; Jung-Richardt, I; Kastendieck, M A; Katarzyński, K; Katz, U; Kerszberg, D; Khélifi, B; Kieffer, M; King, J; Klepser, S; Klochkov, D; Kluźniak, W; Kolitzus, D; Komin, Nu; Kosack, K; Krakau, S; Kraus, M; Krayzel, F; Krüger, P P; Laffon, H; Lamanna, G; Lau, J; Lees, J-P; Lefaucheur, J; Lefranc, V; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Leser, E; Lohse, T; Lorentz, M; Lui, R; Lypova, I; Marandon, V; Marcowith, A; Mariaud, C; Marx, R; Maurin, G; Maxted, N; Mayer, M; Meintjes, P J; Menzler, U; Meyer, M; Mitchell, A M W; Moderski, R; Mohamed, M; Morå, K; Moulin, E; Murach, T; de Naurois, M; Niederwanger, F; Niemiec, J; Oakes, L; Odaka, H; Ohm, S; Öttl, S; Ostrowski, M; Oya, I; Padovani, M; Panter, M; Parsons, R D; Paz Arribas, M; Pekeur, N W; Pelletier, G; Petrucci, P-O; Peyaud, B; Pita, S; Poon, H; Prokhorov, D; Prokoph, H; Pühlhofer, G; Punch, M; Quirrenbach, A; Raab, S; Reimer, A; Reimer, O; Renaud, M; de Los Reyes, R; Rieger, F; Romoli, C; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Sahakian, V; Salek, D; Sanchez, D A; Santangelo, A; Sasaki, M; Schlickeiser, R; Schüssler, F; Schulz, A; Schwanke, U; Schwemmer, S; Seyffert, A S; Shafi, N; Simoni, R; Sol, H; Spanier, F; Spengler, G; Spieß, F; Stawarz, L; Steenkamp, R; Stegmann, C; Stinzing, F; Stycz, K; Sushch, I; Tavernet, J-P; Tavernier, T; Taylor, A M; Terrier, R; Tluczykont, M; Trichard, C; Tuffs, R; van der Walt, J; van Eldik, C; van Soelen, B; Vasileiadis, G; Veh, J; Venter, C; Viana, A; Vincent, P; Vink, J; Voisin, F; Völk, H J; Vuillaume, T; Wadiasingh, Z; Wagner, S J; Wagner, P; Wagner, R M; White, R; Wierzcholska, A; Willmann, P; Wörnlein, A; Wouters, D; Yang, R; Zabalza, V; Zaborov, D; Zacharias, M; Zdziarski, A A; Zech, A; Zefi, F; Ziegler, A; Żywucka, N

    2016-09-09

    The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using γ-ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant γ-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section ⟨σv⟩. These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach ⟨σv⟩ values of 6×10^{-26}  cm^{3} s^{-1} in the W^{+}W^{-} channel for a DM particle mass of 1.5 TeV, and 2×10^{-26}  cm^{3} s^{-1} in the τ^{+}τ^{-} channel for a 1 TeV mass. For the first time, ground-based γ-ray observations have reached sufficient sensitivity to probe ⟨σv⟩ values expected from the thermal relic density for TeV DM particles.

  7. Lepton flavor violating non-standard interactions via light mediators

    NASA Astrophysics Data System (ADS)

    Farzan, Yasaman; Shoemaker, Ian M.

    2016-07-01

    Non-Standard neutral current Interactions (NSIs) of neutrinos with matter can alter the pattern of neutrino oscillation due to the coherent forward scattering of neutrinos on the medium. This effect makes long-baseline neutrino experiments such as NO νA and DUNE a sensitive probe of beyond standard model (BSM) physics. We construct light mediator models that can give rise to both lepton flavor conserving as well as Lepton Flavor Violating (LFV) neutral current NSI. We outline the present phenomenological viability of these models and future prospects to test them. We predict a lower bound on Br( H → μτ ) in terms of the parameters that can be measured by DUNE and NO νA, and show that the hint for H → μτ in current LHC data can be accommodated in our model. A large part of the parameter space of the model is already constrained by the bound on Br( τ → Z ' μ) and by the bounds on rare meson decays and can be in principle fully tested by improving these bounds.

  8. THE PSEUDO-EVOLUTION OF HALO MASS

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud

    2013-03-20

    A dark matter halo is commonly defined as a spherical overdensity of matter with respect to a reference density, such as the critical density or the mean matter density of the universe. Such definitions can lead to a spurious pseudo-evolution of halo mass simply due to redshift evolution of the reference density, even if its physical density profile remains constant over time. We estimate the amount of such pseudo-evolution of mass between z = 1 and 0 for halos identified in a large N-body simulation, and show that it accounts for almost the entire mass evolution of the majority of halos with M{sub 200{rho}-bar} Less-Than-Or-Equivalent-To 10{sup 12} h{sup -1} M{sub Sun} and can be a significant fraction of the apparent mass growth even for cluster-sized halos. We estimate the magnitude of the pseudo-evolution assuming that halo density profiles remain static in physical coordinates, and show that this simple model predicts the pseudo-evolution of halos identified in numerical simulations to good accuracy, albeit with significant scatter. We discuss the impact of pseudo-evolution on the evolution of the halo mass function and show that the non-evolution of the low-mass end of the halo mass function is the result of a fortuitous cancellation between pseudo-evolution and the absorption of small halos into larger hosts. We also show that the evolution of the low-mass end of the concentration-mass relation observed in simulations is almost entirely due to the pseudo-evolution of mass. Finally, we discuss the implications of our results for the interpretation of the evolution of various scaling relations between the observable properties of galaxies and galaxy clusters and their halo masses.

  9. Halo modelling in chameleon theories

    SciTech Connect

    Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu E-mail: kazuya.koyama@port.ac.uk

    2014-03-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on local scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.

  10. Anisotropic halo model: implementation and numerical results

    NASA Astrophysics Data System (ADS)

    Sgró, Mario A.; Paz, Dante J.; Merchán, Manuel

    2013-07-01

    In the present work, we extend the classic halo model for the large-scale matter distribution including a triaxial model for the halo profiles and their alignments. In particular, we derive general expressions for the halo-matter cross-correlation function. In addition, by numerical integration, we obtain instances of the cross-correlation function depending on the directions given by halo shape axes. These functions are called anisotropic cross-correlations. With the aim of comparing our theoretical results with the simulations, we compute averaged anisotropic correlations in cones with their symmetry axis along each shape direction of the centre halo. From these comparisons we characterize and quantify the alignment of dark matter haloes on the Λcold dark matter context by means of the presented anisotropic halo model. Since our model requires multidimensional integral computation we implement a Monte Carlo method on GPU hardware which allows us to increase the precision of the results and it improves the performance of the computation.

  11. Borromean halo, Tango halo, and halo isomers in atomic nuclei

    NASA Astrophysics Data System (ADS)

    Izosimov, Igor

    2016-01-01

    Structure of the ground and excited states in halo-like nuclei is discussed. Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei.Structure of the halo may be different for the different levels and resonances in atomic nuclei. Isobar analog, double isobar analog, configuration, and double configuration states can simultaneously have n-n, n-p, and p-p halo components in their wave functions. When the halo structure of the excited state differs from that of the ground state, or the ground state has non-halo structure, the γ-transition from the excited state to the ground state can be essentially hindered, i.e. the formation of a specific type of isomers (halo isomers) becomes possible. B(Mγ) and B(Eγ) values for γ-transitions in 6,7,8Li, 8,9,10Be, 8,10,11B, 10,11,12,13,14C, 13,14,15,16,17N, 15,16,17,19O, and 17F are analyzed. Special attention is given to nuclei which ground state does not exhibit halo structure but the excited state (halo isomer) may have one.

  12. The Dual Origin Of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Zolotov, Adi

    In the dominant Lambda+Cold Dark Matter cosmological paradigm, galaxy stellar halos are thought to form hierarchically from multiple accretion events, starting from the first structures to collapse in the Universe. This dissertation aims to make the first detailed theoretical predictions for the origin of galactic stellar halos. We focus on understanding the physical processes involved in halo formation using high-resolution, N-body + Smooth Particle Hydrodynamic simulations of disk galaxies in a cosmological context. These self-consistent simulations are used to study the competing importance of dissipative processes and dissipationless mergers in the formation of stellar halos. The relative contribution of each mechanism, and its specific role in assembling the inner and outer regions of halos is explored, as a function of galaxy mass and merging history. We show that the presence of both accreted and in situ stars in halos is a generic feature of galaxy formation. For L* galaxies, the relative contribution of each stellar population to a halo is shown to be a function of a galaxy's accretion history. Galaxies with recent mergers, like M31, will host relatively few in situ stars, while galaxies with more quiescent recent histories, like the Milky Way, will likely have a larger relative contribution from an in situ population. We show that in situ halo stars are more [alpha/Fe]-rich than accreted stars at the high [Fe/H] end of a halo's metallicity distribution function. In lower mass galaxies, M ˜ 1010 M, in situ stars dominate the stellarmass of halos. In these galaxies, in situ halo stars are, on average, younger and more metal-rich than accreted halo stars. Because in situ stars are dominant, these trends result in halos that are more metal-rich than simple accretion models predict. The halos of low mass galaxies do not extend out to the virial radii of the primary, as they do in more massive galaxies. We find that the ratio of luminous-halo mass to total

  13. The Splashback Radius as a Physical Halo Boundary and the Growth of Halo Mass

    NASA Astrophysics Data System (ADS)

    More, Surhud; Diemer, Benedikt; Kravtsov, Andrey V.

    2015-09-01

    The boundaries of cold dark matter halos are commonly defined to enclose a density contrast Δ relative to a reference (mean or critical) density. We argue that a more physical halo boundary choice is the radius at which accreted matter reaches its first orbital apocenter after turnaround. This splashback radius, {R}{sp}, manifests itself as a sharp density drop in the halo outskirts, at a location that depends upon the mass accretion rate. We present calibrations of {R}{sp} and the enclosed mass, {M}{sp}, as a function of mass accretion rate and peak height. We find that {R}{sp} is in the range ≈ 0.8-1{R}200{{m}} for rapidly accreting halos and is ≈ 1.5{R}200{{m}} for slowly accreting halos. Thus, halos and their environmental effects can extend well beyond the conventionally defined “virial” radius. We show that {M}{sp} and {R}{sp} evolve relatively strongly compared to other commonly used definitions. In particular, {M}{sp} evolves significantly even for the smallest dwarf-sized halos at z = 0. We also contrast {M}{sp} with the mass enclosed within four scale radii of the halo density profile, {M}\\lt 4{r{{s}}}, which characterizes the inner halo. During the early stages of halo assembly, {M}{sp} and {M}\\lt 4{r{{s}}} evolve similarly, but in the late stages {M}\\lt 4{r{{s}}} stops increasing while {M}{sp} continues to grow significantly. This illustrates that halos at low z can have “quiet” interiors while continuing to accrete mass in their outskirts. We discuss potential observational estimates of the splashback radius and show that it may already have been detected in galaxy clusters.

  14. Can MACHOs probe the shape of the galaxy halo ?

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua; Scoccimarro, Roman

    1994-01-01

    Microlensing searches in our galaxy have recently discovered several candidates in the direction of the Large Magellanic Cloud (LMC). We study the prospects for such searches to yield useful information about the flattening of the Galaxy dark matter halo, using a self-consistent oblate halo model and allowing for the possibility of misalignment between the disk and halo symmetry axes. The microlensing optical depth for the LMC, tau(LMC), depends sensitively on the disk-halo tilt angle in the Milky Way, as does the ratio tau(SMC)/tau(LMC). If the tilt angle is as large as 30 deg, a much larger spread in values for tau(LMC) is consistent with rotation curve constraints than previously thought. Disk-halo tilt and halo flattening do not significantly affect the massive compact halo object (MACHO) masses inferred from event durations.

  15. Orbital anisotropy in cosmological haloes revisited

    NASA Astrophysics Data System (ADS)

    Wojtak, Radosław; Gottlöber, Stefan; Klypin, Anatoly

    2013-09-01

    The velocity anisotropy of particles inside dark matter (DM) haloes is an important physical quantity, which is required for the accurate modelling of mass profiles of galaxies and clusters of galaxies. It is typically measured using the ratio of the radial to tangential velocity dispersions at a given distance from the halo centre. However, this measure is insufficient to describe the dynamics of realistic haloes, which are not spherical and are typically quite elongated. Studying the velocity distribution in massive DM haloes in cosmological simulations, we find that in the inner parts of the haloes, the local velocity ellipsoids are strongly aligned with the major axis of the halo, the alignment being stronger for more relaxed haloes. In the outer regions of the haloes, the alignment becomes gradually weaker and the orientation is more random. These two distinct regions of different degree of the alignment coincide with two characteristic regimes of the DM density profile: a shallow inner cusp and a steep outer profile that are separated by a characteristic radius at which the density declines as ρ ∝ r-2. This alignment of the local velocity ellipsoids requires reinterpretation of features found in measurements based on the spherically averaged ratio of the radial to tangential velocity dispersions. In particular, we show that the velocity distribution in the central halo regions is highly anisotropic. For cluster-size haloes with mass 1014-1015 h-1 M⊙, the velocity anisotropy along the major axis is nearly independent of radius and is equal to β = 1 - σ ^2_perp/σ ^2_radial≈ 0.4, which is significantly larger than the previously estimated spherically averaged velocity anisotropy. The alignment of density and velocity anisotropies and the radial trends may also have some implications for the mass modelling based on kinematical data of objects such as galaxy clusters or dwarf spheroidals, where the orbital anisotropy is a key element in an unbiased mass

  16. Higher Education in Non-Standard Wage Contracts

    ERIC Educational Resources Information Center

    Rosti, Luisa; Chelli, Francesco

    2012-01-01

    Purpose: The purpose of this paper is to verify whether higher education increases the likelihood of young Italian workers moving from non-standard to standard wage contracts. Design/methodology/approach: The authors exploit a data set on labour market flows, produced by the Italian National Statistical Office, by interviewing about 85,000…

  17. HaloSat - A CubeSat to Study the Hot Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip

    2016-04-01

    Observations of the nearby universe fail to locate about half of the normal matter (baryons) observed in the early universe. The missing baryons may be in hot galactic halos. HaloSat is a CubeSat designed to map oxygen line emission (O VII and O VIII) around the Milky Way in order to constrain the mass and spatial distribution of hot gas in the halo. HaloSat has a grasp competitive with current X-ray observatories. Its observing program will be optimized to minimize contributions from solar wind charge exchange (SWCX) emission that limit the accuracy of current measurements. We will describe the HaloSat mission concept, progress towards its implementation, and plans for archiving and distribution of the data.

  18. CP-violation and non-standard interactions at the MOMENT

    NASA Astrophysics Data System (ADS)

    Bakhti, Pouya; Farzan, Yasaman

    2016-07-01

    To measure the last unknown 3 ν oscillation parameter ( δ), several long baseline neutrino experiments have been designed or proposed. Recently it has been shown that turning on neutral current Non-Standard Interactions (NSI) of neutrinos with matter can induce degeneracies that may even hinder the proposed state-of-the-art DUNE long baseline experiment from measuring the value of δ. We study how the result of the proposed MOMENT experiment with a baseline of 150 km and 200 MeV < E ν < 600 MeV can help to solve the degeneracy induced by NSI and determine the true value of δ.

  19. The Local Dark Matter

    SciTech Connect

    Helfer, H.L.

    2005-10-21

    The observations of the extended rotation curves of some galaxies provide important constraints upon the nature of the local dark matter present in the halos of these galaxies. Using these constraints, one can show that the halo dark matter cannot be some population of conventional astronomical objects and (most probably) cannot be a population of exotic non-interacting particles. We suggest that the halos can be regarded as large spatial fluctuations in a classic scalar field.

  20. The dark halo of the milky Way

    PubMed

    Alcock

    2000-01-07

    Most of the matter in the Milky Way is invisible to astronomers. Precise numbers are elusive, but it appears that the dark component is 20 times as massive as the visible disk of stars and gas. This dark matter is distributed in space differently than the stars, forming a vast, diffuse halo, more spherical than disklike, which occupies more than 1000 times the volume of the disk of stars. The composition of this dark halo is unknown, but it may comprise a mixture of ancient, degenerate dwarf stars and exotic, hypothetical elementary particles.

  1. Halo formation and evolution: unification of structure and physical properties

    NASA Astrophysics Data System (ADS)

    Ernest, Allan D.; Collins, Matthew P.

    2016-08-01

    The assembly of matter in the universe proliferates a wide variety of halo structures, often with enigmatic consequences. Giant spiral galaxies, for example, contain both dark matter and hot gas, while dwarf spheroidal galaxies, with weaker gravity, contain much larger fractions of dark matter, but little gas. Globular clusters, superficially resembling these dwarf spheroidals, have little or no dark matter. Halo temperatures are also puzzling: hot cluster halos contain cooler galaxy halos; dwarf galaxies have no hot gas at all despite their similar internal processes. Another mystery is the origin of the gas that galaxies require to maintain their measured star formation rates (SFRs). We outline how gravitational quantum theory solves these problems, and enables baryons to function as weakly-interacting-massive-particles (WIMPs) in Lambda Cold Dark Matter (LCDM) theory. Significantly, these dark-baryon ensembles may also be consistent with primordial nucleosynthesis (BBN) and cosmic microwave background (CMB) anisotropies.

  2. The velocity shear tensor: tracer of halo alignment

    NASA Astrophysics Data System (ADS)

    Libeskind, Noam I.; Hoffman, Yehuda; Forero-Romero, Jaime; Gottlöber, Stefan; Knebe, Alexander; Steinmetz, Matthias; Klypin, Anatoly

    2013-01-01

    The alignment of dark matter (DM) haloes and the surrounding large-scale structure (LSS) is examined in the context of the cosmic web. Halo spin, shape and the orbital angular momentum of subhaloes are investigated relative to the LSS using the eigenvectors of the velocity shear tensor evaluated on a grid with a scale of 1 Mpc h-1, deep within the non-linear regime. Knots, filaments, sheets and voids are associated with regions that are collapsing along 3, 2, 1 or 0 principal directions simultaneously. Each halo is tagged with a web classification (i.e. knot halo, filament halo, etc.) according to the nature of the collapse at the halo position. The full distribution of shear eigenvalues is found to be substantially different from that tagged to haloes, indicating that the observed velocity shear is significantly biased. We find that larger mass haloes live in regions where the shear is more isotropic, namely the expansion or collapse is more spherical. A correlation is found between the halo shape and the eigenvectors of the shear tensor, with the longest (shortest) axis of the halo shape being aligned with the slowest (fastest) collapsing eigenvector. This correlation is web independent, suggesting that the velocity shear is a fundamental tracer of the halo alignment. A similar result is found for the alignment of halo spin with the cosmic web. It has been shown that high-mass haloes exhibit a spin flip with respect to the LSS: we find that the mass at which this spin flip occurs is web dependent and not universal as suggested previously. Although weaker than haloes, subhalo orbits too exhibit an alignment with the LSS, providing a possible insight into the highly correlated corotation of the Milky Way's satellite system. The present study suggests that the velocity shear tensor constitutes the natural framework for studying the directional properties of the non-linear LSS and those of haloes and galaxies.

  3. Halo mass distribution reconstruction across the cosmic web

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng; Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Prada, Francisco; Yepes, Gustavo; Tao, Charling

    2015-08-01

    We study the relation between halo mass and its environment from a probabilistic perspective. We find that halo mass depends not only on local dark matter density, but also on non-local quantities such as the cosmic web environment and the halo-exclusion effect. Given these accurate relations, we have developed the HADRON-code (Halo mAss Distribution ReconstructiON), a technique which permits us to assign halo masses to a distribution of haloes in three-dimensional space. This can be applied to the fast production of mock galaxy catalogues, by assigning halo masses, and reproducing accurately the bias for different mass cuts. The resulting clustering of the halo populations agree well with that drawn from the BigMultiDark N-body simulation: the power spectra are within 1σ up to scales of k = 0.2 h Mpc-1, when using augmented Lagrangian perturbation theory based mock catalogues. Only the most massive haloes show a larger deviation. For these, we find evidence of the halo-exclusion effect. A clear improvement is achieved when assigning the highest masses to haloes with a minimum distance separation. We also compute the two- and three-point correlation functions, and find an excellent agreement with N-body results. Our work represents a quantitative application of the cosmic web classification. It can have further interesting applications in the multitracer analysis of the large-scale structure for future galaxy surveys.

  4. Halo Microlensing and Dark Baryons

    NASA Astrophysics Data System (ADS)

    Crotts, A. P. S.

    1993-12-01

    (While Pierce lectures review past accomplishments, customarily, this talk concerns efforts which we have pursued for some years and which are now reaching fruition. We present elsewhere at this meeting results from research cited for the Prize.) Dark matter exists in the halos of spiral galaxies, and the least radical alternative for its identity is normal matter produced by primordial nucleosynthesis. This matter could easily be hidden in large, condensed objects. Paczynski pointed out in 1986 that if condensations of Galactic halo matter are sufficiently massive, they will produce detectable amplification of background starlight by gravitational lensing. Several groups recently reported possible detections of this effect after surveying large numbers of stars in the Galactic Bulge and LMC. The connection between these events and massive, dark halos is unclear and likely to remain so for some time, given the rate at which they are detected. Following Paczynski's realization, we stressed that a much higher event rate, a statistical control sample, sensitivity to a much broader mass range, and modulation of the predicted lensing rate with galactocentric distance can all be realized by a different experiment: observing the halo of M31 (and the Galaxy) using stars in M31. In some ways, M31 is a more difficult target than the LMC or the Bulge, given the faintness of its stars, but our observations in 1991 and 1993 indicate that these problems have been surmounted. We can detect stellar variability even under extremely crowded conditions like those in M31's inner disk, and can monitor a sufficient number of stars to study halo lensing. We present results from our initial survey which indicates that the required sensitivity can be reached to confirm or reject the hypothesis that sub-solar masses like those detected in our Galaxy make up the missing spiral galaxy mass. It is possible that we may use the data already obtained (and still being analyzed) to place

  5. Detection of non-standard atmospheric effects in FSO systems

    NASA Astrophysics Data System (ADS)

    Wilfert, Otakar; Poliak, Juraj; Barcík, Peter; Arce-Diego, José L.; Fanjul-Vélez, Félix; Salas-García, Irene; Ortega Quijano, Noé

    2013-09-01

    Modern free-space optical (FSO) communication systems in many aspects overcome wire or radio communications. They offer a license-free operation and a large bandwidth. Operation of outdoor FSO links struggles with many atmospheric phenomena that deteriorate phase and amplitude of the transmitted optical beam. Thanks to the recent advancing development, these effects are more or less well understood and described. Goal driven research increased the link availability. Besides increasing the availability of data links it is necessary to focus on the accuracy and reliability of testing optical links. Research of the data optical links is focused on the transmission of a large amount of data whereas the testing FSO link is designed to achieve maximal resolution and sensitivity thus improving accuracy and repeatability of the atmospheric effects measurement. Given the fact that testing links are located in the measured media, they are themselves influenced by it. Phenomena such as the condensation on transceiver windows (rain, frost) and the deviation of the optical beam path caused by the wind are referred to as non-standard effects. Non-standard effects never occur independently; therefore we must always verify the cross-sensitivity of the testing link. In the paper we respond to an increasing number of articles dealing with influence of the atmosphere on the link but ignoring the cross-sensitivity of the testing link on other variables than tested. In conclusion, we carry out qualitative and quantitative analysis of self-identified non-standard effects.

  6. Systematic Problems With Stellar Halo Modelling

    NASA Astrophysics Data System (ADS)

    Bailin, Jeremy

    2012-05-01

    Stellar halos contain a small fraction of the stellar mass of a galaxy. The dynamic range required to model the substructure within this small component while simultaneously modeling the main galaxy is currently unobtainable, which has lead to the prevalence of stellar halo models that tag stellar content onto dark matter particles in pure dark matter simulations, making it computationally feasible (e.g. Bullock & Johnston 2005; Cooper et al. 2010). Using paired simulations with identical initial conditions, we estimate the magnitude of the systematic effects these simplifications have on the structure of the halos. We find that (1) "painting" and (2) neglecting baryonic processes each introduce factor-of-several changes to the amount of substructure predicted. We therefore urge caution when interpreting differences between models and observations that are at this level.

  7. Squeezing the halo bispectrum: a test of bias models

    NASA Astrophysics Data System (ADS)

    Moradinezhad Dizgah, Azadeh; Chan, Kwan Chuen; Noreña, Jorge; Biagetti, Matteo; Desjacques, Vincent

    2016-09-01

    We study the halo-matter cross bispectrum in the presence of primordial non-Gaussianity of the local type. We restrict ourselves to the squeezed limit, for which the calculation are straightforward, and perform the measurements in the initial conditions of N-body simulations, to mitigate the contamination induced by nonlinear gravitational evolution. Interestingly, the halo-matter cross bispectrum is not trivial even in this simple limit as it is strongly sensitive to the scale-dependence of the quadratic and third-order halo bias. Therefore, it can be used to test biasing prescriptions. We consider three different prescription for halo clustering: excursion set peaks (ESP), local bias and a model in which the halo bias parameters are explicitly derived from a peak-background split. In all cases, the model parameters are fully constrained with statistics other than the cross bispectrum. We measure the cross bispectrum involving one halo fluctuation field and two mass overdensity fields for various halo masses and collapse redshifts. We find that the ESP is in reasonably good agreement with the numerical data, while the other alternatives we consider fail in various cases. This suggests that the scale-dependence of halo bias also is a crucial ingredient to the squeezed limit of the halo bispectrum.

  8. The statistics of Λ CDM halo concentrations

    NASA Astrophysics Data System (ADS)

    Neto, Angelo F.; Gao, Liang; Bett, Philip; Cole, Shaun; Navarro, Julio F.; Frenk, Carlos S.; White, Simon D. M.; Springel, Volker; Jenkins, Adrian

    2007-11-01

    We use the Millennium Simulation (MS) to study the statistics of Λ cold dark matter (ΛCDM) halo concentrations at z = 0. Our results confirm that the average halo concentration declines monotonically with mass; the concentration-mass relation is well fitted by a power law over three decades in mass, up to the most massive objects that form in a ΛCDM universe (~ 1015h-1Msolar). This is in clear disagreement with the predictions of the model proposed by Bullock et al. for these rare objects, and agrees better with the original predictions of Navarro, Frenk & White. The large volume surveyed, together with the unprecedented numerical resolution of the MS, allows us to estimate with confidence the distribution of concentrations and, consequently, the abundance of systems with unusual properties. About one in a hundred cluster haloes (M200 >~ 3 × 1014h-1Msolar) have concentrations exceeding c200 = 7.5, a result that may be useful in interpreting the likelihood of unusually strong massive gravitational lenses, such as Abell 1689, in the ΛCDM cosmogony. A similar fraction of about 1 per cent of galaxy-sized haloes (M200 ~ 1012h-1Msolar) have c200 < 4.5 and this could be relevant to models that attempt to reconcile the ΛCDM cosmology with rotation curves of low surface brightness galaxies by appealing to haloes of unexpectedly low concentration. We find that halo concentrations are independent of spin once haloes manifestly out of equilibrium have been removed from the sample. Compared to their relaxed brethren, the concentrations of out-of-equilibrium haloes tend to be lower and have more scatter, while their spins tend to be higher. A number of previously noted trends within the halo population are induced primarily by these properties of unrelaxed systems. Finally, we compare the result of predicting halo concentrations using the mass assembly history of the main progenitor with predictions based on simple arguments regarding the assembly time of all progenitors

  9. A "Light," Centrally Concentrated Milky Way Halo?

    NASA Astrophysics Data System (ADS)

    Rashkov, Valery; Pillepich, Annalisa; Deason, Alis J.; Madau, Piero; Rockosi, Constance M.; Guedes, Javiera; Mayer, Lucio

    2013-08-01

    We discuss a novel approach to "weighing" the Milky Way (MW) dark matter halo, one that combines the latest samples of halo stars selected from the Sloan Digital Sky Survey (SDSS) with state of the art numerical simulations of MW analogs. The fully cosmological runs employed in the present study include "Eris," one of the highest resolution hydrodynamical simulations of the formation of a M vir = 8 × 1011 M ⊙ late-type spiral, and the dark-matter-only M vir = 1.7 × 1012 M ⊙ "Via Lactea II" (VLII) simulation. Eris provides an excellent laboratory for creating mock SDSS samples of tracer halo stars, and we successfully compare their density, velocity anisotropy, and radial velocity dispersion profiles with the observational data. Most mock SDSS realizations show the same "cold veil" recently observed in the distant stellar halo of the MW, with tracers as cold as σlos ≈ 50 km s-1 between 100 and 150 kpc. Controlled experiments based on the integration of the spherical Jeans equation as well as a particle tagging technique applied to VLII show that a "heavy" M vir ≈ 2 × 1012 M ⊙ realistic host produces a poor fit to the kinematic SDSS data. We argue that these results offer added evidence for a "light," centrally concentrated MW halo.

  10. A UNIVERSAL MODEL FOR HALO CONCENTRATIONS

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.

    2015-01-20

    We present a numerical study of dark matter halo concentrations in ΛCDM and self-similar cosmologies. We show that the relation between concentration, c, and peak height, ν, exhibits the smallest deviations from universality if halo masses are defined with respect to the critical density of the universe. These deviations can be explained by the residual dependence of concentration on the local slope of the matter power spectrum, n, which affects both the normalization and shape of the c-ν relation. In particular, there is no well-defined floor in the concentration values. Instead, the minimum concentration depends on redshift: at fixed ν, halos at higher z experience steeper slopes n, and thus have lower minimum concentrations. We show that the concentrations in our simulations can be accurately described by a universal seven-parameter function of only ν and n. This model matches our ΛCDM results to ≲ 5% accuracy up to z = 6, and matches scale-free Ω{sub m} = 1 models to ≲ 15%. The model also reproduces the low concentration values of Earth-mass halos at z ≈ 30, and thus correctly extrapolates over 16 orders of magnitude in halo mass. The predictions of our model differ significantly from all models previously proposed in the literature at high masses and redshifts. Our model is in excellent agreement with recent lensing measurements of cluster concentrations.

  11. A ''LIGHT'', CENTRALLY CONCENTRATED MILKY WAY HALO?

    SciTech Connect

    Rashkov, Valery; Pillepich, Annalisa; Deason, Alis J.; Madau, Piero; Rockosi, Constance M.; Mayer, Lucio

    2013-08-20

    We discuss a novel approach to ''weighing'' the Milky Way (MW) dark matter halo, one that combines the latest samples of halo stars selected from the Sloan Digital Sky Survey (SDSS) with state of the art numerical simulations of MW analogs. The fully cosmological runs employed in the present study include ''Eris'', one of the highest resolution hydrodynamical simulations of the formation of a M{sub vir} = 8 Multiplication-Sign 10{sup 11} M{sub Sun} late-type spiral, and the dark-matter-only M{sub vir} = 1.7 Multiplication-Sign 10{sup 12} M{sub Sun} ''Via Lactea II'' (VLII) simulation. Eris provides an excellent laboratory for creating mock SDSS samples of tracer halo stars, and we successfully compare their density, velocity anisotropy, and radial velocity dispersion profiles with the observational data. Most mock SDSS realizations show the same ''cold veil'' recently observed in the distant stellar halo of the MW, with tracers as cold as {sigma}{sub los} Almost-Equal-To 50 km s{sup -1} between 100 and 150 kpc. Controlled experiments based on the integration of the spherical Jeans equation as well as a particle tagging technique applied to VLII show that a ''heavy'' M{sub vir} Almost-Equal-To 2 Multiplication-Sign 10{sup 12} M{sub Sun} realistic host produces a poor fit to the kinematic SDSS data. We argue that these results offer added evidence for a ''light'', centrally concentrated MW halo.

  12. Stellar halos: a rosetta stone for galaxy formation and cosmology

    NASA Astrophysics Data System (ADS)

    Inglis Read, Justin

    2015-08-01

    Stellar halos make up about a percent of the total stellar mass in galaxies. Yet their old age and long phase mixing times make them living fossil records of galactic history. In this talk, I review the latest simulations of structure formation in our standard Lambda Cold Dark Matter cosmology. I discuss the latest predictions for stellar halos and the relationship between the stellar halo light and the underlying dark matter. Finally, I discuss how these simulations compare to observations of the Milky Way and Andromeda and, ultimately, what this means for our cosmological model and the formation history of the Galaxy.

  13. Halo occupation numbers and galaxy bias

    NASA Astrophysics Data System (ADS)

    Peacock, J. A.; Smith, R. E.

    2000-11-01

    We propose a heuristic model that displays the main features of realistic theories for galaxy bias. We first show that the low-order clustering statistics of the dark-matter distribution depend almost entirely on the locations and density profiles of dark-matter haloes. The quasi-linear mass correlations are in fact reproduced well by a model of independent randomly-placed haloes. The distribution of galaxies within the halo density field depends on: (i) the efficiency of galaxy formation, as manifested by the halo occupation number - the number of galaxies brighter than some sample limit contained in a halo of a given mass; (ii) the location of these galaxies within their halo. The first factor is constrained by the empirical luminosity function of groups. For the second factor, we assume that one galaxy marks the halo centre, with any remaining galaxies acting as satellites that trace the halo mass. This second assumption is essential if small-scale galaxy correlations are to remain close to a single power law, rather than flattening in the same way as the correlations of the overall density field. These simple assumptions amount to a recipe for non-local bias, in which the probability of finding a galaxy is not a simple function of its local mass density. We have applied this prescription to some CDM models of current interest, and find that the predictions are close to the observed galaxy correlations for a flat Ω=0.3 model (ΛCDM), but not for an Ω=1 model with the same power spectrum (τCDM). This is an inevitable consequence of cluster normalization for the power spectra: cluster-scale haloes of given mass have smaller core radii for high Ω, and hence display enhanced small-scale clustering. Finally, the pairwise velocity dispersion of galaxies in the ΛCDM model is lower than that of the mass, allowing cluster-normalized models to yield a realistic Mach number for the peculiar velocity field. This is largely due to the strong variation of galaxy

  14. Is the Milky Way's hot halo convectively unstable?

    SciTech Connect

    Henley, David B.; Shelton, Robin L.

    2014-03-20

    We investigate the convective stability of two popular types of model of the gas distribution in the hot Galactic halo. We first consider models in which the halo density and temperature decrease exponentially with height above the disk. These halo models were created to account for the fact that, on some sight lines, the halo's X-ray emission lines and absorption lines yield different temperatures, implying that the halo is non-isothermal. We show that the hot gas in these exponential models is convectively unstable if γ < 3/2, where γ is the ratio of the temperature and density scale heights. Using published measurements of γ and its uncertainty, we use Bayes' theorem to infer posterior probability distributions for γ, and hence the probability that the halo is convectively unstable for different sight lines. We find that, if these exponential models are good descriptions of the hot halo gas, at least in the first few kiloparsecs from the plane, the hot halo is reasonably likely to be convectively unstable on two of the three sight lines for which scale height information is available. We also consider more extended models of the halo. While isothermal halo models are convectively stable if the density decreases with distance from the Galaxy, a model of an extended adiabatic halo in hydrostatic equilibrium with the Galaxy's dark matter is on the boundary between stability and instability. However, we find that radiative cooling may perturb this model in the direction of convective instability. If the Galactic halo is indeed convectively unstable, this would argue in favor of supernova activity in the Galactic disk contributing to the heating of the hot halo gas.

  15. The halo model in a massive neutrino cosmology

    SciTech Connect

    Massara, Elena; Villaescusa-Navarro, Francisco; Viel, Matteo E-mail: villaescusa@oats.inaf.it

    2014-12-01

    We provide a quantitative analysis of the halo model in the context of massive neutrino cosmologies. We discuss all the ingredients necessary to model the non-linear matter and cold dark matter power spectra and compare with the results of N-body simulations that incorporate massive neutrinos. Our neutrino halo model is able to capture the non-linear behavior of matter clustering with a ∼20% accuracy up to very non-linear scales of k = 10 h/Mpc (which would be affected by baryon physics). The largest discrepancies arise in the range k = 0.5 – 1 h/Mpc where the 1-halo and 2-halo terms are comparable and are present also in a massless neutrino cosmology. However, at scales k < 0.2 h/Mpc our neutrino halo model agrees with the results of N-body simulations at the level of 8% for total neutrino masses of < 0.3 eV. We also model the neutrino non-linear density field as a sum of a linear and clustered component and predict the neutrino power spectrum and the cold dark matter-neutrino cross-power spectrum up to k = 1 h/Mpc with ∼30% accuracy. For masses below 0.15 eV the neutrino halo model captures the neutrino induced suppression, casted in terms of matter power ratios between massive and massless scenarios, with a 2% agreement with the results of N-body/neutrino simulations. Finally, we provide a simple application of the halo model: the computation of the clustering of galaxies, in massless and massive neutrinos cosmologies, using a simple Halo Occupation Distribution scheme and our halo model extension.

  16. Rockstar: Phase-space halo finder

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Wechsler, Risa; Wu, Hao-Yi

    2012-10-01

    Rockstar (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement) identifies dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure. Our method is massively parallel (up to 10^5 CPUs) and runs on the largest current simulations (>10^10 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). Rockstar offers significant improvement in substructure recovery as compared to several other halo finders.

  17. Simulating Halos with the Caterpillar Project

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The Caterpillar Project is a beautiful series of high-resolution cosmological simulations. The goal of this project is to examine the evolution of dark-matter halos like the Milky Ways, to learn about how galaxies like ours formed. This immense computational project is still in progress, but the Caterpillar team is already providing a look at some of its first results.Lessons from Dark-Matter HalosWhy simulate the dark-matter halos of galaxies? Observationally, the formation history of our galaxy is encoded in galactic fossil record clues, like the tidal debris from disrupted satellite galaxies in the outer reaches of our galaxy, or chemical abundance patterns throughout our galactic disk and stellar halo.But to interpret this information in a way that lets us learn about our galaxys history, we need to first test galaxy formation and evolution scenarios via cosmological simulations. Then we can compare the end result of these simulations to what we observe today.This figure illustrates the difference that mass resolution makes. In the left panel, the mass resolution is 1.5*10^7 solar masses per particle. In the right panel, the mass resolution is 3*10^4 solar masses per particle [Griffen et al. 2016]A Computational ChallengeDue to how computationally expensive such simulations are, previous N-body simulations of the growth of Milky-Way-like halos have consisted of only one or a few halos each. But in order to establish a statistical understanding of how galaxy halos form and find out whether the Milky Ways halo is typical or unusual! it is necessary to simulate a larger number of halos.In addition, in order to accurately follow the formation and evolution of substructure within the dark-matter halos, these simulations must be able to resolve the smallest dwarf galaxies, which are around a million solar masses. This requires an extremely high mass resolution, which adds to the computational expense of the simulation.First OutcomesThese are the challenges faced by

  18. Non-standard interactions with high-energy atmospheric neutrinos at IceCube

    NASA Astrophysics Data System (ADS)

    Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria

    2017-01-01

    Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μτ-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal ɛ μτ , with the 90% credible interval given by -6 .0 × 10-3 < ɛ μτ < 5 .4 × 10-3, comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of ɛ μτ near its current bound.

  19. Halo-independent direct detection analyses without mass assumptions

    SciTech Connect

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m{sub χ}−σ{sub n} plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v{sub min}−g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v{sub min} to nuclear recoil momentum (p{sub R}), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-til-tilde(p{sub R}). The entire family of conventional halo-independent g-tilde(v{sub min}) plots for all DM masses are directly found from the single h-tilde(p{sub R}) plot through a simple rescaling of axes. By considering results in h-tilde(p{sub R}) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde(v{sub min}) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  20. Halo-independent direct detection analyses without mass assumptions

    DOE PAGES

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; ...

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the mχ – σn plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the vmin – g~ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from vmin to nuclear recoil momentum (pR),more » the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call tilde h(pR). The entire family of conventional halo-independent tilde g~(vmin) plots for all DM masses are directly found from the single tilde h~(pR) plot through a simple rescaling of axes. By considering results in tildeh~(pR) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple tilde g~(vmin) plots for different DM masses. As a result, we conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.« less

  1. Halo-independent direct detection analyses without mass assumptions

    SciTech Connect

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-06

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the mχ – σn plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the vmin – g~ plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from vmin to nuclear recoil momentum (pR), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call tilde h(pR). The entire family of conventional halo-independent tilde g~(vmin) plots for all DM masses are directly found from the single tilde h~(pR) plot through a simple rescaling of axes. By considering results in tildeh~(pR) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple tilde g~(vmin) plots for different DM masses. As a result, we conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  2. Halo-independent direct detection analyses without mass assumptions

    SciTech Connect

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew E-mail: pjfox@fnal.gov E-mail: matthew.mccullough@cern.ch

    2015-10-01

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the m{sub χ}−σ{sub n} plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the v{sub min}− g-tilde plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from v{sub min} to nuclear recoil momentum (p{sub R}), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call h-tilde (p{sub R}). The entire family of conventional halo-independent g-tilde (v{sub min}) plots for all DM masses are directly found from the single h-tilde (p{sub R}) plot through a simple rescaling of axes. By considering results in h-tilde (p{sub R}) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple g-tilde (v{sub min}) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  3. Halo-independent direct detection analyses without mass assumptions

    NASA Astrophysics Data System (ADS)

    Anderson, Adam J.; Fox, Patrick J.; Kahn, Yonatan; McCullough, Matthew

    2015-10-01

    Results from direct detection experiments are typically interpreted by employing an assumption about the dark matter velocity distribution, with results presented in the mχ-σn plane. Recently methods which are independent of the DM halo velocity distribution have been developed which present results in the vmin-tilde g plane, but these in turn require an assumption on the dark matter mass. Here we present an extension of these halo-independent methods for dark matter direct detection which does not require a fiducial choice of the dark matter mass. With a change of variables from vmin to nuclear recoil momentum (pR), the full halo-independent content of an experimental result for any dark matter mass can be condensed into a single plot as a function of a new halo integral variable, which we call tilde h(pR). The entire family of conventional halo-independent tilde g(vmin) plots for all DM masses are directly found from the single tilde h(pR) plot through a simple rescaling of axes. By considering results in tilde h(pR) space, one can determine if two experiments are inconsistent for all masses and all physically possible halos, or for what range of dark matter masses the results are inconsistent for all halos, without the necessity of multiple tilde g(vmin) plots for different DM masses. We conduct a sample analysis comparing the CDMS II Si events to the null results from LUX, XENON10, and SuperCDMS using our method and discuss how the results can be strengthened by imposing the physically reasonable requirement of a finite halo escape velocity.

  4. Non-standard isotope production and applications at Washington University

    NASA Astrophysics Data System (ADS)

    McCarthy, Timothy J.; McCarthy, Deborah W.; Laforest, Richard; Bigott, Heather M.; Wüst, Frank; Reichert, David E.; Lewis, Michael R.; Welch, Michael J.

    2001-07-01

    The positron emitting radionuclides, oxygen-15, nitrogen-13, carbon-11, and fluorine-18 have been produced at Washington University for many years utilizing two biomedical cyclotrons; a Cyclotron Corporation CS15 and a Japan Steel Works 16/8 cyclotron. In recent years we have become interested in the production of non-standard PET isotopes. We were initially interested in copper-64 production using the 64Ni(p,n)64Cu nuclear reaction, but now apply this technique to other positron emitting copper isotopes, copper-60 and copper-61. Copper-64 is being produced routinely and made available to other institutions. In 1999 over ten Curies of copper-64 were produced, making copper available to thirteen institutions, as well as research groups at Washington University. We are currently developing methods for the routine productions of other PET radioisotopes of interest, these include; bromine-76, bromine-77, iodine-124, gallium-66, and technetium-94m.

  5. Non-standard Hubbard models in optical lattices: a review.

    PubMed

    Dutta, Omjyoti; Gajda, Mariusz; Hauke, Philipp; Lewenstein, Maciej; Lühmann, Dirk-Sören; Malomed, Boris A; Sowiński, Tomasz; Zakrzewski, Jakub

    2015-06-01

    Originally, the Hubbard model was derived for describing the behavior of strongly correlated electrons in solids. However, for over a decade now, variations of it have also routinely been implemented with ultracold atoms in optical lattices, allowing their study in a clean, essentially defect-free environment. Here, we review some of the vast literature on this subject, with a focus on more recent non-standard forms of the Hubbard model. After giving an introduction to standard (fermionic and bosonic) Hubbard models, we discuss briefly common models for mixtures, as well as the so-called extended Bose-Hubbard models, that include interactions between neighboring sites, next-neighbor sites, and so on. The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation for the original physical Hamiltonian. Even when restricting the models to the lowest Bloch band is justified, the standard approach neglects the density-induced tunneling (which has the same origin as the usual on-site interaction). The importance of these contributions is discussed for both contact and dipolar interactions. For sufficiently strong interactions, the effects related to higher Bloch bands also become important even for deep optical lattices. Different approaches that aim at incorporating these effects, mainly via dressing the basis, Wannier functions with interactions, leading to effective, density-dependent Hubbard-type models, are reviewed. We discuss also examples of Hubbard-like models that explicitly involve higher p orbitals, as well as models that dynamically couple spin and orbital degrees of freedom. Finally, we review mean-field nonlinear Schrödinger models of the Salerno type that share with the non-standard Hubbard models nonlinear coupling between the adjacent sites. In that part, discrete solitons are the main subject of consideration. We conclude by listing some open problems, to be addressed in the future.

  6. Probing the CP violation signal at DUNE in the presence of non-standard neutrino interactions

    NASA Astrophysics Data System (ADS)

    Masud, Mehedi; Chatterjee, Animesh; Mehta, Poonam

    2016-09-01

    We discuss the impact of non-standard neutrino matter interactions (NSIs) in propagation on the determination of the CP phase in the context of long baseline accelerator experiments such as the Deep Underground Neutrino Experiment (DUNE). DUNE will mainly address the issue of CP violation in the leptonic sector. Here we study the role of NSI and its impact on observing the CP violation signal at DUNE. We consider two scenarios of oscillation with three active neutrinos in the absence and presence of NSI. We elucidate the importance of ruling out subdominant new physics effects introduced by NSI in inferring the CP violation signal at DUNE by considering NSI terms collectively as well as by exploiting the non-trivial interplay of moduli and phases of the NSI terms. We demonstrate the existence of NSI-SI degeneracies which need to be eliminated in reliable manner in order to make conclusive statements about the CP phase.

  7. The Implication of MOND for Dark Haloes

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Cheng; Kosowsky, A.

    2006-12-01

    It is always interesting that how much implication that Milgrom's relation could provide, even phenomenologically. With just one assumption that the gravitational acceleration goes like 1/r instead of Newton's law, 1/r2, when the acceleration is smaller than the value $10-10m/sec2, it is well known that MOND can give a better description of the rotational curves in spiral galaxies. In this research, we explore the configuration of the parameter space for the dark haloes by fitting the rotation curves of halo profiles with the exponential disk for stellar mass to that of MOND. In addition, we find that the baryon mass to the halo mass ratio is lower than the primordial ratio which gives that the total baryon mass is about 15% of the dark matter, and which is consistent with what we generally expect today.

  8. Modelling galactic conformity with the colour-halo age relation in the Illustris simulation

    NASA Astrophysics Data System (ADS)

    Bray, Aaron D.; Pillepich, Annalisa; Sales, Laura V.; Zhu, Emily; Genel, Shy; Rodriguez-Gomez, Vicente; Torrey, Paul; Nelson, Dylan; Vogelsberger, Mark; Springel, Volker; Eisenstein, Daniel J.; Hernquist, Lars

    2016-01-01

    Comparisons between observational surveys and galaxy formation models find that dark matter haloes' mass can largely explain their galaxies' stellar mass. However, it remains uncertain whether additional environmental variables, known as assembly bias, are necessary to explain other galaxy properties. We use the Illustris simulation to investigate the role of assembly bias in producing galactic conformity by considering 18 000 galaxies with Mstellar > 2 × 109 M⊙. We find a significant signal of galactic conformity: out to distances of about 10 Mpc, the mean red fraction of galaxies around redder galaxies is higher than around bluer galaxies at fixed stellar mass. Dark matter haloes exhibit an analogous conformity signal, in which the fraction of haloes formed at earlier times (old haloes) is higher around old haloes than around younger ones at fixed halo mass. A plausible interpretation of galactic conformity is the combination of the halo conformity signal with the galaxy colour-halo age relation: at fixed stellar mass, particularly towards the low-mass end, Illustris' galaxy colours correlate with halo age, with the reddest galaxies (often satellites) preferentially found in the oldest haloes. We explain the galactic conformity effect with a simple semi-empirical model, assigning stellar mass via halo mass (abundance matching) and galaxy colour via halo age (age matching). Regarding comparison to observations, we conclude that the adopted selection/isolation criteria, projection effects, and stacking techniques can have a significant impact on the measured amplitude of the conformity signal.

  9. ASSEMBLY OF THE OUTER GALACTIC STELLAR HALO IN THE HIERARCHICAL MODEL

    SciTech Connect

    Murante, Giuseppe; Curir, Anna; Poglio, Eva; Villalobos, Alvaro E-mail: curir@oato.inaf.i E-mail: villalobos@oats.inaf.i

    2010-06-20

    We provide a set of numerical N-body simulations for studying the formation of the outer Milky Ways' stellar halo through accretion events. After simulating minor mergers of prograde and retrograde orbiting satellite halos with a dark matter main halo, we analyze the signal left by satellite stars in the rotation velocity distribution. The aim is to explore the orbital conditions where a retrograde signal in the outer part of the halo can be obtained, in order to give a possible explanation of the observed rotational properties of the Milky Way stellar halo. Our results show that, for satellites more massive than {approx}1/40 of the main halo, the dynamical friction has a fundamental role in assembling the final velocity distributions resulting from different orbits and that retrograde satellites moving on low-inclination orbits deposit more stars in the outer halo regions and therefore can produce the counter-rotating behavior observed in the outer Milky Way halo.

  10. AHF: AMIGA'S HALO FINDER

    SciTech Connect

    Knollmann, Steffen R.; Knebe, Alexander

    2009-06-15

    Cosmological simulations are the key tool for investigating the different processes involved in the formation of the universe from small initial density perturbations to galaxies and clusters of galaxies observed today. The identification and analysis of bound objects, halos, is one of the most important steps in drawing useful physical information from simulations. In the advent of larger and larger simulations, a reliable and parallel halo finder, able to cope with the ever-increasing data files, is a must. In this work we present the freely available MPI parallel halo finder AHF. We provide a description of the algorithm and the strategy followed to handle large simulation data. We also describe the parameters a user may choose in order to influence the process of halo finding, as well as pointing out which parameters are crucial to ensure untainted results from the parallel approach. Furthermore, we demonstrate the ability of AHF to scale to high-resolution simulations.

  11. The halo fixator.

    PubMed

    Bono, Christopher M

    2007-12-01

    The halo fixator may be used for the definitive treatment of cervical spine trauma, preoperative reduction in the patient with spinal deformity, and adjunctive postoperative stabilization following cervical spine surgery. Halo fixation decreases cervical motion by 30% to 96%. Absolute contraindications include cranial fracture, infection, and severe soft-tissue injury at the proposed pin sites. Relative contraindications include severe chest trauma, obesity, advanced age, and a barrel-shaped chest. In children, a computed tomography scan of the head should be obtained before pin placement to determine cranial bone thickness. Complications of halo fixation include pin loosening, pin site infection, and skin breakdown. A concerning rate of life-threatening complications, such as respiratory distress, has been reported in elderly patients. Despite a paucity of contemporary data, recent retrospective studies have demonstrated acceptable results for halo fixation in managing some upper and lower cervical spine injuries.

  12. The HALO / HALO-2 Supernova Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    Yen, Stanley; HALO Collaboration; HALO-2 Collaboration

    2016-09-01

    The Helium and Lead Observatory (HALO) is a dedicated supernova neutrino detector in SNOLAB, which is built from 79 tons of surplus lead and the helium-3 neutron detectors from the SNO experiment. It is sensitive primarily to electron neutrinos, and is thus complementary to water Cerenkov and organic scintillation detectors which are primarily sensitive to electron anti-neutrinos. A comparison of the rates in these complementary detectors will enable a flavor decomposition of the neutrino flux from the next galactic core-collapse supernova. We have tentative ideas to build a 1000-ton HALO-2 detector in the Gran Sasso laboratory by using the lead from the decommissioned OPERA detector. We are exploring several neutron detector technologies to supplement the existing helium-3 detectors. We welcome new collaborators to join us. This research is supported by the NRC and NSERC (Canada), the US DOE and NSF, and the German RISE program.

  13. Halo vest instrumentation

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Krag, Martin

    1996-05-01

    The halo vest is a head and neck immobilization system that is often used on patients that are recovering from cervical trauma or surgery. The halo vest system consists of a rigid halo that is firmly attached to the skull, an upright support structure for stabilization and immobilization, and a torso-enveloping vest. The main purpose of this study was to measure the forces that are carried by the halo-vest structure as the subject undergoes various activities of daily living and external loading for different vest designs. A tethered strain gage load cell based instrumentation system was used to take these load measurements on ten different subjects. Three different halo-vest systems were evaluated. The primary difference between the vests was the amount of torso coverage and the use of shoulder straps. The loads were measured, analyzed and used to compare the vests and to create a model of halo-vest-neck mechanics. Future applications of this technology to standalone data logging, pin-load measuring and biofeedback applications are discussed.

  14. MASS-DEPENDENT BARYON ACOUSTIC OSCILLATION SIGNAL AND HALO BIAS

    SciTech Connect

    Wang Qiao; Zhan Hu

    2013-05-10

    We characterize the baryon acoustic oscillations (BAO) feature in halo two-point statistics using N-body simulations. We find that nonlinear damping of the BAO signal is less severe for halos in the mass range we investigate than for dark matter. The amount of damping depends weakly on the halo mass. The correlation functions show a mass-dependent drop of the halo clustering bias below roughly 90 h {sup -1} Mpc, which coincides with the scale of the BAO trough. The drop of bias is 4% for halos with mass M > 10{sup 14} h {sup -1} M{sub Sun} and reduces to roughly 2% for halos with mass M > 10{sup 13} h {sup -1} M{sub Sun }. In contrast, halo biases in simulations without BAO change more smoothly around 90 h {sup -1} Mpc. In Fourier space, the bias of M > 10{sup 14} h {sup -1} M{sub Sun} halos decreases smoothly by 11% from wavenumber k = 0.012 h Mpc{sup -1} to 0.2 h Mpc{sup -1}, whereas that of M > 10{sup 13} h {sup -1} M{sub Sun} halos decreases by less than 4% over the same range. By comparing the halo biases in pairs of otherwise identical simulations, one with and the other without BAO, we also observe a modulation of the halo bias. These results suggest that precise calibrations of the mass-dependent BAO signal and scale-dependent bias on large scales would be needed for interpreting precise measurements of the two-point statistics of clusters or massive galaxies in the future.

  15. Galaxy halo occupation at high redshift

    NASA Astrophysics Data System (ADS)

    Bullock, James S.; Wechsler, Risa H.; Somerville, Rachel S.

    2002-01-01

    We discuss how current and future data on the clustering and number density of z~3 Lyman-break galaxies (LBGs) can be used to constrain their relationship to dark matter haloes. We explore a three-parameter model in which the number of LBGs per dark halo scales like a power law in the halo mass: N(M)=(M/M1)S for M>Mmin. Here, Mmin is the minimum mass halo that can host an LBG, M1 is a normalization parameter, associated with the mass above which haloes host more than one observed LBG, and S determines the strength of the mass-dependence. We show how these three parameters are constrained by three observable properties of LBGs: the number density, the large-scale bias and the fraction of objects in close pairs. Given these three quantities, the three unknown model parameters may be estimated analytically, allowing a full exploration of parameter space. As an example, we assume a ΛCDM cosmology and consider the observed properties of a recent sample of spectroscopically confirmed LBGs. We find that the favoured range for our model parameters is Mmin~=(0.4-8)×1010h- 1Msolar, M1~=(6-10)×1012h- 1Msolar, and 0.9<~S<~1.1. The preferred region in Mmin expands by an order of magnitude, and slightly shallower slopes are acceptable if the allowed range of bg is permitted to span all recent observational estimates. We also discuss how the observed clustering of LBGs as a function of luminosity can be used to constrain halo occupation, although because of current observational uncertainties we are unable to reach any strong conclusions. Our methods and results can be used to constrain more realistic models that aim to derive the occupation function N(M) from first principles, and offer insight into how basic physical properties affect the observed properties of LBGs.

  16. Exploring non-standard stellar physics with lithium depletion

    NASA Astrophysics Data System (ADS)

    Somers, Garrett

    2017-01-01

    Standard models of stellar evolution generally rely on the assumption that the structure and evolution of stars are uniquely determined by their mass, composition, and age. This assumption is now known to be too simplistic, as there remain numerous features of the observed cluster and field stellar pattern which cannot be explained by standard stellar theory. One such discrepancy pertains to the evolving abundances of the light element lithium, which shows significant dispersions between stars of equal mass and age on the pre-main sequence, in defiance of standard predictions. Lithium is rapidly destroyed by proton capture in the deep interiors of stars, and consequently the Li abundance observed in a star's convective envelope encodes information about the evolution of the temperature of its interior, and about the history of material exchanged between the surface and hot central regions. This makes Li an extremely sensitive diagnostic of stellar physics. Identifying the ways in which standard lithium predictions differ from the observed pattern gives us a crucial laboratory for understanding how non-standard physical effects are influencing stellar structure and evolution. In this talk, I will argue that starspots, correlated with rotation, are the underlying driver of dispersion in lithium abundance on the pre-main sequence. Starspots are ubiquitously found on young, active stars, and may cover up to 50% of their surfaces. By modifying an existing stellar evolution code to account for spot effects on both the surface boundary conditions and the transport of energy in the interior, I will show that heavy spot coverage systematically increases the radii of the fastest spinning young stars. This effect cools their interiors, leading to a reduce rate of lithium destruction on the pre-main sequence. This insight demonstrates that stars of equal mass and age can have different stellar parameters, and holds important consequences for measuring the masses and ages of

  17. The Outer Halo -- Halo Origins and Mass of the Galaxy

    NASA Astrophysics Data System (ADS)

    Morrison, Heather; Arabadjis, John; Dohm-Palmer, Robbie; Freeman, Ken; Harding, Paul; Mateo, Mario; Norris, John; Olszewski, Ed; Sneden, Chris

    2000-02-01

    Through our detection of distant halo stars, we are now well placed to map the regions of the Galactic halo where previously only satellite galaxies and a few globular clusters were known. Mapping this region is crucial for answering questions like: How and over what timescales was the Milky Way's stellar halo assembled? What is the total mass and shape of its dark halo? The Sagittarius dwarf has demonstrated that at least some of the stellar halo was accreted. But, HOW MUCH of the halo was accreted? Our previous efforts have proven that the Washington photometric system, in conjuction with spectroscopy, is capable of efficiently and unambiguously identifying halo stars out to 100 kpc or more. We require followup spectroscopy to map velocity substructure, which is more likely visible in the outer halo because of the long dynamical timescales, and to identify the rare objects in the extreme outer halo which will constrain the shape and size of its dark halo. We are applying for 4m/RCSP time at both CTIO and KPNO to observe faint outer-halo giant and BHB candidates.

  18. What's a Halo?

    MedlinePlus

    ... to school, doing schoolwork, and participating in extracurricular clubs, as long as they're feeling up to it and the doctor says it's OK. Your child's doctor will tell you what activities your child should avoid while in a halo brace. Sports will have to be put on hold for ...

  19. Halo formation and evolution: unifying physical properties with structure

    NASA Astrophysics Data System (ADS)

    Ernest, Alllan David; Collins, Matthew P.

    2015-08-01

    The assembly of matter in the universe proliferates a variety of structures with diverse properties. For example, massive halos of clusters of galaxies have temperatures often an order of magnitude or more higher than the individual galaxy halos within the cluster, or the temperatures of isolated galaxy halos. Giant spiral galaxies contain large quantities of both dark matter and hot gas while other structures like globular clusters appear to have little or no dark matter or gas. Still others, like the dwarf spheroidal galaxies have low gravity and little hot gas, but ironically contain some of the largest fractions of dark matter in the universe. Star forming rates (SFRs) also vary: compare for example the SFRs of giant elliptical galaxies, globular clusters, spiral and starburst galaxies. Furthermore there is evidence that the various structure types have existed over a large fraction of cosmic history. How can this array of variation in properties be reconciled with galaxy halo formation and evolution?We propose a model of halo formation [1] and evolution [2] that is consistent with both primordial nucleosynthesis (BBN) and the isotropies in the cosmic microwave background (CMB). The model uses two simple parameters, the total mass and size of a structure, to (1) explain why galaxies have the fractions of dark matter that they do (including why dwarf spheroidals are so dark matter dominated despite their weak gravity), (2) enable an understanding of the black hole-bulge/black hole-dark halo relations, (3) explain how fully formed massive galaxies can occur so early in cosmic history, (4) understand the connection between spiral and elliptical galaxies (5) unify the nature of globular clusters, dwarf spheroidal galaxies and bulges and (6) predict the temperatures of hot gas halos and understand how cool galaxy halos can remain stable in the hot environments of cluster-galaxy halos.[1] Ernest, A. D., 2012, in Prof. Ion Cotaescu (Ed) Advances in Quantum Theory, pp

  20. THE HALO OCCUPATION DISTRIBUTION OF SDSS QUASARS

    SciTech Connect

    Richardson, Jonathan; Chatterjee, Suchetana; Nagai, Daisuke; Zheng Zheng; Shen Yue

    2012-08-10

    We present an estimate of the projected two-point correlation function (2PCF) of quasars in the Sloan Digital Sky Survey (SDSS) over the full range of one- and two-halo scales, 0.02 h{sup -1} Mpc < r{sub p} < 120 h{sup -1} Mpc. This was achieved by combining data from SDSS DR7 on large scales and Hennawi et al. (with appropriate statistical corrections) on small scales. Our combined clustering sample is the largest spectroscopic quasar clustering sample to date, containing {approx}48, 000 quasars in the redshift range 0.4 {approx}< z {approx}< 2.5 with median redshift 1.4. We interpret these precise 2PCF measurements within the halo occupation distribution (HOD) framework and constrain the occupation functions of central and satellite quasars in dark matter halos. In order to explain the small-scale clustering, the HOD modeling requires that a small fraction of z {approx} 1.4 quasars, f{sub sat} = (7.4 {+-} 1.4) Multiplication-Sign 10{sup -4}, be satellites in dark matter halos. At z {approx} 1.4, the median masses of the host halos of central and satellite quasars are constrained to be M{sub cen} = 4.1{sup +0.3}{sub -0.4} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun} and M{sub sat} = 3.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 14} h{sup -1} M{sub Sun }, respectively. To investigate the redshift evolution of the quasar-halo relationship, we also perform HOD modeling of the projected 2PCF measured by Shen et al. for SDSS quasars with median redshift 3.2. We find tentative evidence for an increase in the mass scale of quasar host halos-the inferred median mass of halos hosting central quasars at z {approx} 3.2 is M{sub cen} = 14.1{sup +5.8}{sub -6.9} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun }. The cutoff profiles of the mean occupation functions of central quasars reveal that quasar luminosity is more tightly correlated with halo mass at higher redshifts. The average quasar duty cycle around the median host halo mass is inferred to be f{sub q

  1. Non-standard models and the sociology of cosmology

    NASA Astrophysics Data System (ADS)

    López-Corredoira, Martín

    2014-05-01

    I review some theoretical ideas in cosmology different from the standard "Big Bang": the quasi-steady state model, the plasma cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Cosmologists do not usually work within the framework of alternative cosmologies because they feel that these are not at present as competitive as the standard model. Certainly, they are not so developed, and they are not so developed because cosmologists do not work on them. It is a vicious circle. The fact that most cosmologists do not pay them any attention and only dedicate their research time to the standard model is to a great extent due to a sociological phenomenon (the "snowball effect" or "groupthink"). We might well wonder whether cosmology, our knowledge of the Universe as a whole, is a science like other fields of physics or a predominant ideology.

  2. Halo Core Tracking for Galaxy Placement in Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Korytov, Danila

    2017-01-01

    Synthetic galaxy catalogs are an important product of cosmological simulations. Upcoming surveys, such as LSST, require high volume and high resolution simulations for generating large object catalogs. These catalogs have many uses including testing and improving analysis pipelines, predictions for different cosmologies and investigations of systematic errors. Dark matter (DM) only simulations are able to reach the required volume and resolution but need an accurate prescription for galaxy placement within DM halos. We present a method for galaxy placement. For halos above a characteristic mass, central DM simulation particles are taken as tracer particles for a galaxy. These halo ``cores'' are tracked through the simulation and may merge with other ``cores'' or be ripped apart by halo tidal forces. We examine how accurately we can reproduce galaxy cluster profiles, two point correlation functions and other galaxy statistics.

  3. Possible existence of wormholes in the central regions of halos

    SciTech Connect

    Rahaman, Farook; Salucci, P.; Kuhfittig, P.K.F.; Ray, Saibal; Rahaman, Mosiur

    2014-11-15

    An earlier study (Rahaman, et al., 2014 and Kuhfittig, 2014) has demonstrated the possible existence of wormholes in the outer regions of the galactic halo, based on the Navarro–Frenk–White (NFW) density profile. This paper uses the Universal Rotation Curve (URC) dark matter model to obtain analogous results for the central parts of the halo. This result is an important compliment to the earlier result, thereby confirming the possible existence of wormholes in most of the spiral galaxies. - Highlights: • Earlier we showed possible existence of wormholes in the outer regions of halo. • We obtain here analogous results for the central parts of the galactic halo. • Our result is an important compliment to the earlier result. • This confirms possible existence of wormholes in most of the spiral galaxies.

  4. Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions

    SciTech Connect

    Blennow, Mattias; Coloma, Pilar; Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu; Lopez-Pavon, Jacobo

    2016-09-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formal- ism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a bench- mark. We conclude that non-unitarity effects are too constrained to impact present or near future neutrino oscillation facilities but that sterile neutrinos can play an important role at long baseline experiments. The role of the near detector is also discussed in detail.

  5. What determines large scale galaxy clustering: halo mass or local density?

    NASA Astrophysics Data System (ADS)

    Pujol, Arnau; Hoffmann, Kai; Jiménez, Noelia; Gaztañaga, Enrique

    2017-02-01

    Using a dark matter simulation we show how halo bias is determined by local density and not by halo mass. This is not totally surprising as, according to the peak-background split model, local matter density (bar δ) is the property that constrains bias at large scales. Massive haloes have a high clustering because they reside in high density regions. Small haloes can be found in a wide range of environments which differentially determine their clustering amplitudes. This contradicts the assumption made by standard halo occupation distribution (HOD) models that bias and occupation of haloes is determined solely by their mass. We show that the bias of central galaxies from semi-analytic models of galaxy formation as a function of luminosity and colour is therefore not correctly predicted by the standard HOD model. Using bar δ (of matter or galaxies) instead of halo mass, the HOD model correctly predicts galaxy bias. These results indicate the need to include information about local density and not only mass in order to correctly apply HOD analysis in these galaxy samples. This new model can be readily applied to observations and has the advantage that, in contrast with the dark matter halo mass, the galaxy density can be directly observed.

  6. Probing satellite haloes with weak gravitational lensing

    NASA Astrophysics Data System (ADS)

    Gillis, Bryan R.; Hudson, Michael J.; Hilbert, Stefan; Hartlap, Jan

    2013-02-01

    We demonstrate the possibility of detecting tidal stripping of dark matter subhaloes within galaxy groups using weak gravitational lensing. We have run ray-tracing simulations on galaxy catalogues from the Millennium Simulation to generate mock shape catalogues. The ray-tracing catalogues assume a halo model for galaxies and groups using various models with different distributions of mass between galaxy and group haloes to simulate different stages of group evolution. Using these mock catalogues, we forecast the lensing signals that will be detected around galaxy groups and satellite galaxies, as well as test two different methods for isolating the satellites' lensing signals. A key challenge is to determine the accuracy to which group centres can be identified. We show that with current and ongoing surveys, it will possible to detect stripping in groups of mass 1012-1015 M⊙.

  7. 46 CFR 164.019-7 - Non-standard components; acceptance criteria and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... identification number. (3) The report of a recognized laboratory's test data in accordance with the “acceptance... 46 Shipping 6 2011-10-01 2011-10-01 false Non-standard components; acceptance criteria and... Components § 164.019-7 Non-standard components; acceptance criteria and procedures. (a) General....

  8. Assembly history of subhalo populations in galactic and cluster sized dark haloes

    NASA Astrophysics Data System (ADS)

    Xie, Lizhi; Gao, Liang

    2015-12-01

    We make use of two suits of ultrahigh resolution N-body simulations of individual dark matter haloes from the Phoenix and the Aquarius Projects to investigate systematics of assembly history of subhaloes in dark matter haloes differing by a factor of 1000 in the halo mass. We have found that real progenitors which built up present-day subhalo population are relatively more abundant for high-mass haloes, in contrast to previous studies claiming a universal form independent of the host halo mass. That is mainly because of repeated counting of the `re-accreted' (progenitors passed through and were later re-accreted to the host more than once) and inclusion of the `ejected' progenitor population (progenitors were accreted to the host in the past but no longer members at present day) in previous studies. The typical accretion time for all progenitors vary strongly with the host halo mass, which is typical about z ˜ 5 for the galactic Aquarius and about z ˜ 3 for the cluster sized Phoenix haloes. Once these progenitors start to orbit their parent haloes, they rapidly lose their original mass but not their identifiers, more than 55 (50) per cent of them survive to present day for the Phoenix (Aquarius) haloes. At given redshift, survival fraction of the accreted subhalo is independent of the parent halo mass, whilst the mass-loss of the subhalo is more efficient in high-mass haloes. These systematics results in similarity and difference in the subhalo population in dark matter haloes of different masses at present day.

  9. Ghostly Halos in Dwarf Galaxies: a probe of star formation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Kang, Hoyoung; Ricotti, Massimo

    2016-01-01

    We carry out numerical simulations to characterize the size, stellar mass, and stellar mass surface density of extended stellar halos in dwarf galaxies as a function of dark matter halo mass. We expect that for galaxies smaller than a critical value, these ghostly halos will not exist because the smaller galactic subunits that build it up, do not form any stars. The detection of ghostly halos around isolated dwarf galaxies is a sensitive test of the efficiency of star formation in the first galaxies and of whether ultra-faint dwarf satellites of the Milky Way are fossils of the first galaxies.

  10. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    cool (4,800 K) companion star in a wide orbit, likely separated by several AU.An Unknown Past and FutureWhy are these new observations of J1211 such a big deal? Because all the acceleration scenarios for a star originating in the Galactic disk fail in the case of J1211. The authors find by modeling J1211s motion that the system cant have originated in the Galactic center, so interactions with the supermassive black hole are out. And supernova explosions or dynamical interactions would tear the wide binary apart in the process of accelerating it. Nmeth and collaborators suggest instead that J1211 was either born in the halo population or accreted later from the debris of a destroyed satellite galaxy.J1211s speed is so extreme that its orbit could be either bound or unbound. Interestingly, when the authors model the binarys orbit, they find that the assumed mass of the Milky Ways dark-matter halo determines whether J1211s orbit is bound. This means that future observations of J1211 may provide a new way to probe the Galactic potential and determine the mass of the dark matter halo, in addition to revealing unexpected origins of high-velocity halo stars.CitationPter Nmeth et al 2016 ApJ 821 L13. doi:10.3847/2041-8205/821/1/L13

  11. Galaxy Evolution: Effects of Stellar Feedback on the Halo Formation

    NASA Astrophysics Data System (ADS)

    Myers, J. M.; Hartmann, D. H.; The, L.-S.

    2003-05-01

    Recent reviews of Milky Way globular cluster formation indicate three groups associated with the formation of the bulge, disk and halo, and one group associated with accretion processes (van den Bergh 2000). Malinie et al. (1991) showed that the metallicity distribution of the halo globular clusters can be reproduced in the ELS scenario if the initial density profile is nonuniform and kinetic feedback from supernovae is taken into account. Their simulations were performed in 1D and did not include dark matter. In this study, using an N-body/SPH simulation, we attempt to explain the effect of stellar feedback on the formation and distribution of the halo globular clusters. We present 3D simulations of a rotating homogeneous collapse including dark matter, cooling gas, and stars. Three formulations of supernova feedback are considered.

  12. Rainbows, halos, and glories.

    NASA Astrophysics Data System (ADS)

    Greenler, R.

    Paperback edition of the book first published in 1980 (31.003.052). Contents: 1. Rainbows. 2. Ice-crystal refraction effects: halos, arcs, and spots. 3. Ice-crystal reflection effects: pillars, circles, and crosses. 4. Complex displays, past and present. 5. Scattering: light in the sky and color in the clouds. 6. Diffraction: the corona, the glory, and the specter of the Brocken. 7. Atmospheric refraction: mirages, twinkling stars, and the green flash.

  13. A look into the inside of haloes: a characterization of the halo shape as a function of overdensity in the Planck cosmology

    NASA Astrophysics Data System (ADS)

    Despali, Giulia; Giocoli, Carlo; Bonamigo, Mario; Limousin, Marceau; Tormen, Giuseppe

    2017-04-01

    In this paper, we study the triaxial properties of dark matter haloes of a wide range of masses extracted from a set of cosmological N-body simulations. We measure the shape at different distances from the halo centre (characterized by different overdensity thresholds), both in three and in two dimensions. We discuss how halo triaxiality increases with mass, redshift and distance from the halo centre. We also examine how the orientations of the different ellipsoids are aligned with each other and what is the gradient in internal shapes for haloes with different virial configurations. Our findings highlight that the internal part of the halo retains memory of the violent formation process keeping the major axis oriented towards the preferential direction of the infalling material while the outer part becomes rounder due to continuous isotropic merging events. This effect is clearly evident in high-mass haloes - which formed more recently - while it is more blurred in low-mass haloes. We present simple distributions that may be used as priors for various mass reconstruction algorithms, operating in different wavelengths, in order to recover a more complex and realistic dark matter distribution of isolated and relaxed systems.

  14. Halo Star Lithium Depletion

    SciTech Connect

    Pinsonneault, M. H.; Walker, T. P.; Steigman, G.; Narayanan, Vijay K.

    1999-12-10

    The depletion of lithium during the pre-main-sequence and main-sequence phases of stellar evolution plays a crucial role in the comparison of the predictions of big bang nucleosynthesis with the abundances observed in halo stars. Previous work has indicated a wide range of possible depletion factors, ranging from minimal in standard (nonrotating) stellar models to as much as an order of magnitude in models that include rotational mixing. Recent progress in the study of the angular momentum evolution of low-mass stars permits the construction of theoretical models capable of reproducing the angular momentum evolution of low-mass open cluster stars. The distribution of initial angular momenta can be inferred from stellar rotation data in young open clusters. In this paper we report on the application of these models to the study of lithium depletion in main-sequence halo stars. A range of initial angular momenta produces a range of lithium depletion factors on the main sequence. Using the distribution of initial conditions inferred from young open clusters leads to a well-defined halo lithium plateau with modest scatter and a small population of outliers. The mass-dependent angular momentum loss law inferred from open cluster studies produces a nearly flat plateau, unlike previous models that exhibited a downward curvature for hotter temperatures in the 7Li-Teff plane. The overall depletion factor for the plateau stars is sensitive primarily to the solar initial angular momentum used in the calibration for the mixing diffusion coefficients. Uncertainties remain in the treatment of the internal angular momentum transport in the models, and the potential impact of these uncertainties on our results is discussed. The 6Li/7Li depletion ratio is also examined. We find that the dispersion in the plateau and the 6Li/7Li depletion ratio scale with the absolute 7Li depletion in the plateau, and we use observational data to set bounds on the 7Li depletion in main-sequence halo

  15. The Origin and Evolution of Halo Bias in Linear and Nonlinear Regimes

    NASA Astrophysics Data System (ADS)

    Kravtsov, Andrey V.; Klypin, Anatoly A.

    1999-08-01

    We present results from a study of bias and its evolution for galaxy-size halos in a large, high-resolution simulation of a low-density, cold dark matter model with a cosmological constant. In addition to the previous studies of the halo two-point correlation function, we consider the evolution of bias estimated using two different statistics: power spectrum bP and a direct correlation of smoothed halo and matter overdensity fields bδ. We present accurate estimates of the evolution of the matter power spectrum probed deep into the stable clustering regime [k~(0.1-200) h Mpc-1 at z=0] and find that its shape and evolution can be well described, with only a minor modification, by the fitting formula of Peacock & Dodds. The halo power spectrum evolves much slower than the power spectrum of matter and has a different shape which indicates that the bias is time and scale dependent. At z=0, the halo power spectrum is antibiased (bP<1) with respect to the matter power spectrum at wavenumbers k~(0.15-30) h Mpc-1 and provides an excellent match to the power spectrum of the Automatic Plate Measuring Facility (APM) galaxies at all probed k. In particular, both the halo and matter power spectra show an inflection at k~0.15 h Mpc-1, which corresponds to the present-day scale of nonlinearity and nicely matches the inflection observed in the APM power spectrum. We complement the power spectrum analysis with a direct estimate of bias using smoothed halo and matter overdensity fields and show that the evolution observed in the simulation in linear and mildly nonlinear regimes can be well described by the analytical model of Mo & White, if the distinction between formation redshift of halos and observation epoch is introduced into the model. We present arguments and evidence that at higher overdensities the evolution of bias is significantly affected by dynamical friction and tidal stripping operating on the satellite halos in high-density regions of clusters and groups; we

  16. The Sombrero: The First X-Ray-Source Map of a Galaxy Halo

    NASA Astrophysics Data System (ADS)

    di Stefano, R.

    2009-10-01

    Although dominated by dark matter, galaxy halos also harbor stars. The spatial and age distributions of halo stars hold clues to processes such as the tidal disruption of dwarf galaxies (DGs). Because stars in the halo produce x-ray emission, studying the halo's x-ray sources (XRSs), which are far brighter than typical stars, can help us explore the halo and trace its history. XMM-Newton has the sensitivity and wide-area coverage needed to map the halo XRS population of one of the most remarkable galaxies: the Sombrero (M104). We propose six 30-ksec exposures which will discover the extension of the large bulge population, as well as XRSs in globular clusters and DGs. We will search for optical counterparts to each XRS, to better understand its environment, nature, and possible origin.

  17. Bounds on halo-particle interactions from interstellar calorimetry

    NASA Technical Reports Server (NTRS)

    Chivukula, Sekhar R.; Cohen, Andrew G.; Dimopoulos, Savas; Walker, Terry P.

    1990-01-01

    It is shown that the existence of neutral interstellar clouds constrains the interaction of any particulate dark-matter candidate with atomic hydrogen to be quite small. Even for a halo particle of mass 1 PeV (10 to the 6 GeV), it is shown that the cross section with hydrogen must be smaller than the typical atomic cross section that is expected for a positively charged particle bound to an electron. The argument presented is that if the clouds are in equilibrium, then the rate at which energy is deposited by collisions with dark-matter particles must be smaller than the rate at which the cloud can cool. This argument is used to constrain the interaction cross section of dark matter with hydrogen. Remarks are made on the general viability of charged dark matter. Comments are also made on a bound which derives from the dynamical stability of the halo.

  18. Zoomed cosmological simulations of Milky Way-sized haloes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Arnold, Christian; Springel, Volker; Puchwein, Ewald

    2016-10-01

    We investigate the impact of f(R) modified gravity on the internal properties of Milky Way-sized dark matter haloes in a set of cosmological zoom simulations of seven haloes from the Aquarius suite, carried out with our code MG-GADGET in the Hu & Sawicki f(R) model. Also, we calculate the fifth forces in ideal NFW-haloes as well as in our cosmological simulations and compare them against analytic model predictions for the fifth force inside spherical objects. We find that these theoretical predictions match the forces in the ideal haloes very well, whereas their applicability is somewhat limited for realistic cosmological haloes. Our simulations show that f(R) gravity significantly affects the dark matter density profile of Milky Way-sized objects as well as their circular velocities. In unscreened regions, the velocity dispersions are increased by up to 40 per cent with respect to ΛCDM for viable f(R) models. This difference is larger than reported in previous works. The Solar circle is fully screened in bar{f}_{R0} = -10^{-6} models for Milky Way-sized haloes, while this location is unscreened for slightly less massive objects. Within the scope of our limited halo sample size, we do not find a clear dependence of the concentration parameter of dark matter haloes on bar{f}_{R0}.

  19. Halo mass function and the free streaming scale

    NASA Astrophysics Data System (ADS)

    Schneider, Aurel; Smith, Robert E.; Reed, Darren

    2013-08-01

    The nature of structure formation around the particle free streaming scale is still far from understood. Many attempts to simulate hot, warm and cold dark matter cosmologies with a free streaming cut-off have been performed with cosmological particle-based simulations, but they all suffer from spurious structure formation at scales below their respective free streaming scales - i.e. where the physics of halo formation is most affected by free streaming. We perform a series of high-resolution numerical simulations of different warm dark matter (WDM) models, and develop an approximate method to subtract artificial structures in the measured halo mass function. The corrected measurements are then used to construct and calibrate an extended Press-Schechter (EPS) model with sharp-k window function and adequate mass assignment. The EPS model gives accurate predictions for the low-redshift halo mass function of cold dark matter (CDM) and WDM models, but it significantly underpredicts the halo abundance at high redshifts. By taking into account the ellipticity of the initial patches and connecting the characteristic filter scale to the smallest ellipsoidal axis, we are able to eliminate this inconsistency and obtain an accurate mass function over all redshifts and all dark matter particle masses covered by the simulations. As an additional application we use our model to predict the microhalo abundance of the standard neutralino-CDM scenario and we give the first quantitative prediction of the mass function over the full range of scales of CDM structure formation.

  20. The importance of the cosmic web and halo substructure for power spectra

    NASA Astrophysics Data System (ADS)

    Pace, Francesco; Manera, Marc; Bacon, David J.; Crittenden, Robert; Percival, Will J.

    2015-11-01

    In this work, we study the relevance of the cosmic web and substructures on the matter and lensing power spectra measured from halo mock catalogues extracted from the N-body simulations. Since N-body simulations are computationally expensive, it is common to use faster methods that approximate the dark matter field as a set of haloes. In this approximation, we replace mass concentrations in N-body simulations by a spherically symmetric Navarro-Frenk-White halo density profile. We also consider the full mass field as the sum of two distinct fields: dark matter haloes (M > 9 × 1012 M⊙ h-1) and particles not included into haloes. Mock haloes reproduce well the matter power spectrum, but underestimate the lensing power spectrum on large and small scales. For sources at zs = 1 the lensing power spectrum is underestimated by up to 40 per cent at ℓ ≈ 104 with respect to the simulated haloes. The large-scale effect can be alleviated by combining the mock catalogue with the dark matter distribution outside the haloes. In addition, to evaluate the contribution of substructures we have smeared out the intrahalo substructures in an N-body simulation while keeping the halo density profiles unchanged. For the matter power spectrum the effect of this smoothing is only of the order of 5 per cent, but for lensing substructures and ellipticity are much more important: for ℓ ≈ 104 modifications to the internal structure contribute to 30 per cent of the total spectrum. These findings have important implications in the way mock catalogues have to be created, suggesting that some approximate methods currently used for galaxy surveys will be inadequate for future weak lensing surveys.

  1. Corrections to halo model in presence of primordial magnetic field

    NASA Astrophysics Data System (ADS)

    Varalakshmi, Cheera; Nigam, Rahul

    2017-01-01

    We study the role played by the primordial magnetic field in the process of structure formation in the early universe. We have compared the halo mass abundance in the presence and absence of the magnetic field. We derive a modified Press-Schechter formula in presence of another source for matter perturbation and use it to study how this extra source affects halo count. This other source is the magnetic field with a given power spectrum. We find the ranges for the magnetic field strength over which the field enhances the halo formation for a mass range for spectral index nb = -2.95. We found that for field strength less than or equal to B = 7.0 nG, which we call the cut-off field strength, the presence of magnetic field enhances halo formation at low mass scale while it disrupts for a stronger field. We further investigate the dependence of halo count on the spectral index of the magnetic field power spectrum. We observe that at the cut-off field strength, halo formation is disrupted for a spectral index larger than -2.9. We carry out similar investigation for the more generic ellipsoidal collapse where the mass function is given by the Sheth-Tormen formula. For this case we find the cut-off field strength is 5.5 nG.

  2. "Halo nevi" and UV radiation.

    PubMed

    Pustisek, Nives; Sikanić-Dugić, Nives; Hirsl-Hećej, Vlasta; Domljan, Mislav Luka

    2010-04-01

    Halo nevi, also termed Sutton nevi, are defined as benign melanocytic nevi that are surrounded by an area of depigmentation resembling a halo. Halo nevi are common in children and young adults, with a mean age at onset of 15 years. The incidence in the population is estimated to be approximately 1%. Affected individuals frequently have multiple lesions which are usually localized on the back. A familial tendency for halo nevi has been reported. The etiology of halo nevi is unknown. It is an autoimmune response and T lymphocytes are considered to play a key role in the progressive destruction of nevus cells. Halo nevi may be associated with autoimmune disorders such as vitiligo, Hashimoto thyroiditis, alopecia areata, celiac disease, atopic dermatitis and others. It has been proved that halo nevi are detected after an intense sun exposure especially after sunburns. The etiology of halo nevi, association with malignant melanoma and the role of sun exposure in the development of halo nevi are discussed.

  3. Exploring the liminality: properties of haloes and subhaloes in borderline f(R) gravity

    NASA Astrophysics Data System (ADS)

    Shi, Difu; Li, Baojiu; Han, Jiaxin; Gao, Liang; Hellwing, Wojciech A.

    2015-09-01

    We investigate the properties of dark matter haloes and subhaloes in an f(R) gravity model with |fR0| = 10-6, using a very-high-resolution N-body simulation. The model is a borderline between being cosmologically interesting and yet still consistent with current data. We find that the halo mass function in this model has a maximum 20 per cent enhancement compared with the Λ-cold-dark-matter (ΛCDM) predictions between z = 1 and 0. Because of the chameleon mechanism which screens the deviation from standard gravity in dense environments, haloes more massive than 1013 h-1 M⊙ in this f(R) model have very similar properties to haloes of similar mass in ΛCDM, while less massive haloes, such as that of the Milky Way, can have steeper inner density profiles and higher velocity dispersions due to their weaker screening. The halo concentration is remarkably enhanced for low-mass haloes in this model due to a deepening of the total gravitational potential. Contrary to the naive expectation, the halo formation time zf is later for low-mass haloes in this model, a consequence of these haloes growing faster than their counterparts in ΛCDM at late times and the definition of zf. Subhaloes, especially those less massive than 1011 h-1 M⊙, are substantially more abundant in this f(R) model for host haloes less massive than 1013 h-1 M⊙. We discuss the implications of these results for the Milky Way satellite abundance problem. Although the overall halo and subhalo properties in this borderline f(R) model are close to their ΛCDM predictions, our results suggest that studies of the Local Group and astrophysical systems, aided by high-resolution simulations, can be valuable for further tests of it.

  4. Galaxy halo formation in the absence of violent relaxation and a universal density profile of the halo center

    SciTech Connect

    Baushev, A. N.

    2014-05-01

    While N-body simulations testify to a cuspy profile of the central region of dark matter halos, observations favor a shallow, cored density profile of the central region of at least some spiral galaxies and dwarf spheroidals. We show that a central profile, very close to the observed one, inevitably forms in the center of dark matter halos if we make a supposition about a moderate energy relaxation of the system during the halo formation. If we assume the energy exchange between dark matter particles during the halo collapse is not too intensive, the profile is universal: it depends almost not at all on the properties of the initial perturbation and is very akin, but not identical, to the Einasto profile with a small Einasto index n ∼ 0.5. We estimate the size of the 'central core' of the distribution, i.e., the extent of the very central region with a respectively gentle profile, and show that the cusp formation is unlikely, even if the dark matter is cold. The obtained profile is in good agreement with observational data for at least some types of galaxies but clearly disagrees with N-body simulations.

  5. The Role of Non-Standard PET Radionuclides in the Development of New Radiopharmaceuticals

    SciTech Connect

    Avila-Rodriguez, M. A.; McQuarrie, S. A.

    2008-08-11

    This paper discusses the production methods of the most commonly used non-standard PET radionuclides, their decay characteristics and importance in the development of novel radiopharmaceuticals for PET-based molecular imaging and potential applications in therapy.

  6. The Caterpillar Project: A Large Suite of Milky Way Sized Halos

    NASA Astrophysics Data System (ADS)

    Griffen, Brendan F.; Ji, Alexander P.; Dooley, Gregory A.; Gómez, Facundo A.; Vogelsberger, Mark; O'Shea, Brian W.; Frebel, Anna

    2016-02-01

    We present the largest number of Milky Way sized dark matter halos simulated at very high mass (˜104{M}⊙ /particle) and temporal resolution (5 Myr/snapshot) done to date, quadrupling what is currently available in the literature. This initial suite consists of the first 24 halos of the Caterpillar Project whose project goal of 60-70 halos will be made public when complete. We do not bias our halo selection by the size of the Lagrangian volume. We resolve ˜20,000 gravitationally bound subhalos within the virial radius of each host halo. Improvements were made upon current state-of-the-art halo finders to better identify substructure at such high resolutions, and on average we recover ˜4 subhalos in each host halo above 108 {M}⊙ which would have otherwise not been found. The density profiles of relaxed host halos are reasonably fit by Einasto profiles (α = 0.169 ± 0.023) with dependence on the assembly history of a given halo. Averaging over all halos, the substructure mass fraction is {f}m,{subs}\\quad =\\quad 0.121+/- 0.041, and mass function slope is dN/dM\\propto {M}-1.88+/- 0.10. We find concentration-dependent scatter in the normalizations at fixed halo mass. Our detailed contamination study of 264 low-resolution halos has resulted in unprecedentedly large high-resolution regions around our host halos for our fiducial resolution (sphere of radius ˜ 1.4+/- 0.4 Mpc). This suite will allow detailed studies of low mass dwarf galaxies out to large galactocentric radii and the very first stellar systems at high redshift (z ≥slant 15).

  7. Jupiter's Ring Halo

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A mosaic of four images taken through the clear filter (610 nanometers) of the solid state imaging (CCD) system aboard NASA's Galileo spacecraft on November 8, 1996, at a resolution of approximately 46 kilometers (km) per picture element (pixel) along the rings; however, because the spacecraft was only about 0.5 degrees above the ring plane, the image is highly foreshortened in the vertical direction. The images were obtained when Galileo was in Jupiter's shadow peering back toward the Sun; the ring was approximately 2,300,000 kilometers (km) away. The arc on the far right of the image is produced by sunlight scattered by small particles comprising Jupiter's upper atmospheric haze. The ring also efficiently scatters light, indicating that much of its brightness is due to particles that are microns or less in diameter. Such small particles are believed to have human-scale lifetimes, i.e., very brief compared to the solar system's age.

    Jupiter's ring system is composed of three parts -- a flat main ring, a lenticular halo interior to the main ring, and the gossamer ring, which lies exterior to the main ring. The near and far arms of Jupiter's main ring extend horizontally across the mosaic, joining together at the ring's ansa, on the far left side of the figure. The near arm of the ring appears to be abruptly truncated close to the planet, at the point where it passes into Jupiter's shadow.

    A faint mist of particles can be seen above and below the main rings; this vertically extended, toroidal 'halo' is unusual in planetary rings, and is probably caused by electromagnetic forces which can push small grains out of the ring plane. Halo material is present across this entire image, implying that it reaches more than 27,000 km above the ring plane. Because of shadowing, the halo is not visible close to Jupiter in the lower right part of the mosaic. In order to accentuate faint features in the image, different brightnesses are shown through color, with the brightest

  8. The discovery reach of CP violation in neutrino oscillation with non-standard interaction effects

    NASA Astrophysics Data System (ADS)

    Rahman, Zini; Dasgupta, Arnab; Adhikari, Rathin

    2015-06-01

    We have studied the CP violation discovery reach in a neutrino oscillation experiment with superbeam, neutrino factory and monoenergetic neutrino beam from the electron capture process. For NSI satisfying model-dependent bound for shorter baselines (like CERN-Fréjus set-up) there is insignificant effect of NSI on the the discovery reach of CP violation due to δ. Particularly, for the superbeam and neutrino factory we have also considered relatively longer baselines for which there could be significant NSI effects on CP violation discovery reach for higher allowed values of NSI. For the monoenergetic beam only shorter baselines are considered to study CP violation with different nuclei as neutrino sources. Interestingly for non-standard interactions—{{\\varepsilon }eμ } and {{\\varepsilon }eτ } of neutrinos with matter during propagation in longer baselines in the superbeam, there is the possibility of better discovery reach of CP violation than that with only Standard Model interactions of neutrinos with matter. For complex NSI we have shown the CP violation discovery reach in the plane of Dirac phase δ and NSI phase {{φ }ij}. The CP violation due to some values of δ remain unobservable with present and near future experimental facilities in the superbeam and neutrino factory. However, in the presence of some ranges of off-diagonal NSI phase values there are some possibilities of discovering total CP violation for any {{δ }CP} value even at 5σ confidence level for neutrino factory. Our analysis indicates that for some values of NSI phases total CP violation may not be at all observable for any values of δ. Combination of shorter and longer baselines could indicate in some cases the presence of NSI. However, in general for NSIs ≲ 1 the CP violation discovery reach is better in neutrino factory set-ups. Using a neutrino beam from the electron capture process for nuclei 50110Sn and 152Yb, we have shown the discovery reach of CP violation in a neutrino

  9. HALOE test and evaluation software

    NASA Technical Reports Server (NTRS)

    Edmonds, W.; Natarajan, S.

    1987-01-01

    Computer programming, system development and analysis efforts during this contract were carried out in support of the Halogen Occultation Experiment (HALOE) at NASA/Langley. Support in the major areas of data acquisition and monitoring, data reduction and system development are described along with a brief explanation of the HALOE project. Documented listings of major software are located in the appendix.

  10. The influence of halo evolution on galaxy structure

    NASA Astrophysics Data System (ADS)

    White, Simon

    2015-03-01

    If Einstein-Newton gravity holds on galactic and larger scales, then current observations demonstrate that the stars and interstellar gas of a typical bright galaxy account for only a few percent of its total nonlinear mass. Dark matter makes up the rest and cannot be faint stars or any other baryonic form because it was already present and decoupled from the radiation plasma at z = 1000, long before any nonlinear object formed. The weak gravito-sonic waves so precisely measured by CMB observations are detected again at z = 4 as order unity fluctuations in intergalactic matter. These subsequently collapse to form today's galaxy/halo systems, whose mean mass profiles can be accurately determined through gravitational lensing. High-resolution simulations link the observed dark matter structures seen at all these epochs, demonstrating that they are consistent and providing detailed predictions for all aspects of halo structure and growth. Requiring consistency with the abundance and clustering of real galaxies strongly constrains the galaxy-halo relation, both today and at high redshift. This results in detailed predictions for galaxy assembly histories and for the gravitational arena in which galaxies live. Dark halos are not expected to be passive or symmetric but to have a rich and continually evolving structure which will drive evolution in the central galaxy over its full life, exciting warps, spiral patterns and tidal arms, thickening disks, producing rings, bars and bulges. Their growth is closely related to the provision of new gas for galaxy building.

  11. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  12. Do Not Forget the Forest for the Trees: The Stellar-mass Halo-mass Relation in Different Environments

    NASA Astrophysics Data System (ADS)

    Tonnesen, Stephanie; Cen, Renyue

    2015-10-01

    The connection between dark matter halos and galactic baryons is often not well constrained nor well resolved in cosmological hydrodynamical simulations. Thus, halo occupation distribution models that assign galaxies to halos based on halo mass are frequently used to interpret clustering observations, even though it is well known that the assembly history of dark matter halos is related to their clustering. In this paper we use high-resolution hydrodynamical cosmological simulations to compare the halo and stellar mass growth of galaxies in a large-scale overdensity to those in a large-scale underdensity (on scales of about 20 Mpc). The simulation reproduces assembly bias, in which halos have earlier formation times in overdense environments than in underdense regions. We find that the ratio of stellar mass to halo mass is larger in overdense regions in central galaxies residing in halos with masses between 1011 and 1012.9 M⊙. When we force the local density (within 2 Mpc) at z = 0 to be the same for galaxies in the large-scale over- and underdensities, we find the same results. We posit that this difference can be explained by a combination of earlier formation times, more interactions at early times with neighbors, and more filaments feeding galaxies in overdense regions. This result puts the standard practice of assigning stellar mass to halos based only on their mass, rather than considering their larger environment, into question.

  13. DO NOT FORGET THE FOREST FOR THE TREES: THE STELLAR-MASS HALO-MASS RELATION IN DIFFERENT ENVIRONMENTS

    SciTech Connect

    Tonnesen, Stephanie; Cen, Renyue E-mail: cen@astro.princeton.edu

    2015-10-20

    The connection between dark matter halos and galactic baryons is often not well constrained nor well resolved in cosmological hydrodynamical simulations. Thus, halo occupation distribution models that assign galaxies to halos based on halo mass are frequently used to interpret clustering observations, even though it is well known that the assembly history of dark matter halos is related to their clustering. In this paper we use high-resolution hydrodynamical cosmological simulations to compare the halo and stellar mass growth of galaxies in a large-scale overdensity to those in a large-scale underdensity (on scales of about 20 Mpc). The simulation reproduces assembly bias, in which halos have earlier formation times in overdense environments than in underdense regions. We find that the ratio of stellar mass to halo mass is larger in overdense regions in central galaxies residing in halos with masses between 10{sup 11} and 10{sup 12.9} M{sub ⊙}. When we force the local density (within 2 Mpc) at z = 0 to be the same for galaxies in the large-scale over- and underdensities, we find the same results. We posit that this difference can be explained by a combination of earlier formation times, more interactions at early times with neighbors, and more filaments feeding galaxies in overdense regions. This result puts the standard practice of assigning stellar mass to halos based only on their mass, rather than considering their larger environment, into question.

  14. Improving fast generation of halo catalogues with higher order Lagrangian perturbation theory

    NASA Astrophysics Data System (ADS)

    Munari, Emiliano; Monaco, Pierluigi; Sefusatti, Emiliano; Castorina, Emanuele; Mohammad, Faizan G.; Anselmi, Stefano; Borgani, Stefano

    2017-03-01

    We present the latest version of PINOCCHIO, a code that generates catalogues of dark matter haloes in an approximate but fast way with respect to an N-body simulation. This code version implements a new on-the-fly production of halo catalogue on the past light cone with continuous time sampling, and the computation of particle and halo displacements are extended up to third-order Lagrangian perturbation theory (LPT), in contrast with previous versions that used Zel'dovich approximation. We run PINOCCHIO on the same initial configuration of a reference N-body simulation, so that the comparison extends to the object-by-object level. We consider haloes at redshifts 0 and 1, using different LPT orders either for halo construction or to compute halo final positions. We compare the clustering properties of PINOCCHIO haloes with those from the simulation by computing the power spectrum and two-point correlation function in real and redshift space (monopole and quadrupole), the bispectrum and the phase difference of halo distributions. We find that 2LPT and 3LPT give noticeable improvement. 3LPT provides the best agreement with N-body when it is used to displace haloes, while 2LPT gives better results for constructing haloes. At the highest orders, linear bias is typically recovered at a few per cent level. In Fourier space and using 3LPT for halo displacements, the halo power spectrum is recovered to within 10 per cent up to kmax ∼ 0.5 h Mpc-1. The results presented in this paper have interesting implications for the generation of large ensemble of mock surveys for the scientific exploitation of data from big surveys.

  15. J peak extraction from non-standard ballistocardiography data: a preliminary study.

    PubMed

    Xin Li; Ye Li

    2016-08-01

    In recent years, several advanced algorithms based on clustering, multi-method or data fusion approaches have been proposed to estimate heartbeat intervals from non-standard ballistocardiography (BCG) data. These advanced algorithms generally have higher computational complexity than J-peak based algorithms. This fact motivated us to study the problem of extracting J peaks from non-standard BCG data, because if this extraction can be realized, then a low-complexity J-peak based algorithm can be used to fast estimate heartbeat intervals from non-standard BCG data. We found that most of the energy in J peaks is contained in a relatively narrow frequency band, called J-peak band, and that the heartbeat harmonics outside the J-peak band can cause the non-standard BCG waveform. According to these findings, a FIR linear phase filter with the J-peak band as its pass-band is proposed. The experimental result demonstrates the ability of the proposed filter to extract J peaks from non-standard BCG data.

  16. Trigonometric parallaxes of high velocity halo white dwarf candidates

    NASA Astrophysics Data System (ADS)

    Ducourant, C.; Teixeira, R.; Hambly, N. C.; Oppenheimer, B. R.; Hawkins, M. R. S.; Rapaport, M.; Modolo, J.; Lecampion, J. F.

    2007-07-01

    Context: The status of 38 halo white dwarf candidates identified by Oppenheimer et al. (2001, Science, 292, 698) has been intensively discussed by various authors. In analyses undertaken to date, trigonometric parallaxes are crucial missing data. Distance measurements are mandatory to kinematically segregate halo object from disk objects and hence enable a more reliable estimate of the local density of halo dark matter residing in such objects. Aims: We present trigonometric parallax measurements for 15 candidate halo white dwarfs (WDs) selected from the Oppenheimer et al. (2001) list. Methods: We observed the stars using the ESO 1.56-m Danish Telescope and ESO 2.2-m telescope from August 2001 to July 2004. Results: Parallaxes with accuracies of 1-2 mas were determined yielding relative errors on distances of ~5% for 6 objects, ~12% for 3 objects, and ~20% for two more objects. Four stars appear to be too distant (probably farther than 100 pc) to have measurable parallaxes in our observations. Conclusions: Distances, absolute magnitudes and revised space velocities were derived for the 15 halo WDs from the Oppenheimer et al. (2001) list. Halo membership is confirmed unambiguously for 6 objects while 5 objects may be thick disk members and 4 objects are too distant to draw any conclusion based solely on kinematics. Comparing our trigonometric parallaxes with photometric parallaxes used in previous work reveals an overestimation of distance as derived from photometric techniques. This new data set can be used to revise the halo white dwarf space density, and that analysis will be presented in a subsequent publication. Based on observations collected at the European Southern Observatory, Chile (067.D-0107, 069.D-0054, 070.D-0028, 071.D-0005, 072.D-0153, 073.D-0028).

  17. Formation of the Galactic Stellar Halo. I. Structure and Kinematics

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji; Chiba, Masashi

    2001-09-01

    We perform numerical simulations for the formation of the Galactic stellar halo, based on the currently favored cold dark matter theory of galaxy formation. Our numerical models, taking into account both dynamical and chemical evolution processes in a consistent manner, are aimed at explaining the observed structure and kinematics of the stellar halo in the context of hierarchical galaxy formation. The main results of the present simulations are summarized as follows: (1) Basic physical processes involved in the formation of the stellar halo, composed of metal-deficient stars with [Fe/H]<=-1.0, are described by both dissipative and dissipationless merging of subgalactic clumps and their resultant tidal disruption in the course of gravitational contraction of the Galaxy at high redshift (z>1). (2) The simulated halo has a density profile similar to the observed power-law form of ρ(r)~r-3.5 and also has a metallicity distribution similar to the observations. The halo shows virtually no radial gradient for stellar ages and only a small gradient for metallicities. (3) The dual nature of the halo, i.e., its inner flattened and outer spherical density distribution, is reproduced, at least qualitatively, by the present model. The outer spherical halo is formed via essentially dissipationless merging of small subgalactic clumps, whereas the inner flattened one is formed via three different mechanisms, i.e., dissipative merging between larger, more massive clumps, adiabatic contraction due to the growing Galactic disk, and gaseous accretion onto the equatorial plane. (4) For the simulated metal-poor stars with [Fe/H]<=-1.0, there is no strong correlation between metal abundances and orbital eccentricities, in good agreement with the recent observations. Moreover, the observed fraction of the low-eccentricity stars is reproduced correctly for [Fe/H]<=-1.6 and approximately for the intermediate-abundance range of -1.6<[Fe/H]<=-1.0. (5) The mean rotational velocity of the

  18. Dark baryons not in ancient halo white dwarfs

    NASA Astrophysics Data System (ADS)

    Crézé, M.; Mohan, V.; Robin, A. C.; Reylé, C.; McCracken, H. J.; Cuillandre, J.-C.; Le Fèvre, O.; Mellier, Y.

    2004-10-01

    Having ruled out the possibility that stellar objects are the main contributor of the dark matter embedding galaxies, microlensing experiments cannot exclude the hypothesis that a significant fraction of the Milky Way dark halo might be made of MACHOs with masses in the range 0.5-0.8 M⊙. Ancient white dwarfs are generally considered the most plausible candidates for such MACHOs. We report the results of a search for such white dwarfs in a proper motion survey covering a 0.16 sq. deg. field at three epochs at high galactic latitude, and 0.938 sq. deg. at two epochs at intermediate galactic latitude (VIRMOS survey), using the CFH telescope. Both surveys are complete to I = 23, with detection efficiency fading to 0 at I = 24.2. Proper motion data are suitable to separate unambiguously halo white dwarfs identified as belonging to a non rotating system. No candidates were found within the colour-magnitude-proper motion volume where such objects can be safely discriminated from any standard population as well as from possible artefacts. In the same volume, we estimate the maximum white dwarf halo fraction compatible with this observation at different significance levels if the halo is at least 14 gigayears old and under different ad hoc initial mass functions. Our data alone rule out a halo fraction greater than 14 % at a 95% confidence level. Combined with two previous investigations exploring comparable volumes, this pushes the limit below 4 % (95% confidence level) or below 1 % (64% confidence), and implies that if baryonic dark matter is present in galaxy halos, it is not, or is only marginally in the form of faint hydrogen white dwarfs. Based on observations made at Canada-France-Hawaii Telescope (CFHT).

  19. HALOGEN: a tool for fast generation of mock halo catalogues

    NASA Astrophysics Data System (ADS)

    Avila, Santiago; Murray, Steven G.; Knebe, Alexander; Power, Chris; Robotham, Aaron S. G.; Garcia-Bellido, Juan

    2015-06-01

    We present a simple method of generating approximate synthetic halo catalogues: HALOGEN. This method uses a combination of second-order Lagrangian Perturbation Theory (2LPT) in order to generate the large-scale matter distribution, analytical mass functions to generate halo masses, and a single-parameter stochastic model for halo bias to position haloes. HALOGEN represents a simplification of similar recently published methods. Our method is constrained to recover the two-point function at intermediate (10 h-1 Mpc < r < 50 h-1 Mpc) scales, which we show is successful to within 2 per cent. Larger scales (˜100 h-1 Mpc) are reproduced to within 15 per cent. We compare several other statistics (e.g. power spectrum, point distribution function, redshift space distortions) with results from N-body simulations to determine the validity of our method for different purposes. One of the benefits of HALOGEN is its flexibility, and we demonstrate this by showing how it can be adapted to varying cosmologies and simulation specifications. A driving motivation for the development of such approximate schemes is the need to compute covariance matrices and study the systematic errors for large galaxy surveys, which requires thousands of simulated realizations. We discuss the applicability of our method in this context, and conclude that it is well suited to mass production of appropriate halo catalogues. The code is publicly available at https://github.com/savila/halogen.

  20. X-Ray Emission from the Halo of M31

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); DiStefano, Rosanne

    2004-01-01

    Our goal was to use short (10 ksec) observations of selected fields in the halo of M31, to determine the size and characteristics of its X-ray population and to study the connection between globular clusters and X-ray sources. The program of observations has yet to be successfully completed. We received acceptable data from just 2 of the 5 approved fields. Nevertheless, the results were intriguing and we have submitted a paper based on this data to Nature. We find that the X-ray source density is significantly enhanced in the vicinity of one GC, providing the first observational evidence supporting the ejection hypothesis. We also find additional X-ray sources, including some which are very soft, in large enough numbers to suggest that not all could have been formed in GCs. That is, some must be descended from the same primordial halo population that produced any compact stars comprising part of the halo's dark matter. Extrapolating fiom the X-ray source population, we estimate that stellar remnants and dim old stars in the halo could comprise as much as 25% of the estimated mass (approx. 10(exp 12) Solar Mass) of the halo. These results suggest that the other approved fields should be observed soon and also provide strong motivation for the future XMM-Newton programs.

  1. Non-standard interactions in propagation at the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar

    2016-03-01

    We study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ɛ ˜ {O} (0.05 - 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.

  2. Non-Standard Interactions in propagation at the Deep Underground Neutrino Experiment

    SciTech Connect

    Coloma, Pilar

    2016-03-03

    Here, we study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ε ~ $ \\mathcal{O} $ (0.05 – 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.

  3. Non-Standard Interactions in propagation at the Deep Underground Neutrino Experiment

    DOE PAGES

    Coloma, Pilar

    2016-03-03

    Here, we study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ε ~more » $$ \\mathcal{O} $$ (0.05 – 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.« less

  4. The 6dF Galaxy Survey: dependence of halo occupation on stellar mass

    NASA Astrophysics Data System (ADS)

    Beutler, Florian; Blake, Chris; Colless, Matthew; Jones, D. Heath; Staveley-Smith, Lister; Campbell, Lachlan; Parker, Quentin; Saunders, Will; Watson, Fred

    2013-03-01

    In this paper we study the stellar mass dependence of galaxy clustering in the 6dF Galaxy Survey (6dFGS). The near-infrared selection of 6dFGS allows more reliable stellar mass estimates compared to optical bands used in other galaxy surveys. Using the halo occupation distribution model, we investigate the trend of dark matter halo mass and satellite fraction with stellar mass by measuring the projected correlation function, wp(rp). We find that the typical halo mass (M1) as well as the satellite power-law index (α) increases with stellar mass. This indicates (1) that galaxies with higher stellar mass sit in more massive dark matter haloes and (2) that these more massive dark matter haloes accumulate satellites faster with growing mass compared to haloes occupied by low stellar mass galaxies. Furthermore, we find a relation between M1 and the minimum dark matter halo mass (Mmin) of M1 ≈ 22 Mmin, in agreement with similar findings for Sloan Digital Sky Survey galaxies. The satellite fraction of 6dFGS galaxies declines with increasing stellar mass from 21 per cent at Mstellar = 2.6 × 1010 h-2 M⊙ to 12 per cent at Mstellar = 5.4 × 1010 h-2 M⊙ indicating that high stellar mass galaxies are more likely to be central galaxies. We compare our results to two different semi-analytic models derived from the Millennium Simulation, finding some disagreement. Our results can be used for placing new constraints on semi-analytic models in the future, particularly the behaviour of luminous red satellites. Finally, we compare our results to studies of halo occupation using galaxy-galaxy weak lensing. We find good overall agreement, representing a valuable cross-check for these two different tools of studying the matter distribution in the Universe.

  5. The Concentration Dependence of the Galaxy–Halo Connection: Modeling Assembly Bias with Abundance Matching

    NASA Astrophysics Data System (ADS)

    Lehmann, Benjamin V.; Mao, Yao-Yuan; Becker, Matthew R.; Skillman, Samuel W.; Wechsler, Risa H.

    2017-01-01

    Empirical methods for connecting galaxies to their dark matter halos have become essential for interpreting measurements of the spatial statistics of galaxies. In this work, we present a novel approach for parameterizing the degree of concentration dependence in the abundance matching method. This new parameterization provides a smooth interpolation between two commonly used matching proxies: the peak halo mass and the peak halo maximal circular velocity. This parameterization controls the amount of dependence of galaxy luminosity on halo concentration at a fixed halo mass. Effectively this interpolation scheme enables abundance matching models to have adjustable assembly bias in the resulting galaxy catalogs. With the new 400 {Mpc} {h}-1 DarkSky Simulation, whose larger volume provides lower sample variance, we further show that low-redshift two-point clustering and satellite fraction measurements from SDSS can already provide a joint constraint on this concentration dependence and the scatter within the abundance matching framework.

  6. Strong lensing in the inner halo of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Saez, C.; Campusano, L. E.; Cypriano, E. S.; Sodré, L.; Kneib, J.-P.

    2016-08-01

    We present an axially symmetric formula to calculate the probability of finding gravitational arcs in galaxy clusters, being induced by their massive dark matter haloes, as a function of clusters redshifts and virial masses. The formula includes the ellipticity of the clusters dark matter potential by using a pseudo-elliptical approximation. The probabilities are calculated and compared for two dark matter halo profiles, the Navarro, Frenk and White (NFW) and the non-singular-isothermal-sphere (NSIS). We demonstrate the power of our formulation through a Kolmogorov-Smirnov (KS) test on the strong lensing statistics of an X-ray bright sample of low-redshift Abell clusters. This KS test allows us to establish limits on the values of the concentration parameter for the NFW profile (c_Δ) and the core radius for the NSIS profile (rc), which are related to the lowest cluster redshift (zcut) where strong arcs can be observed. For NFW dark matter profiles, we infer cluster haloes with concentrations that are consistent to those predicted by ΛCDM simulations. As for NSIS dark matter profiles, we find only upper limits for the clusters core radii and thus do not rule out a purely SIS model. For alternative mass profiles, our formulation provides constraints through zcut on the parameters that control the concentration of mass in the inner region of the clusters haloes. We find that zcut is expected to lie in the 0.0-0.2 redshift, highlighting the need to include very low-z clusters in samples to study the clusters mass profiles.

  7. Neutron stars and white dwarfs in galactic halos

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1989-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  8. Neutron stars and white dwarfs in galactic halos?

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Olive, Keith A.; Silk, Joseph

    1990-01-01

    The possibility that galactic halos are composed of stellar remnants such as neutron stars and white dwarfs is discussed. On the basis of a simple model for the evolution of galactic halos, researchers follow the history of halo matter, luminosity, and metal and helium abundances. They assume conventional yields for helium and the heavier elements. By comparing with the observational constraints, which may be considered as fairly conservative, it is found that, for an exponentially decreasing star formation rate (SFR) with e-folding time tau, only values between 6 x 10(8) less than similar to tau less than similar to 2 x 10(9) years are allowed together with a very limited range of masses for the initial mass function (IMF). Star formation is allowed for 2 solar mass less than similar to m less than similar to 8 solar mass if tau = 2 x 10(9) years, and for 4 solar mass less than similar to m less than similar to 6 solar mass if tau = 10(9) years. For tau = 6 x 10(8) years, the lower and upper mass limits merge to similar to 5 solar mass. Researchers conclude that, even though the possibility of neutron stars as halo matter may be ruled out, that of white dwarfs may still be a viable hypothesis, though with very stringent constraints on allowed parameters, that merits further consideration.

  9. Creating mock catalogues of stellar haloes from cosmological simulations

    NASA Astrophysics Data System (ADS)

    Lowing, Ben; Wang, Wenting; Cooper, Andrew; Kennedy, Rachel; Helly, John; Cole, Shaun; Frenk, Carlos

    2015-01-01

    We present a new technique for creating mock catalogues of the individual stars that make up the accreted component of stellar haloes in cosmological simulations and show how the catalogues can be used to test and interpret observational data. The catalogues are constructed from a combination of methods. A semi-analytic galaxy formation model is used to calculate the star formation history in haloes in an N-body simulation and dark matter particles are tagged with this stellar mass. The tags are converted into individual stars using a stellar population synthesis model to obtain the number density and evolutionary stage of the stars, together with a phase-space sampling method that distributes the stars while ensuring that the phase-space structure of the original N-body simulation is maintained. A set of catalogues based on the Λ cold dark matter Aquarius simulations of Milky Way mass haloes have been created and made publicly available on a website. Two example applications are discussed that demonstrate the power and flexibility of the mock catalogues. We show how the rich stellar substructure that survives in the stellar halo precludes a simple measurement of its density profile and demonstrate explicitly how pencil-beam surveys can return almost any value for the slope of the profile. We also show that localized variations in the abundance of particular types of stars, a signature of differences in the composition of stellar populations, allow streams to be easily identified.

  10. Parallel HOP: A Scalable Halo Finder for Massive Cosmological Data Sets

    NASA Astrophysics Data System (ADS)

    Skory, Stephen; Turk, Matthew J.; Norman, Michael L.; Coil, Alison L.

    2010-11-01

    Modern N-body cosmological simulations contain billions (109) of dark matter particles. These simulations require hundreds to thousands of gigabytes of memory and employ hundreds to tens of thousands of processing cores on many compute nodes. In order to study the distribution of dark matter in a cosmological simulation, the dark matter halos must be identified using a halo finder, which establishes the halo membership of every particle in the simulation. The resources required for halo finding are similar to the requirements for the simulation itself. In particular, simulations have become too extensive to use commonly employed halo finders, such that the computational requirements to identify halos must now be spread across multiple nodes and cores. Here, we present a scalable-parallel halo finding method called Parallel HOP for large-scale cosmological simulation data. Based on the halo finder HOP, it utilizes message passing interface and domain decomposition to distribute the halo finding workload across multiple compute nodes, enabling analysis of much larger data sets than is possible with the strictly serial or previous parallel implementations of HOP. We provide a reference implementation of this method as a part of the toolkit "yt", an analysis toolkit for adaptive mesh refinement data that include complementary analysis modules. Additionally, we discuss a suite of benchmarks that demonstrate that this method scales well up to several hundred tasks and data sets in excess of 20003 particles. The Parallel HOP method and our implementation can be readily applied to any kind of N-body simulation data and is therefore widely applicable.

  11. The halo-to-stellar mass ratio in the S4G

    NASA Astrophysics Data System (ADS)

    Díaz-García, Simón; Salo, Heikki; Laurikainen, Eija

    2017-03-01

    We use 3.6 μm photometry for 1154 disk galaxies (i < 65°) in the S4G (Sheth et al. 2010). We obtain the average stellar component of the circular velocity (V disk) and the mean (dark matter) halo-to-stellar mass ratio (M halo/M *) inside the optical radius (R opt) in bins of total stellar mass (M *, from Muñoz-Mateos et al. 2015), providing observational constraints for galaxy formation models to be tested against. We find the M halo/M * - M * relation in good agreement with the best-fit model at z ~ 0 in ΛCDM cosmological simulations (e.g. Moster 2010), assuming that the dark matter halo within R opt comprises a constant fraction (~ 4%) of its total mass.

  12. Halo WD Local Space Density from the GSC-II-based Survey

    NASA Astrophysics Data System (ADS)

    Carollo, D.; Bucciarelli, B.; Hodgkin, S. T.; Lattanzi, M. G.; McLean, B.; Smart, R. L.; Spagna, A.

    2007-09-01

    Microlensing experiments (Alcock et al. 2000) have suggested that a significant part of the dark halo of the Milky Way could be composed of matter in the form of massive compact halo objects (MACHOs). Cool ancient white dwarfs (WDs) are the natural candidates. Here we present the results of the GSC2 survey of halo WDs, including a description of the WD sample, and a derivation of the local space density of halo WDs by means of an accurate kinematic analysis. The local space density of these objects is shown to be only about ˜ 10-5M⊙pc-3, corresponding to 0.1%--0.2% of the local dark matter.

  13. Relation between halo spin and cosmic-web filaments at z ≃ 3

    NASA Astrophysics Data System (ADS)

    González, Roberto E.; Prieto, Joaquin; Padilla, Nelson; Jimenez, Raul

    2017-02-01

    We investigate the spin evolution of dark matter haloes and their dependence on the number of connected filaments from the cosmic web at high redshift (spin-filament relation hereafter). To this purpose, we have simulated 5000 haloes in the mass range 5 × 109 h-1 M⊙ to 5 × 1011 h-1 M⊙ at z = 3 in cosmological N-body simulations. We confirm the relation found by Prieto et al. (2015) where haloes with fewer filaments have larger spin. We also found that this relation is more significant for higher halo masses, and for haloes with a passive (no major mergers) assembly history. Another finding is that haloes with larger spin or with fewer filaments have their filaments more perpendicularly aligned with the spin vector. Our results point to a picture in which the initial spin of haloes is well described by tidal torque theory and then gets subsequently modified in a predictable way because of the topology of the cosmic web, which in turn is given by the currently favoured Lambda cold dark matter (LCDM) model. Our spin-filament relation is a prediction from LCDM that could be tested with observations.

  14. A unifying evolutionary framework for infrared-selected obscured and unobscured quasar host haloes

    NASA Astrophysics Data System (ADS)

    DiPompeo, M. A.; Hickox, R. C.; Myers, A. D.; Geach, J. E.

    2017-01-01

    Recent measurements of the dark matter halo masses of infrared-selected obscured quasars are in tension - some indicate that obscured quasars have a higher halo mass compared to their unobscured counterparts, while others find no difference. The former result is inconsistent with the simplest models of quasar unification which rely solely on the viewing angle, while the latter may support such models. Here, using empirical relationships between dark matter halo and supermassive black hole (BH) masses, we provide a simple evolutionary picture which naturally explains these findings and is motivated by more sophisticated merger-driven quasar-fuelling models. The model tracks the growth rate of haloes, with the BH growing in spurts of quasar activity in order to `catch up' with the Mbh-Mstellar-Mhalo relationship. The first part of the quasar phase is obscured and is followed by an unobscured phase. Depending on the luminosity limit of the sample, driven by observational selection effects, a difference in halo masses may or may not be significant. For high-luminosity samples, the difference can be large (a few to 10 times higher masses in obscured quasars), while for lower luminosity samples, the halo mass difference is very small, much smaller than current observational constraints. Such a simple model provides a qualitative explanation for the higher mass haloes of obscured quasars, as well as a rough quantitative agreement with seemingly disparate results.

  15. Non-Standard Italian Dialect Heritage Speakers' Acquisition of Clitic Placement in Standard Italian

    ERIC Educational Resources Information Center

    Chan, Lionel

    2014-01-01

    This dissertation examines the acquisition of object clitic placement in Standard Italian by heritage speakers (HSs) of non-standard Italian dialects. It compares two different groups of Standard Italian learners--Northern Italian dialect HSs and Southern Italian dialect HSs--whose heritage dialects contrast with each other in clitic word order.…

  16. Academics on Non-Standard Contracts in UK Universities: Portfolio Work, Choice and Compulsion

    ERIC Educational Resources Information Center

    Brown, Donna; Gold, Michael

    2007-01-01

    This paper analyses the profile and motivation of over 1,300 academics employed on part-time, fixed term or temporary contracts at 10 post-1992 UK universities, whom it categorises as "non-standard academics". Based on a questionnaire survey, it investigates their demographic background, including age, gender and ethnic background, as…

  17. Modern Standard Arabic vs. Non-Standard Arabic: Where Do Arab Students of EFL Transfer From?

    ERIC Educational Resources Information Center

    Mahmoud, Abdulmoneim

    2000-01-01

    Focuses on the learning of English as a foreign language (EFL) by Arabic-speaking secondary school students. To see which variety students transferred from, they were asked to translate into English two versions of a short Arabic text: one Modern Standard Arabic (MSA), and the other non-standard Arabic (NSA). Results indicate the importance of…

  18. IMPROVED MODELING OF THE MASS DISTRIBUTION OF DISK GALAXIES BY THE EINASTO HALO MODEL

    SciTech Connect

    Chemin, Laurent; De Blok, W. J. G.; Mamon, Gary A. E-mail: edeblok@ast.uct.ac.za

    2011-10-15

    Analysis of the rotation curves (RCs) of spiral galaxies provides an efficient diagnostic for studying the properties of dark matter halos and their relations with baryonic material. Since the cored pseudo-isothermal (Iso) model usually provides a better description of observed RCs than does the cuspy Navarro-Frenk-White (NFW) model, there have been concerns that the {Lambda}CDM primordial density fluctuation spectrum may not be the correct one. We have modeled the RCs of galaxies from The H I Nearby Galaxy Survey (THINGS) with the Einasto halo model, which has emerged as the best-fitting model of the halos arising in dissipationless cosmological N-body simulations. We find that the RCs are significantly better fit with the Einasto halo than with either Iso or NFW halo models. In our best-fit Einasto models, the radius of density slope -2 and the density at this radius are highly correlated. The Einasto index, which controls the overall shape of the density profile, is near unity on average for intermediate and low mass halos. This is not in agreement with the predictions from {Lambda}CDM simulations. The indices of the most massive halos are in rough agreement with those cosmological simulations and appear correlated with the halo virial mass. We find that a typical Einasto density profile declines more strongly in its outermost parts than any of the Iso or NFW models whereas it is relatively shallow in its innermost regions. The core nature of those regions of halos thus extends the cusp-core controversy found for the NFW model with low surface density galaxies to the Einasto halo with more massive galaxies like those of THINGS. The Einasto concentrations decrease as a function of halo mass, in agreement with trends seen in numerical simulations. However, they are generally smaller than values expected for simulated Einasto halos. We thus find that, so far, the Einasto halo model provides the best match to the observed RCs and can therefore be considered as a new

  19. A centrally heated dark halo for our Galaxy

    NASA Astrophysics Data System (ADS)

    Cole, D. R.; Binney, James

    2017-02-01

    We construct a new family of models of our Galaxy in which dark matter and disc stars are both represented by distribution functions that are analytic functions of the action integrals of motion. The potential that is self-consistently generated by the dark matter, stars, and gas is determined, and parameters in the distribution functions are adjusted until the model is compatible with observational constraints on the circular speed curve, the vertical density profile of the stellar disc near the Sun, the kinematics of nearly 200 000 giant stars within 2 kpc of the Sun, and estimates of the optical depth to microlensing of bulge stars. We find that the data require a dark halo in which the phase-space density is approximately constant for actions |J|≲ 140 kpc {km s^{-1}}. In real space, these haloes have core radii ≃2 kpc.

  20. Architecture of the Andromeda galaxy: a quantitative analysis of clustering in the inner stellar halo

    NASA Astrophysics Data System (ADS)

    Kafle, P. R.; Sharma, S.; Robotham, A. S. G.; Lewis, G. F.; Driver, S. P.

    2017-02-01

    We present a quantitative measurement of the amount of clustering present in the inner ˜30 kpc of the stellar halo of the Andromeda galaxy (M31). For this we analyse the angular positions and radial velocities of the carefully selected planetary nebulae in the M31 stellar halo. We study the cumulative distribution of pairwise distances in angular position and line-of-sight velocity space, and find that the M31 stellar halo contains substantially more stars in the form of close pairs as compared to that of a featureless smooth halo. In comparison to a smoothed/scrambled distribution, we estimate that the clustering excess in the M31 inner halo is roughly 40 per cent at maximum and on average ˜20 per cent. Importantly, comparing against the 11 stellar halo models of Bullock & Johnston, which were simulated within the context of the ΛCDM (Λ cold dark matter) cosmological paradigm, we find that the amount of substructures in the M31 stellar halo closely resembles that of a typical ΛCDM halo.

  1. Assembly Bias Has a Non-monotonic Dependence on Halo Age

    NASA Astrophysics Data System (ADS)

    Walker, Jean P.; Gawiser, E. J.; Padilla, N.

    2014-01-01

    Cosmological theory has long been known to predict an increase in clustering strength with dark matter halo mass. Research by Gao et al. (2005, MNRAS 363, L66) found that clustering strength also increases with halo age in low mass halos. This behavior, along with other parameters that affect clustering, is referred to as "assembly bias”. The goal of this dissertation is to understand the relationship between halo age and bias in order to improve the design and interpretation of large-scale cosmological surveys. Applying an improved definition of halo age to the Millennium-II simulation halo catalogs (Boylan-Kolchin 2009, MNRAS 398, 1150), we find the surprising result that, at z=0, the 20% youngest and 20% oldest halos both have elevated clustering amplitude compared to other halos of a given mass (Walker-Soler et al. 2013, in prep). Lyman Alpha Emitting galaxies (LAEs) are believed to represent the youngest galaxies at a given epoch. This makes large-scale cosmological surveys of LAEs, such as HETDEX, sensitive to assembly bias. We undertook the first study of the possible assembly bias of high-redshift LAEs and studied the evolution of mock LAE catalogs. We found the descendants of z=3.1 LAEs to be ~L* galaxies at z=0 irrespective of assembly bias but note that large uncertainties in their observed clustering make it difficult to predict the amplitude of their assembly bias (Walker-Soler et al. 2012, ApJ 752, 160).

  2. Testing DARKexp against energy and density distributions of Millennium-II halos

    NASA Astrophysics Data System (ADS)

    Nolting, Chris; Williams, Liliya L. R.; Boylan-Kolchin, Michael; Hjorth, Jens

    2016-09-01

    We test the DARKexp model for relaxed, self-gravitating, collisionless systems against equilibrium dark matter halos from the Millennium-II simulation. While limited tests of DARKexp against simulations and observations have been carried out elsewhere, this is the first time the testing is done with a large sample of simulated halos spanning a factor of ~ 50 in mass, and using independent fits to density and energy distributions. We show that DARKexp, a one shape parameter family, provides very good fits to the shapes of density profiles, ρ(r), and differential energy distributions, N(E), of individual simulated halos. The best fit shape parameter phi0 obtained from the two types of fits are correlated, though with scatter. Our most important conclusions come from ρ(r) and N(E) that have been averaged over many halos. These show that the bulk of the deviations between DARKexp and individual Millennium-II halos come from halo-to-halo fluctuations, likely driven by substructure, and other density perturbations. The average ρ(r) and N(E) are quite smooth and follow DARKexp very closely. The only deviation that remains after averaging is small, and located at most bound energies for N(E) and smallest radii for ρ(r). Since the deviation is confined to 3-4 smoothing lengths, and is larger for low mass halos, it is likely due to numerical resolution effects.

  3. Constraining the halo mass function with observations

    NASA Astrophysics Data System (ADS)

    Castro, Tiago; Marra, Valerio; Quartin, Miguel

    2016-12-01

    The abundances of dark matter haloes in the universe are described by the halo mass function (HMF). It enters most cosmological analyses and parametrizes how the linear growth of primordial perturbations is connected to these abundances. Interestingly, this connection can be made approximately cosmology independent. This made it possible to map in detail its near-universal behaviour through large-scale simulations. However, such simulations may suffer from systematic effects, especially if baryonic physics is included. In this paper, we ask how well observations can constrain directly the HMF. The observables we consider are galaxy cluster number counts, galaxy cluster power spectrum and lensing of Type Ia supernovae. Our results show that Dark Energy Survey is capable of putting the first meaningful constraints on the HMF, while both Euclid and J-PAS (Javalambre-Physics of the Accelerated Universe Astrophysical Survey) can give stronger constraints, comparable to the ones from state-of-the-art simulations. We also find that an independent measurement of cluster masses is even more important for measuring the HMF than for constraining the cosmological parameters, and can vastly improve the determination of the HMF. Measuring the HMF could thus be used to cross-check simulations and their implementation of baryon physics. It could even, if deviations cannot be accounted for, hint at new physics.

  4. MACHO (MAssive Compact Halo Objects) Data

    DOE Data Explorer

    The primary aim of the MACHO Project is to test the hypothesis that a significant fraction of the dark matter in the halo of the Milky Way is made up of objects like brown dwarfs or planets: these objects have come to be known as MACHOs, for MAssive Compact Halo Objects. The signature of these objects is the occasional amplification of the light from extragalactic stars by the gravitational lens effect. The amplification can be large, but events are extremely rare: it is necessary to monitor photometrically several million stars for a period of years in order to obtain a useful detection rate. For this purpose MACHO has a two channel system that employs eight CCDs, mounted on the 50 inch telescope at Mt. Stromlo. The high data rate (several GBytes per night) is accommodated by custom electronics and on-line data reduction. The Project has taken more than 27,000 images with this system since June 1992. Analysis of a subset of these data has yielded databases containing light curves in two colors for 8 million stars in the LMC and 10 million in the bulge of the Milky Way. A search for microlensing has turned up four candidates toward the Large Magellanic Cloud and 45 toward the Galactic Bulge. The web page for data provides links to MACHO Project data portals and various specialized interfaces for viewing or searching the data. (Specialized Interface)

  5. Mass extinctions and missing matter

    NASA Technical Reports Server (NTRS)

    Stothers, R. B.

    1984-01-01

    The possible influence of 'invisible matter' on the solar system's comet halo, and therefore on quasi-periodic cometary bombardment of the earth and consequent mass extinctions, is briefly addressed. Invisible matter consisting of small or cold interstellar molecular clouds could significantly modulate the comet background flux, while invisible matter consisting of a large population of old, dead stars with a relatively small galactic concentration probably could not. It is also shown that the downward force exerted by the Galaxy will perturb the halo, but will not produce any periodicity.

  6. Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Baudis, Laura

    2006-01-01

    More than 90% of matter in the Universe could be composed of heavy particles, which were non-relativistic, or 'cold', when they froze-out from the primordial soup. I will review current searches for these hypothetical particles, both via interactions with nuclei in deep underground detectors, and via the observation of their annihilation products in the Sun, galactic halo and galactic center.

  7. Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Baudis, Laura

    More than 90% of matter in the Universe could be composed of heavy particles, which were non-relativistic, or 'cold', when they froze-out from the primordial soup. I will review current searches for these hypothetical particles, both via interactions with nuclei in deep underground detectors, and via the observation of their annihilation products in the Sun, galactic halo and galactic center.

  8. Cosmology with massive neutrinos II: on the universality of the halo mass function and bias

    SciTech Connect

    Castorina, Emanuele; Sefusatti, Emiliano; Sheth, Ravi K.; Villaescusa-Navarro, Francisco; Viel, Matteo E-mail: emiliano.sefusatti@brera.inaf.it E-mail: villaescusa@oats.inaf.it

    2014-02-01

    We use a large suite of N-body simulations to study departures from universality in halo abundances and clustering in cosmologies with non-vanishing neutrino masses. To this end, we study how the halo mass function and halo bias factors depend on the scaling variable σ{sup 2}(M,z), the variance of the initial matter fluctuation field, rather than on halo mass M and redshift z themselves. We show that using the variance of the cold dark matter rather than the total mass field, i.e., σ{sup 2}{sub cdm}(M,z) rather than σ{sup 2}{sub m}(M,z), yields more universal results. Analysis of halo bias yields similar conclusions: when large-scale halo bias is defined with respect to the cold dark matter power spectrum, the result is both more universal, and less scale- or k-dependent. These results are used extensively in Papers I and III of this series.

  9. Population statistics of galaxy cluster halos in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Stanek, Rebecca M.

    The number of massive structures in the universe is determined by a small set of cosmological parameters characterizing its content, geometry, and expansion rate. Survey counts of massive clusters of galaxies can constrain these parameters, but require a statistical model relating total cluster mass to relevant, observable signals, such X-ray luminosity, X-ray temperature, and galaxy count. I present empirical and computational efforts to improve estimates of this statistical relationship, with an emphasis on measures of the hot intracluster gas. First, I present my work calibrating the relationship between galaxy cluster mass and X-ray luminosity. This work compared observed cluster counts from the REFLEX survey to expectations for LCDM cosmologies derived from a halo mass function. In this comparison, I obtained the first measurement of the scatter and discuss possible systematic biases in parameter estimates due to the scatter. I extended my work on mass selection functions to a full suite of X-ray and Sunyaev-Zeldovich (SZ) signals in the Millennium Gas Simulations (MGS). The MGS are hydrodynamic simulations in a 500 h -1 Mpc box, with two treatments of the gas physics: a model with only shock-heating and gravity ( GO ) and a simple preheating model ( PH ). From the MGS, I present scaling relations among multiple signals, including a covariance matrix, for about ~4000 massive halos. Finally, I investigate the total halo mass function with two pairs of simulations: the MGS and a pair of high-resolution simulations which include a GO model and a refined treatment including cooling, star formation, and supernova feedback (CSF ). The CSF and PH models have baryon fractions which differ from the GO models, and therefore systematic shifts in halo mass at fixed number density. These mass shifts result in a ~30% deviation in number density at fixed mass from a halo mass function calibrated with only dark matter, significantly higher than the 5% statistical uncertainty

  10. Galactic Halos of Hydrogen

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This image shows two companion galaxies, NGC 4625 (top) and NGC 4618 (bottom), and their surrounding cocoons of cool hydrogen gas (purple). The huge set of spiral arms on NGC 4625 (blue) was discovered by the ultraviolet eyes of NASA's Galaxy Evolution Explorer. Though these arms are nearly invisible when viewed in optical light, they glow brightly in ultraviolet. This is because they are bustling with hot, newborn stars that radiate primarily ultraviolet light.

    The vibrant spiral arms are also quite lengthy, stretching out to a distance four times the size of the galaxy's core. They are part of the largest ultraviolet galactic disk discovered so far.

    Astronomers do not know why NGC 4625 grew arms while NGC 4618 did not. The purple nebulosity shown here illustrates that hydrogen gas - an ingredient of star formation - is diffusely distributed around both galaxies. This means that other unknown factors led to the development of the arms of NGC 4625.

    Located 31 million light-years away in the constellation Canes Venatici, NGC 4625 is the closest galaxy ever seen with such a young halo of arms. It is slightly smaller than our Milky Way, both in size and mass. However, the fact that this galaxy's disk is forming stars very actively suggests that it might evolve into a more massive and mature galaxy resembling our own.

    The image is composed of ultraviolet, visible-light and radio data, from the Galaxy Evolution Explorer, the California Institute of Technology's Digitized Sky Survey, and the Westerbork Synthesis Radio Telescope, the Netherlands, respectively. Near-ultraviolet light is colored green; far-ultraviolet light is colored blue; and optical light is colored red. Radio emissions are colored purple.

  11. The Extent of Hot Gaseous Galaxy Halos

    NASA Astrophysics Data System (ADS)

    Bregman, Joel N.; Anderson, Michael E.; Hodges-Kluck, Edmund J.; Miller, Matthew J.; Dai, Xinyu

    2017-01-01

    There are several constraints on the hot gas distribution around the Milky Way and external galaxies, but they are confined to within about 50 kpc, approximately 0.2R200. Beyond 0.2R200, several density distributions have been proposed, some that contain all the missing baryons within R200 and others that have the baryons extending to 2-3R200 before reaching the cosmological baryon to dark matter ratio. These differences are determined by galaxy formation processes and by feedback from supernovae and AGN. We present the conflicting evidence for the different extended baryon distributions. A clearer picture of the properties of these hot galaxy halos would be provided by high resolution soft X-ray spectroscopy, such as of the O VII and O VIII resonance lines, and the proposed Arcus mission would enable these breakthrough observations.

  12. Building Halos by Digesting Satellites

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    We think galactic halos are built through the addition of material from the smaller subhalos of satellites digested by their hosts. Though most of the stars in Milky-Way-mass halos were probably formed in situ, many were instead accumulated over time, as orbiting dwarf galaxies were torn apart and their stars flung throughout the host galaxy. A recent set of simulations has examined this brutal formation process.In the authors simulations, a subhalo first falls into the host halo. At this point, it can either survive to present day as a satellite galaxy, or it can be destroyed, its stars scattering throughout the host halo. [Deason et al. 2016]Subhalo FateThere are many open questions about the growth of Milky-Way-mass halos from the accretion of subhalos. Which subhalos are torn apart and accreted, and which ones survive intact? Are more small or large subhalos accreted? Does subhalo accretion affect the host galaxys metallicity? And what can we learn from all of this about the Milky Ways formation history?In a recently published study, a team of scientists from Stanford University and SLAC National Accelerator Laboratory set out to answer these questions using a suite of 45 zoom-in simulations of Milky-Way-mass halos. Led by Alis Deason, the team tracked the accretion history of these 45 test galaxies to determine how their halos were built.Piecing Together HistoryDeason and collaborators reach several new and interesting conclusions based on the outcomes of their simulations.Average accreted stellar mass from destroyed dwarfs for each host halo, as a function of the time of the last major accretion event. More stellar mass is accreted in more recent accretion events. [Deason et al. 2016]Most of the stellar mass accreted by the Milky-Way-mass halos typically comes from only one or two destroyed dwarfs. The accreted dwarfs are usually low-mass if they were accreted early on in the simulation (i.e., in the early universe), and high-mass if they were accreted

  13. The Dark Matter Problem

    NASA Astrophysics Data System (ADS)

    Sanders, Robert H.

    2014-02-01

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters revisited: missing mass found; 8. CDM confronts galaxy rotation curves; 9. The new cosmology: dark matter is not enough; 10. An alternative to dark matter: Modified Newtonian Dynamics; 11. Seeing dark matter: the theory and practice of detection; 12. Reflections: a personal point of view; Appendix; References; Index.

  14. Angular momentum properties of haloes and their baryon content in the Illustris simulation

    NASA Astrophysics Data System (ADS)

    Zjupa, Jolanta; Springel, Volker

    2017-04-01

    The angular momentum properties of virialized dark matter haloes have been measured with good statistics in collisionless N-body simulations, but an equally accurate analysis of the baryonic spin is still missing. We employ the Illustris simulation suite, one of the first simulations of galaxy formation with full hydrodynamics that produces a realistic galaxy population in a sizeable volume, to quantify the baryonic spin properties for more than ∼320 000 haloes. We first compare the systematic differences between different spin parameter and halo definitions, and the impact of sample selection criteria on the derived properties. We confirm that dark-matter-only haloes exhibit a close to self-similar spin distribution in mass and redshift of lognormal form. However, the physics of galaxy formation radically changes the baryonic spin distribution. While the dark matter component remains largely unaffected, strong trends with mass and redshift appear for the spin of diffuse gas and the formed stellar component. With time, the baryons staying bound to the halo develop a misalignment of their spin vector with respect to dark matter, and increase their specific angular momentum by a factor of ∼1.3 in the non-radiative case and ∼1.8 in the full physics setup at z = 0. We show that this enhancement in baryonic spin can be explained by the combined effect of specific angular momentum transfer from dark matter on to gas during mergers and from feedback expelling low specific angular momentum gas from the halo. Our results challenge certain models for spin evolution and underline the significant changes induced by baryonic physics in the structure of haloes.

  15. Universality in Molecular Halo Clusters

    NASA Astrophysics Data System (ADS)

    Stipanović, P.; Markić, L. Vranješ; Bešlić, I.; Boronat, J.

    2014-12-01

    The ground state of weakly bound dimers and trimers with a radius extending well into the classically forbidden region is explored, with the goal to test the predicted universality of quantum halo states. The focus of the study is molecules consisting of T ↓ , D ↓ , 3He, 4He, and alkali atoms, where the interaction between particles is much better known than in the case of nuclei, which are traditional examples of quantum halos. The study of realistic systems is supplemented by model calculations in order to analyze how low-energy properties depend on the interaction potential. The use of variational and diffusion Monte Carlo methods enabled a very precise calculation of both the size and binding energy of the trimers. In the quantum halo regime, and for large values of scaled binding energies, all clusters follow almost the same universal line. As the scaled binding energy decreases, Borromean states separate from tango trimers.

  16. Reliability of the hypernephroma halo

    SciTech Connect

    Wong, W.S.; Cochran, S.T.; Waisman, J.

    1981-11-01

    The excretory urograms and renal arteriograms of 68 patients with renal adenocarcinoma and 84 patients with renal masses other than renal adenocarcinoma were reviewed. The radiographs were examined for the presence or absence of the ''hypernephroma halo.'' The sensitivity of this sign was observed to be only 6% and 35% on excretory urography and arteriography, respectively. The specificity was 92% and 77%. However, the overall accuracy for this sign was only 54% and 59%. The relation between the halo and its postulated structural correlate, the tumor capsule, was also examined. There was no significant association demonstrable. It was concluded that the hypernephroma halo is not a reliable sign for diagnosing renal adenocarcinoma and that it probably does not represent the tumor capsule.

  17. Non-Standard Genetic Codes Define New Concepts for Protein Engineering

    PubMed Central

    Bezerra, Ana R.; Guimarães, Ana R.; Santos, Manuel A. S.

    2015-01-01

    The essential feature of the genetic code is the strict one-to-one correspondence between codons and amino acids. The canonical code consists of three stop codons and 61 sense codons that encode 20% of the amino acid repertoire observed in nature. It was originally designated as immutable and universal due to its conservation in most organisms, but sequencing of genes from the human mitochondrial genomes revealed deviations in codon assignments. Since then, alternative codes have been reported in both nuclear and mitochondrial genomes and genetic code engineering has become an important research field. Here, we review the most recent concepts arising from the study of natural non-standard genetic codes with special emphasis on codon re-assignment strategies that are relevant to engineering genetic code in the laboratory. Recent tools for synthetic biology and current attempts to engineer new codes for incorporation of non-standard amino acids are also reviewed in this article. PMID:26569314

  18. Neutrino transition magnetic moments within the non-standard neutrino-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Papoulias, D. K.; Kosmas, T. S.

    2015-07-01

    Tensorial non-standard neutrino interactions are studied through a combined analysis of nuclear structure calculations and a sensitivity χ2-type of neutrino events expected to be measured at the COHERENT experiment, recently planned to operate at the Spallation Neutron Source (Oak Ridge). Potential sizeable predictions on transition neutrino magnetic moments and other electromagnetic parameters, such as neutrino milli-charges, are also addressed. The non-standard neutrino-nucleus processes, explored from nuclear physics perspectives within the context of quasi-particle random phase approximation, are exploited in order to estimate the expected number of events originating from vector and tensor exotic interactions for the case of reactor neutrinos, studied with TEXONO and GEMMA neutrino detectors.

  19. Refined analysis and updated constraints on general non-standard tbW couplings

    NASA Astrophysics Data System (ADS)

    Hioki, Zenrō; Ohkuma, Kazumasa; Uejima, Akira

    2016-10-01

    We recently studied possible non-standard tbW couplings based on the effective-Lagrangian which consists of four kinds of SU (3) × SU (2) × U (1) invariant dimension-6 effective operators and gave an experimentally allowed region for each non-standard coupling. We here re-perform that analysis much more precisely based on the same experimental data but on a new computational procedure using the Graphics-Processing-Unit (GPU) calculation system. Comparing these two analyses with each other, the previous one is found to have given quite reliable results despite of its limited computation capability. We then apply this new procedure to the latest data and present updated results.

  20. Mergers and mass accretion for infalling halos both end well outside cluster virial radii

    SciTech Connect

    Behroozi, Peter S.; Wechsler, Risa H.; Lu, Yu; Hahn, Oliver; Busha, Michael T.; Klypin, Anatoly; Primack, Joel R.

    2014-05-14

    We find that infalling dark matter halos (i.e., the progenitors of satellite halos) begin losing mass well outside the virial radius of their eventual host halos. The peak mass occurs at a range of clustercentric distances, with median and 68th percentile range of $1.8^{+2.3}_{-1.0} \\,R_\\mathrm{vir,host}$ for progenitors of z = 0 satellites. The peak circular velocity for infalling halos occurs at significantly larger distances ($3.7^{+3.3}_{-2.2} \\,R_\\mathrm{vir,host}$ at z = 0). This difference arises because different physical processes set peak circular velocity (typically, ~1:5 and larger mergers which cause transient circular velocity spikes) and peak mass (typically, smooth accretion) for infalling halos. We find that infalling halos also stop having significant mergers well before they enter the virial radius of their eventual hosts. Mergers larger than a 1:40 ratio in halo mass end for infalling halos at similar clustercentric distances (~1.9 R vir, host) as the end of overall mass accretion. However, mergers larger than 1:3 typically end for infalling halos at more than four virial radial away from their eventual hosts. This limits the ability of mergers to affect quenching and morphology changes in clusters. We also note that the transient spikes which set peak circular velocity may lead to issues with abundance matching on that parameter, including unphysical galaxy stellar mass growth profiles near clusters; we propose a simple observational test to check if a better halo proxy for galaxy stellar mass exists.

  1. Regularity Results for a Class of Functionals with Non-Standard Growth

    NASA Astrophysics Data System (ADS)

    Acerbi, Emilio; Mingione, Giuseppe

    We consider the integral functional under non-standard growth assumptions that we call p(x) type: namely, we assume that a relevant model case being the functional Under sharp assumptions on the continuous function p(x)>1 we prove regularity of minimizers. Energies exhibiting this growth appear in several models from mathematical physics.

  2. The Method of Eichhorn with Non-Standard Projections for a Single Plate

    NASA Astrophysics Data System (ADS)

    Cardona, O.; Corona-Galindo, M.

    1990-11-01

    RESUMEN. Se desarrollan las expresiones para el metodo de Eichhorn en astrometria para proyecciones diferentes a la estandar. El se usa para obtener las coordenadas esfericas de estrellas en placas astron6micas cuando las variables contienen errores. ABSTRACT. We develop the expressions for the Eichhorn's Method in astrometry for non-standard projections. The method is used to obtain spherical coordinates of stars in astronomical plates, when all the variables have errors. Key words: ASTROMETRY

  3. Halo detection via large-scale Bayesian inference

    NASA Astrophysics Data System (ADS)

    Merson, Alexander I.; Jasche, Jens; Abdalla, Filipe B.; Lahav, Ofer; Wandelt, Benjamin; Jones, D. Heath; Colless, Matthew

    2016-08-01

    We present a proof-of-concept of a novel and fully Bayesian methodology designed to detect haloes of different masses in cosmological observations subject to noise and systematic uncertainties. Our methodology combines the previously published Bayesian large-scale structure inference algorithm, HAmiltonian Density Estimation and Sampling algorithm (HADES), and a Bayesian chain rule (the Blackwell-Rao estimator), which we use to connect the inferred density field to the properties of dark matter haloes. To demonstrate the capability of our approach, we construct a realistic galaxy mock catalogue emulating the wide-area 6-degree Field Galaxy Survey, which has a median redshift of approximately 0.05. Application of HADES to the catalogue provides us with accurately inferred three-dimensional density fields and corresponding quantification of uncertainties inherent to any cosmological observation. We then use a cosmological simulation to relate the amplitude of the density field to the probability of detecting a halo with mass above a specified threshold. With this information, we can sum over the HADES density field realisations to construct maps of detection probabilities and demonstrate the validity of this approach within our mock scenario. We find that the probability of successful detection of haloes in the mock catalogue increases as a function of the signal to noise of the local galaxy observations. Our proposed methodology can easily be extended to account for more complex scientific questions and is a promising novel tool to analyse the cosmic large-scale structure in observations.

  4. The WFIRST view of the distant stellar halo

    NASA Astrophysics Data System (ADS)

    Secunda, Amy; Sanderson, Robyn Ellyn; Johnston, Kathryn V.; Sharma, Sanjib

    2017-01-01

    Only a handful of Milky Way (MW) stars are now known to exist beyond 100 kpc from the Galactic center. Though the distribution of these stars is believed to be sparse, they can be a valuable source of information on the accretion history of the galaxy, providing evidence of more recent accretion events than the inner halo, while kinematic data for these distant stars can help map out the MW’s dark matter halo all the way to the virial radius. Currently, searches for distant M giants are opening this window into the distant galaxy for the first time; in the future, WFIRST’s High-Latitude Survey (HLS) offers the prospect of extending proper motion measurements to the edge of the MW virial radius over several thousand square degrees of sky. RR Lyrae identified by LSST in the HLS field will have accurate distances as well, offering the tantalizing prospect of complete six-dimensional phase space coordinates for these tracers at large distances. Using synthetic surveys of cosmological mock stellar halos, we explore how WFIRST will shed new light on the contents of the distant stellar halo.

  5. Constraining a halo model for cosmological neutral hydrogen

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Hamsa; Refregier, Alexandre

    2017-02-01

    We describe a combined halo model to constrain the distribution of neutral hydrogen (H I) in the post-reionization universe. We combine constraints from the various probes of H I at different redshifts: the low-redshift 21-cm emission line surveys, intensity mapping experiments at intermediate redshifts, and the Damped Lyman-Alpha (DLA) observations at higher redshifts. We use a Markov Chain Monte Carlo approach to combine the observations and place constraints on the free parameters in the model. Our best-fitting model involves a relation between neutral hydrogen mass M_{H I} and halo mass M with a non-unit slope, and an upper and a lower cutoff. We find that the model fits all the observables but leads to an underprediction of the bias parameter of DLAs at z ˜ 2.3. We also find indications of a possible tension between the H I column density distribution and the mass function of H I-selected galaxies at z ˜ 0. We provide the central values of the parameters of the best-fitting model so derived. We also provide a fitting form for the derived evolution of the concentration parameter of H I in dark matter haloes, and discuss the implications for the redshift evolution of the H I-halo mass relation.

  6. Accretion in the galactic halo

    NASA Astrophysics Data System (ADS)

    Stephens, Alex Courtney

    2000-10-01

    The Milky Way disk is enveloped in a diffuse, dynamically-hot collection of stars and star clusters collectively known as the ``stellar halo''. Photometric and chemical analyses suggest that these stars are ancient fossils of the galaxy formation epoch. Yet, little is known about the origin of this trace population. Is this system merely a vestige of the initial burst of star formation within the decoupled proto-Galaxy, or is it the detritus of cannibalized satellite galaxies? In an attempt to unravel the history of the Milky Way's stellar halo, I performed a detailed spectroscopic analysis of 55 metal-poor stars possessing ``extreme'' kinematic properties. It is thought that stars on orbits that either penetrate the remote halo or exhibit large retrograde velocities could have been associated with assimilated (or ``accreted'') dwarf galaxies. The hallmark of an accreted halo star is presumed to be a deficiency (compared with normal stars) of the α-elements (O, Mg, Si, Ca, Ti) with respect to iron, a consequence of sporadic bursts of star formation within the diminutive galaxies. Abundances for a select group of light metals (Li, Na, Mg, Si, Ca, Ti), iron-peak nuclides (Cr, Fe, Ni), and neutron-capture elements (Y, Ba) were calculated using line-strengths measured from high-resolution, high signal-to-noise spectral observations collected with the Keck I 10-m and KPNO 4-m telescopes. The abundances extracted from the spectra reveal: (1)The vast majority of outer halo stars possess supersolar [α/Fe] > 0.0) ratios. (2)The [α/Fe] ratio appears to decrease with increasing metallicity. (3)The outer halo stars have lower ratios of [α/Fe] than inner halo stars at a given metallicity. (4)At the largest metallicities, there is a large spread in the observed [α/Fe] ratios. (5)[α/Fe] anti-correlates with RAPO. (6)Only one star (BD+80° 245) exhibits the peculiar abundances expected of an assimilated star. The general conclusion extracted from these data is that the

  7. The Influence of Bilectalism and Non-standardization on the Perception of Native Grammatical Variants

    PubMed Central

    Leivada, Evelina; Papadopoulou, Elena; Kambanaros, Maria; Grohmann, Kleanthes K.

    2017-01-01

    Research in speakers of closely related varieties has shown that bilectalism and non-standardization affect speakers’ perception of the variants that exist in their native languages in a way that is absent from the performance of their monolingual peers. One possible explanation for this difference is that non-standardization blurs the boundaries of grammatical variants and increases grammatical fluidity. Affected by such factors, bilectals become less accurate in identifying the variety to which a grammatical variant pertains. Another explanation is that their differential performance derives from the fact that they are competent in two varieties. Under this scenario, the difference is due to the existence of two linguistic systems in the course of development, and not to how close or standardized these systems are. This study employs a novel variety-judgment task in order to elucidate which of the two explanations holds. Having administered the task to monolinguals, bilectals, and bilinguals, including heritage language learners and L1 attriters, we obtained a dataset of 16,245 sentences. The analysis shows differential performance between bilectal and bilingual speakers, granting support for the first explanation. We discuss the role of factors such as non-standardization and linguistic proximity in language development and flesh out the implications of the results in relation to different developmental trajectories. PMID:28265248

  8. Antineutrino Oscillations and a Search for Non-standard Interactions with the MINOS

    SciTech Connect

    Isvan, Zeynep

    2012-01-01

    MINOS searches for neutrino oscillations using the disappearance of muon neutrinos from the NuMI beam at Fermilab between two detectors. The Near Detector, located near the source, measures the beam composition before flavor change occurs. The energy spectrum is measured again at the Far Detector after neutrinos travel a distance. The mixing angle and mass splitting between the second and third mass states are extracted from the energy dependent difference between the spectra at the two detectors. NuMI is able to produce an antineutrino-enhanced beam as well as a neutrino-enhanced beam. Collecting data in antineutrino-mode allows the direct measurement of antineutrino oscillation parameters. From the analysis of the antineutrino mode data we measure $|\\Delta\\bar{m}^{2}_{\\text{atm}}| = 2.62^{+0.31}_{-0.28}\\times10^{-3}\\text{eV}^{2}$ and $\\sin^{2}(2\\bar{\\theta})_{23} = 0.95^{+0.10}_{-0.11}$, which is the most precise measurement of antineutrino oscillation parameters to date. A difference between neutrino and antineutrino oscillation parameters may indicate new physics involving interactions that are not part of the Standard Model, called non-standard interactions, that alter the apparent disappearance probability. Collecting data in neutrino and antineutrino mode independently allows a direct search for non-standard interactions. In this dissertation non-standard interactions are constrained by a combined analysis of neutrino and antineutrino datasets and no evidence of such interactions is found.

  9. The Influence of Bilectalism and Non-standardization on the Perception of Native Grammatical Variants.

    PubMed

    Leivada, Evelina; Papadopoulou, Elena; Kambanaros, Maria; Grohmann, Kleanthes K

    2017-01-01

    Research in speakers of closely related varieties has shown that bilectalism and non-standardization affect speakers' perception of the variants that exist in their native languages in a way that is absent from the performance of their monolingual peers. One possible explanation for this difference is that non-standardization blurs the boundaries of grammatical variants and increases grammatical fluidity. Affected by such factors, bilectals become less accurate in identifying the variety to which a grammatical variant pertains. Another explanation is that their differential performance derives from the fact that they are competent in two varieties. Under this scenario, the difference is due to the existence of two linguistic systems in the course of development, and not to how close or standardized these systems are. This study employs a novel variety-judgment task in order to elucidate which of the two explanations holds. Having administered the task to monolinguals, bilectals, and bilinguals, including heritage language learners and L1 attriters, we obtained a dataset of 16,245 sentences. The analysis shows differential performance between bilectal and bilingual speakers, granting support for the first explanation. We discuss the role of factors such as non-standardization and linguistic proximity in language development and flesh out the implications of the results in relation to different developmental trajectories.

  10. Detection of Hot Halo Gets Theory Out of Hot Water

    NASA Astrophysics Data System (ADS)

    2006-02-01

    Scientists using NASA's Chandra X-ray Observatory have detected an extensive halo of hot gas around a quiescent spiral galaxy. This discovery is evidence that galaxies like our Milky Way are still accumulating matter from the gradual inflow of intergalactic gas. "What we are likely witnessing here is the ongoing galaxy formation process," said Kristian Pedersen of the University of Copenhagen, Denmark, and lead author of a report on the discovery. Chandra observations show that the hot halo extends more than 60,000 light years on either side of the disk of the galaxy known as NGC 5746. The detection of such a large halo alleviates a long-standing problem for the theory of galaxy formation. Spiral galaxies are thought to form from enormous clouds of intergalactic gas that collapse to form giant, spinning disks of stars and gas. Chandra X-ray Image of NGC 5746 Chandra X-ray Image of NGC 5746 One prediction of this theory is that large spiral galaxies should be immersed in halos of hot gas left over from the galaxy formation process. Hot gas has been detected around spiral galaxies in which vigorous star formation is ejecting matter from the galaxy, but until now hot halos due to infall of intergalactic matter have not been detected. "Our observations solve the mystery of the missing hot halos around spiral galaxies," said Pedersen. "The halos exist, but are so faint that an extremely sensitive telescope such as Chandra is needed to detect them." DSS Optical Image of NGC 5746 DSS Optical Image of NGC 5746 NGC 5746 is a massive spiral galaxy about a 100 million light years from Earth. Its disk of stars and gas is viewed almost edge-on. The galaxy shows no signs of unusual star formation, or energetic activity from its nuclear region, making it unlikely that the hot halo is produced by gas flowing out of the galaxy. "We targeted NGC 5746 because we thought its distance and orientation would give us the best chance to detect a hot halo caused by the infall of

  11. Spurious haloes and discreteness-driven relaxation in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Power, C.; Robotham, A. S. G.; Obreschkow, D.; Hobbs, A.; Lewis, G. F.

    2016-10-01

    There is strong evidence that cosmological N-body simulations dominated by warm dark matter (WDM) contain spurious or unphysical haloes, most readily apparent as regularly spaced low-mass haloes strung along filaments. We show that spurious haloes are a feature of traditional N-body simulations of cosmological structure formation models, including WDM and cold dark matter models, in which gravitational collapse proceeds in an initially anisotropic fashion, and arises naturally as a consequence of discreteness-driven relaxation. We demonstrate this using controlled N-body simulations of plane-symmetric collapse and show that spurious haloes are seeded at shell crossing by localized velocity perturbations induced by the discrete nature of the density field, and that their characteristic separation should be approximately the mean inter-particle separation of the N-body simulation, which is fixed by the mass resolution within the volume. Using cosmological N-body simulations in which particles are split into two collisionless components of fixed mass ratio, we find that the spatial distribution of the two components show signatures of discreteness-driven relaxation on both large and small scales. Adopting a spline kernel gravitational softening that is of order the comoving mean inter-particle separation helps to suppress the effect of discreteness-driven relaxation, but cannot eliminate it completely. These results provide further motivation for recent developments of new algorithms, which include, for example, revisions of the traditional N-body approach by means of spatially adaptive anistropric gravitational softenings or explicit solution of the evolution of dark matter in phase space.

  12. White Dwarfs in the Galaxy's Halo

    NASA Astrophysics Data System (ADS)

    Oppenheimer, B.; Murdin, P.

    2002-12-01

    The Galaxy's large spherical halo (see GALACTICMETAL-POOR HALO and HALO, GALACTIC) may harboras many as several hundred billion WHITE DWARFS, apopulation as large in number as the total number of stars in theGalaxy's disk (see DISK GALAXIES and GALACTIC THIN DISK). Although this assertion iscontroversial, several astronomical surveys provide strong support for it andthe implications affect fields ...

  13. THE STELLAR-TO-HALO MASS RELATION FOR LOCAL GROUP GALAXIES

    SciTech Connect

    Brook, C. B.; Cintio, A. Di; Knebe, A.; Yepes, G.; Gottlöber, S.; Hoffman, Y.; Garrison-Kimmel, S.

    2014-03-20

    We contend that a single power-law halo mass distribution is appropriate for direct matching to the stellar masses of observed Local Group dwarf galaxies, allowing the determination of the slope of the stellar mass-halo mass relation for low-mass galaxies. Errors in halo masses are well defined as the Poisson noise of simulated Local Group realizations, which we determine using local volume simulations. For the stellar mass range 10{sup 7} M {sub ☉}halo mass relation follows a power law with slope of 3.1, significantly steeper than most values in the literature. This steep relation between stellar and halo masses would indicate that Local Group dwarf galaxies are hosted by dark matter halos with a small range of mass. Our methodology is robust down to the stellar mass to which the census of observed Local Group galaxies is complete, but the significant uncertainty in the currently measured slope of the stellar-to-halo mass relation will decrease dramatically if the Local Group completeness limit was 10{sup 6.5} M {sub ☉} or below, highlighting the importance of pushing such limit to lower masses and larger volumes.

  14. Emergent universality in the two-neutron halo structure of 22C

    NASA Astrophysics Data System (ADS)

    Souza, L. A.; Garrido, E.; Frederico, T.

    2016-12-01

    The structure of the two-neutron halo 22C is investigated by means of a renormalized zero-range three-body model, with interactions in the s -wave channel, and a finite-range model with two- and three-body forces provided by the hyperspherical adiabatic expansion method. In both models the halo wave function in configuration space is obtained by using as inputs the two-body scattering lengths and the two-neutron separation energy. The halo-matter density is computed for 22C with different three-body forces and low-energy parameters, with two-neutron separation energy within the range 50 keV≤S2 n≤1000 keV. The halo-neutron density depends weakly on the neutron-20C scattering length as long as its absolute value is larger than the neutron-neutron one. The halo-neutron density is then analyzed by means of the root-mean-square radius, the probability density, and also the geometry, taking into account the angle between the two Jacobi coordinates. The results of finite-range and zero-range two-neutron-core models are compared. The effects in the halo structure of short-range and long-range three-body forces are studied, and the emergent universal behavior of the halo-neutron density and its geometry is pointed out.

  15. The ROCKSTAR Phase-space Temporal Halo Finder and the Velocity Offsets of Cluster Cores

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter S.; Wechsler, Risa H.; Wu, Hao-Yi

    2013-01-01

    We present a new algorithm for identifying dark matter halos, substructure, and tidal features. The approach is based on adaptive hierarchical refinement of friends-of-friends groups in six phase-space dimensions and one time dimension, which allows for robust (grid-independent, shape-independent, and noise-resilient) tracking of substructure; as such, it is named ROCKSTAR (Robust Overdensity Calculation using K-Space Topologically Adaptive Refinement). Our method is massively parallel (up to 105 CPUs) and runs on the largest current simulations (>1010 particles) with high efficiency (10 CPU hours and 60 gigabytes of memory required per billion particles analyzed). A previous paper has shown ROCKSTAR to have excellent recovery of halo properties; we expand on these comparisons with more tests and higher-resolution simulations. We show a significant improvement in substructure recovery compared to several other halo finders and discuss the theoretical and practical limits of simulations in this regard. Finally, we present results that demonstrate conclusively that dark matter halo cores are not at rest relative to the halo bulk or substructure average velocities and have coherent velocity offsets across a wide range of halo masses and redshifts. For massive clusters, these offsets can be up to 350 km s-1 at z = 0 and even higher at high redshifts. Our implementation is publicly available at http://code.google.com/p/rockstar.

  16. Discovery of High Proper-Motion Ancient White Dwarfs: Nearby Massive Compact Halo Objects?

    PubMed

    Ibata; Irwin; Bienaymé; Scholz; Guibert

    2000-03-20

    We present the discovery and spectroscopic identification of two very high proper-motion ancient white dwarf stars, found in a systematic proper-motion survey. Their kinematics and apparent magnitude clearly indicate that they are halo members, while their optical spectra are almost identical to the recently identified cool halo white dwarf WD 0346+246. Canonical stellar halo models predict a white dwarf volume density that is 2 orders of magnitude less than the rho approximately 7x10-4 M middle dot in circle pc-3 inferred from this survey. With the caveat that the sample size is very small, it appears that a significant fraction, approximately 10%, of the local dark matter halo is in the form of very old, cool, white dwarfs.

  17. Halo Coronal Mass Ejections and Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2009-01-01

    In this letter, I show that the discrepancies in the geoeffectiveness of halo coronal mass ejections (CMEs) reported in the literature arise due to the varied definitions of halo CMEs used by different authors. In particular, I show that the low geoeffectiveness rate is a direct consequence of including partial halo CMEs. The geoeffectiveness of partial halo CMEs is lower because they are of low speed and likely to make a glancing impact on Earth. Key words: Coronal mass ejections, geomagnetic storms, geoeffectiveness, halo CMEs.

  18. Modelling large-scale halo bias using the bispectrum

    NASA Astrophysics Data System (ADS)

    Pollack, Jennifer E.; Smith, Robert E.; Porciani, Cristiano

    2012-03-01

    We study the relation between the density distribution of tracers for large-scale structure and the underlying matter distribution - commonly termed bias - in the Λ cold dark matter framework. In particular, we examine the validity of the local model of biasing at quadratic order in the matter density. This model is characterized by parameters b1 and b2. Using an ensemble of N-body simulations, we apply several statistical methods to estimate the parameters. We measure halo and matter fluctuations smoothed on various scales. We find that, whilst the fits are reasonably good, the parameters vary with smoothing scale. We argue that, for real-space measurements, owing to the mixing of wavemodes, no smoothing scale can be found for which the parameters are independent of smoothing. However, this is not the case in Fourier space. We measure halo and halo-mass power spectra and from these construct estimates of the effective large-scale bias as a guide for b1. We measure the configuration dependence of the halo bispectra Bhhh and reduced bispectra Qhhh for very large-scale k-space triangles. From these data, we constrain b1 and b2, taking into account the full bispectrum covariance matrix. Using the lowest order perturbation theory, we find that for Bhhh the best-fitting parameters are in reasonable agreement with one another as the triangle scale is varied, although the fits become poor as smaller scales are included. The same is true for Qhhh. The best-fitting values were found to depend on the discreteness correction. This led us to consider halo-mass cross-bispectra. The results from these statistics supported our earlier findings. We then developed a test to explore whether the inconsistency in the recovered bias parameters could be attributed to missing higher order corrections in the models. We prove that low-order expansions are not sufficiently accurate to model the data, even on scales k1˜ 0.04 h Mpc-1. If robust inferences concerning bias are to be drawn

  19. Dissipative dark matter and the rotation curves of dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2016-07-01

    There is ample evidence from rotation curves that dark matter halos around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) Tully-Fisher relations. Dark matter halos around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless `dark photon' (from an unbroken dark U(1) gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these `dark photons'. Dark matter halos can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo could have evolved to a steady state or `equilibrium' configuration where heating and cooling rates locally balance. This dynamics allows the dark matter density profile to be related to the distribution of ordinary supernovae in the disk of a given galaxy. In a previous paper a simple and predictive formula was derived encoding this relation. Here we improve on previous work by modelling the supernovae distribution via the measured UV and Hα fluxes, and compare the resulting dark matter halo profiles with the rotation curve data for each dwarf galaxy in the LITTLE THINGS sample. The dissipative dark matter concept is further developed and some conclusions drawn.

  20. HALO ORBITS IN COSMOLOGICAL DISK GALAXIES: TRACERS OF FORMATION HISTORY

    SciTech Connect

    Valluri, Monica; Debattista, Victor P.; Stinson, Gregory S.; Bailin, Jeremy; Quinn, Thomas R.; Couchman, H. M. P.; Wadsley, James

    2013-04-10

    We analyze the orbits of stars and dark matter particles in the halo of a disk galaxy formed in a cosmological hydrodynamical simulation. The halo is oblate within the inner {approx}20 kpc and triaxial beyond this radius. About 43% of orbits are short axis tubes-the rest belong to orbit families that characterize triaxial potentials (boxes, long-axis tubes and chaotic orbits), but their shapes are close to axisymmetric. We find no evidence that the self-consistent distribution function of the nearly oblate inner halo is comprised primarily of axisymmetric short-axis tube orbits. Orbits of all families and both types of particles are highly eccentric, with mean eccentricity {approx}> 0.6. We find that randomly selected samples of halo stars show no substructure in 'integrals of motion' space. However, individual accretion events can clearly be identified in plots of metallicity versus formation time. Dynamically young tidal debris is found primarily on a single type of orbit. However, stars associated with older satellites become chaotically mixed during the formation process (possibly due to scattering by the central bulge and disk, and baryonic processes), and appear on all four types of orbits. We find that the tidal debris in cosmological hydrodynamical simulations experiences significantly more chaotic evolution than in collisionless simulations, making it much harder to identify individual progenitors using phase space coordinates alone. However, by combining information on stellar ages and chemical abundances with the orbital properties of halo stars in the underlying self-consistent potential, the identification of progenitors is likely to be possible.

  1. Mapping Baryons in the Halo of NGC 1097

    NASA Astrophysics Data System (ADS)

    Bowen, David

    2012-10-01

    We propose observing 5 background QSOs whose sightlines pass through the halo of NGC 1097 at impact parameters of 53-183 kpc. NGC 1097 is a bright {-21.1} spiral galaxy that has the highest surface density of background, UV-bright QSOs in the nearby Universe. The galaxy hosts a low luminosity AGN at its core, surrounded by a ring of intense star-forming regions; there is also evidence from stellar tidal streams that the galaxy has recently cannibalized a number of dwarf galaxies, and a companion dwarf elliptical is still clearly merging with the outer disk. We aim to examine the physical conditions of gas that fills the halo of such an active galaxy. We will search primarily for Lya and SiIV absorption lines in the spectra of the background QSOs, as well as weak NV from hot gas. At the lowest impact parameters, we may also be able to find absorption lines from low ionization species. Our goals are to test whether the halo of NGC 1097 contains the same distribution of Lyman-alpha forest clouds seen at higher redshifts out to large distances from galaxies, and determine how the HI column density, covering fraction, and temperature of the gas decline with radius in a single galaxy halo. We will examine whether the velocities of the absorbers are consistent with those expected from gas co-rotating in the dark matter halo of the galaxy, or whether there exists a distribution of velocities that might indicate outflows from the galactic disk or from the central AGN, or, alternatively, from inflows from the IGM. Our map of Lya and SiIV around NGC 1097 will provide an important template for understanding the origin of higher redshift QSO absorption line systems.

  2. Chemical trends in the Galactic halo from APOGEE data

    NASA Astrophysics Data System (ADS)

    Fernández-Alvar, E.; Carigi, L.; Allende Prieto, C.; Hayden, M. R.; Beers, T. C.; Fernández-Trincado, J. G.; Meza, A.; Schultheis, M.; Santiago, B. X.; Queiroz, A. B.; Anders, F.; da Costa, L. N.; Chiappini, C.

    2017-02-01

    The galaxy formation process in the Λ cold dark matter scenario can be constrained from the analysis of stars in the Milky Way's halo system. We examine the variation of chemical abundances in distant halo stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE), as a function of distance from the Galactic Centre (r) and iron abundance ([M/H]), in the range 5 ≲ r ≲ 30 kpc and -2.5 < [M/H] < 0.0. We perform a statistical analysis of the abundance ratios derived by the APOGEE pipeline (ASPCAP) and distances calculated by several approaches. Our analysis reveals signatures of a different chemical enrichment between the inner and outer regions of the halo, with a transition at about 15 kpc. The derived metallicity distribution function exhibits two peaks, at [M/H] ∼ -1.5 and ∼-2.1, consistent with previously reported halo metallicity distributions. We obtain a difference of ∼0.1 dex for α-element-to-iron ratios for stars at r > 15 kpc and [M/H] > -1.1 (larger in the case of O, Mg, and S) with respect to the nearest halo stars. This result confirms previous claims for low-α stars found at larger distances. Chemical differences in elements with other nucleosynthetic origins (Ni, K, Na, and Al) are also detected. C and N do not provide reliable information about the interstellar medium from which stars formed because our sample comprises red giant branch and asymptotic giant branch stars and can experience mixing of material to their surfaces.

  3. Evidence for axisymmetric halos: The case of IC 2006

    NASA Astrophysics Data System (ADS)

    Franx, Marijn; van Gorkom, J. H.; de Zeeuw, Tim

    1994-12-01

    We present a new method to derive the shape of the potential from the velocity field of a gas ring, or a gas disk with a flat rotation curve. The method is an extension of previous work by Binney and Teuben, and it can detect deviations from axisymmetry at the level of a few percent. The velocity field of the ring or disk is expanded into harmonics, and we present analytic expressions which relate these harmonic terms to the intrinsic parameters, and the viewing angles. We show that both the velocity field and the geometry of the ring are necessary to give complete information on the shape of the potential in the plane of the ring. The velocity field alone gives incomplete information for small ellipticities. We present new neutral hydrogen data on the H I ring around the early-type galaxy IC 2006, which was discovered by Schweizer, van Gorkom, & Seitzer (1989). The new data show that the ring is filled and has a remarkably regular velocity field. Application of our method to this gas ring shows that the halo must be close to perfectly axisymmetric. We detect a nonsignificant ellipticity of the potential of 0.012 +/- 0.026. The 95% confidence limit on the ellipticity is 0.05. This implies that the potential is nearly circular in the plane of the ring. The analysis indicates that the circular velocity is nearly constant from 0.5 Re to 6.5 Re. We confirm that the M/L ration in the outer parts increases (Schweizer et al. 1989). The stellar component probably has a strong disk. The data demonstrate that galaxies other than spiral galaxies have massive halos. The inferred shape of the halo can be contrasted to the strongly triaxial halos found in simulations of dissipationless halo formation. As suggested by Katz & Gunn (1991), the inclusion of baryonic matter in the simulations may be necessary to resolve this issue.

  4. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  5. Dark matter and cosmology

    SciTech Connect

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  6. High Resolution Numerical Studies of the Milky Way Halo

    NASA Astrophysics Data System (ADS)

    Rashkov, Valery

    2013-01-01

    progenitor dwarfs and their holes in a cosmological "live" host from high redshift to today. I show that, depending on the minimum stellar velocity dispersion, below which central black holes are assumed to be increasingly rare, as many as two thousand or as few as seventy IMBHs may be left wandering in the halo of the Milky Way today. I identify two main Galactic subpopulations, "naked" IMBHs, whose host subhalos were totally destroyed after infall, and "clothed" IMBHs residing in dark matter satellites that survived tidal stripping. Naked IMBHs typically constitute ab! out half of the total and are more centrally concentrated. Their detection may provide an observational tool to constrain the formation history of massive black holes in the early Universe. I use the results from the stellar halo tagging in combination with the state-of-the-art hydrodynamical cosmological simulation Eris to address the question of the poorly known Milky Way halo mass. Taking advantage of the two simulated galaxies' very different masses, I explore the full range of estimates for the Galaxy from observational data. I establish that the simulated halos reproduce many of the properties of the MW stellar halo, including its density profile slope, velocity anisotropy and, in the case of the lighter galaxy, its radial velocity dispersion profile. There is a striking link between discontinuities in these quantities where significant pileup of stars in the orbital apocenters of their progenitors exists in phase space. I carry out controlled experiments using numerical integration of the Jeans equation to conclude that the lighter halo, Eris, indeed provides a much better fit to the data than the more massive halo of Via Lactea II.

  7. Ultraviolet Halos around Spiral Galaxies. I. Morphology

    NASA Astrophysics Data System (ADS)

    Hodges-Kluck, Edmund; Cafmeyer, Julian; Bregman, Joel N.

    2016-12-01

    We examine ultraviolet halos around a sample of highly inclined galaxies within 25 Mpc to measure their morphology and luminosity. Despite contamination from galactic light scattered into the wings of the point-spread function, we find that ultraviolet (UV) halos occur around each galaxy in our sample. Around most galaxies the halos form a thick, diffuse disk-like structure, but starburst galaxies with galactic superwinds have qualitatively different halos that are more extensive and have filamentary structure. The spatial coincidence of the UV halos above star-forming regions, the lack of consistent association with outflows or extraplanar ionized gas, and the strong correlation between the halo and galaxy UV luminosity suggest that the UV light is an extragalactic reflection nebula. UV halos may thus represent 106-107 M ⊙ of dust within 2-10 kpc of the disk, whose properties may change with height in starburst galaxies.

  8. Gravitationally bound BCS state as dark matter

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon; Cormack, Sam

    2017-04-01

    We explore the possibility that fermionic dark matter undergoes a BCS transition to form a superfluid. This requires an attractive interaction between fermions and we describe a possible source of this interaction induced by torsion. We describe the gravitating fermion system with the Bogoliubov-de Gennes formalism in the local density approximation. We solve the Poisson equation along with the equations for the density and gap energy of the fermions to find a self-gravitating, superfluid solution for dark matter halos. In order to produce halos the size of dwarf galaxies, we require a particle mass of ~ 200 eV. We find a maximum attractive coupling strength before the halo becomes unstable. If dark matter halos do have a superfluid component, this raises the possibility that they contain vortex lines.

  9. An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models

    NASA Astrophysics Data System (ADS)

    Mead, A. J.; Peacock, J. A.; Heymans, C.; Joudaki, S.; Heavens, A. F.

    2015-12-01

    We present an optimized variant of the halo model, designed to produce accurate matter power spectra well into the non-linear regime for a wide range of cosmological models. To do this, we introduce physically motivated free parameters into the halo-model formalism and fit these to data from high-resolution N-body simulations. For a variety of Λ cold dark matter (ΛCDM) and wCDM models, the halo-model power is accurate to ≃ 5 per cent for k ≤ 10h Mpc-1 and z ≤ 2. An advantage of our new halo model is that it can be adapted to account for the effects of baryonic feedback on the power spectrum. We demonstrate this by fitting the halo model to power spectra from the OWLS (OverWhelmingly Large Simulations) hydrodynamical simulation suite via parameters that govern halo internal structure. We are able to fit all feedback models investigated at the 5 per cent level using only two free parameters, and we place limits on the range of these halo parameters for feedback models investigated by the OWLS simulations. Accurate predictions to high k are vital for weak-lensing surveys, and these halo parameters could be considered nuisance parameters to marginalize over in future analyses to mitigate uncertainty regarding the details of feedback. Finally, we investigate how lensing observables predicted by our model compare to those from simulations and from HALOFIT for a range of k-cuts and feedback models and quantify the angular scales at which these effects become important. Code to calculate power spectra from the model presented in this paper can be found at https://github.com/alexander-mead/hmcode.

  10. Determinants of teenage smoking, with special reference to non-standard family background.

    PubMed

    Isohanni, M; Moilanen, I; Rantakallio, P

    1991-04-01

    The prevalence of teenage smoking in a cohort of 12,058 subjects born in northern Finland in 1966 is discussed in terms of its social and family determinants, especially in "non-standard" families (with one or more of the parents absent for at least part of the child's upbringing). The prevalence of experimental or daily smoking was 67.4%, the rate being 65.5% in the standard, two-parent families and 75.5% in the non-standard families, the difference being statistically significant (p less than 0.001). The corresponding prevalence of daily smoking was 6.4%, but the rate was 5.1% in standard families and 12.1% in non-standard families (p less than 0.001). An elevated risk of smoking existed among adolescents who had experienced death of their father or divorce of their parents and among girls who had experienced death of their mother. Maternal smoking during pregnancy and maternal age under 20 years at the time of delivery increased the risk, while being the first-born child reduced it. Among family factors existing in 1980, paternal smoking increased the risk for both sexes, while more than three siblings, mother's unemployment or gainful employment (i.e. not a housewife) were associated with smoking by the boys as was urban living, and for the girls migration by the family to a town. The results suggest that juvenile smoking may be a kind of indicator of possible problems experienced by the parents and/or the adolescents themselves with respect to parenthood and family development.

  11. Clouds Dominate the Galactic Halo

    NASA Astrophysics Data System (ADS)

    2003-01-01

    Using the exquisite sensitivity of the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT), astronomer Jay Lockman of the National Radio Astronomy Observatory (NRAO) in Green Bank, W. Va., has produced the best cross-section ever of the Milky Way Galaxy's diffuse halo of hydrogen gas. This image confirms the presence of discrete hydrogen clouds in the halo, and could help astronomers understand the origin and evolution of the rarefied atmosphere that surrounds our Galaxy. Lockman presented his findings at the American Astronomical Society meeting in Seattle, WA. Hydrogen Clouds Graphic Artist's Rendering of the Milky Way (background) with insert showing GBT image of cross-section of neutral atomic Hydrogen Credit: Kirk Woellert/National Science Foundation Patricia Smiley, NRAO. "The first observations with the Green Bank Telescope suggested that the hydrogen in the lower halo, the transition zone between the Milky Way and intergalactic space, is very clumpy," said Lockman. "The latest data confirm these results and show that instead of trailing away smoothly from the Galactic plane, a significant fraction of the hydrogen gas in the halo is concentrated in discrete clouds. There are even some filaments." Beyond the star-filled disk of the Milky Way, there exists an extensive yet diffuse halo of hydrogen gas. For years, astronomers have speculated about the origin and structure of this gas. "Even the existence of neutral hydrogen in the halo has been somewhat of a puzzle," Lockman remarked. "Unlike the Earth's atmosphere, which is hot enough to hold itself up against the force of gravity, the hydrogen in the halo is too cool to support itself against the gravitational pull of the Milky Way." Lockman points out that some additional factor has to be involved to get neutral hydrogen to such large distances from the Galactic plane. "This force could be cosmic rays, a supersonic wind, the blast waves from supernovae, or something we have not thought of

  12. Astronomical Constraints on Quantum Cold Dark Matter

    NASA Astrophysics Data System (ADS)

    Spivey, Shane; Musielak, Z.; Fry, J.

    2012-01-01

    A model of quantum (`fuzzy') cold dark matter that accounts for both the halo core problem and the missing dwarf galaxies problem, which plague the usual cold dark matter paradigm, is developed. The model requires that a cold dark matter particle has a mass so small that its only allowed physical description is a quantum wave function. Each such particle in a galactic halo is bound to a gravitational potential that is created by luminous matter and by the halo itself, and the resulting wave function is described by a Schrödinger equation. To solve this equation on a galactic scale, we impose astronomical constraints that involve several density profiles used to fit data from simulations of dark matter galactic halos. The solutions to the Schrödinger equation are quantum waves which resemble the density profiles acquired from simulations, and they are used to determine the mass of the cold dark matter particle. The effects of adding certain types of baryonic matter to the halo, such as a dwarf elliptical galaxy or a supermassive black hole, are also discussed.

  13. Effects of non-standard neutrino emission on the evolution of low-mass stars

    NASA Astrophysics Data System (ADS)

    Arceo-Díaz, S.; Schröder, K.-P.; Jack, D.; Zuber, K.

    2014-10-01

    Using the {Pools et al. (1995)} version of the STARS code with updated numerical tables for neutrino plasmon decay ({Kantor et al. 2007}), along with the reinterpretation of the Reimers mass-loss prescription by {Schröder et al. (2005)}, we analyze the consequences of enhanced neutrino emission on the internal structure and late evolution of the degenerated cores in low-mass stars, the non-standard increase in tip-RGB luminosity and the impact on the calibration of the Reimers mass-loss mechanism and the changes driven in post-RGB phases. With synthetic spectra generated with the PHOENIX code {Baron & Hauschildt et al. (1997)}, we also study the dependence of the non-standard increase in brightness on the selected NIR photometric band. By comparing our stellar evolutionary models with the synthetic spectra and the photometric data base of ω-Cen by {Sollima et al. (2004)}, we find the limit value μ_{ν}≤ 2.2× 10^{-12}μ_{B}.

  14. [Non-standard method of reconstruction of the abdominal aorta for a giant aneurysm].

    PubMed

    Gaibov, A D; Baratov, A K; Sadriev, O N; Gaibova, Z V; Sharipov, Z R

    2016-01-01

    Abdominal aortic aneurysms are encountered predominantly in elderly patients suffering from severe concomitant diseases. Therefore, the rate of various complications associated with resection of aortic aneurysm amounts to 30%, with lethality in separate cohorts of patients reaching 43.7%. According the authors' opinion, in the development of intra- and postoperative complications of special importance is the duration of aortic clamping accompanied by severe haemodynamic alterations in coronary, cerebral and renal vessels. These changes are key moments in the development of fatal outcomes. In order to reduce the duration of aortic clamp the authors suggested a non-standard surgical technique of prosthetic repair of the abdominal aorta. Presented herein is a clinical case report illustrating this technique. The patient operated on according to this technique was discharged in a satisfactory condition with no serious postoperative complications. The proposed non-standard surgical technique makes it possible to reduce the duration of aortic cross-clamping in resection of an aneurysm by 10-12 minutes.

  15. The Anemic Stellar Halo of M101

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.

  16. The VIMOS-VLT Deep Survey: evolution in the halo occupation number since z ~ 1

    NASA Astrophysics Data System (ADS)

    Abbas, U.; de la Torre, S.; Le Fèvre, O.; Guzzo, L.; Marinoni, C.; Meneux, B.; Pollo, A.; Zamorani, G.; Bottini, D.; Garilli, B.; Le Brun, V.; Maccagni, D.; Scaramella, R.; Scodeggio, M.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Ilbert, O.; Iovino, A.; Lamareille, F.; McCracken, H. J.; Marano, B.; Mazure, A.; Merighi, R.; Paltani, S.; Pellò, R.; Pozzetti, L.; Radovich, M.; Vergani, D.; Zucca, E.; Bondi, M.; Bongiorno, A.; Brinchmann, J.; Cucciati, O.; de Ravel, L.; Gregorini, L.; Perez-Montero, E.; Mellier, Y.; Merluzzi, P.

    2010-08-01

    We model the evolution of the mean galaxy occupation of dark matter haloes over the range 0.1 < z < 1.3, using the data from the VIMOS-VLT Deep Survey. The galaxy projected correlation function wp(rp) was computed for a set of luminosity-limited subsamples and fits to its shape were obtained using two variants of halo occupation distribution (HOD) models. These provide us with a set of best-fitting parameters, from which we obtain the average mass of a halo and average number of galaxies per halo. We find that after accounting for the evolution in luminosity and assuming that we are largely following the same population, the underlying dark matter halo shows a growth in mass with decreasing redshift as expected in a hierarchical structure formation scenario. Using two different HOD models, we see that the halo mass grows by 90 per cent over the redshift interval z = [0.5, 1.0]. This is the first time the evolution in halo mass at high redshifts has been obtained from a single data survey and it follows the simple form seen in N-body simulations with M(z) = M0 e-βz, and β = 1.3 +/- 0.30. This provides evidence for a rapid accretion phase of massive haloes having a present-day mass M0 ~ 1013.5 h-1 Msolar, with a m > 0.1 M0 merger event occurring between redshifts of 0.5 and 1.0. Furthermore, we find that more luminous galaxies are found to occupy more massive haloes irrespective of the redshift. Finally, the average number of galaxies per halo shows little increase from redshift z ~ 1.0 to ~0.5, with a sharp increase by a factor of ~3 from z ~ 0.5 to ~0.1, likely due to the dynamical friction of subhaloes within their host haloes. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, program 070.A-9007(A), and on data obtained at the Canada-France-Hawaii Telescope, operated by the CNRS of France, CNRC in Canada and the University of Hawaii. E-mail: abbas@oato.inaf.it

  17. The X-ray halo of an extremely luminous LSB disk galaxy

    NASA Technical Reports Server (NTRS)

    Weiner, Benjamin J.

    2004-01-01

    We are continuing to refine our upper limit on emission from halo gas in Malin 2. The upper limit is, of course, below the detected flux, but is made more difficult to quantify by the disk and possible AGN sources. We are also exploring spectral and spatial-size constraints to help separate the sources of emission. On the theory side, more recent work on the X-ray halo luminosity from halo gas leftover from galaxy formation has lowered the prediction for disk galaxies (e.g. Toft et al. 2002, MNRAS, 335, 799). While our upper limit is well below the original prediction, refinements in model have moved the theoretical goalposts, so that the observation may be consistent with newer models. A recent theoretical development, which our observations of Malin 2 appear to support, is that a substantial amount of mass can be accreted onto galaxies without being heated at a virial shock. The previous standard theory was that gas accreting into a halo hits a virial shock and is heated to high temperatures, which could produce X-ray halos in massive galaxies. Recent models show that "smooth accretion" of matter bypasses the virial shocking (Murali e t al. 2002, ApJ, 571, 1; Birnboim & Dekel 2003, MNRAS, 345, 349). Additionally, new hydrodynamical simulations of galaxy mergers by UCSC graduate student T. J. Cox show that hot gas halos can be created by gas blown out from the merger, taking up orbital energy of the merging galaxies (Cox et al. 2004, ApJ, 607, L87). If mergers rather than virial shocking are the origin of hot gas halos, the existence of an X-ray halo should depend more on past merger activity than halo mass. Then it makes sense that elliptical galaxies and poor groups with ellipticals, which are probably formed in mergers, have X-ray gas halos; while a giant, quiescent LSB disk galaxy like Malin 2, which has never suffered a major merger, does not have an X-ray halo. While both the observational expectations and theoretical models have changed since we began this

  18. Hierarchical Galaxy Growth and Scatter in the Stellar Mass-Halo Mass Relation

    NASA Astrophysics Data System (ADS)

    Gu, Meng; Conroy, Charlie; Behroozi, Peter

    2016-12-01

    The relation between galaxies and dark matter halos reflects the combined effects of many distinct physical processes. Observations indicate that the z = 0 stellar mass-halo mass (SMHM) relation has remarkably small scatter in stellar mass at fixed halo mass (≲0.2 dex), with little dependence on halo mass. We investigate the origins of this scatter by combining N-body simulations with observational constraints on the SMHM relation. We find that at the group and cluster scale ({M}{vir}\\gt {10}14 {M}⊙ ) the scatter due purely to hierarchical assembly is ≈ 0.16 dex, which is comparable to recent direct observational estimates. At lower masses, mass buildup since z≈ 2 is driven largely by in situ growth. We include a model for the in situ buildup of stellar mass and find that an intrinsic scatter in this growth channel of 0.2 dex produces a relation between scatter and halo mass that is consistent with observations from {10}12 {M}⊙ \\lt {M}{vir}\\lt {10}14.75 {M}⊙ . The approximately constant scatter across a wide range of halo masses at z = 0 thus appears to be a coincidence, as it is determined largely by in situ growth at low masses and by hierarchical assembly at high masses. These results indicate that the scatter in the SMHM relation can provide unique insight into the regularity of the galaxy formation process.

  19. The MassiveBlack-II simulation: The evolution of haloes and galaxies to z ~ 0

    SciTech Connect

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert; Wilkins, Stephen; Feng, Yu; Tucker, Evan; DeGraf, Colin; Liu, Mao -Sheng

    2015-04-24

    We investigate the properties and clustering of halos, galaxies and blackholes to z = 0 in the high resolution hydrodynamical simulation MassiveBlack-II (MBII). MBII evolves a ΛCDM cosmology in a cubical comoving volume Vbox = (100Mpc/h)³. It is the highest resolution simulation of this size which includes a self-consistent model for star formation, black hole accretion and associated feedback. We provide a simulation browser web application which enables interactive search and tagging of the halos, subhalos and their properties and publicly release our galaxy catalogs to the scientific community. Our analysis of the halo mass function in MBII reveals that baryons have strong effects with changes in the halo abundance of 20–35% below the knee of the mass function (Mhalo 1013.2 M h at z = 0) when compared to dark-matter-only simulations. We provide a fitting function for the halo MF out to redshift z = 11 and discuss its limitations.

  20. The prodigious halo of the other Huygens.

    PubMed

    Können, Gunther P

    2015-02-01

    At the height of the ceremony in the Principality of Orange of the restoration of the sovereignty of the House of Nassau in 1665, a ceremony led by Christiaan's father, Constantijn Huygens, a "solar crown" appeared in the sky, apparently a divine sign of approval. A nearly forgotten contemporary color engraving of this miraculous event has survived. Constantijn seized the opportunity by using to his advantage the general euphoria among the citizens caused by the appearance. We argue that Constantijn knew exactly what was going on in the sky because of his son's work on halo theory. Given its brightness and its time of appearance, it seems plausible that the most prominent halo in the Orange halo display was a circumscribed halo rather than the more familiar but bleaker circular 22° halo. The same probably holds for most of the other high-sun halos that caused general consternation, dating from the Octavian halo of 44 BC, to the Chernobyl halo of 1986, and indeed up to bright high-sun halos of the present.

  1. Progress in understanding halo current at JET

    NASA Astrophysics Data System (ADS)

    Riccardo, V.; Arnoux, G.; Beaumont, P.; Hacquin, S.; Hobirk, J.; Howell, D.; Huber, A.; Joffrin, E.; Koslowski, R.; Lam, N.; Leggate, H.; Rachlew, E.; Sergienko, G.; Stephen, A.; Todd, T.; Zerbini, M.; Delogu, R.; Grando, L.; Marcuzzi, D.; Peruzzo, S.; Pomaro, N.; Sonato, P.; JET EFDA Contributors

    2009-05-01

    The poloidal distribution of the halo current density on the top dump plate in JET can now be measured thanks to a new set of Rogowskii coils. These are the first measurements in JET able to offer an insight in the width of the halo current interaction with the wall. Therefore they offer both validation of the assumption made for JET disruption design criteria and one additional point in the extrapolation of the expected halo current width, and hence halo current density (and related local electro-mechanical loads on in-vessel components) for ITER. During upward events, the measured current density is consistent with the measured total poloidal halo current. The halo footprint extends over most of the upper dump plate, converting to a halo current flux tube width of ~100 mm. A set of four toridal field pick-up coils installed 90° apart now allows a more accurate measurement of the poloidal halo current, in particular its toroidal peaking factor, and direct comparison between halo and plasma asymmetries.

  2. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis

    PubMed Central

    Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael C.

    2014-01-01

    Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems (OTSs) has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications. PMID:24959531

  3. DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides

    PubMed Central

    Laos, Roberto; Thomson, J. Michael; Benner, Steven A.

    2014-01-01

    DNA polymerases have evolved for billions of years to accept natural nucleoside triphosphate substrates with high fidelity and to exclude closely related structures, such as the analogous ribonucleoside triphosphates. However, polymerases that can accept unnatural nucleoside triphosphates are desired for many applications in biotechnology. The focus of this review is on non-standard nucleotides that expand the genetic “alphabet.” This review focuses on experiments that, by directed evolution, have created variants of DNA polymerases that are better able to accept unnatural nucleotides. In many cases, an analysis of past evolution of these polymerases (as inferred by examining multiple sequence alignments) can help explain some of the mutations delivered by directed evolution. PMID:25400626

  4. Non-Standard Hierarchies of the Runnings of the Spectral Index in Inflation

    NASA Astrophysics Data System (ADS)

    Longden, Chris

    2017-03-01

    Recent analyses of cosmic microwave background surveys have revealed hints that there may be a non-trivial running of the running of the spectral index. If future experiments were to confirm these hints, it would prove a powerful discriminator of inflationary models, ruling out simple single field models. We discuss how isocurvature perturbations in multi-field models can be invoked to generate large runnings in a non-standard hierarchy, and find that a minimal model capable of practically realising this would be a two-field model with a non-canonical kinetic structure. We also consider alternative scenarios such as variable speed of light models and canonical quantum gravity effects and their implications for runnings of the spectral index.

  5. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis

    NASA Astrophysics Data System (ADS)

    Hong, Seok Hoon; Kwon, Yong-Chan; Jewett, Michael

    2014-06-01

    Incorporating non-standard amino acids (NSAAs) into proteins enables new chemical properties, new structures, and new functions. In recent years, improvements in cell-free protein synthesis (CFPS) systems have opened the way to accurate and efficient incorporation of NSAAs into proteins. The driving force behind this development has been three-fold. First, a technical renaissance has enabled high-yielding (>1 g/L) and long-lasting (>10 h in batch operation) CFPS in systems derived from Escherichia coli. Second, the efficiency of orthogonal translation systems has improved. Third, the open nature of the CFPS platform has brought about an unprecedented level of control and freedom of design. Here, we review recent developments in CFPS platforms designed to precisely incorporate NSAAs. In the coming years, we anticipate that CFPS systems will impact efforts to elucidate structure/function relationships of proteins and to make biomaterials and sequence-defined biopolymers for medical and industrial applications.

  6. Gravitational wave and collider implications of electroweak baryogenesis aided by non-standard cosmology

    NASA Astrophysics Data System (ADS)

    Artymowski, Michal; Lewicki, Marek; Wells, James D.

    2017-03-01

    We consider various models realizing baryogenesis during the electroweak phase transition (EWBG). Our focus is their possible detection in future collider experiments and possible observation of gravitational waves emitted during the phase transition. We also discuss the possibility of a non-standard cosmological history which can facilitate EWBG. We show how acceptable parameter space can be extended due to such a modification and conclude that next generation precision experiments such as the ILC will be able to confirm or falsify many models realizing EWBG. We also show that, in general, collider searches are a more powerful probe than gravitational wave searches. However, observation of a deviation from the SM without any hints of gravitational waves can point to models with modified cosmological history that generically enable EWBG with weaker phase transition and thus, smaller GW signals.

  7. The possibility to observe the non-standard interaction by the Hyperkamiokande atmospheric neutrino experiment

    NASA Astrophysics Data System (ADS)

    Fukasawa, Shinya; Yasuda, Osamu

    2017-01-01

    It was suggested that a tension between the mass-squared differences obtained from the solar neutrino and KamLAND experiments can be solved by introducing the non-standard flavor-dependent interaction in neutrino propagation. In this paper we discuss the possibility to test such a hypothesis by atmospheric neutrino observations at the future Hyper-Kamiokande experiment. Assuming that the mass hierarchy is known, we find that the best-fit value from the solar neutrino and KamLAND data can be tested at more than 8σ, while the one from the global analysis can be examined at 5.0σ (1.4σ) for the normal (inverted) mass hierarchy.

  8. The Use of Non-Standard Devices in Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Schur, Willi W.; Broduer, Steve (Technical Monitor)

    2001-01-01

    A general mathematical description of the response behavior of thin-skin pneumatic envelopes and many other membrane and cable structures produces under-constrained systems that pose severe difficulties to analysis. These systems are mobile, and the general mathematical description exposes the mobility. Yet the response behavior of special under-constrained structures under special loadings can be accurately predicted using a constrained mathematical description. The static response behavior of systems that are infinitesimally mobile, such as a non-slack membrane subtended from a rigid or elastic boundary frame, can be easily analyzed using such general mathematical description as afforded by the non-linear, finite element method using an implicit solution scheme if the incremental uploading is guided through a suitable path. Similarly, if such structures are assembled with structural lack of fit that provides suitable self-stress, then dynamic response behavior can be predicted by the non-linear, finite element method and an implicit solution scheme. An explicit solution scheme is available for evolution problems. Such scheme can be used via the method of dynamic relaxation to obtain the solution to a static problem. In some sense, pneumatic envelopes and many other compliant structures can be said to have destiny under a specified loading system. What that means to the analyst is that what happens on the evolution path of the solution is irrelevant as long as equilibrium is achieved at destiny under full load and that the equilibrium is stable in the vicinity of that load. The purpose of this paper is to alert practitioners to the fact that non-standard procedures in finite element analysis are useful and can be legitimate although they burden their users with the requirement to use special caution. Some interesting findings that are useful to the US Scientific Balloon Program and that could not be obtained without non-standard techniques are presented.

  9. Stellar haloes in Milky Way mass galaxies: from the inner to the outer haloes

    NASA Astrophysics Data System (ADS)

    Tissera, Patricia B.; Beers, Timothy C.; Carollo, Daniela; Scannapieco, Cecilia

    2014-04-01

    We present a comprehensive study of the chemical properties of the stellar haloes of Milky Way mass galaxies, analysing the transition between the inner to the outer haloes. We find the transition radius between the relative dominance of the inner-halo and outer-halo stellar populations to be ˜15-20 kpc for most of our haloes, similar to that inferred for the Milky Way from recent observations. While the number density of stars in the simulated inner-halo populations decreases rapidly with distance, the outer-halo populations contribute about 20-40 per cent in the fiducial solar neighbourhood, in particular at the lowest metallicities. We have determined [Fe/H] profiles for our simulated haloes; they exhibit flat or mild gradients, in the range [-0.002, -0.01] dex kpc-1. The metallicity distribution functions exhibit different features, reflecting the different assembly history of the individual stellar haloes. We find that stellar haloes formed with larger contributions from massive subgalactic systems have steeper metallicity gradients. Very metal-poor stars are mainly contributed to the halo systems by lower mass satellites. There is a clear trend among the predicted metallicity distribution functions that a higher fraction of low-metallicity stars are found with increasing radius. These properties are consistent with the range of behaviours observed for stellar haloes of nearby galaxies.

  10. AGN-halo Mass Assembly Connection in Galaxy Clusters: Investigation Using the Splashback Radius

    NASA Astrophysics Data System (ADS)

    McIntosh, Missy; More, Surhud; Silverman, John D.

    2017-01-01

    The splashback radius (also known as the last density caustic or the second turnaround radius) is a sharp dark matter halo edge that corresponds to the location of the first orbital apocenter of satellite galaxies after their infall. This definition of a halo boundary is more physical compared to the traditional definitions of halo boundaries which tend to be quite arbitrary. The splashback radius responds to the mass assembly history of clusters. For dark matter halos of the same mass, a large mass accretion rate results in a smaller splashback radius, since its deeper halo potential well has a closer apocenter. Using two cluster samples which had the same mass, but different splashback radii, we set out to check if the incidences of active galactic nuclei (AGN) in the member galaxies of these clusters are affected by their mass assembly history. Using SDSS spectroscopic data, we determined metallicity of galaxies and constructed a BPT diagram to classify each galaxy member in each cluster (Seyfert, Liner, Composite, etc.) and determined if an AGN was likely to be present. We compared the samples and determined that the rapidly assembling sample did have a larger AGN presence.

  11. A general relativistic approach to the Navarro Frenk White galactic halos

    NASA Astrophysics Data System (ADS)

    Matos, Tonatiuh; Núñez, Darío; Sussman, Roberto A.

    2004-11-01

    Although galactic dark matter halos are basically Newtonian structures, the study of their interplay with large-scale cosmic evolution and with relativistic effects, such as gravitational lenses, quintessence sources or gravitational waves, makes it necessary to obtain adequate relativistic descriptions for these self-gravitating systems. With this purpose in mind, we construct a post-Newtonian fluid framework for the 'Navarro Frenk White' (NFW) models of galactic halos that follow from N-body numerical simulations. Since these simulations are unable to resolve regions very near the halo centre, the extrapolation of the fitting formula leads to a spherically averaged 'universal' density profile that diverges at the origin. We remove this inconvenient feature by replacing a small central region of the NFW halo with an interior Schwarzschild solution with constant density, continuously matched to the remaining NFW spacetime. A model of a single halo, as an isolated object with finite mass, follows by smoothly matching the NFW spacetime to a Schwarzschild vacuum exterior along the virial radius, the physical 'cut-off' customarily imposed, as the mass associated with NFW profiles diverges asymptotically. Numerical simulations assume weakly interacting collisionless particles, hence we suggest that NFW halos approximately satisfy an 'ideal gas' type of equation of state, where mass-density is the dominant rest-mass contribution to matter-energy, with the internal energy contribution associated with an anisotropic kinetic pressure. We show that, outside the central core, this pressure and the mass density roughly satisfy a polytropic relation. Since stellar polytropes are the equilibrium configurations in Tsallis' non-extensive formalism of statistical mechanics, we argue that NFW halos might provide a rough empirical estimate of the free parameter q of Tsallis' formalism.

  12. The insight into the dark side - I. The pitfalls of the dark halo parameters estimation

    NASA Astrophysics Data System (ADS)

    Saburova, Anna S.; Kasparova, Anastasia V.; Katkov, Ivan Yu.

    2016-12-01

    We examined the reliability of estimates of pseudo-isothermal, Burkert and NFW dark halo parameters for the methods based on the mass-modelling of the rotation curves. To do it, we constructed the χ2 maps for the grid of the dark matter halo parameters for a sample of 14 disc galaxies with high-quality rotation curves from THINGS. We considered two variants of models in which: (a) the mass-to-light ratios of disc and bulge were taken as free parameters, (b) the mass-to-light ratios were fixed in a narrow range according to the models of stellar populations. To reproduce the possible observational features of the real galaxies, we made tests showing that the parameters of the three halo types change critically in the cases of a lack of kinematic data in the central or peripheral areas and for different spatial resolutions. We showed that due to the degeneracy between the central densities and the radial scales of the dark haloes there are considerable uncertainties of their concentrations estimates. Due to this reason, it is also impossible to draw any firm conclusion about universality of the dark halo column density based on mass-modelling of even a high-quality rotation curve. The problem is not solved by fixing the density of baryonic matter. In contrast, the estimates of dark halo mass within optical radius are much more reliable. We demonstrated that one can evaluate successfully the halo mass using the pure best-fitting method without any restrictions on the mass-to-light ratios.

  13. The MICE Grand Challenge lightcone simulation - II. Halo and galaxy catalogues

    NASA Astrophysics Data System (ADS)

    Crocce, M.; Castander, F. J.; Gaztañaga, E.; Fosalba, P.; Carretero, J.

    2015-10-01

    This is the second in a series of three papers in which we present an end-to-end simulation from the MICE collaboration, the MICE Grand Challenge (MICE-GC) run. The N-body contains about 70 billion dark-matter particles in a (3 h-1 Gpc)3 comoving volume spanning five orders of magnitude in dynamical range. Here, we introduce the halo and galaxy catalogues built upon it, both in a wide (5000 deg2) and deep (z < 1.4) lightcone and in several comoving snapshots. Haloes were resolved down to few 1011 h-1 M⊙. This allowed us to model galaxies down to absolute magnitude Mr < -18.9. We used a new hybrid halo occupation distribution and abundance matching technique for galaxy assignment. The catalogue includes the spectral energy distributions of all galaxies. We describe a variety of halo and galaxy clustering applications. We discuss how mass resolution effects can bias the large-scale two-pt clustering amplitude of poorly resolved haloes at the ≲5 per cent level, and their three-pt correlation function. We find a characteristic scale-dependent bias of ≲6 per cent across the BAO feature for haloes well above M⋆ ˜ 1012 h-1 M⊙ and for luminous red galaxy like galaxies. For haloes well below M⋆ the scale dependence at 100 h-1 Mpc is ≲2 per cent. Lastly, we discuss the validity of the large-scale Kaiser limit across redshift and departures from it towards non-linear scales. We make the current version of the lightcone halo and galaxy catalogue (MICECATv1.0) publicly available through a dedicated web portal to help develop and exploit the new generation of astronomical surveys.

  14. The kinematics of globular clusters systems in the outer halos of the Aquarius simulations

    NASA Astrophysics Data System (ADS)

    Veljanoski, J.; Helmi, A.

    2016-07-01

    Stellar halos and globular cluster (GC) systems contain valuable information regarding the assembly history of their host galaxies. Motivated by the detection of a significant rotation signal in the outer halo GC system of M 31, we investigate the likelihood of detecting such a rotation signal in projection, using cosmological simulations. To this end we select subsets of tagged particles in the halos of the Aquarius simulations to represent mock GC systems, and analyse their kinematics. We find that GC systems can exhibit a non-negligible rotation signal provided the associated stellar halo also has a net angular momentum. The ability to detect this rotation signal is highly dependent on the viewing perspective, and the probability of seeing a signal larger than that measured in M 31 ranges from 10% to 90% for the different halos in the Aquarius suite. High values are found from a perspective such that the projected angular momentum of the GC system is within ≲40 deg of the rotation axis determined via the projected positions and line-of-sight velocities of the GCs. Furthermore, the true 3D angular momentum of the outer stellar halo is relatively well aligned, within 35 deg, with that of the mock GC systems. We argue that the net angular momentum in the mock GC systems arises naturally when the majority of the material is accreted from a preferred direction, namely along the dominant dark matter filament of the large-scale structure that the halos are embedded in. This, together with the favourable edge-on view of M 31's disk suggests that it is not a coincidence that a large rotation signal has been measured for its outer halo GC system.

  15. Evolution of Dwarf Spheroidal Satellites in the Common Surface-density Dark Halos

    NASA Astrophysics Data System (ADS)

    Okayasu, Yusuke; Chiba, Masashi

    2016-08-01

    We investigate the growth histories of dark matter halos associated with dwarf satellites in Local Group galaxies and the resultant evolution of the baryonic component. Our model is based on the recently proposed property that the mean surface density of a dark halo inside a radius at maximum circular velocity {V}{{\\max }} is universal over a large range of {V}{{\\max }}. Given that a surface density of 20 M ⊙ pc-2 well explains dwarf satellites in the Milky Way and Andromeda, we find that the evolution of the dark halo in this common surface-density scale is characterized by the rapid increase of the halo mass assembled by the redshift {z}{{TT}} of the tidal truncation by its host halo, at early epochs of {z}{{TT}}≳ 6 or {V}{{\\max }}≲ 22 km s-1. This mass growth of the halo is slow at lower {z}{{TT}} or larger {V}{{\\max }}. Taking into account the baryon content in this dark halo evolution, under the influence of the ionizing background radiation, we find that the dwarf satellites are divided into roughly two families: those with {V}{{\\max }}≲ 22 km s-1 having high star formation efficiency and those with larger {V}{{\\max }} having less efficient star formation. This semianalytical model is in agreement with the high-resolution numerical simulation for galaxy formation and with the observed star formation histories for Fornax and Leo II. This suggests that the evolution of a dark halo may play a key role in understanding star formation histories in dwarf satellites.

  16. The impact of galaxy formation on the total mass, mass profile and abundance of haloes

    NASA Astrophysics Data System (ADS)

    Velliscig, Marco; van Daalen, Marcel P.; Schaye, Joop; McCarthy, Ian G.; Cacciato, Marcello; Le Brun, Amandine M. C.; Dalla Vecchia, Claudio

    2014-08-01

    We use cosmological hydrodynamical simulations to investigate how the inclusion of physical processes relevant to galaxy formation (star formation, metal-line cooling, stellar winds, supernovae and feedback from active galactic nuclei, AGN) change the properties of haloes, over four orders of magnitude in mass. We find that gas expulsion and the associated dark matter (DM) expansion induced by supernova-driven winds are important for haloes with masses M200 ≲ 1013 M⊙, lowering their masses by up to 20 per cent relative to a DM-only model. AGN feedback, which is required to prevent overcooling, has a significant impact on halo masses all the way up to cluster scales (M200 ˜ 1015 M⊙). Baryon physics changes the total mass profiles of haloes out to several times the virial radius, a modification that cannot be captured by a change in the halo concentration. The decrease in the total halo mass causes a decrease in the halo mass function of about 20 per cent. This effect can have important consequences for the abundance matching technique as well as for most semi-analytic models of galaxy formation. We provide analytic fitting formulae, derived from simulations that reproduce the observed baryon fractions, to correct halo masses and mass functions from DM-only simulations. The effect of baryon physics (AGN feedback in particular) on cluster number counts is about as large as changing the cosmology from Wilkinson Microwave Anisotropy Probe 7 to Planck, even when a moderately high-mass limit of M500 ≈ 1014 M⊙ is adopted. Thus, for precision cosmology the effects of baryons must be accounted for.

  17. The Connection between the Host Halo and the Satellite Galaxies of the Milky Way

    NASA Astrophysics Data System (ADS)

    Lu, Yu; Benson, Andrew; Mao, Yao-Yuan; Tonnesen, Stephanie; Peter, Annika H. G.; Wetzel, Andrew R.; Boylan-Kolchin, Michael; Wechsler, Risa H.

    2016-10-01

    Many properties of the Milky Way’s (MW) dark matter halo, including its mass-assembly history, concentration, and subhalo population, remain poorly constrained. We explore the connection between these properties of the MW and its satellite galaxy population, especially the implication of the presence of the Magellanic Clouds for the properties of the MW halo. Using a suite of high-resolution N-body simulations of MW-mass halos with a fixed final {M}{vir}˜ {10}12.1 {M}⊙ , we find that the presence of Magellanic Cloud-like satellites strongly correlates with the assembly history, concentration, and subhalo population of the host halo, such that MW-mass systems with Magellanic Clouds have lower concentration, more rapid recent accretion, and more massive subhalos than typical halos of the same mass. Using a flexible semi-analytic galaxy formation model that is tuned to reproduce the stellar mass function of the classical dwarf galaxies of the MW with Markov-Chain Monte-Carlo, we show that adopting host halos with different mass-assembly histories and concentrations can lead to different best-fit models for galaxy-formation physics, especially for the strength of feedback. These biases arise because the presence of the Magellanic Clouds boosts the overall population of high-mass subhalos, thus requiring a different stellar-mass-to-halo-mass ratio to match the data. These biases also lead to significant differences in the mass-metallicity relation, the kinematics of low-mass satellites, the number counts of small satellites associated with the Magellanic Clouds, and the stellar mass of MW itself. Observations of these galaxy properties can thus provide useful constraints on the properties of the MW halo.

  18. The connection between the host halo and the satellite galaxies of the Milky Way

    SciTech Connect

    Lu, Yu; Benson, Andrew; Mao, Yao -Yuan; Tonnesen, Stephanie; Peter, Annika H. G.; Wetzel, Andrew R.; Boylan-Kolchin, Michael; Wechsler, Risa H.

    2016-10-11

    Many properties of the Milky Way's (MW) dark matter halo, including its mass-assembly history, concentration, and subhalo population, remain poorly constrained. We explore the connection between these properties of the MW and its satellite galaxy population, especially the implication of the presence of the Magellanic Clouds for the properties of the MW halo. Using a suite of high-resolution N-body simulations of MW-mass halos with a fixed final ${M}_{\\mathrm{vir}}\\sim {10}^{12.1}\\,{M}_{\\odot }$, we find that the presence of Magellanic Cloud-like satellites strongly correlates with the assembly history, concentration, and subhalo population of the host halo, such that MW-mass systems with Magellanic Clouds have lower concentration, more rapid recent accretion, and more massive subhalos than typical halos of the same mass. Using a flexible semi-analytic galaxy formation model that is tuned to reproduce the stellar mass function of the classical dwarf galaxies of the MW with Markov-Chain Monte-Carlo, we show that adopting host halos with different mass-assembly histories and concentrations can lead to different best-fit models for galaxy-formation physics, especially for the strength of feedback. These biases arise because the presence of the Magellanic Clouds boosts the overall population of high-mass subhalos, thus requiring a different stellar-mass-to-halo-mass ratio to match the data. These biases also lead to significant differences in the mass–metallicity relation, the kinematics of low-mass satellites, the number counts of small satellites associated with the Magellanic Clouds, and the stellar mass of MW itself. Finally, observations of these galaxy properties can thus provide useful constraints on the properties of the MW halo.

  19. The connection between the host halo and the satellite galaxies of the Milky Way

    DOE PAGES

    Lu, Yu; Benson, Andrew; Mao, Yao -Yuan; ...

    2016-10-11

    Many properties of the Milky Way's (MW) dark matter halo, including its mass-assembly history, concentration, and subhalo population, remain poorly constrained. We explore the connection between these properties of the MW and its satellite galaxy population, especially the implication of the presence of the Magellanic Clouds for the properties of the MW halo. Using a suite of high-resolution N-body simulations of MW-mass halos with a fixed finalmore » $${M}_{\\mathrm{vir}}\\sim {10}^{12.1}\\,{M}_{\\odot }$$, we find that the presence of Magellanic Cloud-like satellites strongly correlates with the assembly history, concentration, and subhalo population of the host halo, such that MW-mass systems with Magellanic Clouds have lower concentration, more rapid recent accretion, and more massive subhalos than typical halos of the same mass. Using a flexible semi-analytic galaxy formation model that is tuned to reproduce the stellar mass function of the classical dwarf galaxies of the MW with Markov-Chain Monte-Carlo, we show that adopting host halos with different mass-assembly histories and concentrations can lead to different best-fit models for galaxy-formation physics, especially for the strength of feedback. These biases arise because the presence of the Magellanic Clouds boosts the overall population of high-mass subhalos, thus requiring a different stellar-mass-to-halo-mass ratio to match the data. These biases also lead to significant differences in the mass–metallicity relation, the kinematics of low-mass satellites, the number counts of small satellites associated with the Magellanic Clouds, and the stellar mass of MW itself. Finally, observations of these galaxy properties can thus provide useful constraints on the properties of the MW halo.« less

  20. PRESENT-DAY DESCENDANTS OF z = 3 Ly{alpha}-EMITTING GALAXIES IN THE MILLENNIUM-II HALO MERGER TREES

    SciTech Connect

    Walker-Soler, Jean P.; Gawiser, Eric; Bond, Nicholas A.; Padilla, Nelson; Francke, Harold

    2012-06-20

    Using the Millennium-II Simulation dark matter sub-halo merger histories, we created mock catalogs of Ly{alpha}-emitting (LAE) galaxies at z = 3.1 to study the properties of their descendants. Several models were created by selecting the sub-halos to match the number density and typical dark matter mass determined from observations of these galaxies. We used mass-based and age-based selection criteria to study their effects on descendant populations at z {approx_equal} 2, 1, and 0. For the models that best represent LAEs at z = 3.1, the z = 0 descendants have a median dark matter halo mass of 10{sup 12.7} M{sub Sun }, with a wide scatter in masses (50% between 10{sup 11.8} and 10{sup 13.7} M{sub Sun }). Our study differentiated between central and satellite sub-halos and found that {approx}55% of z = 0 descendants are central sub-halos with M{sub Median} {approx} 10{sup 12}. This confirms that central z = 0 descendants of z = 3.1 LAEs have halo masses typical of L*-type galaxies. The satellite sub-halos reside in group/cluster environments with dark matter masses around 10{sup 14} M{sub Sun }. The median descendant mass is robust to various methods of age determination, but it could vary by a factor of five due to current observational uncertainties in the clustering of LAEs used to determine their typical z = 3.1 dark matter mass.

  1. The Dark Halo of NGC 1399

    NASA Astrophysics Data System (ADS)

    Schuberth, Y.; Richtler, T.; Hilker, M.

    2006-06-01

    NGC 1399 is the central giant elliptical of the nearby Fornax cluster of galaxies. Our sample now consists of 625 GCs with projected galactocentric distances between 6 and 100 kpc, thus increasing by almost a factor of two the radial range in comparison to the study presented by Richtler et al. 2004). We determine the line-of-sight velocity dispersion as a function of radius and compare it to spherical Jeans-models. We find that a massive dark halo is required in order to explain the dynamics of the metal-poor (red) GCs. At 60 kpc, the dark matter fraction is 60%. In accordance with their shallower radial distribution, the metal-rich (blue) GCs show a higher line-of-sight velocity dispersion. Yet, there is reason to believe that the blue cluster population of NGC 1399 is contaminated by intra-cluster GCs which perhaps have been stripped off neighboring early-type galaxies. The center of the Fornax cluster is a complex environment, and a more detailed analysis of our data will allow us to better understand the GC systems of central giant ellipticals and their connection to the galaxy clusters in which they reside.

  2. Halo and reverse halo signs in canine pulmonary computed tomography.

    PubMed

    Secrest, Scott; Sakamoto, Kaori

    2014-01-01

    The halo sign (HS) and reverse halo sign (RHS) are radiologic signs identified on pulmonary computed tomography (CT) in people. The HS is described as a circular area of ground-glass attenuation surrounding a pulmonary nodule or mass. The RHS is defined as a focal, rounded area of ground-glass attenuation surrounded by a more or less complete ring of consolidation. These signs have been identified in a variety of diseases in people. The purpose of this retrospective study was to determine if the HS and RHS occur in dogs with pulmonary disease and to determine if they are associated with a particular disease process. In addition, the appearance of the HS and RHS was correlated with the histopathologic changes. Our results indicate that the HS and RHS are not common signs identified in dogs with pulmonary disease with an HS noted in five cases and an RHS in 4 of the 33 dogs that met the inclusion criteria. An association between the HS (P-value 0.8163) or RHS (P-value 0.5988) and neoplasia, infectious/inflammatory, and other disease processes was not identified using a Fisher's exact test. The HS was identified in neoplastic, infectious, and inflammatory conditions, with the RHS identified in neoplastic and infectious diseases and a lung lobe torsion. Histologically, the HS and RHS were caused by tumor extension, necrosis, and/or hemorrhage of the pulmonary parenchyma.

  3. A Receding Halo Sub-structure Towards Norma

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Sukanya

    2016-01-01

    We present results from follow-up spectroscopic observations of clustered Cepheid candidates identified from K-band light curves towards the Norma constellation (Chakrabarti et al. 2015), as well as others that we have found more recently. The average radial velocity of these stars is ~ 200 km/s, which is large and distinct from that of the Galaxy's stellar disk. These objects at l ~ -27 and b ~ -1 are therefore halo stars; using the period-luminosity relation of Type I Cepheids, they are at ~ 90 kpc. While the spectra do not have sufficient S/N to independently determine the metallicity and spectral type of the stars, there is a clear correspondence between the observed Brackett series lines in these observations and in known Type I Cepheids. Distances determined from the K-band period-luminosity relation (Matsunaga et al. 2013) and the 3.6 μm period-luminosity relation (Scowcroft et al. 2011) agree closely, and I-band observations have confirmed the periods of these sources. The extinction corrected J - Ks colors of these sources are comparable to known Type I Cepheids (Persson et al. 2004). The observed radial velocity of these stars agrees with predictions from dynamical models (Chakrabarti & Blitz 2009). If these stars are indeed members of the predicted dark-matter dominated dwarf galaxy that perturbed the outer HI disk of the Milky Way, this would represent the first application of Galactoseismology. These observations also challenge models of the Galactic halo. Young Cepheid variables are unexpected in models of the Galactic halo, though star formation due to infall of gas-rich dwarf galaxies may well produce a small population of yet undiscovered Cepheids in the outer halo.

  4. MODERATE C IV ABSORBER SYSTEMS REQUIRE 10{sup 12} M{sub Sun} DARK MATTER HALOS AT z {approx} 2.3: A CROSS-CORRELATION STUDY OF C IV ABSORBER SYSTEMS AND QUASARS IN SDSS-III BOSS DR9

    SciTech Connect

    Vikas, Shailendra; Wood-Vasey, W. Michael; Lundgren, Britt; Ross, Nicholas P.; Myers, Adam D.; AlSayyad, Yusra; York, Donald G.; Schneider, Donald P.; Brinkmann, J.; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Snedden, Stephanie; Ge, Jian; Muna, Demitri; Paris, Isabelle; Petitjean, Patrick; and others

    2013-05-01

    We measure the two-point cross-correlation function of C IV absorber systems and quasars, using spectroscopic data from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS; Data Release 9). The 19,701 quasars and 6149 C IV ''moderate'' absorbers, 0.28 A < rest-frame equivalent width (EW) < 5 A, in our study cover a redshift range of 2.1 < z < 2.5 over 3300 deg{sup 2} and represent a factor of two increase in sample size over previous investigations. We find a correlation scale length and slope of the redshift-space cross-correlation function of s{sub 0} = 8.46 {+-} 1.24 Mpc, {gamma} = 1.68 {+-} 0.19, in the redshift-space range 10 < s < 100 Mpc. We find a projected cross-correlation function of C IV absorption systems and quasars of r{sub 0} = 7.76 {+-} 2.80 Mpc, {gamma} = 1.74 {+-} 0.21. We measure the combined quasar and C IV bias to be b{sub QSO} b{sub C{sub IV}} = 8.81 {+-} 2.28. Using an estimate of b{sub QSO} from the quasar auto-correlation function we find b{sub CIV} = 2.38 {+-} 0.62. This b{sub CIV} implies that EW > 0.28 A C IV absorbers at z {approx} 2.3 are typically found in dark matter halos that have masses {>=}10{sup 11.3}-10{sup 13.4} M{sub Sun} at that redshift. The complete BOSS sample will triple the number of both quasars and absorption systems and increase the power of this cross-correlation measurement by a factor of two.

  5. Signatures of dark matter

    NASA Astrophysics Data System (ADS)

    Baltz, Edward Anthony

    It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for

  6. KINEMATICAL AND CHEMICAL VERTICAL STRUCTURE OF THE GALACTIC THICK DISK. II. A LACK OF DARK MATTER IN THE SOLAR NEIGHBORHOOD

    SciTech Connect

    Moni Bidin, C.; Smith, R.; Carraro, G.; Mendez, R. A.

    2012-05-20

    We estimated the dynamical surface mass density {Sigma} at the solar position between Z = 1.5 and 4 kpc from the Galactic plane, as inferred from the kinematics of thick disk stars. The formulation is exact within the limit of validity of a few basic assumptions. The resulting trend of {Sigma}(Z) matches the expectations of visible mass alone, and no dark component is required to account for the observations. We extrapolate a dark matter (DM) density in the solar neighborhood of 0 {+-} 1 mM{sub Sun} pc{sup -3}, and all the current models of a spherical DM halo are excluded at a confidence level higher than 4{sigma}. A detailed analysis reveals that a small amount of DM is allowed in the volume under study by the change of some input parameter or hypothesis, but not enough to match the expectations of the models, except under an exotic combination of non-standard assumptions. Identical results are obtained when repeating the calculation with kinematical measurements available in the literature. We demonstrate that a DM halo would be detected by our method, and therefore the results have no straightforward interpretation. Only the presence of a highly prolate (flattening q > 2) DM halo can be reconciled with the observations, but this is highly unlikely in {Lambda}CDM models. The results challenge the current understanding of the spatial distribution and nature of the Galactic DM. In particular, our results may indicate that any direct DM detection experiment is doomed to fail if the local density of the target particles is negligible.

  7. The origin of scatter in the stellar mass-halo mass relation of central galaxies in the EAGLE simulation

    NASA Astrophysics Data System (ADS)

    Matthee, Jorryt; Schaye, Joop; Crain, Robert A.; Schaller, Matthieu; Bower, Richard; Theuns, Tom

    2017-02-01

    We use the hydrodynamical EAGLE simulation to study the magnitude and origin of the scatter in the stellar mass-halo mass relation for central galaxies. We separate cause and effect by correlating stellar masses in the baryonic simulation with halo properties in a matched dark matter only (DMO) simulation. The scatter in stellar mass increases with redshift and decreases with halo mass. At z = 0.1, it declines from 0.25 dex at M200, DMO ≈ 1011 M⊙ to 0.12 dex at M200, DMO ≈ 1013 M⊙, but the trend is weak above 1012 M⊙. For M200, DMO < 1012.5 M⊙ up to 0.04 dex of the scatter is due to scatter in the halo concentration. At fixed halo mass, a larger stellar mass corresponds to a more concentrated halo. This is likely because higher concentrations imply earlier formation times and hence more time for accretion and star formation, and/or because feedback is less efficient in haloes with higher binding energies. The maximum circular velocity, Vmax, DMO, and binding energy are therefore more fundamental properties than halo mass, meaning that they are more accurate predictors of stellar mass, and we provide fitting formulae for their relations with stellar mass. However, concentration alone cannot explain the total scatter in the M_star - M_{200, DMO} relation, and it does not explain the scatter in Mstar-Vmax, DMO. Halo spin, sphericity, triaxiality, substructure and environment are also not responsible for the remaining scatter, which thus could be due to more complex halo properties or non-linear/stochastic baryonic effects.

  8. MEASUREMENT OF THE HALO BIAS FROM STACKED SHEAR PROFILES OF GALAXY CLUSTERS

    SciTech Connect

    Covone, Giovanni; Sereno, Mauro

    2014-04-01

    We present observational evidence of the two-halo term in the stacked shear profile of a sample of ∼1200 optically selected galaxy clusters based on imaging data and the public shear catalog from the CFHTLenS. We find that the halo bias, a measure of the correlated distribution of matter around galaxy clusters, has amplitude and correlation with galaxy cluster mass in very good agreement with the predictions based on the LCDM standard cosmological model. The mass-concentration relation is flat but higher than theoretical predictions. We also confirm the close scaling relation between the optical richness of galaxy clusters and their mass.

  9. The spatial correlation properties of dark galaxy halos in a CDM universe

    NASA Technical Reports Server (NTRS)

    Brainerd, Tereasa G.; Villumsen, Jens V.

    1993-01-01

    We use the Hierarchical Particle Mesh (HPM) N-body code written by J. V. Villumsen (Villumsen, 1989) to investigate the two-point spatial correlation function, xi(r), of dark galaxy halos as a function of halo mass and local environment (i.e. high, low, or average mass density). We assume a standard cold dark matter (CDM) universe (omega = 1, delta = 0, H sub 0 = 50,km/sec/Mpc). Because of the large dynamic ranges in mass and length that can be obtained with the HPM code, it is well-suited to an investigation of this sort.

  10. stream-stream: Stellar and dark-matter streams interactions

    NASA Astrophysics Data System (ADS)

    Bovy, Jo

    2017-02-01

    Stream-stream analyzes the interaction between a stellar stream and a disrupting dark-matter halo. It requires galpy (ascl:1411.008), NEMO (ascl:1010.051), and the usual common scientific Python packages.

  11. Confounding among Measures of Leniency and Halo.

    ERIC Educational Resources Information Center

    Alliger, George M.; Williams, Kevin J.

    1989-01-01

    The interrelationships among halo and leniency rating errors were examined using simulated rating data. As leniency increased, halo decreased when measured by dimension intercorrelations but increased when measured by standard deviations across dimensions. Implications of these results for the use of the various measures are discussed. (SLD)

  12. Comments on the Measurement of Halo.

    ERIC Educational Resources Information Center

    Fisicaro, Sebastiano A.; Vance, Robert J.

    1994-01-01

    This article presents arguments that the correlation measure "r" of halo is not conceptually more appropriate than the standard deviation (SD) measure. It also describes conditions under which halo effects occur and when the SD and r measures can be used. Neither measure is uniformly superior to the other. (SLD)

  13. Correlates of Halo Error in Teacher Evaluation.

    ERIC Educational Resources Information Center

    Moritsch, Brian G.; Suter, W. Newton

    1988-01-01

    An analysis of 300 undergraduate psychology student ratings of teachers was undertaken to assess the magnitude of halo error and a variety of rater, ratee, and course characteristics. The raters' halo errors were significantly related to student effort in the course, previous experience with the instructor, and class level. (TJH)

  14. Milky Way halo gas kinematics

    NASA Technical Reports Server (NTRS)

    Danly, L.

    1986-01-01

    Measurements of high resolution, short wavelength absorption data taken by IUE toward high latitude O and B stars are presented in a discussion of the large scale kinematic properties of Milky Way Halo gas. An analysis of these data demonstrates that: (1) the obsrved absorption widths (FWHM) of Si II are very large, ranging up to 150 Km/s for the most distant halo star; this is much larger than is generally appreciated from optical data; (2) the absorption is observed to be systematically negative in radial velocity, indicating that cool material is, on the whole, flowing toward the disk of the galaxy; (3) there is some evidence for asymmetry between the northern and southern galactic hemispheres, in accordance with the HI 21 cm data toward the galactic poles; (4) low column density gas with highly negative radial LSR velocity (V less than -70 km/s) can be found toward stars beyond 1-3 kpc in the northern galactic hemisphere in all four quadrants of galactic longitude; and (5) only the profiles toward stars in the direction of known high velocity HI features show a clear two component structure.

  15. In vivo validation of cardiac output assessment in non-standard 3D echocardiographic images

    NASA Astrophysics Data System (ADS)

    Nillesen, M. M.; Lopata, R. G. P.; de Boode, W. P.; Gerrits, I. H.; Huisman, H. J.; Thijssen, J. M.; Kapusta, L.; de Korte, C. L.

    2009-04-01

    Automatic segmentation of the endocardial surface in three-dimensional (3D) echocardiographic images is an important tool to assess left ventricular (LV) geometry and cardiac output (CO). The presence of speckle noise as well as the nonisotropic characteristics of the myocardium impose strong demands on the segmentation algorithm. In the analysis of normal heart geometries of standardized (apical) views, it is advantageous to incorporate a priori knowledge about the shape and appearance of the heart. In contrast, when analyzing abnormal heart geometries, for example in children with congenital malformations, this a priori knowledge about the shape and anatomy of the LV might induce erroneous segmentation results. This study describes a fully automated segmentation method for the analysis of non-standard echocardiographic images, without making strong assumptions on the shape and appearance of the heart. The method was validated in vivo in a piglet model. Real-time 3D echocardiographic image sequences of five piglets were acquired in radiofrequency (rf) format. These ECG-gated full volume images were acquired intra-operatively in a non-standard view. Cardiac blood flow was measured simultaneously by an ultrasound transit time flow probe positioned around the common pulmonary artery. Three-dimensional adaptive filtering using the characteristics of speckle was performed on the demodulated rf data to reduce the influence of speckle noise and to optimize the distinction between blood and myocardium. A gradient-based 3D deformable simplex mesh was then used to segment the endocardial surface. A gradient and a speed force were included as external forces of the model. To balance data fitting and mesh regularity, one fixed set of weighting parameters of internal, gradient and speed forces was used for all data sets. End-diastolic and end-systolic volumes were computed from the segmented endocardial surface. The cardiac output derived from this automatic segmentation was

  16. Halo-free Phase Contrast Microscopy.

    PubMed

    Nguyen, Tan H; Kandel, Mikhail; Shakir, Haadi M; Best-Popescu, Catherine; Arikkath, Jyothi; Do, Minh N; Popescu, Gabriel

    2017-03-24

    We present a new approach for retrieving halo-free phase contrast microscopy (hfPC) images by upgrading the conventional PC microscope with an external interferometric module, which generates sufficient data for reversing the halo artifact. Acquiring four independent intensity images, our approach first measures haloed phase maps of the sample. We solve for the halo-free sample transmission function by using a physical model of the image formation under partial spatial coherence. Using this halo-free sample transmission, we can numerically generate artifact-free PC images. Furthermore, this transmission can be further used to obtain quantitative information about the sample, e.g., the thickness with known refractive indices, dry mass of live cells during their cycles. We tested our hfPC method on various control samples, e.g., beads, pillars and validated its potential for biological investigation by imaging live HeLa cells, red blood cells, and neurons.

  17. Where have all the cluster halos gone?

    NASA Technical Reports Server (NTRS)

    Burns, Jack O.; Sulkanen, Martin E.; Gisler, Galen R.; Perley, Rick A.

    1992-01-01

    A new LF (330 MHz) VLA image of the Perseus cluster confirms the presence of a miniradio halo with diameter of about 430 kpc (H0 = 75 km/s Mpc) surrounding 3C 84. A careful comparison with the Coma cluster shows that there is no evidence for a similar, very extended halo in Perseus despite the large number of cluster radio galaxies which could power such a halo. These two clusters represent two classes of radio halos which differ by the absence (Coma) or presence (Perseus) of cooling inflows. It is argued that smaller halos as in Perseus result form insufficient clusterwide magnetic fields. A simple model is presented which suggests that cooling flows can suppress the diffusion of turbulently amplified B-fields outward from the cluster core. Such a suppression leads to the development of minihalos which are confined to the cores of cooling flow clusters.

  18. Halo-free Phase Contrast Microscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Tan H.; Kandel, Mikhail; Shakir, Haadi M.; Best-Popescu, Catherine; Arikkath, Jyothi; Do, Minh N.; Popescu, Gabriel

    2017-03-01

    We present a new approach for retrieving halo-free phase contrast microscopy (hfPC) images by upgrading the conventional PC microscope with an external interferometric module, which generates sufficient data for reversing the halo artifact. Acquiring four independent intensity images, our approach first measures haloed phase maps of the sample. We solve for the halo-free sample transmission function by using a physical model of the image formation under partial spatial coherence. Using this halo-free sample transmission, we can numerically generate artifact-free PC images. Furthermore, this transmission can be further used to obtain quantitative information about the sample, e.g., the thickness with known refractive indices, dry mass of live cells during their cycles. We tested our hfPC method on various control samples, e.g., beads, pillars and validated its potential for biological investigation by imaging live HeLa cells, red blood cells, and neurons.

  19. Halo-free Phase Contrast Microscopy

    PubMed Central

    Nguyen, Tan H.; Kandel, Mikhail; Shakir, Haadi M.; Best-Popescu, Catherine; Arikkath, Jyothi; Do, Minh N.; Popescu, Gabriel

    2017-01-01

    We present a new approach for retrieving halo-free phase contrast microscopy (hfPC) images by upgrading the conventional PC microscope with an external interferometric module, which generates sufficient data for reversing the halo artifact. Acquiring four independent intensity images, our approach first measures haloed phase maps of the sample. We solve for the halo-free sample transmission function by using a physical model of the image formation under partial spatial coherence. Using this halo-free sample transmission, we can numerically generate artifact-free PC images. Furthermore, this transmission can be further used to obtain quantitative information about the sample, e.g., the thickness with known refractive indices, dry mass of live cells during their cycles. We tested our hfPC method on various control samples, e.g., beads, pillars and validated its potential for biological investigation by imaging live HeLa cells, red blood cells, and neurons. PMID:28338086

  20. Condensation of galactic cold dark matter

    SciTech Connect

    Visinelli, Luca

    2016-07-07

    We consider the steady-state regime describing the density profile of a dark matter halo, if dark matter is treated as a Bose-Einstein condensate. We first solve the fluid equation for “canonical” cold dark matter, obtaining a class of density profiles which includes the Navarro-Frenk-White profile, and which diverge at the halo core. We then solve numerically the equation obtained when an additional “quantum pressure” term is included in the computation of the density profile. The solution to this latter case is finite at the halo core, possibly avoiding the “cuspy halo problem” present in some cold dark matter theories. Within the model proposed, we predict the mass of the cold dark matter particle to be of the order of M{sub χ}c{sup 2}≈10{sup −24} eV, which is of the same order of magnitude as that predicted in ultra-light scalar cold dark matter models. Finally, we derive the differential equation describing perturbations in the density and the pressure of the dark matter fluid.

  1. Constraints on Non-Standard Gravitomagnetism by the Anomalous Perihelion Precession of the Planets

    NASA Astrophysics Data System (ADS)

    Acedo, Luis

    2014-09-01

    A team of astronomers has recently reported an anomalous retrograde precession of the perihelion of Saturn amounting to Δω SATURN = -0.006(2) arcsec per century (arcsec cy-1). This unexplained precession was obtained after taking into account all classical and relativistic effects in the context of the highly refined EPM2008 ephemerides. More recent analyzes have not confirmed this effect, but they have found similar discrepancies in other planets. Our objective in this paper is to discuss a non-standard model involving transversal gravitomagnetism generated by the Sun as a possible source of these anomalies. In order to compute the Lense-Thirring perturbations induced by the suggested interaction, we should consider the orientation of the Sun's rotational axis in Carrington elements and the inclination of the planetary orbits with respect to the ecliptic plane. We find that an extra component of the gravitomagnetic field not predicted by General Relativity could explain the reported anomalies without conflicting with the Gravity Probe B experiment and the orbits of the geodynamics satellites.

  2. Radiopharmaceutical chemistry with iodine-124: a non-standard radiohalogen for positron emission tomography.

    PubMed

    Chacko, Ann-Marie; Divgi, Chaitanya R

    2011-09-01

    Positron emission tomography (PET) is a powerful molecular imaging technology with the ability to image and monitor molecular events in vivo and in real time. With the increased application of PET radiopharmaceuticals for imaging physiological and pathological processes in vivo, there is a demand for versatile positron emitters with longer physical and biological half-lives. Traditional PET radionuclides, such as carbon-11 ((11)C) and fluorine-18 ((18)F), have relatively short half-lives (20 min and 110 min, respectively). Among the currently available positron emitters, the non-standard radiohalogen iodine-124 ((124)I) has the longest physical half-life at 4.2 d. This, combined with the well characterized radiochemistry of radioiodine, is contributing to the increasing utility of (124)I in investigating slow and complex pharmacokinetic processes in clinical nuclear medicine and small animal PET imaging studies. This review will summarize the progress to date on the potential of (124)I as a positron emitting nuclide for molecular imaging purposes, beginning with the production of (124)I. Particular emphasis will be placed on the basic radiochemistry as it applies to the production of various (124)I-labeled compounds, from small molecules, to biomolecules such as peptides and proteins, and finally to macromolecules like nanoparticles. The review will conclude by highlighting promising future directions in using (124)I as a positron emitter in PET radiochemistry and molecular imaging.

  3. Selective advantage of trisomic human cells cultured in non-standard conditions

    PubMed Central

    Rutledge, Samuel D.; Douglas, Temple A.; Nicholson, Joshua M.; Vila-Casadesús, Maria; Kantzler, Courtney L.; Wangsa, Darawalee; Barroso-Vilares, Monika; Kale, Shiv D.; Logarinho, Elsa; Cimini, Daniela

    2016-01-01

    An abnormal chromosome number, a condition known as aneuploidy, is a ubiquitous feature of cancer cells. A number of studies have shown that aneuploidy impairs cellular fitness. However, there is also evidence that aneuploidy can arise in response to specific challenges and can confer a selective advantage under certain environmental stresses. Cancer cells are likely exposed to a number of challenging conditions arising within the tumor microenvironment. To investigate whether aneuploidy may confer a selective advantage to cancer cells, we employed a controlled experimental system. We used the diploid, colorectal cancer cell line DLD1 and two DLD1-derived cell lines carrying single-chromosome aneuploidies to assess a number of cancer cell properties. Such properties, which included rates of proliferation and apoptosis, anchorage-independent growth, and invasiveness, were assessed both under standard culture conditions and under conditions of stress (i.e., serum starvation, drug treatment, hypoxia). Similar experiments were performed in diploid vs. aneuploid non-transformed human primary cells. Overall, our data show that aneuploidy can confer selective advantage to human cells cultured under non-standard conditions. These findings indicate that aneuploidy can increase the adaptability of cells, even those, such as cancer cells, that are already characterized by increased proliferative capacity and aggressive tumorigenic phenotypes. PMID:26956415

  4. A Framework for Simulation of Aircraft Flyover Noise Through a Non-Standard Atmosphere