Particulate matter (PM) exposure has been associated with increased plasma fibrinogen. We have found that Spontaneously hypertensive rats respond to PM by increasing fibrinogen and plasminogen activator inhibitor -1 at PM concentration that would cause minimal changes in healthy ...
Association between ambient particulate matter and disorders of vestibular function.
Han, Changwoo; Lim, Youn-Hee; Jung, Kweon; Hong, Yun-Chul
2017-05-01
Exposure to environmental chemicals has been suggested to alter the physiologic state of the inner and middle ear. However, it is unknown if particulate matter exposure is associated with acute vestibular dysfunction. To estimate the effects of particulate matter exposure on the number of hospital visits related to three major diseases of vestibular dysfunction, Meniere's disease (MD), benign paroxysmal positional vertigo (BPPV), and vestibular neuronitis (VN). Our study subject is from Korean National Health Insurance Service-National Sample Cohort, which is dynamic cohort consist of 1 million participants representing the Korean population. Among total cohort participants, we used the hospital visit data of 210,000 individuals who resided in Seoul from 2007 to 2010. Time series analysis using the Poisson generalized additive model and case-crossover analysis using conditional logistic regression were used to investigate the association between daily particulate matter levels (PM 2.5 , particulate matter <2.5μg/m 3 ; PM 10 , particulate matter <10μg/m 3 ; PM 10-2.5 , PM 10 - PM 2.5 ) and number of MD, BPPV, and VN hospital visits. Time series analysis showed that an interquartile range (IQR) increase in PM 10 and PM 10-2.5 on lag day 1 was associated with an increased risk of MD hospital visits [relative risk (RR), 95% confidence interval (CI), PM 10 : 1.09 (1.02-1.15); PM 10-2.5 : 1.06 (1.02-1.10)]. In addition, elderly individuals (≥60 years old) showed an increased risk of MD hospital visits after particulate matter exposure when compared to younger individuals. An IQR increase in particulate matter on lag day 1 was associated with a marginally significant increase in VN hospital visits [RR (95%CI), PM 2.5 : 1.11 (0.98-1.25); PM 10 : 1.07 (0.99-1.15); PM 10-2.5 : 1.04 (0.99-1.09)]. However, no association between particulate matter exposure and BPPV hospital visits was noted. Case-crossover analyses showed similar results to the time-series analysis across all three diseases. MD hospital visits were associated with ambient particulate matter exposure. Elderly individuals, in particular, were more susceptible to particulate matter exposure than younger individuals. Copyright © 2017 Elsevier Inc. All rights reserved.
Tecer, Lokman Hakan; Süren, Pinar; Alagha, Omar; Karaca, Ferhat; Tuncel, Gürdal
2008-04-01
In this work, the effect of meteorological parameters and local topography on mass concentrations of fine (PM2.5) and coarse (PM2.5-10) particles and their seasonal behavior was investigated. A total of 236 pairs of samplers were collected using an Anderson Dichotomous sampler between December 2004 and October 2005. The average mass concentrations of PM2.5, PM2.5-10, and particulate matter less than 10 microm in aerodynamic diameter (PM10) were found to be 29.38, 23.85, and 53.23 microg/m3, respectively. The concentrations of PM2.5 and PM10 were found to be higher in heating seasons (December to May) than in summer. The increase of relative humidity, cloudiness, and lower temperature was found to be highly related to the increase of particulate matter (PM) episodic events. During non-rainy days, the episodic events for PM2.5 and PM10 were increased by 30 and 10.7%, respectively. This is a result of the extensive use of fuel during winter for heating purposes and also because of stagnant air masses formed because of low temperature and low wind speed over the study area.
Removal of particulate matter emitted from a subway tunnel using magnetic filters.
Son, Youn-Suk; Dinh, Trieu-Vuong; Chung, Sang-Gwi; Lee, Jai-Hyo; Kim, Jo-Chun
2014-01-01
We removed particulate matter (PM) emitted from a subway tunnel using magnetic filters. A magnetic filter system was installed on the top of a ventilation opening. Magnetic field density was increased by increasing the number of permanent magnet layers to determine PM removal characteristics. Moreover, the fan's frequency was adjusted from 30 to 60 Hz to investigate the effect of wind velocity on PM removal efficiency. As a result, PM removal efficiency increased as the number of magnetic filters or fan frequency increased. We obtained maximum removal efficiency of PM10 (52%), PM2.5 (46%), and PM1 (38%) at a 60 Hz fan frequency using double magnetic filters. We also found that the stability of the PM removal efficiency by the double filter (RSD, 3.2-5.8%) was higher than that by a single filter (10.9-24.5%) at all fan operating conditions.
SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS
Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...
Exposure to air pollution-derived particulate matter (PM) causes adverse cardiovascular health outcomes, with increasing evidence implicating soluble components of PM; however, the enormous number of unique PM samples from different air sheds far exceeds the capacity of conventio...
There is growing evidence from epidemiological studies that show acute exposure to particulate matter (PM) increases the risk of cardiovascular morbidity and mortality. Although the data supporting these findings are increasingly more convincing, the immediate impact of PM inhala...
NASA Astrophysics Data System (ADS)
Zhang, Boen; Jiao, Limin; Xu, Gang; Zhao, Suli; Tang, Xin; Zhou, Yue; Gong, Chen
2018-06-01
Though it is recognized that meteorology has a great impact on the diffusion, accumulation and transport of air pollutants, few studies have investigated the impacts on different-sized particulate matter concentrations. We conducted a systematic comparative analysis and used the framework of generalized additive models (GAMs) to explore the influences of critical meteorological parameters, wind and precipitation, on PM2.5, PM10 and PM2.5-10 concentrations in Wuhan during 2013-2016. Overall, results showed that the impacts of wind and precipitation on different-sized PM concentrations are significantly different. The fine PM concentrations decreased gradually with the increase of wind speed, while coarse PM concentrations would increase due to dust resuspension under strong wind. Wind direction exerts limited influence on coarse PM concentrations. Wind speed was linearly correlated with log-transformed PM2.5 concentrations, but nonlinearly correlated with log-transformed PM10 and PM2.5-10 concentrations. We also found the PM2.5 and PM2.5-10 concentrations decreased by nearly 60 and 15% when the wind speed was up to 6 m/s, respectively, indicating a stronger negative impact of wind-speed on fine PM than coarse PM. The scavenging efficiency of precipitation on PM2.5-10 was over twice as high as on PM2.5. Our findings may help to understand the impacts of meteorology on different PM concentrations as well as discriminate and forecast variation in particulate matter concentrations.
Honda, Trenton; Eliot, Melissa N; Eaton, Charles B; Whitsel, Eric; Stewart, James D; Mu, Lina; Suh, Helen; Szpiro, Adam; Kaufman, Joel D; Vedal, Sverre; Wellenius, Gregory A
2017-08-01
Long-term exposure to ambient particulate matter (PM) has been previously linked with higher risk of cardiovascular events. This association may be mediated, at least partly, by increasing the risk of incident hypertension, a key determinant of cardiovascular risk. However, whether long-term exposure to PM is associated with incident hypertension remains unclear. Using national geostatistical models incorporating geographic covariates and spatial smoothing, we estimated annual average concentrations of residential fine (PM 2.5 ), respirable (PM 10 ), and course (PM 10-2.5 ) fractions of particulate matter among 44,255 post-menopausal women free of hypertension enrolled in the Women's Health Initiative (WHI) clinical trials. We used time-varying Cox proportional hazards models to evaluate the association between long-term average residential pollutant concentrations and incident hypertension, adjusting for potential confounding by sociodemographic factors, medical history, neighborhood socioeconomic measures, WHI study clinical site, clinical trial, and randomization arm. During 298,383 person-years of follow-up, 14,511 participants developed incident hypertension. The adjusted hazard ratios per interquartile range (IQR) increase in PM 2.5 , PM 10 , and PM 10-2.5 were 1.13 (95% CI: 1.08, 1.17), 1.06 (1.03, 1.10), and 1.01 (95% CI: 0.97, 1.04), respectively. Statistically significant concentration-response relationships were identified for PM 2.5 and PM 10 fractions. The association between PM 2.5 and hypertension was more pronounced among non-white participants and those residing in the Northeastern United States. In this cohort of post-menopausal women, ambient fine and respirable particulate matter exposures were associated with higher incidence rates of hypertension. These results suggest that particulate matter may be an important modifiable risk factor for hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.
Woodward, NC; Pakbin, P; Saffari, A; Shirmohammadi, F; Haghani, A; Sioutas, C; Cacciottolo, M; Morgan, TE; Finch, CE
2017-01-01
Traffic-related air pollution (TRAP) is associated with lower cognition and reduced white matter volume in older adults, specifically for particulate matter <2.5 μm diameter (PM2.5). Rodents exposed to TRAP have shown microglial activation and neuronal atrophy. We further investigated age differences of TRAP exposure, with focus on hippocampus for neuritic atrophy, white matter degeneration, and microglial activation. Young and middle-aged mice (3 and 18 month female C57BL/6J) were exposed to nanoscale-PM (nPM, <0.2 μm diameter). Young mice showed selective changes in the hippocampal CA1 region, with neurite atrophy (−25%), decreased MBP (−50%), and increased Iba1 (+50%), with dentate gyrus relatively unaffected. Exposure to nPM of young mice decreased GluA1 protein (−40%) and increased TNFa mRNA (10×). Older controls had age changes approximating nPM effects on young, with no response to nPM, suggesting an age ceiling effect. The CA1 selective vulnerability in young mice parallels CA1 vulnerability in Alzheimer’s disease. We propose that TRAP associated human cognitive and white matter changes involve hippocampal responses to nPM that begin at younger ages. PMID:28212893
PARTICULATE MATTER (PM) AND HOSPITAL ADMISSIONS AMONG U.S. VETERANS
Epidemiological studies have consistently demonstrated that exposure to particulate matter (PM) can result in increased mortality and morbidity. The susceptible population, the nature of morbidity and cause of death, however, have not been clearly identified. To accomplish these ...
ULTRAFINE PARTICULATE MATTER EXPOSURE AUGMENTS ISCHEMIA REPERFUSION INJURY IN MICE
Epidemiological studies have linked ambient particulate matter (PM) levels to an increased incidence of adverse cardiovascular events. Yet little is definitively known about the mechanisms accounting for the cardiovascular events associated with PM exposure. The goal of thi...
ULTRAFINE PARTICULATE MATTER EXPOSURE AUGMENTS ISCHEMIA REPERFUSION INJURY IN MICE
Epidemiological studies have linked ambient particulate matter (PM) levels to an increased incidence of adverse cardiovascular events. Yet little is definitively known about the mechanisms accounting for the cardiovascular events associated with PM-exposure. The goal of this stud...
Particulate matter, its elemental carbon fraction, and very early preterm birth
Background: Particulate matter (PM) has been variably associated with preterm birth, with potentially increased vulnerability during weeks 20-27 of gestation (extremely preterm birth (EPTB)), but the role of PM components have been less studied. Objectives: To estimate associati...
Xu, Jie; Li, Congfeng; Liu, Huitao; Zhou, Peilu; Tao, Zhiqiang; Wang, Pu; Meng, Qingfeng; Zhao, Ming
2015-01-01
Plastic film mulching (PM) has been widely used to improve maize (Zea mays L.) yields and water use efficiency (WUE) in Northeast China, but the effects of PM in a changing climate characterized by highly variable precipitation are not well understood. Six site-year field experiments were conducted in the dry and rainy years to investigate the effects of PM on maize growth, grain yield, and WUE in Northeast China. Compared to crops grown without PM treatment (control, CK), PM significantly increased the grain yield by 15-26% in the dry years, but no significant yield increase was observed in the rainy years. Yield increase in the dry years was mainly due to a large increase in dry matter accumulation pre-silking compared to the CK, which resulted from a greater dry matter accumulation rate due to the higher topsoil temperature and water content. As a result, the WUE of the crops that underwent PM (3.27 kg m-3) treatment was also increased by around 16% compared to the CK, although the overall evapotranspiration was similar between the two treatments. In the rainy years, due to frequent precipitation and scant sunshine, the topsoil temperature and water content in the field that received PM treatment was improved only at some stages and failed to cause higher dry matter accumulation, except at the 8th leaf stage. Consequently, the grain yield and WUE were not improved by PM in the rainy years. In addition, we found that PM caused leaf senescence at the late growth stage in both dry and rainy years. Therefore, in practice, PM should be applied cautiously, especially when in-season precipitation is taken into account. PMID:25970582
Respirable ambient particulate matter (PM) exposure has been associated with an increased risk of cardiovascular disease. Direct translocation of PM associated metals from the lungs into systemic circulation may be partly responsible. We measured elemental content of lungs, pla...
Epidemiological studies have reported an association between proximity to highway traffic and increased respiratory symptoms. This study was initiated to determine the contribution of ambient particulate matter (PM) to these observed effects. Ambient PM was collected for 2 weeks ...
Epidemiological studies have reported incidence of cardio-pulmonary disease associated with increase in particulate matter (PM) exposure. In this study, the pulmonary toxicity potential of combustion and ambient PM were investigated using data from animal studies at the US EPA....
Tobías, Aurelio; Pérez, Laura; Díaz, Julio; Linares, Cristina; Pey, Jorge; Alastruey, Andrés; Querol, Xavier
2011-12-15
The role of Saharan dust outbreaks on the relationship between particulate matter and daily mortality has recently been addressed in studies conducted in Southern Europe, although they have not given consistent results. We investigated the effects of coarse (PM(10-2.5)) and fine particulate matter (PM(2.5)) in Madrid on total mortality during Saharan dust and non-dust days using a case-crossover design. During Saharan dust days, an increase of 10mg/m(3) of PM(10-2.5) raised total mortality by 2.8% compared with 0.6% during non-dust days (P-value for interaction=0.0165). We found evidence of stronger adverse health effects of PM(10-2.5) during Saharan dust outbreaks effects for impacted European populations, but not for PM(2.5). Further research is needed to understand mechanisms by which Saharan dust increases risk of mortality. Copyright © 2011 Elsevier B.V. All rights reserved.
Removal efficiency of particulate matters at different underlying surfaces in Beijing.
Liu, Jiakai; Mo, Lichun; Zhu, Lijuan; Yang, Yilian; Liu, Jiatong; Qiu, Dongdong; Zhang, Zhenming; Liu, Jinglan
2016-01-01
Particulate matter (PM) pollution has been increasingly becoming serious in Beijing and has drawn the attention of the local government and general public. This study was conducted during early spring of 2013 and 2014 to monitor the concentration of PM at three different land surfaces (bare land, urban forest, and lake) in the Olympic Park in Beijing and to analyze its effect on the concentration of meteorological factors and the dry deposition onto different land cover types. The results showed that diurnal variation of PM concentrations at the three different land surfaces had no significant regulations, and sharp short-term increases in PM10 (particulate matter having an aerodynamic diameter <10 μm) occurred occasionally. The concentrations also differed from one land cover type to another at the same time, but the regulation was insignificant. The most important meteorological factor influencing the PM concentration is relative humidity; it is positively correlated with the PM concentration. While in the forests, the wind speed and irradiance also influenced the PM concentration by affecting the capture capacity of trees and dry deposition velocity. Other factors were not correlated with or influenced by the PM concentration. In addition, the hourly dry deposition in unit area (μg/m(2)) onto the three types of land surfaces and the removal efficiency based on the ratio of dry deposition and PM concentration were calculated. The results showed that the forest has the best removal capacity for both PM2.5 (particulate matter having an aerodynamic diameter <2.5 μm) and PM10 because of the faster deposition velocity and relatively low resuspension rate. The lake's PM10 removal efficiency is higher than that of the bare land because of the relatively higher PM resuspension rates on the bare land. However, the PM2.5 removal efficiency is lower than that of the bare land because of the significantly lower dry deposition velocity.
The Cleveland airshed comprises a complex mixture of industrial source emissions that contribute to periods of non-attainment for fine particulate matter (PM 2.5 ) and are associated with increased adverse health outcomes in the exposed population. Specific PM sources responsible...
EFFECT OF METAL REMOVAL ON THE TOXICITY OF AIRBORNE PARTICULATE MATTER FROM THE UTAH VALLEY
Epidemiological studies have linked the inhalation of airborne particulate matter (PM) to increased morbidity and mortality in humans. However, the mechanisms of toxicity of these particles remains unclear. Several hypotheses state that the toxicity might stem from PM transitio...
Coronary ischemic events increase significantly floowing a “bad air” day. Ambient particulate matter (PM10) is the pollutant most strongly associated with these events. PM10 causes inflammatory injury to the lower airways. It is not clear, however, if pulmonary inflation transl...
Associations are well established between particulate matter (PM) and increased human mortality and morbidity. The association between fine PM sources and lung inflammatory markers IL-8, COX-2, and HO-1 was evaluated in this study.
FINE PARTICLE MATTER ASSOCIATED WITH AIRWAY NEUTROPHILIA IN A SUBPOPULATION OF ADULT ASTHMATICS
Asthmatic adults are a heterogeneous group that is sensitive to the mass concentration of ambient particulate matter (PM). However, it is not clear which components of PM are responsible for these effects, nor are the mechanisms understood. We evaluated whether increases in ambi...
Comparative In Vivo and Ex Vivo Toxicity Studies of Wildfire Particulate Matter
Inhalation of particulate matter (PM) generated from biomass burning is of concern particularly as the frequency and severity of wildfires have been increasing. Size-fractionated PM samples (ultrafine, <0.2 µm; fine, 0.2-2.5 µm; coarse, 2.5-10 µm) were colle...
Elevated exhaust temperature, zoned, electrically-heated particulate matter filter
Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN
2012-04-17
A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.
Air Pollution Particulate Matter Alters Antimycobacterial Respiratory Epithelium Innate Immunity
Rivas-Santiago, César E.; Sarkar, Srijata; Cantarella, Pasquale; Osornio-Vargas, Álvaro; Quintana-Belmares, Raúl; Meng, Qingyu; Kirn, Thomas J.; Ohman Strickland, Pamela; Chow, Judith C.; Watson, John G.; Torres, Martha
2015-01-01
Inhalation exposure to indoor air pollutants and cigarette smoke increases the risk of developing tuberculosis (TB). Whether exposure to ambient air pollution particulate matter (PM) alters protective human host immune responses against Mycobacterium tuberculosis has been little studied. Here, we examined the effect of PM from Iztapalapa, a municipality of Mexico City, with aerodynamic diameters below 2.5 μm (PM2.5) and 10 μm (PM10) on innate antimycobacterial immune responses in human alveolar type II epithelial cells of the A549 cell line. Exposure to PM2.5 or PM10 deregulated the ability of the A549 cells to express the antimicrobial peptides human β-defensin 2 (HBD-2) and HBD-3 upon infection with M. tuberculosis and increased intracellular M. tuberculosis growth (as measured by CFU count). The observed modulation of antibacterial responsiveness by PM exposure was associated with the induction of senescence in PM-exposed A549 cells and was unrelated to PM-mediated loss of cell viability. Thus, the induction of senescence and downregulation of HBD-2 and HBD-3 expression in respiratory PM-exposed epithelial cells leading to enhanced M. tuberculosis growth represent mechanisms by which exposure to air pollution PM may increase the risk of M. tuberculosis infection and the development of TB. PMID:25847963
Chung, Yeonseung; Dominici, Francesca; Wang, Yun; Coull, Brent A; Bell, Michelle L
2015-05-01
Several epidemiological studies have reported that long-term exposure to fine particulate matter (PM2.5) is associated with higher mortality. Evidence regarding contributions of PM2.5 constituents is inconclusive. We assembled a data set of 12.5 million Medicare enrollees (≥ 65 years of age) to determine which PM2.5 constituents are a) associated with mortality controlling for previous-year PM2.5 total mass (main effect); and b) elevated in locations exhibiting stronger associations between previous-year PM2.5 and mortality (effect modification). For 518 PM2.5 monitoring locations (eastern United States, 2000-2006), we calculated monthly mortality rates, monthly long-term (previous 1-year average) PM2.5, and 7-year averages (2000-2006) of major PM2.5 constituents [elemental carbon (EC), organic carbon matter (OCM), sulfate (SO42-), silicon (Si), nitrate (NO3-), and sodium (Na)] and community-level variables. We applied a Bayesian hierarchical model to estimate location-specific mortality rates associated with previous-year PM2.5 (model level 1) and identify constituents that contributed to the spatial variability of mortality, and constituents that modified associations between previous-year PM2.5 and mortality (model level 2), controlling for community-level confounders. One-standard deviation (SD) increases in 7-year average EC, Si, and NO3- concentrations were associated with 1.3% [95% posterior interval (PI): 0.3, 2.2], 1.4% (95% PI: 0.6, 2.4), and 1.2% (95% PI: 0.4, 2.1) increases in monthly mortality, controlling for previous-year PM2.5. Associations between previous-year PM2.5 and mortality were stronger in combination with 1-SD increases in SO42- and Na. Long-term exposures to PM2.5 and several constituents were associated with mortality in the elderly population of the eastern United States. Moreover, some constituents increased the association between long-term exposure to PM2.5 and mortality. These results provide new evidence that chemical composition can partly explain the differential toxicity of PM2.5.
WYLIE, Blair J.; KISHASHU, Yahya; MATECHI, Emmanuel; ZHOU, Zheng; COULL, Brent; ABIOYE, Ajibola Ibraheem; DIONISIO, Kathie L.; MUGUSI, Ferdinand; PREMJI, Zul; FAWZI, Wafaie; HAUSER, Russ; EZZATI, Majid
2016-01-01
Low birth weight contributes to as many as 60% of all neonatal deaths; exposure during pregnancy to household air pollution has been implicated as a risk factor. Between 2011 and 2013, we measured personal exposures to carbon monoxide (CO) and fine particulate matter (PM2.5) in 239 pregnant women in Dar es Salaam, Tanzania. CO and PM2.5 exposures during pregnancy were moderately high (geometric means 2.0 ppm and 40.5 μg/m3); 87% of PM2.5 measurements exceeded WHO air quality guidelines Median and high (75th centile) CO exposures were increased for those cooking with charcoal and kerosene versus kerosene alone in quantile regression. High PM2.5 exposures were increased with charcoal use. Outdoor cooking reduced median PM2.5 exposures. For PM2.5, we observed a 0.15 kilogram reduction in birth weight per interquartile increase in exposure (23.0 μg/m3) in multivariable linear regression; this finding was of borderline statistical significance (95% confidence interval −0.30, 0.00 kilograms; p=0.05). PM2.5 was not significantly associated with birth length or head circumference nor were CO exposures associated with newborn anthropometrics. Our findings contribute to the evidence that exposure to household air pollution, and specifically fine particulate matter, may adversely affect birth weight. PMID:26880607
Anderson, G. Brooke; Krall, Jenna R.; Peng, Roger D.; Bell, Michelle L.
2012-01-01
Epidemiologic studies have linked tropospheric ozone pollution and human mortality. Although research has shown that this relation is not confounded by particulate matter when measured by mass, little scientific evidence exists on whether confounding exists by chemical components of the particle mixture. Using mortality and particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5) component data from 57 US communities (2000–2005), the authors investigate whether the ozone-mortality relation is confounded by 7 components of PM2.5: sulfate, nitrate, silicon, elemental carbon, organic carbon matter, sodium ion, and ammonium. Together, these components constitute most PM2.5 mass in the United States. Estimates of the effect of ozone on mortality were almost identical before and after controlling for the 7 components of PM2.5 considered (mortality increase/10-ppb ozone increase, before and after controlling: ammonium, 0.34% vs. 0.35%; elemental carbon, 0.36% vs. 0.37%; nitrate, 0.27% vs. 0.26%; organic carbon matter, 0.34% vs. 0.31%; silicon, 0.36% vs. 0.37%; sodium ion, 0.21% vs. 0.18%; and sulfate, 0.35% vs. 0.38%). Additionally, correlations were weak between ozone and each particulate component across all communities. Previous research found that the ozone-mortality relation is not confounded by particulate matter measured by mass; this national study indicates that the relation is also robust to control for specific components of PM2.5. PMID:23043133
The mechanisms of air pollution and particulate matter in cardiovascular diseases.
Fiordelisi, Antonella; Piscitelli, Prisco; Trimarco, Bruno; Coscioni, Enrico; Iaccarino, Guido; Sorriento, Daniela
2017-05-01
Clinical and epidemiological studies demonstrate that short- and long-term exposure to air pollution increases mortality due to respiratory and cardiovascular diseases. Given the increased industrialization and the increased sources of pollutants (i.e., cars exhaust emissions, cigarette smoke, industry emissions, burning of fossil fuels, incineration of garbage), air pollution has become a key public health issue to solve. Among pollutants, the particulate matter (PM) is a mixture of solid and liquid particles which differently affects human health depending on their size (i.e., PM 10 with a diameter <10 μm reach the lung and PM 2.5 with a diameter <2.5 μm penetrate deeper into the lung). In particular, the acute exposure to PM 10 and PM 2.5 increases the rate of cardiovascular deaths. Thus, appropriate interventions to reduce air pollution may promote great benefits to public health by reducing the risk of cardiovascular diseases. Several biological mechanisms have been identified to date which could be responsible for PM-dependent adverse cardiovascular outcomes. Indeed, the exposure to PM 10 and PM 2.5 induces sustained oxidative stress and inflammation. PM 2.5 is also able to increase autonomic nervous system activation. Some potential therapeutic approaches have been tested both in pre-clinical and clinical studies, based on the intake of antioxidants from dietary or by pharmacological administration. Studies are still in progress to increase the knowledge of PM activation of intracellular pathways and propose new strategies of intervention.
Particulate matter emissions of different brands of mentholated cigarettes.
Gerharz, Julia; Bendels, Michael H K; Braun, Markus; Klingelhöfer, Doris; Groneberg, David A; Mueller, Ruth
2018-06-01
Inhaling particulate matter (PM) in environmental tobacco smoke (ETS) endangers the health of nonsmokers. Menthol, an additive in cigarettes, attenuates respiratory irritation of tobacco smoke. It reduces perceptibility of smoke and therefore passive smokers may inhale ETS unnoticed. To investigate a possible effect of menthol on PM concentrations (PM 10 , PM 2.5 , and PM 1 ), ETS of four mentholated cigarette brands (Elixyr Menthol, Winston Menthol, Reyno Classic, and Pall Mall Menthol Blast) with varying menthol content was analyzed. ETS was generated in a standardized way using an automatic environmental tobacco smoke emitter (AETSE), followed by laser aerosol spectrometry. This analysis shows that the tested cigarette brands, despite having different menthol concentrations, do not show differences with regard to PM emissions, with the exception of Reyno Classic, which shows an increased emission, although the menthol level ranged in the midfield. More than 90% of the emitted particles had a size smaller than or equal to 1 µm. Regardless of the menthol level, the count median diameter (CMD) and the mass median diameter (MMD) were found to be 0.3 µm and 0.5 µm, respectively. These results point out that there is no effect of menthol on PM emission and that other additives might influence the increased PM emission of Reyno Classic. Particulate matter (PM) in ETS endangers the health of nonsmokers and smokers. This study considers the effect of menthol, an additive in cigarettes, on PM emissions. Does menthol increase the amount of PM? Due to the exposure to secondhand smoke nearly 900,000 people die each year worldwide. The aim of the study is to measure the particle concentration (L -1 ), mass concentration (µg m -3 ), and dust mass fractions shown as PM 10 , PM 2.5 , and PM 1 of five different cigarette brands, including four with different menthol concentrations and one menthol-free reference cigarette, in a well-established standardized system.
Ambient PM contains transition metals with differing water solubilities. Epidemiological studies show a link between PM exposure and an increased risk of cardiovascular disease. Direct translocation of PM-associated metals from the lung into systemic circulation may be partly res...
Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...
California wildfires of 2008: coarse and fine particulate matter toxicity.
Wegesser, Teresa C; Pinkerton, Kent E; Last, Jerold A
2009-06-01
During the last week of June 2008, central and northern California experienced thousands of forest and brush fires, giving rise to a week of severe fire-related particulate air pollution throughout the region. California experienced PM(10-2.5) (particulate matter with mass median aerodynamic diameter > 2.5 mum to < 10 mum; coarse ) and PM(2.5) (particulate matter with mass median aerodynamic diameter < 2.5 mum; fine) concentrations greatly in excess of the air quality standards and among the highest values reported at these stations since data have been collected. These observations prompt a number of questions about the health impact of exposure to elevated levels of PM(10-2.5) and PM(2.5) and about the specific toxicity of PM arising from wildfires in this region. Toxicity of PM(10-2.5) and PM(2.5) obtained during the time of peak concentrations of smoke in the air was determined with a mouse bioassay and compared with PM samples collected under normal conditions from the region during the month of June 2007. Concentrations of PM were not only higher during the wildfire episodes, but the PM was much more toxic to the lung on an equal weight basis than was PM collected from normal ambient air in the region. Toxicity was manifested as increased neutrophils and protein in lung lavage and by histologic indicators of increased cell influx and edema in the lung. We conclude that the wildfire PM contains chemical components toxic to the lung, especially to alveolar macrophages, and they are more toxic to the lung than equal doses of PM collected from ambient air from the same region during a comparable season.
Particulate matter dynamics in naturally ventilated freestall dairy barns
NASA Astrophysics Data System (ADS)
Joo, H. S.; Ndegwa, P. M.; Heber, A. J.; Ni, J.-Q.; Bogan, B. W.; Ramirez-Dorronsoro, J. C.; Cortus, E. L.
2013-04-01
Particulate matter (PM) concentrations and ventilation rates, in two naturally ventilated freestall dairy barns, were continuously monitored for two years. The first barn (B1) housed 400 fresh lactating cows, while the second barn (B2) housed 835 non-fresh lactating cows and 15 bulls. The relationships between PM concentrations and accepted governing parameters (environmental conditions and cattle activity) were examined. In comparison with other seasons, PM concentrations were lowest in winter. Total suspended particulate (TSP) concentrations in spring and autumn were relatively higher than those in summer. Overall: the concentrations in the barns and ambient air, for all the PM categories (PM2.5, PM10, and TSP), exhibited non-normal positively skewed distributions, which tended to overestimate mean or average concentrations. Only concentrations of PM2.5 and PM10 increased with ambient air temperature (R2 = 0.60-0.82), whereas only concentrations of TSP increased with cattle activity. The mean respective emission rates of PM2.5, PM10, and TSP for the two barns ranged between 1.6-4.0, 11.9-15.0, and 48.7-52.5 g d-1 cow-1, indicating similar emissions from the two barns.
Ye, Dan; Gao, Dengshan; Yu, Gang; Shen, Xianglin; Gu, Fan
2005-12-09
A plasma reactor with catalysts was used to treat exhaust gas from a gasoline engine in order to decrease particulate matter (PM) emissions. The effect of non-thermal plasma (NTP) of the dielectric discharges on the removal of PM from the exhaust gas was investigated experimentally. The removal efficiency of PM was based on the concentration difference in PM for particle diameters ranging from 0.3 to 5.0 microm as measured by a particle counter. Several factors affecting PM conversion, including the density of plasma energy, reaction temperature, flow rate of exhaust gas, were investigated in the experiment. The results indicate that PM removal efficiency ranged approximately from 25 to 57% and increased with increasing energy input in the reactor, reaction temperature and residence time of the exhaust gas in the reactor. Enhanced removal of the PM was achieved by filling the discharge gap of the reactor with Cu-ZSM-5 catalyst pellets. In addition, the removal of unburned hydrocarbons was studied. Finally, available approaches for PM conversion were analyzed involving the interactions between discharge and catalytic reactions.
Air pollution particulate matter alters antimycobacterial respiratory epithelium innate immunity.
Rivas-Santiago, César E; Sarkar, Srijata; Cantarella, Pasquale; Osornio-Vargas, Álvaro; Quintana-Belmares, Raúl; Meng, Qingyu; Kirn, Thomas J; Ohman Strickland, Pamela; Chow, Judith C; Watson, John G; Torres, Martha; Schwander, Stephan
2015-06-01
Inhalation exposure to indoor air pollutants and cigarette smoke increases the risk of developing tuberculosis (TB). Whether exposure to ambient air pollution particulate matter (PM) alters protective human host immune responses against Mycobacterium tuberculosis has been little studied. Here, we examined the effect of PM from Iztapalapa, a municipality of Mexico City, with aerodynamic diameters below 2.5 μm (PM2.5) and 10 μm (PM10) on innate antimycobacterial immune responses in human alveolar type II epithelial cells of the A549 cell line. Exposure to PM2.5 or PM10 deregulated the ability of the A549 cells to express the antimicrobial peptides human β-defensin 2 (HBD-2) and HBD-3 upon infection with M. tuberculosis and increased intracellular M. tuberculosis growth (as measured by CFU count). The observed modulation of antibacterial responsiveness by PM exposure was associated with the induction of senescence in PM-exposed A549 cells and was unrelated to PM-mediated loss of cell viability. Thus, the induction of senescence and downregulation of HBD-2 and HBD-3 expression in respiratory PM-exposed epithelial cells leading to enhanced M. tuberculosis growth represent mechanisms by which exposure to air pollution PM may increase the risk of M. tuberculosis infection and the development of TB. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Lability of Secondary Organic Particulate Matter
Liu, Pengfei; Li, Yong Jie; Wang, Yan; ...
2016-10-24
Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM,more » no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.« less
NASA Astrophysics Data System (ADS)
Shaughnessy, William J.; Venigalla, Mohan M.; Trump, David
2015-12-01
There is an absence of studies that define the relationship between ambient particulate matter (PM) levels and adverse health outcomes among the young and healthy adult sub-group. In this research, the relationship between exposures to ambient levels of PM in the 10 micron (PM10) and 2.5 micron (PM2.5) size fractions and health outcomes in members of the healthy, young-adult subgroup who are 18-39 years of age was examined. Active duty military personnel populations at three strategically selected military bases in the United States were used as a surrogate to the control group. Health outcome data, which consists of the number of diagnoses for each of nine International Classification of Diseases, 9th Revision (ICD-9) categories related to respiratory illness, were derived from outpatient visits at each of the three military bases. Data on ambient concentrations of particulate matter, specifically PM10 and PM2.5, were obtained for these sites. The health outcome data were correlated and regressed with the PM10 and PM2.5 data, and other air quality and weather-related data on a daily and weekly basis for the period 1998 to 2004. Results indicate that at Fort Bliss, which is a US Environmental Protection Agency designated non-attainment area for PM10, a statistically significant association exists between the weekly-averaged number of adverse health effects in the young and healthy adult population and the corresponding weekly-average ambient PM10 concentration. A least squares regression analysis was performed on the Fort Bliss data sets indicated that the health outcome data is related to several environmental parameters in addition to PM10. Overall, the analysis estimates a .6% increase in the weekly rate of emergency room visits for upper respiratory infections for every 10 μg/m3 increase in the weekly-averaged PM10 concentration above the mean. The findings support the development of policy and guidance opportunities that can be developed to mitigate exposures to particulate matter.
Satellite and Ground-Based Measurements of Urban Air Quality in Relation with Children's Asthma
NASA Astrophysics Data System (ADS)
Zoran, Maria; Dida, Mariana Rodica
2016-08-01
The adverse health effects from aerosol particulate matter PM pollution, especially with aerodynamic diameter ≤2.5 μm PM2.5 must be considered in developing policies to improve air quality. Epidemiologic studies demonstrated that exposure to ambient particulate matter PM is associated with increased morbidity and mortality, particularly associated with cardiopulmonary disease and asthma of which children are most exposed for the rapid increase of asthma disease. Very early exposure to certain components of air pollution can increase the risk of developing of different allergies by age 7. The present study attempts to retrieve the aerosol load in terms of aerosol optical depth (AOD) related to air quality in the Bucharest metropolitan area. In this study is presented a spatio-temporal analysis of the aerosol concentrations in relation with meteorological parameters in two size fractions (PM10 and PM2.5) and Air Qualiy Index and possible health effects on children's asthma.
Lv, Chenguang; Wang, Xianfeng; Pang, Na; Wang, Lanzhong; Wang, Yuping; Xu, Tengfei; Zhang, Yu; Zhou, Tianran; Li, Wei
2017-06-01
This study aims to examine the effect of short-term changes in the concentration of particulate matter of diameter ≤2.5 µm (PM 2.5 ) and ≤10 µm (PM 10 ) on pediatric hospital admissions for pneumonia in Jinan, China. It explores confoundings factors of weather, season, and chemical pollutants. Information on pediatric hospital admissions for pneumonia in 2014 was extracted from the database of Jinan Qilu Hospital. The relative risk of pediatric hospital admissions for pneumonia was assessed using a case-crossover approach, controlling weather variables, day of the week, and seasonality. The single-pollutant model demonstrated that increased risk of pediatric hospital admissions for pneumonia was significantly associated with elevated PM 2.5 concentrations the day before hospital admission and elevated PM 10 concentrations 2 days before hospital admission. An increment of 10 μg/m 3 in PM 2.5 and PM 10 was correlated with a 6% (95% CI 1.02--1.10) and 4% (95% CI 1.00-1.08) rise in number of admissions for pneumonia, respectively. In two pollutant models, PM 2.5 and PM 10 remained significant after inclusion of sulfur dioxide or nitrogen dioxide but not carbon monoxide. This study demonstrated that short-term exposure to atmospheric particulate matter (PM 2.5 /PM 10 ) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China. This study demonstrated that short-term exposure to atmospheric particulate matter (PM 2.5 /PM 10 ) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China, and suggested the relevance of pollutant exposure levels and their effects. As a specific group, children are sensitive to airborne particulate matter. This study estimated the short-term effects attribute to other air pollutants to provide references for relevant studies.
Chemical Composition of Fine Particulate Matter and Life Expectancy
Dominici, Francesca; Wang, Yun; Correia, Andrew W.; Ezzati, Majid; Pope, C. Arden; Dockery, Douglas W.
2016-01-01
Background In a previous study, we provided evidence that a decline in fine particulate matter (PM2.5) air pollution during the period between 2000 and 2007 was associated with increased life expectancy in 545 counties in the United States. In this article, we investigated which chemical constituents of PM2.5 were the main drivers of the observed association. Methods We estimated associations between temporal changes in seven major components of PM2.5 (ammonium, sulfate, nitrate, elemental carbon matter, organic carbon matter, sodium, and silicon) and temporal changes in life expectancy in 95 counties between 2002 and 2007. We included US counties that had adequate chemical components of PM2.5 mass data across all seasons. We fitted single pollutant and multiple pollutant linear models, controlling for available socioeconomic, demographic, and smoking variables and stratifying by urban and nonurban counties. Results In multiple pollutant models, we found that: (1) a reduction in sulfate was associated with an increase in life expectancy; and (2) reductions in ammonium and sodium ion were associated with increases in life expectancy in nonurban counties only. Conclusions Our findings suggest that recent reductions in long-term exposure to sulfate, ammonium, and sodium ion between 2002 and 2007 are associated with improved public health. PMID:25906366
Dominici, Francesca; Wang, Yun; Correia, Andrew W; Ezzati, Majid; Pope, C Arden; Dockery, Douglas W
2015-07-01
In a previous study, we provided evidence that a decline in fine particulate matter (PM2.5) air pollution during the period between 2000 and 2007 was associated with increased life expectancy in 545 counties in the United States. In this article, we investigated which chemical constituents of PM2.5 were the main drivers of the observed association. We estimated associations between temporal changes in seven major components of PM2.5 (ammonium, sulfate, nitrate, elemental carbon matter, organic carbon matter, sodium, and silicon) and temporal changes in life expectancy in 95 counties between 2002 and 2007. We included US counties that had adequate chemical components of PM2.5 mass data across all seasons. We fitted single pollutant and multiple pollutant linear models, controlling for available socioeconomic, demographic, and smoking variables and stratifying by urban and nonurban counties. In multiple pollutant models, we found that: (1) a reduction in sulfate was associated with an increase in life expectancy; and (2) reductions in ammonium and sodium ion were associated with increases in life expectancy in nonurban counties only. Our findings suggest that recent reductions in long-term exposure to sulfate, ammonium, and sodium ion between 2002 and 2007 are associated with improved public health.
Ferreira, Tatiane Morais; Forti, Maria Cristina; de Freitas, Clarice Umbelino; Nascimento, Felipe Parra; Junger, Washington Leite; Gouveia, Nelson
2016-01-01
Various fractions of particulate matter have been associated with increased mortality and morbidity. The purpose of our study is to analyze the associations between concentrations of PM2.5, PM2.5–10, PM10 and their chemical constituents (soluble ions) with hospital admissions due to circulatory and respiratory diseases among the elderly in a medium-sized city in Brazil. A time series study was conducted using Poisson regression with generalized additive models adjusted for confounders. Statistically significant associations were identified between PM10 and PM2.5–10 and respiratory diseases. Risks of hospitalization increased by 23.5% (95% CI: 13.5; 34.3) and 12.8% (95% CI: 6.0; 20.0) per 10 μg/m3 of PM2.5-10 and PM10, respectively. PM2.5 exhibited a significant association with circulatory system diseases, with the risk of hospitalization increasing by 19.6% (95% CI: 6.4; 34.6) per 10 μg/m3. Regarding the chemical species; SO42−, NO3−, NH4+ and K+ exhibited specific patterns of risk, relative to the investigated outcomes. Overall, SO42− in PM2.5–10 and K+ in PM2.5 were associated with increased risk of hospital admissions due to both types of diseases. The results agree with evidence indicating that the risks for different health outcomes vary in relation to the fractions and chemical composition of PM10. Thus, PM10 speciation studies may contribute to the establishment of more selective pollution control policies. PMID:27669280
Neophytou, Andreas M; Yiallouros, Panayiotis; Coull, Brent A; Kleanthous, Savvas; Pavlou, Pavlos; Pashiardis, Stelios; Dockery, Douglas W; Koutrakis, Petros; Laden, Francine
2013-01-01
Ambient particulate matter (PM) has been shown to have short- and long-term effects on cardiorespiratory mortality and morbidity. Most of the risk is associated with fine PM (PM(2.5)); however, recent evidence suggests that desert dust outbreaks are major contributors to coarse PM (PM(10-2.5)) and may be associated with adverse health effects. The objective of this study was to investigate the risk of total, cardiovascular and respiratory mortality associated with PM concentrations during desert dust outbreaks. We used a time-series design to investigate the effects of PM(10) on total non-trauma, cardiovascular and respiratory daily mortality in Cyprus, between 1 January 2004 and 31 December 2007. Separate PM(10) effects for non-dust and dust days were fit in generalized additive Poisson models. We found a 2.43% (95% CI: 0.53, 4.37) increase in daily cardiovascular mortality associated with each 10-μg/m(3) increase in PM(10) concentrations on dust days. Associations for total (0.13% increase, 95% CI: -1.03, 1.30) and respiratory mortality (0.79% decrease, 95% CI: -4.69, 3.28) on dust days and all PM(10) and mortality associations on non-dust days were not significant. Although further study of the exact nature of effects across different affected regions during these events is needed, this study suggests adverse cardiovascular effects associated with desert dust events.
NASA Astrophysics Data System (ADS)
Rogula-Kopiec, Patrycja; Pastuszka, Józef; Mathews, Barbara; Widziewicz, Kamila
2018-01-01
The link between increased morbidity and mortality and increasing concentrations of particulate matter (PM) resulted in great attention being paid to the presence and physicochemical properties of PM in closed rooms, where people spends most of their time. The least recognized group of such indoor environments are small service facilities. The aim of this study was to identify factors which determine the concentration, chemical composition and sources of PM in the air of different service facilities: restaurant kitchen, printing office and beauty salon. The average PM concentration measured in the kitchen was 5-fold (PM4, particle fraction ≥ 4 μm) and 5.3-fold (TSP, total PM) greater than the average concentration of these PM fractions over the same period. During the same measurement period in the printing office and in the beauty salon, the mean PM concentration was 10- and 4-fold (PM4) and 8- and 3-fold (TSP) respectively greater than the mean concentration of these PM fractions in outdoor air. In both facilities the main source of PM macro-components, especially organic carbon, were chemicals, which are normally used in such places - solvents, varnishes, paints, etc. The influence of some metals inflow from the outdoor air into indoor environment of those facilities was also recognized.
Cao, Junji; Xu, Hongmei; Xu, Qun; Chen, Bingheng; Kan, Haidong
2012-03-01
Although ambient fine particulate matter (PM(2.5); particulate matter ≤ 2.5 µm in aerodynamic diameter) has been linked to adverse human health effects, the chemical constituents that cause harm are unknown. To our knowledge, the health effects of PM(2.5) constituents have not been reported for a developing country. We examined the short-term association between PM(2.5) constituents and daily mortality in Xi'an, a heavily polluted Chinese city. We obtained daily mortality data and daily concentrations of PM(2.5), organic carbon (OC), elemental carbon (EC), and 10 water-soluble ions for 1 January 2004 through 31 December 2008. We also measured concentrations of fifteen elements 1 January 2006 through 31 December 2008. We analyzed the data using overdispersed generalized linear Poisson models. During the study period, the mean daily average concentration of PM(2.5) in Xi'an was 182.2 µg/m³. Major contributors to PM(2.5) mass included OC, EC, sulfate, nitrate, and ammonium. After adjustment for PM(2.5) mass, we found significant positive associations of total, cardiovascular, or respiratory mortality with OC, EC, ammonium, nitrate, chlorine ion, chlorine, and nickel for at least one lag period. Nitrate demonstrated stronger associations with total and cardiovascular mortality than PM(2.5) mass. For a 1-day lag, interquartile range increases in PM(2.5) mass and nitrate (114.9 and 15.4 µg/m³, respectively) were associated with 1.8% [95% confidence interval (CI): 0.8%, 2.8%] and 3.8% (95% CI: 1.7%, 5.9%) increases in total mortality. Our findings suggest that PM(2.5) constituents from the combustion of fossil fuel may have an appreciable influence on the health effects attributable to PM(2.5) in Xi'an.
Temporal variation of fine and coarse particulate matter sources in Jeddah, Saudi Arabia
Lim, Chris C.; Thurston, George D.; Shamy, Magdy; Alghamdi, Mansour; Khoder, Mamdouh; Mohorjy, Abdullah M.; Alkhalaf, Abdulrahman K.; Brocato, Jason; Chen, Lung Chi; Costa, Max
2017-01-01
This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (PM2.5) and coarse (PM2.5–10) particulate matter mass concentrations, elemental constituents, and potential source origins in Jeddah, Saudi Arabia. Air quality samples were collected over one year, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM2.5 (21.9 µg/m3) and PM10 (107.8 µg/m3) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM2.5 (10 µg/m3) and PM10 (20 µg/m3), respectively. Similar to other Middle Eastern locales, PM2.5–10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM2.5 and PM2.5–10: 1) soil/road dust; 2) incineration; and 3) traffic; and for PM2.5 only, 4) residual oil burning. Soil/road dust accounted for a major portion of both the PM2.5 (27%) and PM2.5–10 (77%) mass, and the largest source contributor for PM2.5 was from residual oil burning (63%). Temporal variations of PM2.5–10 and PM2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency), and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM2.5 and PM2.5–10 masses in this city may have implications regarding the toxicity of these particles versus those in the western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting. PMID:28635552
Emissions of particulate matter from animal houses in the Netherlands
NASA Astrophysics Data System (ADS)
Winkel, Albert; Mosquera, Julio; Groot Koerkamp, Peter W. G.; Ogink, Nico W. M.; Aarnink, André J. A.
2015-06-01
In the Netherlands, emissions from animal houses represent a major source of ambient particulate matter (PM). The objective of the present paper was to provide accurate and up to date concentrations and emission rates of PM10 and PM2.5 for commonly used animal housing systems, under representative inside and outside climate conditions and ventilation rates. We set up a national survey which covered 13 housing systems for poultry, pigs, and dairy cattle, and included 36 farms. In total, 202 24-h measurements were carried out, which included concentrations of inhalable PM, PM10, PM2.5, and CO2, ventilation rate, temperature, and relative humidity. On an animal basis, geometric mean emission rates of PM10 ranged from 2.2 to 12.0 mg h-1 in poultry and from 7.3 to 22.5 mg h-1 in pigs. The mean PM10 emission rate in dairy cattle was 8.5 mg h-1. Geometric mean emission rates of PM2.5 ranged from 0.11 to 2.41 mg h-1 in poultry and from 0.21 to 1.56 mg h-1 in pigs. The mean PM2.5 emission rate in dairy cattle was 1.65 mg h-1. Emissions are also reported per Livestock Unit and Heat Production Unit. PM emission rates increased exponentially with increasing age in broilers and turkeys and increased linearly with increasing age in weaners and fatteners. In laying hens, broiler breeders, sows, and dairy cattle, emission levels were variable throughout the year.
Increased ambient fine particulate matter (FPM) concentrations are associated with increased risk for short-term and long-term adverse cardiovascular events. Ultrafine PM (UFPM) due to its size and increased surface area might be particularly toxic. Mast cells are well recognized...
Pun, Vivian Chit; Yu, Ignatius Tak-Sun; Qiu, Hong; Ho, Kin-Fai; Sun, Zhiwei; Louie, Peter K K; Wong, Tze Wai; Tian, Linwei
2014-05-01
Despite an increasing number of recent studies, the overall epidemiologic evidence associating specific particulate matter chemical components with health outcomes has been mixed. The links between components and hospitalizations have rarely been examined in Asia. We estimated associations between exposures to 18 chemical components of particulate matter with aerodynamic diameter less than 10 μm (PM10) and daily emergency cardiorespiratory hospitalizations in Hong Kong, China, between 2001 and 2007. Carbonaceous particulate matter, sulfate, nitrate, and ammonium accounted for two-thirds of the PM10 mass. After adjustment for time-varying confounders, a 3.4-μg/m(3) increment in 2-day moving average of same-day and previous-day nitrate concentrations was associated with the largest increase of 1.32% (95% confidence interval: 0.73, 1.92) in cardiovascular hospitalizations; elevation in manganese level (0.02 μg/m(3)) was linked to a 0.91% (95% confidence interval: 0.19, 1.64) increase in respiratory hospitalizations. Upon further adjustment for gaseous copollutants, nitrate, sodium ion, chloride ion, magnesium, and nickel remained significantly associated with cardiovascular hospitalizations, whereas sodium ion, aluminum, and magnesium, components abundantly found in coarser PM10, were associated with respiratory hospitalizations. Most positive links were seen during the cold season. These findings lend support to the growing body of literature concerning the health associations of particulate matter composition and provide important insight into the differential health risks of components found in fine and coarse modes of PM10.
Ko, Jae Hac; Wang, Jingchen; Xu, Qiyong
2018-05-21
Polycyclic aromatic hydrocarbons (PAHs) not only present a risk to human health when released into the air, but also can be precursors to form particulate matter (PM) during sewage sludge pyrolysis. In this study, 16 EPA PAHs in PM (ΣPAH PM ) during sewage sludge pyrolysis were investigated with increasing temperature (200 o C-1000 °C) and holding time under different operation conditions [inert gas flow rate (IGFR) (200-800 mL/min) and heating rate (5-20 °C/min)]. ΣPAH PM varied with temperature, IGFR, and heating rate, and ranged from 597 (±41) μg/g to 3240 (±868) μg/g. ΣPAH PM decreased with increasing IGFR but increased with rapid heating rate. Among PAHs species in PM, naphthalene (Nap) was commonly detected at low temperature ranges in all tested conditions. Chrysene (CHR), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd] pyrene (IND), and benzo[g,h,i]perylene (BghiP) in PM became abundant at high temperature with a low IGFR. At high temperature ranges with high volatile conditions (rapid heating rate and low IGFR), PAH formation and growth reactions were considerable, resulting in the formation of heavy PAHs in PM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Airborne Particulate Matter Induces Nonallergic Eosinophilic Sinonasal Inflammation in Mice.
Ramanathan, Murugappan; London, Nyall R; Tharakan, Anuj; Surya, Nitya; Sussan, Thomas E; Rao, Xiaoquan; Lin, Sandra Y; Toskala, Elina; Rajagopalan, Sanjay; Biswal, Shyam
2017-07-01
Exposure to airborne particulate matter (PM) has been linked to aggravation of respiratory symptoms, increased risk of cardiovascular disease, and all-cause mortality. Although the health effects of PM on the lower pulmonary airway have been extensively studied, little is known regarding the impact of chronic PM exposure on the upper sinonasal airway. We sought to test the impact of chronic airborne PM exposure on the upper respiratory system in vivo. Mice were subjected, by inhalation, to concentrated fine (2.5 μm) PM 6 h/d, 5 d/wk, for 16 weeks. Mean airborne fine PM concentration was 60.92 μm/m 3 , a concentration of fine PM lower than that reported in some major global cities. Mice were then killed and analyzed for evidence of inflammation and barrier breakdown compared with control mice. Evidence of the destructive effects of chronic airborne PM on sinonasal health in vivo, including proinflammatory cytokine release, and macrophage and neutrophil inflammatory cell accumulation was observed. A significant increase in epithelial barrier dysfunction was observed, as assessed by serum albumin accumulation in nasal airway lavage fluid, as well as decreased expression of adhesion molecules, including claudin-1 and epithelial cadherin. A significant increase in eosinophilic inflammation, including increased IL-13, eotaxin-1, and eosinophil accumulation, was also observed. Collectively, although largely observational, these studies demonstrate the destructive effects of chronic airborne PM exposure on the sinonasal airway barrier disruption and nonallergic eosinophilic inflammation in mice.
Particulate matter (PM) exposure data from the U.S. Environmental Protection Agency sponsored 1998 Baltimore and 1999 Fresno PM Exposure Studies were analyzed to identify important microenvironments and activities that may lead to increased particle exposure for select elderly ...
Ambient fine particulate matter in China: Its negative impacts and possible countermeasures.
Qi, Zihan; Chen, Tingjia; Chen, Jiang; Qi, Xiaofei
2018-03-01
In recent decades, China has experienced rapid economic development accompanied by increasing concentrations of ambient PM 2.5 , particulate matter of less than 2.5 μm in diameter. PM 2.5 is now believed to be a carcinogen, causing higher lung cancer risks and generating losses to the economy and society. This meta-analysis evaluates the losses generated by ambient PM 2.5 in Suzhou from 2014 to 2016 and predicts losses at different concentrations. Estimations of total losses in Beijing, Shanghai, Hangzhou, Guangzhou, Dalian, and Xiamen are also presented, with a total national loss in 2015. The authors then demonstrate that lowering ambient PM 2.5 concentrations would be a realistic way for China to reduce the evaluated social losses in the short term. Possible legal measures are listed for lowering ambient PM 2.5 concentrations. The present findings quantify the economic effects of ambient PM 2.5 due to the increased incidence rate and mortality rate of lung cancer. Lowering ambient PM 2.5 concentrations would be the most realistic way for China to reduce tghe evaluated social losses in the short term. Possible legal measures for lowering ambient PM 2.5 concentrations to reduce the total losses are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih
Exposure to ambient air particulate matter (particles less than 10 μm or PM{sub 10}) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM{sub 10}. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM{sub 10}/saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM{submore » 10} exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM{sub 10} impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM{sub 10} increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM{sub 10}. Taken together, statins protect against PM{sub 10}-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM{sub 10}) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal macrophages, lipid accumulation, and intimal area. • Lovastatin promoted smooth muscle cell recruitment into plaques. • Lovastatin reduced the expression of vasoactive mediators (iNOS, COX-2, and ET-1). • Lovastatin did not reduce blood lipid levels in PM{sub 10}-exposed rabbits.« less
Shen, Yen-Ling; Liu, Wen-Te; Lee, Kang-Yun; Chuang, Hsiao-Chi; Chen, Hua-Wei; Chuang, Kai-Jen
2018-02-01
Recent studies suggest that exposure to air pollution might be associated with severity of sleep-disordered breathing (SDB). However, the association between air pollution exposure, especially particulate matter with aerodynamic diameters <= 2.5 μm (PM 2.5 ), and SDB is still unclear. We collected 4312 participants' data from the Taipei Medical University Hospital's Sleep Center and air pollution data from the Taiwan Environmental Protection Administration. Associations of particulate matter with aerodynamic diameters <=10 μm (PM 10 ), PM 2.5 , nitrogen dioxide (NO 2 ), ozone (O 3 ) and sulfur dioxide (SO 2 ) with apnea-hypopnea index (AHI) and oxygen desaturation index (ODI) were investigated by generalized additive models. We found that an interquartile range (IQR) increase in 1-year mean PM 2.5 (3.4 μg/m 3 ) and NO 2 (2.7 ppb) was associated with a 4.7% and 3.6% increase in AHI, respectively. We also observed the association of an IQR increase in 1-year mean PM 2.5 with a 2.5% increase in ODI. The similar pattern was found in the association of daily mean PM 2.5 exposure with increased AHI. Moreover, participants showed significant AHI and ODI responses to air pollution levels in spring and winter. We concluded that exposure to PM 2.5 was associated with SDB. Effects of air pollution on AHI and ODI were significant in spring and winter. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Jee Young; Magari, Shannon R; Herrick, Robert F; Smith, Thomas J; Christiani, David C
2004-11-01
Particulate air pollution, specifically the fine particle fraction (PM2.5), has been associated with increased cardiopulmonary morbidity and mortality in general population studies. Occupational exposure to fine particulate matter can exceed ambient levels by a large factor. Due to increased interest in the health effects of particulate matter, many particle sampling methods have been developed In this study, two such measurement methods were used simultaneously and compared. PM2.5 was sampled using a filter-based gravimetric sampling method and a direct-reading instrument, the TSI Inc. model 8520 DUSTTRAK aerosol monitor. Both sampling methods were used to determine the PM2.5 exposure in a group of boilermakers exposed to welding fumes and residual fuel oil ash. The geometric mean PM2.5 concentration was 0.30 mg/m3 (GSD 3.25) and 0.31 mg/m3 (GSD 2.90)from the DUSTTRAK and gravimetric method, respectively. The Spearman rank correlation coefficient for the gravimetric and DUSTTRAK PM2.5 concentrations was 0.68. Linear regression models indicated that log, DUSTTRAK PM2.5 concentrations significantly predicted loge gravimetric PM2.5 concentrations (p < 0.01). The association between log(e) DUSTTRAK and log, gravimetric PM2.5 concentrations was found to be modified by surrogate measures for seasonal variation and type of aerosol. PM2.5 measurements from the DUSTTRAK are well correlated and highly predictive of measurements from the gravimetric sampling method for the aerosols in these work environments. However, results from this study suggest that aerosol particle characteristics may affect the relationship between the gravimetric and DUSTTRAK PM2.5 measurements. Recalibration of the DUSTTRAK for the specific aerosol, as recommended by the manufacturer, may be necessary to produce valid measures of airborne particulate matter.
Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing.
Nie, Dongyang; Chen, Mindong; Wu, Yun; Ge, Xinlei; Hu, Jianlin; Zhang, Kai; Ge, Pengxiang
2018-03-27
Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM 2.5 ) over Nanjing were analyzed using hourly and daily averaged PM 2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM 2.5 , and mortality benefits due to PM 2.5 reductions. The concentrations of PM 2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM 2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM 2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM 2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m³, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.
Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing
Nie, Dongyang; Chen, Mindong; Ge, Xinlei; Zhang, Kai; Ge, Pengxiang
2018-01-01
Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits. PMID:29584626
Apple, J; Vicente, R; Yarberry, A; Lohse, N; Mills, E; Jacobson, A; Poppendieck, D
2010-10-01
Over one-quarter of the world's population relies on fuel-based lighting. Kerosene lamps are often located in close proximity to users, potentially increasing the risk for respiratory illnesses and lung cancer. Particulate matter concentrations resulting from cook stoves have been extensively studied in the literature. However, characterization of particulate concentrations from fuel-based lighting has received minimal attention. This research demonstrates that vendors who use a single simple wick lamp in high-air-exchange market kiosks will likely be exposed to PM(2.5) concentrations that are an order of magnitude greater than ambient health guidelines. Using a hurricane lamp will reduce exposure to PM(2.5) and PM(10) concentrations by an order of magnitude compared to using a simple wick lamp. Vendors using a single hurricane or pressure lamp may not exceed health standards or guidelines for PM(2.5) and PM(10), but will be exposed to elevated 0.02-0.3 μm particle concentrations. Vendors who change from fuel-based lighting to electric lighting technology for enhanced illumination will likely gain the ancillary health benefit of reduced particulate matter exposure. Vendors exposed only to ambient and fuel-based lighting particulate matter would see over an 80% reduction in inhaled PM(2.5) mass if they switched from a simple wick lamp to an electric lighting technology. Changing lighting technologies to achieve increased efficiency and energy service levels can provide ancillary health benefits. The cheapest, crudest kerosene lamps emit the largest amounts of PM(2.5). Improving affordability and access to better lighting options (hurricane or pressure lamps and lighting using grid or off-grid electricity) can deliver health benefits for a large fraction of the world's population, while reducing the economic and environmental burden of the current fuel-based lighting technologies.
Exposure to combustion-derived fine particulate matter (PM) is associated with increased cardiovascular morbidity and mortality especially in individuals with cardiovascular disease, including hypertension. PM inhalation causes several adverse changes in cardiac function that ar...
Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...
Particulate matter oxidative potential from waste transfer station activity.
Godri, Krystal J; Duggan, Sean T; Fuller, Gary W; Baker, Tim; Green, David; Kelly, Frank J; Mudway, Ian S
2010-04-01
Adverse cardiorespiratory health is associated with exposure to ambient particulate matter (PM). The highest PM concentrations in London occur in proximity to waste transfer stations (WTS), sites that experience high numbers of dust-laden, heavy-duty diesel vehicles transporting industrial and household waste. Our goal was to quantify the contribution of WTS emissions to ambient PM mass concentrations and oxidative potential. PM with a diameter < 10 microm (PM10) samples were collected daily close to a WTS. PM10 mass concentrations measurements were source apportioned to estimate local versus background sources. PM oxidative potential was assessed using the extent of antioxidant depletion from a respiratory tract lining fluid model. Total trace metal and bioavailable iron concentrations were measured to determine their contribution to PM oxidative potential. Elevated diurnal PM10 mass concentrations were observed on all days with WTS activity (Monday-Saturday). Variable PM oxidative potential, bioavailable iron, and total metal concentrations were observed on these days. The contribution of WTS emissions to PM at the sampling site, as predicted by microscale wind direction measurements, was correlated with ascorbate (r = 0.80; p = 0.030) and glutathione depletion (r = 0.76; p = 0.046). Increased PM oxidative potential was associated with aluminum, lead, and iron content. PM arising from WTS activity has elevated trace metal concentrations and, as a consequence, increased oxidative potential. PM released by WTS activity should be considered a potential health risk to the nearby residential community.
Urban particulate matter pollution: a tale of five cities.
Pandis, Spyros N; Skyllakou, Ksakousti; Florou, Kalliopi; Kostenidou, Evangelia; Kaltsonoudis, Christos; Hasa, Erion; Presto, Albert A
2016-07-18
Five case studies (Athens and Paris in Europe, Pittsburgh and Los Angeles in the United States, and Mexico City in Central America) are used to gain insights into the changing levels, sources, and role of atmospheric chemical processes in air quality in large urban areas as they develop technologically. Fine particulate matter is the focus of our analysis. In all cases reductions of emissions by industrial and transportation sources have resulted in significant improvements in air quality during the last few decades. However, these changes have resulted in the increasing importance of secondary particulate matter (PM) which dominates over primary in most cases. At the same time, long range transport of secondary PM from sources located hundreds of kilometres from the cities is becoming a bigger contributor to the urban PM levels in all seasons. "Non-traditional" sources including cooking, and residential and agricultural biomass burning contribute an increasing fraction of the now reduced fine PM levels. Atmospheric chemistry is found to change the chemical signatures of a number of these sources relatively fast both during the day and night, complicating the corresponding source apportionment.
Desikan, Anita; Crichton, Siobhan; Hoang, Uy; Barratt, Benjamin; Beevers, Sean D; Kelly, Frank J; Wolfe, Charles D A
2016-12-01
Outdoor air pollution represents a potentially modifiable risk factor for stroke. We examined the link between ambient pollution and mortality up to 5 years poststroke, especially for pollutants associated with vehicle exhaust. Data from the South London Stroke Register, a population-based register covering an urban, multiethnic population, were used. Hazard ratios (HR) for a 1 interquartile range increase in particulate matter <2.5 µm diameter (PM 2.5 ) and PM <10 µm (PM 10 ) were estimated poststroke using Cox regression, overall and broken down into exhaust and nonexhaust components. Analysis was stratified for ischemic and hemorrhagic strokes and was further broken down by Oxford Community Stroke Project classification. The hazard of death associated with PM 2.5 up to 5 years after stroke was significantly elevated (P=0.006) for all strokes (HR=1.28; 95% confidence interval [CI], 1.08-1.53) and ischemic strokes (HR, 1.32; 95% CI, 1.08-1.62). Within ischemic subtypes, PM 2.5 pollution increased mortality risk for total anterior circulation infarcts by 2-fold (HR, 2.01; 95% CI, 1.17-3.48; P=0.012) and by 78% for lacunar infarcts (HR, 1.78; 95% CI, 1.18-2.66; P=0.006). PM 10 pollution was associated with 45% increased mortality risk for lacunar infarct strokes (HR, 1.45; 95% CI, 1.06-2.00; P=0.022). Separating PM 2.5 and PM 10 into exhaust and nonexhaust components did not show increased mortality. Exposure to certain outdoor PM pollution, particularly PM 2.5 , increased mortality risk poststroke up to 5 years after the initial stroke. © 2016 American Heart Association, Inc.
[Coal fineness effect on primary particulate matter features during pulverized coal combustion].
Lü, Jian-yi; Li, Ding-kai
2007-09-01
Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does.
NASA Astrophysics Data System (ADS)
Strandgren, J.; Mei, L.; Vountas, M.; Burrows, J. P.; Lyapustin, A.; Wang, Y.
2014-10-01
The Aerosol Optical Depth (AOD) spatial resolution effect is investigated for the linear correlation between satellite retrieved AOD and ground level particulate matter concentrations (PM2.5). The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) for obtaining AOD with a high spatial resolution of 1 km and provides a good dataset for the study of the AOD spatial resolution effect on the particulate matter concentration prediction. 946 Environmental Protection Agency (EPA) ground monitoring stations across the contiguous US have been used to investigate the linear correlation between AOD and PM2.5 using AOD at different spatial resolutions (1, 3 and 10 km) and for different spatial scales (urban scale, meso-scale and continental scale). The main conclusions are: (1) for both urban, meso- and continental scale the correlation between PM2.5 and AOD increased significantly with increasing spatial resolution of the AOD, (2) the correlation between AOD and PM2.5 decreased significantly as the scale of study region increased for the eastern part of the US while vice versa for the western part of the US, (3) the correlation between PM2.5 and AOD is much more stable and better over the eastern part of the US compared to western part due to the surface characteristics and atmospheric conditions like the fine mode fraction.
Li, Guangdong; Fang, Chuanglin; Wang, Shaojian; Sun, Siao
2016-11-01
Rapid economic growth, industrialization, and urbanization in China have led to extremely severe air pollution that causes increasing negative effects on human health, visibility, and climate change. However, the influence mechanisms of these anthropogenic factors on fine particulate matter (PM 2.5 ) concentrations are poorly understood. In this study, we combined panel data and econometric methods to investigate the main anthropogenic factors that contribute to increasing PM 2.5 concentrations in China at the prefecture level from 1999 to 2011. The results showed that PM 2.5 concentrations and three anthropogenic factors were cointegrated. The panel Fully Modified Least Squares and panel Granger causality test results indicated that economic growth, industrialization, and urbanization increased PM 2.5 concentrations in the long run. The results implied that if China persists in its current development pattern, economic growth, industrialization and urbanization will inevitably lead to increased PM 2.5 emissions in the long term. Industrialization was the principal factor that affected PM 2.5 concentrations for the total panel, the industry-oriented panel and the service-oriented panel. PM 2.5 concentrations can be reduced at the cost of short-term economic growth and industrialization. However, reducing the urbanization level is not an efficient way to decrease PM 2.5 pollutions in the short term. The findings also suggest that a rapid reduction of PM 2.5 concentrations relying solely on adjusting these anthropogenic factors is difficult in a short-term for the heavily PM 2.5 -polluted panel. Moreover, the Chinese government will have to seek much broader policies that favor a decoupling of these coupling relationships.
Impacts of fine particulate matter on premature mortality under future climate change
NASA Astrophysics Data System (ADS)
Park, S.; Allen, R.; Lim, C. H.
2016-12-01
Climate change modulates concentration of fine particulate matter (PM2.5) via modifying atmospheric circulation and the hydrological cycle. Furthermore, surface PM2.5 is significantly associated with respiratory diseases and premature mortality. In this study, we assess the response of PM2.5 concentration to climate change in the future (end of 21st century) and its effects on year of life lost (YLL) and premature mortality. We use outputs from five models participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) to evaluate climate change effects on PM2.5: for present climate with current aerosol emissions and greenhouse gas concentrations, and for future climate, also with present-day aerosol emissions, but with end-of-the century greenhouse gas concentrations, sea surface temperatures and sea-ice. The results show that climate change is associated with an increase in PM2.5 concentration. Combined with global future population data from the United Nation (UN), we also find an increase in premature mortality and YLL.
Background: Many studies have reported associations between PM2.5 and adverse cardiovascular effects. However there is increased concern that ultrafine PM (aerodynamic diameter less than 0.1 micron) may be disproportionately toxic relative to the 0.1 to 2.5 micron fraction of PM2...
Studies have reported associations between exposure to ambient air particulate matter (PM) and increased rates of cardio-pulmonary morbidity and mortality. The aim of this study was to determine the effect of exposure to PM of varying size fractions collected in urban (U) and se...
NASA Astrophysics Data System (ADS)
Park, T.; Lee, T.; Kang, S.; Lee, J.; Kim, J.; Son, J.; Yoo, H. M.; Kim, K.; Park, G.
2015-12-01
Car emissions are major contributors of particulate matter (PM) in the urban environment and effects of air pollution, climate change, and human activities. By increasing of interest in research of car emission for assessment of the PM control, it became require to understand the chemical composition and characteristics of the car exhaust gases and particulate matter. To understand car emission characteristics of PM, we will study PM of car emissions for five driving modes (National Institute Environmental Research (NIER)-5, NIER-9, NIER-12, NIER-14) and three fixed speed driving modes (30km/h, 70km/h, 110km/h) using different fuel types (gasoline, diesel, and LPG) at Transportation Pollution Research Center (TPRC) of NIER in Incheon, South Korea. PM chemical composition of car emission was measured for concentrations of organics, sulfate, nitrate, ammonium, PAHs, oxidation states and size distribution using an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and engine exhaust particle sizer (EEPS) on real-time. In the study, organics concentration was dominated for all cases of driving modes and the concentration of organics was increased in 110km/h fixed speed mode for gasoline and diesel. The presentation will provide an overview of the chemical composition of PM in the car emissions.
Kulas, Joshua A; Hettwer, Jordan V; Sohrabi, Mona; Melvin, Justine E; Manocha, Gunjan D; Puig, Kendra L; Gorr, Matthew W; Tanwar, Vineeta; McDonald, Michael P; Wold, Loren E; Combs, Colin K
2018-05-22
Environmental exposure to air pollution has been linked to a number of health problems including organ rejection, lung damage and inflammation. While the deleterious effects of air pollution in adult animals are well documented, the long-term consequences of particulate matter (PM) exposure during animal development are uncertain. In this study we tested the hypothesis that environmental exposure to PM 2.5 μm in diameter in utero promotes long term inflammation and neurodegeneration. We evaluated the behavior of PM exposed animals using several tests and observed deficits in spatial memory without robust changes in anxiety-like behavior. We then examined how this affects the brains of adult animals by examining proteins implicated in neurodegeneration, synapse formation and inflammation by western blot, ELISA and immunohistochemistry. These tests revealed significantly increased levels of COX2 protein in PM2.5 exposed animal brains in addition to changes in synaptophysin and Arg1 proteins. Exposure to PM2.5 also increased the immunoreactivity for GFAP, a marker of activated astrocytes. Cytokine concentrations in the brain and spleen were also altered by PM2.5 exposure. These findings indicate that in utero exposure to particulate matter has long term consequences which may affect the development of both the brain and the immune system in addition to promoting inflammatory change in adult animals. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ravikumar, Dwarakanath; Sinha, Parikhit
2017-10-01
With utility-scale photovoltaic (PV) projects increasingly developed in dry and dust-prone geographies with high solar insolation, there is a critical need to analyze the impacts of PV installations on the resulting particulate matter (PM) concentrations, which have environmental and health impacts. This study is the first to quantify the impact of a utility-scale PV plant on PM concentrations downwind of the project site. Background, construction, and post-construction PM 2.5 and PM 10 (PM with aerodynamic diameters <2.5 and <10 μm, respectively) concentration data were collected from four beta attenuation monitor (BAM) stations over 3 yr. Based on these data, the authors evaluate the hypothesis that PM emissions from land occupied by a utility-scale PV installation are reduced after project construction through a wind-shielding effect. The results show that the (1) confidence intervals of the mean PM concentrations during construction overlap with or are lower than background concentrations for three of the four BAM stations; and (2) post-construction PM 2.5 and PM 10 concentrations downwind of the PV installation are significantly lower than the background concentrations at three of the four BAM stations. At the fourth BAM station, downwind post-construction PM 2.5 and PM 10 concentrations increased marginally by 5.7% and 2.6% of the 24-hr ambient air quality standards defined by the U.S. Environmental Protection Agency, respectively, when compared with background concentrations, with the PM 2.5 increase being statistically insignificant. This increase may be due to vehicular emissions from an access road near the southwest corner of the site or a drainage berm near the south station. The findings demonstrate the overall environmental benefit of downwind PM emission abatement from a utility-scale PV installation in desert conditions due to wind shielding. With PM emission reductions observed within 10 months of completion of construction, post-construction monitoring of downwind PM levels may be reduced to a 1-yr period for other projects with similar soil and weather conditions. This study is the first to analyze impact of a utility photovoltaic (PV) project on downwind particulate matter (PM) concentration in desert conditions. The PM data were collected at four beta attenuation monitor stations over a 3-yr period. The post-construction PM concentrations are lower than background concentrations at three of four stations, therefore supporting the hypothesis of post-construction wind shielding from PV installations. With PM emission reductions observed within 10 months of completion of construction, postconstruction monitoring of downwind PM levels may be reduced to a 1-yr period for other PV projects with similar soil and weather conditions.
A systematic analysis of PM2.5 in Beijing and its sources from 2000 to 2012
NASA Astrophysics Data System (ADS)
Lv, Baolei; Zhang, Bin; Bai, Yuqi
2016-01-01
Particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) is the main air pollutant in Beijing. To have a comprehensive understanding of concentrations, compositions and sources of PM2.5 in Beijing, recent studies reporting ground-based observations and source apportionment results dated from 2000 to 2012 in this typical large city of China are reviewed. Statistical methods were also used to better enable data comparison. During the last decade, annual average concentrations of PM2.5 have decreased and seasonal mean concentrations declined through autumn and winter. Generally, winter is the most polluted season and summer is the least polluted one. Seasonal variance of PM2.5 levels decreased. For diurnal variance, PM2.5 generally increases at night and decreases during the day. On average, organic matters, sulfate, nitrate and ammonium are the major compositions of PM2.5 in Beijing. Fractions of organic matters increased from 2000 to 2004, and decreased afterwards. Fractions of sulfate, nitrate and ammonium decreased in winter and remained largely unchanged in summer. Concentrations of organic carbon and elemental carbon were always higher in winter than in summer and they barely changed during the last decade. Concentrations of sulfate, nitrate and ammonium exhibited significant increasing trend in summer but in reverse in winter. On average they were higher in winter than in summer before 2005, and took a reverse after 2005. Receptor model results show that vehicle, dust, industry, biomass burning, coal combustion and secondary products were major sources and they all increased except coal combustions and secondary products. The growth was decided both changing social and economic activities in Beijing, and most likely growing emissions in neighboring Hebei province. Explicit descriptions of the spatial variations of PM2.5 concentration, better methods to estimate secondary products and ensemble source apportionments models to reduce uncertainties would remain being open questions for future studies.
NASA Astrophysics Data System (ADS)
Liu, Suyang; Ganduglia, Cecilia M.; Li, Xiao; Delclos, George L.; Franzini, Luisa; Zhang, Kai
2016-12-01
A number of time-series studies have associated PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) mass and components with various health outcomes. No studies have yet examined the associations between PM2.5 components and hospital admissions among a privately insured population. We estimated the short-term associations between exposure to PM2.5 mass and components and emergency hospital admissions for all-cause and cause-specific diseases in Greater Houston, Texas, during 2008-2013 using Blue Cross Blue Shield Texas claims data. A total of 90,085 emergency hospital admissions were included in this study, with an average of 34 ± 10 admissions per day. We selected 20 PM2.5 components from the U.S. Environmental Protection Agency's Chemical Speciation Network site located in Houston, and then applied Poisson regression models to assess the short-term effects of PM2.5 mass and species on emergency hospital admissions. Effects were estimated without adjustment for other airborne pollutants. PM2.5 mass was not statistically significantly associated with increased all-cause emergency hospital admissions and selected cause-specific admissions. For selected PM2.5 species, we found interquartile range increases in arsenic (0.001 μg/m3) and copper (0.017 μg/m3) were significantly (P < 0.05) associated with increased admissions for stroke, (5.98% [95% confidence interval (CI): 0.73, 11.50%]) and pneumonia (4.07% [95% CI: 0.37, 7.90%]), respectively. Seasonal analysis showed weak variation among PM2.5 mass and components, except that nickel significantly increased all-cause emergency hospital admissions (2.16% [95% CI: 0.21, 4.14%]) during the warm season. Our findings suggest that hospital admissions in the privately insured population are slightly affected by ambient fine particulate matter air pollution.
Environmental and occupational particulate matter exposures and ectopic heart beats in welders
Cavallari, Jennifer M.; Fang, Shona C.; Eisen, Ellen A.; Mittleman, Murray A.; Christiani, David C.
2016-01-01
Objectives Links between arrhythmias and particulate matter exposures have been found among sensitive populations. We examined the relationship between personal PM2.5 (particulate matter ≤ 2.5μm aerodynamic diameter) exposures and ectopy in a panel study of healthy welders. Methods Simultaneous ambulatory electrocardiogram (ECG) and personal PM2.5 exposure monitoring with DustTrak™ Aerosol Monitor was performed on 72 males during work and non-work periods for 5–90 hours (median 40 hours). ECGs were summarized hourly for supraventricular ectopy (SVE) and ventricular ectopy (VE). PM2.5 exposures both work and non-work periods were averaged hourly with lags from 0- to 7-hours. Generalized linear mixed-effects models with a random participant intercept were used to examine the relationship between PM2.5 exposure and the odds of SVE or VE. Sensitivity analyses were performed to assess whether relationships differed by work period and current smokers. Results Participants had a mean(SD) age of 38(11) years and were monitored over 2,993 person-hours. The number of hourly ectopic events was highly skewed with mean(sd) of 14(69) VE and 1(4) SVE. We found marginally significant increases in VE with PM2.5 exposures in the 6th and 7th hour lags, yet no association with SVE. For every 100μg/m3 increase in 6th hour lagged PM2.5, the adjusted OR(95% CI) for VE was 1.03(1.00, 1.05). Results persisted in work or non-work exposure periods and non-smokers had increased odds of VE associated with PM2.5 as compared to smokers. Conclusions A small increase in the odds of ventricular ectopy with short term PM2.5 exposure was observed among relatively healthy men with environmental and occupational exposures. PMID:27052768
Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Sano, Hiroyuki; Iwata, Kyoko; Hantan, Degejirihu; Tohda, Yuji; Shimizu, Eiji
2017-03-13
Numerous studies have unmasked the deleterious effects of particulate matter less than 2.5 μm (PM 2.5 ) on health. However, epidemiologic evidence focusing on the effects of PM 2.5 on skin health remains limited. An important aspect of Asian dust (AD) in relationship to health is the amount of PM 2.5 contained therein. Several studies have demonstrated that AD can aggravate skin symptoms. The current study aimed to investigate the effects of short-term exposure to PM 2.5 and AD particles on skin symptoms in schoolchildren. A total of 339 children recorded daily skin symptom scores during February 2015. Light detection and ranging were used to calculate AD particle size. Generalized estimating equation logistic regression analyses were used to estimate the associations among skin symptoms and the daily levels of PM 2.5 and AD particles. Increases in the levels of PM 2.5 and AD particles were not related to an increased risk of skin symptom events, with increases of 10.1 μg/m³ in PM 2.5 and 0.01 km -1 in AD particles changing odds ratios by 1.03 and 0.99, respectively. These results suggest that short-term exposure to PM 2.5 and AD does not impact skin symptoms in schoolchildren.
NASA Astrophysics Data System (ADS)
Sówka, Izabela; Chlebowska-Styś, Anna; Mathews, Barbara
2018-01-01
It is commonly known, that suspended particulate matter pose a threat to human life and health, negatively influence the flora, climate and also materials. Especially dangerous is the presence of high concentration of particulate matter in the area of cities, where density of population is high. The research aimed at determining the variability of suspended particulate matter concentration (PM1.0, PM2.5 and PM10) in two different thermal seasons, in the area of Poznań city. As a part of carried out work we analyzed the variability of concentrations and also performed a preliminary analysis of their correlation. Measured concentrations of particulate matter were contained within following ranges: PM10 - 8.7-69.6 μg/m3, PM2.5 - 2.2-88.5 μg/m3, PM1.0 - 2.5-22.9 μg/m3 in the winter season and 1.0-42.8 μg/m3 (PM10), 1.2-40.3 μg/m3 (PM2.5) and 2.7-10.4 (PM1.0) in the summer season. Preliminary correlative analysis indicated interdependence between the temperature of air, the speed of wind and concentration of particulate matter in selected measurement points. The values of correlation coefficients between the air temperature, speed of wind and concentrations of particulate matter were respectively equal to: for PM10: -0.59 and -0.55 (Jana Pawła II Street), -0.53 and -0.53 (Szymanowskiego Street), for PM2.5: -0.60 and -0.53 (Jana Pawła II Street) and for PM1.0 -0.40 and -0.59 (Jana Pawła II Street).
Combustion of diesel fuel contributes to ambient air pollutant fine particulate matter (PM) and gases. Fine PM exposure has been associated with increased mortality due to adverse cardiac events, and morbidity, such as increased hospitalization for asthma symptoms and lung infect...
Chi, Miao-Ching; Guo, Su-Er; Hwang, Su-Lun; Chou, Chiang-Ting; Lin, Chieh-Mo; Lin, Yu-Ching
2016-01-01
Ambient particulate matter (PM) can trigger adverse reactions in the respiratory system, but less is known about the effect of indoor PM. In this longitudinal study, we investigated the relationships between indoor PM and clinical parameters in patients with moderate to very severe chronic obstructive pulmonary disease (COPD). Indoor air quality (PM2.5 and PM10 levels) was monitored in the patients’ bedroom, kitchen, living room, and front door at baseline and every two months for one year. At each home visit, the patients were asked to complete spirometry and questionnaire testing. Exacerbations were assessed by chart review and questionnaires during home visits. Generalized estimating equation (GEE) analysis (n = 83) showed that the level of wheezing was significantly higher in patients whose living room and kitchen had abnormal (higher than ambient air quality standards in Taiwan) PM2.5 and PM10 levels. Patients who lived in houses with abnormal outdoor PM2.5 levels had higher COPD Assessment Test scores (physical domain), and those who lived in houses with abnormal PM10 levels in the living room and kitchen had higher London Chest Activity of Daily Living scores. Increased PM levels were associated with worse respiratory symptoms and increased risk of exacerbation in patients with moderate to very severe COPD. PMID:28025521
Mutlu, Ece A; Comba, Işın Y; Cho, Takugo; Engen, Phillip A; Yazıcı, Cemal; Soberanes, Saul; Hamanaka, Robert B; Niğdelioğlu, Recep; Meliton, Angelo Y; Ghio, Andrew J; Budinger, G R Scott; Mutlu, Gökhan M
2018-05-18
Recent studies suggest an association between particulate matter (PM) air pollution and gastrointestinal (GI) disease. In addition to direct deposition, PM can be indirectly deposited in oropharynx via mucociliary clearance and upon swallowing of saliva and mucus. Within the GI tract, PM may alter the GI epithelium and gut microbiome. Our goal was to determine the effect of PM on gut microbiota in a murine model of PM exposure via inhalation. C57BL/6 mice were exposed via inhalation to either concentrated ambient particles or filtered air for 8-h per day, 5-days a week, for a total of 3-weeks. At exposure's end, GI tract tissues and feces were harvested, and gut microbiota was analyzed. Alpha-diversity was modestly altered with increased richness in PM-exposed mice compared to air-exposed mice in some parts of the GI tract. Most importantly, PM-induced alterations in the microbiota were very apparent in beta-diversity comparisons throughout the GI tract and appeared to increase from the proximal to distal parts. Changes in some genera suggest that distinct bacteria may have the capacity to bloom with PM exposure. Exposure to PM alters the microbiota throughout the GI tract which maybe a potential mechanism that explains PM induced inflammation in the GI tract. Copyright © 2018 Elsevier Ltd. All rights reserved.
Associations are well established between particulate matter (PM) and increased human mortality and morbidity. The association between PM sources and inflammatory marker IL-8 was evaluated in this study.
Indoor Air Quality in the Metro System in North Taiwan.
Chen, Ying-Yi; Sung, Fung-Chang; Chen, Mei-Lien; Mao, I-Fang; Lu, Chung-Yen
2016-12-02
Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO₂), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O₃), airborne particulate matter (PM 10 and PM 2.5 ), bacteria and fungi. Results showed that the CO₂, CO and HCHO levels met the stipulated standards as regulated by Taiwan's Indoor Air Quality Management Act (TIAQMA). However, elevated PM 10 and PM 2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan's Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations.
Zeng, Qiang; Wu, Ziting; Jiang, Guohong; Wu, Xiaoyin; Li, Pei; Ni, Yang; Xiong, Xiuqin; Wang, Xinyan; Parasat; Li, Guoxing; Pan, Xiaochuan
2017-08-01
There is limited evidence available worldwide about the quantitative relationship between particulate matter with an aerodynamic diameter of less than 10µm (PM 10 ) and years of life lost (YLL) caused by respiratory diseases (RD), especially regarding long-term time series data. We investigated the quantitative exposure-response association between PM 10 and the disease burden of RD. We obtained the daily concentration of ambient pollutants (PM 10 , nitrogen dioxide and sulphur dioxide), temperature and relative humidity data, as well as the death monitoring data from 2001 to 2010 in Tianjin. Then, a time series database was built after the daily YLL of RD was calculated. We applied a generalized additive model (GAM) to estimate the burden of PM 10 on daily YLL of RD and to determine the effect (the increase of daily YLL) of every 10μg/m 3 increase in PM 10 on health. We found that every 10μg/m 3 increase in PM 10 was associated with the greatest increase in YLL of 0.84 (95% CI: 0.45, 1.23) years at a 2-day (current day and previous day, lag01) moving average PM 10 concentration for RD. The association between PM 10 and YLL was stronger in females and the elderly (≥65 years of age). The association between PM 10 and YLL of RD differed according to district. These findings also provide new epidemiological evidence for respiratory disease prevention. Copyright © 2017 Elsevier Inc. All rights reserved.
Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy.
Sgrigna, G; Sæbø, A; Gawronski, S; Popek, R; Calfapietra, C
2015-02-01
A number of studies have focused on urban trees to understand their mitigation capacity of air pollution. In this study particulate matter (PM) deposition on Quercus ilex leaves was quantitatively analyzed in four districts of the City of Terni (Italy) for three periods of the year. Fine (between 0.2 and 2.5 μm) and Large (between 2.5 and 10 μm) PM fractions were analyzed. Mean PM deposition value on Quercus ilex leaves was 20.6 μg cm(-2). Variations in PM deposition correlated with distance to main roads and downwind position relatively to industrial area. Epicuticular waxes were measured and related to accumulated PM. For Fine PM deposited in waxes we observed a higher value (40% of total Fine PM) than Large PM (4% of total Large PM). Results from this study allow to increase our understanding about air pollution interactions with urban vegetation and could be hopefully taken into account when guidelines for local urban green management are realized. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Azoogh, Liela; Khalili moghadam, Bijan; Jafari, Siroos
2018-06-01
In the past half-century, petroleum mulching-biological fixation (PM-BF) practices have been employed to stabilize sand dunes in Iran. However, the effects of PM-BF practices on the attributes of sand dunes and the dispersion of heavy metals of mulch have been poorly understood. To this end, three regions treated with PM-BF for 5, 20, and 40 years and a control region with no PM-BF were studied. Samples of soil properties were taken at the depths of 0-10 cm and 10-50 cm, with three replications, in Khuzestan Province. The results showed that PM-BF practices promoted the restoration of vegetation cover in the sand dunes. In addition, these practices increased the deposition of dust particles, gradually increasing the magnitudes of palygorskite and smectite clays over time. The interactions between dust deposition and PM-BF practices significantly altered the chemical and physical properties of the dunes. PM-BF practices increased soil organic matter (184-287%), cation exchangeable capacity (142-209%), electrical conductivity (144-493%), clay content (134-196%), and penetration resistance (107-170%) compared to the region with no PM-BF practices. Furthermore, petroleum mulching significantly increased the amount of Ni (1.19%), Cd (1.55%), Pb (1.08%), Cu (1.34%), Zn (1.38%), Mn (1.66%), and Fe (1.15%). However, in the long term, these elements will probably leach linearly as a consequence of an increase in organic matter and soil salinity in the light texture of sand dunes.
Monitoring of cotton dust and health risk assessment in small-scale weaving industry.
Tahir, Muhammad Wajid; Mumtaz, Muhammad Waseem; Tauseef, Shanza; Sajjad, Muqadas; Nazeer, Awais; Farheen, Nazish; Iqbal, Muddsar
2012-08-01
The present study describes the estimation of particulate matter (cotton dust) with different sizes, i.e., PM(1.0), PM(2.5), PM(4.0), and PM(10.0 μm) in small-scale weaving industry (power looms) situated in district Hafizabad, Punjab, Pakistan, and the assessment of health problems of workers associated with these pollutants. A significant difference was found in PM(1.0), PM(2.5), PM(4.0), and PM(10.0) with reference to nine different sampling stations with p values <0.05. Multiple comparisons of particulate matter with respect to size, i.e. PM(1.0), PM(2.5), PM(4.0), and PM(10.0), depict that PM(1.0) differs significantly from PM(2.5), PM(4.0), and PM(10.0), with p values <0.05 and that PM(2.5) differs significantly from PM(1.0) and PM(10.0), with p values <0.05, whereas PM(2.5) differs non-significantly from PM(4.0), with a p value >0.05 in defined sampling stations on an average basis. Majority of the workers were facing several diseases due to interaction with particulate matter (cotton dust) during working hours. Flue, cough, eye, and skin infections were the most common diseases among workers caused by particulate matter (cotton dust).
[Size distribution characteristics of particulate matter in the top areas of coke oven].
Xie, Qiuyan; Zhao, Hongwei; Yu, Tao; Ning, Zhaojun; Li, Jinmu; Niu, Yong; Zheng, Yuxin; Zhao, Xiulan; Duan, Huawei
2015-03-01
To systematically evaluate the environmental exposure information of coke oven workers, we investigated the concentration and size distribution characteristics of the particle matter (PM) in the top working area of coke oven. The aerodynamic particle sizer spectrometer was employed to collect the concentration and size distribution information of PM at a top working area. The PM was divided into PM ≤ 1.0 µm, 1.0 µm < PM ≤ 2.5 µm, 2.5 µm < PM ≤ 5.0 µm, 5.0 µm < PM ≤ 10.0 µm and PM>10.0 µm based on their aerodynamic diameters. The number concentration, surface area concentration, and mass concentration were analyzed between different groups. We also conducted the correlation analysis on these parameters among groups. We found the number and surface area concentration of top area particulate was negatively correlated with particle size, but mass concentration curve showed bimodal type with higher point at PM = 1.0 µm and PM = 5.0 µm. The average number concentration of total particulate matter in the top working area was 661.27 number/cm³, surface area concentration was 523.92 µm²/cm³, and mass concentration was 0.12 mg/m³. The most number of particulate matter is not more than 1 µm (PM(1.0)), and its number concentration and surface area concentration accounted for 96.85% and 67.01% of the total particles respectively. In the correlation analysis, different particle size correlated with the total particulate matter differently. And the characteristic parameters of PM2.5 cannot fully reflect the total information of particles. The main particulate matter pollutants in the top working area of coke oven is PM1.0, and it with PM(5.0) can account for a large proportion in the mass concentration of PM. It suggest that PM1.0 and PM(5.0) should be considered for occupational health surveillance on the particulate matter in the top area of coke oven.
Akaoka, K; McKendry, I; Saxton, J; Cottle, P W
2017-04-01
Transport of coal by train through residential neighborhoods in Metro Vancouver, British Columbia, Canada may increase the possibility of exposure to particulate matter at different size ranges, with concomitant potential negative health impacts. This pilot study identifies and quantifies train impacts on particulate matter (PM) concentrations at a single location. Field work was conducted during August and September 2014, with the attributes of a subset of passing trains confirmed visually, and the majority of passages identified with audio data. In addition to fixed ground based monitors at distances 15 and 50 m from the train tracks, an horizontally pointing mini-micropulse lidar system was deployed on three days to make backscatter and depolarization measurements in an attempt to identify the zone of influence, and sources, of train-generated PM. Ancillary wind and dust fall data were also utilized. Trains carrying coal are associated with a 5.3 (54%), 4.1 (33%), and 2.6 (17%) μgm -3 average increase in concentration over a 14 min period compared to the average concentrations over the 10 min prior to and after a train passage ("control" or "background" conditions), for PM 3 , PM 10 , and PM 20 , respectively. In addition, for PM 10 and PM 20 , concentrations during train passages of non-coal-carrying trains were not found to be significantly different from PM concentrations during control conditions. Presence of coal dust particles at the site was confirmed by dust fall measurements. Although enhancements of PM concentrations during 14 min train passages were generally modest, passing coal trains occasionally enhanced concentrations at 50 m from the tracks by ∼100 μgm -3 . Results showed that not every train passage increased PM concentrations, and the effect appears to be highly dependent on wind direction, local meteorology and load related factors. LiDAR imagery suggests that re-mobilization of track-side PM by train-induced turbulence may be a significant contributor to coarse particle enhancements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Monitoring of airborne particulate matter at mountainous urban sites.
Dai, Jun; Kim, Ki-Hyun; Dutta, Tanushree; Park, Wha Me; Hong, Jong-Ki; Jung, Kweon; Brown, Richard J C
2016-08-01
Concentrations of various size fractions (TSP, PM10, PM2.5, and PM1.0) of particulate matter (PM) were measured at two mountainous sites, Buk Han (BH) and Gwan AK (GA), along with one ground reference site at Gwang Jin (GJ), located in Seoul, South Korea for the 4 years from 2010 to 2013. The daily average concentrations of TSP, PM10, PM2.5, and PM1.0 at BH were 47.9 ± 32.5, 37.0 ± 24.6, 20.6 ± 12.9, and 15.3 ± 9.53 μg m(-3), respectively. These values were slightly larger than those measured at GA while much lower than those measured at the reference site (GJ). Seasonal variations in PM concentrations were consistent across all locations with a relative increase in concentrations observed in spring and winter. Correlation analysis showed clear differences in PM concentrations between the mountainous sites and the reference site. Analysis of these PM concentrations indicated that the distribution of PM in the mountainous locations was affected by a number of manmade sources from nearby locations, including both traffic and industrial emissions.
Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis.
Santibáñez-Andrade, Miguel; Quezada-Maldonado, Ericka Marel; Osornio-Vargas, Álvaro; Sánchez-Pérez, Yesennia; García-Cuellar, Claudia M
2017-10-01
In this review, we summarize and discuss the evidence regarding the interaction between air pollution, especially particulate matter (PM), and genomic instability. PM has been widely studied in the context of several diseases, and its role in lung carcinogenesis gained relevance due to an increase in cancer cases for which smoking does not seem to represent the main risk factor. According to epidemiological and toxicological evidence, PM acts as a carcinogenic factor in humans, inducing high rates of genomic alterations. Here, we discuss not only how PM is capable of inducing genomic instability during the carcinogenic process but also how our genetic background influences the response to the sources of damage. Copyright © 2017 Elsevier Ltd. All rights reserved.
40 CFR 52.2059 - Control strategy: Particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) [Reserved] (b) EPA approves the PM-10 attainment demonstration...-Wilmington, PA-NJ-DE fine particulate matter (PM2.5) nonattainment area has attained the 2006 24-hour PM2.5...
Providing Context for Ambient Particulate Matter and Estimates of Attributable Mortality.
McClellan, Roger O
2016-09-01
Four papers on fine particulate matter (PM2.5 ) by Anenberg et al., Fann et al., Shin et al., and Smith contribute to a growing body of literature on estimated epidemiological associations between ambient PM2.5 concentrations and increases in health responses relative to baseline notes. This article provides context for the four articles, including a historical review of provisions of the U.S. Clean Air Act as amended in 1970, requiring the setting of National Ambient Air Quality Standards (NAAQS) for criteria pollutants such as particulate matter (PM). The substantial improvements in both air quality for PM and population health as measured by decreased mortality rates are illustrated. The most recent revision of the NAAQS for PM2.5 in 2013 by the Environmental Protection Agency distinguished between (1) uncertainties in characterizing PM2.5 as having a causal association with various health endpoints, and as all-cause mortality, and (2) uncertainties in concentration--excess health response relationships at low ambient PM2.5 concentrations below the majority of annual concentrations studied in the United States in the past. In future reviews, and potential revisions, of the NAAQS for PM2.5 , it will be even more important to distinguish between uncertainties in (1) characterizing the causal associations between ambient PM2.5 concentrations and specific health outcomes, such as all-source mortality, irrespective of the concentrations, (2) characterizing the potency of major constituents of PM2.5 , and (3) uncertainties in the association between ambient PM2.5 concentrations and specific health outcomes at various ambient PM2.5 concentrations. The latter uncertainties are of special concern as ambient PM2.5 concentrations and health morbidity and mortality rates approach background or baseline rates. © 2016 Society for Risk Analysis.
Ultrafine Particulate Matter (UFP) has been associated with increased cardiovascular morbidity and mortality. However, the mechanisms that drive PM associated cardiovascular disease and dysfunction remain unclear. We examined the impact of intratracheal instillation of 100 g UFP...
Characterization of coarse particulate matter in school gyms.
Braniš, Martin; Šafránek, Jiří
2011-05-01
We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM(10-2.5) and PM(2.5-1.0)) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM(10-2.5) 4.1-7.4 μg m(-3) and PM(2.5-1.0) 2.0-3.3 μg m(-3)) than indoors (average PM(10-2.5) 13.6-26.7 μg m(-3) and PM(2.5-1.0) 3.7-7.4 μg m(-3)). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM(10-2.5) and 1.4-4.8 for the PM(2.5-1.0) values. Under extreme conditions, the I/O ratios reached 180 (PM(10-2.5)) and 19.1 (PM(2.5-1.0)). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of coarse particulate matter, which can contribute to increased short-term inhalation exposure of exercising children. Copyright © 2011 Elsevier Inc. All rights reserved.
Yang, Hao; Li, Xinghu; Wang, Yan; Mu, Mingfei; Li, Xuehao; Kou, Guiyue
2016-01-01
This paper focuses on oxidation reactivity and nanostructural characteristics of particulate matter (PM) emitted from diesel engine fuelled with different volume proportions of diesel/polyoxymethylene dimethyl ethers (PODEn) blends (P0, P10 and P20). PM was collected using a metal filter from the exhaust manifold. The collected PM samples were characterized using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The TGA results indicated that the PM produced by P20 had the highest moisture and volatility contents and the fastest oxidation rate of solid carbon followed by P10 and P0 derived PM. SEM analysis showed that PM generated from P20 was looser with a lower mean value than PM emitted from P10 and P0. Quantitative analysis of high-resolution TEM images presented that fringe length was reduced along with increased separation distance and tortuosity with an increase in PODEn concentration. These trends improved the oxidation reactivity. According to Raman spectroscopy data, the intensity, full width at half-maximum and intensity ratio of the bands also changed demonstrating that PM nanostructure disorder was correlated with a faster oxidation rate. The results show the use of PODEn affects the oxidation reactivity and nanostructure of PM that is easier to oxidize. PMID:27876872
NASA Astrophysics Data System (ADS)
Yang, Hao; Li, Xinghu; Wang, Yan; Mu, Mingfei; Li, Xuehao; Kou, Guiyue
2016-11-01
This paper focuses on oxidation reactivity and nanostructural characteristics of particulate matter (PM) emitted from diesel engine fuelled with different volume proportions of diesel/polyoxymethylene dimethyl ethers (PODEn) blends (P0, P10 and P20). PM was collected using a metal filter from the exhaust manifold. The collected PM samples were characterized using thermogravimetric analysis (TGA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The TGA results indicated that the PM produced by P20 had the highest moisture and volatility contents and the fastest oxidation rate of solid carbon followed by P10 and P0 derived PM. SEM analysis showed that PM generated from P20 was looser with a lower mean value than PM emitted from P10 and P0. Quantitative analysis of high-resolution TEM images presented that fringe length was reduced along with increased separation distance and tortuosity with an increase in PODEn concentration. These trends improved the oxidation reactivity. According to Raman spectroscopy data, the intensity, full width at half-maximum and intensity ratio of the bands also changed demonstrating that PM nanostructure disorder was correlated with a faster oxidation rate. The results show the use of PODEn affects the oxidation reactivity and nanostructure of PM that is easier to oxidize.
Yang, Xiaozhe; Feng, Lin; Zhang, Yannan; Hu, Hejing; Shi, Yanfeng; Liang, Shuang; Zhao, Tong; Fu, Yang; Duan, Junchao; Sun, Zhiwei
2018-06-06
Although the strongly causal associations were between fine particulate matter (PM 2.5 ) and cardiovascular disease, the toxic effect and potential mechanism of PM 2.5 on heart was poorly understood. Thus, the aim of this study was to evaluate the cardiac toxicity of PM 2.5 exposure on human cardiomyocytes (AC16). The cell viability was decreased while the LDH release was increased in a dose-dependent way after AC16 exposed to PM 2.5 . The reactive oxygen species (ROS) generation and production of malondialdehyde (MDA) were increased followed by the decreasing in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). The damage of mitochondria was observed by ultra-structural analysis and MMP measurement. The apoptotic rate of AC16 were markedly elevated which was triggered by PM 2.5 . In addition, the proteins involved in mitochondria- mediated apoptosis pathway were measured. The protein levels of Caspase-3, Caspase-9 and Bax were up-regulated while the anti-apoptotic protein, Bcl-2 was down-regulated after AC16 exposed to PM 2.5 . In summary, our results demonstrated that mitochondria-mediated apoptosis pathway played a critical role in PM 2.5 -induced myocardial cytotoxicity in AC16, which suggested that PM 2.5 may contribute to cardiac dysfunction. Copyright © 2018 Elsevier Inc. All rights reserved.
Wolf, Kathrin; Schneider, Alexandra; Breitner, Susanne; Meisinger, Christa; Heier, Margit; Cyrys, Josef; Kuch, Bernhard; von Scheidt, Wolfgang; Peters, Annette
2015-08-01
Short-term exposure to increased particulate matter (PM) concentration has been reported to trigger myocardial infarction (MI). However, the association with ultrafine particles remains unclear. We aimed to assess the effects of short-term air pollution and especially ultrafine particles on registry-based MI events and coronary deaths in the area of Augsburg, Germany. Between 1995 and 2009, the MONICA/KORA myocardial infarction registry recorded 15,417 cases of MI and coronary deaths. Concentrations of PM<10μm (PM10), PM<2.5μm (PM2.5), particle number concentration (PNC) as indicator for ultrafine particles, and meteorological parameters were measured in the study region. Quasi-Poisson regression adjusting for time trend, temperature, season, and weekday was used to estimate immediate, delayed and cumulative effects of air pollutants on the occurrence of MI. The daily numbers of total MI, nonfatal and fatal events as well as incident and recurrent events were analysed. We observed a 1.3% risk increase (95%-confidence interval: [-0.9%; 3.6%]) for all events and a 4.4% [-0.4%; 9.4%] risk increase for recurrent events per 24.3μg/m(3) increase in same day PM10 concentrations. Nonfatal events indicated a risk increase of 3.1% [-0.1%; 6.5%] with previous day PM10. No association was seen for PM2.5 which was only available from 1999 on. PNC showed a risk increase of 6.0% [0.6%; 11.7%] for recurrent events per 5529 particles/cm(3) increase in 5-day average PNC. Our results suggested an association between short-term PM10 concentration and numbers of MI, especially for nonfatal and recurrent events. For ultrafine particles, risk increases were notably high for recurrent events. Thus, persons who already suffered a MI seemed to be more susceptible to air pollution. Copyright © 2015 Elsevier GmbH. All rights reserved.
Jo, Eun-Jung; Lee, Woo-Seop; Jo, Hyun-Young; Kim, Chang-Hoon; Eom, Jung-Seop; Mok, Jeong-Ha; Kim, Mi-Hyun; Lee, Kwangha; Kim, Ki-Uk; Lee, Min-Ki; Park, Hye-Kyung
2017-03-01
Both air pollution and weather impact hospitalization for respiratory diseases. However, few studies have investigated the contribution of weather to hospitalization related to the adverse effects of air pollution. This study analyzed the effects of particulate matter (PM) on daily respiratory-related hospital admissions, taking into account meteorological factors. Daily hospital admissions for respiratory diseases (acute bronchitis, allergic rhinitis, and asthma) between 2007 and 2010 were extracted from the National Health Insurance Corporation, Korea. Patients were divided into three age-based groups (0-15, 16-64, and ≥65 years). PM levels were obtained from 19 monitoring stations in Busan. The mean number of patients admitted for acute bronchitis, allergic rhinitis, and asthma was 5.8 ± 11.9, 4.4 ± 6.1, and 3.3 ± 3.3, respectively. During that time, the daily mean PM 10 and PM 2.5 concentrations were 49.6 ± 20.5 and 24.2 ± 10.9 μg/m 3 , respectively. The mean temperature anomaly was 7.0 ± 2.3 °C; the relative humidity was 62.0 ± 18.0%. Hospital admission rates for respiratory diseases increased with increasing PM and temperature, and with decreasing relative humidity. A multivariate analysis including PM, temperature anomaly, relative humidity, and age showed a significant increase in respiratory-related admissions with increasing PM levels and a decreasing relative humidity. Higher PM 2.5 levels had a greater effect on respiratory-related hospital admission than did PM 10 levels. Children and the elderly were the most susceptible to hospital admission for respiratory disease. PM levels and meteorological factors impacted hospitalization for respiratory diseases, especially in children and the elderly. The effect of PM on respiratory diseases increased as the relative humidity decreased. Copyright © 2017 Elsevier Ltd. All rights reserved.
Che, Lu; Li, Yan; Gan, Cheng
2017-11-13
Delirium remains an independent risk factor for morbidity and mortality among older surgical adults. Recent research has shed light on the relationship between pollution and dementia, yet little is known about the health impacts of particulate matter (PM) on delirium. Therefore, we aim to further explore association of PM and delirium among surgical population. We conducted a time-stratified case-crossover study. Electronic hospitalization summary reports derived from 26 major cities in China between 1 January 2014 and 31 December 2015 were used. Conditional logistic regression were applied to explore the association between perioperative PM exposure and delirium. A total of 559 surgical patients with delirium were identified. Both PM2.5 and SO 2 on the day of surgery had a negative impact, with an interquartile range (IQR) increase in PM2.5 (47.5 μg/m 3 ) and SO 2 (22.2 μg/m 3 ) significantly associated with an 8.79% (95% confidence interval [CI], 0.01-18.47%, P < 0.05) and 16.83% (95% CI, 0.10-36.35%, P < 0.05) increase in incidence of delirium, respectively. PM on other days during the perioperative period showed no significant impact. The present study showed that short-term exposure to ambient air PM on the day of surgery increased the incidence of delirium in a surgical population during hospitalization.
Fang, Xin; Fang, Bo; Wang, Chunfang; Xia, Tian; Bottai, Matteo; Fang, Fang; Cao, Yang
2017-01-01
There are concerns that the reported association of ambient fine particulate matter (PM2.5) with mortality might be a mixture of PM2.5 and weather conditions. We evaluated the effects of extreme weather conditions and weather types on mortality as well as their interactions with PM2.5 concentrations in a time series study. Daily non-accidental deaths, individual demographic information, daily average PM2.5 concentrations and meteorological data between 2012 and 2014 were obtained from Shanghai, China. Days with extreme weather conditions were identified. Six synoptic weather types (SWTs) were generated. The generalized additive model was set up to link the mortality with PM2.5 and weather conditions. Parameter estimation was based on Bayesian methods using both the Jeffreys' prior and an informative normal prior in a sensitivity analysis. We estimate the percent increase in non-accidental mortality per 10 μg/m3 increase in PM2.5 concentration and constructed corresponding 95% credible interval (CrI). In total, 336,379 non-accidental deaths occurred during the study period. Average daily deaths were 307. The results indicated that per 10 μg/m3 increase in daily average PM2.5 concentration alone corresponded to 0.26-0.35% increase in daily non-accidental mortality in Shanghai. Statistically significant positive associations between PM2.5 and mortality were found for favorable SWTs when considering the interaction between PM2.5 and SWTs. The greatest effect was found in hot dry SWT (percent increase = 1.28, 95% CrI: 0.72, 1.83), followed by warm humid SWT (percent increase = 0.64, 95% CrI: 0.15, 1.13). The effect of PM2.5 on non-accidental mortality differed under specific extreme weather conditions and SWTs. Environmental policies and actions should take into account the interrelationship between the two hazardous exposures.
Wang, Chunfang; Xia, Tian; Bottai, Matteo; Fang, Fang; Cao, Yang
2017-01-01
There are concerns that the reported association of ambient fine particulate matter (PM2.5) with mortality might be a mixture of PM2.5 and weather conditions. We evaluated the effects of extreme weather conditions and weather types on mortality as well as their interactions with PM2.5 concentrations in a time series study. Daily non-accidental deaths, individual demographic information, daily average PM2.5 concentrations and meteorological data between 2012 and 2014 were obtained from Shanghai, China. Days with extreme weather conditions were identified. Six synoptic weather types (SWTs) were generated. The generalized additive model was set up to link the mortality with PM2.5 and weather conditions. Parameter estimation was based on Bayesian methods using both the Jeffreys’ prior and an informative normal prior in a sensitivity analysis. We estimate the percent increase in non-accidental mortality per 10 μg/m3 increase in PM2.5 concentration and constructed corresponding 95% credible interval (CrI). In total, 336,379 non-accidental deaths occurred during the study period. Average daily deaths were 307. The results indicated that per 10 μg/m3 increase in daily average PM2.5 concentration alone corresponded to 0.26–0.35% increase in daily non-accidental mortality in Shanghai. Statistically significant positive associations between PM2.5 and mortality were found for favorable SWTs when considering the interaction between PM2.5 and SWTs. The greatest effect was found in hot dry SWT (percent increase = 1.28, 95% CrI: 0.72, 1.83), followed by warm humid SWT (percent increase = 0.64, 95% CrI: 0.15, 1.13). The effect of PM2.5 on non-accidental mortality differed under specific extreme weather conditions and SWTs. Environmental policies and actions should take into account the interrelationship between the two hazardous exposures. PMID:29121092
Differential pulmonary and cardiac effects of pulmonary exposure to a panel of PM-associated metals
Biological mechanisms underlying the epidemiological association between exposure to particulate matter (PM) and increased risk of cardiovascular health effects are under investigation. Water soluble metals reaching systemic circulation following pulmonary exposure are likely exe...
VANADIUM EXPOSURE ALTERS SPONTANEOUS BEAT RATE AND GENE EXPRESSION OF CULTURED CARDIAC MYOCYTES
Ambient air pollution particulate matter (PM) exposure is associated with increased morbidity and mortality. Recent toxicological studies report PM-induced changes in a number of cardiac parameters, including heart rate variability, arrhythmias, repolarization, and internal defib...
Linares, C; Carmona, R; Tobías, A; Mirón, I J; Díaz, J
2015-05-01
Approximately, 20 % of particulate and aerosol emissions into the urban atmosphere are of natural origin (including wildfires and Saharan dust). During these natural episodes, PM10 and PM2.5 levels usually exceed World Health Organisation (WHO) health protection thresholds. This study sought to evaluate the possible effect of advections of particulate matter from biomass fuel combustion on daily specific-cause mortality among the general population and the segment aged ≥ 75 years in Madrid. Ecological time-series study in the city of Madrid from January 01, 2004 to December 31, 2009. The dependent variable analysed was daily mortality due to natural (ICD-10:A00-R99), circulatory (ICD-10:I00-I99), and respiratory (ICD-10:J00-J99) causes in the population, both general and aged ≥ 75 years. The following independent and control variables were considered: a) daily mean PM2.5 and PM10 concentrations; b) maximum daily temperature; c) daily mean O3 and NO2 concentrations; d) advection of particulate matter from biomass combustion ( http://www.calima.ws/ ), using a dichotomous variable and e) linear trend and seasonalities. We conducted a descriptive analysis, performed a test of means and, to ascertain relative risk, fitted a model using autoregressive Poisson regression and stratifying by days with and without biomass advection, in both populations. Of the 2192 days analysed, biomass advection occurred on 56, with mean PM2.5 and PM10 values registering a significant increase during these days. PM10 had a greater impact on organic mortality with advection (RRall ages = 1.035 [1.011-1.060]; RR ≥ 75 years = 1.066 [1.031-1.103]) than did PM2.5 without advection (RRall ages = 1.017 [1.009-1.025]; RR ≥ 75 years = 1.012 [1.003-1.022]). Among specific causes, respiratory-though not circulatory-causes were associated with PM10 on days with advection in ≥ 75 year age group. PM10, rather than PM2.5, were associated with an increase in natural cause mortality on days with advection of particulate matter from biomass combustion, particularly in the ≥ 75 year age group.
Noth, Elizabeth M; Dixon-Ernst, Christine; Liu, Sa; Cantley, Linda; Tessier-Sherman, Baylah; Eisen, Ellen A; Cullen, Mark R; Hammond, S Katharine
2014-01-01
Increasing evidence indicates that exposure to particulate matter (PM) at environmental concentrations increases the risk of cardiovascular disease, particularly PM with an aerodynamic diameter of less than 2.5 μm (PM(2.5)). Despite this, the health impacts of higher occupational exposures to PM(2.5) have rarely been evaluated. In part, this research gap derives from the absence of information on PM(2.5) exposures in the workplace. To address this gap, we have developed a job-exposure matrix (JEM) to estimate exposure to two size fractions of PM in the aluminum industry. Measurements of total PM (TPM) and PM(2.5) were used to develop exposure metrics for an epidemiologic study. TPM exposures for distinct exposure groups (DEGs) in the JEM were calculated using 8385 personal TPM samples collected at 11 facilities (1980-2011). For eight of these facilities, simultaneous PM(2.5) and TPM personal monitoring was conducted from 2010 to 2011 to determine the percent of TPM that is composed of PM(2.5) (%PM(2.5)) in each DEG. The mean TPM from the JEM was then multiplied by %PM(2.5) to calculate PM(2.5) exposure concentrations in each DEG. Exposures in the smelters were substantially higher than in fabrication units; mean TPM concentrations in smelters and fabrication facilities were 3.86 and 0.76 mg/m(3), and the corresponding mean PM(2.5) concentrations were 2.03 and 0.40 mg/m(3). Observed occupational exposures in this study generally exceeded environmental PM(2.5) concentrations by an order of magnitude.
Noth, Elizabeth M.; Dixon-Ernst, Christine; Liu, Sa; Cantley, Linda; Tessier-Sherman, Baylah; Eisen, Ellen A.; Cullen, Mark R.; Hammond, S. Katharine
2014-01-01
Increasing evidence indicates that exposure to particulate matter (PM) at environmental concentrations increases the risk of cardiovascular disease, particularly PM with an aerodynamic diameter of less than 2.5μm (PM2.5). Despite this, the health impacts of higher occupational exposures to PM2.5 have rarely been evaluated. In part, this research gap derives from the absence of information on PM2.5 exposures in the workplace. To address this gap, we have developed a job-exposure matrix (JEM) to estimate exposure to two size fractions of PM in the aluminum industry. Measurements of total PM (TPM) and PM2.5 were used to develop exposure metrics for an epidemiologic study. TPM exposures for distinct exposure groups (DEGs) in the JEM were calculated using 8,385 personal TPM samples collected at 11 facilities (1980-2011). For 8 of these facilities, simultaneous PM2.5 and TPM personal monitoring was conducted from 2010-2011 to determine the percent of TPM that is composed of PM2.5 (%PM2.5) in each DEG. The mean TPM from the JEM was then multiplied by %PM2.5 to calculate PM2.5 exposure concentrations in each DEG. Exposures in the smelters were substantially higher than in fabrication units; mean TPM concentrations in smelters and fabrication facilities were 3.86 mg/m3 and 0.76 mg/m3, and the corresponding mean PM2.5 concentrations were 2.03 mg/m3 and 0.40 mg/m3. Observed occupational exposures in this study generally exceeded environmental PM2.5 concentrations by an order of magnitude. PMID:24022670
Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Suh, Hwa-Jin; Kim, Young Mi; Boo, Yong Chool
2016-01-01
Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10). PM10 stimulates the production of reactive oxygen species (ROS) and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE) on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). PPE at 10-100 μg mL(-1) attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL(-1)). PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter.
Sun, Yujiao; Xu, Shangwei; Zheng, Danyang; Li, Jie; Tian, Hezhong; Wang, Yong
2018-05-10
In this study, particulate matter (PM) with aerodynamic diameters of ≤2.5 and ≤10 μm (PM 2.5 and PM 10 , respectively), which was found at different concentrations in spring, was collected in Beijing. The chemical composition and bacterial community diversity of PM were determined, and the relationship between them was studied by 16S rRNA sequencing and mathematical statistics. Chemical composition analysis revealed greater relative percentages of total organic compounds (TOC) and secondary ions (NO 3 - , SO 4 2- , and NH 4 + ). The concentrations of Ca 2+ , Na + , Mg 2+ , K + and SO 4 2- increased in high-concentration PM, which was associated with the contribution of soil, dust and soot. Microbiological analysis revealed 1191 operational taxonomic units. Microbial community structure was stable at the phylum level. The most abundant phyla were Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes and Cyanobacteria. Community clustering analysis at the genus level showed that the difference in bacterial community structure between different PM concentrations (clean air vs. smog) was greater than that between different particle sizes. The dominant genera varied in different concentrations of PM. An unclassified genus of Cyanobacteria and Comamonadaceae were most abundant in low- and high-concentration PM, respectively. The microbial community structure was dynamic at the genus level due to different environmental factors. The dominant bacteria in high-concentration PM were widely distributed in soils, indicating that the soil contributed more to the increase in the PM. The individual microbes that were detected did not increase significantly as the PM concentration increased. The bacterial community structure was strongly correlated with K + , Ca 2+ , Na + , Mg 2+ , SO 4 2- and TOC in high-concentration PM and had a good correlation with NO 3 - , Cl - , NH 4 + and TIC in low-concentration PM. Soil and dust contributed to the increase in the concentration of the particles, and the relevant chemical components also produced differences in the bacterial community structure in different concentrations of PM. Copyright © 2018. Published by Elsevier B.V.
Apportionment of particulate matter sources in the Rio de Janeiro Metropolitan area
NASA Astrophysics Data System (ADS)
Gioda, A.; Mateus, V.; Ventura, L.; Amaral, B.
2013-05-01
Continuous monitoring of particulate matter (PM) is extremely important in order to observe possible trends and take measures to reduce emissions. In Brazil, few cities have network stations, which make these measurements even more crucial. Furthermore, there is a need to update and create new standards of air quality, which can only be done based on a suitable inventory. Levels of total suspended particles (TSP), PM10 and PM2.5 were monitored in the Metropolitan area of Rio de Janeiro. Mean concentrations of TSP, PM10 and PM2.5 were 70, 60 and 14 μg/m3, respectively. Some of the monitored sampling points exceeded the Brazilian guidelines for PM10 (50 μg/m3) and TSP (80 μg/m3). However, the PM2.5 levels measured in the present study are of extreme concern, since they exceeded the guideline suggested by the World Health Organization (WHO - 10 μg/m3) in almost all the study sites. The average PM2.5/PM10 ratios ranged from 0.1 to 0.3, being more dependent on traffic emissions, while PM10/PTS ratios ranged from 0.6 to 0.7. The particles were composed mainly of soil elements (~50%) and ammonium sulfate and ammonium nitrate (20-40%), which are recognized as secondary inorganic aerosols. Rural areas and sites near the ocean presented the lowest levels for all particle sizes. This is probably due to an enhanced dispersion of the particles by the sea breeze. On the other hand, higher PM concentrations were observed for the sites near industrial areas and heavy traffic, as expected. The monthly distribution profile observed for PM showed clear increases in PM levels from May to September at all stations. This increase is due to the stagnation of the air during winter, which is related to meteorological processes such as low relative humidity and low rainfall. Consequently, due to this stagnation pollutant concentrations show increases. According to the dataset from the Unified Health System there is a clear trend of increased hospitalizations for respiratory diseases in winter, when increased concentrations of PM are observed, which was verified in this study.
Laura, Angelici; Mirko, Piola; Tommaso, Cavalleri; Giorgia, Randi; Francesca, Cortini; Roberto, Bergamaschi; Andrea, Baccarelli A; Alberto, Bertazzi Pier; Cecilia, Pesatori Angela; Valentina, Bollati
2016-01-01
Background Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system, characterized by recurrent relapses of inflammation that cause mild to severe disability. Exposure to airborne particulate matter (PM) has been associated with acute increases in systemic inflammatory responses and neuroinflammation. In the present study, we hypothesize that exposure to PM < 10 µm in diameter (PM10) might increase the occurrence of MS-related hospitalizations. Methods We obtained daily concentrations of PM10 from 53 monitoring sites covering the study area and we identified 8287 MS-related hospitalization through hospital admission-discharge records of the Lombardy region, Italy, between 2001 and 2009. We used a Poisson regression analysis to investigate the association between exposure to PM10 and risk of hospitalization. Results A higher RR of hospital admission for MS relapse was associated with exposure to PM10 at different time intervals. The maximum effect of PM10 on MS hospitalization was found for exposure between days 0 and 7: Hospital admission for MS increased 42% (95%CI 1.39–1.45) on the days preceded by one week with PM10 levels in the highest quartile. The p-value for trend across quartiles was < 0.001. Conclusions These data support the hypothesis that air pollution may have a role in determining MS occurrence and relapses. Our findings could open new avenues for determining the pathogenic mechanisms of MS and potentially be applied to other autoimmune diseases. PMID:26624240
The impact of air pollution to central nervous system in children and adults.
Sram, Radim J; Veleminsky, Milos; Veleminsky, Milos; Stejskalová, Jana
2017-12-01
The aim of this paper was to review studies analyzing the associations between air pollution and neurodevelopment in children as well as the effect on adult population. Effect of prenatal exposure to polycyclic aromatic hydrocarbons (PAHs, benzo[a]pyrene, B[a]P) were already studied on cohorts from New York, Poland, China, and Spain. All results indicate changes of child behavior and neurodevelopment at the age of 3-9 years, decrease of IQ, increase of Attention Deficit Hyperactivity Disorder (ADHD), decrease of brain-derived neurotrophic factor (BDNF), reduction of left hemisphere white matter. Effect of traffic-related air pollution (TRAP) to neurobehavioral development in children, measured as PM2.5 (particulate matter <2.5 µm), PM10, elemental carbon (EC), black smoke (BC), NO2, NOx, were studied in USA, Spain, Italy, and South Korea. Increased concentrations of TRAP were associated with the increase of ADHD, autism, affected cognitive development; PM2.5 decreased the expression of BDNF in placenta. Increased concentrations of PM2.5 affected adults cognition (episodic memory), increased major depressive disorders. Increased concentrations of NO2 were associated with dementia, NOx with Parkinson's disease. Increased concentrations of PAHs, PM2.5 and NO2 in polluted air significantly affect central nervous system in children and adults and represent a significant risk factor for human health.
Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A.
2012-01-01
Our previous work has shown that coarse particulate matter (PM10-2.5) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At one hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1±3.2 pg/mL to 83.9±12.2 pg/mL was observed a half-hour after PM instillation. By one hour after PM instillation, isoprostane values had returned to 30.4±7.6pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5-1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. PMID:23142465
Williams, Keisha M; Franzi, Lisa M; Last, Jerold A
2013-01-01
Our previous work has shown that coarse particulate matter (PM(10-2.5)) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1±3.2pg/mL to 83.9±12.2pg/mL was observed a half-hour after PM instillation. By 1hour after PM instillation, isoprostane values had returned to 30.4±7.6pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5-1hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. Copyright © 2012 Elsevier Inc. All rights reserved.
Ambient fine and coarse particulate matter pollution and respiratory morbidity in Dongguan, China.
Zhao, Yiju; Wang, Shengyong; Lang, Lingling; Huang, Caiyan; Ma, Wenjun; Lin, Hualiang
2017-03-01
We estimated the short-term effects of particulate matter (PM) pollution with aerodynamic diameters ≤2.5 μm (PM 2.5 ) and between 2.5 and 10 μm (PM c ) on hospital outpatient visits due to overall and specific respiratory diseases, as well as the associated morbidity burden in Dongguan, a subtropical city in South China. A time-series model with quasi-Poisson link was used to examine the association between PM pollution and morbidities from respiratory diseases, COPD, asthma and pneumonia in Dongguan during 2013-2015. We further estimated the morbidity burden (population attributable fraction and attributable morbidity) due to ambient PM pollution. A total of 44,801 hospital outpatient visits for respiratory diseases were recorded during the study period. Both PM 2.5 and PM c were found to be significantly associated with morbidity of overall respiratory diseases, COPD, and asthma. An IQR (interquartile range) increase in PM 2.5 at lag 03 day was associated with 15.41% (95% CI: 10.99%, 20.01%) increase in respiratory morbidity, and each IQR increase in PM c at lag 03 corresponded to 7.24% (95% CI: 4.25%, 10.32%) increase in respiratory morbidity. We did not find significant effects of PM 2.5 and PM c on pneumonia. Using WHO's guideline (25 μg/m 3 ) as reference concentration, about 8.32% (95% CI: 5.90%, 10.86%) of respiratory morbidity (3727, 95% CI: 2642, 4867, in morbidity number) were estimated to be attributed to PM 2.5 , and 0.86% (95% CI: 0.50%, 1.23%) of respiratory morbidity, representing 385 (95% CI: 225, 551) hospital outpatient visits, could be attributed to coarse particulate pollutant. Our study suggests that both fine and coarse particulate pollutants are an important trigger of hospital outpatient visits for respiratory diseases, and account for substantial respiratory morbidity in Dongguan, China. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan
2018-05-01
The structural variation of the bacterial community associated with particulate matter (PM) was assessed in an urban area of Beijing during hazy and nonhazy days. Sampling for different PM fractions (PM 2.5 [<2.5 μm], PM 10 [<10 μm], and total suspended particulate) was conducted using three portable air samplers from September 2014 to February 2015. The airborne bacterial community in these samples was analyzed using the Illumina MiSeq platform with bacterium-specific primers targeting the 16S rRNA gene. A total of 1,707,072 reads belonging to 6,009 operational taxonomic units were observed. The airborne bacterial community composition was significantly affected by PM fractions ( R = 0.157, P < 0.01). In addition, the relative abundances of several genera significantly differed between samples with various haze levels; for example, Methylobacillus , Tumebacillus , and Desulfurispora spp. increased in heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature, SO 2 concentration, relative humidity, PM 10 concentration, and CO concentration were significant factors that associated with airborne bacterial community composition. Only six genera increased across PM 10 samples ( Dokdonella , Caenimonas , Geminicoccus , and Sphingopyxis ) and PM 2.5 samples ( Cellulomonas and Rhizobacter ), while a large number of taxa significantly increased in total suspended particulate samples, such as Paracoccus , Kocuria , and Sphingomonas Network analysis indicated that Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Overall, the findings presented here suggest that diverse airborne bacterial communities are associated with PM and provide further understanding of bacterial community structure in the atmosphere during hazy and nonhazy days. IMPORTANCE The results presented here represent an analysis of the airborne bacterial community associated with particulate matter (PM) and advance our understanding of the structural variation of these communities. We observed a shift in bacterial community composition with PM fractions but no significant difference with haze levels. This may be because the bacterial differences are obscured by high bacterial diversity in the atmosphere. However, we also observed that a few genera (such as Methylobacillus , Tumebacillus , and Desulfurispora ) increased significantly on heavy-haze days. In addition, Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Accurate and real-time techniques, such as metagenomics and metatranscriptomics, should be developed for a future survey of the relationship of airborne bacteria and haze. Copyright © 2018 American Society for Microbiology.
Espitia-Pérez, Lyda; Arteaga-Pertuz, Marcia; Soto, José Salvador; Espitia-Pérez, Pedro; Salcedo-Arteaga, Shirley; Pastor-Sierra, Karina; Galeano-Páez, Claudia; Brango, Hugo; da Silva, Juliana; Henriques, João A P
2018-09-01
During coal surface mining, several activities such as drilling, blasting, loading, and transport produce large quantities of particulate matter (PM) that is directly emitted into the atmosphere. Occupational exposure to this PM has been associated with an increase of DNA damage, but there is a scarcity of data examining the impact of these industrial operations in cytogenetic endpoints frequency and cancer risk of potentially exposed surrounding populations. In this study, we used a Geographic Information Systems (GIS) approach and Inverse Distance Weighting (IDW) methods to perform a spatial and statistical analysis to explore whether exposure to PM 2.5 and PM 10 pollution, and additional factors, including the enrichment of the PM with inorganic elements, contribute to cytogenetic damage in residents living in proximity to an open-pit coal mining area. Results showed a spatial relationship between exposure to elevated concentrations of PM 2.5, PM 10 and micronuclei frequency in binucleated (MNBN) and mononucleated (MNMONO) cells. Active pits, disposal, and storage areas could be identified as the possible emission sources of combustion elements. Mining activities were also correlated with increased concentrations of highly enriched elements like S, Cu and Cr in the atmosphere, corroborating its role in the inorganic elements pollution around coal mines. Elements enriched in the PM 2.5 fraction contributed to increasing of MNBN but seems to be more related to increased MNMONO frequencies and DNA damage accumulated in vivo. The combined use of GIS and IDW methods could represent an important tool for monitoring potential cancer risk associated to dynamically distributed variables like the PM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zeka, A; Zanobetti, A; Schwartz, J
2005-10-01
Consistent evidence has shown increased all-cause mortality, and mortality from broad categories of causes associated with airborne particles. Less is known about associations with specific causes of death, and modifiers of those associations. To examine these questions in 20 US cities, between 1989 and 2000. Mortality files were obtained from the National Center for Health Statistics. Air pollution data were obtained from the Environmental Protection Agency website. The associations between daily concentrations of particulate matter of aero-diameter < or =10 microm (PM10) and daily mortality from all-cause and selected causes of death, were examined using a case-crossover design. Temporal effects of PM10 were examined using lag models, in first stage regressions. City specific modifiers of these associations were examined in second stage regressions. All-cause mortality increased with PM10 exposures occurring both one and two days prior the event. Deaths from heart disease were primarily associated with PM10 on the two days before, while respiratory deaths were associated with PM10 exposure on all three days. Analyses using only one lag underestimated the effects for all-cause, heart, and respiratory deaths. Several city characteristics modified the effects of PM10 on daily mortality. Important findings were seen for population density, percentage of primary PM10 from traffic, variance of summer temperature, and mean of winter temperature. There was overall evidence of increased daily mortality from increased concentrations of PM10 that persisted across several days, and matching for temperature did not affect these associations. Heterogeneity in the city specific PM10 effects could be explained by differences in certain city characteristics.
Reactive oxygen species (ROS) activity of ambient fine particles (PM2.5) measured in Seoul, Korea.
Park, Jieun; Park, Eun Ha; Schauer, James J; Yi, Seung-Muk; Heo, Jongbae
2018-05-16
Substantial increase in level of particulate matter has raised concerns in South Korea recently. Ambient particulate matter is classified as Group I carcinogen (IARC, 2013) and multiple epidemiological studies has demonstrated adverse health effects due to exposure of particulate matter. Fine particulate matter (PM 2.5 ) which has a diameter <2.5 μm is likely to penetrate deeply into lung and is known to be eliciting adverse health effects. A number of epidemiological studies have been conducted on adverse health effects of PM-related diseases and mortality rate, yet particulate matter (PM)-induced reactive oxygen species (ROS) activity at the cellular level has not been actively studied in Korea. This study assessed PM-induced oxidative potential by exposure of collected ambient PM 2.5 samples to the rat alveolar macrophage cell line. The characteristics of PM 2.5 in Korea were further characterized by linking chemical constituents and contributing sources to ROS. PM 2.5 mass concentration during the cold season was relatively higher than mass concentration during the warm season and chemical constituents except for Secondary Organic Carbon (SOC) and SO 4 2- which both showed similar trends in both the cold and cold seasons. The concentration of crustal elements was especially high during the cold season which can be an indication of long range transport of Asian dust. Water soluble organic carbon and water soluble transition metals (Cr and Zn) were also shown to be correlated to oxidative potential and metals such as As and V were shown to have a high contribution to ROS activity according to stepwise multiple linear regression. Principal Component Analysis (PCA) results identified six factors that can be interpreted as soil, mobile, industry, secondary inorganic aerosol, secondary organic aerosol and oil combustion. Moreover, through Principal Component Regression (PCR), industry, soil, mobile and SIA were shown to be statistically significant sources in a relation to ROS activity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liu, Quan; Jia, Xingcan; Quan, Jiannong; Li, Jiayun; Li, Xia; Wu, Yongxue; Chen, Dan; Wang, Zifa; Liu, Yangang
2018-04-17
Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. Here, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; the increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.
Tian, Yaohua; Xiang, Xiao; Juan, Juan; Song, Jing; Cao, Yaying; Huang, Chao; Li, Man; Hu, Yonghua
2018-02-27
Little is known about the effect of ambient fine particulate matter (PM 2.5 ) on chronic obstructive pulmonary disease (COPD) in China. The objective of this study was to explore the short-term effects of PM 2.5 on outpatient and inpatient visits for COPD in Beijing, China. A total of 3,503,313 outpatient visits and 126,982 inpatient visits for COPD between January 1, 2010, and June 30, 2012, were identified from the Beijing Medical Claim Data for Employees. A generalized additive Poisson model was applied to estimate the percentage change with 95% confidence interval (CI) in hospital visits for COPD in relation to an interquartile range (IQR) (90.8 μg/m 3 ) increase in PM 2.5 concentrations. Short-term exposure to PM 2.5 was significantly associated with increased use of COPD-related health services. There were clear exposure-response associations of PM 2.5 with COPD outpatient and inpatient visits. An IQR increase in the concurrent day PM 2.5 concentrations was significantly associated with a 2.38% (95% CI, 2.22%-2.53%) and 6.03% (95% CI, 5.19%-6.87%) increase in daily outpatient visits and inpatient visits, respectively. Elderly people were more sensitive to the adverse effects. The estimated risk was higher during the warm season compared to the cool season. Short-term exposure to PM 2.5 was associated with increased risk of hospital visits for COPD. Our findings contributed to the limited evidence concerning the effects of ambient PM 2.5 on COPD morbidity in developing countries.
Ambient particulate matter and lung function growth in Chinese children.
Roy, Ananya; Hu, Wei; Wei, Fusheng; Korn, Leo; Chapman, Robert S; Zhang, Junfeng Jim
2012-05-01
Exposure to particulate matter (PM) has been associated with deficits in lung function growth among children in Western countries. However, few studies have explored this association in developing countries, where PM levels are often substantially higher. Children (n = 3273) 6-12 years of age were recruited from 8 schools in 4 Chinese cities. The lung function parameters of forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) were measured using computerized spirometers twice a year for up to 3 years (1993-1996). Dichotomous samplers placed in each schoolyard were used to measure PM2.5 and PM10 (PM with diameter ≤ 2.5 μm and ≤ 10 μm, respectively). Multivariable generalized estimating equations were used to examine the association between the quarterly average PM levels and lung function growth during the period of follow-up. Annual average PM2.5 and PM10 levels in the 4 cities ranged from 57 to 158 μg/m and 95 to 268 μg/m, respectively. In multivariable models, an increase of 10 μg/m of PM2.5 was associated with decreases of 2.7 mL FEV1 (95% confidence interval = -3.5 to -2.0), 3.5 mL FVC (-4.3 to -2.7), 1.4 mL/year FEV1 growth (-1.8 to -0.9), and 1.5 mL/year FVC growth (-2.0 to -1.0). Similar results were seen with PM10 exposure. Exposure to ambient particulate matter was associated with decreased growth in lung function among Chinese children.
OXIDATIVE STRESS MEDIATES AIR POLLUTION PARTICLE-INDUCED ACUTE LUNG INJURY AND MOLECULAR PATHOLOGY
Abstract
Insight into the mechanism(s) by which ambient air particulate matter (PM) mediates adverse health effects is needed to provide biological plausibility to epidemiological studies demonstrating associations between PM exposure and increased morbidity and mortality. Alt...
DOT National Transportation Integrated Search
2018-02-02
Exposure to particulate matter (PM) and pollutant gas (NOx) is associated with increased cardiopulmonary morbidity and mortality. Mobile source emissions contribute to PM and NOx emissions significantly in urban areas. Hybrid Electric Vehicles (HEVs)...
MULTIDISCIPLINARY SCIENTIFIC AND ENGINEERING APPROACHES TO ASSESSING DIESEL EXHAUST TOXICITY
Based on epidemiology reports, diesel exhaust (DE) containing particulate matter (PM) may play a role in increasing cardiopulmonary mortality and morbidity, such as lung infection and asthma symptoms. DE gas-phase components may modify the PM effects. DE components vary depending...
Loesch, Danuta Z; Annesley, Sarah J; Trost, Nicholas; Bui, Minh Q; Lay, Sui T; Storey, Elsdon; De Piazza, Shawn W; Sanislav, Oana; Francione, Lisa M; Hammersley, Eleanor M; Tassone, Flora; Francis, David; Fisher, Paul R
2017-01-01
The need for accessible cellular biomarkers of neurodegeneration in carriers of the fragile X mental retardation 1 (FMR1) premutation (PM) alleles. To assess the mitochondrial status and respiration in blood lymphoblasts from PM carriers manifesting the fragile X-associated tremor/ataxia syndrome (FXTAS) and non-FXTAS carriers, and their relationship with the brain white matter lesions. Oxygen consumption rates (OCR) and ATP synthesis using a Seahorse XFe24 Extracellular Flux Analyser, and steady-state parameters of mitochondrial function were assessed in cultured lymphoblasts from 16 PM males (including 11 FXTAS patients) and 9 matched controls. The regional white matter hyperintensity (WMH) scores were obtained from MRI. Mitochondrial respiratory activity was significantly elevated in lymphoblasts from PM carriers compared with controls, with a 2- to 3-fold increase in basal and maximum OCR attributable to complex I activity, and ATP synthesis, accompanied by unaltered mitochondrial mass and membrane potential. The changes, which were more advanced in FXTAS patients, were significantly associated with the WMH scores in the supratentorial regions. The dramatic increase in mitochondrial activity in lymphoblasts from PM carriers may represent either the early stages of disease (specific alterations in short-lived blood cells) or an activation of the lymphocytes under pathological situations. These changes may provide early, convenient blood biomarkers of clinical involvements. © 2016 S. Karger AG, Basel.
In evaluating the health risks from particulate matter (PM), the question remains as to which component(s) of PM are most harmful. We investigated this issue using PM mass, PM constituents, mortality, and the elderly hospital admission data in Philadelphia, PA. Daily paired PM...
Nemmar, Abderrahim; Holme, Jørn A.; Rosas, Irma; Schwarze, Per E.
2013-01-01
Epidemiological and clinical studies have linked exposure to particulate matter (PM) to adverse health effects, which may be registered as increased mortality and morbidity from various cardiopulmonary diseases. Despite the evidence relating PM to health effects, the physiological, cellular, and molecular mechanisms causing such effects are still not fully characterized. Two main approaches are used to elucidate the mechanisms of toxicity. One is the use of in vivo experimental models, where various effects of PM on respiratory, cardiovascular, and nervous systems can be evaluated. To more closely examine the molecular and cellular mechanisms behind the different physiological effects, the use of various in vitro models has proven to be valuable. In the present review, we discuss the current advances on the toxicology of particulate matter and nanoparticles based on these techniques. PMID:23865044
Sun, Xiaolin; Wei, Haiying; Young, Dominique E; Bein, Keith J; Smiley-Jewell, Suzette M; Zhang, Qi; Fulgar, Ciara Catherine B; Castañeda, Alejandro R; Pham, Alexa K; Li, Wei; Pinkerton, Kent E
2017-08-15
Airborne particulate matter (PM) is associated with adverse cardiorespiratory effects. To better understand source-orientated PM toxicity, a comparative study of the biological effects of fine PM (diameter≤2.5μm, PM 2.5 ) collected during the winter season from Shanxi Province, China, and the Central Valley, California, United States, was conducted. The overarching hypothesis for this study was to test whether the chemical composition of PM on an equal mass basis from two urban areas, one in China and one in California, can lead to significantly different effects of acute toxicity and inflammation in the lungs of healthy young mice. Male, 8-week old BALB/C mice received a single 50μg dose of vehicle, Taiyuan PM or Sacramento PM by oropharyngeal aspiration and were sacrificed 24h later. Bronchoalveolar lavage, ELISA and histopathology were performed along with chemical analysis of PM composition. Sacramento PM had a greater proportion of oxidized organic material, significantly increased neutrophil numbers and elevated CXCL-1 and TNF-α protein levels compared to the Taiyuan PM. The findings suggest that Sacramento PM 2.5 was associated with a greater inflammatory response compared to that of Taiyuan PM 2.5 that may be due to a higher oxidice. Male, 8-week old BALB/C mice received a single 50μg dose of vehicle, Taiyuan PM or Sacramento PM by oropharyngeal aspiration and were sacrificed 24h later. Bronchoalveolar lavage, ELISA and histopathology were performed along with chemical analysis of PM composition. Sacramento PM had a greater proportion of oxidized organic material, significantly increased neutrophil numbers and elevated CXCL-1 and TNF-α protein levels compared to the Taiyuan PM. The findings suggest that Sacramento PM 2.5 was associated with a greater inflammatory response compared to that of Taiyuan PM 2.5 that may be due to a higher oxidized state of organic carbon and copper content. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe
An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. Themore » elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.« less
EXPOSURE ASSESSMENT FROM THE NERL RESEARCH TRIANGLE PARK PARTICULATE MATTER PANEL STUDY
The U.S. Environmental Protection Agency performed a particulate matter (PM) exposure assessment based on data from the National Exposure Research Laboratory (NERL) Research Triangle Park (RTP) Particulate Matter (PM) Panel Study. This study was a one-year investigation of PM ...
Ding, Shibin; Yu, Lanlan; An, Baijie; Zhang, Guofu; Yu, Pengxin; Wang, Zhe
2018-05-01
Hepatic fibrosis, characterized by an excessive accumulation of extracellular matrix, is associated with toxic substance exposure, chronic infections, mechanical injury, airborne fine particulate matter (PM 2.5 ) exposure and metabolic disease. This study aimed to investigate the effect and mechanism of long-term, real-world airborne particulate matter (PM) exposure on hepatic fibrosis and further explored whether combination treatment of PM exposure and high-fat diet (HFD) aggravate the adverse effects in mice. Six-week-old male C57BL/6J mice fed with either a standard chow diet (STD) or an HFD were treated with either filtered air (FA) or PM for 18 weeks. Metabolic parameters, histological examination, gene expression analysis, and Western blot analysis were utilized to measure the effect and mechanism of PM exposure on hepatic fibrosis and to further analyze the synergistic effect of HFD. Subchronic airborne PM exposure induces hepatic fibrosis in mice, and combination treatment of PM exposure and HFD accelerate the adverse effect. Meanwhile, subchronic exposure to real-world PM increased the level of hepatic ROS, and the expression of endoplasmic reticulum (ER) stress markers (GRP78 and CHOP), p-SMAD2 and p-SMAD3, as well as up-regulated TGFβ and collagen 1 in liver tissues. Furthermore, PM exposure and HFD displayed the synergistic effects on these changes in liver. Our findings indicate that airborne PM exposure aggravates HFD -induced hepatic fibrosis. The ROS-ER stress-TGFβ/SMADs regulatory axis mediates the effects of airborne PM exposure on accelerating hepatic fibrosis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Sano, Hiroyuki; Kitano, Hiroya; Saito, Rumiko; Kimura, Yutaka; Aiba, Setsuya; Oshimura, Mitsuo; Shimizu, Eiji
2015-11-09
This study aimed to investigate the effects of particulate matter (PM) on pulmonary function in schoolchildren, as well as the relationships of these effects with interleukin-8. Morning peak expiratory flow (PEF) was measured daily in 399 children during April-May 2012, and in 384 of these children during March-May 2013. PEF's association with the daily levels of suspended particulate matter (SPM) and PM < 2.5 mm (PM2.5) was estimated using a linear mixed model. Interleukin-8 promoter activity was assessed in THP-G8 cells stimulated by fallen PM collected at Tottori University Hospital during four periods (two in 2012 and two in 2013). An increase of 14.0 mg/m³ in SPM led to PEF changes of -2.16 L/min in 2012 and -0.81 L/min in 2013, respectively. An increment of 10.7 mg/m³ in PM2.5 was associated with PEF changes of -2.58 L/min in 2012 and -0.55 L/min in 2013, respectively. These associations were only significant in 2012. Interleukin-8 promoter activity was significantly higher in both periods of 2012 than in 2013. There was a significant association between pulmonary function in schoolchildren and daily levels of SPM and PM2.5, but this association may differ depending on the PM's ability to elicit interleukin-8 production.
Pun, Vivian Chit; Yu, Ignatius Tak-sun; Ho, Kin-fai; Qiu, Hong; Sun, Zhiwei
2014-01-01
Background: Ischemic heart disease (IHD) is a major public health concern. Although many epidemiologic studies have reported evidence of adverse effects of particulate matter (PM) mass on IHD, significant knowledge gaps remain regarding the potential impacts of different PM sources. Much the same as PM size, PM sources may influence toxicological characteristics. Objectives: We identified contributing sources to PM10 mass and estimated the acute effects of PM10 sources on daily emergency IHD hospitalizations in Hong Kong. Methods: We analyzed the concentration data of 19 PM10 chemical components measured between 2001 and 2007 by positive matrix factorization to apportion PM10 mass, and used generalized additive models to estimate associations of interquartile range (IQR) increases in PM10 exposures with IHD hospitalization for different lag periods (up to 5 days), adjusted for potential confounders. Results: We identified 8 PM10 sources: vehicle exhaust, soil/road dust, regional combustion, residual oil, fresh sea salt, aged sea salt, secondary nitrate, and secondary sulfate. Vehicle exhaust, secondary nitrate, and secondary sulfate contributed more than half of the PM10 mass. Although associations with IQR increases in 2-day moving averages (lag01) were statistically significant for most sources based on single-source models, only PM10 from vehicle exhaust [1.87% (95% CI: 0.66, 3.10); IQR = 4.9 μg/m3], secondary nitrate [2.28% (95% CI: 1.15, 3.42); IQR = 8.6 μg/m3], and aged sea salt [1.19% (95% CI: 0.04, 2.36); IQR = 5.9 μg/m3] were significantly associated with IHD hospitalizations in the multisource model. Analysis using chemical components provided similar findings. Conclusion: Emergency IHD hospitalization was significantly linked with PM10 from vehicle exhaust, nitrate-rich secondary PM, and sea salt–related PM. Findings may help prioritize toxicological research and guide future monitoring and emission-control polices. Citation: Pun VC, Yu IT, Ho KF, Qiu H, Sun Z, Tian L. 2014. Differential effects of source-specific particulate matter on emergency hospitalizations for ischemic heart disease in Hong Kong. Environ Health Perspect 122:391–396; http://dx.doi.org/10.1289/ehp.1307213 PMID:24509062
NASA Astrophysics Data System (ADS)
Dimitrova, R.; Lurponglukana, N.; Fernando, H. J. S.; Runger, G. C.; Hyde, P.; Hedquist, B. C.; Anderson, J.; Bannister, W.; Johnson, W.
2012-03-01
Statistically significant correlations between increase of asthma attacks in children and elevated concentrations of particulate matter of diameter 10 microns and less (PM10) were determined for metropolitan Phoenix, Arizona. Interpolated concentrations from a five-site network provided spatial distribution of PM10 that was mapped onto census tracts with population health records. The case-crossover statistical method was applied to determine the relationship between PM10 concentration and asthma attacks. For children ages 5-17, a significant relationship was discovered between the two, while children ages 0-4 exhibited virtually no relationship. The risk of adverse health effects was expressed as a function of the change from the 25th to 75th percentiles of mean level PM10 (36 μg m-3). This increase in concentration was associated with a 12.6% (95% CI: 5.8%, 19.4%) increase in the log odds of asthma attacks among children ages 5-17. Neither gender nor other demographic variables were significant. The results are being used to develop an asthma early warning system for the study area.
NASA Astrophysics Data System (ADS)
Dimitrova, R.; Lurponglukana, N.; Fernando, H. J. S.; Runger, G. C.; Hyde, P.; Hedquist, B. C.; Anderson, J.; Bannister, W.; Johnson, W.
2011-10-01
Statistically significant correlations between increase of asthma attacks in children and elevated concentrations of particulate matter of diameter 10 microns and less (PM10) were determined for metropolitan Phoenix, Arizona. Interpolated concentrations from a five-site network provided spatial distribution of PM10 that was mapped onto census tracts with population health records. The case-crossover statistical method was applied to determine the relationship between PM10 concentration and asthma attacks. For children ages 5-17, a significant relationship was discovered between the two, while children ages 0-4 exhibited virtually no relationship. The risk of adverse health effects was expressed as a function of the change from the 25th to 75th percentiles of mean level PM10 (36 μg m-3). This increase in concentration was associated with a 12.6% (95% CI: 5.8%, 19.4%) increase in the log odds of asthma attacks among children ages 5-17. Neither gender nor other demographic variables were significant. The results are being used to develop an asthma early warning system for the study area.
Co-Mitigation of Ozone and PM2.5 Pollution over the Beijing-Tianjin-Hebei Region
NASA Astrophysics Data System (ADS)
Liu, J.; Xiang, S.; Yi, K.; Tao, W.
2017-12-01
With the rapid industrialization and urbanization, emissions of air pollutants in China were increasing rapidly during the past few decades, causing severe particulate matter and ozone pollution in many megacities. Facing these knotty environmental problems, China has released a series of pollution control policies to mitigate air pollution emissions and optimize energy supplement structure. Consequently, fine particulate matters (PM2.5) decrease recently. However, the concentrations of ambient ozone have been increasing, especially during summer time and over megacities. In this study, we focus on the opposite trends of ozone and PM2.5 over the Beijing-Tianjin-Hebei region. We use the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) to simulate and analyze the best emission reduction strategies, and adopt the Empirical Kinetics Modeling Approach (EKMA) to depict the influences of mitigating NOx and VOCs. We also incorporate the abatement costs for NOx and VOCs in our analysis to explore the most cost-effective mitigation strategies for both ozone and PM2.5.
Indoor Air Quality in the Metro System in North Taiwan
Chen, Ying-Yi; Sung, Fung-Chang; Chen, Mei-Lien; Mao, I-Fang; Lu, Chung-Yen
2016-01-01
Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O3), airborne particulate matter (PM10 and PM2.5), bacteria and fungi. Results showed that the CO2, CO and HCHO levels met the stipulated standards as regulated by Taiwan’s Indoor Air Quality Management Act (TIAQMA). However, elevated PM10 and PM2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan’s Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations. PMID:27918460
Zhang, Zhenyu; Laden, Francine; Forman, John P; Hart, Jaime E
2016-09-01
Studies have suggested associations between elevated blood pressure and short-term air pollution exposures, but the evidence is mixed regarding long-term exposures on incidence of hypertension. We examined the association of hypertension incidence with long-term residential exposures to ambient particulate matter (PM) and residential distance to roadway. We estimated 24-month and cumulative average exposures to PM10, PM2.5, and PM2.5-10 and residential distance to road for women participating in the prospective nationwide Nurses' Health Study. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated for incident hypertension from 1988 to 2008 using Cox proportional hazards models adjusted for potential confounders. We considered effect modification by age, diet, diabetes, obesity, region, and latitude. Among 74,880 participants, 36,812 incident cases of hypertension were observed during 960,041 person-years. In multivariable models, 10-μg/m3 increases in 24-month average PM10, PM2.5, and PM2.5-10 were associated with small increases in the incidence of hypertension (HR: 1.02, 95% CI: 1.00, 1.04; HR: 1.04, 95% CI: 1.00, 1.07; and HR: 1.03, 95% CI: 1.00, 1.07, respectively). Associations were stronger among women < 65 years of age (HR: 1.04, 95% CI: 1.01, 1.06; HR: 1.07, 95% CI: 1.02, 1.12; and HR: 1.05, 95% CI: 1.01, 1.09, respectively) and the obese (HR: 1.07, 95% CI: 1.04, 1.12; HR: 1.15, 95% CI: 1.07, 1.23; and HR: 1.13, 95% CI: 1.07, 1.19, respectively), with p-values for interaction < 0.05 for all models except age and PM2.5-10. There was no association with roadway proximity. Long-term exposure to particulate matter was associated with small increases in risk of incident hypertension, particularly among younger women and the obese. Zhang Z, Laden F, Forman JP, Hart JE. 2016. Long-term exposure to particulate matter and self-reported hypertension: a prospective analysis in the Nurses' Health Study. Environ Health Perspect 124:1414-1420; http://dx.doi.org/10.1289/EHP163.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-29
... Subject to BART 3. BART Determination for Kanoelehua Hill a. BART for NO X and Particulate Matter (PM) b.... The initials PM mean or refer to particulate matter. xxiv. The initials PM2.5 mean or refer to particulate matter with an aerodynamic diameter of less than 2.5 micrometers (fine particulate matter). xxv...
Impact of Saharan dust particles on hospital admissions in Madrid (Spain).
Reyes, María; Díaz, Julio; Tobias, Aurelio; Montero, Juan Carlos; Linares, Cristina
2014-01-01
Saharan dust intrusions make a major contribution to levels of particulate matter (PM) present in the atmosphere of large cities. We analysed the impact of different PM fractions during periods with and without Saharan dust intrusions, using time-series analysis with Poisson regression models, based on: concentrations of coarse PM (PM10 and PM10-2.5) and fine PM (PM2.5); and daily all-, circulatory- and respiratory-cause hospital admissions. While periods without Saharan dust intrusions were marked by a statistically significant association between daily mean PM2.5 concentrations and all- and circulatory-cause hospital admissions, periods with such intrusions saw a significant increase in respiratory-cause admissions associated with fractions corresponding to PM10 and PM10-2.5.
Hwang, Su-Lun; Guo, Su-Er; Chi, Miao-Ching; Chou, Chiang-Ting; Lin, Yu-Ching; Lin, Chieh-Mo; Chou, Yen-Li
2016-01-01
Objectives: This paper reports on the findings of a population-based study to evaluate the relationship between atmospheric fine particulate matter (PM2.5) levels and hospital admissions for chronic obstructive pulmonary disease (COPD) in southwestern Taiwan over a three-year period, 2008–2010. Methods: Data on hospital admissions for COPD and PM2.5 levels were obtained from the National Health Insurance Research database (NHIRD) and the Environmental Protection Administration from 2008 to 2010, respectively. The lag structure of relative risks (RRs) of hospital admissions for COPD was estimated using a Poisson regression model. Results: During the study period, the overall average hospitalization rate of COPD and mean 24-h average level of PM2.5 was 0.18% and 39.37 μg/m3, respectively. There were seasonal variations in PM2.5 concentrations in southwestern Taiwan, with higher PM2.5 concentrations in both spring (average: 48.54 μg/m3) and winter (49.96 μg/m3) than in summer (25.89 μg/m3) and autumn (33.37 μg/m3). Increased COPD admissions were significantly associated with PM2.5 in both spring (February–April) and winter (October–January), with the relative risks (RRs) for every 10 μg/m3 increase in PM2.5 being 1.25 (95% CI = 1.22–1.27) and 1.24 (95% CI = 1.23–1.26), respectively, at a lag zero days (i.e., no lag days). Lag effects on COPD admissions were observed for PM2.5, with the elevated RRs beginning at lag zero days and larger RRs estimates tending to occur at longer lags (up to six days, i.e., lag 0–5 days). Conclusions: In general, findings reveal an association between atmospheric fine particulate matter (PM2.5) and hospital admissions for COPD in southwestern Taiwan, especially during both spring and winter seasons. PMID:27023589
Particulate matter and preterm birth
Particulate matter (PM) has been variably associated with preterm birth (PTB) (gestation <37 weeks), but the role played by specific chemical components of PM has been little studied. We examined the association between ambient PM <2.5 micrometers in aerodynamic diameter (PM2.S) ...
Kim, Kyoung-Nam; Lim, Youn-Hee; Bae, Hyun Joo; Kim, Myounghee; Jung, Kweon; Hong, Yun-Chul
2016-01-01
Background: Previous studies have associated short-term air pollution exposure with depression. Although an animal study showed an association between long-term exposure to particulate matter ≤ 2.5 μm (PM2.5) and depression, epidemiological studies assessing the long-term association are scarce. Objective: We aimed to determine the association between long-term PM2.5 exposure and major depressive disorder (MDD). Methods: A total of 27,270 participants 15–79 years of age who maintained an address within the same districts in Seoul, Republic of Korea, throughout the entire study period (between 2002 and 2010) and without a previous MDD diagnosis were analyzed. We used three district-specific exposure indices as measures of long-term PM2.5 exposure. Cox proportional hazards models adjusted for potential confounding factors and measured at district and individual levels were constructed. We further conducted stratified analyses according to underlying chronic diseases such as diabetes mellitus, cardiovascular disease, and chronic obstructive pulmonary disease. Results: The risk of MDD during the follow-up period (2008–2010) increased with an increase of 10 μg/m3 in PM2.5 in 2007 [hazard ratio (HR) = 1.44; 95% CI: 1.17, 1.78], PM2.5 between 2007 and 2010 (HR = 1.59; 95% CI: 1.02, 2.49), and 12-month moving average of PM2.5 until an event or censor (HR = 1.47; 95% CI: 1.14, 1.90). The association between long-term PM2.5 exposure and MDD was greater in participants with underlying chronic diseases than in participants without these diseases. Conclusion: Long-term PM2.5 exposure increased the risk of MDD among the general population. Individuals with underlying chronic diseases are more vulnerable to long-term PM2.5 exposure. Citation: Kim KN, Lim YH, Bae HJ, Kim M, Jung K, Hong YC. 2016. Long-term fine particulate matter exposure and major depressive disorder in a community-based urban cohort. Environ Health Perspect 124:1547–1553; http://dx.doi.org/10.1289/EHP192 PMID:27129131
Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran
NASA Astrophysics Data System (ADS)
Arhami, Mohammad; Hosseini, Vahid; Zare Shahne, Maryam; Bigdeli, Mostafa; Lai, Alexandra; Schauer, James J.
2017-03-01
Frequent air pollution episodes have been reported for Tehran, Iran, mainly because of critically high levels of fine particulate matter (PM2.5). The composition and sources of these particles are poorly known, so this study aims to identify the major components and heavy metals in PM2.5 along with their seasonal trends and associated sources. 24-hour PM2.5 samples were collected at a main residential station every 6 days for a full year from February 2014 to February 2015. The samples were analyzed for ions, organic carbon (including water-soluble and insoluble portions), elemental carbon (EC), and all detectable elements. The dominant mass components, which were determined by means of chemical mass closure, were organic matter (35%), dust (25%), non-sea salt sulfate (11%), EC (9%), ammonium (5%), and nitrate (2%). Organic matter and EC together comprised 44% of fine PM on average (increased to >70% in the colder season), which reflects the significance of anthropogenic urban sources (i.e. vehicles). The contributions of different components varied considerably throughout the year, particularly the dust component that varied from 7% in the cold season to 56% in the hot and dry season. Principal component analyses were applied, resulting in 5 major source factors that explained 85% of the variance in fine PM. Factor 1, representing soil dust, explained 53%; Factor 2 denotes heavy metals mainly found in industrial sources and accounted for 18%; and rest of factors, mainly representing combustion sources, explained 14% of the variation. The levels of major heavy metals were further evaluated, and their trends showed considerable increases during cold seasons. The results of this study provide useful insight to fine PM in Tehran, which could help in identifying their health effects and sources, and also adopting effective control strategies.
AMBIENT PARTICULATE MATTER DECREASED IN HUMAN ALVEOLAR MACHROPHAGE CYTOKINE RELEASE
Human exposure to ambient airborne particulate matter (PM) is associated with cardiopulmonary mortality and morbidity, including increased hospitalizations for lung infection. Normal lung immune responses to bacterial infection include alveolar macrophage cytokine production and...
*Ambient Particluate Matter Supresses Alveolar Macrophage Cytokine Response to Lipopolysaccharide
Reports link ambient particulate matter (PM) exposure with cardiopulmonary mortality and morbidity, including the exacerbation of inflammatory disease and increased hospitalization for lung infections. Alveolar macrophages (AM) play an important defense role against infections v...
A population exposure model for particulate matter (PM), called the Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model, has been developed and applied in a case study of daily PM2.5 exposures for the population living in Philadelphia, PA. SHEDS-PM is a probabilisti...
Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Suh, Hwa-Jin; Kim, Young Mi; Boo, Yong Chool
2016-01-01
Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10). PM10 stimulates the production of reactive oxygen species (ROS) and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE) on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1). PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter. PMID:27247608
40 CFR 60.43b - Standard for particulate matter (PM).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter (PM). 60.43b Section 60.43b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial-Commercial-Institutional Steam Generating Units § 60.43b Standard for particulate matter (PM). (a...
40 CFR 60.43c - Standard for particulate matter (PM).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter (PM). 60.43c Section 60.43c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial-Commercial-Institutional Steam Generating Units § 60.43c Standard for particulate matter (PM). (a...
Particulate Matter Exposure in a Police Station Located near a Highway.
Chen, Yu-Cheng; Hsu, Chin-Kai; Wang, Chia C; Tsai, Perng-Jy; Wang, Chun-Yuan; Chen, Mei-Ru; Lin, Ming-Yeng
2015-11-13
People living or working near roadways have experienced an increase in cardiovascular or respiratory diseases due to vehicle emissions. Very few studies have focused on the PM exposure of highway police officers, particularly for the number concentration and size distribution of ultrafine particles (UFP). This study evaluated exposure concentrations of particulate matter (PM) in the Sinying police station near a highway located in Tainan, Taiwan, under different traffic volumes, traffic types, and shift times. We focused on periods when the wind blew from the highway toward the police station and when the wind speed was greater than or equal to 0.5 m/s. PM2.5, UFP, and PM-PAHs concentrations in the police station and an upwind reference station were measured. Results indicate that PM2.5, UFP, and PM-PAHs concentrations in the police station can be on average 1.13, 2.17, and 5.81 times more than the upwind reference station concentrations, respectively. The highest exposure level for PM2.5 and UFP was observed during the 12:00 PM-4:00 PM shift while the highest PAHs concentration was found in the 4:00 AM-8:00 AM shift. Thus, special attention needs to be given to protect police officers from exposure to high PM concentration.
Properties and cellular effects of particulate matter from direct emissions and ambient sources.
Jin, Wenjie; Su, Shu; Wang, Bin; Zhu, Xi; Chen, Yilin; Shen, Guofeng; Liu, Junfeng; Cheng, Hefa; Wang, Xilong; Wu, Shuiping; Zeng, Eddy; Xing, Baoshan; Tao, Shu
2016-10-14
The pollution of particulate matter (PM) is of great concern in China and many other developing countries. It is generally recognized that the toxicity of PM is source and property dependent. However, the relationship between PM properties and toxicity is still not well understood. In this study, PM samples from direct emissions of wood, straw, coal, diesel combustion, cigarette smoking and ambient air were collected and characterized for their physicochemical properties. Their expression of intracellular reactive oxygen species (ROS) and levels of inflammatory cytokines (i.e., tumor necrosis factor-α (TNF-α)) was measured using a RAW264.7 cell model. Our results demonstrated that the properties of the samples from different origins exhibited remarkable differences. Significant increases in ROS were observed when the cells were exposed to PMs from biomass origins, including wood, straw and cigarettes, while increases in TNF-α were found for all the samples, particularly those from ambient air. The most important factor associated with ROS generation was the presence of water-soluble organic carbon, which was extremely abundant in the samples that directly resulted from biomass combustion. Metals, endotoxins and PM size were the most important properties associated with increases in TNF-α expression levels. The association of the origins of PM particles and physicochemical properties with cytotoxic properties is illustrated using a cluster analysis.
Brown, Steven G; Roberts, Paul T; McCarthy, Michael C; Lurmann, Frederick W; Hyslop, Nicole P
2006-09-01
Air quality monitoring was conducted at a rural site with a tower in the middle of California's San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/ PM2.5 Air Quality Study. Measurements at the surface and n a tower at 90 m were collected in Angiola, CA, from December 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.
Although metal(loid) bioaccessibility of ambient particulate matter, with an aerodynamic diameter of <10 μm (PM10), has recently received increasing attention, limited research exists into standardising in-vitro methodologies using simulated lung fluid (SLF). Contradictions...
PULMONARY TOXICITY OF SIZE-CLASSIFIED COAL FLY ASH PARTICLES OF VARYING CARBON CONTENT
Epidemiological studies have shown that morbidity and mortality increase along with concentration of particulate matter (PM) in many different countries and regions despite great variations in the chemical makeup of the PM. In this study, Illinois bituminous coal with high sulfur...
ACETALDEHYDE (CH3CH0) PRODUCTION IN RODENT LUNG AFTER EXPOSURE TO A METAL-RICH PARTICLES
Epidemiological reports demonstrate an association between increased human morbidity and mortality with exposure to air pollution particulate matter (PM). Metal-catalyzed oxidative stress has been postulated to contribute to lung injury in response to PM exposure. We studied the ...
Particulate matter exposure of bicycle path users in a high-altitude city
NASA Astrophysics Data System (ADS)
Fajardo, Oscar A.; Rojas, Nestor Y.
2012-01-01
It is necessary to evaluate cyclists' exposure to particulate matter and if they are at a higher risk due to their increased breathing rate and their exposure to freshly emitted pollutants. The aim of this pilot study was to determine cyclists' exposure to PM 10 in a highly-polluted, high-altitude city such as Bogotá, and comment on the appropriateness of building bicycle paths alongside roads with heavy traffic in third world cities. A total of 29 particulate matter (PM 10) measurements, taken at two sampling sites using Harvard impactors, were used for estimating the exposure of users of the 80th street bicycle path to this pollutant. PM 10 dose could be considered as being high, especially due to high concentrations and cyclists' increased inhalation rates. A random survey was conducted over 73 bicycle path users to determine cyclists' time, distance and speed on the bicycle path on a daily and weekly basis, their level of effort when cycling and general characteristics, such as this population's gender and age. Based on this information, the PM 10 average daily dose (ADD c) for different bicycle path users and the ratio between ADD c and a reference ADD for people at rest exposed to an indoor concentration of 25 μg m -3 were estimated. The average increase in ADD was 6%-9% when riding with light effort and by 12%-18% when riding with moderate effort. The most enthusiastic bicycle path users showed ADD c/ADD r ratios as high as 1.30 when riding with light effort and 1.64 when riding with moderate effort, thereby significantly increasing their PM 10 exposure-associated health risks.
Balmes, John R; Cisternas, Miriam; Quinlan, Patricia J; Trupin, Laura; Lurmann, Fred W; Katz, Patricia P; Blanc, Paul D
2014-02-01
While exposure to outdoor particulate matter (PM) has been associated with poor asthma outcomes, few studies have investigated the combined effects of outdoor and indoor PM (including secondhand tobacco smoke). To examine the associations between PM and asthma outcomes. We analyzed data from a cohort of adults with asthma and rhinitis (n=302; 82% both conditions; 13% asthma only; 5% rhinitis alone) including measures of home PM, tobacco smoke exposure (hair nicotine and self-report), ambient PM from regional monitoring, distance to roadway, and season (wet or dry). The outcomes of interest were frequent respiratory symptoms and forced expiratory volume in 1 second (FEV1) below the lower limit of normal (NHANES reference values). Multivariable regression analyses examined the associations (Odds Ratio [OR] and 95% Confidence Interval [95%CI]) between exposures and these outcomes, adjusted by sociodemographic characteristics. In adjusted analyses of each exposure, the highest tertile of home PM and season of interview were associated with increased odds for more frequent respiratory symptoms (OR=1.64 95%CI: [1.00, 2.69] and OR=1.66 95%CI: [1.09, 2.51]). The highest tertile of hair nicotine was significantly associated with FEV1 below the lower limit of normal (OR=1.80 95%CI: [1.00, 3.25]). In a model including home PM, ambient PM, hair nicotine, and season, only two associations remained strong: hair nicotine with FEV1 below the lower limit of normal and season of measurement (dry, April-October) with increased respiratory symptoms (OR=1.85 95%CI: [1.00, 3.41] and OR=1.54 95%CI: [1.0, 2.37]). When that model was stratified by sex, the highest tertiles of ambient PM and hair nicotine were associated with FEV1 below the lower limit of normal among women (OR=2.23 95%CI: [1.08, 4.61] and OR=2.90 95%CI: [1.32, 6.38]), but not men. The highest tertile of hair nicotine was also associated with increased respiratory symptoms in women but not men (OR=2.38 95%CI: [1.26, 4.49]). When stratified by age, the middle quartile of ambient PM and the highest hair nicotine tertile were associated with increased respiratory symptoms (OR=2.07 95%CI: [1.01, 4.24] and OR=2.55 95%CI: [1.21, 5.36]) in those under 55 but not in the older stratum. Exposure to PM from both home and ambient sources is associated with increased symptoms and lower lung function in adults with asthma, although these associations vary by type of PM, the respiratory outcome studied, sex and age. Copyright © 2014 Elsevier Inc. All rights reserved.
Twardella, D; Fromme, H; Dietrich, S; Dietrich, W C
2009-02-01
The aims of the research project were (I) to describe the exposure to particulate matter in Bavarian schools and identify predictors of increased exposure and (II) to evaluate whether exposure can be reduced by improving the ventilation and/or cleaning routine. Air quality was measured in 46 schools, two classrooms each, in the City of Munich and Dachau county. Each classroom was measured on one school day in both winter 2004/2005 and summer 2005. The continuously generated data on particulate matter during the teaching hours were summarised to daily medians and the possible association of the median concentration with classroom characteristics was tested using non-parametric methods. In winter, the median PM (2.5) concentration was 18.8 microg/m (3), in summer 12.7 microg/m (3). The median PM (10) concentration was 91.5 microg/m (3) in winter and 64.9 microg/m (3) in summer. Determinants of a high particulate matter concentration were the winter period, an increased number of pupils or decreased room size, a high CO(2) concentration, and a low class level. Following this survey, a pilot study on the effects of improved cleaning and ventilation routines was conducted in autumn 2005. Three conditions were tested in two classrooms of one school: (a) standard, (b) improved airing (3 min during short and 20 min during long breaks), and (c) improved airing and improved cleaning (thorough cleaning once and vacuuming before wet wiping). Each condition was implemented for 2 weeks and particulate matter concentrations measured concurrently. In both rooms a reduction of both PM (2.5) and PM (10) concentration was found following improved airing and a further reduction occurred when improved cleaning was introduced in addition. However, in a linear regression accounting for other factors (room, physical activity of the pupils, outdoor concentration of particulate matter) the effect of improved airing was no longer significant, while the effect of improved cleaning remained at a reduction of 6 microg/m (3) for PM (2.5) and of 30 microg/m (3) for PM (10). The research projects show, that exposure to particulate matter in schools is high and indicate that, in particular, improved cleaning may be an effective measure to reduce the indoor particulate matter concentration. More and larger studies are needed to prove the efficacy of this measure.
NASA Astrophysics Data System (ADS)
Degobbi, Cristiane; Lopes, Fernanda D. T. Q. S.; Carvalho-Oliveira, Regiani; Muñoz, Julian Esteban; Saldiva, Paulo H. N.
2011-04-01
Particulate matter, especially PM2.5, is associated with increased morbidity and mortality from respiratory diseases. Studies that focus on the chemical composition of the material are frequent in the literature, but those that characterize the biological fraction are rare. The objectives of this study were to characterize samples collected in Sao Paulo, Brazil on the quantity of fungi and endotoxins associated with PM2.5, correlating with the mass of particulate matter, chemical composition and meteorological parameters. We did that by Principal Component Analysis (PCA) and multiple linear regressions. The results have shown that fungi and endotoxins represent significant portion of PM2.5, reaching average concentrations of 772.23 spores μg -1 of PM2.5 (SD: 400.37) and 5.52 EU mg -1 of PM2.5 (SD: 4.51 EU mg -1), respectively. Hyaline basidiospores, Cladosporium and total spore counts were correlated to factor Ba/Ca/Fe/Zn/K/Si of PM2.5 ( p < 0.05). Genera Pen/Asp were correlated to the total mass of PM2.5 ( p < 0.05) and colorless ascospores were correlated to humidity ( p < 0.05). Endotoxin was positively correlated with the atmospheric temperature ( p < 0.05). This study has shown that bioaerosol is present in considerable amounts in PM2.5 in the atmosphere of Sao Paulo, Brazil. Some fungi were correlated with soil particle resuspension and mass of particulate matter. Therefore, the relative contribution of bioaerosol in PM2.5 should be considered in future studies aimed at evaluating the clinical impact of exposure to air pollution.
Zhang, Zilong; Chan, Ta-Chien; Guo, Cui; Chang, Ly-Yun; Lin, Changqing; Chuang, Yuan Chieh; Jiang, Wun Kai; Ho, Kin Fai; Tam, Tony; Woo, Kam S; Lau, Alexis K H; Lao, Xiang Qian
2018-05-09
The prothrombotic effects of particulate matter (PM) may underlie the association of air pollution with increased risks of cardiovascular disease. This study aimed to investigate the association between long-term exposure to PM with an aerodynamic diameter ≤2.5 μm (PM 2.5 ) and platelet counts, a marker of coagulation profiles. The study participants were from a cohort consisting of 362,396 Taiwanese adults who participated in a standard medical examination program between 2001 and 2014. Platelet counts were measured through Complete Blood Count tests. A satellite-based spatio-temporal model was used to estimate 2-year average ambient PM 2.5 concentration at each participant's address. Mixed-effects linear regression models were used to investigate the association between PM 2.5 exposure and platelet counts. This analysis included 175,959 men with 396,248 observations and 186,437 women with 397,877 observations. Every 10-μg/m 3 increment in the 2-year average PM 2.5 was associated with increases of 0.42% (95% CI: 0.38%, 0.47%) and 0.49% (95% CI: 0.44%, 0.54%) in platelet counts in men and women, respectively. A series of sensitivity analyses, including an analysis in participants free of cardiometabolic disorders, confirmed the robustness of the observed associations. Baseline data analyses showed that every 10-μg/m 3 increment in PM 2.5 was associated with higher risk of 17% and 14% of having elevated platelet counts (≥90th percentile) in men and women, respectively. Long-term exposure to PM 2.5 appears to be associated with increased platelet counts, indicating potential adverse effects on blood coagulability. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sánchez-Pérez, Yesennia; Chirino, Yolanda I; Osornio-Vargas, Álvaro Román; Herrera, Luis A; Morales-Bárcenas, Rocío; López-Saavedra, Alejandro; González-Ramírez, Imelda; Miranda, Javier; García-Cuellar, Claudia María
2014-02-10
The exposure to particulate matter with a mean aerodynamic diameter ≤10 μm (PM10) from urban zones is considered to be a risk factor in the development of cancer. The aim of this work was to determine if PM10 exposure induces factors related to the acquisition of a neoplastic phenotype, such as cytoskeletal remodeling, changes in the subcellular localization of p21(CIP1/WAF1), an increase in β-galactosidase activity and changes in cell cycle. To test our hypothesis, PM10 from an industrial zone (IZ) and a commercial zone (CZ) were collected, and human adenocarcinoma lung cell cultures (A549) were exposed to a sublethal PM10 concentration (10 μg/cm(2)) for 24 h and 48 h. The results showed that PM10 exposure induced an increase in F-actin stress fibers and caused the cytoplasmic stabilization of p21(CIP1/WAF1) via phosphorylation at Thr(145) and Ser(146) and the phosphorylation of ERK1/2 on Thr(202). Changes in the cell cycle or apoptosis were not observed, but an increase in β-galactosidase activity was detected. The PM10 from CZ caused more dramatic effects in lung cells. We conclude that PM10 exposure induced cytoplasmic p21(CIP1/WAF1) retention, ERK1/2 activation, cytoskeleton remodeling and the acquisition of a senescence-like phenotype in lung cells. These alterations could have mechanistic implications regarding the carcinogenic potential of PM10. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Wang, Xuying; Guo, Yuming; Li, Guoxing; Zhang, Yajuan; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan; Chen, Liangfu
2016-06-01
This study explored the association between particulate matter with an aerodynamic diameter of less than 10 μm (PM10) and the cause-specific respiratory mortality. We used the ordinary kriging method to estimate the spatial characteristics of ambient PM10 at 1-km × 1-km resolution across Beijing during 2008-2009 and subsequently fit the exposure-response relationship between the estimated PM10 and the mortality due to total respiratory disease, chronic lower respiratory disease, chronic obstructive pulmonary disease (COPD), and pneumonia at the street or township area levels using the generalized additive mixed model (GAMM). We also examined the effects of age, gender, and season in the stratified analysis. The effects of ambient PM10 on the cause-specific respiratory mortality were the strongest at lag0-5 except for pneumonia, and an inter-quantile range increase in PM10 was associated with an 8.04 % (95 % CI 4.00, 12.63) increase in mortality for total respiratory disease, a 6.63 % (95 % CI 1.65, 11.86) increase for chronic lower respiratory disease, and a 5.68 % (95 % CI 0.54, 11.09) increase for COPD, respectively. Higher risks due to the PM10 exposure were observed for females and elderly individuals. Seasonal stratification analysis showed that the effects of PM10 on mortality due to pneumonia were stronger during spring and autumn. While for COPD, the effect of PM10 in winter was statistically significant (15.54 %, 95 % CI 5.64, 26.35) and the greatest among the seasons. The GAMM model evaluated stronger associations between concentration of PM10. There were significant associations between PM10 and mortality due to respiratory disease at the street or township area levels. The GAMM model using high-resolution PM10 could better capture the association between PM10 and respiratory mortality. Gender, age, and season also acted as effect modifiers for the relationship between PM10 and respiratory mortality.
The US EPA National Exposure Research Laboratory (NERL) is currently refining and evaluating a population exposure model for particulate matter (PM), called the Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model. The SHEDS-PM model estimates the population distribu...
Lung tumor promotion by chromium-containing welding particulate matter in a mouse model.
Zeidler-Erdely, Patti C; Meighan, Terence G; Erdely, Aaron; Battelli, Lori A; Kashon, Michael L; Keane, Michael; Antonini, James M
2013-09-05
Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk.
Lung tumor promotion by chromium-containing welding particulate matter in a mouse model
2013-01-01
Background Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Methods Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. Results MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. Conclusions GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk. PMID:24107379
PARTICULATE MATTER CONCENTRATIONS IN NON-RESIDENTIAL MICROENVIRONMENTS
Exposures to airborne particulate matter (PM) have long been associated with increases in both acute and chronic human health effects. Traditionally, research and regulations have focused on outdoor air pollution. However, human activity pattern studies show that people are ind...
Li, Pei; Xin, Jinyuan; Wang, Yuesi; Li, Guoxing; Pan, Xiaochuan; Wang, Shigong; Cheng, Mengtian; Wen, Tianxue; Wang, Guangcheng; Liu, Zirui
2015-01-01
Recent time series studies have indicated that daily mortality and morbidity are associated with particulate matters. However, about the relative effects and its seasonal patterns of fine particulate matter constituents is particularly limited in developing Asian countries. In this study, we examined the role of particulate matters and its key chemical components of fine particles on both mortality and morbidity in Beijing. We applied several overdispersed Poisson generalized nonlinear models, adjusting for time, day of week, holiday, temperature, and relative humidity, to investigate the association between risk of mortality or morbidity and particulate matters and its constituents in Beijing, China, for January 2005 through December 2009. Particles and several constituents were associated with multiple mortality or morbidity categories, especially on respiratory health. For a 3-day lag, the nonaccident mortality increased by 1.52, 0.19, 1.03, 0.56, 0.42, and 0.32% for particulate matter (PM)2.5, PM10, K(+), SO4(2-), Ca(2+), and NO3(-) based on interquartile ranges of 36.00, 64.00, 0.41, 8.75, 1.43, and 2.24 μg/m(3), respectively. The estimates of short-term effects for PM2.5 and its components in the cold season were 1 ~ 6 times higher than that in the full year on these health outcomes. Most of components had stronger adverse effects on human health in the heavy PM2.5 mass concentrations, especially for K(+), NO3(-), and SO4(2-). This analysis added to the growing body of evidence linking PM2.5 with mortality or morbidity and indicated that excess risks may vary among specific PM2.5 components. Combustion-related products, traffic sources, vegetative burning, and crustal component and resuspended road dust may play a key role in the associations between air pollution and public health in Beijing.
Karelin, A O; Lomtev, A Yu; Mozzhukhina, N A; Yeremin, G B; Nikonov, V A
Inhalation of fine particulate matters (PM and PM ) poses a threat for the health of population. Purpose of the study the analysis of the monitoring of fine particulate matters in the atmospheric air of Saint-Petersburg and identification of the main problems of the monitoring. Research methods methods of scientific hypothetical deductive cognition, sanitary-statistical methods, general logical methods and approaches of researches: analysis, synthesis, abstracting, generalization, induction. Results. The article represents the analysis of the monitoring of fine particulate matters in the atmospheric air of Saint- Petersburg. Only 11 in automatic monitoring stations out of 22 there is carried out the control of fine particulate matters: in 7 - PM and PM, and in 4 - PM The average year concentrations were below MAC in all the stations. The maximum concentrations achieved 3 MAC, but the repeatance of cases of exceedence of concentrations more than MAC was very rare. On the average of the city concentrations of PM were decreased from 0,8 MAC in 2006 and 1,1 MAC in 2007 to 0,5 MAC in 2013-14. The executed analysis revealed main problems of the monitoring of fine particulate matters in the Russian Federation. They include the absence of the usage 1of the officially approved methods of controlling of PM and PM in the atmospheric air until March 1, 2016, lack of the modern equipment for measurement of fine particulate matters. Conclusions. Therefore, the state of the monitoring of fine particulate matters in the atmospheric air in the Russian Federation fails to be satisfactory. It is necessary to improve system of the monitoring, create modern Russian appliances, methods and means for measurement of fine particulate matters concentrations in the atmospheric air.
Systematic Review and Meta-Analysis of Human Skin Diseases Due to Particulate Matter.
Ngoc, Le Thi Nhu; Park, Duckshin; Lee, Yongil; Lee, Young-Chul
2017-11-25
This study investigated the effects of particulate matter (PM) on human skin diseases by conducting a systematic review of existing literature and performing a meta-analysis. It considered articles reporting an original effect of PM on human skin. From among 918 articles identified, 13 articles were included for further consideration after manual screening of the articles resulted in the exclusion of articles that did not contain data, review articles, editorials, and also articles in languages other than English. Random-effects models and forest plots were used to estimate the effect of PM on the skin by Meta-Disc analysis. According to people's reports of exposure and negative skin effects (atopic dermatitis (AD), eczema, and skin aging, etc.) due to air pollution, the summary relative risk (odds ratio) of PM 10 was determined to be 0.99 (95% confidence interval (CI) 0.89-1.11) whereas PM 2.5 was determined to be 1.04 (95% CI 0.96-1.12). Simultaneously, there was a different extent of impact between PM 10 and PM 2.5 on atopic dermatitis (AD) for those of young age: the odds ratio of PM 10 and PM 2.5 were 0.96 (95% CI 0.83-1.11; I² = 62.7%) and 1.05 (95% CI 0.95-1.16; I² = 46%), respectively. Furthermore, the results suggest an estimated increase of disease incidence per 10 μg/m³ PM of 1.01% (0.08-2.05) due to PM 10 and 1.60% (0.45-2.82) due to PM 2.5 . Following the results, PM 10 and PM 2.5 are associated with increased risks of human skin diseases, especially AD, whose risk is higher in infants and school children. With its smaller size and a high concentration of metals, PM 2.5 is more closely related to AD in younger people, compared to PM 10 .
Indoor air quality in urban nurseries at Porto city: Particulate matter assessment
NASA Astrophysics Data System (ADS)
Branco, P. T. B. S.; Alvim-Ferraz, M. C. M.; Martins, F. G.; Sousa, S. I. V.
2014-02-01
Indoor air quality in nurseries is an interesting case of study mainly due to children's high vulnerability to exposure to air pollution (with special attention to younger ones), and because nursery is the public environment where young children spend most of their time. Particulate matter (PM) constitutes one of the air pollutants with greater interest. In fact, it can cause acute effects on children's health, as well as may contribute to the prevalence of chronic respiratory diseases like asthma. Thus, the main objectives of this study were: i) to evaluate indoor concentrations of particulate matter (PM1, PM2.5, PM10 and PMTotal) on different indoor microenvironments in urban nurseries of Porto city; and ii) to analyse those concentrations according to guidelines and references for indoor air quality and children's health. Indoor PM measurements were performed in several class and lunch rooms in three nurseries on weekdays and weekends. Outdoor PM10 concentrations were also obtained to determine I/O ratios. PM concentrations were often found high in the studied classrooms, especially for the finer fractions, reaching maxima hourly mean concentrations of 145 μg m-3 for PM1 and 158 μg m-3 PM2.5, being often above the limits recommended by WHO, reaching 80% of exceedances for PM2.5, which is concerning in terms of exposure effects on children's health. Mean I/O ratios were always above 1 and most times above 2 showing that indoor sources (re-suspension phenomena due to children's activities, cleaning and cooking) were clearly the main contributors to indoor PM concentrations when compared with the outdoor influence. Though, poor ventilation to outdoors in classrooms affected indoor air quality by increasing the PM accumulation. So, enhancing air renovation rate and performing cleaning activities after the occupancy period could be good practices to reduce PM indoor air concentrations in nurseries and, consequently, to improve children's health and welfare.
GHG warming impact on the removal and transport of particulate matter: mean and extreme pollution
NASA Astrophysics Data System (ADS)
Xu, Y.; Lamarque, J. F.
2016-12-01
Particulate matter with a diameter smaller than 2.5 micrometers (PM2.5) poses health threats to human populations. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with a chemistry-climate model, we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the main cause for the increase in the PM2.5 column burden. Regionally, over North America and East Asia, the shift of future precipitation toward heavy intensity events, contributes to weakened wet removal flux. With the daily PM2.5 output, we also find that the well-known poleward shift of jet stream under global warming contributes to more frequent stagnation events (and less frequent cyclone passages) in northern hemispheric mid-latitude, which further enhances the occurrence of extreme pollution events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Quan; Jia, Xingcan; Quan, Jiannong
Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. In this paper, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; themore » increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.« less
Liu, Quan; Jia, Xingcan; Quan, Jiannong; ...
2018-04-17
Severe haze events during which particulate matter (PM) increases quickly from tens to hundreds of microgram per cubic meter in 1-2 days frequently occur in China. Although it has been known that PM is influenced by complex interplays among emissions, meteorology, and physical and chemical processes, specific mechanisms remain elusive. In this paper, a new positive feedback mechanism between planetary boundary layer (PBL), relative humidity (RH), and secondary PM (SPM) formation is proposed based on a comprehensive field experiment and model simulation. The decreased PBL associated with increased PM increases RH by weakening the vertical transport of water vapor; themore » increased RH in turn enhances the SPM formation through heterogeneous aqueous reactions, which further enhances PM, weakens solar radiation, and decreases PBL height. This positive feedback, together with the PM-Radiation-PBL feedback, constitutes a key mechanism that links PM, radiation, PBL properties (e.g. PBL height and RH), and SPM formation, This mechanism is self-amplifying, leading to faster PM production, accumulation, and more severe haze pollution.« less
40 CFR 60.42Da - Standard for particulate matter (PM).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter (PM). 60.42Da Section 60.42Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....42Da Standard for particulate matter (PM). (a) On and after the date on which the initial performance...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-02
... Deterioration and Nonattainment New Source Review; Fine Particulate Matter (PM2.5) AGENCY: Environmental... preconstruction permitting requirements for fine particulate matter (PM 2.5 ) into the Delaware SIP. In addition... fine particulate matter (PM 2.5 ) into the Delaware SIP. In addition, EPA proposed approval of SIP...
40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.2306 Section 52.2306 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a...
40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.2306 Section 52.2306 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a...
40 CFR 60.42Da - Standard for particulate matter (PM).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter (PM). 60.42Da Section 60.42Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....42Da Standard for particulate matter (PM). (a) On and after the date on which the initial performance...
40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.1637 Section 52.1637 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico...
40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.1637 Section 52.1637 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico...
Li, Jiao-yuan; Ma, Lu; Liu, Li-zhi; Zhou, Jie; He, Ming-quan; Shima, Masayuki; Tamura, Kenji
2013-02-01
To evaluate the effects of indoor and outdoor PM2.5 (fine particulate matter, particulate matter with an aerodynamic diameter ≤ 2.5 µm) on lung function of college students in autumn and winter in Wuhan. In this panel study, 37 college students (excluded subject of respiratory disease and smoking history) aged 19 - 21 were investigated by cluster sampling in a university in Wuhan. The follow-up study lasted for 28 days in total, including two study periods, Oct. 29 to Nov. 11, 2009 (autumn) and Dec. 23, 2009 to Jan.5, 2010 (winter), the peak expiratory flow (PEF) of the college students were measured daily in the morning and evening in the university. PM10 and PM2.5 were monitored indoors and outdoors. The effects of PM on lung function of college students were analyzed by using generalized estimating equation (GEE). Average daily concentrations of indoor, outdoor PM2.5 in autumn were (91.3 ± 43.7) and (104.2 ± 49.4) µg/m(3) respectively, while in winter the concentrations of indoor and outdoor PM2.5 were (110.6 ± 42.3) and (143.5 ± 51.2) µg/m(3). The single pollutant model showed that in winter, the evening PEF decrement was significantly associated with increasing outdoor PM2.5. With an increase of 10 µg/m(3) outdoor PM2.5, the PEF measured in the evening decreased 1.27 L/min (95%CI: 0.02 - 2.52 L/min, respectively). Meanwhile, the results showed that 2-days lagged outdoor PM2.5 was also significantly associated with morning PEF. An increase of 10 µg/m(3) 2-days lagged outdoor PM2.5 caused the decrease of 1.82 L/min (95%CI: -3.53 - -0.11 L/min) of PEF measured in the morning. Controlling the influence of gaseous pollutants and building the two pollutants models, the results indicated that no significant changes of PEF of students being exposed to PM2.5 on same day (lag 0) were observed. However, under consideration of SO2 effect, significant association between an increase of 10 µg/m(3) 2-days lagged outdoor PM2.5 and changes of morning PEF (-1.81 L/min, 95%CI: -3.51 - -0.11 L/min, P = 0.037) was found. The relationship between changes of concentrations and PEF was not observed in autumn in this study. In our panel study, exposure to outdoor PM2.5 is significantly associated with PEF among college students in winter, but not in autumn.
Exposure to particulate matter is associated with increased cardiopulmonary morbidity and mortality. Diesel exhaust particles (DEP) are a major component of PM in urban areas and may contribute to PM toxicity through a mechanism involving pulmonary inflammation. Expression of inf...
Epidemiological studies indicate that daily ambient particulate matter (PM2.5) concentrations are associated with increased mortality, hospital admissions, and respiratory and cardiovascular effects. It is possible that the observed significant associations are the result of c...
Elevations in airborne particulate matter (PM) are linked to increased mortality and morbidity in humans with cardiopulmonary disease. Clinical studies show that PM is associated with altered heart rate variability (HRV) and suggests that loss of autonomic control may underlie ca...
TLR-2 IS INVOLVED IN AIRWAY EPITHELIAL CELL RESPONE TO AIR POLLUTION PARTICLES
Primary cultures of normal human airway epithelial cells (NHBE) respond to ambient air pollution particulate matter (PM) by increased production of the cytokine IL-8, and the induction of a number of oxidant stress response genes. Components of ambient air PM responsible for stim...
ABSTRACT Objectives: Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Diesel exhaust (DE) is a major contributor to ambient PM in urban areas. This study was designed to e...
Krall, Jenna R.; Mulholland, James A.; Russell, Armistead G.; Balachandran, Sivaraman; Winquist, Andrea; Tolbert, Paige E.; Waller, Lance A.; Sarnat, Stefanie Ebelt
2016-01-01
Background: Short-term exposure to ambient fine particulate matter (PM2.5) concentrations has been associated with increased mortality and morbidity. Determining which sources of PM2.5 are most toxic can help guide targeted reduction of PM2.5. However, conducting multicity epidemiologic studies of sources is difficult because source-specific PM2.5 is not directly measured, and source chemical compositions can vary between cities. Objectives: We determined how the chemical composition of primary ambient PM2.5 sources varies across cities. We estimated associations between source-specific PM2.5 and respiratory disease emergency department (ED) visits and examined between-city heterogeneity in estimated associations. Methods: We used source apportionment to estimate daily concentrations of primary source-specific PM2.5 for four U.S. cities. For sources with similar chemical compositions between cities, we applied Poisson time-series regression models to estimate associations between source-specific PM2.5 and respiratory disease ED visits. Results: We found that PM2.5 from biomass burning, diesel vehicle, gasoline vehicle, and dust sources was similar in chemical composition between cities, but PM2.5 from coal combustion and metal sources varied across cities. We found some evidence of positive associations of respiratory disease ED visits with biomass burning PM2.5; associations with diesel and gasoline PM2.5 were frequently imprecise or consistent with the null. We found little evidence of associations with dust PM2.5. Conclusions: We introduced an approach for comparing the chemical compositions of PM2.5 sources across cities and conducted one of the first multicity studies of source-specific PM2.5 and ED visits. Across four U.S. cities, among the primary PM2.5 sources assessed, biomass burning PM2.5 was most strongly associated with respiratory health. Citation: Krall JR, Mulholland JA, Russell AG, Balachandran S, Winquist A, Tolbert PE, Waller LA, Sarnat SE. 2017. Associations between source-specific fine particulate matter and emergency department visits for respiratory disease in four U.S. cities. Environ Health Perspect 125:97–103; http://dx.doi.org/10.1289/EHP271 PMID:27315241
Krall, Jenna R; Mulholland, James A; Russell, Armistead G; Balachandran, Sivaraman; Winquist, Andrea; Tolbert, Paige E; Waller, Lance A; Sarnat, Stefanie Ebelt
2017-01-01
Short-term exposure to ambient fine particulate matter (PM2.5) concentrations has been associated with increased mortality and morbidity. Determining which sources of PM2.5 are most toxic can help guide targeted reduction of PM2.5. However, conducting multicity epidemiologic studies of sources is difficult because source-specific PM2.5 is not directly measured, and source chemical compositions can vary between cities. We determined how the chemical composition of primary ambient PM2.5 sources varies across cities. We estimated associations between source-specific PM2.5 and respiratory disease emergency department (ED) visits and examined between-city heterogeneity in estimated associations. We used source apportionment to estimate daily concentrations of primary source-specific PM2.5 for four U.S. cities. For sources with similar chemical compositions between cities, we applied Poisson time-series regression models to estimate associations between source-specific PM2.5 and respiratory disease ED visits. We found that PM2.5 from biomass burning, diesel vehicle, gasoline vehicle, and dust sources was similar in chemical composition between cities, but PM2.5 from coal combustion and metal sources varied across cities. We found some evidence of positive associations of respiratory disease ED visits with biomass burning PM2.5; associations with diesel and gasoline PM2.5 were frequently imprecise or consistent with the null. We found little evidence of associations with dust PM2.5. We introduced an approach for comparing the chemical compositions of PM2.5 sources across cities and conducted one of the first multicity studies of source-specific PM2.5 and ED visits. Across four U.S. cities, among the primary PM2.5 sources assessed, biomass burning PM2.5 was most strongly associated with respiratory health. Citation: Krall JR, Mulholland JA, Russell AG, Balachandran S, Winquist A, Tolbert PE, Waller LA, Sarnat SE. 2017. Associations between source-specific fine particulate matter and emergency department visits for respiratory disease in four U.S. cities. Environ Health Perspect 125:97-103; http://dx.doi.org/10.1289/EHP271.
Spagnolo, Anna Maria; Ottria, Gianluca; Perdelli, Fernanda; Cristina, Maria Luisa
2015-01-01
Background: Exposure to the particulate matter produced in underground railway systems is arousing increasing scientific interest because of its health effects. The aim of our study was to evaluate the airborne concentrations of PM10 and three sub-fractions of PM2.5 in an underground railway system environment in proximity to platforms and in underground commercial areas within the system, and to compare these with the outdoor airborne concentrations. We also evaluated the metal components, the cytotoxic properties of the various fractions of particulate matter (PM) and their capacity to induce oxidative stress. Method: We collected the coarse fraction (5–10 µm) and the fine fractions (1–2.5 µm; 0.5–1 µm; 0.25–0.5 µm). Chemical characterisation was determined by means of spectrometry. Cytotoxicity and oxidative stress were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Reactive Oxygen Species (ROS) assessment. Results: The concentrations of both PM10 and PM2.5 proved to be similar at the three sampling sites. Iron and other transition metals displayed a greater concentration at the subway platform than at the other two sites. The 2.5–10 µm and 1–2.5 µm fractions of PM from all three sampling sites determined a greater increase in ROS; the intensity of oxidative stress progressively declined as particle diameter diminished. Moreover, ROS concentrations were correlated with the concentrations of some transition metals, namely Mn, Cr, Ti, Fe, Cu, Zn, Ni and Mo. All particulate matter fractions displayed lower or similar ROS values between platform level and the outdoor air. Conclusions: The present study revealed that the underground railway environment at platform level, although containing higher concentrations of some particularly reactive metallic species, did not display higher cytotoxicity and oxidative stress levels than the outdoor air. PMID:25872016
Spagnolo, Anna Maria; Ottria, Gianluca; Perdelli, Fernanda; Cristina, Maria Luisa
2015-04-13
Exposure to the particulate matter produced in underground railway systems is arousing increasing scientific interest because of its health effects. The aim of our study was to evaluate the airborne concentrations of PM10 and three sub-fractions of PM2.5 in an underground railway system environment in proximity to platforms and in underground commercial areas within the system, and to compare these with the outdoor airborne concentrations. We also evaluated the metal components, the cytotoxic properties of the various fractions of particulate matter (PM) and their capacity to induce oxidative stress. We collected the coarse fraction (5-10 µm) and the fine fractions (1-2.5 µm; 0.5-1 µm; 0.25-0.5 µm). Chemical characterisation was determined by means of spectrometry. Cytotoxicity and oxidative stress were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Reactive Oxygen Species (ROS) assessment. The concentrations of both PM10 and PM2.5 proved to be similar at the three sampling sites. Iron and other transition metals displayed a greater concentration at the subway platform than at the other two sites. The 2.5-10 µm and 1-2.5 µm fractions of PM from all three sampling sites determined a greater increase in ROS; the intensity of oxidative stress progressively declined as particle diameter diminished. Moreover, ROS concentrations were correlated with the concentrations of some transition metals, namely Mn, Cr, Ti, Fe, Cu, Zn, Ni and Mo. All particulate matter fractions displayed lower or similar ROS values between platform level and the outdoor air. The present study revealed that the underground railway environment at platform level, although containing higher concentrations of some particularly reactive metallic species, did not display higher cytotoxicity and oxidative stress levels than the outdoor air.
NASA Astrophysics Data System (ADS)
Yadav, Ravi; Beig, G.; Jaaffrey, S. N. A.
2014-03-01
The city of Udaipur (24.58°N, 73.68°E) in the province of Rajasthan in the Western part of India has a special significance as it is surrounded by the Arawali mountain ranges on one side and desert on the other side. It is located around the foothills of the rocky Arawali range. It is on the world map due to its tourist attraction. The changing pattern in particulate matter (PM2.5 and PM10) during the past three years indicates an alarming increasing trend, posing a threat to its environment & tourism sector which regulates its economy to a period during the monsoon and distribution of particulate matter is found to be governed by the meteorology and changes the trend. The level of PM10, which was already above the threshold level in 2010, further increased in 2012. The trend is found to be rapid during the months of October & November where an increase by 37% is observed in 3 years. The level of PM2.5, which is the most hazardous for respiratory system diseases, has now started to cross the ambient air quality standards set by the World Health Organization. The impact is significant during winter when the inversion layer is down due to colder temperature and foreign tourists are a peak giving rise an increased morbidity rate. The linkages of local weather with an anthropogenically induced trend and long range transport of pollutants have been outlined.
Qiu, Hong; Tian, Linwei; Wang, Xiaorong; Tse, Lap Ah; Tam, Wilson; Wong, Tze Wai
2012-01-01
Background: Many epidemiological studies have linked daily counts of hospital admissions to particulate matter (PM) with an aerodynamic diameter ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5), but relatively few have investigated the relationship of hospital admissions with coarse PM (PMc; 2.5–10 μm aerodynamic diameter). Objectives: We conducted this study to estimate the health effects of PMc on emergency hospital admissions for respiratory diseases in Hong Kong after controlling for PM2.5 and gaseous pollutants. Methods: We conducted a time-series analysis of associations between daily emergency hospital admissions for respiratory diseases in Hong Kong from January 2000 to December 2005 and daily PM2.5 and PMc concentrations. We estimated PMc concentrations by subtracting PM2.5 from PM10 measurements. We used generalized additive models to examine the relationship between PMc (single- and multiday lagged exposures) and hospital admissions adjusted for time trends, weather conditions, influenza outbreaks, PM2.5, and gaseous pollutants (nitrogen dioxide, sulfur dioxide, and ozone). Results: A 10.9-μg/m3 (interquartile range) increase in the 4-day moving average concentration of PMc was associated with a 1.94% (95% confidence interval: 1.24%, 2.64%) increase in emergency hospital admissions for respiratory diseases that was attenuated but still significant after controlling for PM2.5. Adjusting for gaseous pollutants and altering models assumptions had little influence on PMc effect estimates. Conclusion: PMc was associated with emergency hospital admissions for respiratory diseases in Hong Kong independent of PM2.5 and gaseous pollutants. Further research is needed to evaluate health effects of different components of PMc. PMID:22266709
Wang, Yi; Eliot, Melissa N.; Wellenius, Gregory A.
2014-01-01
Background Stroke is a leading cause of death and long‐term disability in the United States. There is a well‐documented association between ambient particulate matter air pollution (PM) and cardiovascular disease morbidity and mortality. Given the pathophysiologic mechanisms of these effects, short‐term elevations in PM may also increase the risk of ischemic and/or hemorrhagic stroke morbidity and mortality, but the evidence has not been systematically reviewed. Methods and Results We provide a comprehensive review of all observational human studies (January 1966 to January 2014) on the association between short‐term changes in ambient PM levels and cerebrovascular events. We also performed meta‐analyses to evaluate the evidence for an association between each PM size fraction (PM2.5, PM10, PM2.5‐10) and each outcome (total cerebrovascular disease, ischemic stroke/transient ischemic attack, hemorrhagic stroke) separately for mortality and hospital admission. We used a random‐effects model to estimate the summary percent change in relative risk of the outcome per 10‐μg/m3 increase in PM. Conclusions We found that PM2.5 and PM10 are associated with a 1.4% (95% CI 0.9% to 1.9%) and 0.5% (95% CI 0.3% to 0.7%) higher total cerebrovascular disease mortality, respectively, with evidence of inconsistent, nonsignificant associations for hospital admission for total cerebrovascular disease or ischemic or hemorrhagic stroke. Current limited evidence does not suggest an association between PM2.5‐10 and cerebrovascular mortality or morbidity. We discuss the potential sources of variability in results across studies, highlight some observations, and identify gaps in literature and make recommendations for future studies. PMID:25103204
Particulate Matter Exposure in a Police Station Located near a Highway
Chen, Yu-Cheng; Hsu, Chin-Kai; Wang, Chia C.; Tsai, Perng-Jy; Wang, Chun-Yuan; Chen, Mei-Ru; Lin, Ming-Yeng
2015-01-01
People living or working near roadways have experienced an increase in cardiovascular or respiratory diseases due to vehicle emissions. Very few studies have focused on the PM exposure of highway police officers, particularly for the number concentration and size distribution of ultrafine particles (UFP). This study evaluated exposure concentrations of particulate matter (PM) in the Sinying police station near a highway located in Tainan, Taiwan, under different traffic volumes, traffic types, and shift times. We focused on periods when the wind blew from the highway toward the police station and when the wind speed was greater than or equal to 0.5 m/s. PM2.5, UFP, and PM-PAHs concentrations in the police station and an upwind reference station were measured. Results indicate that PM2.5, UFP, and PM-PAHs concentrations in the police station can be on average 1.13, 2.17, and 5.81 times more than the upwind reference station concentrations, respectively. The highest exposure level for PM2.5 and UFP was observed during the 12:00 PM–4:00 PM shift while the highest PAHs concentration was found in the 4:00 AM–8:00 AM shift. Thus, special attention needs to be given to protect police officers from exposure to high PM concentration. PMID:26580641
Differential cardiopulmonary effects of size-fractionated ambient particulate matter in mice
Background: A growing body of evidence from epidemiological and toxicological studies provides a strong link between exposure to ambient particulate matter (PM) particles of varying size and increased cardiovascular and respiratory morbidity and mortality. Objectives: Evaluate t...
Lee, Jeong-Won; Seok, Jin Kyung; Boo, Yong Chool
2018-01-01
Airborne particulate matter can cause oxidative stress, inflammation, and premature skin aging. Marine plants such as Ecklonia cava Kjellman contain high amounts of polyphenolic antioxidants. The purpose of this study was to examine the antioxidative effects of E. cava extract in cultured keratinocytes exposed to airborne particulate matter with a diameter of <10 μ m (PM10). After the exposure of cultured HaCaT keratinocytes to PM10 in the absence and presence of E. cava extract and its constituents, cell viability and cellular lipid peroxidation were assessed. The effects of eckol and dieckol on cellular lipid peroxidation and cytokine expression were examined in human epidermal keratinocytes exposed to PM10. The total phenolic content of E. cava extract was the highest among the 50 marine plant extracts examined. The exposure of HaCaT cells to PM10 decreased cell viability and increased lipid peroxidation. The PM10-induced cellular lipid peroxidation was attenuated by E. cava extract and its ethyl acetate fraction. Dieckol more effectively attenuated cellular lipid peroxidation than eckol in both HaCaT cells and human epidermal keratinocytes. Dieckol and eckol attenuated the expression of inflammatory cytokines such as tumor necrosis factor- (TNF-) α , interleukin- (IL-) 1 β , IL-6, and IL-8 in human epidermal keratinocytes stimulated with PM10. This study suggested that the polyphenolic constituents of E. cava , such as dieckol, attenuated the oxidative and inflammatory reactions in skin cells exposed to airborne particulate matter.
Field Study on the formation and emission characteristics of PM2.5 in coal fired power plant unit
NASA Astrophysics Data System (ADS)
Xia, Yongjun; Huang, Guohui; Zhu, Yunpeng; Wang, Qian
2018-05-01
Particulate matter(PM) measurements were performed at the inlet and outlet of Fabric filter(FF) and the outlet of limestone-gypsum wet flue gas desulfurization (WFGD) tower at a 220MW pulverized coal fired power plant unit, and the PM formation characteristics, the performance characteristics of FF and the influence of WFGD to PM emission were discussed. The results showed that PM were of bimodal size distribution. The concentration of PMs larger than 2.5μm reduced in the WFGD while PMs less than 2.5μm particularly the PM diameter around 0.5μm increased due to the ultrafine PM aggregation as well as new PM formation from gypsum slurry entrainment.
Characterization of particulate matter binding peptides screened from phage display.
Liang Alvin, Aw Wei; Tanaka, Masayoshi; Okochi, Mina
2017-05-01
Particulate matter (PM), especially particulates with diameters of less than 2.5 μm, can penetrate the alveolar region and increase the risk of respiratory diseases. This has stimulated research efforts to develop detection methods so that counter measures can be taken. In this study, four PM binding peptides were obtained by phage display and binding characteristics of these peptides were investigated using the peptide array. The strongest binding peptide, WQDFGAVRSTRS, displayed a binding property, measured in terms of spot intensity, 11.4 times higher than that of the negative control, AAAAA. Inductively coupled plasma mass spectrometry (ICPMS) analysis of the transition metal compounds in the PM bound to the peptide spots was performed, and two peptides showed higher binding towards Cu and Zn compounds in PM. These results suggest that the screened peptides could serve as an indicator of transition metal compounds, which are related to adverse health effects, contained in PM. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Meng, Kai; Wu, Bo; Gao, Jing; Cai, Yumei; Yao, Meiling; Wei, Liangmeng; Chai, Tongjie
2016-01-01
The objective of this study was to obtain insight into the adverse health effects of airborne particulate matter (PM) collected from live bird markets and to determine whether biological material in PM accounts for immune-related inflammatory response. Mice were exposed to a single or repeated dose of PM, after which the expression of toll-like receptors (TLRs), cytokines, and chemokines in the lungs of infected mice were examined by enzyme-linked immunosorbent assay and histopathological analysis. Results after single and repeated PM stimulation with [Formula: see text] indicated that TLR2 and TLR4 played a dominant role in the inflammatory responses of the lung. Further analysis demonstrated that the expression levels of IL-1β, TNF-α, IFN-γ, IL-8, IP-10, and MCP-1 increased significantly, which could eventually contribute to lung injury. Moreover, biological components in PM were critical in mediating immune-related inflammatory responses and should therefore not be overlooked.
Balsa, Ana Ines; Caffera, Marcelo; Bloomfield, Juanita
2016-11-01
The ashes and dust resulting from the 2011 eruptions of the Puyehue volcano in Chile more than doubled monthly averages of PM10 concentrations in Montevideo, Uruguay. Few studies have taken advantage of natural experiments to assess the relationship between ambient air pollutant concentrations and birth outcomes. In this study we explored the effect of particulate matter with diameter of ≤ 10 μm (PM10) on perinatal outcomes in Uruguay, a middle-income country in South America with levels of PM10 that in general do not exceed the recommended thresholds. The analyzed outcomes are preterm birth, term birth weight, and term low birth weight. We took advantage of the sharp variation in PM10 concentrations due to the Puyehue eruptions to estimate the associations between mother's exposure to PM10 in each trimester of pregnancy and perinatal outcomes. We use birth registries for 2010-2013 and control for covariates, including maternal and pregnancy characteristics, weather, co-pollutants, and calendar quarter and hospital indicators. A 10-μg/m3 increase in exposure to PM10 during the third trimester was associated with a higher likelihood of a preterm birth [odds ratio (OR) = 1.10; 95% CI: 1.03, 1.19]. The association was robust to different model specifications, and increased with categorical exposure levels (OR for third-trimester PM10 ≥ 70 vs. < 30 μg/m3 = 5.24; 95% CI: 3.40, 8.08). Exposures were not consistently associated with birth weight or low birth weight among term births, though second-trimester exposures were associated with higher birth weight, contrary to expectations. Taking advantage of a natural experiment, we found evidence that exposure to high levels of PM10 during the third trimester of pregnancy may have increased preterm births among women in Montevideo, Uruguay. Citation: Balsa AI, Caffera M, Bloomfield J. 2016. Exposures to particulate matter from the eruptions of the Puyehue Volcano and birth outcomes in Montevideo, Uruguay. Environ Health Perspect 124:1816-1822; http://dx.doi.org/10.1289/EHP235.
Balsa, Ana Ines; Caffera, Marcelo; Bloomfield, Juanita
2016-01-01
Background: The ashes and dust resulting from the 2011 eruptions of the Puyehue volcano in Chile more than doubled monthly averages of PM10 concentrations in Montevideo, Uruguay. Few studies have taken advantage of natural experiments to assess the relationship between ambient air pollutant concentrations and birth outcomes. Objectives: In this study we explored the effect of particulate matter with diameter of ≤ 10 μm (PM10) on perinatal outcomes in Uruguay, a middle-income country in South America with levels of PM10 that in general do not exceed the recommended thresholds. The analyzed outcomes are preterm birth, term birth weight, and term low birth weight. Methods: We took advantage of the sharp variation in PM10 concentrations due to the Puyehue eruptions to estimate the associations between mother’s exposure to PM10 in each trimester of pregnancy and perinatal outcomes. We use birth registries for 2010–2013 and control for covariates, including maternal and pregnancy characteristics, weather, co-pollutants, and calendar quarter and hospital indicators. Results: A 10-μg/m3 increase in exposure to PM10 during the third trimester was associated with a higher likelihood of a preterm birth [odds ratio (OR) = 1.10; 95% CI: 1.03, 1.19]. The association was robust to different model specifications, and increased with categorical exposure levels (OR for third-trimester PM10 ≥ 70 vs. < 30 μg/m3 = 5.24; 95% CI: 3.40, 8.08). Exposures were not consistently associated with birth weight or low birth weight among term births, though second-trimester exposures were associated with higher birth weight, contrary to expectations. Conclusions: Taking advantage of a natural experiment, we found evidence that exposure to high levels of PM10 during the third trimester of pregnancy may have increased preterm births among women in Montevideo, Uruguay. Citation: Balsa AI, Caffera M, Bloomfield J. 2016. Exposures to particulate matter from the eruptions of the Puyehue Volcano and birth outcomes in Montevideo, Uruguay. Environ Health Perspect 124:1816–1822; http://dx.doi.org/10.1289/EHP235 PMID:27152597
Formation of Particulate Matter from the Oxidation of Evaporated Hydraulic Fracturing Wastewater.
Bean, Jeffrey K; Bhandari, Sahil; Bilotto, Anthony; Hildebrandt Ruiz, L
2018-04-17
The use of hydraulic fracturing for production of petroleum and natural gas has increased dramatically in the past decade, but the environmental impacts of this technology remain unclear. Experiments were conducted to quantify airborne emissions from 12 samples of hydraulic fracturing flowback wastewater collected in the Permian Basin, as well as the photochemical processing of these emissions leading to the formation of particulate matter (PM). The concentration of total volatile carbon (hydrocarbons evaporating at room temperature) averaged 29 mg of carbon per liter. After photochemical oxidation under high NO x conditions, the amount of organic PM formed per milliliter of wastewater evaporated averaged 24 μg; the amount of ammonium nitrate formed averaged 262 μg. Based on the mean PM formation observed in these experiments, the estimated formation of PM from evaporated flowback wastewater in the state of Texas is in the range of estimated PM emissions from diesel engines used in oil rigs. Evaporation of flowback wastewater, a hitherto unrecognized source of secondary pollutants, could significantly contribute to ambient PM concentrations.
Particulate Matter Sources and Composition near a Shrinking Saline Lake (Salton Sea)
NASA Astrophysics Data System (ADS)
Frie, A. L.; Dingle, J. H.; Garrison, A.; Ying, S.; Bahreini, R.
2017-12-01
Dried lake beds (playas) are large dust sources in arid regions, and with increased global water demand many large lakes are shrinking. The Salton Sea is an example of one such lake in the early stages of desiccation, with about 15,000 acres of exposed playa. To quantify the impacts of the shrinking lake on airborne particulate matter(PM) composition, PM samples were collected in August of 2015 and February of 2016 near the Salton Sea, CA. These samples were analyzed for total elemental concentration of 15 elements. For these elements, enrichment factors relative to aluminum were calculated and PMF modeling was applied to deconvolve source factors. From these data, desert-like and playa-like sources were estimated to accounted for 45% and 9% of PM10 mass during these sampling periods. PMF results also revealed that playa sources account for 70% of PM10 Na, evidencing playa-driven PM compositional changes. Additionally, PM Se displayed strong seasonal variation, which is thought to be driven by Se volatilization within Salton Sea sediments, playas, or waters.
Martin, Randall V.; Brauer, Michael; Boys, Brian L.
2014-01-01
Background: More than a decade of satellite observations offers global information about the trend and magnitude of human exposure to fine particulate matter (PM2.5). Objective: In this study, we developed improved global exposure estimates of ambient PM2.5 mass and trend using PM2.5 concentrations inferred from multiple satellite instruments. Methods: We combined three satellite-derived PM2.5 sources to produce global PM2.5 estimates at about 10 km × 10 km from 1998 through 2012. For each source, we related total column retrievals of aerosol optical depth to near-ground PM2.5 using the GEOS–Chem chemical transport model to represent local aerosol optical properties and vertical profiles. We collected 210 global ground-based PM2.5 observations from the literature to evaluate our satellite-based estimates with values measured in areas other than North America and Europe. Results: We estimated that global population-weighted ambient PM2.5 concentrations increased 0.55 μg/m3/year (95% CI: 0.43, 0.67) (2.1%/year; 95% CI: 1.6, 2.6) from 1998 through 2012. Increasing PM2.5 in some developing regions drove this global change, despite decreasing PM2.5 in some developed regions. The estimated proportion of the population of East Asia living above the World Health Organization (WHO) Interim Target-1 of 35 μg/m3 increased from 51% in 1998–2000 to 70% in 2010–2012. In contrast, the North American proportion above the WHO Air Quality Guideline of 10 μg/m3 fell from 62% in 1998–2000 to 19% in 2010–2012. We found significant agreement between satellite-derived estimates and ground-based measurements outside North America and Europe (r = 0.81; n = 210; slope = 0.68). The low bias in satellite-derived estimates suggests that true global concentrations could be even greater. Conclusions: Satellite observations provide insight into global long-term changes in ambient PM2.5 concentrations. Satellite-derived estimates and ground-based PM2.5 observations from this study are available for public use. Citation: van Donkelaar A, Martin RV, Brauer M, Boys BL. 2015. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ Health Perspect 123:135–143; http://dx.doi.org/10.1289/ehp.1408646 PMID:25343779
40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.1489 Section 52.1489 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the...
40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.1489 Section 52.1489 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the...
Direct contact with particulate matter increases oxidative stress in different brain structures.
Fagundes, Lucas Sagrillo; Fleck, Alan da Silveira; Zanchi, Ana Claudia; Saldiva, Paulo Hilário Nascimento; Rhoden, Cláudia Ramos
2015-01-01
Several experimental and epidemiological studies have demonstrated the neurological adverse effects caused by exposure to air pollution, specifically in relation to pollutant particulate matter (PM). The objective of this study was to investigate the direct effect of PM in increased concentrations in different brain regions, as well as the mechanisms involving its neurotoxicity, by evaluating oxidative stress parameters in vitro. Olfactory bulb, cerebral cortex, striatum, hippocampus and cerebellum of rats were homogenized and incubated with PM < 2.5 μm of diameter (PM2.5) at concentrations of 3, 5 and 10 µg/mg of tissue. The oxidative damage caused by lipid peroxidation of these structures was determined by testing the thiobarbituric acid reactive species (TBA-RS). In addition, we measured the activity of antioxidant enzyme catalase (CAT) and superoxide dismutase (SOD). All PM concentrations were able to damage the cerebellum and hippocampus, strongly enhancing the lipid peroxidation in both structures. PM incubation also decreased the CAT activity of the hippocampus, cerebellum, striatum and olfactory bulb, though it did not generate higher levels of lipid peroxidation in either of the last two structures. PM incubation did not alter any measurement of the cerebral cortex. The cerebellum and hippocampus seem to be more susceptible than other brain structures to in vitro direct PM exposure assay and the oxidative stress pathway catalyzes the neurotoxic effect of PM exposure, as evidenced by high consumption of CAT and high levels of TBA-RS. Thus, PM direct exposure seems to activate toxic neurological effects.
Yi, Honghong; Hao, Jiming; Duan, Lei; Li, Xinghua; Guo, Xingming
2006-09-01
In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 microm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38-99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1-1 microm. In this size range, ESP and baghouse collection efficiencies are 85.79-98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.
Effect of fireworks display on perchlorate in air aerosols during the Spring Festival
NASA Astrophysics Data System (ADS)
Shi, Yali; Zhang, Ning; Gao, Jianmin; Li, Xin; Cai, Yaqi
2011-02-01
Perchlorate is regarded as a new emerging persistent inorganic environmental contaminant. It can result in important neurodevelopmental deficits and goiter in infants and children because of its inhibition of iodine uptake into the thyroid tissue. Furthermore, its presence in the human body can cause improper regulation of metabolism for adults. It is often used as ingredient in the production of fireworks. So fireworks display may influence the perchlorate levels in atmospheric particulate matter (PM). In this paper perchlorate was determined in air aerosol samples (Inhalable particulate matter (PM10) and larger particulate matter (PM10-100)) collected from two locations (Lanzhou City and Yuzhong County) in Gansu province over a month period (February 1rst to March 4th) during the Spring Festival (February 18th) in 2007 in order to study the effect of fireworks display on perchlorate in air aerosol. The results showed that different concentrations of perchlorate were detected in almost all samples, ranging from
Particulate Matter Concentrations in East Oakland's High Street Corridor
NASA Astrophysics Data System (ADS)
Lei, P.; Jackson, J.; Lewis, R.; Marigny, A.; Mitchell, J. D.; Nguyen, R.; Philips, B.; Randle, D.; Romero, D.; Spears, D.; Telles, C.; Weissman, D.
2012-12-01
Particulate matter (PM) is a complex mixture of small solid pieces and/or liquid droplets in the air. High concentrations of PM can pose a serious health hazard because inhalation can result in breathing problems and/or aggravate asthma. Long term exposure can increase the likelihood of respiratory problems like asthma and emphysema as well as cancer. The smaller the particles, the deeper they can get into the respiratory system. For this reason, the smallest particles, those smaller than 2.5 micrometers in diameter (PM2.5), are the most dangerous. PM2.5 is largely emitted from motor vehicles burning fuels that don't break down fully. Our research team investigated the levels of PM2.5 as well as particles smaller than 10 micrometers (PM10) and total suspended particulate (TSP) along the northeast-southwest trending High Street Corridor, near Fremont High School in East Oakland, California. Using the Aerocet 531 mass particle counter, team members walked through neighborhoods and along major roads within a 1 mile radius of Fremont High School. The Aerocet 531 recorded two minute average measurements of all the relevant PM sizes, which are reported in mg/m3. Measurements were consistently taken in the morning, between 8:30 and 11:30 am. Preliminary results indicate maximum readings of all PM sizes at sites that are in close proximity to a major freeway (Interstate-880). These results support our initial hypothesis that proximity to major roads and freeways, especially those with high diesel-fuel burning truck traffic, would be the primary factor affecting PM concentration levels. Preliminary median and maximum readings all suggest particulate matter levels below what the EPA would consider unhealthy or risky.
NASA Astrophysics Data System (ADS)
Xu, J.-W.; Martin, R. V.; van Donkelaar, A.; Kim, J.; Choi, M.; Zhang, Q.; Geng, G.; Liu, Y.; Ma, Z.; Huang, L.; Wang, Y.; Chen, H.; Che, H.; Lin, P.; Lin, N.
2015-11-01
We determine and interpret fine particulate matter (PM2.5) concentrations in eastern China for January to December 2013 at a horizontal resolution of 6 km from aerosol optical depth (AOD) retrieved from the Korean geostationary ocean color imager (GOCI) satellite instrument. We implement a set of filters to minimize cloud contamination in GOCI AOD. Evaluation of filtered GOCI AOD with AOD from the Aerosol Robotic Network (AERONET) indicates significant agreement with mean fractional bias (MFB) in Beijing of 6.7 % and northern Taiwan of -1.2 %. We use a global chemical transport model (GEOS-Chem) to relate the total column AOD to the near-surface PM2.5. The simulated PM2.5 / AOD ratio exhibits high consistency with ground-based measurements in Taiwan (MFB = -0.52 %) and Beijing (MFB = -8.0 %). We evaluate the satellite-derived PM2.5 versus the ground-level PM2.5 in 2013 measured by the China Environmental Monitoring Center. Significant agreement is found between GOCI-derived PM2.5 and in situ observations in both annual averages (r2 = 0.66, N = 494) and monthly averages (relative RMSE = 18.3 %), indicating GOCI provides valuable data for air quality studies in Northeast Asia. The GEOS-Chem simulated chemical composition of GOCI-derived PM2.5 reveals that secondary inorganics (SO42-, NO3-, NH4+) and organic matter are the most significant components. Biofuel emissions in northern China for heating increase the concentration of organic matter in winter. The population-weighted GOCI-derived PM2.5 over eastern China for 2013 is 53.8 μg m-3, with 400 million residents in regions that exceed the Interim Target-1 of the World Health Organization.
Pérez-Prieto, L A; Delagarde, R
2012-09-01
Grazing management is a key factor in pasture-based dairy systems, which can be improved given advanced knowledge of the effects of pregrazing pasture mass (PM) on the performance of dairy cows. The aim of this study was to quantify the effects of PM on the pasture intake, milk production, milk composition, and grazing behavior of strip- or rotational-grazing dairy cows, based on a meta-analysis of published research papers. A database was created that included experiments in which the effects of PM on pasture intake and milk production of dairy cows were studied. Papers were selected only if at least 2 PM were compared under similar experimental conditions, particularly the same pasture allowance (SPA). The final database included 15 papers with 27 PM comparisons. For analytical purposes, the database was subdivided into 3 subsets that varied according to the estimation height at which pasture allowance was determined; that is, where PM were compared at the SPA above ground level (SPA(0) subset), above 2 to 3 cm (SPA(3) subset), and above 4 to 5 cm (SPA(5) subset). Statistical analyses were conducted on the entire database (global analysis) and within each subset using linear model procedures. An interaction between PM and estimation height was found for pasture intake and milk production in the global analysis. On the basis of the predictive equations, pasture intake increased by 1.58 kg of dry matter/d per tonne increase in PM when PM were compared at SPA(0), was not affected by PM when PM were compared at SPA(3), and decreased by 0.65 kg of dry matter/d per tonne increase in PM when PM were compared at SPA(5). This is consistent with the effect of PM on milk production, which was positive and negative (1.04 and -0.79 kg/t of PM, respectively) when PM were compared at SPA(0) and SPA(5), respectively. Grazing time was only slightly affected by PM, irrespective of estimation height, because the effect of PM on pasture intake was mainly dependent on the variation in pasture intake rate. Pasture intake rate increased with increasing PM at SPA(0) but decreased with increasing PM at SPA(5). This meta-analysis clearly demonstrates that the effects of PM on pasture intake, milk production, and behavior of strip-grazing dairy cows depend largely on the height at which the PM and pasture allowance are measured. These results have methodological implications for future grazing research because it can be recommended that PM be compared at similar levels of pasture availability (i.e., at the same pasture allowance above 2 to 3 cm) to avoid possible misinterpretations of results. They also reveal the benefits of improving grazing management and intake prediction through modeling in pasture-based dairy systems. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Zhang, Zhi-Dan; Xi, Ben-Ye; Cao, Zhi-Guo; Jia, Li-Ming
2014-08-01
Taking Populus tomentosa as an example, a methodology called elution-weighing-particle size-analysis (EWPA) was proposed to evaluate quantitatively the ability of retaining fine particulate matter (PM2.5, diameter d ≤ 2.5 μm) and atmospheric particulate matter by plant leaves using laser particle size analyzer and balance. This method achieved a direct, accurate measurement with superior operability about the quality and particle size distribution of atmospheric particulate matter retained by plant leaves. First, a pre-experiment was taken to test the stability of the method. After cleaning, centrifugation and drying, the particulate matter was collected and weighed, and then its particle size distribution was analyzed by laser particle size analyzer. Finally, the mass of particulate matter retained by unit area of leaf and stand was translated from the leaf area and leaf area index. This method was applied to a P. tomentosa stand which had not experienced rain for 27 days in Beijing Olympic Forest Park. The results showed that the average particle size of the atmospheric particulate matter retained by P. tomentosa was 17.8 μm, and the volume percentages of the retained PM2.5, inhalable particulate matter (PM10, d ≤ 10 μm) and total suspended particle (TSP, d ≤ 100 μm) were 13.7%, 47.2%, and 99.9%, respectively. The masses of PM2.5, PM10, TSP and total particulate matter were 8.88 x 10(-6), 30.6 x 10(-6), 64.7 x 10(-6) and 64.8 x 10(-6) g x cm(-2) respectively. The retention quantities of PM2.5, PM10, TSP and total particulate matter by the P. tomentosa stand were 0.963, 3.32, 7.01 and 7.02 kg x hm(-2), respectively.
Low exhaust temperature electrically heated particulate matter filter system
Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J.; Bhatia, Garima [Bangalore, IN
2012-02-14
A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.
Ischemic heart disease mortality and PM(3.5) in a cohort of autoworkers.
Costello, Sadie; Garcia, Erika; Hammond, S Katharine; Eisen, Ellen A
2013-03-01
Increased risk of ischemic heart disease (IHD) has been associated with particulate matter (PM) from air pollution. Yet evidence of increased risk associated with higher workplace exposures is scant. We examined the exposure-response relationship between IHD mortality and PM(3.5) (<3.5 µm diameter) from current and cumulative exposure to straight metalworking fluid in a cohort of 39,412 autoworkers followed from 1941 to 1995. Age, calendar year of follow up, sex, race, and plant were included in each model. To address the decrease in polycyclic-aromatic hydrocarbon (PAH) content in the straight metalworking fluid over time, analyses were stratified by calendar time. Increased risk of IHD mortality was associated with current exposure to PM(3.5) before 1971 and with cumulative exposure to PM(3.5) after 1971. Results provide modest evidence that occupational exposure to fine PM from straight fluids, especially fluid with higher PAH, may increase the risk of IHD mortality. Copyright © 2012 Wiley Periodicals, Inc.
PM levels in urban area of Bejaia
NASA Astrophysics Data System (ADS)
Benaissa, Fatima; Maesano, Cara Nichole; Alkama, Rezak; Annesi-Maesano, Isabella
2017-04-01
Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. The average city-wide PM10 and PM2.5 concentrations measured during this sampling were 87.8 ± 33.9 and 28.7 ± 10.6 µg/m3 respectively. These results show that particulate matter levels are high and exceed Algerian ambient air quality standards (maximum 80 µg/m3, without specifying the particle size). Further, PM10 and PM2.5 averages were well above the prescribed 24-hour average World Health Organization Air Quality Guidelines (WHO AQG) (50 µg/m3 for PM10 and 25 µg/m3 for PM2.5). The PM1, PM2,5, PM4 and PM7 fractions accounted for 15%, 32 %, 56% and 78% respectively of the PM10 measurements. Our analysis reveals that PM concentration variations in the study region were influenced primarily by traffic. In fact, lower PM10 concentrations (21.7 and 33.1 µg/m3) were recorded in residential sites while higher values (53.1, and 45.2 µg/m3) were registered in city centers. Keywords: Particulate matter, Urban area, vehicle fleet, Bejaia.
NASA Astrophysics Data System (ADS)
Nasir, Zaheer Ahmad; Colbeck, Ian; Ali, Zulfiqar; Ahmad, Shakil
2013-06-01
Around three billion people, largely in low and middle income countries, rely on biomass fuels for their household energy needs. The combustion of these fuels generates a range of hazardous indoor air pollutants and is an important cause of morbidity and mortality in developing countries. Worldwide, it is responsible for four million deaths. A reduction in indoor smoke can have a significant impact on lives and can help achieve many of the Millennium Developments Goals. This letter presents details of a seasonal variation in particulate matter (PM) concentrations in kitchens using biomass fuels as a result of relocating the cooking space. During the summer, kitchens were moved outdoors and as a result the 24 h average PM10, PM2.5 and PM1 fell by 35%, 22% and 24% respectively. However, background concentrations of PM10 within the village increased by 62%. In locations where natural gas was the dominant fuel, the PM concentrations within the kitchen as well as outdoors were considerably lower than those in locations using biomass. These results highlights the importance of ventilation and fuel type for PM levels and suggest that an improved design of cooking spaces would result in enhanced indoor air quality.
NASA Astrophysics Data System (ADS)
Mahmud, A.; Hixson, M.; Kleeman, M. J.
2012-02-01
The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. Climate change between 2000 vs. 2050 did not cause a statistically significant change in annual-average population-weighted PM2.5 mass concentrations within any major sub-region of California in the current study. Climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-year period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines particles (+32%) and wood combustion particles (+14%) when averaging across the population of the entire state. Enhanced stagnation also isolated populations from distant sources such as shipping (-61%) during extreme events. The combination of these factors altered the statewide population-averaged composition of particles during extreme events, with EC increasing by 23%, nitrate increasing by 58%, and sulfate decreasing by 46%.
NASA Astrophysics Data System (ADS)
Mahmud, A.; Hixson, M.; Kleeman, M. J.
2012-08-01
The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines particles (+32%) and wood combustion particles (+14%) when averaging across the population of the entire state. Enhanced stagnation also isolated populations from distant sources such as shipping (-61%) during extreme events. The combination of these factors altered the statewide population-averaged composition of particles during extreme events, with EC increasing by 23 %, nitrate increasing by 58%, and sulfate decreasing by 46%.
Goettems-Fiorin, Pauline Brendler; Grochanke, Bethânia Salamoni; Baldissera, Fernanda Giesel; Dos Santos, Analu Bender; Homem de Bittencourt, Paulo Ivo; Ludwig, Mirna Stela; Rhoden, Claudia Ramos; Heck, Thiago Gomes
2016-12-01
Exposure to fine particulate matter (PM 2.5 ) air pollution is a risk factor for type 2 diabetes (T2DM). We argue whether the potentiating effect of PM 2.5 over the development of T2DM in high-fat diet (HFD)-fed mice would be related to modification in cell stress response, particularly in antioxidant defenses and 70-kDa heat shock proteins (HSP70) status. Male mice were fed standard chow or HFD for 12 weeks and then randomly exposed to daily nasotropic instillation of PM 2.5 for additional 12 weeks under the same diet schedule, divided into four groups (n = 14-15 each): Control, PM 2.5 , HFD, and HFD + PM 2.5 were evaluated biometric and metabolic profiles of mice, and cellular stress response (antioxidant defense and HSP70 status) of metabolic tissues. Extracellular to intracellular HSP70 ratio ([eHSP72]/[iHSP70]), viz. H-index, was then calculated. HFD + PM 2.5 mice presented a positive correlation between adiposity, increased body weight and glucose intolerance, and increased glucose and triacylglycerol plasma levels. Pancreas exhibited lower iHSP70 expression, accompanied by 3.7-fold increase in the plasma to pancreas [eHSP72]/[iHSP70] ratio. Exposure to PM 2.5 markedly potentiated metabolic dysfunction in HFD-treated mice and promoted relevant alteration in cell stress response assessed by [eHSP72]/[iHSP70], a relevant biomarker of chronic low-grade inflammatory state and T2DM risk.
Zhang, Jingjing; Fulgar, Ciara C; Mar, Tiffany; Young, Dominique E; Zhang, Qi; Bein, Keith J; Cui, Liangliang; Castañeda, Alejandro; Vogel, Christoph F A; Sun, Xiaolin; Li, Wei; Smiley-Jewell, Suzette; Zhang, Zunzhen; Pinkerton, Kent E
2018-05-28
Asthma is a global and increasingly prevalent disease. According to the World Health Organization, approximately 235 million people suffer from asthma. Studies suggest that fine particulate matter (PM2.5) can induce innate immune responses, promote allergic sensitization, and exacerbate asthmatic symptoms and airway hyper-responsiveness. Recently, severe asthma and allergic sensitization have been associated with T-helper cell type 17 (TH17) activation. Few studies have investigated the links between PM2.5 exposure, allergic sensitization, asthma, and TH17 activation. This study aimed to determine whether 1) low-dose extracts of PM2.5 from California (PMCA) or China (PMCH) enhance allergic sensitization in mice following exposure to house dust mite (HDM) allergen; 2) eosinophilic or neutrophilic inflammatory responses result from PM and HDM exposure; and 3) TH17-associated cytokines are increased in the lung following exposure to PM and/or HDM.Ten-week old male BALB/c mice (n = 6-10/group) were intranasally instilled with phosphate-buffered saline (PBS), PM+PBS, HDM, or PM+HDM, on Days 1, 3, and 5 (sensitization experiments), and PBS or HDM on Days 12-14 (challenge experiments). Pulmonary function, bronchoalveolar lavage cell differentials, plasma immunoglobulin (Ig) protein levels, and lung tissue pathology, cyto-/chemo-kine proteins, and gene expression were assessed on Day 15.Results indicated low-dose PM2.5 extracts can enhance allergic sensitization and TH17-associated responses. While PMCA+HDM significantly decreased pulmonary function, and significantly increased neutrophils, Igs, and TH17-related protein and gene levels compared to HDM, there were no significant differences between HDM and PMCH+HDM treatments. This may result from greater copper and oxidized organic content in PMCA versus PMCH.
Selective Collection of Airborne Particulate Matter
Cheng, Meng -Dawn
2018-01-01
Here, airborne particulate matter (PM) or aerosol particles or simply aerosol are ubiquitous in the environment. They originate from natural processes such as wind erosion, road dust, forest fire, ocean spray and volcanic eruption, and man-made sources consuming fossil fuels resulting from utility power generation and transportation, and numerous industrial processes. Aerosols affect our daily life in many ways; PM reduces visibility in many polluted metropolitan areas, adversely impact human health and local air quality around the world. Aerosol alters cloud cycles and change atmospheric radiation balance. Changes in daily mortality associated with particulate air pollution were typically estimated atmore » approximately 0.5–1.5% per 10 µg m –3 increase in PM10 concentrations. Laden et al. (2006) found “an increase in overall mortality associated with each 10 µg m –3 increase in PM2.5 concentration either as the overall mean (rate ratio [RR], 1.16; 95% confidence interval [CI], 1.07–1.26) or as exposure in the year of death (RR, 1.14; 95% CI, 1.06–1.22). PM2.5 exposure was associated with lung cancer (RR, 1.27; 95% CI, 0.96–1.69) and cardiovascular deaths (RR, 1.28; 95% CI, 1.13–1.44). Improved overall mortality was associated with decreased mean PM 2.5 (10 µg m –3) between periods (RR, 0.73; 95% CI, 0.57–0.95)”. Aerosol particles also play an important role in source identification and apportionment. Since the PM problem is associated with many facets of societal issues such as energy production and economic development, making progress on reducing the effects of PM will require integrated strategies that bring together scientists, engineers and decision makers from different disciplines to consider tradeoffs.« less
Long-term Exposure to Fine Particulate Matter Air Pollution and Mortality Among Canadian Women.
Villeneuve, Paul J; Weichenthal, Scott A; Crouse, Daniel; Miller, Anthony B; To, Teresa; Martin, Randall V; van Donkelaar, Aaron; Wall, Claus; Burnett, Richard T
2015-07-01
Long-term exposure to fine particulate matter (PM2.5) has been associated with increased mortality, especially from cardiovascular disease. There are, however, uncertainties about the nature of the exposure-response relation at lower concentrations. In Canada, where ambient air pollution levels are substantially lower than in most other countries, there have been few attempts to study associations between long-term exposure to PM2.5 and mortality. We present a prospective cohort analysis of 89,248 women who enrolled in the Canadian National Breast Screening Study between 1980 and 1985, and for whom residential measures of PM2.5 could be assigned. We derived individual-level estimates of long-term exposure to PM2.5 from satellite observations. We linked cohort records to national mortality data to ascertain mortality between 1980 and 2005. We used Cox proportional hazards models to characterize associations between PM2.5 and several causes of death. The hazard ratios (HRs) and 95% confidence intervals (CIs) computed from these models were adjusted for several individual and neighborhood-level characteristics. The cohort was composed predominantly of Canadian-born (82%) and married (80%) women. The median residential concentration of PM2.5 was 9.1 μg/m(3) (standard deviation = 3.4). In fully adjusted models, a 10 μg/m(3) increase in PM2.5 exposure was associated with elevated risks of nonaccidental (HR: 1.12; 95% CI = 1.04, 1.19), and ischemic heart disease mortality (HR: 1.34; 95% CI = 1.09, 1.66). The findings from this study provide additional support for the hypothesis that exposure to very low levels of ambient PM2.5 increases the risk of cardiovascular mortality.
Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults.
Pun, Vivian C; Kazemiparkouhi, Fatemeh; Manjourides, Justin; Suh, Helen H
2017-10-15
The impact of chronic exposure to fine particulate matter (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5)) on respiratory disease and lung cancer mortality is poorly understood. In a cohort of 18.9 million Medicare beneficiaries (4.2 million deaths) living across the conterminous United States between 2000 and 2008, we examined the association between chronic PM2.5 exposure and cause-specific mortality. We evaluated confounding through adjustment for neighborhood behavioral covariates and decomposition of PM2.5 into 2 spatiotemporal scales. We found significantly positive associations of 12-month moving average PM2.5 exposures (per 10-μg/m3 increase) with respiratory, chronic obstructive pulmonary disease, and pneumonia mortality, with risk ratios ranging from 1.10 to 1.24. We also found significant PM2.5-associated elevated risks for cardiovascular and lung cancer mortality. Risk ratios generally increased with longer moving averages; for example, an elevation in 60-month moving average PM2.5 exposures was linked to 1.33 times the lung cancer mortality risk (95% confidence interval: 1.24, 1.40), as compared with 1.13 (95% confidence interval: 1.11, 1.15) for 12-month moving average exposures. Observed associations were robust in multivariable models, although evidence of unmeasured confounding remained. In this large cohort of US elderly, we provide important new evidence that long-term PM2.5 exposure is significantly related to increased mortality from respiratory disease, lung cancer, and cardiovascular disease. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Haikerwal, Anjali; Akram, Muhammad; Sim, Malcolm R; Meyer, Mick; Abramson, Michael J; Dennekamp, Martine
2016-01-01
The 2006-2007 wildfire period was one of the most extensive and long lasting fires in Australian history with high levels of fine particulate matter (PM2.5 ). Large populations were exposed to smoke for over 2 months. The study aimed to investigate the association between wildfire-related PM2.5 exposure and emergency department (ED) visits for asthma. A time-stratified case-crossover design was used to investigate associations between daily average PM2.5 and ED attendances for asthma from December 2006 to January 2007. ED data were obtained from the Victorian Emergency Minimum Dataset. Smoke dispersion during the wildfire event was modelled using a validated chemical transport model. Exposure data (daily average PM2.5 , temperature and relative humidity) were modelled for the study period. Various lag periods were investigated. There were 2047 ED attendances for asthma during the study period. After adjusting for temperature and relative humidity, an interquartile range increase in PM2.5 levels of 8.6 μg/m(3) was associated with an increase in ED attendances for asthma by 1.96% (95%CI: 0.02, 3.94) on the day of exposure. Lag periods up to 2 days prior did not show any association. A strong association was observed among women 20 years and older (5.08% 95%CI: 1.76, 8.51). Wildfire-related PM2.5 was associated with increased risk of ED attendance for asthma during the wildfire event. It is important to understand the role of wildfire PM2.5 as a trigger for asthma presentations. © 2015 Asian Pacific Society of Respirology.
Selective Collection of Airborne Particulate Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Meng -Dawn
Here, airborne particulate matter (PM) or aerosol particles or simply aerosol are ubiquitous in the environment. They originate from natural processes such as wind erosion, road dust, forest fire, ocean spray and volcanic eruption, and man-made sources consuming fossil fuels resulting from utility power generation and transportation, and numerous industrial processes. Aerosols affect our daily life in many ways; PM reduces visibility in many polluted metropolitan areas, adversely impact human health and local air quality around the world. Aerosol alters cloud cycles and change atmospheric radiation balance. Changes in daily mortality associated with particulate air pollution were typically estimated atmore » approximately 0.5–1.5% per 10 µg m –3 increase in PM10 concentrations. Laden et al. (2006) found “an increase in overall mortality associated with each 10 µg m –3 increase in PM2.5 concentration either as the overall mean (rate ratio [RR], 1.16; 95% confidence interval [CI], 1.07–1.26) or as exposure in the year of death (RR, 1.14; 95% CI, 1.06–1.22). PM2.5 exposure was associated with lung cancer (RR, 1.27; 95% CI, 0.96–1.69) and cardiovascular deaths (RR, 1.28; 95% CI, 1.13–1.44). Improved overall mortality was associated with decreased mean PM 2.5 (10 µg m –3) between periods (RR, 0.73; 95% CI, 0.57–0.95)”. Aerosol particles also play an important role in source identification and apportionment. Since the PM problem is associated with many facets of societal issues such as energy production and economic development, making progress on reducing the effects of PM will require integrated strategies that bring together scientists, engineers and decision makers from different disciplines to consider tradeoffs.« less
The distribution of particulate matter (PM) concentrations has an impact on human health effects and the setting of PM regulations. Since PM is commonly sampled on less than daily schedules, the magnitude of sampling errors needs to be determined. Daily PM data from Spokane, W...
Wang, Yanhua; Duan, Huawei; Meng, Tao; Shen, Meili; Ji, Qianpeng; Xing, Jie; Wang, Qingrong; Wang, Ting; Niu, Yong; Yu, Tao; Liu, Zhong; Jia, Hongbing; Zhan, Yuliang; Chen, Wen; Zhang, Zhihu; Su, Wenge; Dai, Yufei; Zhang, Xuchun; Zheng, Yuxin
2018-03-01
Exposure to fine particulate matter (PM 2.5 ) pollution is associated with increased morbidity and mortality from respiratory diseases. However, few population-based studies have been conducted to assess the alterations in circulating pulmonary proteins due to long-term PM 2.5 exposure. We designed a two-stage study. In the first stage (training set), we assessed the associations between PM 2.5 exposure and levels of pulmonary damage markers (CC16, SP-A and SP-D) and lung function in a coke oven emission (COE) cohort with 558 coke plant workers and 210 controls. In the second stage (validation set), significant initial findings were validated by an independent diesel engine exhaust (DEE) cohort with 50 DEE exposed workers and 50 controls. Serum CC16 levels decreased in a dose response manner in association with both external and internal PM 2.5 exposures in the two cohorts. In the training set, serum CC16 levels decreased with increasing duration of occupational PM 2.5 exposure history. An interquartile range (IQR) (122.0μg/m 3 ) increase in PM 2.5 was associated with a 5.76% decrease in serum CC16 levels, whereas an IQR (1.06μmol/mol creatinine) increase in urinary 1-hydroxypyrene (1-OHP) concentration was associated with a 5.36% decrease in serum CC16 levels in the COE cohort. In the validation set, the concentration of serum CC16 in the PM 2.5 exposed group was 22.42% lower than that of the controls and an IQR (1.24μmol/mol creatinine) increase in urinary 1-OHP concentration was associated with a 12.24% decrease in serum CC16 levels in the DEE cohort. Serum CC16 levels may be a sensitive marker for pulmonary damage in populations with high PM 2.5 exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.
The role of airborne mineral dusts in human disease
Morman, Suzette A.; Plumlee, Geoffrey S.
2013-01-01
Exposure to fine particulate matter (PM) is generally acknowledged to increase risk for human morbidity and mortality. However, particulate matter (PM) research has generally examined anthropogenic (industry and combustion by-products) sources with few studies considering contributions from geogenic PM (produced from the Earth by natural processes, e.g., volcanic ash, windborne ash from wildfires, and mineral dusts) or geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities, e.g., dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices). Globally, public health concerns are mounting, related to potential increases in dust emission from climate related changes such as desertification and the associated long range as well as local health effects. Recent epidemiological studies have identified associations between far-traveled dusts from primary sources and increased morbidity and mortality in Europe and Asia. This paper provides an outline of public health research and history as it relates to naturally occurring inorganic mineral dusts. We summarize results of current public health research and describe some of the many challenges related to understanding health effects from exposures to dust aerosols.
NASA Astrophysics Data System (ADS)
Xu, Yangyang; Lamarque, Jean-François
2018-03-01
Particulate matter with the diameter smaller than 2.5 μm (PM2.5) poses health threats to human population. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with Community Earth System Model 1 (CESM1), we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5%-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the primary cause of the increase in the PM2.5 column burden. Regionally over North America and East Asia, a shift of future precipitation toward more frequent heavy events contributes to weakened wet removal fluxes. Our results suggest climate change impact needs to be accounted for to define the future emission standards necessary to meet air quality standard.
Verma, Mukesh K; Poojan, Shiv; Sultana, Sarwat; Kumar, Sushil
2014-09-01
We examined the clastogenic and cell-transforming potential of ultrafine particulate matter fraction PM0.056 of urban ambient aerosol using mammalian cells. PM1.0, PM0.56 and PM0.056 fractions were sampled from roadside atmosphere of an urban area using the cascade impactor MOUDI-NR-110. The potential to induce cytotoxicity, DNA damage and micronuclei formation was examined at the test concentrations of 3, 6, 12.5, 25, 50 and 100 μg/ml using the 3-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, the plasmid relaxation assay and the C3H10T1/2 (10T1/2) cells. The cell-transforming potential was investigated in vitro using 10T1/2 cell transformation assay and the soft agar assay. PM1, PM0.56 and PM0.056 fractions were found to be toxic in dose-dependent manner. These induced cytotoxicity at five test concentrations, the ultrafine particle fraction PM0.056 showed greater cytotoxic potential. PM0.056 induced micronucleus formation in 10T1/2 cells. The effect was statistically significant. The DNA-damaging potential was measured in a plasmid relaxation assay. Both fine and ultrafine particle fraction PM0.56 and PM0.056 displayed greater effect as compared to larger PM1 fraction. DNA damage was found to be dependent on particulate matter intrinsic pro-oxidant chemicals. The ability of the ultrafine particle fraction PM0.056 to induce morphological cell transformation was demonstrated by significant and dose-dependent increases in type III focus formation by morphologically transformed cells in culture flasks and their clonal expansion in soft agar. It is concluded that the traffic-linked ultrafine particle fraction PM0.056 in the atmosphere by the roadside of an urban area is clastogenic and able to induce morphological transformation of mammalian cells. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Smith, Rachel B; Fecht, Daniela; Gulliver, John; Beevers, Sean D; Dajnak, David; Blangiardo, Marta; Ghosh, Rebecca E; Hansell, Anna L; Kelly, Frank J; Anderson, H Ross
2017-01-01
Abstract Objective To investigate the relation between exposure to both air and noise pollution from road traffic and birth weight outcomes. Design Retrospective population based cohort study. Setting Greater London and surrounding counties up to the M25 motorway (2317 km2), UK, from 2006 to 2010. Participants 540 365 singleton term live births. Main outcome measures Term low birth weight (LBW), small for gestational age (SGA) at term, and term birth weight. Results Average air pollutant exposures across pregnancy were 41 μg/m3 nitrogen dioxide (NO2), 73 μg/m3 nitrogen oxides (NOx), 14 μg/m3 particulate matter with aerodynamic diameter <2.5 μm (PM2.5), 23 μg/m3 particulate matter with aerodynamic diameter <10 μm (PM10), and 32 μg/m3 ozone (O3). Average daytime (LAeq,16hr) and night-time (Lnight) road traffic A-weighted noise levels were 58 dB and 53 dB respectively. Interquartile range increases in NO2, NOx, PM2.5, PM10, and source specific PM2.5 from traffic exhaust (PM2.5 traffic exhaust) and traffic non-exhaust (brake or tyre wear and resuspension) (PM2.5 traffic non-exhaust) were associated with 2% to 6% increased odds of term LBW, and 1% to 3% increased odds of term SGA. Air pollutant associations were robust to adjustment for road traffic noise. Trends of decreasing birth weight across increasing road traffic noise categories were observed, but were strongly attenuated when adjusted for primary traffic related air pollutants. Only PM2.5 traffic exhaust and PM2.5 were consistently associated with increased risk of term LBW after adjustment for each of the other air pollutants. It was estimated that 3% of term LBW cases in London are directly attributable to residential exposure to PM2.5>13.8 μg/m3during pregnancy. Conclusions The findings suggest that air pollution from road traffic in London is adversely affecting fetal growth. The results suggest little evidence for an independent exposure-response effect of traffic related noise on birth weight outcomes. PMID:29208602
Thelen, Brett Amy; Ingalls, Jaime Kathryn; Treadwell, Melinda Dawn
2016-01-01
Many organizations are interested in biodiesel as a renewable, domestic energy source for use in transportation and heavy-duty equipment. Although numerous biodiesel emission studies exist, biodiesel exposure studies are nearly absent from the literature. This study compared the impact of petroleum diesel fuel and a B20 blend (20% soy-based biodiesel/80% petroleum diesel) on occupational and environmental exposures at a rural municipal facility in Keene, NH. For each fuel type, we measured concentrations of fine particulate matter (PM2.5), elemental carbon (EC), and organic carbon (OC) at multiple locations (in-cabin, work area, and near-field) at a materials recovery facility utilizing non-road equipment. B20 fuel use resulted in significant reductions in PM2.5 mass (56–76%), reductions in EC (5–29%), and increases in OC (294–467%). Concentrations of PM2.5 measured during petroleum diesel use were up to four times higher than PM2.5 concentrations during B20 use. Further analysis of the EC and OC fractions of total carbon also indicated substantial differences between fuels. Our results demonstrate that biodiesel blends significantly reduced PM2.5 exposure compared to petroleum diesel fuel in a workplace utilizing non-road construction-type equipment. While this suggests that biodiesel may reduce health risks associated with exposure to fine particulate matter mass, more exposure research is needed to better understand biodiesel-related changes in particulate matter composition and other exposure metrics.
Perrino, C; Catrambone, M; Dalla Torre, S; Rantica, E; Sargolini, T; Canepari, S
2014-03-01
The seasonal variability in the mass concentration and chemical composition of atmospheric particulate matter (PM10 and PM2.5) was studied during a 2-year field study carried out between 2010 and 2012. The site of the study was the area of Ferrara (Po Valley, Northern Italy), which is characterized by frequent episodes of very stable atmospheric conditions in winter. Chemical analyses carried out during the study allowed the determination of the main components of atmospheric PM (macro-elements, ions, elemental carbon, organic matter) and a satisfactory mass closure was obtained. Accordingly, chemical components could be grouped into the main macro-sources of PM: soil, sea spray, inorganic compounds from secondary reactions, vehicular emission, organics from domestic heating, organics from secondary formation, and other sources. The more significant seasonal variations were observed for secondary inorganic species in the fine fraction of PM; these species were very sensitive to air mass age and thus to the frequency of stable atmospheric conditions. During the winter ammonium nitrate, the single species with the highest concentration, reached concentrations as high as 30 μg/m(3). The intensity of natural sources was fairly constant during the year; increases in natural aerosols were linked to medium and long-range transport episodes. The ratio of winter to summer concentrations was roughly 2 for combustion product, close to 3 for secondary inorganic species, and between 2 and 3 for organics. The winter increase of organics was due to poorer atmospheric dispersion and to the addition of the emission from domestic heating. A similar winter to summer ratio (around 3) was observed for the fine fraction of PM.
Basagaña, Xavier; Jacquemin, Bénédicte; Karanasiou, Angeliki; Ostro, Bart; Querol, Xavier; Agis, David; Alessandrini, Ester; Alguacil, Juan; Artiñano, Begoña; Catrambone, Maria; de la Rosa, Jesús D; Díaz, Julio; Faustini, Annunziata; Ferrari, Silvia; Forastiere, Francesco; Katsouyanni, Klea; Linares, Cristina; Perrino, Cinzia; Ranzi, Andrea; Ricciardelli, Isabella; Samoli, Evangelia; Zauli-Sajani, Stefano; Sunyer, Jordi; Stafoggia, Massimo
2015-02-01
Few recent studies examined acute effects on health of individual chemical species in the particulate matter (PM) mixture, and most of them have been conducted in North America. Studies in Southern Europe are scarce. The aim of this study is to examine the relationship between particulate matter constituents and daily hospital admissions and mortality in five cities in Southern Europe. The study included five cities in Southern Europe, three cities in Spain: Barcelona (2003-2010), Madrid (2007-2008) and Huelva (2003-2010); and two cities in Italy: Rome (2005-2007) and Bologna (2011-2013). A case-crossover design was used to link cardiovascular and respiratory hospital admissions and total, cardiovascular and respiratory mortality with a pre-defined list of 16 PM10 and PM2.5 constituents. Lags 0 to 2 were examined. City-specific results were combined by random-effects meta-analysis. Most of the elements studied, namely EC, SO4(2-), SiO2, Ca, Fe, Zn, Cu, Ti, Mn, V and Ni, showed increased percent changes in cardiovascular and/or respiratory hospitalizations, mainly at lags 0 and 1. The percent increase by one interquartile range (IQR) change ranged from 0.69% to 3.29%. After adjustment for total PM levels, only associations for Mn, Zn and Ni remained significant. For mortality, although positive associations were identified (Fe and Ti for total mortality; EC and Mg for cardiovascular mortality; and NO3(-) for respiratory mortality) the patterns were less clear. The associations found in this study reflect that several PM constituents, originating from different sources, may drive previously reported results between PM and hospital admissions in the Mediterranean area. Copyright © 2014 Elsevier Ltd. All rights reserved.
Outdoor particulate matter (PM) and associated cardiovascular diseases in the Middle East.
Nasser, Zeina; Salameh, Pascale; Nasser, Wissam; Abou Abbas, Linda; Elias, Elias; Leveque, Alain
2015-01-01
Air pollution is a widespread environmental concern. Considerable epidemiological evidence indicates air pollution, particularly particulate matter (PM), as a major risk factor for cardiovascular diseases (CVD) in the developed countries. The main objective of our review is to assess the levels and sources of PM across the Middle East area and to search evidence for the relationship between PM exposure and CVD. An extensive review of the published literature pertaining to the subject (2000-2013) was conducted using PubMed, Medline and Google Scholar databases. We reveal that low utilization of public transport, ageing vehicle fleet and the increasing number of personal cars in the developing countries all contribute to the traffic congestion and aggravate the pollution problem. The annual average values of PM pollutants in the Middle East region are much higher than the World Health Organization 2006 guidelines (PM2.5 = 10 μg/m(3), PM10 = 20 μg/m(3)). We uncover evidence on the association between PM and CVD in 4 Middle East countries: Iran, Kingdom of Saudi Arabia, Qatar and the United Arab Emirates. The findings are in light of the international figures. Ambient PM pollution is considered a potential risk factor for platelet activation and atherosclerosis and has been found to be linked with an increased risk for mortality and hospital admissions due to CVD. This review highlights the importance of developing a strategy to improve air quality and reduce outdoor air pollution in the developing countries, particularly in the Middle East. Future studies should weigh the potential impact of PM on the overall burden of cardiac diseases. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Elemental composition of particulate matter and the association with lung function.
Eeftens, Marloes; Hoek, Gerard; Gruzieva, Olena; Mölter, Anna; Agius, Raymond; Beelen, Rob; Brunekreef, Bert; Custovic, Adnan; Cyrys, Josef; Fuertes, Elaine; Heinrich, Joachim; Hoffmann, Barbara; de Hoogh, Kees; Jedynska, Aleksandra; Keuken, Menno; Klümper, Claudia; Kooter, Ingeborg; Krämer, Ursula; Korek, Michal; Koppelman, Gerard H; Kuhlbusch, Thomas A J; Simpson, Angela; Smit, Henriëtte A; Tsai, Ming-Yi; Wang, Meng; Wolf, Kathrin; Pershagen, Göran; Gehring, Ulrike
2014-09-01
Negative effects of long-term exposure to particulate matter (PM) on lung function have been shown repeatedly. Spatial differences in the composition and toxicity of PM may explain differences in observed effect sizes between studies. We conducted a multicenter study in 5 European birth cohorts-BAMSE (Sweden), GINIplus and LISAplus (Germany), MAAS (United Kingdom), and PIAMA (The Netherlands)-for which lung function measurements were available for study subjects at the age of 6 or 8 years. Individual annual average residential exposure to copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc within PM smaller than 2.5 μm (PM2.5) and smaller than 10 μm (PM10) was estimated using land-use regression models. Associations between air pollution and lung function were analyzed by linear regression within cohorts, adjusting for potential confounders, and then combined by random effects meta-analysis. We observed small reductions in forced expiratory volume in the first second, forced vital capacity, and peak expiratory flow related to exposure to most elemental pollutants, with the most substantial negative associations found for nickel and sulfur. PM10 nickel and PM10 sulfur were associated with decreases in forced expiratory volume in the first second of 1.6% (95% confidence interval = 0.4% to 2.7%) and 2.3% (-0.1% to 4.6%) per increase in exposure of 2 and 200 ng/m, respectively. Associations remained after adjusting for PM mass. However, associations with these elements were not evident in all cohorts, and heterogeneity of associations with exposure to various components was larger than for exposure to PM mass. Although we detected small adverse effects on lung function associated with annual average levels of some of the evaluated elements (particularly nickel and sulfur), lower lung function was more consistently associated with increased PM mass.
Emmerechts, J; Alfaro-Moreno, E; Vanaudenaerde, B M; Nemery, B; Hoylaerts, M F
2010-12-01
Epidemiological findings suggest an association between exposure to particulate matter (PM) and venous thrombo-embolism. To investigate arterial vs. venous thrombosis, inflammation and coagulation in mice, (sub)acutely exposed to two types of PM. Various doses (25, 100 and 200 μg per animal) of urban particulate matter (UPM) or diesel exhaust particles (DEP) were intratracheally (i.t.) instilled in C57Bl6/n mice and several endpoints measured at 4, 10 and 24 h. Mice were also repeatedly exposed to 100 μg per animal on three consecutive days with endpoints measured 24 h after the last instillation. Exposure to 200 μg per mouse UPM enhanced arterial thrombosis, but neither UPM nor DEP significantly enhanced venous thrombosis. Both types of PM induced dose-dependent increases in broncho-alveolar lavage fluid (BALF) total cell numbers (mainly neutrophils) and cytokines (IL-6, KC, MCP-1, RANTES, MIP-1α), with peaks at 4 h and overall higher values for UPM than for DEP. Systemic inflammation was limited to increased serum IL-6 levels, 4 h after UPM. Both types of PM induced similar and dose-dependent but modest increases in factor (F)VII, FVIII and fibrinogen. Three repeated instillations did not or only modestly enhance the proinflammatory and procoagulant status. Compared with DEP, UPM induced more pronounced pulmonary inflammation, but both particle types triggered similar and mild short-term systemic effects. Hence, acute exposure to PM triggers activation of primary hemostasis in the mouse, but no substantial secondary hemostasis activation, resulting in arterial but not venous thrombogenicity. © 2010 International Society on Thrombosis and Haemostasis.
Parkhi, Neha; Chate, Dilip; Ghude, Sachin D; Peshin, Sunil; Mahajan, Anoop; Srinivas, Reka; Surendran, Divya; Ali, Kaushar; Singh, Siddhartha; Trimbake, Hanumant; Beig, Gufran
2016-05-01
A network of air quality and weather monitoring stations was established under the System of Air Quality Forecasting and Research (SAFAR) project in Delhi. We report observations of ozone (O3), nitrogen oxides (NOx), carbon monoxide (CO) and particulate matter (PM2.5 and PM10) before, during and after the Diwali in two consecutive years, i.e., November 2010 and October 2011. The Diwali days are characterised by large firework displays throughout India. The observations show that the background concentrations of particulate matter are between 5 and 10 times the permissible limits in Europe and the United States. During the Diwali-2010, the highest observed PM10 and PM2.5 mass concentration is as high as 2070µg/m3 and 1620μg/m(3), respectively (24hr mean), which was about 20 and 27 times to National Ambient Air Quality Standards (NAAQS). For Diwali-2011, the increase in PM10 and PM2.5 mass concentrations was much less with their peaks of 600 and of 390μg/m(3) respectively, as compared to the background concentrations. Contrary to previous reports, firework display was not found to strongly influence the NOx, and O3 mixing ratios, with the increase within the observed variability in the background. CO mixing ratios showed an increase. We show that the large difference in 2010 and 2011 pollutant concentrations is controlled by weather parameters. Copyright © 2015. Published by Elsevier B.V.
Chien, Lung-Chang; Chen, Yu-An
2018-01-01
Recent studies have revealed the influence of fine particulate matter (PM2.5) on increased medication use, hospital admission, and emergency room visits for asthma attack in children, but the lagged influence of PM2.5 on children’s asthma and geographic disparities of children’s asthma have rarely been discussed simultaneously. This study investigated the documented diagnosis of children’s asthma in clinic visits for children aged less than 15 years old that were associated with PM2.5 in two counties located in west-central Taiwan during 2005–2010. The result shows that PM2.5 had a significant lagged effect on children’s asthma for up to 6 days. A significantly higher relative risk for children’s asthma was more likely to happen at 2-day lag compared to the present day when PM2.5 increased from 36.17 μg/m3 to 81.26 μg/m3. Considering all lagged effects, the highest relative risk for children’s asthma was 1.08 (95% CI = 1.05, 1.11) as PM2.5 increased as high as 64.66 μg/m3. In addition, geographic disparities of children’s asthma were significant, and 47.83% of areas were identified to have children vulnerable to asthma. To sum up, our findings can serve as a valuable reference for the implementation of an early warning to governmental agencies about a susceptible population of children. PMID:29690596
Liao, Yu; Xu, Lin; Lin, Xiao; Hao, Yuan Tao
2017-10-01
To estimate the lung cancer burden that may be attributable to ambient fine particulate matter (PM2.5) pollution in Guangzhou city in China from 2005 to 2013. The data regarding PM2.5 exposure were obtained from the 'Ambient air pollution exposure estimation for the Global Burden of Disease 2013' dataset at 0.1° ×0.1° spatial resolution. Disability-adjusted life years (DALYs) were estimated based on the information of mortality and incidence of lung cancer. Comparative risk analysis and integrated exposure-response function were used to estimate attributed disease burden. The population-weighted average concentration of PM2.5 was increased by 34.6% between 1990 and 2013, from 38.37 μg/m3 to 51.31 μg/m3. The lung cancer DALYs in both men and women were increased by 36.2% from 2005 to 2013. The PM2.5 attributed lung cancer DALYs increased from 12105.0 (8181.0 for males and 3924.0 for females) in 2005 to 16489.3 (11291.7 for males and 5197.6 for females) in 2013. An average of 23.1% lung cancer burden was attributable to PM2.5 pollution in 2013. PM2.5 has caused serious but under-appreciated public health burden in Guangzhou and the trend deteriorates. Effective strategies are needed to tackle this major public health problem. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Characterization of PMc is critical to the understanding of recently observed adverse health effects (e.g., asthma, reduced cardiac variability, etc) from coarse particles in ambient air. PMc mass an (PMc, particles between PM2.5 and PM10) in a rural area of increasing populati...
Studies have shown associations between exposure to ambient air particulate matter (PM) and increased rates of cardio-pulmonary morbidity and mortality. The aim of this study was to examine the signaling events involved in the expression of inflammatory genes in cultured human ai...
Diesel exhaust particles (DEP) contribute substantially to ambient particulate matter (PM) air pollution in urban areas. Inhalation of PM has been associated with increased incidence of lung disease in susceptible populations. We have demonstrated that the glutathione-S-transfera...
Farina, Francesca; Sancini, Giulio; Battaglia, Cristina; Tinaglia, Valentina; Mantecca, Paride; Camatini, Marina; Palestini, Paola
2013-01-01
Recent studies have suggested a link between particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases; accumulating evidences point to a new role for air pollution in CNS diseases. The purpose of our study is to investigate PM10sum effects on lungs and extra pulmonary tissues. Milano PM10sum has been intratracheally instilled into BALB/c mice. Broncho Alveolar Lavage fluid, lung parenchyma, heart and brain were screened for markers of inflammation (cell counts, cytokines, ET-1, HO-1, MPO, iNOS), cytotoxicity (LDH, ALP, Hsp70, Caspase8-p18, Caspase3-p17) for a putative pro-carcinogenic marker (Cyp1B1) and for TLR4 pathway activation. Brain was also investigated for CD68, TNF-α, GFAP. In blood, cell counts were performed while plasma was screened for endothelial activation (sP-selectin, ET-1) and for inflammation markers (TNF-α, MIP-2, IL-1β, MPO). Genes up-regulation (HMOX1, Cyp1B1, IL-1β, MIP-2, MPO) and miR-21 have been investigated in lungs and blood. Inflammation in the respiratory tract of PM10sum-treated mice has been confirmed in BALf and lung parenchyma by increased PMNs percentage, increased ET-1, MPO and cytokines levels. A systemic spreading of lung inflammation in PM10sum-treated mice has been related to the increased blood total cell count and neutrophils percentage, as well as to increased blood MPO. The blood-endothelium interface activation has been confirmed by significant increases of plasma ET-1 and sP-selectin. Furthermore PM10sum induced heart endothelial activation and PAHs metabolism, proved by increased ET-1 and Cyp1B1 levels. Moreover, PM10sum causes an increase in brain HO-1 and ET-1. These results state the translocation of inflammation mediators, ultrafine particles, LPS, metals associated to PM10sum, from lungs to bloodstream, thus triggering a systemic reaction, mainly involving heart and brain. Our results provided additional insight into the toxicity of PM10sum and could facilitate shedding light on mechanisms underlying the development of urban air pollution related diseases.
Characterization of coarse particulate matter in school gyms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branis, Martin, E-mail: branis@natur.cuni.cz; Safranek, Jiri
2011-05-15
We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM{sub 10-2.5} and PM{sub 2.5-1.0}) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM{sub 10-2.5} 4.1-7.4 {mu}g m{sup -3} andmore » PM{sub 2.5-1.0} 2.0-3.3 {mu}g m{sup -3}) than indoors (average PM{sub 10-2.5} 13.6-26.7 {mu}g m{sup -3} and PM{sub 2.5-1.0} 3.7-7.4 {mu}g m{sup -3}). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM{sub 10-2.5} and 1.4-4.8 for the PM{sub 2.5-1.0} values. Under extreme conditions, the I/O ratios reached 180 (PM{sub 10-2.5}) and 19.1 (PM{sub 2.5-1.0}). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of coarse particulate matter, which can contribute to increased short-term inhalation exposure of exercising children. - Highlights: {yields} We studied concentration, composition and morphology of coarse particles in gyms. {yields} Indoor concentration of coarse particles was high during days with pupils activity. {yields} Effect of outdoor coarse dust on indoor levels was weak and inconsistent. {yields} Six main groups of minerals contributing to indoor resuspended dust were determined. {yields} The most abundant coarse particles were human skin scales.« less
Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia.
Lim, Chris C; Thurston, George D; Shamy, Magdy; Alghamdi, Mansour; Khoder, Mamdouh; Mohorjy, Abdullah M; Alkhalaf, Abdulrahman K; Brocato, Jason; Chen, Lung Chi; Costa, Max
2018-02-01
This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (aerodynamic diameter <2.5 μm; PM 2.5 ) and coarse (aerodynamic diameter 2.5-10 μm; PM 2.5-10 ) particulate matter mass concentrations, elemental constituents, and potential source origins in Jeddah, Saudi Arabia. Air quality samples were collected over 1 yr, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM 2.5 (21.9 μg/m 3 ) and PM 10 (107.8 μg/m 3 ) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM 2.5 (10 μg/m 3 ) and PM 10 (20 μg/m 3 ), respectively. Similar to other Middle Eastern locales, PM 2.5-10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM 10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM 2.5 and PM 2.5-10 : (1) soil/road dust, (2) incineration, and (3) traffic; and for PM 2.5 only, (4) residual oil burning. Soil/road dust accounted for a major portion of both the PM 2.5 (27%) and PM 2.5-10 (77%) mass, and the largest source contributor for PM 2.5 was from residual oil burning (63%). Temporal variations of PM 2.5-10 and PM 2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency) and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM 2.5 and PM 2.5-10 masses in this city may have implications regarding the toxicity of these particles versus those in the Western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting. Temporal variations of fine and coarse PM mass, elemental constituents, and sources were examined in Jeddah, Saudi Arabia, for the first time. The main source of PM 2.5-10 is natural windblown soil and road dust, whereas the predominant source of PM 2.5 is residual oil burning, generated from the port and oil refinery located west of the air sampler, suggesting that targeted emission controls could significantly improve the air quality in the city. The compositional differences point to a need for health effect studies to be conducted in this region, so as to directly assess the applicability of the existing guidelines to the Middle East air pollution.
Retrieval of Atmospheric Particulate Matter Using Satellite Data Over Central and Eastern China
NASA Astrophysics Data System (ADS)
Chen, G. L.; Guang, J.; Li, Y.; Che, Y. H.; Gong, S. Q.
2018-04-01
Fine particulate matter (PM2.5) is a particle cluster with diameters less than or equal to 2.5 μm. Over the past few decades, regional air pollution composed of PM2.5 has frequently occurred over Central and Eastern China. In order to estimate the concentration, distribution and other properties of PM2.5, the general retrieval models built by establishing the relationship between aerosol optical depth (AOD) and PM2.5 has been widely used in many studies, including experimental models via statistics analysis and physical models with certain physical mechanism. The statistical experimental models can't be extended to other areas or historical period due to its dependence on the ground-based observations and necessary auxiliary data, which limits its further application. In this paper, a physically based model is applied to estimate the concentration of PM2.5 over Central and Eastern China from 2007 to 2016. The ground-based PM2.5 measurements were used to be as reference data to validate our retrieval results. Then annual variation and distribution of PM2.5 concentration in the Central and Eastern China was analysed. Results shows that the annual average PM2.5 show a trend of gradually increasing and then decreasing during 2007-2016, with the highest value in 2011.
Kroll, Alexandra; Gietl, Johanna K; Wiesmüller, Gerhard A; Günsel, Andreas; Wohlleben, Wendel; Schnekenburger, Jürgen; Klemm, Otto
2013-02-01
High concentrations of airborne particulate matter (PM) have been associated with increased rates of morbidity and mortality among exposed populations. Although certain components of PM were suggested to influence these effects, no clear-cut correlation was determined thus far. One of the possible modes of action is the induction of oxidative stress by inhaled PM triggering inflammatory responses. Therefore, the in vitro formation of reactive oxygen species (ROS) in three cell lines in the presence of five subfractions of PM(10), collected in Münster, Germany was investigated. The PM components chloride, nitrate, ammonium, sulfate, 68 chemical elements, and endotoxin were quantified. The highest concentration of endotoxin was found in particles of 0.42-1.2 μm aerodynamic diameters, and therefore probably subject to long-range transport. Intracellular ROS formation in three well established mammalian cell lines (CaCo2, human; MDCK, canine; RAW264.7, mouse) only correlated positively with particle size. The two smallest PM size fractions provoked the highest rise in ROS. However, the latter did not correlate with the concentration of any PM components investigated. The smallest PM size fractions significantly dominated the number of particles. Therefore, the particle number may be most effective in inducing oxidative stress in vitro. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lung, Shih-Chun Candice; Hsiao, Pao-Kuei; Wen, Tzu-Yao; Liu, Chun-Hu; Fu, Chi Betsy; Cheng, Yu-Ting
2014-02-01
Asian residential communities are usually dotted with various spot pollution sources (SPS), such as restaurants, temples, and home factories, with traffic arteries passing through, resulting in higher intra-urban pollution variability compared with their western counterparts. Thus, it is important to characterize spatial variability of pollutant levels in order to assess accurately residents' exposures in their communities. The objectives of this study are to assess the actual pollutant levels and variability within an Asian urban area and to evaluate the influence of vehicle emission and various SPS on the exposure levels within communities. Real-time monitoring was conducted for a total of 123 locations for particulate matter (PM) and CO in Taipei metropolitan, Taiwan. The mean concentrations for PM1, PM2.5, PM10, and CO are 29.8 ± 22.7, 36.0 ± 25.5, 61.9 ± 35.0 μg m-3 and 4.0 ± 2.5 ppm, respectively. The mean values of PM1/PM2.5 and PM2.5/PM10 are 0.80 ± 0.10 and 0.57 ± 0.15, respectively. PM and CO levels at locations near SPS could be increased by 3.5-4.9 times compared with those at background locations. Regression results show that restaurants contribute significantly 6.18, 6.33, 7.27 μg m-3, and 1.64 ppm to community PM1, PM2.5, PM10, and CO levels, respectively; while the contribution from temples are 13.2, 15.1, and 17.2 μg m-3 for PM1, PM2.5 and PM10, respectively. Additionally, construction sites elevate nearby PM10 levels by 14.2 μg m-3. At bus stops and intersections, vehicle emissions increased PM1 and PM2.5 levels by 5 μg m-3. These results demonstrate significant contribution of community sources to air pollution, and thus the importance of assessing intra-community variability in Asian cities for air pollution and health studies. The methodology used is applicable to other Asian countries with similar features.
NASA Astrophysics Data System (ADS)
Timonen, Hilkka; Karjalainen, Panu; Saukko, Erkka; Saarikoski, Sanna; Aakko-Saksa, Päivi; Simonen, Pauli; Murtonen, Timo; Dal Maso, Miikka; Kuuluvainen, Heino; Bloss, Matthew; Ahlberg, Erik; Svenningsson, Birgitta; Pagels, Joakim; Brune, William H.; Keskinen, Jorma; Worsnop, Douglas R.; Hillamo, Risto; Rönkkö, Topi
2017-04-01
The effect of fuel ethanol content (10, 85 and 100 %) on primary emissions and on subsequent secondary aerosol formation was investigated for a Euro 5 flex-fuel gasoline vehicle. Emissions were characterized during a New European Driving Cycle (NEDC) using a comprehensive set-up of high time-resolution instruments. A detailed chemical composition of the exhaust particulate matter (PM) was studied using a soot particle aerosol mass spectrometer (SP-AMS), and secondary aerosol formation was studied using a potential aerosol mass (PAM) chamber. For the primary gaseous compounds, an increase in total hydrocarbon emissions and a decrease in aromatic BTEX (benzene, toluene, ethylbenzene and xylenes) compounds was observed when the amount of ethanol in the fuel increased. In regard to particles, the largest primary particulate matter concentrations and potential for secondary particle formation was measured for the E10 fuel (10 % ethanol). As the ethanol content of the fuel increased, a significant decrease in the average primary particulate matter concentrations over the NEDC was found. The PM emissions were 0.45, 0.25 and 0.15 mg m-3 for E10, E85 and E100, respectively. Similarly, a clear decrease in secondary aerosol formation potential was observed with a larger contribution of ethanol in the fuel. The secondary-to-primary PM ratios were 13.4 and 1.5 for E10 and E85, respectively. For E100, a slight decrease in PM mass was observed after the PAM chamber, indicating that the PM produced by secondary aerosol formation was less than the PM lost through wall losses or the degradation of the primary organic aerosol (POA) in the chamber. For all fuel blends, the formed secondary aerosol consisted mostly of organic compounds. For E10, the contribution of organic compounds containing oxygen increased from 35 %, measured for primary organics, to 62 % after the PAM chamber. For E85, the contribution of organic compounds containing oxygen increased from 42 % (primary) to 57 % (after the PAM chamber), whereas for E100 the amount of oxidized organics remained the same (approximately 62 %) with the PAM chamber when compared to the primary emissions.
Roberts, Andrea L.; Lyall, Kristen; Hart, Jaime E.; Just, Allan C.; Laden, Francine; Weisskopf, Marc G.
2014-01-01
Background Autism spectrum disorder (ASD) is a developmental disorder with increasing prevalence worldwide, yet has unclear etiology. Objective We explored the association between maternal exposure to particulate matter (PM) air pollution and odds of ASD in her child. Methods We conducted a nested case–control study of participants in the Nurses’ Health Study II (NHS II), a prospective cohort of 116,430 U.S. female nurses recruited in 1989, followed by biennial mailed questionnaires. Subjects were NHS II participants’ children born 1990–2002 with ASD (n = 245), and children without ASD (n = 1,522) randomly selected using frequency matching for birth years. Diagnosis of ASD was based on maternal report, which was validated against the Autism Diagnostic Interview-Revised in a subset. Monthly averages of PM with diameters ≤ 2.5 μm (PM2.5) and 2.5–10 μm (PM10–2.5) were predicted from a spatiotemporal model for the continental United States and linked to residential addresses. Results PM2.5 exposure during pregnancy was associated with increased odds of ASD, with an adjusted odds ratio (OR) for ASD per interquartile range (IQR) higher PM2.5 (4.42 μg/m3) of 1.57 (95% CI: 1.22, 2.03) among women with the same address before and after pregnancy (160 cases, 986 controls). Associations with PM2.5 exposure 9 months before or after the pregnancy were weaker in independent models and null when all three time periods were included, whereas the association with the 9 months of pregnancy remained (OR = 1.63; 95% CI: 1.08, 2.47). The association between ASD and PM2.5 was stronger for exposure during the third trimester (OR = 1.42 per IQR increase in PM2.5; 95% CI: 1.09, 1.86) than during the first two trimesters (ORs = 1.06 and 1.00) when mutually adjusted. There was little association between PM10–2.5 and ASD. Conclusions Higher maternal exposure to PM2.5 during pregnancy, particularly the third trimester, was associated with greater odds of a child having ASD. Citation Raz R, Roberts AL, Lyall K, Hart JE, Just AC, Laden F, Weisskopf MG. 2015. Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: a nested case–control analysis within the Nurses’ Health Study II cohort. Environ Health Perspect 123:264–270; http://dx.doi.org/10.1289/ehp.1408133 PMID:25522338
BIOLOGICAL EFFECTS OF OIL FLY ASH AND RELEVANCE TO AMBIENT AIR PARTICULATE MATTER
Epidemiologic studies have demonstrated increased human morbidity and mortality with elevations in the concentration of ambient air particulate matter (PM). Fugitive fly ash from the combustion of oil and residual fuel oil significantly contributes to the ambient air particle bur...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-25
... Tennessee SIP the PM 2.5 SILs and SMC. See 78 FR 23704. Tennessee's May 10, 2013, final SIP revision... the administrative change to replace the term ``particulate matter'' with ``PM 2.5 , PM 10 ''\\2... matter'' with ``PM 10 .'' In the April 22, 2013, proposed rulemaking, EPA explained that TDEC had...
Wang, Xuying; Li, Guoxing; Jin, Xiaobin; Mu, Jing; Pan, Jie; Liang, Fengchao; Tian, Lin; Chen, Shi; Guo, Qun; Dong, Wentan; Pan, Xiaochuan
2016-01-01
To explore the concentration-response relationship between ambient concentration of PM2.5 and daily total hospital emergency room visits in Beijing during 2012 and 2013. This study also examined the effects of ambient PM2.5 during heavy polluted days on emergency room visits compared with the light polluted days. We collected the daily meteorological factors monitoring data and concentrations of air pollutants in Beijing during October 1, 2012 to December 31, 2013. We also collected the daily emergency room visits from a tertiary hospital in Beijing in the same time period. Generalized additive model was fitted to estimate the association between the ambient PM2.5 and the hospital emergency room visits, by using the smooth function to adjust long term trend of time, public holidays and day of week. In addition, constrained piecewise linear function was then used to estimate the excess risk for different segment of concentration-response function. The annual average concentration of PM2.5 was 90.9 µg/m(3) during October 1, 2012 and December 31, 2013. There were total 64 260 cases for total emergency room visits, of which respiratory disease had 9 849 cases and cardiovascular disease had 11 168 cases. PM2.5 was positive related with PM10, NO2 and SO2. The corresponding correlation coefficients were 0.87, 0.78 and 0.62, respectively (P<0.05). And PM2.5 was positively related with relative humidity, with correlation coefficient 0.45 (P<0.05). But PM2.5 was negatively related with mean temperature (r=-0.17, P< 0.05) and wind speed (- 0.32, P<0.05). In the single polluted model, after adjusting the effects of temperature, relative humidity and wind, every 10 µg/m(3) increase of concentration of ambient PM2.5, the corresponding excess risk of daily emergency room visits was 0.25% (95% CI: 0.07-0.43). In the two-pollutant model PM2.5+SO2 and PM2.5+NO2, every 10 µg/m(3) increase of concentration of ambient PM2.5, the corresponding excess risk of daily emergency room visits were 1.07% (95%CI:0.83-1.30) and 0.56% (95%CI: 0.32-0.80) respectively, which were higher than the effect in single pollutant model. Average concentration of ambient particulate matters (PM2.5) was 204.16 µg/m(3) during heavy pollution, higher than control period (85.24 µg/m(3)). When PM2.5 as the primary air pollutants during heavy polluted days, we observed a significant increase in emergency room visits, and the odd ratios was 1.16 (95% CI:1.09-1.22). There were positive correlation between high concentration of ambient particulate matters (PM2.5) and increasing daily emergency room visits. Especially during the heavy polluted days, the effects of elevated concentration of PM2.5 on hospital emergency room visits were much larger.
NASA Astrophysics Data System (ADS)
Karagulian, Federico; Belis, Claudio A.; Dora, Carlos Francisco C.; Prüss-Ustün, Annette M.; Bonjour, Sophie; Adair-Rohani, Heather; Amann, Markus
2015-11-01
For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. This study systematically reviewed and analysed available source apportionment studies on particulate matter (of diameter of 10 and 2.5 microns, PM10 and PM2.5) performed in cities to estimate typical shares of the sources of pollution by country and by region. A database with city source apportionment records, estimated with the use of receptor models, was also developed and available at the website of the World Health Organization. Systematic Scopus and Google searches were performed to retrieve city studies of source apportionment for particulate matter. Six source categories were defined. Country and regional averages of source apportionment were estimated based on city population weighting. A total of 419 source apportionment records from studies conducted in cities of 51 countries were used to calculate regional averages of sources of ambient particulate matter. Based on the available information, globally 25% of urban ambient air pollution from PM2.5 is contributed by traffic, 15% by industrial activities, 20% by domestic fuel burning, 22% from unspecified sources of human origin, and 18% from natural dust and salt. The available source apportionment records exhibit, however, important heterogeneities in assessed source categories and incompleteness in certain countries/regions. Traffic is one important contributor to ambient PM in cities. To reduce air pollution in cities and the substantial disease burden it causes, solutions to sustainably reduce ambient PM from traffic, industrial activities and biomass burning should urgently be sought. However, further efforts are required to improve data availability and evaluation, and possibly to combine with other types of information in view of increasing usefulness for policy making.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A., E-mail: jalast@ucdavis.edu
2013-01-01
Our previous work has shown that coarse particulate matter (PM{sub 10-2.5}) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stressmore » in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1 hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1 ± 3.2 pg/mL to 83.9 ± 12.2 pg/mL was observed a half-hour after PM instillation. By 1 hour after PM instillation, isoprostane values had returned to 30.4 ± 7.6 pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5–1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. -- Highlights: ► We studied very early events (0.5–1 hour) after giving wildfire PM{sub 10-2.5} to mice. ► Wildfire PM{sub 10-2.5} rapidly kills lung macrophages in mice. ► Wildfire PM{sub 10-2.5} rapidly elicits oxidative stress in mice. ► Wildfire PM{sub 10-2.5} rapidly elicits Clara cell CCSP secretion in mice. ► Wildfire PM{sub 10-2.5} rapidly elicits TNF-α secretion into BALF in mice.« less
MONITORING OF PARTICULATE MATTER OUTDOORS
Recent studies of the size and composition of atmospheric particulate matter (PM) have demonstrated the usefulness of separating atmospheric PM into its fine and coarse components. The need to measure the mass and composition of fine and coarse PM separately has been emphasized b...
IN VIVO MECHANISMS OF PARTICULATE MATTER (PM)-INDUCED LUNG AND VASCULAR INJURY
Insight into the mechanisms by which ambient particulate matter (PM) mediates its adverse cardiopulmonary effects can provide biological plausibility to epidemiological associations between PM exposure and health effects. Current information on mechanisms of pulmonary injury have...
Cheng, Yuan; Li, Shao-Meng; Liggio, John; Hayden, Katherine; Han, Yuemei; Stroud, Craig; Chan, Tak; Poitras, Marie-Josée
2017-11-01
Semivolatile organic compounds (SVOCs) represent a dominant category of secondary organic aerosol precursors that are increasingly included in air quality models. In the present study, an experimental system was developed and applied to a light-duty diesel engine to determine the emission factors of particulate SVOCs (pSVOCs) and nonvolatile particulate matter (PM) components at dilution ratios representative of ambient conditions. The engine was tested under three steady-state operation modes, using ultra-low-sulfur diesel (ULSD), three types of pure biodiesels and their blends with ULSD. For ULSD, the contribution of pSVOCs to total particulate organic matter (POM) mass in the engine exhaust ranged between 21 and 85%. Evaporation of pSVOCs from the diesel particles during dilution led to decreases in the hydrogen to carbon ratio of POM and the PM number emission factor of the particles. Substituting biodiesels for ULSD could increase pSVOCs emissions but brought on large reductions in black carbon (BC) emissions. Among the biodiesels tested, tallow/used cooking oil (UCO) biodiesel showed advantages over soybean and canola biodiesels in terms of both pSVOCs and nonvolatile PM emissions. It is noteworthy that PM properties, such as particle size and BC mass fraction, differed substantially between emissions from conventional diesel and biodiesels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhao, Dan; Azimi, Parham; Stephens, Brent
2015-01-01
Much of human exposure to fine particulate matter (PM2.5) of outdoor origin occurs in residences. High-efficiency particle air filtration in central heating, ventilating, and air-conditioning (HVAC) systems is increasingly being used to reduce concentrations of particulate matter inside homes. However, questions remain about the effectiveness of filtration for reducing exposures to PM2.5 of outdoor origin and adverse health outcomes. Here we integrate epidemiology functions and mass balance modeling to estimate the long-term health and economic impacts of HVAC filtration for reducing premature mortality associated with indoor PM2.5 of outdoor origin in residences. We evaluate 11 classifications of filters (MERV 5 through HEPA) using six case studies of single-family home vintages and ventilation system combinations located in 22 U.S. cities. We estimate that widespread use of higher efficiency filters would reduce premature mortality by 0.002–2.5% and increase life expectancy by 0.02–1.6 months, yielding annual monetary benefits ranging from $1 to $1348 per person in the homes and locations modeled herein. Large differences in the magnitude of health and economic impacts are driven largely by differences in rated filter efficiency and building and ventilation system characteristics that govern particle infiltration and persistence, with smaller influences attributable to geographic location. PMID:26197328
Zhao, Dan; Azimi, Parham; Stephens, Brent
2015-07-21
Much of human exposure to fine particulate matter (PM2.5) of outdoor origin occurs in residences. High-efficiency particle air filtration in central heating, ventilating, and air-conditioning (HVAC) systems is increasingly being used to reduce concentrations of particulate matter inside homes. However, questions remain about the effectiveness of filtration for reducing exposures to PM2.5 of outdoor origin and adverse health outcomes. Here we integrate epidemiology functions and mass balance modeling to estimate the long-term health and economic impacts of HVAC filtration for reducing premature mortality associated with indoor PM2.5 of outdoor origin in residences. We evaluate 11 classifications of filters (MERV 5 through HEPA) using six case studies of single-family home vintages and ventilation system combinations located in 22 U.S. cities. We estimate that widespread use of higher efficiency filters would reduce premature mortality by 0.002-2.5% and increase life expectancy by 0.02-1.6 months, yielding annual monetary benefits ranging from $1 to $1348 per person in the homes and locations modeled herein. Large differences in the magnitude of health and economic impacts are driven largely by differences in rated filter efficiency and building and ventilation system characteristics that govern particle infiltration and persistence, with smaller influences attributable to geographic location.
Seok, Jin Kyung; Lee, Jeong-Won; Kim, Young Mi; Boo, Yong Chool
2018-01-01
Airborne particulate matter with a diameter of < 10 µm (PM10) causes oxidative damage, inflammation, and premature skin aging. In this study, we evaluated whether polyphenolic antioxidants attenuate the inflammatory responses of PM10-exposed keratinocytes. Primary human epidermal keratinocytes were exposed in vitro to PM10 in the absence or presence of punicalagin and (-)-epigallocatechin-3-gallate (EGCG), which are the major polyphenolic antioxidants found in pomegranate and green tea, respectively. Assays were performed to determine cell viability, production of reactive oxygen species (ROS), and expression of NADPH oxidases (NOX), proinflammatory cytokines, and matrix metalloproteinase (MMP)-1. PM10 decreased cell viability and increased ROS production in a dose-dependent manner. It also increased the expression levels of NOX-1, NOX-2, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, and MMP-1. Punicalagin was not cytotoxic up to 300 μM, and (-)-EGCG was cytotoxic above 30 μM, respectively. Further, punicalagin (3-30 μM) and EGCG (3-10 μM) rescued the viability of PM10-exposed cells. They also attenuated ROS production and the expression of NOX-1, NOX-2, TNF-α, IL-1β, IL-6, IL-8, and MMP-1 stimulated by PM10. This study demonstrates that polyphenolic antioxidants, such as punicalagin and (-)-EGCG, rescue keratinocyte viability and attenuate the inflammatory responses of these cells due to airborne particles. © 2018 S. Karger AG, Basel.
Zhang, Fengying; Liu, Xiaojian; Zhou, Lei; Yu, Yong; Wang, Li; Lu, Jinmei; Wang, Wuyi; Krafft, Thomas
2016-03-02
Most studies on air pollution exposure and its associations with human health in China have focused on the heavily polluted industrial areas and/or mega-cities, and studies on cities with comparatively low air pollutant concentrations are still rare. Only a few studies have attempted to analyse particulate matter (PM) for the vibrant economic centre Shenzhen in the Pearl River Delta. So far no systematic investigation of PM spatiotemporal patterns in Shenzhen has been undertaken and the understanding of pollution exposure in urban agglomerations with comparatively low pollution is still limited. We analyze daily and hourly particulate matter concentrations and all-cause mortality during 2013 in Shenzhen, China. Temporal patterns of PM (PM2.5 and PM10) with aerodynamic diameters of 2.5 (10) μm or less (or less (including particles with a diameter that equals to 2.5 (10) μm) are studied, along with the ratio of PM2.5 to PM10. Spatial distributions of PM10 and PM2.5 are addressed and associations of PM10 or PM2.5 and all-cause mortality are analyzed. Annual average PM10 and PM2.5 concentrations were 61.3 and 39.6 μg/m(3) in 2013. PM2.5 failed to meet the Class 2 annual limit of the National Ambient Air Quality Standard. PM2.5 was the primary air pollutant, with 8.8 % of days having heavy PM2.5 pollution. The daily PM2.5/PM10 ratios were high. Hourly PM2.5 concentrations in the tourist area were lower than downtown throughout the day. PM10 and PM2.5 concentrations were higher in western parts of Shenzhen than in eastern parts. Excess risks in the number of all-cause mortality with a 10 μg/m(3) increase of PM were 0.61 % (95 % confidence interval [CI]: 0.50-0.72) for PM10, and 0.69 % (95 % CI: 0.55-0.83) for PM2.5, respectively. The greatest ERs of PM10 and PM2.5 were in 2-day cumulative measures for the all-cause mortality, 2-day lag for females and the young (0-65 years), and L02 for males and the elder (>65 years). PM2.5 had higher risks on all-cause mortality than PM10. Effects of high PM pollution on mortality were stronger in the elder and male. Our findings provide additional relevant information on air quality monitoring and associations of PM and human health, valuable data for further scientific research in Shenzhen and for the on-going discourse on improving environmental policies.
Patton, Allison P.; Calderon, Leonardo; Xiong, Youyou; Wang, Zuocheng; Senick, Jennifer; Sorensen Allacci, MaryAnn; Plotnik, Deborah; Wener, Richard; Andrews, Clinton J.; Krogmann, Uta; Mainelis, Gediminas
2016-01-01
There are limited data on air quality parameters, including airborne particulate matter (PM) in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1) measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E) and mechanical (Building L) ventilation; (2) compare indoor and outdoor PM mass concentrations and their ratios (I/O) in these buildings, taking into account the effects of occupant behavior; and (3) evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m3) than in Building L (37 µg/m3); I/O was higher in Building E (1.3–2.0) than in Building L (0.5–0.8) for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation) are important factors affecting residents’ exposure to PM in residential green buildings. PMID:26805862
Patton, Allison P; Calderon, Leonardo; Xiong, Youyou; Wang, Zuocheng; Senick, Jennifer; Sorensen Allacci, MaryAnn; Plotnik, Deborah; Wener, Richard; Andrews, Clinton J; Krogmann, Uta; Mainelis, Gediminas
2016-01-20
There are limited data on air quality parameters, including airborne particulate matter (PM) in residential green buildings, which are increasing in prevalence. Exposure to PM is associated with cardiovascular and pulmonary diseases, and since Americans spend almost 90% of their time indoors, residential exposures may substantially contribute to overall airborne PM exposure. Our objectives were to: (1) measure various PM fractions longitudinally in apartments in multi-family green buildings with natural (Building E) and mechanical (Building L) ventilation; (2) compare indoor and outdoor PM mass concentrations and their ratios (I/O) in these buildings, taking into account the effects of occupant behavior; and (3) evaluate the effect of green building designs and operations on indoor PM. We evaluated effects of ventilation, occupant behaviors, and overall building design on PM mass concentrations and I/O. Median PMTOTAL was higher in Building E (56 µg/m³) than in Building L (37 µg/m³); I/O was higher in Building E (1.3-2.0) than in Building L (0.5-0.8) for all particle size fractions. Our data show that the building design and occupant behaviors that either produce or dilute indoor PM (e.g., ventilation systems, combustion sources, and window operation) are important factors affecting residents' exposure to PM in residential green buildings.
Yu, Chao; Di Girolamo, Larry; Chen, Liangfu; Zhang, Xueying; Liu, Yang
2015-01-01
The spatial and temporal characteristics of fine particulate matter (PM2.5, particulate matter <2.5 μm in aerodynamic diameter) are increasingly being studied from satellite aerosol remote sensing data. However, cloud cover severely limits the coverage of satellite-driven PM2.5 models, and little research has been conducted on the association between cloud properties and PM2.5 levels. In this study, we analyzed the relationships between ground PM2.5 concentrations and two satellite-retrieved cloud parameters using data from the Southeastern Aerosol Research and Characterization (SEARCH) Network during 2000-2010. We found that both satellite-retrieved cloud fraction (CF) and cloud optical thickness (COT) are negatively associated with PM2.5 levels. PM2.5 speciation and meteorological analysis suggested that the main reason for these negative relationships might be the decreased secondary particle generation. Stratified analyses by season, land use type, and site location showed that seasonal impacts on this relationship are significant. These associations do not vary substantially between urban and rural sites or inland and coastal sites. The statistically significant negative associations of PM2.5 mass concentrations with CF and COT suggest that satellite-retrieved cloud parameters have the potential to serve as predictors to fill the data gap left by satellite aerosol optical depth in satellite-driven PM2.5 models.
Gupta, A K; Nag, Subhankar; Mukhopadhyay, U K
2006-04-01
In this study, the relationship between inhalable particulate (PM(10)), fine particulate (PM(2.5)), coarse particles (PM(2.5 - 10)) and meteorological parameters such as temperature, relative humidity, solar radiation, wind speed were statistically analyzed and modelled for urban area of Kolkata during winter months of 2003-2004. Ambient air quality was monitored with a sampling frequency of twenty-four hours at three monitoring sites located near traffic intersections and in an industrial area. The monitoring sites were located 3-5 m above ground near highly trafficked and congested areas. The 24 h average PM(10) and PM(2.5) samples were collected using Thermo-Andersen high volume samplers and exposed filter papers were extracted and analysed for benzene soluble organic fraction. The ratios between PM(2.5) and PM(10) were found to be in the range of 0.6 to 0.92 and the highest ratio was found in the most polluted urban site. Statistical analysis has shown a strong positive correlation between PM(10) and PM(2.5) and inverse correlation was observed between particulate matter (PM(10) and PM(2.5)) and wind speed. Statistical analysis of air quality data shows that PM(10) and PM(2.5) are showing poor correlation with temperature, relative humidity and solar radiation. Regression equations for PM(10) and PM(2.5) and meteorological parameters were developed. The organic fraction of particulate matter soluble in benzene is an indication of poly aromatic hydrocarbon (PAH) concentration present in particulate matter. The relationship between the benzene soluble organic fraction (BSOF) of inhalable particulate (PM(10)) and fine particulate (PM(2.5)) were analysed for urban area of Kolkata. Significant positive correlation was observed between benzene soluble organic fraction of PM(10) (BSM10) and benzene soluble organic fraction of PM(2.5) (BSM2.5). Regression equations for BSM10 and BSM2.5 were developed.
Particulate matter neurotoxicity in culture is size-dependent
Exposure to particulate matter (PM) air pollution produces inflammatory damage to the cardiopulmonary system. This toxicity appears to be inversely related to the size of the PM particles, with the ultrafine particle being more inflammatory than larger sizes. Exposure to PM has m...
A POPULATION EXPOSURE MODEL FOR PARTICULATE MATTER: SHEDS-PM
The US EPA National Exposure Research Laboratory (NERL) has developed a population exposure and dose model for particulate matter (PM) that will be publicly available in Fall 2002. The Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model uses a probabilistic approach ...
MASS CONCENTRATION RELATIONSHIPS FROM THE NERL RTP PARTICULATE MATTER PANEL STUDY
The National Exposure Research Laboratory's (NERL) Research Triangle Park (RTP) Particulate Matter (PM) Panel Study has completed a one-year investigation of personal, residential and ambient PM-related mass concentrations in two potentially susceptible subpopulations. PM2.5, P...
Source apportionment of ambient PM10 and PM2.5 in Haikou, China
NASA Astrophysics Data System (ADS)
Fang, Xiaozhen; Bi, Xiaohui; Xu, Hong; Wu, Jianhui; Zhang, Yufen; Feng, Yinchang
2017-07-01
In order to identify the sources of PM10 and PM2.5 in Haikou, 60 ambient air samples were collected in winter and spring, respectively. Fifteen elements (Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb), water-soluble ions (SO42 - and NO3-), and organic carbon (OC) and elemental carbon (EC) were analyzed. It was clear that the concentration of particulate matter was higher in winter than in spring. The value of PM2.5/PM10 was > 0.6. Moreover, the proportions of TC, ions, Na, Al, Si and Ca were more high in PM10 and PM2.5. The SOC concentration was estimated by the minimum OC/EC ratio method, and deducted from particulate matter compositions when running CMB model. According to the results of CMB model, the resuspended dust (17.5-35.0%), vehicle exhaust (14.9-23.6%) and secondary particulates (20.4-28.8%) were the major source categories of ambient particulate matter. Additionally, sea salt also had partial contribution (3-8%). And back trajectory analysis results showed that particulate matter was greatly affected by regional sources in winter, while less affected in spring. So particulate matter was not only affected by local sources, but also affected by sea salt and regional sources in coastal cities. Further research could focuses on establishing the actual secondary particles profiles and identifying the local and regional sources of PM at once by one model or analysis method.
Svendsen, Erik R; Reynolds, Scott; Ogunsakin, Olalekan A; Williams, Edith M; Fraser-Rahim, Herb; Zhang, Hongmei; Wilson, Sacoby M
2014-01-01
INTRODUCTION The Port of Charleston, one of the busiest US ports, currently operates five terminals. The fifth terminal is being planned for expansion to accommodate container ships from the proposed Panama Canal expansion. Such expansion is expected to increase traffic within local vulnerable North Charleston neck communities by at least 7,000 diesel truck trips per day, more than a 70% increase from the present average rate of 10,000 trucks per day. Our objective was to measure the current particulate matter (PM) concentrations in North Charleston communities as a baseline to contrast against future air pollution after the proposed port expansion. METHODS Saturation study was performed to determine spatial variability of PM in local Charleston neck communities. In addition, the temporal trends in particulate air pollution within the region were determined across several decades. With the BGI sampler, PM samples were collected for 24 hours comparable to the federal reference method protocol. Gravimetric analysis of the PM filter samples was conducted following EPA protocol. RESULTS The range of the PM10 annual average across the region from 1982 to 2006 was 17.0–55.0 μg/m3. On only two occasions were the records of PM10 averaged above the 50.0 μg/m3 national standard. In the case of PM2.5, the annual average for 1999–2006 ranged from 11.0 to 13.5 μg/m3 and no annual average exceeded the 15.0 μg/m3 PM2.5 annual standard. CONCLUSIONS Although ambient PM levels have fallen in the Charleston region since the 1960s due to aggressive monitoring by the stakeholders against air pollution, local air pollution sources within the North Charleston neck communities have consistently contributed to the PM levels in the region for several decades. This baseline assessment of ambient PM will allow for comparisons with future assessments to ascertain the impact of the increased truck and port traffic on PM concentrations. PMID:24653648
Spatial and temporal variations of the concentrations of PM10, PM2.5 and PM1 in China
NASA Astrophysics Data System (ADS)
Wang, Y. Q.; Zhang, X. Y.; Sun, J. Y.; Zhang, X. C.; Che, H. Z.; Li, Y.
2015-06-01
Concentrations of PM10, PM2.5 and PM1 were monitored at 24 stations of CAWNET (China Atmosphere Watch Network) from 2006 to 2014 using GRIMM 180 dust monitors. The highest particulate matter (PM) concentrations were observed at the stations of Xian, Zhengzhou and Gucheng, in Guanzhong and the Hua Bei Plain (HBP). The second highest PM concentrations were observed in northeast China, followed by southern China. According to the latest air quality standards of China, 14 stations reached the PM10 standard and only 7 stations, mainly rural and remote stations, reached the PM2.5 standard. The PM2.5 and PM10 ratios showed a clear increasing trend from northern to southern China, because of the substantial contribution of coarse mineral aerosol in northern China. The PM1 and PM2.5 ratios were higher than 80% at most stations. PM concentrations tended to be highest in winter and lowest in summer at most stations, and mineral dust impacts influenced the results in spring. A decreasing interannual trend was observed in the HBP and southern China from 2006 to 2014, but an increasing trend occurred at some stations in northeast China. Also diurnal variations of PM concentrations and meteorological factors effects were investigated.
EFFECT OF METAL REMOVAL ON THE TOXICITY OF AIRBORNE PARTICULATE MATTER FROM THE UTAH VALLEY
Abstract:
Epidemiological studies have linked the inhalation of airborne particulate matter (PM) to increased morbidity and mortality in humans. However, the mechanism(s) of toxicity of these particles remains unclear. Some hypotheses state that the toxicity might stem fro...
Exposure to particulate matter (PM) is associated with increased cardiovascular disease morbidity and mortality. These correlations are strengthened in individuals with pre-existing cardiovascular disease, including hypertension. Extensive evidence supports a significant role for...
Enhanced air pollution via aerosol-boundary layer feedback in China.
Petäjä, T; Järvi, L; Kerminen, V-M; Ding, A J; Sun, J N; Nie, W; Kujansuu, J; Virkkula, A; Yang, X-Q; Fu, C B; Zilitinkevich, S; Kulmala, M
2016-01-12
Severe air pollution episodes have been frequent in China during the recent years. While high emissions are the primary reason for increasing pollutant concentrations, the ultimate cause for the most severe pollution episodes has remained unclear. Here we show that a high concentration of particulate matter (PM) will enhance the stability of an urban boundary layer, which in turn decreases the boundary layer height and consequently cause further increases in PM concentrations. We estimate the strength of this positive feedback mechanism by combining a new theoretical framework with ambient observations. We show that the feedback remains moderate at fine PM concentrations lower than about 200 μg m(-3), but that it becomes increasingly effective at higher PM loadings resulting from the combined effect of high surface PM emissions and massive secondary PM production within the boundary layer. Our analysis explains why air pollution episodes are particularly serious and severe in megacities and during the days when synoptic weather conditions stay constant.
Song, Jie; Zheng, Liheng; Lu, Mengxue; Gui, Lihui; Xu, Dongqun; Wu, Weidong; Liu, Yue
2018-04-25
Until now, few epidemiological studies have focused on the association between ambient particulate matter pollution and mental and behavioral disorders, especially in developing countries. Thus, a time-series study on the short-term association between both fine and inhalable particles (PM 2.5 and PM 10 ) and daily hospital admissions for mental and behavioral disorders in Shijiazhuang, China was conducted, from 2014 to 2016. An over-dispersed, generalized additive model was used to analyze the associations after controlling for time trend, weather conditions, day of the week, and holidays. In addition, the modification effects of age, sex, and season were estimated. A total of 9156 cases of hospital admissions for mental and behavioral disorders were identified. A 10 μg/m 3 increase in a 3-day average concentration (lag02) of PM 2.5 and PM 10 correspond to an increase of 0.48% (95% confidence interval (CI): 0.18-0.79%) and 0.32% (95% CI: 0.03-0.62%) in daily hospital admission for mental and behavioral disorders, respectively. We found stronger associations of PM 2.5 and PM 10 with mental and behavioral disorders in male and elder individuals (≥45 years) than in female and younger individuals (<45 years). Further, results indicated a generally stronger association of PM 2.5 with mental and behavioral disorders in the cool season than in the warm season. This research found a significant association between ambient PM 2.5 and PM 10 and hospital admission for mental and behavioral disorders in Shijiazhuang, China. Copyright © 2018 Elsevier B.V. All rights reserved.
Chuang, Ming-Tung; Chen, Yu-Chieh; Lee, Chung-Te; Cheng, Chung-Hao; Tsai, Yu-Jen; Chang, Shih-Yu; Su, Zhen-Sen
2016-07-01
To investigate the characteristics and contributions of the sources of fine particulate matter with a size of up to 2.5 μm (PM2.5) during the period when pollution events could easily occur in Taoyuan aerotropolis, Taiwan, this study conducted sampling at three-day intervals from September 2014 to January 2015. Based on the mass concentration of PM2.5, the sampling days were classified into high PM2.5 concentration event days (PM2.5>35 μg m(-3)) and non-event days (PM2.5<35 μg m(-3)). In addition, the chemical species, including water-soluble inorganic ions, carbonaceous components, and metal elements, were analyzed. The sources of pollution and their contributions were estimated using the positive matrix factorization (PMF) model. Furthermore, the effect of the weather type on the measurement results was also explored based on wind field conditions. The mass fractions of Cl(-) and NO3(-) increased when a high PM2.5 concentration event occurred, and they were also higher under local emitted conditions than under long range transported conditions, indicating that secondary nitrate aerosols were the major increasing local species that caused high PM2.5 concentration events. Seven sources of pollution could be distinguished using the PMF model on the basis of the characteristics of the species. Industrial emissions, coal combustion/urban waste incineration, and local emissions from diesel/gasoline vehicles were the main sources that contributed to pollution on high PM2.5 concentration event days. In order to reduction of high PM2.5 concentration events, the control of diesel and gasoline vehicle emission is important and should be given priority. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lepers, Capucine; André, Véronique; Dergham, Mona; Billet, Sylvain; Verdin, Anthony; Garçon, Guillaume; Dewaele, Dorothée; Cazier, Fabrice; Sichel, François; Shirali, Pirouz
2014-06-01
Airborne particulate matter (PM) toxicity is of growing interest as diesel exhaust particles have been classified as carcinogenic to humans. However, PM is a mixture of chemicals, and respective contribution of organic and inorganic fractions to PM toxicity remains unclear. Thus, we analysed the link between chemical composition of PM samples and bulky DNA adduct formation supported by CYP1A1 and 1B1 genes induction and catalytic activities. We used six native PM samples, collected in industrial, rural or urban areas, either during the summer or winter, and carried out our experiments on the human bronchial epithelial cell line BEAS-2B. Cell exposure to PM resulted in CYP1A1 and CYP1B1 genes induction. This was followed by an increase in EROD activity, leading to bulky DNA adduct formation in exposed cells. Bulky DNA adduct intensity was associated to global EROD activity, but this activity was poorly correlated with CYPs mRNA levels. However, EROD activity was correlated with both metal and polycyclic aromatic hydrocarbon (PAH) content. Finally, principal components analysis revealed three clusters for PM chemicals, and suggested synergistic effects of metals and PAHs on bulky DNA adduct levels. This study showed the ability of PM samples from various origins to generate bulky DNA adducts in BEAS-2B cells. This formation was promoted by increased expression and activity of CYPs involved in PAHs activation into reactive metabolites. However, our data highlight that bulky DNA adduct formation is only partly explained by PM content in PAHs, and suggest that inorganic compounds, such as iron, may promote bulky DNA adduct formation by supporting CYP activity. Copyright © 2013 John Wiley & Sons, Ltd.
Filter-based control of particulate matter from a lean gasoline direct injection engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, II, James E; Lewis Sr, Samuel Arthur; DeBusk, Melanie Moses
New regulations requiring increases in vehicle fuel economy are challenging automotive manufacturers to identify fuel-efficient engines for future vehicles. Lean gasoline direct injection (GDI) engines offer significant increases in fuel efficiency over the more common stoichiometric GDI engines already in the marketplace. However, particulate matter (PM) emissions from lean GDI engines, particularly during stratified combustion modes, are problematic for lean GDI technology to meet U.S. Environmental Protection Agency Tier 3 and other future emission regulations. As such, the control of lean GDI PM with wall-flow filters, referred to as gasoline particulate filter (GPF) technology, is of interest. Since lean GDImore » PM chemistry and morphology differ from diesel PM (where more filtration experience exists), the functionality of GPFs needs to be studied to determine the operating conditions suitable for efficient PM removal. In addition, lean GDI engine exhaust temperatures are generally higher than diesel engines which results in more continuous regeneration of the GPF and less presence of the soot cake layer common to diesel particulate filters. Since the soot layer improves filtration efficiency, this distinction is important to consider. Research on the emission control of PM from a lean GDI engine with a GPF was conducted on an engine dynamometer. PM, after dilution, was characterized with membrane filters, organic vs. elemental carbon characterization, and size distribution techniques at various steady state engine speed and load points. The engine was operated in three primary combustion modes: stoichiometric, lean homogeneous, and lean stratified. In addition, rich combustion was utilized to simulate PM from engine operation during active regeneration of lean NOx control technologies. High (>95%) PM filtration efficiencies were observed over a wide range of conditions; however, some PM was observed to slip through the GPF at high speed and load conditions. The PM characterization at various engine speeds and loads will help enable optimized GPF design and control to achieve more fuel efficient lean GDI vehicles with low PM emissions.« less
Quality-assured measurements of animal building emissions: particulate matter concentrations.
Heber, Albert J; Lim, Teng-Teeh; Ni, Ji-Qin; Tao, Pei-Chun; Schmidt, Amy M; Koziel, Jacek A; Hoff, Steven J; Jacobson, Larry D; Zhang, Yuanhui; Baughman, Gerald B
2006-12-01
Federally funded, multistate field studies were initiated in 2002 to measure emissions of particulate matter (PM) < 10 microm (PM10) and total suspended particulate (TSP), ammonia, hydrogen sulfide, carbon dioxide, methane, nonmethane hydrocarbons, and odor from swine and poultry production buildings in the United States. This paper describes the use of a continuous PM analyzer based on the tapered element oscillating microbalance (TEOM). In these studies, the TEOM was used to measure PM emissions at identical locations in paired barns. Measuring PM concentrations in swine and poultry barns, compared with measuring PM in ambient air, required more frequent maintenance of the TEOM. External screens were used to prevent rapid plugging of the insect screen in the PM10 preseparator inlet. Minute means of mass concentrations exhibited a sinusoidal pattern that followed the variation of relative humidity, indicating that mass concentration measurements were affected by water vapor condensation onto and evaporation of moisture from the TEOM filter. Filter loading increased the humidity effect, most likely because of increased water vapor adsorption capacity of added PM. In a single layer barn study, collocated TEOMs, equipped with TSP and PM10 inlets, corresponded well when placed near the inlets of exhaust fans in a layer barn. Initial data showed that average daily mean concentrations of TSP, PM10, and PM2.5 concentrations at a layer barn were 1440 +/- 182 microg/m3 (n = 2), 553 +/- 79 microg/m3 (n = 4), and 33 +/- 75 microg/m3 (n = 1), respectively. The daily mean TSP concentration (n = 1) of a swine barn sprinkled with soybean oil was 67% lower than an untreated swine barn, which had a daily mean TSP concentration of 1143 +/- 619 microg/m3. The daily mean ambient TSP concentration (n = 1) near the swine barns was 25 +/- 8 microg/m3. Concentrations of PM inside the swine barns were correlated to pig activity.
Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Sano, Hiroyuki; Kitano, Hiroya; Saito, Rumiko; Kimura, Yutaka; Aiba, Setsuya; Oshimura, Mitsuo; Shimizu, Eiji
2015-01-01
This study aimed to investigate the effects of particulate matter (PM) on pulmonary function in schoolchildren, as well as the relationships of these effects with interleukin-8. Morning peak expiratory flow (PEF) was measured daily in 399 children during April–May 2012, and in 384 of these children during March–May 2013. PEF’s association with the daily levels of suspended particulate matter (SPM) and PM < 2.5 μm (PM2.5) was estimated using a linear mixed model. Interleukin-8 promoter activity was assessed in THP-G8 cells stimulated by fallen PM collected at Tottori University Hospital during four periods (two in 2012 and two in 2013). An increase of 14.0 μg/m3 in SPM led to PEF changes of −2.16 L/min in 2012 and −0.81 L/min in 2013, respectively. An increment of 10.7 μg/m3 in PM2.5 was associated with PEF changes of −2.58 L/min in 2012 and −0.55 L/min in 2013, respectively. These associations were only significant in 2012. Interleukin-8 promoter activity was significantly higher in both periods of 2012 than in 2013. There was a significant association between pulmonary function in schoolchildren and daily levels of SPM and PM2.5, but this association may differ depending on the PM’s ability to elicit interleukin-8 production. PMID:26569272
Near-road enhancement and solubility of fine and coarse ...
Communities near major roadways are disproportionately affected by traffic-related air pollution which can contribute to adverse health outcomes. The specific role of particulate matter (PM) from traffic sources is not fully understood due to complex emissions processes and physical/chemical properties of PM in the near-road environment. To investigate the spatial profile and water solubility of elemental PM species near a major roadway, filter-based measurements of fine (PM2.5) and coarse (PM10-2.5) PM were simultaneously collected at multiple distances (10 m, 100 m, and 300 m) from Interstate I-96 in Detroit, Michigan during September–November 2010. Filters were extracted in water, followed by a hot acid extraction, and analyzed by magnetic sector field high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) to quantify water-soluble and acid-soluble trace elements for each PM size fraction. PM2.5 and PM10-2.5 species measured in the near-road samples included elements associated with traffic activity, local industrial sources, and regional pollution. Metals indicative of brake wear (Ba, Cu) were dramatically enriched near the roadway during downwind conditions (factor of 5 concentration increase), with the largest increase within 100 m of the roadway. Moderate near-roadway increases were observed for crustal elements and other traffic-related PM (Fe, Ca), and the lowest increases observed for regional PM species (S). Water solubility varied
Alastuey, Andrés; Querol, Xavier; Plana, Feliciano; Viana, Mar; Ruiz, Carmen R; Sánchez de la Campa, Ana; de la Rosa, Jesús; Mantilla, Enrique; García dos Santos, Saul
2006-07-01
A detailed physical and chemical characterization of coarse particulate matter (PM10) and fine particulate matter (PM2.5) in the city of Huelva (in Southwestern Spain) was carried out during 2001 and 2002. To identify the major emission sources with a significant influence on PM10 and PM2.5, a methodology was developed based on the combination of: (1) real-time measurements of levels of PM10, PM2.5, and very fine particulate matter (PM1); (2) chemical characterization and source apportionment analysis of PM10 and PM2.5; and (3) intensive measurements in field campaigns to characterize the emission plumes of several point sources. Annual means of 37, 19, and 16 microg/m3 were obtained for the study period for PM10, PM2.5, and PM1, respectively. High PM episodes, characterized by a very fine grain size distribution, are frequently detected in Huelva mainly in the winter as the result of the impact of the industrial emission plumes on the city. Chemical analysis showed that PM at Huelva is characterized by high PO4(3-) and As levels, as expected from the industrial activities. Source apportionment analyses identified a crustal source (36% of PM10 and 31% of PM2.5); a traffic-related source (33% of PM10 and 29% of PM2.5), and a marine aerosol contribution (only in PM10, 4%). In addition, two industrial emission sources were identified in PM10 and PM2.5: (1) a petrochemical source, 13% in PM10 and 8% in PM2.5; and (2) a mixed metallurgical-phosphate source, which accounts for 11-12% of PM10 and PM2.5. In PM2.5 a secondary source has been also identified, which contributed to 17% of the mass. A complete characterization of industrial emission plumes during their impact on the ground allowed for the identification of tracer species for specific point sources, such as petrochemical, metallurgic, and fertilizer and phosphate production industries.
First assessment of the PM10 and PM2.5 particulate level in the ambient air of Belgrade city.
Rajsić, Slavica F; Tasić, Mirjana D; Novaković, Velibor T; Tomasević, Milica N
2004-01-01
As the strong negative health effect of exposure to the inhalable particulate matter PM10 in the urban environment has been confirmed, the study of the mass concentrations, physico-chemical characteristics, sources, as well as spatial and temporal variation of atmospheric aerosol particles becomes very important. This work is a pilot study to assess the concentration level of ambient suspended particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade central urban area. Average daily concentrations of PM10 and PM2.5 have been measured at three representative points in the city between June 2002 and December 2002. The influence of meteorological parameters on PM10 and PM2.5 concentrations was analyzed, and possible pollution sources were identified. Suspended particles were collected on Pure Teflon filters by using a Mini-Vol low-volume air sampler (Airmetrics Co., Inc.; 5 l min(-1) flow rate). Particle mass was determined gravimetrically after 48 h of conditioning in a desiccator, in a Class 100 clean room at the temperature T = 20 degrees C and at about 50% constant relative humidity (RH). Analysis of the PM10 data indicated a marked difference between season without heating--(summer; mean value 56 microg m(-3)) and heating season--(winter; mean value 96 microg m3); 62% of samples exceeded the level of 50 microg m(-3). The impact of meteorological factors on PM concentrations was not immediately apparent, but there was a significant negative correlation with the wind speed. The PM10 and PM2.5 mass concentrations in the Belgrade urban area had high average values (77 microg m(-3) and 61 microg m(-3)) in comparison with other European cities. The main sources of particulate matter were traffic emission, road dust resuspension, and individual heating emissions. When the air masses are coming from the SW direction, the contribution from the Obrenovac power plants is evident. During days of exceptionally severe pollution, in both summer and winter periods, high production of secondary aerosols occurred, as can be seen from an increase in PM2.5 in respect to PM10 mass concentration. The results obtained gave us the first impression of the concentration level of particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade ambient air. Due to measured high PM mass concentrations, it is obvious that it would be very difficult to meet the EU standards (EEC 1999) by 2010. It is necessary to continue with PM10 and PM2.5 sampling; and after comprehensive analysis which includes the results of chemical and physical characterization of particles, we will be able to recommend effective control measures in order to improve air quality in Belgrade.
Respiratory dose analysis for components of ambient particulate matter
Particulate matter (PM) in the atmosphere is a complex mixture of particles with different sizes and chemical compositions. Although PM is known to induce health effects, specific attributes of PM that may cause health effects are somewhat ambiguous. Dose of each specific compone...
Respiratory dose analysis for components of ambient particulate matter#
Particulate matter (PM) in the atmosphere is a complex mixture of particles with different sizes and chemical compositions. Although PM is known to cause health hazard, specific attributes of PM that may cause health effects are somewhat ambiguous. The dose of each specific compo...
Karavalakis, Georgios; Short, Daniel; Vu, Diep; Russell, Robert; Hajbabaei, Maryam; Asa-Awuku, Akua; Durbin, Thomas D
2015-06-02
We assessed the emissions response of a fleet of seven light-duty gasoline vehicles for gasoline fuel aromatic content while operating over the LA92 driving cycle. The test fleet consisted of model year 2012 vehicles equipped with spark-ignition (SI) and either port fuel injection (PFI) or direct injection (DI) technology. Three gasoline fuels were blended to meet a range of total aromatics targets (15%, 25%, and 35% by volume) while holding other fuel properties relatively constant within specified ranges, and a fourth fuel was formulated to meet a 35% by volume total aromatics target but with a higher octane number. Our results showed statistically significant increases in carbon monoxide, nonmethane hydrocarbon, particulate matter (PM) mass, particle number, and black carbon emissions with increasing aromatics content for all seven vehicles tested. Only one vehicle showed a statistically significant increase in total hydrocarbon emissions. The monoaromatic hydrocarbon species that were evaluated showed increases with increasing aromatic content in the fuel. Changes in fuel composition had no statistically significant effect on the emissions of nitrogen oxides (NOx), formaldehyde, or acetaldehyde. A good correlation was also found between the PM index and PM mass and number emissions for all vehicle/fuel combinations with the total aromatics group being a significant contributor to the total PM index followed by naphthalenes and indenes.
Environmental Inequality in Exposures to Airborne Particulate Matter Components in the United States
Ebisu, Keita
2012-01-01
Background: Growing evidence indicates that toxicity of fine particulate matter ≤ 2.5 μm in diameter (PM2.5) differs by chemical component. Exposure to components may differ by population. Objectives: We investigated whether exposures to PM2.5 components differ by race/ethnicity, age, and socioeconomic status (SES). Methods: Long-term exposures (2000 through 2006) were estimated for 215 U.S. census tracts for PM2.5 and for 14 PM2.5 components. Population-weighted exposures were combined to generate overall estimated exposures by race/ethnicity, education, poverty status, employment, age, and earnings. We compared population characteristics for tracts with and without PM2.5 component monitors. Results: Larger disparities in estimated exposures were observed for components than for PM2.5 total mass. For race/ethnicity, whites generally had the lowest exposures. Non-Hispanic blacks had higher exposures than did whites for 13 of the 14 components. Hispanics generally had the highest exposures (e.g., 152% higher than whites for chlorine, 94% higher for aluminum). Young persons (0–19 years of age) had levels as high as or higher than other ages for all exposures except sulfate. Persons with lower SES had higher estimated exposures, with some exceptions. For example, a 10% increase in the proportion unemployed was associated with a 20.0% increase in vanadium and an 18.3% increase in elemental carbon. Census tracts with monitors had more non-Hispanic blacks, lower education and earnings, and higher unemployment and poverty than did tracts without monitors. Conclusions: Exposures to PM2.5 components differed by race/ethnicity, age, and SES. If some components are more toxic than others, certain populations are likely to suffer higher health burdens. Demographics differed between populations covered and not covered by monitors. PMID:22889745
Loop, Matthew Shane; Kent, Shia T.; Al-Hamdan, Mohammad Z.; Crosson, William L.; Estes, Sue M.; Estes, Maurice G.; Quattrochi, Dale A.; Hemmings, Sarah N.; Wadley, Virginia G.; McClure, Leslie A.
2013-01-01
Studies of the effect of air pollution on cognitive health are often limited to populations living near cities that have air monitoring stations. Little is known about whether the estimates from such studies can be generalized to the U.S. population, or whether the relationship differs between urban and rural areas. To address these questions, we used a satellite-derived estimate of fine particulate matter (PM2.5) concentration to determine whether PM2.5 was associated with incident cognitive impairment in a geographically diverse, biracial US cohort of men and women (n = 20,150). A 1-year mean baseline PM2.5 concentration was estimated for each participant, and cognitive status at the most recent follow-up was assessed over the telephone using the Six-Item Screener (SIS) in a subsample that was cognitively intact at baseline. Logistic regression was used to determine whether PM2.5 was related to the odds of incident cognitive impairment. A 10 µg/m3 increase in PM2.5 concentration was not reliably associated with an increased odds of incident impairment, after adjusting for temperature, season, incident stroke, and length of follow-up [OR (95% CI): 1.26 (0.97, 1.64)]. The odds ratio was attenuated towards 1 after adding demographic covariates, behavioral factors, and known comorbidities of cognitive impairment. A 10 µg/m3 increase in PM2.5 concentration was slightly associated with incident impairment in urban areas (1.40 [1.06–1.85]), but this relationship was also attenuated after including additional covariates in the model. Evidence is lacking that the effect of PM2.5 on incident cognitive impairment is robust in a heterogeneous US cohort, even in urban areas. PMID:24086422
Exaggerated effects of particulate matter air pollution in genetic type II diabetes mellitus.
Liu, Cuiqing; Bai, Yuntao; Xu, Xiaohua; Sun, Lixian; Wang, Aixia; Wang, Tse-Yao; Maurya, Santosh K; Periasamy, Muthu; Morishita, Masako; Harkema, Jack; Ying, Zhekang; Sun, Qinghua; Rajagopalan, Sanjay
2014-05-30
Prior experimental and epidemiologic data support a link between exposure to fine ambient particulate matter (<2.5 μm in aerodynamic diameter, PM2.5) and development of insulin resistance/Type II diabetes mellitus. This study was designed to investigate whether inhalational exposure of concentrated PM2.5 in a genetically susceptible animal model would result in abnormalities in energy metabolism and exacerbation of peripheral glycemic control. KKay mice, which are susceptible to Type II DM, were assigned to either concentrated ambient PM2.5 or filtered air (FA) for 5-8 weeks via a whole body exposure system. Glucose tolerance, insulin sensitivity, oxygen consumption and heat production were evaluated. At euthanasia, blood, spleen and visceral adipose tissue were collected to measure inflammatory cells using flow cytometry. Standard immnunohistochemical methods, western blotting and quantitative PCR were used to assess targets of interest. PM2.5 exposure influenced energy metabolism including O2 consumption, CO2 production, respiratory exchange ratio and thermogenesis. These changes were accompanied by worsened insulin resistance, visceral adiposity and inflammation in spleen and visceral adipose depots. Plasma adiponectin were decreased in response to PM2.5 exposure while leptin levels increased. PM2.5 exposure resulted in a significant increase in expression of inflammatory genes and decreased UCP1 expression in brown adipose tissue and activated p38 and ERK pathways in the liver of the KKay mice. Concentrated ambient PM2.5 exposure impairs energy metabolism, concomitant with abnormalities in glucose homeostasis, increased inflammation in insulin responsive organs, brown adipose inflammation and results in imbalance in circulating leptin/adiponectin levels in a genetically susceptible diabetic model. These results provide additional insights into the mechanisms surrounding air pollution mediated susceptibility to Type II DM.
Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan
2016-01-01
To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing.
Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan
2016-01-01
To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing. PMID:27148180
NASA Astrophysics Data System (ADS)
Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei
2015-11-01
Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.
Salcido-Neyoy, Martha Estela; Sánchez-Pérez, Yesennia; Osornio-Vargas, Alvaro Román; Gonsebatt, María Eugenia; Meléndez-Zajgla, Jorge; Morales-Bárcenas, Rocío; Petrosyan, Pavel; Molina-Servin, Edith Danny; Vega, Elizabeth; Manzano-León, Natalia; García-Cuellar, Claudia M
2015-08-01
The carcinogenic potential of urban particulate matter (PM) has been partly attributed to polycyclic aromatic hydrocarbons (PAHs) content, which activates the aryl hydrocarbon receptor (AhR). Here we report the effect of PM with an aerodynamic size of 10 μm (PM10) on the induction of AhR pathway in A549 cells, evaluating its downstream targets CYP1B1, IL-6, IL-8 and c-Jun. Significant increases in CYP1B1 protein and enzyme activity; IL-6 and IL-8 secretion and c-Jun protein were found in response to PM10. The formation of PAH-DNA adducts was also detected. The involvement of AhR pathway was confirmed with Resveratrol as AhR antagonist, which reversed CYP1B1 and c-Jun induction. Nevertheless, in IL-6 and IL-8 secretion, the Resveratrol was ineffective, suggesting an effect independent of this pathway. Considering the role of c-Jun in oncogenesis, its induction by PM may be contributing to its carcinogenic potential through induction of AhR pathway by PAHs present in PM10. Copyright © 2015 Elsevier Ltd. All rights reserved.
Layshock, Julie; Simonich, Staci Massey; Anderson, Kim A
2010-12-01
Size fractionated particulate matter (PM) was collected in summer and winter from Beijing, China for the characterization of an expanded list of PAHs and evaluation of air pollution metrics. Summertime ΣPAHs on PM was 14.6 ± 29(PM 1.5), 0.88 ± 0.49(PM 1.5-7.2) and 0.29 ± 0.076(PM 7.2) ng m(-3) air while wintertime concentrations were 493 ± 206(PM 1.5), 26.7 ± 14(PM 1.5-7.2) and 5.3 ± 2.5(PM 7.2) ng m(-3) air. Greater than 90% of the carcinogenic PAHs were concentrated on PM(1.5). Dibenzopyrene isomers made up a significant portion (∼30%) of the total carcinogenic PAH load during the winter. To our knowledge, this is the first report of dibenzopyrenes in the Beijing atmosphere and among the few studies that report these highly potent PAHs in ambient particulate matter. Lifetime risk calculations indicated that 1 out of 10,000 to over 6 out of 100 Beijing residents may have an increased risk of lung cancer due to PAH concentration. Over half of the lifetime risk was attributed to Σdibenzopyrenes. The World Health Organization and Chinese daily PM(10) standard was exceeded on each day of the study, however, PAH limits were only exceeded during the winter. The outcomes of the air pollution metrics were highly dependent on the individual PAHs measured and seasonal variation.
Evaluation of ground-based particulate matter in association with measurements from space
NASA Astrophysics Data System (ADS)
Nakata, Makiko; Yoshida, Akihito; Sano, Itaru; Mukai, Sonoyo
2017-10-01
Air pollution is problem of deep concern to human health. In Japan, the air pollution levels experienced during the recent period of rapid economic growth have been reduced. However, fine particulate matter (PM2.5) has not yet reached the environmental standards at many monitoring stations. The Japanese environmental quality standard for PM2.5 that was ratified in 2009 lags about four decades behind other air pollutants, including sulfur dioxide, nitrogen dioxide, carbon monoxide, photochemical oxidants, and suspended particulate matter. Recently, trans-national air pollutants have been observed to cause high concentrations of PM2.5 in Japan. To obtain wide distribution of PM2.5, the satellite based PM2.5 products are extremely useful. We investigate PM2.5 concentrations measured using ground samplers in Japan and the satellite based PM2.5 products, taking into consideration various geographical and weather conditions.
Hundreds of epidemiological studies have shown that exposure to ambient particulate matter is associated with dose dependent increases in mortality and morbidity in the exposed population. While most of the early reports focused on PM10, independent studies are now showing that ...
Over the past few decades, the drying and warming trends of global climate change have increased wildland fire (WF) season length, as well as geographic area impacted. Consequently, exposures to WF fine particulate matter (PM2.5; aerodynamic diameter <2.5 µm) are likely ...
Particulate matter (PM) is a complex mixture of extremely small particles and liquid droplets made up of a number of components including elemental carbon, organic chemicals, metals, acids (such as nitrates and sulfates), and soil and dust particles. Epidemiological studies con...
Comparative toxicity assessment of particulate matter (PM) from different sources will potentially inform the understanding of regional differences in PM-induced cardiac health effects by identifying PM sources linked to highest potency components. Conventional low-throughput in...
Buczyńska, Anna J; Krata, Agnieszka; Van Grieken, Rene; Brown, Andrew; Polezer, Gabriela; De Wael, Karolien; Potgieter-Vermaak, Sanja
2014-08-15
Many studies probing the link between air quality and health have pointed towards associations between particulate matter (PM) exposure and decreased lung function, aggravation of respiratory diseases like asthma, premature death and increased hospitalisation admissions for the elderly and individuals with cardiopulmonary diseases. Of recent, it is believed that the chemical composition and physical properties of PM may contribute significantly to these adverse health effects. As part of a Belgian Science Policy project ("Health effects of particulate matter in relation to physical-chemical characteristics and meteorology"), the chemical composition (elemental and ionic compositions) and physical properties (PM mass concentrations) of PM were investigated, indoors and outdoors of old age homes in Antwerp. The case reported here specifically relates to high versus normal/low pollution event periods. PM mass concentrations for PM1 and PM2.5 fractions were determined gravimetrically after collection via impaction. These same samples were hence analysed by EDXRF spectrometry and IC for their elemental and ionic compositions, respectively. During high pollution event days, PM mass concentrations inside the old age home reached 53 μg m(-3) and 32 μg m(-3) whilst outside concentrations were 101 μg m(-3) and 46 μg m(-3) for PM2.5 and PM1, respectively. The sum of nss-sulphate, nitrate and ammonium, dominate the composition of PM, and contribute the most towards an increase in the PM during the episode days constituting 64% of ambient PM2.5 (52 μg m(-3)) compared to 39% on non-episode days (10 μg m(-3)). Other PM components, such as mineral dust, sea salt or heavy metals were found to be considerably higher during PM episodes but relatively less important. Amongst heavy metals Zn and Pb were found at the highest concentrations in both PM2.5 and PM1. Acid-base ionic balance equations were calculated and point to acidic aerosols during event days and acidic to alkaline aerosols during non-event days. No significant sources of indoor pollutants could be identified inside the old-age home as high correlations were found between outdoor and indoor PM, confirming mainly the outdoor origin of indoor air. Copyright © 2014 Elsevier B.V. All rights reserved.
Weir, Charles H.; Yeatts, Karin B.; Sarnat, Jeremy A.; Vizuete, William; Salo, Päivi M.; Jaramillo, Renee; Cohn, Richard D.; Chu, Haitao; Zeldin, Darryl C.; London, Stephanie J.
2014-01-01
Background Allergic sensitization is a risk factor for asthma and allergic diseases. The relationship between ambient air pollution and allergic sensitization is unclear. Objective To investigate the relationship between ambient air pollution and allergic sensitization in a nationally representative sample of the US population. Methods We linked annual average concentrations of nitrogen dioxide (NO2), particulate matter ≤ 10 µm (PM10), particulate matter ≤ 2.5 µm (PM25), and summer concentrations of ozone (O3), to allergen-specific immunoglobulin E (IgE) data for participants in the 2005–2006 National Health and Nutrition Examination Survey (NHANES). In addition to the monitor-based air pollution estimates, we used the Community Multiscale Air Quality (CMAQ) model to increase the representation of rural participants in our sample. Logistic regression with population-based sampling weights was used to calculate adjusted prevalence odds ratios per 10 ppb increase in O3 and NO2, per 10 µg/m3 increase in PM10, and per 5 µg/m3 increase in PM2.5 adjusting for race, gender, age, socioeconomic status, smoking, and urban/rural status. Results Using CMAQ data, increased levels of NO2 were associated with positive IgE to any (OR 1.15, 95% CI 1.04, 1.27), inhalant (OR 1.17, 95% CI 1.02, 1.33), and outdoor (OR 1.16, 95% CI 1.03, 1.31) allergens. Higher PM2.5 levels were associated with positivity to indoor allergen-specific IgE (OR 1.24, 95% CI 1.13, 1.36). Effect estimates were similar using monitored data. Conclusions Increased ambient NO2 was consistently associated with increased prevalence of allergic sensitization. PMID:24045117
MODELING ENVIRONMENTAL EXPOSURES TO PARTICULATE MATTER AND PESTICIDES
This presentation describes initial results from on-going research at EPA on modeling human exposures to particulate matter and residential pesticides. A first generation probabilistic population exposure model for Particulate Matter (PM), specifically for predicting PM1o and P...
Choi, Jong-Kyu; Ban, Soo-Jin; Kim, Yong-Pyo; Kim, Yong-Hee; Yi, Seung-Muk; Zoh, Kyung-Duk
2015-09-01
This study was carried out to identify possible sources and to estimate their contribution to total suspended particle (TSP) organic aerosol (OA) contents. A total of 120 TSP and PM2.5 samples were collected simultaneously every third day over a one-year period in urban area of Incheon, Korea. High concentration in particulate matters (PM) and its components (NO3(-), water soluble organic compounds (WSOCs), and n-alkanoic acids) were observed during the winter season. Among the organics, n-alkanes, n-alkanoic acids, levoglucosan, and phthalates were major components. Positive matrix factorization (PMF) analysis identified seven sources of organic aerosols including combustion 1 (low molecular weight (LMW)-polycyclic aromatic hydrocarbons (PAHs)), combustion 2 (high molecular weight (HMW)-PAHs), biomass burning, vegetative detritus (n-alkane), secondary organic aerosol 1 (SOA1), secondary organic aerosol 2 (SOA2), and motor vehicles. Vegetative detritus increased during the summer season through an increase in biogenic/photochemical activity, while most of the organic sources were prominent in the winter season due to the increases in air pollutant emissions and atmospheric stability. The correlation factors were high among the main components of the organic carbon (OC) in the TSP and PM2.5. The results showed that TSP OAs had very similar characteristics to the PM2.5 OAs. SOA, combustion (PAHs), and motor vehicle were found to be important sources of carbonaceous PM in this region. Our results imply that molecular markers (MMs)-PMF model can provide useful information on the source and characteristics of PM. Copyright © 2015 Elsevier Ltd. All rights reserved.
40 CFR 52.427 - Control strategy: Particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) Determination of attainment. EPA has determined, as of May 16, 2012, that based on... fine particulate matter (PM2.5) nonattainment area has attained the 2006 24-hour PM2.5 national ambient...
40 CFR 52.427 - Control strategy: Particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) Determination of attainment. EPA has determined, as of May 16, 2012, that based on... fine particulate matter (PM2.5) nonattainment area has attained the 2006 24-hour PM2.5 national ambient...
Regional air quality impacts of increased natural gas production and use in Texas.
Pacsi, Adam P; Alhajeri, Nawaf S; Zavala-Araiza, Daniel; Webster, Mort D; Allen, David T
2013-04-02
Natural gas use in electricity generation in Texas was estimated, for gas prices ranging from $1.89 to $7.74 per MMBTU, using an optimal power flow model. Hourly estimates of electricity generation, for individual electricity generation units, from the model were used to estimate spatially resolved hourly emissions from electricity generation. Emissions from natural gas production activities in the Barnett Shale region were also estimated, with emissions scaled up or down to match demand in electricity generation as natural gas prices changed. As natural gas use increased, emissions decreased from electricity generation and increased from natural gas production. Overall, NOx and SO2 emissions decreased, while VOC emissions increased as natural gas use increased. To assess the effects of these changes in emissions on ozone and particulate matter concentrations, spatially and temporally resolved emissions were used in a month-long photochemical modeling episode. Over the month-long photochemical modeling episode, decreases in natural gas prices typical of those experienced from 2006 to 2012 led to net regional decreases in ozone (0.2-0.7 ppb) and fine particulate matter (PM) (0.1-0.7 μg/m(3)). Changes in PM were predominantly due to changes in regional PM sulfate formation. Changes in regional PM and ozone formation are primarily due to decreases in emissions from electricity generation. Increases in emissions from increased natural gas production were offset by decreasing emissions from electricity generation for all the scenarios considered.
Association between particulate matter 2.5 and diabetes mellitus: A meta-analysis of cohort studies.
He, Dian; Wu, Shaowen; Zhao, Haiping; Qiu, Hongyan; Fu, Yang; Li, Xingming; He, Yan
2017-09-01
The present meta-analysis was carried out to assess the association between exposure to the level of atmospheric particulate matter 2.5 (PM2.5; fine particulate matter with aerodynamic diameter less than 2.5 μm) and type 2 diabetes mellitus or gestational diabetes mellitus (GDM). We searched the Medline, EMBASE, Cochrane and Web of Science databases to obtain articles according to the responding literature search strategies. Among a total of 279 identified articles, 55 were reviewed in depth, of which 10 articles (11 cohort studies) satisfied the inclusion criteria. Only cohort studies that disclosed the association between PM2.5 and type 2 diabetes mellitus or GDM were included in this article. A fixed-effects model was selected if P > 0.1 and I 2 < 50%; otherwise, a random-effects model would be used to calculate the total effect value. Subgroup analysis was further carried out according to the types of diabetes mellitus (type 2 diabetes mellitus and GDM). The relative risk was used to estimate the association between PM2.5 and diabetes mellitus. The positive associations between PM2.5 and the incidence of type 2 diabetes mellitus were found in the long-term exposure period (relative risk 1.25, 95% confidence interval 1.10-1.43), which showed that with every 10-μg/m 3 increase in PM2.5, the risk of type 2 diabetes mellitus would increase by 25% in the long-term exposure. Although the significant associations were not identified between maternal exposure to PM2.5 and GDM in the first trimester, the second trimester and the entire pregnancy periods, we could conclude that maternal exposure to PM2.5 in the entire pregnancy period would be more likely to lead to developing GDM (relative risk 1.162, 95% confidence interval 0.806-1.675) than the other two periods. Long-term exposure to PM2.5 would be more likely to lead to developing type 2 diabetes mellitus, but more studies would be required to confirm the association between PM2.5 and GDM. It might be a wise to take effective measures to reduce PM2.5 exposure in vulnerable populations, especially for pregnant women. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.
Aina, Yusuf A.; van der Merwe, Johannes H.; Alshuwaikhat, Habib M.
2014-01-01
The effects of concentrations of fine particulate matter on urban populations have been gaining attention because fine particulate matter exposes the urban populace to health risks such as respiratory and cardiovascular diseases. Satellite-derived data, using aerosol optical depth (AOD), have been adopted to improve the monitoring of fine particulate matter. One of such data sources is the global multi-year PM2.5 data (2001–2010) released by the Center for International Earth Science Information Network (CIESIN). This paper explores the satellite-derived PM2.5 data of Saudi Arabia to highlight the trend of PM2.5 concentrations. It also examines the changes in PM2.5 concentrations in some urbanized areas of Saudi Arabia. Concentrations in major cities like Riyadh, Dammam, Jeddah, Makkah, Madinah and the industrial cities of Yanbu and Jubail are analyzed using cluster analysis. The health risks due to exposure of the populace are highlighted by using the World Health Organization (WHO) standard and targets. The results show a trend of increasing concentrations of PM2.5 in urban areas. Significant clusters of high values are found in the eastern and south-western part of the country. There is a need to explore this topic using images with higher spatial resolution and validate the data with ground observations to improve the analysis. PMID:25350009
NASA Astrophysics Data System (ADS)
Chien, Lung-Chang; Alamgir, Hassanat; Yu, Hwa-Lung
2015-04-01
Potentially larger regional effects of climate change have been revealed on the elevation of fine particulate matter (≤ 2.5 µg in diameter; PM2.5) in the U.S. In addition, recent research supports a link between diabetes and PM2.5 in both laboratory and epidemiology studies. However, research investigating the potential relationship of the spatial vulnerability of diabetes to concomitant PM2.5 levels is still sparse, and the level of diabetes geographic disparities attributed to PM2.5 levels has yet to be evaluated. We conducted a Bayesian structured additive regression modeling approach to determine whether long-term exposure to PM2.5 is spatially associated with diabetes prevalence after adjusting for the socioeconomic status of county residents. This study utilizes the following data sources from 2004-2010: the Behavioral Risk Factor Surveillance System, the American Community Survey, and the Environmental Protection Agency. We also conducted spatial comparisons with low, median-low, median-high, and high levels of PM2.5 concentrations. When PM2.5 concentrations increased 1 µg/m3, the increase in the relative risk percentage for diabetes ranged from -5.47% (95% credible interval = -6.14, -4.77) to 2.34% (95% CI = 2.01, 2.70), where 1,323 of 3,109 counties (42.55%) displayed diabetes vulnerability with significantly positive relative risk percentages. These vulnerable counties are more likely located in the Southeast, Central, and South Regions of the U.S. A similar spatial vulnerability pattern for concentrations of low PM2.5 levels was also present in these same three regions. A clear cluster of vulnerable counties at median-high PM2.5 level was found in Michigan. This study identifies the spatial vulnerability of diabetes prevalence associated with PM2.5, and thereby provides the evidence needed to prompt and establish enhanced surveillance that can monitor diabetes vulnerability in areas with low PM2.5 pollution.
Non-exhaust PM emissions from electric vehicles
NASA Astrophysics Data System (ADS)
Timmers, Victor R. J. H.; Achten, Peter A. J.
2016-06-01
Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.
Holmes, Heather A; Pardyjak, Eric R
2014-07-01
This paper reports findings from a case study designed to investigate indoor and outdoor air quality in homes near the United States-Mexico border During the field study, size-resolved continuous particulate matter (PM) concentrations were measured in six homes, while outdoor PM was simultaneously monitored at the same location in Nogales, Sonora, Mexico, during March 14-30, 2009. The purpose of the experiment was to compare PM in homes using different fuels for cooking, gas versus biomass, and to obtain a spatial distribution of outdoor PM in a region where local sources vary significantly (e.g., highway, border crossing, unpaved roads, industry). Continuous PM data were collected every 6 seconds using a valve switching system to sample indoor and outdoor air at each home location. This paper presents the indoor PM data from each home, including the relationship between indoor and outdoor PM. The meteorological conditions associated with elevated ambient PM events in the region are also discussed. Results indicate that indoor air pollution has a strong dependence on cooking fuel, with gas stoves having hourly averaged median PM3 concentrations in the range of 134 to 157 microg m(-3) and biomass stoves 163 to 504 microg m(-1). Outdoor PM also indicates a large spatial heterogeneity due to the presence of microscale sources and meteorological influences (median PM3: 130 to 770 microg m(-3)). The former is evident in the median and range of daytime PM values (median PM3: 250 microg m(-3), maximum: 9411 microg m(-3)), while the meteorological influences appear to be dominant during nighttime periods (median PM3: 251 microg m(-3), maximum: 10,846 microg m(-3)). The atmospheric stability is quantified for three nighttime temperature inversion episodes, which were associated with an order of magnitude increase in PM10 at the regulatory monitor in Nogales, AZ (maximum increase: 12 to 474 microg m(-3)). Implications: Regulatory air quality standards are based on outdoor ambient air measurements. However, a large fraction of time is typically spent indoors where a variety of activities including cooking, heating, tobacco smoking, and cleaning can lead to elevated PM concentrations. This study investigates the influence of meteorology, outdoor PM, and indoor activities on indoor air pollution (IAP) levels in the United States-Mexico border region. Results indicate that cooking fuel type and meteorology greatly influence the IAP in homes, with biomass fuel use causing the largest increase in PM concentration.
2015-12-30
FINAL REPORT Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM...Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M...report contains color. 14. ABSTRACT This project consists of demonstrating the performance and viability of two devices to condition aircraft turbine
NASA Astrophysics Data System (ADS)
Xu, Y.; Lamarque, J. F.; Wu, X.
2017-12-01
Particulate matter with the diameter smaller than 2.5 micrometers (PM2.5) poses health threats to human populations. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with Community Earth System Model 1 (CESM1), we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the primary cause for the increase in the PM2.5 column burden. Regionally over North America and East Asia, a shift of future precipitation toward more frequent heavy events contributes to weakened wet removal fluxes. Based on the daily model output, the frequency and intensity of extreme pollution events are also studied. We found that both stagnation frequency and rainfall changes serve to worsen extreme pollution in the future.
Exposure to fine particulate matter (PM) air pollution causes adverse cardiopulmonary outcomes. Yet the limited capacity to readily identify contributing PM sources and associated PM constituents in any given ambient air shed impedes risk assessment efforts. The health effects of...
Exposure to particulate matter (PM) is associated with excess mortality and morbidity, especially in individuals with cardiopulmonary disease. These epidemiologic findings are the cornerstone of EPA's revision of the PM National Ambient Quality Standards to include PM less tha...
Design and evaluation of a low-volume total suspended particulate sampler
USDA-ARS?s Scientific Manuscript database
The regulation of particulate matter (PM) emitted by agricultural sources, e.g., cotton gins, feed mills, and concentrated animal feeding operations (CAFOs), is based on downwind concentrations of particulate matter less than 10 and 2.5 'm (PM10 and PM2.5) aerodynamic equivalent diameter (AED). Both...
USDA-ARS?s Scientific Manuscript database
The study of health impacts, emission estimation of particulate matter (PM), and development of new control technologies require knowledge of PM characteristics. Among these PM characteristics, the particle size distribution (PSD) is perhaps the most important physical parameter governing particle b...
Because the harmful health effects of airborne particulate matter (PM) are not well understood, various researchers are investigating ambient PM in order to assess its hazardous components. Current hypotheses acknowledge that PM related morbidity and mortality may be a result ...
The purpose of this SOP is to describe the procedures for calibrating Harvard particulate matter (PM) samplers. This procedure applies directly to the Harvard particulate matter (PM) samplers used during the Arizona NHEXAS project and the "Border" study. Keywords: lab; equipmen...
Cellular oxidative response from exposure to size-resolved ambient particulate matter
Recent studies suggest that particulate matter (PM) derived from different sources may differ in toxicity. The goal of this study was to characterize the in vitro effects of ambient PM and PM components from eight different locations in the U.S. and to investigate the effects of ...
40 CFR 60.672 - Standard for particulate matter (PM).
Code of Federal Regulations, 2011 CFR
2011-07-01
... compliance requirements in Table 2 of this subpart. This exemption from the stack PM concentration limit does... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities must meet the stack emission limits and compliance requirements in Table 2 of this subpart within 60...
40 CFR 60.672 - Standard for particulate matter (PM).
Code of Federal Regulations, 2010 CFR
2010-07-01
... compliance requirements in Table 2 of this subpart. This exemption from the stack PM concentration limit does... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities must meet the stack emission limits and compliance requirements in Table 2 of this subpart within 60...
..To the Editor"': Of the three major particulate matter (PM) size fractions (ultrafme, fine and coarse),coarse PM (PM2.5- 10) has been the least examined in terms of its health effects on susceptible populations, this despite having characteristics that make it particula...
Concern with health effects resulting from PM10 exposure is drawing increased regulatory scrutiny and research toward local agricultural tillage operations. To investigate the control effectiveness of one of the current Conservation Management Practices (CMPs) written for agricul...
Hidden cost of U.S. agricultural exports: particulate matter from ammonia emissions.
Paulot, Fabien; Jacob, Daniel J
2014-01-21
We use a model of agricultural sources of ammonia (NH3) coupled to a chemical transport model to estimate the impact of U.S. food export on particulate matter concentrations (PM2.5). We find that food export accounts for 11% of total U.S. NH3 emissions (13% of agricultural emissions) and that it increases the population-weighted exposure of the U.S. population to PM2.5 by 0.36 μg m(-3) on average. Our estimate is sensitive to the proper representation of the impact of NH3 on ammonium nitrate, which reflects the interplay between agricultural (NH3) and combustion emissions (NO, SO2). Eliminating NH3 emissions from food export would achieve greater health benefits than the reduction of the National Ambient Air Quality Standards for PM2.5 from 15 to 12 μg m(-3). Valuation of the increased premature mortality associated with PM2.5 from food export (36 billion US$ (2006) per year) amounts to 50% of the gross food export value. Livestock operations in densely populated areas have particularly large health costs. Decreasing SO2 and NOx emissions will indirectly reduce health impact of food export as an ancillary benefit.
Di Palma, Anna; Capozzi, Fiore; Spagnuolo, Valeria; Giordano, Simonetta; Adamo, Paola
2017-06-01
Particulate matter has to be constantly monitored because it is an important atmospheric transport form of potentially harmful contaminants. The cost-effective method of the moss-bags can be employed to evaluate both loads and chemical composition of PM. PM entrapped by the moss Pseudoscleropodium purum exposed in bags in 9 European sites was characterized for number, size and chemical composition by SEM/EDX. Moreover, moss elemental uptake of 53 elements including rare earth elements was estimated by ICP-MS analysis. All above was aimed to find possible relations between PM profile and moss uptake and to find out eventual element markers of the different land use (i.e. agricultural, urban, industrial) of the selected sites. After exposure, about 12,000 particles, mostly within the inhalable fraction, were counted on P. purum leaves; their number generally increased from the agricultural sites to the urban and industrial ones. ICP analysis indicated that twenty-three elements were significantly accumulated by mosses with different element profile according to the various land uses. The PM from agricultural sites were mainly made of natural/crustal elements or derived from rural activities. Industrial-related PM covered a wider range of sources, from those linked to specific industrial activities, to those related to manufacturing processes or use of heavy-duty vehicles. This study indicates a close association between PM amount and moss element-uptake, which increases in parallel with PM amount. Precious metals and REEs may constitute novel markers of air pollution in urban and agricultural sites, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Rong; Xiao, Xue; Shen, Zhenxing; Cao, Lei; Cao, Yongxiao
2017-02-01
Regarding the human health effects, airborne fine particulate matter 2.5 (PM 2.5 ) is an important environmental risk factor. However, the underlying molecular mechanisms are largely unknown. The present study examined the hypothesis that PM 2.5 causes bronchial hyperreactivity by upregulated muscarinic receptors via the mitogen-activated protein kinase (MAPK) pathway. The isolated rat bronchi segments were cultured with different concentration of PM 2.5 for different time. The contractile response of the bronchi segments were recorded by a sensitive myograph. The mRNA and protein expression levels of M 3 muscarinic receptors were studied by quantitative real-time PCR and immunohistochemistry, respectively. The muscarinic receptors agonist, carbachol induced a remarkable contractile response on fresh and DMSO cultured bronchial segments. Compared with the fresh or DMSO culture groups, 1.0 µg/mL of PM 2.5 cultured for 24 h significantly enhanced muscarinic receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction. In addition, the expression levels of mRNA and protein for M 3 muscarinic receptors in bronchi of PM 2.5 group were higher than that of fresh or DMSO culture groups. SB203580 (p38 inhibitor) and U0126 (MEK1/2 inhibitor) significantly inhibited the PM 2.5 -induced enhanced contraction and increased mRNA and protein expression of muscarinic receptors. However, JNK inhibitor SP600125 had no effect on PM 2.5 -induced muscarinic receptor upregulation and bronchial hyperreactivity. In conclusion, airborne PM 2.5 upregulates muscarinic receptors, which causes subsequently bronchial hyperreactivity shown as enhanced contractility in bronchi. This process may be mediated by p38 and MEK1/2 MAPK pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 371-381, 2017. © 2016 Wiley Periodicals, Inc.
Weaver, Anne M; Parveen, Shahana; Goswami, Doli; Crabtree-Ide, Christina; Rudra, Carole; Yu, Jihnhee; Mu, Lina; Fry, Alicia M; Sharmin, Iffat; Luby, Stephen P; Ram, Pavani K
2017-08-01
Fine particulate matter (PM 2.5 ) is a risk factor for pneumonia; ventilation may be protective. We tested behavioral and structural ventilation interventions on indoor PM 2.5 in Dhaka, Bangladesh. We recruited 59 good ventilation (window or door in ≥ 3 walls) and 29 poor ventilation (no window, one door) homes. We monitored baseline indoor and outdoor PM 2.5 for 48 hours. We asked all participants to increase ventilation behavior, including opening windows and doors, and operating fans. Where permitted, we installed windows in nine poor ventilation homes, then repeated PM 2.5 monitoring. We estimated effects using linear mixed-effects models and conducted qualitative interviews regarding motivators and barriers to ventilation. Compared with poor ventilation homes, good ventilation homes were larger, their residents wealthier and less likely to use biomass fuel. In multivariable linear mixed-effects models, ventilation structures and opening a door or window were inversely associated with the number of hours PM 2.5 concentrations exceeded 100 and 250 μg/m 3 . Outdoor air pollution was positively associated with the number of hours PM 2.5 concentrations exceeded 100 and 250 μg/m 3 . Few homes accepted window installation, due to landlord refusal and fear of theft. Motivators for ventilation behavior included cooling of the home and sunlight; barriers included rain, outdoor odors or noise, theft risk, mosquito entry, and, for fan use, perceptions of wasting electricity or unavailability of electricity. We concluded that ventilation may reduce indoor PM 2.5 concentrations but, there are barriers to increasing ventilation and, in areas with high ambient PM 2.5 concentrations, indoor concentrations may remain above recommended levels.
Kim, Satbyul Estella; Bell, Michelle L; Hashizume, Masahiro; Honda, Yasushi; Kan, Haidong; Kim, Ho
2018-01-01
Previous epidemiological studies regarding mortality and particulate matter with an aerodynamic diameter of <10μm (PM 10 ) have considered only absolute concentrations of PM 10 as a risk factor. However, none have evaluated the durational effect of multi-day periods with high PM 10 concentrations. To evaluate the durational effect (i.e., number of days) of high PM 10 concentrations on mortality, we collected data regarding 3,662,749 deaths from 28 cities in Japan, South Korea, and China (1993-2009). Exposure was defined as consecutive days with daily PM 10 concentrations ≥75μg/m 3 . A Poisson model was used with duration as the variable of interest, while controlling for daily PM 10 concentrations, meteorological variables, seasonal trends, and day of the week. The increase in mortality risk for each additional consecutive day with PM 10 concentrations ≥75μg/m 3 was 0.68% in Japan (95% confidence interval [CI]: 0.35-1.01%), 0.48% in South Korea (95% CI: 0.30-0.66%), and 0.24% in China (95% CI: 0.14-0.33%). The annual average maximum number of consecutive days with high PM 10 in Japan (2.40days), South Korea (6.96days), and China (42.26days) was associated with non-accidental death increases of 1.64% (95% CI: 1.31-1.98%), 3.37% (95% CI: 3.19-3.56%), and 10.43% (95% CI: 10.33-10.54%), respectively. These findings may facilitate the planning of public health interventions to minimize the health burden of air pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of Coal Fly Ash Particulate Matter on the Antimicrobial Activity of Airway Surface Liquid
Vargas Buonfiglio, Luis G.; Mudunkotuwa, Imali A.; Abou Alaiwa, Mahmoud H.; Vanegas Calderón, Oriana G.; Borcherding, Jennifer A.; Gerke, Alicia K.; Zabner, Joseph; Grassian, Vicki H.
2017-01-01
Background: Sustained exposure to ambient particulate matter (PM) is a global cause of mortality. Coal fly ash (CFA) is a byproduct of coal combustion and is a source of anthropogenic PM with worldwide health relevance. The airway epithelia are lined with fluid called airway surface liquid (ASL), which contains antimicrobial proteins and peptides (AMPs). Cationic AMPs bind negatively charged bacteria to exert their antimicrobial activity. PM arriving in the airways could potentially interact with AMPs in the ASL to affect their antimicrobial activity. Objectives: We hypothesized that PM can interact with ASL AMPs to impair their antimicrobial activity. Methods: We exposed pig and human airway explants, pig and human ASL, and the human cationic AMPs β-defensin-3, LL-37, and lysozyme to CFA or control. Thereafter, we assessed the antimicrobial activity of exposed airway samples using both bioluminescence and standard colony-forming unit assays. We investigated PM-AMP electrostatic interaction by attenuated total reflection Fourier-transform infrared spectroscopy and measuring the zeta potential. We also studied the adsorption of AMPs on PM. Results: We found increased bacterial survival in CFA-exposed airway explants, ASL, and AMPs. In addition, we report that PM with a negative surface charge can adsorb cationic AMPs and form negative particle–protein complexes. Conclusion: We propose that when CFA arrives at the airway, it rapidly adsorbs AMPs and creates negative complexes, thereby decreasing the functional amount of AMPs capable of killing pathogens. These results provide a novel translational insight into an early mechanism for how ambient PM increases the susceptibility of the airways to bacterial infection. https://doi.org/10.1289/EHP876 PMID:28696208
Particulate Matter (PM) Pollution
Particulate matter (PM) is one of the air pollutants regulated by the National Ambient Air Quality Standards (NAAQS). Reducing emissions of inhalable particles improves public health as well as visibility.
Levels of PM2.5/PM10 and associated metal(loid)s in rural households of Henan Province, China.
Wu, Fuyong; Wang, Wei; Man, Yu Bon; Chan, Chuen Yu; Liu, Wenxin; Tao, Shu; Wong, Ming Hung
2015-04-15
Although a majority of China's rural residents use solid fuels (biomass and coal) for household cooking and heating, clean energy such as electricity and liquid petroleum gas is becoming more popular in the rural area. Unfortunately, both solid fuels and clean energy could result in indoor air pollution. Daily respirable particulate matter (PM≤10 μm) and inhalable particulate matter (PM≤2.5 μm) were investigated in kitchens, sitting rooms and outdoor area in rural Henan during autumn (Sep to Oct 2012) and winter (Jan 2013). The results showed that PM (PM2.5 and PM10) and associated metal(loid)s varied among the two seasons and the four types of domestic energy used. Mean concentrations of PM2.5 and PM10 in kitchens during winter were 59.2-140.4% and 30.5-145.1% higher than those during autumn, respectively. Similar with the trends of PM2.5 and PM10, concentrations of As, Pb, Zn, Cd, Cu, Ni and Mn in household PM2.5 and PM10 were apparently higher in winter than those in autumn. The highest mean concentrations of PM2.5 and PM10 (368.5 and 588.7 μg m(-3)) were recorded in sitting rooms in Baofeng during winter, which were 5.7 and 3.9 times of corresponding health based guidelines for PM2.5 and PM10, respectively. Using coal can result in severe indoor air pollutants including PM and associated metal(loid)s compared with using crop residues, electricity and gas in rural Henan Province. Rural residents' exposure to PM2.5 and PM10 would be roughly reduced by 13.5-22.2% and 8.9-37.7% via replacing coal or crop residues with electricity. The present study suggested that increased use of electricity as domestic energy would effectively improve indoor air quality in rural China. Copyright © 2015 Elsevier B.V. All rights reserved.
2017-03-06
WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non -volatile Particulate Matter (PM...Engine Volatile and Non -Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non
An evaluation of indoor and outdoor biological particulate matter
NASA Astrophysics Data System (ADS)
Menetrez, M. Y.; Foarde, K. K.; Esch, R. K.; Schwartz, T. D.; Dean, T. R.; Hays, M. D.; Cho, S. H.; Betancourt, D. A.; Moore, S. A.
The incidences of allergies, allergic diseases and asthma are increasing world wide. Global climate change is likely to impact plants and animals, as well as microorganisms. The World Health Organization, U.S. Environmental Protection Agency, U.S. Department of Agriculture, U.S. Department of Health and Human Services, and the Intergovernmental Panel on Climate Change cite increased allergic reactions due to climate change as a growing concern. Monitoring of indoor and ambient particulate matter (PM) and the characterization of the content for biological aerosol concentrations has not been extensively performed. Samples from urban and rural North Carolina (NC), and Denver (CO), were collected and analyzed as the goal of this research. A study of PM 10 (<10 μm in aerodynamic diameter) and PM 2.5 (<2.5 μm in aerodynamic diameter) fractions of ambient bioaerosols was undertaken for a six month period to evaluate the potential for long-term concentrations. These airborne bioaerosols can induce irritational, allergic, infectious, and chemical responses in exposed individuals. Three separate sites were monitored, samples were collected and analyzed for mass and biological content (endotoxins, (1,3)-β- D-glucan and protein). Concentrations of these bioaerosols were reported as a function of PM size fraction, mass and volume of air sampled. The results indicated that higher concentrations of biologicals were present in PM 10 than were present in PM 2.5, except when near-roadway conditions existed. This study provides the characterization of ambient bioaerosol concentrations in a variety of areas and conditions.
Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J; Rudich, Yinon
2016-03-01
Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. Copyright © 2015 Elsevier Ltd. All rights reserved.
César, Ana Cristina Gobbo; Nascimento, Luiz Fernando Costa; Mantovani, Katia Cristina Cota; Vieira, Luciana Cristina Pompeo
2016-01-01
Abstract Objective: To estimate the association between exposure to fine particulate matter with an aerodynamic diameter <2.5 microns (PM2.5) and hospitalizations for pneumonia and asthma in children. Methods: An ecological study of time series was performed, with daily indicators of hospitalization for pneumonia and asthma in children up to 10 years of age, living in Taubaté (SP) and estimated concentrations of PM2.5, between August 2011 and July 2012. A generalized additive model of Poisson regression was used to estimate the relative risk, with lag zero up to five days after exposure; the single pollutant model was adjusted by the apparent temperature, as defined from the temperature and relative air humidity, seasonality and weekday. Results: The values of the relative risks for hospitalization for pneumonia and asthma were significant for lag 0 (RR=1.051, 95%CI; 1.016 to 1.088); lag 2 (RR=1.066, 95%CI: 1.023 to 1.113); lag 3 (RR=1.053, 95%CI: 1.015 to 1.092); lag 4 (RR=1.043, 95%CI: 1.004 to 1.088) and lag 5 (RR=1.061, 95%CI: 1.018 to 1.106). The increase of 5mcg/m3 in PM2.5 contributes to increase the relative risk for hospitalization from 20.3 to 38.4 percentage points; however, the reduction of 5µg/m3 in PM2.5 concentration results in 38 fewer hospital admissions. Conclusions: Exposure to PM2.5 was associated with hospitalizations for pneumonia and asthma in children younger than 10 years of age, showing the role of fine particulate matter in child health and providing subsidies for the implementation of preventive measures to decrease these outcomes. PMID:26522821
Impact of Feed Delivery Pattern on Aerial Particulate Matter and Behavior of Feedlot Cattle †
Mitloehner, Frank M.; Dailey, Jeff W.; Morrow, Julie L.; McGlone, John J.
2017-01-01
Simple Summary Fine particulate matter (with less than 2.5 microns diameter; aka PM2.5) are a human and animal health concern because they can carry microbes and chemicals into the lungs. Particulate matter (PM) in general emitted from cattle feedlots can reach high concentrations. When feedlot cattle were given an altered feeding schedule (ALT) that more closely reflected their biological feeding times compared with conventional morning feeding (CON), PM2.5 generation at peak times was substantially lowered. Average daily generation of PM2.5 was decreased by 37% when cattle behavior was redirected away from PM-generating behaviors and toward evening feeding behaviors. Behavioral problems such as agonistic (i.e., aggressive) and bulling (i.e., mounting each other) behaviors also were reduced several fold among ALT compared with CON cattle. Intake of feed was less and daily body weight gain tended to be less with the altered feeding schedule while efficiency of feed utilization was not affected. Although ALT may pose a challenge in feed delivery and labor scheduling, cattle had fewer behavioral problems and reduced PM2.5 generation when feed delivery times matched with the natural drive to eat in a crepuscular pattern. Abstract Fine particulate matter with less than 2.5 microns diameter (PM2.5) generated by cattle in feedlots is an environmental pollutant and a potential human and animal health issue. The objective of this study was to determine if a feeding schedule affects cattle behaviors that promote PM2.5 in a commercial feedlot. The study used 2813 crossbred steers housed in 14 adjacent pens at a large-scale commercial West Texas feedlot. Treatments were conventional feeding at 0700, 1000, and 1200 (CON) or feeding at 0700, 1000, and 1830 (ALT), the latter feeding time coincided with dusk. A mobile behavior lab was used to quantify behaviors of steers that were associated with generation of PM2.5 (e.g., fighting, mounting of peers, and increased locomotion). PM2.5 samplers measured respirable particles with a mass median diameter ≤2.5 μm (PM2.5) every 15 min over a period of 7 d in April and May. Simultaneously, the ambient temperature, humidity, wind speed and direction, precipitation, air pressure, and solar radiation were measured with a weather station. Elevated downwind PM2.5 concentrations were measured at dusk, when cattle that were fed according to the ALT vs. the CON feeding schedule, demonstrated less PM2.5-generating behaviors (p < 0.05). At dusk, steers on ALT vs. CON feeding schedules ate or were waiting to eat (standing in second row behind feeding cattle) at much greater rates (p < 0.05). Upwind PM2.5 concentrations were similar between the treatments. Downwind PM2.5 concentrations averaged over 24 h were lower from ALT compared with CON pens (0.072 vs. 0.115 mg/m3, p < 0.01). However, dry matter intake (DMI) was less (p < 0.05), and average daily gain (ADG) tended to be less (p < 0.1) in cattle that were fed according to the ALT vs. the CON feeding schedules, whereas feed efficiency (aka gain to feed, G:F) was not affected. Although ALT feeding may pose a challenge in feed delivery and labor scheduling, cattle exhibited fewer PM2.5-generating behaviors and reduced generation of PM2.5 when feed delivery times matched the natural desires of cattle to eat in a crepuscular pattern. PMID:28257061
NASA Astrophysics Data System (ADS)
Shen, Guofeng; Xue, Miao; Yuan, Siyu; Zhang, Jie; Zhao, Qiuyue; Li, Bing; Wu, Haisuo; Ding, Aijun
2014-02-01
Ambient particulate matter was collected in a megacity, Nanjing in western YRD during the spring and summer periods. Chemical compositions of fine PM including organic carbon, elemental carbon, elements and water soluble ions were analyzed. The light extinction coefficients were reconstructed following the IMPROVE formula. Organic matter was the most abundant composition in PM2.5 (20-25% of total mass), followed by the inorganic ions. During the spring time, geological materials contributed 25% of the total PM2.5. Estimated light extinction coefficient ranged from 133 to 560 Mm-1 with the deciview haze index value of 26-40 dv, indicating strong light extinction by PM and subsequently low visibility in the city. Reconstructed ammonium sulfate, ammonium nitrate, organic matter and light absorption carbon in fine PM contributed significantly (37 ± 10, 16 ± 6, 15 ± 4 and 10 ± 3%, respectively) to the total light extinction of PM, while soil (5-7%) and sea salt fractions (2-4%) in fine PM and coarse PM (6-11%) had relatively minor influences. The results of backward air trajectory showed that the site was strongly influenced by the air from the eastern (39%) and southeastern (29%) areas during the sampling period. Air plumes from the Southeastern had both high PM mass pollution and large light extinction, while the air mass originating from the Northwestern resulted in high PM mass loading but relatively lower light extinction.
Dabass, Arvind; Talbott, Evelyn O; Rager, Judith R; Marsh, Gary M; Venkat, Arvind; Holguin, Fernando; Sharma, Ravi K
2018-02-01
There has been no investigation to date of adults with metabolic syndrome examining the association of short and long-term exposure to fine particulate matter (PM 2.5 ) air pollution with cardiovascular-disease related inflammatory marker (WBC and CRP) levels in a nationally representative sample. The goal of this study is to assess the susceptibility of adults with metabolic syndrome to PM 2.5 exposure as suggested by increased cardiovascular-disease related inflammatory marker levels. A cross sectional analysis of adult National Health and Nutrition Examination Survey (NHANES) participants (2000-2008) was carried out with linkage of CDC WONDER meteorological data and downscaler modeled USEPA air pollution data for census tracts in the continental United States. Participants were non-pregnant NHANES adults (2000-2008) with complete data for evaluating presence of metabolic syndrome and laboratory data on WBC and CRP. Exposures studied included short (lags 0-3 days and their averages), long-term (30 and 60 day moving and annual averages) PM 2.5 exposure levels at the census tract level in the continental United States. The main outcomes included CRP and WBC levels the day of NHANES study visit analyzed using multiple linear regression, adjusting for age, gender, race, education, smoking status, history of any cardiovascular disease, maximum apparent temperature and ozone level, for participants with and without metabolic syndrome. A total of 7134 NHANES participants (35% with metabolic syndrome) met the inclusion criteria. After adjusting for confounders, we observed a significant effect of PM 2.5 acutely at lag day 0 on CRP level; a 10µg/m 3 rise in lag day 0 PM 2.5 level was associated with a 10.1% increase (95% CI: 2.2-18.6%) in CRP levels for participants with metabolic syndrome. For those without metabolic syndrome, the change in CRP was -1.3% (95% CI -8.8%, 6.8%). There were no significant associations for WBC count. In this first national study of the effect of PM 2.5 air pollution on levels of cardiovascular-disease related inflammatory markers in adults with metabolic syndrome, CRP levels were found to be significantly increased in those with this condition with increased fine particulate matter levels at lag day 0. With one third of US adults with metabolic syndrome, the health impact of PM 2.5 in this sensitive population may be significant. Copyright © 2017 Elsevier Inc. All rights reserved.
Samek, Lucyna; Furman, Leszek; Mikrut, Magdalena; Regiel-Futyra, Anna; Macyk, Wojciech; Stochel, Grażyna; van Eldik, Rudi
2017-11-01
Submicron particulate matter containing particles with an aerodynamic diameter ≤1 μm (PM1) are not monitored continuously by Environmental Protection Agencies around the World and are seldom studied. Numerous studies have indicated that people exposed to ultrafine (≤100 nm), submicron and fine particulate matter containing particles with an aerodynamic diameter ≤2.5 μm (PM2.5), can suffer from respiratory track diseases, cardiovascular, immunological or heart diseases and others. Inorganic pollutants containing redox active transition metals and small gaseous molecules, are involved in the generation of reactive oxygen and reactive nitrogen species. Inhalation of this kind of particles can affect immune-toxicity. Environmental pollution may aggravate the course of autoimmune diseases, in particular influence the mechanisms of the autoimmune system. Important factors that influence the toxicity of particulate matter, are particle size distribution, composition and concentration. This report deals with the composition of PM1 and PM2.5 fractions collected in Krakow, Poland. In spring 2015, the mean concentrations of PM1 and PM2.5 were 19 ± 14 and 27 ± 19 μg/m 3 , respectively. The PM2.5 fraction contained approximately 70 ± 17% of submicron particulate matter. In spring 2016, the mean concentrations of PM1 and PM2.5 were 12 ± 5 and 22 ± 12 μg/m 3 , respectively. The PM2.5 fraction contained approximately 60 ± 15% of submicron particulate matter. The concentrations of the elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr and Pb in both fractions were determined by X-ray fluorescence spectrometry. Most of the analyzed metals had higher concentrations in the fine fraction than in the submicron one. Concentrations of V and As were below the detection limit in both fractions, whereas concentrations of Mn and Ca were below the detection limits in the PM1 fraction. The results are discussed in terms of the consequences they may have on the APARIC project presently underway in Krakow. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lu, Xingcheng; Lin, Changqing; Li, Ying; Yao, Teng; Fung, Jimmy C H; Lau, Alexis K H
2017-01-01
As the major engine of economic growth in China, the Pearl River Delta (PRD) region is one of the most urbanized regions in the world. Rapid development has brought great wealth to its citizens; however, at the same time, increasing emissions of ambient pollutants from vehicles and industrial combustions have caused considerable air pollution and negative health effects for the region's residents. In this study, the concentration response function method was applied together with satellite-retrieved particulate matter (PM 10 and PM 2.5 ) concentration data to estimate the health burden caused by this pollutant from 2004 to 2013. The value of statistical life was used to calculate the economic loss due to the negative health effects of particulate matter pollution. Our results show that in the whole PRD region, the estimated number of deaths from the four diseases attributable to PM 2.5 was the highest in 2012, at 45,000 (19,000-61,000); the number of all-cause hospital admissions due to PM 10 was the highest in 2013, reaching up to 91,000 (0-270,000) (excluding Hong Kong). Among the 10 cities, the capital city Guangzhou suffered the most from ambient particulate matter pollution and had the highest mortality and morbidity over the 10years. The cost of mortality in this region was the highest in 2012, at 46,000 million USD, or around 6.1% of local total gross domestic product (GDP). The positive spatial relationship between the degree of urbanization and the particulate matter concentration proves that the urbanization process does worsen air quality and hence increases the health risks of local urban citizens. It is recommended that local governments further enhance their control policies to better guarantee the health and wealth benefits of local residents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gilmore, Elisabeth A; Adams, Peter J; Lave, Lester B
2010-05-01
Generators installed for backup power during blackouts could help satisfy peak electricity demand; however, many are diesel generators with nonnegligible air emissions that may damage air quality and human health. The full (private and social) cost of using diesel generators with and without emission control retrofits for fine particulate matter (PM2.5) and nitrogen oxides (NOx) were compared with a new natural gas turbine peaking plant. Lower private costs were found for the backup generators because the capital costs are mostly ascribed to reliability. To estimate the social costs from air quality, the changes in ambient concentrations of ozone (O3) and PM2.5 were modeled using the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) chemical transport model. These air quality changes were translated to their equivalent human health effects using concentration-response functions and then into dollars using estimates of "willingness-to-pay" to avoid ill health. As a case study, 1000 MW of backup generation operating for 12 hr/day for 6 days in each of four eastern U.S. cities (Atlanta, Chicago, Dallas, and New York) was modeled. In all cities, modeled PM2.5 concentrations increased (up to 5 microg/m3) due mainly to primary emissions. Smaller increases and decreases were observed for secondary PM2.5 with more variation between cities. Increases in NOx, emissions resulted in significant nitrate formation (up to 1 microg/m3) in Atlanta and Chicago. The NOx emissions also caused O3 decreases in the urban centers and increases in the surrounding areas. For PM2.5, a social cost of approximately $2/kWh was calculated for uncontrolled diesel generators in highly populated cities but was under 10 cent/kWh with PM2.5 and NOx controls. On a full cost basis, it was found that properly controlled diesel generators are cost-effective for meeting peak electricity demand. The authors recommend NOx and PM2.5 controls.
The purpose of this SOP is to describe the procedures for calibrating Harvard particulate matter (PM) samplers. This procedure applies directly to the Harvard particulate matter (PM) samplers used during the Arizona NHEXAS project and the Border study. Keywords: lab; equipment;...
USDA-ARS?s Scientific Manuscript database
Particulate matter (PM) is a major air pollutant emitted from animal production and has significant impacts on health and the environment. Abatement of PM emissions is imperative and effective PM control technologies are strongly needed. In this work, an electrostatic spray wet scrubber (ESWS) techn...
40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter (PM-10) Group III SIP. (a) On September 14, 1988, the Governor of Hawaii submitted a revision to the... necessary to satisfy the requirements of the PM-10 Group III SIP. (b) The Hawaii Department of Health has...
NASA Astrophysics Data System (ADS)
Trang, N. Ha; Tripathi, N. K.
2014-11-01
Every year, during dry season, Chiang Mai and other northern provinces of Thailand face the problem of haze which is mainly generated by the burning of agricultural waste and forest fire, contained high percentage of particulate matter. Particulate matter 10 (PM10), being very small in size, can be inhaled easily to the deepest parts of the human lung and throat respiratory functions. Due to this, it increases the risk of respiratory diseases mainly in the case of continuous exposure to this seasonal smog. MODIS aerosol images (MOD04) have been used for four weeks in March 2007 for generating the hazard map by linking to in-situ values of PM10. Simple linear regression model between PM10 and AOD got fair correlation with R2 = 0.7 and was applied to transform PM10 pattern. The hazard maps showed the dominance of PM10 in northern part of Chiang Mai, especially in second week of March when PM10 level was three to four times higher than standard. The respiratory disease records and public health station of each village were collected from Provincial Public Health Department in Chiang Mai province. There are about 300 public health stations out of 2070 villages; hence thiessen polygon was created to determine the representative area of each public health station. Within each thiessen polygon, respiratory disease incident rate (RDIR) was calculated based on the number of patients and population. Global Moran's I was computed for RDIR to explore spatial pattern of diseases through four weeks of March. Moran's I index depicted a cluster pattern of respiratory diseases in 2nd week than other weeks. That made sense for a relationship between PM10 and respiratory diseases infections. In order to examine how PM10 affect the human respiratory system, geographically weighted regression model was used to observe local correlation coefficient between RDIR and PM10 across study area. The result captured a high correlation between respiratory diseases and high level of PM10 in northeast districts of Chiang Mai in second week of March.
NASA Astrophysics Data System (ADS)
Zhou, Guangqiang; Xu, Jianming; Gao, Wei; Gu, Yixuan; Mao, Zhuocheng; Cui, Linli
2018-07-01
The long-term characteristics of submicron particles (PM1) over Shanghai and their contributing factors (including precursor gases and meteorological variables), as well as their impact on visibility, were investigated using in situ measurements from Jan 1st, 2015, to Dec 31st, 2016. A discretization method was introduced to identify the impact of each contributing factor on PM1. The results show that the annual mean PM1 concentration over Shanghai is ∼28 μgm-3, which accounts for 69% of fine particles (PM2.5). The PM1 concentration shows obvious temporal variations on the scales of days, weeks, months, and years. Its diurnal pattern shows higher values in the daytime (with two peaks) than in the nighttime, which is different from the pattern for PM2.5 with high/low values in the nighttime/daytime. During a week, the PM1 concentration is the lowest on Tuesday and the highest on Friday. The discretized approach reveals that PM1 shows good linear relationships with its gaseous precursors and with meteorological variables under most conditions. The concentration of PM1 increases with increases in SO2, NO2, and NO (<34 ppb) with slopes of 3.37, 1.17, and 1.08 μgm-3 per ppb precursor, respectively. This approach and the slopes were confirmed by the comparison of the observed and calculated PM1 changes with the day of the week. PM1 is negatively (positively) correlated with ozone (O3) when O3 is <30 (>30) ppb. PM1 are negatively correlated with precipitation intensity, relative humidity (RH, >35%), and wind speed (>1.5 ms-1), and their rates of decrease are 3.3, 0.26, and 5.9 μgm-3 per 1 mmh-1, 1%, and 1 ms-1, respectively. Other factors (e.g., temperature and pressure) show nonlinear relationships with PM1 concentration, presumably due to their indirect influence on the transport, formation, or accumulation of PM1. The PM1 concentration has a distinct impact on visibility, and the PM1/PM2.5 ratio is a key indicator to represent the impact of particulate matter hygroscopicity on visibility. The PM1/PM2.5 ratio shows an exponential relationship (i.e., PM1/PM2.5 = 0.76 [(1-RH)/(1-40%)]0.11) with RH with a determination coefficient of 0.98. This parameter combined with the PM2.5 concentration well describes the impact of particulate matter and its hygroscopicity on visibility.
Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...
BackgroundStudies have shown a relationship between air pollution and increased risk of cardiovascular morbidity and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects of co-exposure, particularly particulate matter (PM...
BACKGROUND: Exposure to ambient air particulate matter (PM) has been shown to increase rates of cardio-pulmonary morbidity and mortality, but the underlying mechanisms are still not well understood. OBJECTIVE: To examine signaling events involved in the expression of the inflamma...
Mobile measurements of air pollutants with an instrumented car in populated areas
NASA Astrophysics Data System (ADS)
Weber, Konradin; Scharifi, Emad; Fischer, Christian; Pohl, Tobias; Lange, Martin; Boehlke, Christoph
2017-04-01
Detailed mobile measurement of gases and fine particulate matter has been reported in the literature to be suitable to exhibit the air pollutants concentration in populated areas. This concentration is linked to the increase of number of cars, construction areas, industries and other emission sources. However, fixed measurement stations, mostly operated by environmental agencies, are limited in numbers and cannot cover a large area in monitoring. For this reason, to overcome this drawback, mobile measurements of the variability of gases (such as O3, NO, NO2) and particulate matter concentration were carried out during this study using an instrumented car. This car was able to deliver measurement results of all these compounds in a large area. The experimental results in this work demonstrate a large spatial variability of gases and fine particulate matters mainly depended on the traffic density and the location. These effects are especially obvious in the city core and the high traffic roads. In terms of fine particulate matter, this becomes evident for PM 10 and PM 2.5, where the mass and number concentration increases with arriving these zones.
Underground and ground-level particulate matter concentrations in an Italian metro system
NASA Astrophysics Data System (ADS)
Cartenì, Armando; Cascetta, Furio; Campana, Stefano
2015-01-01
All around the world, many studies and experimental results have assessed elevated concentrations of Particulate Matter (PM) in underground metro systems, with non-negligible implications for human health due to protracted exposure to fine particles. Starting from this consideration, an intensive particulate sampling campaign was carried out in January 2014 measuring the PM concentrations in the Naples (Italy) Metro Line 1, both at station platforms and inside trains. Naples Metro Line 1 is about 18 km long, with 17 stations (3 ground-level and 14 below-ground ones). Experimental results show that the average PM10 concentrations measured in the underground station platforms range between 172 and 262 μg/m3 whilst the average PM2.5 concentrations range between 45 and 60 μg/m3. By contrast, in ground-level stations no significant difference between stations platforms and urban environment measurements was observed. Furthermore, a direct correlation between trains passage and PM concentrations was observed, with an increase up to 42% above the average value. This correlation is possibly caused by the re-suspension of the particles due to the turbulence induced by trains. The main original finding was the real-time estimations of PM levels inside the trains travelling both in ground-level and underground sections of Line 1. The results show that high concentrations of both PM10 (average values between 58 μg/m3 and 138 μg/m3) and PM2.5 (average values between 18 μg/m3 and 36 μg/m3) were also measured inside trains. Furthermore, measurements show that windows left open on trains caused the increase in PM concentrations inside trains in the underground section, while in the ground-level section the clean air entering the trains produced an environmental "washing effect". Finally, it was estimated that every passenger spends on average about 70 min per day exposed to high levels of PM.
Chien, Lung-Chang; Alamgir, Hasanat; Yu, Hwa-Lung
2015-03-01
Recent research supports a link between diabetes and fine particulate matter (≤ 2.5μg in diameter; PM2.5) in both laboratory and epidemiology studies. However, research investigating the potential relationship of the spatial vulnerability of diabetes to concomitant PM2.5 levels is still sparse, and the level of diabetes geographic disparities attributed to PM2.5 levels has yet to be evaluated. We conducted a Bayesian structured additive regression modeling approach to determine whether long-term exposure to PM2.5 is spatially associated with diabetes prevalence after adjusting for the socioeconomic status of county residents. This study utilizes the following data sources from 2004 to 2010: the Behavioral Risk Factor Surveillance System, the American Community Survey, and the Environmental Protection Agency. We also conducted spatial comparisons with low, median-low, median-high, and high levels of PM2.5 concentrations. When PM2.5 concentrations increased 1 μg/m(3), the increase in the relative risk percentage for diabetes ranged from -5.47% (95% credible interval = -6.14, -4.77) to 2.34% (95% CI = 2.01, 2.70), where 1323 of 3109 counties (42.55%) displayed diabetes vulnerability with significantly positive relative risk percentages. These vulnerable counties are more likely located in the Southeast, Central, and South Regions of the U.S. A similar spatial vulnerability pattern for concentrations of low PM2.5 levels was also present in these same three regions. A clear cluster of vulnerable counties at median-high PM2.5 level was found in Michigan. This study identifies the spatial vulnerability of diabetes prevalence associated with PM2.5, and thereby provides the evidence needed to prompt and establish enhanced surveillance that can monitor diabetes vulnerability in areas with low PM2.5 pollution. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Leung, D. M.; Tai, A. P. K.; Shen, L.; Moch, J. M.; van Donkelaar, A.; Mickley, L. J.
2017-12-01
Fine particulate matter (PM2.5) air quality is strongly dependent on not only on emissions but also meteorological conditions. Here we examine the dominant synoptic circulation patterns that control day-to-day PM2.5 variability over China. We perform principal component (PC) analysis on 1998-2016 NCEP/NCAR Reanalysis I daily meteorological fields to diagnose distinct synoptic meteorological modes, and perform PC regression on spatially interpolated 2014-2016 daily mean PM2.5 concentrations in China to identify modes dominantly explaining PM2.5 variability. We find that synoptic systems, e.g., cold-frontal passages, maritime inflow and frontal precipitation, can explain up to 40% of the day-to-day PM2.5 variability in major metropolitan regions in China. We further investigate how annually changing frequencies of synoptic systems, as well as changing local meteorology, drive interannual PM2.5 variability. We apply a spectral analysis on the PC time series to obtain the 1998-2016 annual median synoptic frequency, and use a forward-selection multiple linear regression (MLR) model of satellite-derived 1998-2015 annual mean PM2.5 concentrations on local meteorology and synoptic frequency, selecting predictors that explain the highest fraction of interannual PM2.5 variability while guarding against multicollinearity. To estimate the effect of climate change on future PM2.5 air quality, we project a multimodel ensemble of 15 CMIP5 models under the RCP8.5 scenario on the PM2.5-to-meteorology sensitivities derived for the present-day from the MLR model. Our results show that climate change could be responsible for increases in PM2.5 of more than 25 μg m-3 in northwestern China and 10 mg m-3 in northeastern China by the 2050s. Increases in synoptic frequency of cold-frontal passages cause only a modest 1 μg m-3 decrease in PM2.5 in North China Plain. Our analyses show that climate change imposes a significant penalty on air quality over China and poses serious threat on human health under the RCP8.5 future.
PM2.5 promotes abdominal aortic aneurysm formation in angiotensin Ⅱ-infused apoe-/- mice.
Jun, Xie; Jin, Geng; Fu, Chen; Jinxuan, Zhao; Xuelin, Li; Jiaxin, Hu; Shuaihua, Qiao; Anqi, Shan; Jianzhou, Chen; Lian, Zhou; Xiwen, Zhang; Baoli, Zhu; Biao, Xu
2018-08-01
Particulate matter 2.5 (PM2.5) has proven to be associated with morbidity and mortality from cardiovascular diseases. However, whether PM2.5 could promote the formation of abdominal aortic aneurysm (AAA) is unclear. Present study aimed to explore the relationship between PM2.5 exposure and AAA development. Ang Ⅱ-infused apoe -/- mice were treated with PM2.5 or saline by intranasal instillation. Four weeks later, histological and immunohistological analyses were used to evaluate the effect of PM2.5 on AAA formation. Human aortic smooth muscle cells (HASMCs) were also employed to further analyze the adverse effect of PM2.5 in vitro. We found that PM2.5 could significantly increase the AAA incidence, the maximal abdominal aortic diameter and could promote the degradation of elastin. Additionally, the expression of senescence markers, P21 and P16 were also enhanced after PM2.5 exposure. We also found that PM2.5 significantly increased the AAA related pathological changes, MMP2 and MCP-1 expression in HASMCs. Meanwhile, PM2.5 could increase the expression of senescence markers P21, P16 and SA-β-gal activity, also the reactive oxygen species levels in vitro. PM2.5 promoted the formation of AAA in an Ang Ⅱ-induced AAA model. The underlying mechanism might be cellular senescence after PM2.5 exposure. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Manzano-León, Natalia; Serrano-Lomelin, Jesús; Sánchez, Brisa N.; Quintana-Belmares, Raúl; Vega, Elizabeth; Vázquez-López, Inés; Rojas-Bracho, Leonora; López-Villegas, Maria Tania; Vadillo-Ortega, Felipe; De Vizcaya-Ruiz, Andrea; Perez, Irma Rosas; O’Neill, Marie S.; Osornio-Vargas, Alvaro R.
2015-01-01
Background: Observed seasonal differences in particulate matter (PM) associations with human health may be due to their composition and to toxicity-related seasonal interactions. Objectives: We assessed seasonality in PM composition and in vitro PM pro-inflammatory potential using multiple PM samples. Methods: We collected 90 weekly PM10 and PM2.5 samples during the rainy-warm and dry-cold seasons in five urban areas with different pollution sources. The elements, polycyclic aromatic hydrocarbons (PAHs), and endotoxins identified in the samples were subjected to principal component analysis (PCA). We tested the potential of the PM to induce tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) secretion in cultured human monocytes (THP-1), and we modeled pro-inflammatory responses using the component scores. Results: PM composition varied by size and by season. PCA identified two main components that varied by season. Combustion-related constituents (e.g., vanadium, benzo[a]pyrene, benzo[a]anthracene) mainly comprised component 1 (C1). Soil-related constituents (e.g., endotoxins, silicon, aluminum) mainly comprised component 2 (C2). PM from the rainy-warm season was high in C2. PM (particularly PM2.5) from the dry-cold season was rich in C1. Elevated levels of cytokine production were associated with PM10 and C2 (rainy-warm season), whereas reduced levels of cytokine production were associated with PM2.5 and C1 (dry-cold season). TNFα secretion was increased following exposure to PM with high (vs. low) C2 content, but TNFα secretion in response to PM was decreased following exposure to samples containing ≥ 0.1% of C1-related PAHs, regardless of C2 content. The results of the IL-6 assays suggested more complex interactions between PM components and particle size. Conclusions: Variations in PM soil and PAH content underlie seasonal and PM size–related patterns in TNFα secretion. These results suggest that the mixture of components in PM explains some seasonal differences in associations between health outcomes and PM in epidemiologic studies. Citation: Manzano-León N, Serrano-Lomelin J, Sánchez BN, Quintana-Belmares R, Vega E, Vázquez-López I, Rojas-Bracho L, López-Villegas MT, Vadillo-Ortega F, De Vizcaya-Ruiz A, Rosas Perez I, O’Neill MS, Osornio-Vargas AR. 2016. TNFα and IL-6 responses to particulate matter in vitro: variation according to PM size, season, and polycyclic aromatic hydrocarbon and soil content. Environ Health Perspect 124:406–412; http://dx.doi.org/10.1289/ehp.1409287 PMID:26372663
Ostro, Bart; Tobias, Aurelio; Querol, Xavier; Alastuey, Andrés; Amato, Fulvio; Pey, Jorge; Pérez, Noemí; Sunyer, Jordi
2011-12-01
Dozens of studies link acute exposure to particulate matter (PM) air pollution with premature mortality and morbidity, but questions remain about which species and sources in the vast PM mixture are responsible for the observed health effects. Although a few studies exist on the effects of species and sources in U.S. cities, European cities-which have a higher proportion of diesel engines and denser urban populations-have not been well characterized. Information on the effects of specific sources could aid in targeting pollution control and in articulating the biological mechanisms of PM. Our study examined the effects of various PM sources on daily mortality for 2003 through 2007 in Barcelona, a densely populated city in the northeast corner of Spain. Source apportionment for PM ≤ 2.5 μm and ≤ 10 µm in aerodynamic diameter (PM2.5 and PM10) using positive matrix factorization identified eight different factors. Case-crossover regression analysis was used to estimate the effects of each factor. Several sources of PM2.5, including vehicle exhaust, fuel oil combustion, secondary nitrate/organics, minerals, secondary sulfate/organics, and road dust, had statistically significant associations (p < 0.05) with all-cause and cardiovascular mortality. Also, in some cases relative risks for a respective interquartile range increase in concentration were higher for specific sources than for total PM2.5 mass. These results along with those from our multisource models suggest that traffic, sulfate from shipping and long-range transport, and construction dust are important contributors to the adverse health effects linked to PM.
Spatial and temporal variations in traffic-related particulate matter at New York City high schools
NASA Astrophysics Data System (ADS)
Patel, Molini M.; Chillrud, Steven N.; Correa, Juan C.; Feinberg, Marian; Hazi, Yair; Deepti, K. C.; Prakash, Swati; Ross, James M.; Levy, Diane; Kinney, Patrick L.
Relatively little is known about exposures to traffic-related particulate matter at schools located in dense urban areas. The purpose of this study was to examine the influences of diesel traffic proximity and intensity on ambient concentrations of fine particulate matter (PM 2.5) and black carbon (BC), an indicator of diesel exhaust particles, at New York City (NYC) high schools. Outdoor PM 2.5 and BC were monitored continuously for 4-6 weeks at each of 3 NYC schools and 1 suburban school located 40 km upwind of the city. Traffic count data were obtained using an automated traffic counter or video camera. BC concentrations were 2-3 fold higher at urban schools compared with the suburban school, and among the 3 urban schools, BC concentrations were higher at schools located adjacent to highways. PM 2.5 concentrations were significantly higher at urban schools than at the suburban school, but concentrations did not vary significantly among urban schools. Both hourly average counts of trucks and buses and meteorological factors such as wind direction, wind speed, and humidity were significantly associated with hourly average ambient BC and PM 2.5 concentrations in multivariate regression models. An increase of 443 trucks/buses per hour was associated with a 0.62 μg/m 3 increase in hourly average BC at an NYC school located adjacent to a major interstate highway. Car traffic counts were not associated with BC. The results suggest that local diesel vehicle traffic may be important sources of airborne fine particles in dense urban areas and consequently may contribute to local variations in PM 2.5 concentrations. In urban areas with higher levels of diesel traffic, local, neighborhood-scale monitoring of pollutants such as BC, which compared to PM 2.5, is a more specific indicator of diesel exhaust particles, may more accurately represent population exposures.
Face crack reduction strategy for particulate filters
Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN
2012-01-31
A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion. A control module initiates combustion of PM in the PM filter using a heater and selectively adjusts oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter. A method comprises providing a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion; initiating combustion of PM in the PM filter using a heater; selectively adjusting oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter.
Experimental studies about the impact of traction sand on urban road dust composition.
Kupiainen, Kaarle; Tervahattu, Heikki; Räisänen, Mika
2003-06-01
Traffic causes enhanced PM(10) resuspension especially during spring in the US, Japan, Norway, Sweden and Finland, among other countries. The springtime PM(10) consists primarily of mineral matter from tyre-induced paved road surface wear and traction sand. In some countries, the majority of vehicles are equipped with studded tyres to enhance traction, which additionally increases road surface wear. Because the traction sand and the mineral matter from the pavement aggregate can have a similar mineralogical composition, it has been difficult to determine the source of the mineral fraction in the PM(10). In this study, homogenous traction sand and pavement aggregate with different mineralogical compositions were chosen to determine the sources of PM(10) particles by single particle analysis (SEM/EDX). This study was conducted in a test facility, which made it possible to rule out dust contributions from other sources. The ambient PM(10) concentrations were higher when traction sand was used, regardless of whether the tyres were studded or not. Surprisingly, the use of traction sand greatly increased the number of the particles originating from the pavement. It was concluded that sand must contribute to pavement wear. This phenomenon is called the sandpaper effect. An understanding of this is important to reduce harmful effects of springtime road dust in practical winter maintenance of urban roads
Costello, Sadie; Brown, Daniel M.; Noth, Elizabeth M.; Cantley, Linda; Slade, Martin D; Tessier-Sherman, Baylah; Hammond, S. Katharine; Eisen, Ellen A.; Cullen, Mark R.
2014-01-01
Fine particulate matter (PM2.5) in air pollution, primarily from combustion sources, is recognized as an important risk factor for cardiovascular events but studies of workplace PM2.5 exposure are rare. We conducted a prospective study of exposure to PM2.5 and incidence of ischemic heart disease (IHD) in a cohort of 11,966 US aluminum workers. Incident IHD was identified from medical claims data from 1998 to 2008. Quantitative metrics were developed for recent exposure (within the last year) and cumulative exposure; however, we emphasize recent exposure in the absence of interpretable work histories prior to follow-up. IHD was modestly associated with recent PM2.5 overall. In analysis restricted to recent exposures estimated with the highest confidence, the hazard ratio (HR) increased to 1.78 (95%CI: 1.02, 3.11) in the second quartile and remained elevated. When the analysis was stratified by work process, the HR rose monotonically to 1.5 in both smelter and fabrication facilities, though exposure was almost an order of magnitude higher in smelters. The differential exposure-response may be due to differences in exposure composition or healthy worker survivor effect. These results are consistent with the air pollution and cigarette smoke literature; recent exposure to PM2.5 in the workplace appears to increase the risk of IHD incidence. PMID:23982120
Cox, Tony; Popken, Douglas; Ricci, Paolo F
2013-01-01
Exposures to fine particulate matter (PM2.5) in air (C) have been suspected of contributing causally to increased acute (e.g., same-day or next-day) human mortality rates (R). We tested this causal hypothesis in 100 United States cities using the publicly available NMMAPS database. Although a significant, approximately linear, statistical C-R association exists in simple statistical models, closer analysis suggests that it is not causal. Surprisingly, conditioning on other variables that have been extensively considered in previous analyses (usually using splines or other smoothers to approximate their effects), such as month of the year and mean daily temperature, suggests that they create strong, nonlinear confounding that explains the statistical association between PM2.5 and mortality rates in this data set. As this finding disagrees with conventional wisdom, we apply several different techniques to examine it. Conditional independence tests for potential causation, non-parametric classification tree analysis, Bayesian Model Averaging (BMA), and Granger-Sims causality testing, show no evidence that PM2.5 concentrations have any causal impact on increasing mortality rates. This apparent absence of a causal C-R relation, despite their statistical association, has potentially important implications for managing and communicating the uncertain health risks associated with, but not necessarily caused by, PM2.5 exposures. PMID:23983662
Snow, Samantha J; De Vizcaya-Ruiz, Andrea; Osornio-Vargas, Alvaro; Thomas, Ronald F; Schladweiler, Mette C; McGee, John; Kodavanti, Urmila P
2014-01-01
Particulate matter (PM)-associated metals can contribute to adverse cardiopulmonary effects following exposure to air pollution. The aim of this study was to investigate how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity differences. Male Wistar Kyoto rats (14 wk) were intratracheally instilled with chemically characterized PM10 and PM2.5 from the north and PM10 from the south of Mexico City (3 mg/kg). Both water-soluble and acid-leachable fractions contained several metals, with levels generally higher in PM10 South. The insoluble and total, but not soluble, fractions of all PM induced pulmonary damage that was indicated by significant increases in neutrophilic inflammation, and several lung injury biomarkers including total protein, albumin, lactate dehydrogenase activity, and γ-glutamyl transferase activity 24 and 72 h postexposure. PM10 North and PM2.5 North also significantly decreased levels of the antioxidant ascorbic acid. Elevation in lung mRNA biomarkers of inflammation (tumor necrosis factor [TNF]-α and macrophage inflammatory protein [MIP]-2), oxidative stress (heme oxygenase [HO]-1, lectin-like oxidized low-density lipoprotein receptor [LOX]-1, and inducibile nitric oxide synthase [iNOS]), and thrombosis (tissue factor [TF] and plasminogen activator inhibitor [PAI]-1), as well as reduced levels of fibrinolytic protein tissue plasminogen activator (tPA), further indicated pulmonary injury following PM exposure. These responses were more pronounced with PM10 South (PM10 South > PM10 North > PM2.5 North), which contained higher levels of redox-active transition metals that may have contributed to specific differences in selected lung gene markers. These findings provide evidence that surface chemistry of the PM core and not the water-soluble fraction played an important role in regulating in vivo pulmonary toxicity responses to Mexico City PM.
MacNaughton, Piers; Eitland, Erika; Kloog, Itai; Schwartz, Joel; Allen, Joseph
2017-02-20
Chronic absenteeism is associated with poorer academic performance and higher attrition in kindergarten to 12th grade (K-12) schools. In prior research, students who were chronically absent generally had fewer employment opportunities and worse health after graduation. We examined the impact that environmental factors surrounding schools have on chronic absenteeism. We estimated the greenness (Normalized Difference Vegetation Index (NDVI)) and fine particulate matter air pollution (PM 2.5 ) within 250 m and 1000 m respectively of each public school in Massachusetts during the 2012-2013 academic year using satellite-based data. We modeled chronic absenteeism rates in the same year as a function of PM 2.5 and NDVI, controlling for race and household income. Among the 1772 public schools in Massachusetts, a 0.15 increase in NDVI during the academic year was associated with a 2.6% ( p value < 0.0001) reduction in chronic absenteeism rates, and a 1 μg/m³ increase in PM 2.5 during the academic year was associated with a 1.58% ( p value < 0.0001) increase in chronic absenteeism rates. Based on these percentage changes in chronic absenteeism, a 0.15 increase in NDVI and 1 μg/m³ increase in PM 2.5 correspond to 25,837 fewer students and 15,852 more students chronically absent each year in Massachusetts respectively. These environmental impacts on absenteeism reinforce the need to protect green spaces and reduce air pollution around schools.
MacNaughton, Piers; Eitland, Erika; Kloog, Itai; Schwartz, Joel; Allen, Joseph
2017-01-01
Chronic absenteeism is associated with poorer academic performance and higher attrition in kindergarten to 12th grade (K-12) schools. In prior research, students who were chronically absent generally had fewer employment opportunities and worse health after graduation. We examined the impact that environmental factors surrounding schools have on chronic absenteeism. We estimated the greenness (Normalized Difference Vegetation Index (NDVI)) and fine particulate matter air pollution (PM2.5) within 250 m and 1000 m respectively of each public school in Massachusetts during the 2012–2013 academic year using satellite-based data. We modeled chronic absenteeism rates in the same year as a function of PM2.5 and NDVI, controlling for race and household income. Among the 1772 public schools in Massachusetts, a 0.15 increase in NDVI during the academic year was associated with a 2.6% (p value < 0.0001) reduction in chronic absenteeism rates, and a 1 μg/m3 increase in PM2.5 during the academic year was associated with a 1.58% (p value < 0.0001) increase in chronic absenteeism rates. Based on these percentage changes in chronic absenteeism, a 0.15 increase in NDVI and 1 μg/m3 increase in PM2.5 correspond to 25,837 fewer students and 15,852 more students chronically absent each year in Massachusetts respectively. These environmental impacts on absenteeism reinforce the need to protect green spaces and reduce air pollution around schools. PMID:28230752
NASA Astrophysics Data System (ADS)
Butt, Edward W.; Turnock, Steven T.; Rigby, Richard; Reddington, Carly L.; Yoshioka, Masaru; Johnson, Jill S.; Regayre, Leighton A.; Pringle, Kirsty J.; Mann, Graham W.; Spracklen, Dominick V.
2017-04-01
Long-term exposure to ambient particulate matter (PM2.5, mass of particles with an aerodynamic dry diameter of < 2.5 μm) is associated with premature mortality. Previous studies have focussed on present day or future attributable health burdens. Few studies have estimated changes in PM2.5 concentrations and associated health burdens over the last few decades, a period where air quality has changed rapidly. Here we used the HadGEM3-UKCA coupled chemistry-climate model, integrated exposure-response relationships, demographic data and background disease prevalence to provide the first estimate of the changes in global and regional health burdens attributable to ambient PM2.5 exposure over the period 1960 to 2009. Over this period, simulated global mean population-weighted PM2.5 increased by 37% to 48% dominated by large increases over China (53% to 66%) and India (70% to 116%). We find that global attributable mortality due to long-term PM2.5 exposure increased by 124% to 147% between 1960 and 2009, substantially more than the increase in PM2.5 concentrations over the same period. This increase is dominated by India and China and is driven by population growth and an ageing population combined with increased PM2.5 concentrations. Our results show that PM2.5 concentrations in China and India will need to be reduced substantially to slow the increasing attributable health burdens that are being driven by population growth and an older population.
Mani, Venkatesh; Wong, Stephanie K; Sawit, Simonette T; Calcagno, Claudia; Maceda, Cynara; Ramachandran, Sarayu; Fayad, Zahi A; Moline, Jacqueline; McLaughlin, Mary Ann
2013-04-01
In this pilot study, we hypothesize that dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) has the potential to evaluate differences in atherosclerosis profiles in patients subjected to high (initial dust cloud) and low (after 13 September 2001) particulate matter (PM) exposure. Exposure to PM may be associated with adverse health effects leading to increased morbidity. Law enforcement workers were exposed to high levels of particulate pollution after working at "Ground Zero" and may exhibit accelerated atherosclerosis. 31 subjects (28 male) with high (n = 19) or low (n = 12) exposure to PM underwent DCE-MRI. Demographics (age, gender, family history, hypertension, diabetes, BMI, and smoking status), biomarkers (lipid profiles, hs-CRP, BP) and ankle-brachial index (ABI) measures (left and right) were obtained from all subjects. Differences between the high and low exposures were compared using independent samples t test. Using linear forward stepwise regression with information criteria model, independent predictors of increased area under curve (AUC) from DCE-MRI were determined using all variables as input. Confidence interval of 95 % was used and variables with p > 0.1 were eliminated. p < 0.05 was considered significant. Subjects with high exposure (HE) had significantly higher DCE-MRI AUC uptake (increased neovascularization) compared to subjects with lower exposure (LE). (AUC: 2.65 ± 0.63 HE vs. 1.88 ± 0.69 LE, p = 0.016). Except for right leg ABI, none of the other parameters were significantly different between the two groups. Regression model indicated that only HE to PM, CRP > 3.0 and total cholesterol were independently associated with increased neovascularization (in decreasing order of importance, all p < 0.026). HE to PM may increase plaque neovascularization, and thereby potentially indicate worsening atherogenic profile of "Ground Zero" workers.
A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper entitled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Re...
40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group III SIP. 52.634 Section 52.634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter...
40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.146 Section 52.146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.146 Particulate matter...
Canada-United States Transboundary Particulate Matter Science Assessment
This 2004 document summarizes the findings of the Canada-U.S. subcommittee on Scientific Cooperation concerning the transboundary transport of particulate matter (PM) and PM precursors between the two countries.
Estimated Short-Term Effects of Coarse Particles on Daily Mortality in Stockholm, Sweden
Johansson, Christer; Forsberg, Bertil
2011-01-01
Background: Although serious health effects associated with particulate matter (PM) with aerodynamic diameter ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5; fine fraction) are documented in many studies, the effects of coarse PM (PM2.5–10) are still under debate. Objective: In this study, we estimated the effects of short-term exposure of PM2.5–10 on daily mortality in Stockholm, Sweden. Method: We collected data on daily mortality for the years 2000 through 2008. Concentrations of PM10, PM2.5, ozone, and carbon monoxide were measured simultaneously in central Stockholm. We used additive Poisson regression models to examine the association between daily mortality and PM2.5–10 on the day of death and the day before. Effect estimates were adjusted for other pollutants (two-pollutant models) during different seasons. Results: We estimated a 1.68% increase [95% confidence interval (CI): 0.20%, 3.15%] in daily mortality per 10-μg/m3 increase in PM2.5–10 (single-pollutant model). The association with PM2.5–10 was stronger for November through May, when road dust is most important (1.69% increase; 95% CI: 0.21%, 3.17%), compared with the rest of the year (1.31% increase; 95% CI: –2.08%, 4.70%), although the difference was not statistically significant. When adjusted for other pollutants, particularly PM2.5, the effect estimates per 10 μg/m3 for PM2.5–10 decreased slightly but were still higher than corresponding effect estimates for PM2.5. Conclusions: Our analysis shows an increase in daily mortality associated with elevated urban background levels of PM2.5–10. Regulation of PM2.5–10 should be considered, along with actions to specifically reduce PM2.5–10 emissions, especially road dust suspension, in cities. PMID:22182596
Katterman, Matthew E; Birchard, Stephanie; Seraphin, Supapan; Riley, Mark R
2007-01-01
There is increasing interest in continual monitoring of air for the presence of inhalation health hazards, such as particulate matter, produced through combustion of fossil fuels. Currently there are no means to rapidly evaluate the relative toxicity of materials or to reliably predict potential health impact due to the complexity of the composition, size, and physical properties of particulate matter. This research evaluates the feasibility of utilizing cell cultures as the biological recognition element of an inhalation health monitoring system. The response of rat lung type II epithelial (RLE-6TN) cells to a variety of combustion derived particulates and their components has been evaluated. The focus of the current work is an evaluation of how particles are delivered to a cellular sensing array and to what degree does washing or grinding of the particles impacts the cellular response. There were significant differences in the response of these lung cells to PM's of varying sources. Mechanical grinding or washing was found to alter the toxicity of some of these particulates; however these effects were strongly dependent on the fuel source. Washing reduced toxicity of oil PM's, but had little effect on those from diesel or coal. Mechanical grinding could significantly increase the toxicity of coal PM's, but not for oil or diesel.
Ambient fine particulate matter air pollution and leisure-time physical inactivity among US adults.
An, R; Xiang, X
2015-12-01
There is mounting evidence documenting the adverse health effects of short- and long-term exposure to ambient fine particulate matter (PM2.5) air pollution, but population-based evidence linking PM2.5 and health behaviour remains lacking. This study examined the relationship between ambient PM2.5 air pollution and leisure-time physical inactivity among US adults 18 years of age and above. Retrospective data analysis. Participant-level data (n = 2,381,292) from the Behavioral Risk Factor Surveillance System 2003-2011 surveys were linked with Wide-ranging Online Data for Epidemiologic Research air quality data by participants' residential county and interview month/year. Multilevel logistic regressions were performed to examine the effect of ambient PM2.5 air pollution on participants' leisure-time physical inactivity, accounting for various individual and county-level characteristics. Regressions were estimated on the overall sample and subsamples stratified by sex, age cohort, race/ethnicity and body weight status. One unit (μg/m(3)) increase in county monthly average PM2.5 concentration was found to be associated with an increase in the odds of physical inactivity by 0.46% (95% confidence interval = 0.34%-0.59%). The effect was similar between the sexes but to some extent (although not always statistically significant) larger for younger adults, Hispanics, and overweight/obese individuals compared with older adults, non-Hispanic whites or African Americans, and normal weight individuals, respectively. Ambient PM2.5 air pollution is found to be associated with a modest but measurable increase in individuals' leisure-time physical inactivity, and the relationship tends to differ across population subgroups. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Yuan-Horng; Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan; Charles, Chou C.-K.
Epidemiological studies have reported associations between particulate matter (PM) and cardiovascular effects, and diabetes mellitus (DM) patients might be susceptible to these effects. The chief chronic injuries resulting from DM are small vascular injuries (micro-vascular complications) or large blood vessel injuries (macro-vascular complications). However, toxicological data regarding the effects of PM on DM-related cardiovascular complications is limited. Our objective was to investigate whether subchronic PM exposure alters glucose homeostasis and causes cardiovascular complications in a type 1 DM rat model. We constructed a real world PM{sub 2.5} exposure system, the Taipei Air Pollution Exposure System for Health Effects (TAPES), tomore » continuously deliver non-concentrated PM for subchronic exposure. A type 1 DM rat model was induced using streptozotocin. Between December 22, 2009 and April 9, 2010, DM rats were exposed to PM or to filtered air (FA) using TAPES in Taipei, Taiwan, 24 h/day, 7 days/week, for a total of 16 weeks. The average concentrations (mean [SD]) of PM{sub 2.5} in the exposure and control chambers of the TAPES were 13.30 [8.65] and 0.13 [0.05] μg/m{sup 3}, respectively. Glycated hemoglobin A1c (HbA1c) was significantly elevated after exposure to PM compared with exposure to FA (mean [SD], 7.7% [3.1%] vs. 4.7% [1.0%], P < 0.05). Interleukin 6 and fibrinogen levels were significantly increased after PM exposure. PM caused focal myocarditis, aortic medial thickness, advanced glomerulosclerosis, and accentuation of tubular damage of the kidney (tubular damage index: 1.76 [0.77] vs. 1.15 [0.36], P < 0.001). PM exposure might induce the macro- and micro-vascular complications in DM through chronic hyperglycemia and systemic inflammation. - Highlights: • The study demonstrated cardiovascular and renal effects of PM in a rat model of DM. • TAPES is a continuous, real world, long-term PM exposure system. • HbA1c, a marker of glycemic homeostasis, was elevated in DM rats exposed to PM. • Inflammatory markers, IL-6 and fibrinogen, were increased in DM rats exposed to PM. • PM caused myocarditis, aortic medial thickness, and kidney damages in DM rats.« less
Source apportionment of particulate matter in a South Asian Mega City: A case study of Karachi
NASA Astrophysics Data System (ADS)
Shahid, imran
2016-04-01
Pakistan is facing unabated air pollution as a major issue and its cities are more vulnerable as compared to urban centers in the developed world. During the last few decades, there has been a rapid increase in population, urbanization, industrialization, transportation and other human activities. In year June 2015 heat wave in largest South Asian mega city Karachi more than 1500 people died in one week. Unfortunately no air quality monitoring system is operation in any city of Pakistan. There is a sharp increase in both the variety and quantity of air pollutants and their corresponding sources. In this study contributions of different sources to particulate matter concentration has estimated in urban area of Karachi. Carbonaceous species (elemental carbon, organic carbon, carbonate carbon), soluble ions (Ca++, Mg++, Na+, K+, NH4+, Cl-, NO3-, SO4--), saccharides (levoglucosan, galactosan, mannosan, sucrose, fructose, glucose, arabitol and mannitol) were measured in atmospheric fine (PM2.5) and coarse (PM10) particles collected under pre-monsoon conditions (March - April 2009) at an urban site in Karachi (Pakistan). Average concentrations of PM2.5 were 75μg/m3 and of PM10 437μg/m3. The large difference between PM10 and PM2.5 originated predominantly from mineral dust. "Calcareous dust" and „siliceous dust" were the overall dominating material in PM, with 46% contribution to PM2.5 and 78% to PM10-2.5. 20 Combustion particles and secondary organics (EC+OM) comprised 23% of PM2.5 and 6% of PM10-2.5. EC, as well as OC ambient levels were higher (59% and 56%) in PM10-2.5 than in 22 PM2.5. Biomass burning contributed about 3% to PM2.5, and had a share of about 13% of "EC+OM" in PM2.5. The impact of bioaerosol (fungal spores) was minor and had a share of 1 and 2% of the OC in the PM2.5 and PM10-2.5 size fractions. Of secondary inorganic constituents (NH4)2SO4 contributes 4.4% to PM2.5 and no detectable quantity to PM10-2.5. The sea salt contribution is about 2% both to PM2.5 and PM10-2.5. In order to make air quality better and risk free in South Asian cities a comprehensive and integrated regional effort is required that include continuous air quality monitoring, source apportionment and implementation of regional air quality policies.
Effects of Source-Apportioned Coarse Particulate Matter (PM) ...
The Cleveland Multiple Air Pollutant Study (CMAPS) is one of the first comprehensive studies conducted to evaluate particulate matter (PM) over local and regional scales. Cleveland and the nearby Ohio River Valley impart significant regional sources of air pollution including coal combustion and steel production. Size-fractionated PM (coarse, fine and ultrafine) were collected from an urban site (G.T. Craig (GTC)) and a rural site (Chippewa Lake monitor (CLM) located 53 km southwest of Cleveland) from July 2009 to June 2010. Following collection, resulting speciated PM data were apportioned to identify local industrial emission sources for each size fraction and location, indicating these samples were enriched with resident emission sources. This study was designed to determine whether exposure of the CMAPS coarse PM contributes to the exacerbation of allergic asthma. Non-sensitized and house dust mite (HDM)-sensitized female Balb/cJ mice (n= 8/group) were exposed via oropharyngeal (OP) aspiration to 100 g coarse fractions of one of five source apportioned groups representative of distinct time periods of 4-6 weeks (traffic, coal, steel 1, steel 2, or winter PM) and OP challenge with HDM conducted 2 hr following dosing with PM. Two days later, airway responsiveness to methacholine aerosol was assessed in anesthetized ventilated control and HDM mice. The HDM-allergic mice demonstrated increased airway reactivity in comparison to control mice. Bronchoalveolar l
Cox, Louis A; Popken, Douglas A; Ricci, Paolo F
2013-08-01
Recent studies have indicated that reducing particulate pollution would substantially reduce average daily mortality rates, prolonging lives, especially among the elderly (age ≥ 75). These benefits are projected by statistical models of significant positive associations between levels of fine particulate matter (PM2.5) levels and daily mortality rates. We examine the empirical correspondence between changes in average PM2.5 levels and temperatures from 1999 to 2000, and corresponding changes in average daily mortality rates, in each of 100 U.S. cities in the National Mortality and Morbidity Air Pollution Study (NMMAPS) data base, which has extensive PM2.5, temperature, and mortality data for those 2 years. Increases in average daily temperatures appear to significantly reduce average daily mortality rates, as expected from previous research. Unexpectedly, reductions in PM2.5 do not appear to cause any reductions in mortality rates. PM2.5 and mortality rates are both elevated on cold winter days, creating a significant positive statistical relation between their levels, but we find no evidence that reductions in PM2.5 concentrations cause reductions in mortality rates. For all concerned, it is crucial to use causal relations, rather than statistical associations, to project the changes in human health risks due to interventions such as reductions in particulate air pollution. Copyright © 2013 Elsevier Inc. All rights reserved.
High time-resolution aerosol sampling was conducted for one month during July–August 2007 in Dearborn, MI, a non-attainment area for fine particulate matter (PM2.5) National Ambient Air Quality Standards (NAAQS). Measurements of more than 30 PM2.5 species were made using a suite o...
The Research Triangle Park (RTP) Particulate Matter (PM) Panel Study represented a one-year investigation of personal, residential and ambient PM mass concentrations across distances as large as 70 km in central North Carolina. One of the primary goals of this effort was to est...
Canada-United States Transboundary Particulate Matter Science Assessment 2013
This 2013 document summarizes the findings of the Canada-U.S. subcommittee on Scientific Cooperation concerning the transboundary transport of particulate matter (PM) and PM precursors between the two countries.
Darrow, Lyndsey A; Klein, Mitchel; Flanders, W Dana; Mulholland, James A; Tolbert, Paige E; Strickland, Matthew J
2014-11-15
Upper and lower respiratory infections are common in early childhood and may be exacerbated by air pollution. We investigated short-term changes in ambient air pollutant concentrations, including speciated particulate matter less than 2.5 μm in diameter (PM2.5), in relation to emergency department (ED) visits for respiratory infections in young children. Daily counts of ED visits for bronchitis and bronchiolitis (n = 80,399), pneumonia (n = 63,359), and upper respiratory infection (URI) (n = 359,246) among children 0-4 years of age were collected from hospitals in the Atlanta, Georgia, area for the period 1993-2010. Daily pollutant measurements were combined across monitoring stations using population weighting. In Poisson generalized linear models, 3-day moving average concentrations of ozone, nitrogen dioxide, and the organic carbon fraction of particulate matter less than 2.5 μm in diameter (PM2.5) were associated with ED visits for pneumonia and URI. Ozone associations were strongest and were observed at low (cold-season) concentrations; a 1-interquartile range increase predicted a 4% increase (95% confidence interval: 2%, 6%) in visits for URI and an 8% increase (95% confidence interval: 4%, 13%) in visits for pneumonia. Rate ratios tended to be higher in the 1- to 4-year age group compared with infants. Results suggest that primary traffic pollutants, ozone, and the organic carbon fraction of PM2.5 exacerbate upper and lower respiratory infections in early life, and that the carbon fraction of PM2.5 is a particularly harmful component of the ambient particulate matter mixture. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zhu, Shupeng; Horne, Jeremy R.; Montoya-Aguilera, Julia; Hinks, Mallory L.; Nizkorodov, Sergey A.; Dabdub, Donald
2018-03-01
Ammonium salts such as ammonium nitrate and ammonium sulfate constitute an important fraction of the total fine particulate matter (PM2.5) mass. While the conversion of inorganic gases into particulate-phase sulfate, nitrate, and ammonium is now well understood, there is considerable uncertainty over interactions between gas-phase ammonia and secondary organic aerosols (SOAs). Observations have confirmed that ammonia can react with carbonyl compounds in SOA, forming nitrogen-containing organic compounds (NOCs). This chemistry consumes gas-phase NH3 and may therefore affect the amount of ammonium nitrate and ammonium sulfate in particulate matter (PM) as well as particle acidity. In order to investigate the importance of such reactions, a first-order loss rate for ammonia onto SOA was implemented into the Community Multiscale Air Quality (CMAQ) model based on the ammonia uptake coefficients reported in the literature. Simulations over the continental US were performed for the winter and summer of 2011 with a range of uptake coefficients (10-3-10-5). Simulation results indicate that a significant reduction in gas-phase ammonia may be possible due to its uptake onto SOA; domain-averaged ammonia concentrations decrease by 31.3 % in the winter and 67.0 % in the summer with the highest uptake coefficient (10-3). As a result, the concentration of particulate matter is also significantly affected, with a distinct spatial pattern over different seasons. PM concentrations decreased during the winter, largely due to the reduction in ammonium nitrate concentrations. On the other hand, PM concentrations increased during the summer due to increased biogenic SOA (BIOSOA) production resulting from enhanced acid-catalyzed uptake of isoprene-derived epoxides. Since ammonia emissions are expected to increase in the future, it is important to include NH3 + SOA chemistry in air quality models.
Luong, Ly M T; Phung, Dung; Sly, Peter D; Morawska, Lidia; Thai, Phong K
2017-02-01
While the effects of ambient air pollution on health have been studied extensively in many developed countries, few studies have been conducted in Vietnam, where the population is exposed to high levels of airborne particulate matter. The aim of our study was to examine the short-term effects of PM 10 , PM 2.5 , and PM 1 on respiratory admissions among young children in Hanoi. Data on daily admissions from the Vietnam National Hospital of Paediatrics and daily records of PM 10 , PM 2.5 , PM 1 and other confounding factors as NO 2 , SO 2 , CO, O 3 and temperature were collected from September 2010 to September 2011. A time-stratified case-crossover design with individual lag model was applied to evaluate the associations between particulate air pollution and respiratory admissions. Significant effects on daily hospital admissions for respiratory disease were found for PM 10 , PM 2.5 and PM 1 . An increase in 10μg/m 3 of PM 10 , PM 2.5 or PM 1 was associated with an increase in risk of admission of 1.4%, 2.2% or 2.5% on the same day of exposure, respectively. No significant difference between the effects on males and females was found in the study. The study demonstrated that infants and young children in Hanoi are at increased risk of respiratory admissions due to the high level of airborne particles in the city's ambient air. Copyright © 2016 Elsevier B.V. All rights reserved.
Barrow Black Carbon Source and Impact Study Final Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Tate
2014-07-01
The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 samplermore » operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.« less
Overexpression of HO-1 assisted PM2.5-induced apoptosis failure and autophagy-related cell necrosis.
Zhou, Wei; Yuan, Xiaoyan; Zhang, Li; Su, Baoting; Tian, Dongdong; Li, Yang; Zhao, Jun; Wang, Yimei; Peng, Shuangqing
2017-11-01
Severe smog/haze events accompanied by extremely high concentrations of airborne fine particulate matter (PM2.5) have emerged frequently in China and the potential health risks have attracted ever-growing attention. During these episodes, a surge in hospital visits for acute respiratory symptoms and respiratory diseases exacerbation has been reported to be associated with acute exposure to high-levels of particulate matters. To investigate cell fate determination and the underlying pathogenic mechanisms during severe haze episodes or smog events, we exposed human lung epithelial cells (BEAS-2B) to PM2.5 (0-400μg/mL) for 24h and found that high doses of PM2.5 caused cell necrosis and autophagy dysfunction, while co-treatment with the autophagy inhibitor 3-MA could partially reduce PM2.5-induced cell necrosis. Exposure to PM2.5 also increased the expression and mitochondrial transposition of heme oxygenase 1 (HO-1), which consequently reduced the release of cytochrome C from mitochondria to cytosol. Knockdown of HO-1 by siRNA attenuated the mitochondrial accumulation of HO-1, reversed HO-1-induced the reduction of cytochrome C release and promoted PM2.5-induced cell apoptosis. In contrast to necrosis, PM2.5-induced autophagy was independent of HO-1. In conclusion, our results demonstrate that acute exposure to high PM2.5 concentrations causes autophagy-related cell necrosis. The decrease in cytochrome C release and apoptosis by upregulation of HO-1 maybe assist PM2.5-induced autophagy-related cell necrosis. Further, this study reveals dual roles for HO-1 in PM2.5-induced cytotoxicity and presents a possible explanation for the onset of acute respiratory symptoms under extreme particulate air pollution. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Yu, J.; Lau, A. K.; Wu, C.; Ng, W.; Yuan, Z.; Wu, D.
2009-12-01
The Pearl River Delta (PRD) is among the most economically fast-developing regions in China. The region has been experiencing increasing levels of particulate matter (PM) pollution. In an effort of establishing long-term trend in chemical characteristics of PM2.5 and understanding PM sources important at regional scale, filter-based samples have been collected at three sites in the PRD concurrently in one-in-six-day schedule since August 2007. We here report observation results of PM2.5 over one-year period (August 2007-June 2008). The three sites include an urban downtown location in Guangzhou, Nansha, a rural receptor site at the mouth of the Pearl River, and Tsuen Wan, an urban background site in Hong Kong. Guangzhou recorded the highest annual average PM2.5 concentration of 78.2 μgm-3, followed by Nansha (65.9 μgm-3) and Tsuen Wan (42.8 μgm-3). Organic matter (OM) and sulfate are the top two constituents, accounting for ~70% of PM2.5 mass. The annual average nitrate contributions were similar at GZ and NS (~13%), but lower at TW (~7%). Inter-site correlations of PM2.5 and major constituents indicate that GZ strongly influenced ambient PM2.5 levels at NS, but GZ’s influence on TW was much reduced. Sulfate, ammonium, and OM showed strong regional characteristics. To the contrary, EC at the three sites had no correlations, suggesting a dominating local origin. Examples of high PM2.5 episodes are also analyzed to identify the conditions conducive for high PM.
Song, Lei; Li, Dan; Gu, Yue; Li, Xiaoping; Peng, Liping
2016-10-01
Epidemiological studies show that particulate matter (PM) with an aerodynamic diameter ≤ 2.5 μm (PM2.5) is associated with cardiorespiratory diseases via the induction of excessive oxidative stress. However, the precise mechanism underlying PM2.5-mediated oxidative stress injury has not been fully elucidated. Accumulating evidence has indicated the microRNA let-7 family might play a role in PM-mediated pathological processes. In this study, we investigated the role of let-7a in oxidative stress and cell injury in human bronchial epithelial BEAS2B (B2B) cells after PM2.5 exposure. The let-7a level was the most significantly decreased in B2B cells after PM2.5 exposure. The overexpression of let-7a suppressed intracellular reactive oxygen species levels and the percentage of apoptotic cells after PM2.5 exposure, while the let-7a level decreased arginase 2 (ARG2) mRNA and protein levels in B2B cells by directly targeting the ARG2 3'-untranslated region. ARG2 expression was upregulated in B2B cells during PM2.5 treatment, and ARG2 knockdown could remarkably reduce oxidative stress and cellular injury. Moreover, its restoration could abrogate the protective effects of let-7a against PM2.5-induced injury. In conclusion, let-7a decreases and ARG2 increases resulting from PM2.5 exposure may exacerbate oxidative stress, cell injury and apoptosis of B2B cells. The let-7a/ARG2 axis is a likely therapeutic target for PM2.5-induced airway epithelial injury. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Particulate matter air pollution and liver cancer survival.
Deng, Huiyu; Eckel, Sandrah P; Liu, Lihua; Lurmann, Frederick W; Cockburn, Myles G; Gilliland, Frank D
2017-08-15
Particulate matter (PM) air pollution exposure has been associated with cancer incidence and mortality especially with lung cancer. The liver is another organ possibly affected by PM due to its role in detoxifying xenobiotics absorbed from PM. Various studies have investigated the mechanistic pathways between inhaled pollutants and liver damage, cancer incidence, and tumor progression. However, little is known about the effects of PM on liver cancer survival. Twenty thousand, two hundred and twenty-one California Cancer Registry patients with hepatocellular carcinoma (HCC) diagnosed between 2000 and 2009 were used to examine the effect of exposure to ambient PM with diameter <2.5 μm (PM 2.5 ) on HCC survival. Cox proportional hazards models were used to estimate hazard ratios (HRs) relating PM 2.5 to all-cause and liver cancer-specific mortality linearly and nonlinearly-overall and stratified by stage at diagnosis (local, regional and distant)-adjusting for potential individual and geospatial confounders.PM 2.5 exposure after diagnosis was statistically significantly associated with HCC survival. After adjustment for potential confounders, the all-cause mortality HR associated with a 1 standard deviation (5.0 µg/m 3 ) increase in PM 2.5 was 1.18 (95% CI: 1.16-1.20); 1.31 (95% CI:1.26-1.35) for local stage, 1.19 (95% CI:1.14-1.23) for regional stage, and 1.05 (95% CI:1.01-1.10) for distant stage. These associations were nonlinear, with substantially larger HRs at higher exposures. The associations between liver cancer-specific mortality and PM 2.5 were slightly attenuated compared to all-cause mortality, but with the same patterns.Exposure to elevated PM 2.5 after the diagnosis of HCC may shorten survival, with larger effects at higher concentrations. © 2017 UICC.
Analysis of airborne particulate matter (PM2.5) over Hong Kong using remote sensing and GIS.
Shi, Wenzhong; Wong, Man Sing; Wang, Jingzhi; Zhao, Yuanling
2012-01-01
Airborne fine particulates (PM(2.5); particulate matter with diameter less than 2.5 μm) are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM(2.5) and its correlation with meteorological parameters in Hong Kong, during 2007-2008. Significant diurnal variations of PM(2.5) concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM(2.5) concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM(2.5) were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM(2.5) emissions. To understand the spatial pattern of PM(2.5) concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM(2.5) vertical profiles. A Geographic Information Systems (GIS) prototype was developed to integrate atmospheric PM(2.5) vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM(2.5) concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies.
Analysis of Airborne Particulate Matter (PM2.5) over Hong Kong Using Remote Sensing and GIS
Shi, Wenzhong; Wong, Man Sing; Wang, Jingzhi; Zhao, Yuanling
2012-01-01
Airborne fine particulates (PM2.5; particulate matter with diameter less than 2.5 μm) are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM2.5 and its correlation with meteorological parameters in Hong Kong, during 2007–2008. Significant diurnal variations of PM2.5 concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM2.5 concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM2.5 were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM2.5 emissions. To understand the spatial pattern of PM2.5 concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM2.5 vertical profiles. A Geographic Information Systems (GIS) prototype was developed to integrate atmospheric PM2.5 vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM2.5 concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies. PMID:22969323
Particulate matter emission by a vehicle running on unpaved road
NASA Astrophysics Data System (ADS)
Williams, David Scott; Shukla, Manoj K.; Ross, Jim
2008-05-01
The particulate matter (PM) emission from unpaved roads starts with the pulverization of surface material by the force of the vehicle, uplifting and subsequent exposure of road to strong air currents behind the wheels. The objectives of the project were to: demonstrate the utility of a simple technique for collecting suspended airborne PM emitted by vehicle running on an unpaved road, determine the mass balance of airborne PM at different heights, and determine the particle size and elemental composition of PM. We collected dust samples on sticky tapes using a rotorod sampler mounted on a tower across an unpaved road located at the Leyendecker Plant Sciences Research Center, Las Cruces, NM, USA. Dust samples were collected at 1.5, 4.5 and 6 m height above the ground surface on the east and west side of the road. One rotorod sampler was also installed at the centre of the road at 6 m height. Dust samples from unpaved road were mostly (70%) silt and clay-sized particles and were collected at all heights. The height and width of the PM plume and the amount of clay-sized particles captured on both sides of the road increased with speed and particle captured ranged from 0.05 to 159 μm. Dust particles between PM10 and PM2.5 did not correlate with vehicle speed but particles ⩽PM2.5 did. Emission factors estimated for the total suspended PM were 10147 g km-1 at 48 km h-1 and 11062 g km-1 at 64 km h-1 speed, respectively. The predominant elements detected in PM were carbon, aluminum and silica at all heights. Overall, sticky tape method coupled with electron microscopy was a useful technique for a rapid particle size and elemental characterization of airborne PM.
Sajjadi, Seyed Ali; Zolfaghari, Ghasem; Adab, Hamed; Allahabadi, Ahmad; Delsouz, Mehri
2017-01-01
This paper presented the levels of PM 2.5 and PM 10 in different stations at the city of Sabzevar, Iran. Furthermore, this study was an attempt to evaluate spatial interpolation methods for determining the PM 2.5 and PM 10 concentrations in the city of Sabzevar. Particulate matters were measured by Haz-Dust EPAM at 48 stations. Then, four interpolating models, including Radial Basis Functions (RBF), Inverse Distance Weighting (IDW), Ordinary Kriging (OK), and Universal Kriging (UK) were used to investigate the status of air pollution in the city. Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were employed to compare the four models. The results showed that the PM 2.5 concentrations in the stations were between 10 and 500 μg/m 3 . Furthermore, the PM 10 concentrations for all of 48 stations ranged from 20 to 1500 μg/m 3 . The concentrations obtained for the period of nine months were greater than the standard limits. There was difference in the values of MAPE, RMSE, MBE, and MAE. The results indicated that the MAPE in IDW method was lower than other methods: (41.05 for PM 2.5 and 25.89 for PM 10 ). The best interpolation method for the particulate matter (PM 2.5 and PM 10 ) seemed to be IDW method. •The PM 10 and PM 2.5 concentration measurements were performed in the period of warm and risky in terms of particulate matter at 2016.•Concentrations of PM 2.5 and PM 10 were measured by a monitoring device, environmental dust model Haz-Dust EPAM 5000.•Interpolation is used to convert data from observation points to continuous fields to compare spatial patterns sampled by these measurements with spatial patterns of other spatial entities.
Assessing the Capacity of Plant Species to Accumulate Particulate Matter in Beijing, China
Mo, Li; Ma, Zeyu; Xu, Yansen; Sun, Fengbin; Lun, Xiaoxiu; Liu, Xuhui; Chen, Jungang; Yu, Xinxiao
2015-01-01
Air pollution causes serious problems in spring in northern China; therefore, studying the ability of different plants to accumulate particulate matter (PM) at the beginning of the growing season may benefit urban planners in their attempts to control air pollution. This study evaluated deposits of PM on the leaves and in the wax layer of 35 species (11 shrubs, 24 trees) in Beijing, China. Differences in the accumulation of PM were observed between species. Cephalotaxus sinensis, Euonymus japonicus, Broussonetia papyriferar, Koelreuteria paniculata and Quercus variabilis were all efficient in capturing small particles. The plants exhibiting high amounts of total PM accumulation (on leaf surfaces and/or in the wax layer), also showed comparatively high levels of PM accumulation across all particle sizes. A comparison of shrubs and trees did not reveal obvious differences in their ability to accumulate particles based on growth form; a combination of plantings with different growth forms can efficiently reduce airborne PM concentrations near the ground. To test the relationships between leaf traits and PM accumulation, leaf samples of selected species were observed using a scanning electron microscope. Growth forms with greater amounts of pubescence and increased roughness supported PM accumulation; the adaxial leaf surfaces collected more particles than the abaxial surfaces. The results of this study may inform the selection of species for urban green areas where the goal is to capture air pollutants and mitigate the adverse effects of air pollution on human health. PMID:26506104
Abu-Elmagd, Muhammad; Alghamdi, Mansour A.; Shamy, Magdy; Khoder, Mamdouh I.; Costa, Max; Assidi, Mourad; Kadam, Roaa; Alsehli, Haneen; Gari, Mamdooh; Pushparaj, Peter Natesan; Kalamegam, Gauthaman; Al-Qahtani, Mohammed H.
2017-01-01
Particulate matter (PM) contains heavy metals that affect various cellular functions and gene expression associated with a range of acute and chronic diseases in humans. However, the specific effects they exert on the stem cells remain unclear. Here, we report the effects of PM collected from the city of Jeddah on proliferation, cell death, related gene expression and systems of biological analysis in bone marrow mesenchymal stem cells (BM-MSCs), with the aim of understanding the underlying mechanisms. PM2.5 and PM10 were tested in vitro at various concentrations (15 to 300 µg/mL) and durations (24 to 72 h). PMs induced cellular stress including membrane damage, shrinkage and death. Lower concentrations of PM2.5 increased proliferation of BM-MSCs, while higher concentrations served to decrease it. PM10 decreased BM-MSCs proliferation in a concentration-dependent manner. The X-ray fluorescence spectrometric analysis showed that PM contains high levels of heavy metals. Ingenuity Pathway Analysis (IPA) and hierarchical clustering analyses demonstrated that heavy metals were associated with signaling pathways involving cell stress/death, cancer and chronic diseases. qRT-PCR results showed differential expression of the apoptosis genes (BCL2, BAX); inflammation associated genes (TNF-α and IL-6) and the cell cycle regulation gene (p53). We conclude that PM causes inflammation and cell death, and thereby predisposes to chronic debilitating diseases. PMID:28425934
NASA Astrophysics Data System (ADS)
Wahid, Sharifah Norhuda Syed; Ujang, Suriyati
2015-02-01
Daily concentration of particulate matter with aerodynamic diameter less than 10 μm (PM10) could be very harmful to human health such as respiratory and cardiovascular diseases. The purpose of this paper is to describe on the experiences of air pollutants in the state of Pahang, Malaysia during the first quarter of year 2014. Data were gathered from available automatic air quality monitoring stations at Balok Baru, Pahang through the assistance from the Department of Environment. Cumulative sum technique shows that a change occurred at March, 8th with 88 μg/ m3, moderate air quality level. This change point indicated that the PM10 level started to have a potential in moderate or worse level. In addition, time series regression analysis shows that the trend of daily concentrations of Balok Baru station was an upward trend and for additional day, the PM10 level was increased by 0.1117 μg/ m3. It is hoped that this study will give a significant contribution for future researcher in the area of the study on the risk of PM10 or other types of air pollutant to air quality and also human health.
NASA Astrophysics Data System (ADS)
Solis, M.; Nguyen, H.; Adeyan, A.; Adeyan, E.; Taylor, S.; Hardaway, K.; Peterson, E.; Ortega, J.; Marshall, R.
2017-12-01
Over the past five years, the East Bay Academy for Young Scientists (EBAYS) has been investigating air quality at Bay Area Rapid Transit (BART) train stations. In particular, prior EBAYS research has revealed extremely high levels of particulate matter (PM 2.5) at the multi-leveled Embarcadero Station, which is underground and is one of the most frequently visited stations in the entire BART system. During the summer of 2017 data was collected to determine whether or not air quality differed on the three levels of this station. In conducting this study the research team was separated into pairs, each pair in possession of a Dustrak II or AirBeam PM analyzer and each pair assigned to a particular level. Within each measurement trial data was collected for 15 minutes. Measurements were also made on the eastern and western ends of the platforms to detect possible variations in PM concentration. Preliminary results obtained thus far indicate that dangerously high levels of PM 2.5 concentration occur on all three levels of the station. This is especially problematic because it suggests that individuals who spend extensive amounts of time at this station (e.g., station agents and other workers) are exposed to extremely high PM 2.5 concentration levels and as a result are working under conditions that are quite hazardous to their health. Based on observations made during testing, increased levels of PM 2.5 tend to correlate with the departure or arrival of BART trains that results in particulate matter being scattered about the train platform and other levels. Further studies should be conducted to verify this observation and to contribute to better understanding the sources and behavior of PM 2.5 at each level of the station.
Carvlin, Graeme N; Lugo, Humberto; Olmedo, Luis; Bejarano, Ester; Wilkie, Alexa; Meltzer, Dan; Wong, Michelle; King, Galatea; Northcross, Amanda; Jerrett, Michael; English, Paul B; Hammond, Donald; Seto, Edmund
2017-12-01
The Imperial County Community Air Monitoring Network was developed as part of a community-engaged research study to provide real-time particulate matter (PM) air quality information at a high spatial resolution in Imperial County, California. The network augmented the few existing regulatory monitors and increased monitoring near susceptible populations. Monitors were both calibrated and field validated, a key component of evaluating the quality of the data produced by the community monitoring network. This paper examines the performance of a customized version of the low-cost Dylos optical particle counter used in the community air monitors compared with both PM 2.5 and PM 10 (particulate matter with aerodynamic diameters <2.5 and <10 μm, respectively) federal equivalent method (FEM) beta-attenuation monitors (BAMs) and federal reference method (FRM) gravimetric filters at a collocation site in the study area. A conversion equation was developed that estimates particle mass concentrations from the native Dylos particle counts, taking into account relative humidity. The R 2 for converted hourly averaged Dylos mass measurements versus a PM 2.5 BAM was 0.79 and that versus a PM 10 BAM was 0.78. The performance of the conversion equation was evaluated at six other sites with collocated PM 2.5 environmental beta-attenuation monitors (EBAMs) located throughout Imperial County. The agreement of the Dylos with the EBAMs was moderate to high (R 2 = 0.35-0.81). The performance of low-cost air quality sensors in community networks is currently not well documented. This paper provides a methodology for quantifying the performance of a next-generation Dylos PM sensor used in the Imperial County Community Air Monitoring Network. This air quality network provides data at a much finer spatial and temporal resolution than has previously been possible with government monitoring efforts. Once calibrated and validated, these high-resolution data may provide more information on susceptible populations, assist in the identification of air pollution hotspots, and increase community awareness of air pollution.
Han, Inkyu; Symanski, Elaine; Stock, Thomas H
2017-03-01
Exposure to ambient particulate matter (PM) is known as a significant risk factor for mortality and morbidity due to cardiorespiratory causes. Owing to increased interest in assessing personal and community exposures to PM, we evaluated the feasibility of employing a low-cost portable direct-reading instrument for measurement of ambient air PM exposure. A Dylos DC 1700 PM sensor was collocated with a Grimm 11-R in an urban residential area of Houston Texas. The 1-min averages of particle number concentrations for sizes between 0.5 and 2.5 µm (small size) and sizes larger than 2.5 µm (large size) from a DC 1700 were compared with the 1-min averages of PM 2.5 (aerodynamic size less than 2.5 µm) and coarse PM (aerodynamic size between 2.5 and 10 µm) concentrations from a Grimm 11-R. We used a linear regression equation to convert DC 1700 number concentrations to mass concentrations, utilizing measurements from the Grimm 11-R. The estimated average DC 1700 PM 2.5 concentration (13.2 ± 13.7 µg/m 3 ) was similar to the average measured Grimm 11-R PM 2.5 concentration (11.3 ± 15.1 µg/m 3 ). The overall correlation (r 2 ) for PM 2.5 between the DC 1700 and Grimm 11-R was 0.778. The estimated average coarse PM concentration from the DC 1700 (5.6 ± 12.1 µg/m 3 ) was also similar to that measured with the Grimm 11-R (4.8 ± 16.5 µg/m 3 ) with an r 2 of 0.481. The effects of relative humidity and particle size on the association between the DC 1700 and the Grimm 11-R results were also examined. The calculated PM mass concentrations from the DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM 2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM 2.5 . The performance of a low-cost particulate matter (PM) sensor was evaluated in an urban residential area. Both PM 2.5 and coarse PM (PM 10-2.5 ) mass concentrations were estimated using a DC1700 PM sensor. The calculated PM mass concentrations from the number concentrations of DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM 2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM 2.5 .
The Recent History of the Composition of Fine Particulate Matter in the Rural United States
NASA Astrophysics Data System (ADS)
Schichtel, B. A.; Hand, J. L.; Prenni, A. J.; Copeland, S.; Gebhart, K.; Vimont, J.; Moore, C. T.; Malm, W. C.
2017-12-01
Over the past 30 years, there have been dramatic shifts in fine particulate matter (PM2.5) emissions and their precursors, changing the composition and levels of ambient PM2.5. Many of these trends are reflected in the daily speciated PM2.5 samples collected in the Interagency Monitoring of Protected Visual Environments (IMPROVE) program, which has operated uninterrupted throughout the rural United States since 1988. PM2.5, measured at eastern U.S. IMPROVE sites, is now about half of what it was in the 1990s. This change is primarily the result of decreasing particulate sulfate brought on by declining SO2 emissions. Much of the decreased SO2 emissions were initially driven by regulations and then later accelerated by a switch from coal- to natural-gas-powered electrical generation. However, the development of oil and gas resources has led to the industrialization of once-rural landscapes, bringing increased local emissions impacting the air quality in surrounding areas. The reductions in sulfate appear to have also caused commensurate reductions in sulfate-processed, biogenic secondary organic aerosols. Many of these changes have also occurred in the intermountainous western U.S., but the response in ambient PM2.5 is more subtle due to the lower anthropogenic emissions. Instead, the changes in PM2.5 composition appear to be driven by external and more-natural forces. This includes increases in spring sulfate concentrations in the first decade of the 2000's, potentially due to international transport, as well as increased wildfires contributing to the background of carbonaceous aerosols and spatially and temporally varying PM2.5 episodes. Over the last decade, there has also been an earlier onset of the spring dust season in the Southwest, presumably due to the increased surface winds and decreased precipitation which was associated with a shift in the Pacific decadal oscillation. In this presentation we will explore these and other changes in the PM2.5 composition over the past few decades and their potential causes.
NASA Astrophysics Data System (ADS)
Lu, Yiyun; Qin, Yujie; Dang, Qiaohong; Wang, Jiasu
2010-12-01
The crossing in magnetic levitation force-gap hysteresis curve of melt high-temperature superconductor (HTS) vs. NdFeB permanent magnet (PM) was experimentally studied. One HTS bulk and PM was used in the experiments. Four experimental methods were employed combining of high/low speed of movement of PM with/without heat insulation materials (HIM) enclosed respectively. Experimental results show that crossing of the levitation force-gap curve is related to experimental methods. A crossing occurs in the magnetic force-gap curve while the PM moves approaching to and departing from the sample with high or low speed of movement without HIM enclosed. When the PM is enclosed with HIM during the measurement procedures, there is no crossing in the force-gap curve no matter high speed or low speed of movement of the PM. It was found experimentally that, with the increase of the moving speed of the PM, the maximum magnitude of levitation force of the HTS increases also. The results are interpreted based on Maxwell theories and flux flow-creep models of HTS.
Urban air pollutants reduce synaptic function of CA1 neurons via an NMDA/NO• pathway in vitro
Davis, David A.; Akopian, Garnik; Walsh, John P.; Sioutas, Constantinos; Morgan, Todd E.; Finch, Caleb E.
2013-01-01
Airborne particulate matter (PM) from urban vehicular aerosols altered glutamate receptor functions and induced glial inflammatory responses in rodent models after chronic exposure. Potential neurotoxic mechanisms were analyzed in vitro. In hippocampal slices, 2 h exposure to aqueous nanosized PM (nPM) selectively altered postsynaptic proteins in CA1 neurons: increased GluA1, GluN2A, and GluN2B, but not GluA2, GluN1 or mGlur5; increased PSD95 and spinophilin, but not synaptophysin, while dentate gyrus (DG) neurons were unresponsive. In hippocampal slices and neurons, MitoSOX red fluorescence was increased by nPM, implying free radical production. Specifically, NO• production by slices was increased within 15 min of exposure to nPM with dose dependence, 1–10 µg/ml. Correspondingly, CA1 neurons exhibited increased nitrosylation of the GluN2A receptor and dephosphorylation of GluN2B (S1303) and of GluA1 (S831 & S845). Again, DG neurons were unresponsive to nPM. The induction of NO• and nitrosylation were inhibited by AP5, an NMDA receptor antagonist, which also protects neurite outgrowth in vitro from inhibition by nPM. Membrane injury (EthidiumD-1 uptake) showed parallel specificity. Finally, nPM decreased evoked excitatory postsynaptic currents (EPSCs) of CA1 neurons. These findings further document the selective impact of nPM on glutamatergic functions and identify novel responses of NMDA receptor-stimulated NO• production and nitrosylation reactions during nPM-mediated neurotoxicity. PMID:23927064
2011-01-01
Background Ambient particulate matter (PM) exposure is associated with respiratory and cardiovascular morbidity and mortality. To what extent such effects are different for PM obtained from different sources or locations is still unclear. This study investigated the in vitro toxicity of ambient PM collected at different sites in the Netherlands in relation to PM composition and oxidative potential. Method PM was sampled at eight sites: three traffic sites, an underground train station, as well as a harbor, farm, steelworks, and urban background location. Coarse (2.5-10 μm), fine (< 2.5 μm) and quasi ultrafine PM (qUF; < 0.18 μm) were sampled at each site. Murine macrophages (RAW 264.7 cells) were exposed to increasing concentrations of PM from these sites (6.25-12.5-25-50-100 μg/ml; corresponding to 3.68-58.8 μg/cm2). Following overnight incubation, MTT-reduction activity (a measure of metabolic activity) and the release of pro-inflammatory markers (Tumor Necrosis Factor-alpha, TNF-α; Interleukin-6, IL-6; Macrophage Inflammatory Protein-2, MIP-2) were measured. The oxidative potential and the endotoxin content of each PM sample were determined in a DTT- and LAL-assay respectively. Multiple linear regression was used to assess the relationship between the cellular responses and PM characteristics: concentration, site, size fraction, oxidative potential and endotoxin content. Results Most PM samples induced a concentration-dependent decrease in MTT-reduction activity and an increase in pro-inflammatory markers with the exception of the urban background and stop & go traffic samples. Fine and qUF samples of traffic locations, characterized by a high concentration of elemental and organic carbon, induced the highest pro-inflammatory activity. The pro-inflammatory response to coarse samples was associated with the endotoxin level, which was found to increase dramatically during a three-day sample concentration procedure in the laboratory. The underground samples, characterized by a high content of transition metals, showed the largest decrease in MTT-reduction activity. PM size fraction was not related to MTT-reduction activity, whereas there was a statistically significant difference in pro-inflammatory activity between Fine and qUF PM. Furthermore, there was a statistically significant negative association between PM oxidative potential and MTT-reduction activity. Conclusion The response of RAW264.7 cells to ambient PM was markedly different using samples collected at various sites in the Netherlands that differed in their local PM emission sources. Our results are in support of other investigations showing that the chemical composition as well as oxidative potential are determinants of PM induced toxicity in vitro. PMID:21888644
High exhaust temperature, zoned, electrically-heated particulate matter filter
Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima
2015-09-22
A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.
Motta, Valeria; Favero, Chiara; Dioni, Laura; Iodice, Simona; Battaglia, Cristina; Angelici, Laura; Vigna, Luisella; Pesatori, Angela Cecilia; Bollati, Valentina
2016-04-01
Exposure to particulate air pollution is associated with increased blood pressure (BP), a well-established risk factor for cardiovascular disease. To elucidate the mechanisms underlying this relationship, we investigated whether the effects of particulate matter of less than 10μm in aerodynamic diameter (PM10) on BP are mediated by microRNAs. We recruited 90 obese individuals and we assessed their PM10 exposure 24 and 48h before the recruitment day. We performed multivariate linear regression models to investigate the effects of PM10 on BP. Using the TaqMan® Low-Density Array, we experimentally evaluated and technically validated the expression levels of 377 human miRNAs in peripheral blood. We developed a mediated moderation analysis to estimate the proportion of PM10 effects on BP that was mediated by miRNA expression. PM10 exposure 24 and 48h before the recruitment day was associated with increased systolic BP (β=1.22mmHg, P=0.019; β=1.24mmHg, P=0.019, respectively) and diastolic BP (β=0.67mmHg, P=0.044; β=0.91mmHg, P=0.007, respectively). We identified nine miRNAs associated with PM10 levels 48h after exposure. A conditional indirect effect (CIE=-0.1431) of PM10 on diastolic BP, which was mediated by microRNA-101, was found in individuals with lower values of mean body mass index. Our data provide evidence that miRNAs are a molecular mechanism underlying the BP-related effects of air pollution exposure, and indicate miR-101 as epigenetic mechanism to be further investigated. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Introduction
An exposure assessment study was conducted in Atlanta, GA during fall 1999 and spring 2000 to examine the short-term effects of exposure to particulate matter and gaseous air pollutants on heart rate variability (HRV). Characterization of particulate matter (PM...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... requirement for inclusion of condensable emissions of particulate matter (condensables) within the definition of ``regulated new source review (NSR) pollutant'' for fine particulate matter (PM 2.5 ) and particulate matter emissions less than or equal to ten micrometers in diameter (PM 10 ). In addition, because...
The NERL Particulate Matter Longitudinal Panel Studies were used to characterize temporal variations of personal exposure to PM and related co-pollutants, including that of PM measured at ambient sites. These studies were fundamental in understanding the associations between p...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-06
... ENVIRONMENTAL PROTECTION AGENCY [EPA-R05-OAR-2008-0398; FRL-9145-9] Adequacy Status of the Indianapolis, Indiana Submitted Annual Fine Particulate Matter Attainment Demonstration for Transportation... (MVEBs) for fine particulate matter (PM 2.5 ) and oxides of nitrogen (NOx) as a precursor to PM 2.5 in...
77 FR 63234 - Approval and Promulgation of Implementation Plans; North Carolina 110(a)(1) and (2...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-16
... and 2006 Fine Particulate Matter National Ambient Air Quality Standards AGENCY: Environmental... SIP addresses emissions of particulate matter generally, and does not distinguish between PM 10 and PM 2.5. The Commenter also references the particulate matter maximum emission rates for two coal-fired...
Recent analysis of ambient fine particulate matter (PM2.5) has found that significant portions of the organic matter contained therein are of biogenic origin. Radiocarbon (C-14) measurements of the bulk organic matter in fine particles collected near Nashville, TN, found that 40...
Various Particulate Matter Effects on Glacial Melting Rates in the Himalayan Mountain Range
NASA Astrophysics Data System (ADS)
Barwegen, S.
2017-12-01
Due to increased human activity and the impact of global warming in the Himalayas, glaciers are melting at alarming rates. It is hypothesized that by the year 2100, about 5,500 glaciers located in the Hindu-Kush will melt by up to 70%-90%. This will be severely detrimental to farmers as well as lessen the potential to harness hydropower, which requires the glaciers to be fully present (Vidal 2015). The melting of these glaciers is accelerating, in part, due to the deposition of particulate matter onto the snow, which lowers the albedo and causes the glaciers to absorb more heat. The Himalayan glaciers, specifically, are melting due to intense human movement over the snow, movement of particulate matter from storms, the increase in temperatures due to global warming, and soot deposited from forest fires (Dimmick 2014). This whole mountain range needs to retain glaciers in order to support the population of people living there by providing water. This project investigated the effect of both different types and amounts of particulate matter (PM) on ice melting rates. It was a model simulating the impact of PM of varying sizes and sources on glacial melting rates in the Himalayan glaciers. The impact of eight different types of PM (charcoal, pumice, sand/organic soil mixture, peat moss/soil, gravel/soil, soot, and soil), at two different masses (0.1g and 0.3g) on the melting rate of ice was assessed. Ice cubes were covered in PM and placed 5 cm away from a 50W incandescent bulb, with mass measured at regular intervals as they melted. Mass loss was recorded at 3, 6, 9, and 15 minutes and each sample type was repeated in triplicate. Over the course of the experiment, the ice cubes with 0.1 gram of PM were observed to be melting at a slower rate. Of the ice cubes with .3 g of PM on top, the ice covered in the sand and organic soil mixture had the lowest mass loss (3.4 g over 15 minutes), while the gravel and potting soil (4.9 g over 15 minutes) resulted in the highest (4.2 g/15 min.). This trend was different with the ice cubes covered in less PM (.1 g). Of these, the gravel/potting soil mixture showed the highest mass loss (4.14 g/15 min.), while the gravel and potting soil mixture showed the lowest at 2.4g/15min. The results of this study help quantify the impact of particulate matter characteristics such as size and amount on the glacial melting rates in the Himalayas.
Al-Hamdan, Ashraf Z; Albashaireh, Reem N; Al-Hamdan, Mohammad Z; Crosson, William L
2017-05-12
This study aimed to assess the association between exposure to fine particulate matter (PM 2.5 ) and respiratory system cancer incidence in the US population (n = 295,404,580) using a satellite-derived estimate of PM 2.5 concentrations. Linear and logistic regression analyses were performed to determine whether PM 2.5 was related to the odds of respiratory system cancer (RSC) incidence based on gender and race. Positive linear regressions were found between PM 2.5 concentrations and the age-adjusted RSC incidence rates for all groups (Males, Females, Whites, and Blacks) except for Asians and American Indians. The linear relationships between PM 2.5 and RSC incidence rate per 1 μg/m 3 PM 2.5 increase for Males, Females, Whites, Blacks, and all categories combined had slopes of, respectively, 7.02 (R 2 = 0.36), 2.14 (R 2 = 0.14), 3.92 (R 2 = 0.23), 5.02 (R 2 = 0.21), and 4.15 (R 2 = 0.28). Similarly, the logistic regression odds ratios per 10 μg/m 3 increase of PM 2.5 were greater than one for all categories except for Asians and American Indians, indicating that PM 2.5 is related to the odds of RSC incidence. The age-adjusted odds ratio for males (OR = 2.16, 95% CI = 1.56-3.01) was higher than that for females (OR = 1.50, 95% CI = 1.09-2.06), and it was higher for Blacks (OR = 2.12, 95% CI = 1.43-3.14) than for Whites (OR = 1.72, 95% CI = 1.23-2.42). The odds ratios for all categories were attenuated with the inclusion of the smoking covariate, reflecting the effect of smoking on RSC incidence besides PM 2.5 .
Zhang, Zilong; Chang, Ly-Yun; Lau, Alexis K H; Chan, Ta-Chien; Chieh Chuang, Yuan; Chan, Jimmy; Lin, Changqing; Kai Jiang, Wun; Dear, Keith; Zee, Benny C Y; Yeoh, Eng-Kiong; Hoek, Gerard; Tam, Tony; Qian Lao, Xiang
2017-08-01
Particulate matter (PM) air pollution is associated with the risk of cardiovascular morbidity and mortality. However, the biological mechanism underlying the associations remains unclear. Atherosclerosis, the underlying pathology of cardiovascular disease, is a chronic inflammatory process. We therefore investigated the association of long-term exposure to fine PM (PM2.5) with C-reactive protein (CRP), a sensitive marker of systemic inflammation, in a large Taiwanese population. Participants were from a large cohort who participated in a standard medical examination programme with measurements of high-sensitivity CRP between 2007 and 2014. We used a spatiotemporal model to estimate 2-year average PM2.5 exposure at each participant's address, based on satellite-derived aerosol optical depth data. General regression models were used for baseline data analysis and mixed-effects linear regression models were used for repeated data analysis to investigate the associations between PM2.5 exposure and CRP, adjusting for a wide range of potential confounders. In this population of 30 034 participants with 39 096 measurements, every 5 μg/m3 PM2.5 increment was associated with a 1.31% increase in CRP [95% confidence interval (CI): 1.00%, 1.63%) after adjusting for confounders. For those participants with repeated CRP measurements, no significant changes were observed between the first and last measurements (0.88 mg/l vs 0.89 mg/l, P = 0.337). The PM2.5 concentrations remained stable over time between 2007 and 2014. Long-term exposure to PM2.5 is associated with increased level of systemic inflammation, supporting the biological link between PM2.5 air pollution and deteriorating cardiovascular health. Air pollution reduction should be an important strategy to prevent cardiovascular disease. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association
Liu, Suyang; Zhang, Kai
2015-12-15
Fine particulate matter (less than 2.5μm in aerodynamic diameter; PM2.5) pollution poses a major environmental threat in Greater Houston due to rapid economic growth and the numerous PM2.5 sources including ports, vehicles, and the largest petrochemical industry in the United States (U.S.). Our objectives were to estimate the short-term associations between the PM2.5 components and mortality during 2000-2011, and evaluate whether these associations have changed over time. A total of 333,317 deaths were included in our assessment, with an average of 76 deaths per day. We selected 17 PM2.5 components from the U.S. Environmental Protection Agency's Chemical Speciation Network, and then applied Poisson regression models to assess the associations between the PM2.5 components and mortality. Additionally, we repeated our analysis for two consecutive periods: 2000-2005 and 2006-2011. Interquartile range increases in ammonium (0.881μg/m(3)), nitrate (0.487μg/m(3)), sulfate (2.245μg/m(3)), and vanadium (0.004μg/m(3)) were associated with an increased risk in mortality of 0.69% (95% confidence interval (CI): 0.26, 1.12%), 0.38% (95% CI: 0.11, 0.66%), 0.61% (95% CI: 0.15, 1.06%), and 0.58% (95% CI: 0.12, 1.04%), respectively. Seasonal analysis suggested that the associations were strongest during the winter months. The association between PM2.5 mass and mortality decreased during 2000-2011, however, the PM2.5 components showed no notable changes in mortality risk over time. Our study indicates that the short-term associations between PM2.5 and mortality differ across the PM2.5 components and suggests that future air pollution control measures should not only focus on mass but also pollutant sources. Copyright © 2015 Elsevier B.V. All rights reserved.
Saenen, Nelly D; Provost, Eline B; Viaene, Mineke K; Vanpoucke, Charlotte; Lefebvre, Wouter; Vrijens, Karen; Roels, Harry A; Nawrot, Tim S
2016-10-01
Children's neuropsychological abilities are in a developmental stage. Recent air pollution exposure and neurobehavioral performance are scarcely studied. In a panel study, we repeatedly administered to each child the following neurobehavioral tests: Stroop Test (selective attention) and Continuous Performance Test (sustained attention), Digit Span Forward and Backward Tests (short-term memory), and Digit-Symbol and Pattern Comparison Tests (visual information processing speed). At school, recent inside classroom particulate matter ≤2.5 or 10μm exposure (PM2.5, PM10) was monitored on each examination day. At the child's residence, recent (same day up to 2days before) and chronic (365days before examination) exposures to PM2.5, PM10 and black carbon (BC) were modeled. Repeated neurobehavioral test performances (n=894) of the children (n=310) reflected slower Stroop Test (p=0.05) and Digit-Symbol Test (p=0.01) performances with increasing recent inside classroom PM2.5 exposure. An interquartile range (IQR) increment in recent residential outdoor PM2.5 exposure was associated with an increase in average latency of 0.087s (SE: ±0.034; p=0.01) in the Pattern Comparison Test. Regarding chronic exposure at residence, an IQR increment of PM2.5 exposure was associated with slower performances in the Continuous Performance (9.45±3.47msec; p=0.007) and Stroop Tests (59.9±26.5msec; p=0.02). Similar results were obtained for PM10 exposure. In essence, we showed differential neurobehavioral changes robustly and adversely associated with recent or chronic ambient exposure to PM air pollution at residence, i.e., with recent exposure for visual information processing speed (Pattern Comparison Test) and with chronic exposure for sustained and selective attention. Copyright © 2016. Published by Elsevier Ltd.
Cell death pathways of particulate matter toxicity.
Peixoto, Milena Simões; de Oliveira Galvão, Marcos Felipe; Batistuzzo de Medeiros, Silvia Regina
2017-12-01
Humans are exposed to various complex mixtures of particulate matter (PM) from different sources. Long-term exposure to high levels of these particulates has been linked to a diverse range of respiratory and cardiovascular diseases that have resulted in hospital admission. The evaluation of the effects of PM exposure on the mechanisms related to cell death has been a challenge for many researchers. Therefore, in this review, we have discussed the effects of airborne PM exposure on mechanisms related to cell death. For this purpose, we have compiled literature data on PM sources, the effects of exposure, and the assays and models used for evaluation, in order to establish comparisons between various studies. The analysis of this collected data suggested divergent responses to PM exposure that resulted in different cell death types (apoptosis, autophagy, and necrosis). In addition, PM induced oxidative stress within cells, which appeared to be an important factor in the determination of cell fate. When the levels of reactive oxygen species were overpowering, the cellular fate was directed toward cell death. This may be the underlying mechanism of the development or exacerbation of respiratory diseases, such as emphysema and chronic obstructive pulmonary diseases. In addition, PM was shown to cause DNA damage and the resulting mutations increased the risk of cancer. Furthermore, several conditions should be considered in the assessment of cell death in PM-exposed models, including the cell culture line, PM composition, and the interaction of the different cells types in in vivo models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wyss, Annah B; Jones, Anna Ciesielski; Bølling, Anette K; Kissling, Grace E; Chartier, Ryan; Dahlman, Hans Jørgen; Rodes, Charles E; Archer, Janet; Thornburg, Jonathan; Schwarze, Per E; London, Stephanie J
2016-01-01
Few studies have examined particulate matter (PM) exposure from self-reported use of wood stoves and other indoor combustion sources in urban settings in developed countries. We measured concentrations of indoor PM < 2.5 microns (PM2.5) for one week with the MicroPEM™ nephelometer in 36 households in the greater Oslo, Norway metropolitan area. We examined indoor PM2.5 levels in relation to use of wood stoves and other combustion sources during a 7 day monitoring period using mixed effects linear models with adjustment for ambient PM2.5 levels. Mean hourly indoor PM2.5 concentrations were higher (p = 0.04) for the 14 homes with wood stove use (15.6 μg/m3) than for the 22 homes without (12.6 μg/m3). Moreover, mean hourly PM2.5 was higher (p = 0.001) for use of wood stoves made before 1997 (6 homes, 20.2 μg/m3), when wood stove emission limits were instituted in Norway, compared to newer wood stoves (8 homes, 11.9 μg/m3) which had mean hourly values similar to control homes. Increased PM2.5 levels during diary-reported burning of candles was detected independently of concomitant wood stove use. These results suggest that self-reported use of wood stoves, particularly older stoves, and other combustion sources, such as candles, are associated with indoor PM2.5 measurements in an urban population from a high income country.
NASA Astrophysics Data System (ADS)
Li, Ning; Champion, Wyatt M.; Imam, Jemal; Sidhu, Damansher; Salazar, Joseph R.; Majestic, Brian J.; Montoya, Lupita D.
2018-06-01
Communities in the Navajo Nation face public health burdens caused in part by the combustion of wood and coal for indoor heating using stoves that are old or in disrepair. Wood and coal combustion emits particulate matter (PM) with aerodynamic diameter < 2.5 μm (PM2.5), which can reach deep in the lung and cause injuries. Currently, there is little information about the health effects of wood and coal combustion-derived PM2.5 on Navajo Nation residents. This study tested the hypothesis that PM2.5 generated from solid fuel combustion in stoves commonly used by Navajo residents would induce stratified oxidative stress responses ranging from activation of antioxidant defense to inflammation and cell death in mouse macrophages (RAW 264.7). PM2.5 emitted from burning Ponderosa Pine (PP) and Utah Juniper (UJ) wood and Black Mesa (BM) and Fruitland (FR) coal in a stove representative of those widely used by Navajo residents were collected, and their aqueous suspensions used for cellular exposure. PM from combustion of wood had significantly more elemental carbon (EC) (15%) and soluble Ni (0.0029%) than the samples from coal combustion (EC: 3%; Ni: 0.0019%) and was also a stronger activator of antioxidant enzyme heme oxygenase-1 (11-fold increase vs. control) than that from coal (5-fold increase). Only PM from PP-wood (12-fold) and BM-coal (3-fold) increased the release of inflammatory cytokine tumor necrosis factor alpha. Among all samples, PP-wood consistently had the strongest oxidative stress and inflammatory effects. PM components, i.e. low-volatility organic carbon, EC, Cu, Ni and K were positively correlated with the cellular responses. Results showed that, at the concentrations tested, emissions from all fuels did not have significant cytotoxicity. These findings suggest that PM2.5 emitted from combustion of wood and coal commonly used by Navajo residents may negatively impact the health of this community.
Yu, Hwa-Lung; Chien, Lung-Chang
2016-01-01
Fine particulate matter <2.5 μm (PM2.5) has been associated with human health issues; however, findings regarding the influence of PM2.5 on respiratory disease remain inconsistent. The short-term, population-based association between the respiratory clinic visits of children and PM2.5 exposure levels were investigated by considering both the spatiotemporal distributions of ambient pollution and clinic visit data. We applied a spatiotemporal structured additive regression model to examine the concentration-response (C-R) association between children's respiratory clinic visits and PM2.5 concentrations. This analysis was separately performed on three respiratory disease categories that were selected from the Taiwanese National Health Insurance database, which includes 41 districts in the Taipei area of Taiwan from 2005 to 2007. The findings reveal a non-linear C-R pattern of PM2.5, particularly in acute respiratory infections. However, a PM2.5 increase at relatively lower levels can elevate the same-day respiratory health risks of both preschool children (<6 years old) and schoolchildren (6-14 years old). In preschool children, same-day health risks rise when concentrations increase from 0.76 to 7.44 μg/m(3), and in schoolchildren, same-day health risks rise when concentrations increase from 0.76 to 7.52 μg/m(3). Changes in PM2.5 levels generally exhibited no significant association with same-day respiratory risks, except in instances where PM2.5 levels are extremely high, and these occurrences do exhibit a significant positive influence on respiratory health that is especially notable in schoolchildren. A significant high relative rate of respiratory clinic visits are concentrated in highly populated areas. We highlight the non-linearity of the respiratory health effects of PM2.5 on children to investigate this population-based association. The C-R relationship in this study can provide a highly valuable alternative for assessing the effects of ambient air pollution on human health.
Associations of short-term exposure to fine particulate matter (PM2.5) with daily mortality may be due to specific PM2.5 chemical components. Objectives: Daily concentrations of PM2.5 chemical species were measured over five consecutive years in Denver, CO to investigate whethe...
Motivated by growing concerns about the detrimental effects of fine particulate matter (PM2.5) on human health, the U.S. Environmental Protection Agency (EPA) recently promulgated a National Ambient Air Quality Standard (NAAQS) for PM2.5. The PM2.5 standard includes a 24-hour li...
2015 Soft Condensed Matter Physics: Self-Assembly and Active Matter GRC/GRS
2015-10-20
or decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O...were Minorities – 0% Hispanic, 14% Asian and 0% African American. Approximately 29% of the participants at the 2015 meeting were women. In designing ...Trees" 8:10 pm - 8:30 pm Discussion 8:30 pm - 9:10 pm Todd Yeates (University of California, Los Angeles, USA) "Using Ideas in Symmetry to Design
Thurston, George D; Ahn, Jiyoung; Cromar, Kevin R; Shao, Yongzhao; Reynolds, Harmony R; Jerrett, Michael; Lim, Chris C; Shanley, Ryan; Park, Yikyung; Hayes, Richard B
2016-04-01
Outdoor fine particulate matter (≤ 2.5 μm; PM2.5) has been identified as a global health threat, but the number of large U.S. prospective cohort studies with individual participant data remains limited, especially at lower recent exposures. We aimed to test the relationship between long-term exposure PM2.5 and death risk from all nonaccidental causes, cardiovascular (CVD), and respiratory diseases in 517,041 men and women enrolled in the National Institutes of Health-AARP cohort. Individual participant data were linked with residence PM2.5 exposure estimates across the continental United States for a 2000-2009 follow-up period when matching census tract-level PM2.5 exposure data were available. Participants enrolled ranged from 50 to 71 years of age, residing in six U.S. states and two cities. Cox proportional hazard models yielded hazard ratio (HR) estimates per 10 μg/m3 of PM2.5 exposure. PM2.5 exposure was significantly associated with total mortality (HR = 1.03; 95% CI: 1.00, 1.05) and CVD mortality (HR = 1.10; 95% CI: 1.05, 1.15), but the association with respiratory mortality was not statistically significant (HR = 1.05; 95% CI: 0.98, 1.13). A significant association was found with respiratory mortality only among never smokers (HR = 1.27; 95% CI: 1.03, 1.56). Associations with 10-μg/m3 PM2.5 exposures in yearly participant residential annual mean, or in metropolitan area-wide mean, were consistent with baseline exposure model results. Associations with PM2.5 were similar when adjusted for ozone exposures. Analyses of California residents alone also yielded statistically significant PM2.5 mortality HRs for total and CVD mortality. Long-term exposure to PM2.5 air pollution was associated with an increased risk of total and CVD mortality, providing an independent test of the PM2.5-mortality relationship in a new large U.S. prospective cohort experiencing lower post-2000 PM2.5 exposure levels. Thurston GD, Ahn J, Cromar KR, Shao Y, Reynolds HR, Jerrett M, Lim CC, Shanley R, Park Y, Hayes RB. 2016. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP Diet and Health cohort. Environ Health Perspect 124:484-490; http://dx.doi.org/10.1289/ehp.1509676.
[Indoor air pollution by fine particulate matter in the homes of newborns].
Barría, René Mauricio; Calvo, Mario; Pino, Paulina
Air pollution by particulate matter (PM) is a major public health problem. In Chile, the study has focused on outdoor air and PM 10 , rather than indoor air and PM 2.5 . Because newborns and infants spend most of their time at home, it is necessary to evaluate the exposure to indoor air pollution in this susceptible population. To determine concentration of PM 2.5 in the homes of newborns and identify the emission sources of the pollutants. The PM 2.5 concentration ([PM 2.5 ]) was collected over a 24hour period in 207 households. Baseline sociodemographic information and environmental factors (heating, ventilation, smoking and house cleaning), were collected. The median [PM 2.5 ] was 107.5μg/m 3 . Family history of asthma was associated with lower [PM 2.5 ] (P=.0495). Homes without heating showed a lower median [PM 2.5 ], 58.6μg/m 3 , while those using firewood, kerosene, and electricity ranged between 112.5 and 114.9, and coal users' homes reached 162.9μg/m 3 . Wood using homes had significant differences (P=.0164) in median [PM 2.5 ] whether the stove had complete combustion (98.2μg/m 3 ) vs. incomplete (112.6μg/m 3 ), or a salamander stove (140.6μg/m 3 ). Cigarette smoking was reported in 8.7% of the households, but was not associated with the [PM 2.5 ]. Ventilation was associated with a higher median [PM 2.5 ] (120.6 vs. 99.1μg/m 3 , P=.0039). We found homes with high [PM 2.5 ]. Residential wood consumption was almost universal, and it is associated with the [PM 2.5 ]. Natural ventilation increased MP 2.5 , probably due to infiltration from outside. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.
Satellite and in-situ monitoring of urban air pollution in relation with children's asthma
NASA Astrophysics Data System (ADS)
Dida, Mariana R.; Zoran, Maria A.
2013-10-01
Urban air pollution and especially aerosols have significant negative health effects on urban population, of which children are most exposed for the rapid increase of asthma disease. An allergic reaction to different allergens is a major contributor to asthma in urban children, but new research suggests that the allergies are just one part of a more complex story. Very early exposure to certain components of air pollution can increase the risk of developing of different allergies by age 7. The epidemiological research on the mutagenic effects of airborne particulate matter pointed their capability to reach deep lung regions, being vehicles of toxic substances. The current study presents a spatio-temporal analysis of the aerosol concentrations in relation with meteorological parameters in two size fractions (PM10 and PM2.5) and possible health effects in Bucharest metropolitan area. Both in-situ monitoring data as well as MODIS Terra/Aqua time-series satellite data of particle matter PM2.5 and PM10 concentrations have been used to qualitatively assess distribution of aerosols in the greater metropolitan are of Bucharest comparative with some other little towns in Romania during 2010- 2011 period. It was found that PM2.5 and PM10 aerosols exhibit their highest concentration mostly in the central part of the towns, mainly due to road traffic as well as in the industrialized parts outside of city's centre. Pediatric asthma can be managed through medications prescribed by a healthcare provider, but the most important aspect is to avoid urban locations with high air pollution concentrations of air particles and allergens.
Ambient particulate matter air pollution and cardiopulmonary diseases.
Thurston, George; Lippmann, Morton
2015-06-01
Population exposures to ambient outdoor particulate matter (PM) air pollution have been assessed to represent a major burden on global health. Ambient PM is a diverse class of air pollution, with characteristics and health implications that can vary depending on a host of factors, including a particle's original source of emission or formation. The penetration of inhaled particles into the thorax is dependent on their deposition in the upper respiratory tract during inspiration, which varies with particle size, flow rate and tidal volume, and in vivo airway dimensions. All of these factors can be quite variable from person to person, depending on age, transient illness, cigarette smoke and other short-term toxicant exposures that cause transient bronchoconstriction, and occupational history associated with loss of lung function or cumulative injury. The adverse effects of inhaled PM can result from both short-term (acute) and long-term (chronic) exposures to PM, and can range from relatively minor, such as increased symptoms, to very severe effects, including increased risk of premature mortality and decreased life expectancy from long-term exposure. Control of the most toxic PM components can therefore provide major health benefits, and can help guide the selection of the most human health optimal air quality control and climate change mitigation policy measures. As such, a continued improvement in our understanding of the nature and types of PM that are most dangerous to health, and the mechanism(s) of their respective health effects, is an important public health goal. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Impact of regional ventilation changes on surface particulate matter concentrations in South Korea
NASA Astrophysics Data System (ADS)
Kim, H. C.; Stein, A. F.; Chai, T.; Ngan, F.; Kim, B. U.; Jin, C. S.; Hong, S. Y.; Park, R.; Son, S. W.; Bae, C.; Bae, M.; Song, C. K.; Kim, S.
2017-12-01
The recent increase in surface particulate matter (PM) concentrations in South Korea is intriguing due to its disagreement with current intensive emission reduction efforts. The long-term trend of surface PM concentrations in South Korea declined in the 2000s, but since 2012 its concentrations have tended to increase, resulting in frequent severe haze events in the region. This study demonstrates that the interannual variation of surface PM concentrations in South Korea is not only affected by changes in local or regional emission sources, but also closely linked with the interannual variations in regional ventilation. Using EPA Community Multiscale Air Quality modeling system, a 12-year (2004-2015) regional air quality simulation was conducted to assess the impact of the meteorological conditions under constant anthropogenic emissions. In addition, NOAA HYSPLIT dispersion model was utilized to estimate the strength of regional ventilation that dissipates local pollutions. Simulated PM concentrations show a strong negative correlation (i.e. R=-0.86) with regional wind speed, implying that reduced regional ventilation is likely associated with more stagnant conditions that cause severe pollutant episodes in South Korea. We conclude that the current PM concentration trend in South Korea is a combination of long-term decline by emission control efforts and short-term fluctuations in regional wind speed interannual variability. When the meteorology-driven variations are removed, PM concentrations in South Korea have declined continuously even after 2012, with -1.45±0.12, -1.41±0.16, and -1.09±0.16 mg/m3 per year in Seoul, the Seoul Metropolitan Area, and South Korea, respectively.
de Hartog, Jeroen J; Hoek, Gerard; Mirme, Aadu; Tuch, Thomas; Kos, Gerard P A; ten Brink, Harry M; Brunekreef, Bert; Cyrys, Josef; Heinrich, Joachim; Pitz, Mike; Lanki, Timo; Vallius, Marko; Pekkanen, Juha; Kreyling, Wolfgang G
2005-04-01
Evidence on the correlation between particle mass and (ultrafine) particle number concentrations is limited. Winter- and spring-time measurements of urban background air pollution were performed in Amsterdam (The Netherlands), Erfurt (Germany) and Helsinki (Finland), within the framework of the EU funded ULTRA study. Daily average concentrations of ambient particulate matter with a 50% cut off of 2.5 microm (PM2.5), total particle number concentrations and particle number concentrations in different size classes were collected at fixed monitoring sites. The aim of this paper is to assess differences in particle concentrations in several size classes across cities, the correlation between different particle fractions and to assess the differential impact of meteorological factors on their concentrations. The medians of ultrafine particle number concentrations were similar across the three cities (range 15.1 x 10(3)-18.3 x 10(3) counts cm(-3)). Within the ultrafine particle fraction, the sub fraction (10-30 nm) made a higher contribution to particle number concentrations in Erfurt than in Helsinki and Amsterdam. Larger differences across the cities were found for PM2.5(range 11-17 microg m(-3)). PM2.5 and ultrafine particle concentrations were weakly (Amsterdam, Helsinki) to moderately (Erfurt) correlated. The inconsistent correlation for PM2.5 and ultrafine particle concentrations between the three cities was partly explained by the larger impact of more local sources from the city on ultrafine particle concentrations than on PM2.5, suggesting that the upwind or downwind location of the measuring site in regard to potential particle sources has to be considered. Also, relationship with wind direction and meteorological data differed, suggesting that particle number and particle mass are two separate indicators of airborne particulate matter. Both decreased with increasing wind speed, but ultrafine particle number counts consistently decreased with increasing relative humidity, whereas PM2.5 increased with increasing barometric pressure. Within the ultrafine particle mode, nucleation mode (10-30 nm) and Aitken mode (30-100 nm) had distinctly different relationships with accumulation mode particles and weather conditions. Since the composition of these particle fractions also differs, it is of interest to test in future epidemiological studies whether they have different health effects.
Antioxidant airway responses following experimental exposure to wood smoke in man
2010-01-01
Background Biomass combustion contributes to the production of ambient particulate matter (PM) in rural environments as well as urban settings, but relatively little is known about the health effects of these emissions. The aim of this study was therefore to characterize airway responses in humans exposed to wood smoke PM under controlled conditions. Nineteen healthy volunteers were exposed to both wood smoke, at a particulate matter (PM2.5) concentration of 224 ± 22 μg/m3, and filtered air for three hours with intermittent exercise. The wood smoke was generated employing an experimental set-up with an adjustable wood pellet boiler system under incomplete combustion. Symptoms, lung function, and exhaled NO were measured over exposures, with bronchoscopy performed 24 h post-exposure for characterisation of airway inflammatory and antioxidant responses in airway lavages. Results Glutathione (GSH) concentrations were enhanced in bronchoalveolar lavage (BAL) after wood smoke exposure vs. air (p = 0.025), together with an increase in upper airway symptoms. Neither lung function, exhaled NO nor systemic nor airway inflammatory parameters in BAL and bronchial mucosal biopsies were significantly affected. Conclusions Exposure of healthy subjects to wood smoke, derived from an experimental wood pellet boiler operating under incomplete combustion conditions with PM emissions dominated by organic matter, caused an increase in mucosal symptoms and GSH in the alveolar respiratory tract lining fluids but no acute airway inflammatory responses. We contend that this response reflects a mobilisation of GSH to the air-lung interface, consistent with a protective adaptation to the investigated wood smoke exposure. PMID:20727160
NASA Astrophysics Data System (ADS)
O'Dell, K.; Ford, B.; Gan, R.; Liu, J.; Lassman, W.; Burke, M.; Pfister, G.; Vaidyanathan, A.; Volckens, J.; Magzamen, S.; Fischer, E. V.; Pierce, J. R.
2017-12-01
Wildfires are a significant source of particulate matter in the western United States. Wildfire activity in this region has increased over the past few decades and is projected to continue to increase further due to warmer and drier conditions. Particulate matter with diameters smaller than or equal to 2.5 microns (PM2.5) has known adverse effects on human health. However, due to an inconsistent association of wildfire PM2.5 and several disease outcomes, it is unclear if wildfire PM exerts similar health impacts as anthropogenic PM. Improved wildfire smoke exposure estimates are needed to gain a clearer understanding of the health impacts of wildfire PM2.5. Characterizing PM2.5 concentrations from wildfire smoke is challenging due to the transient nature of smoke. Current methods of determining smoke exposure rely on satellite retrievals of aerosol optical depth (AOD), estimates from chemical transport models (CTMs), or values reported by surface monitoring sites; each of these data sources has some limitations. To improve the accuracy of our exposure estimates, we developed new methods to blend these data. Our results indicate that blending information from the above-mentioned data sources along with counts of wildfire-smoke-related social-media posts results in better characterization of smoke exposure than any individual tool. We link our daily smoke PM2.5 exposure estimates with hospitalization and urgent-care admission data from Washington, Oregon, and Colorado during several fire seasons as well as prescription filling data from Oregon. We find a robust relationship, where a 10 μg m-3 increase in smoke is significantly associated with a 9.5% (95% CI: 6.2, 12.9) increase in the rate of asthma admissions and a 7.7% increase (95% CI: 6.5. 8.8) in the risk for respiratory rescue medication prescription refills. There was no significant association between smoke exposure and any cardiovascular endpoints. Our findings support the association of wildfire smoke exposure with adverse respiratory events, including subclinical outcomes, but we did not find significant associations with any cardiovascular outcomes. Public health messaging should target vulnerable populations to avoid smoke exposure during wildfire events.
Acute exposure to air pollution triggers atrial fibrillation.
Link, Mark S; Luttmann-Gibson, Heike; Schwartz, Joel; Mittleman, Murray A; Wessler, Benjamin; Gold, Diane R; Dockery, Douglas W; Laden, Francine
2013-08-27
This study sought to evaluate the association of air pollution with the onset of atrial fibrillation (AF). Air pollution in general and more specifically particulate matter has been associated with cardiovascular events. Although ventricular arrhythmias are traditionally thought to convey the increased cardiovascular risk, AF may also contribute. Patients with dual chamber implantable cardioverter-defibrillators (ICDs) were enrolled and followed prospectively. The association of AF onset with air quality including ambient particulate matter <2.5 μm aerodynamic diameter (PM2.5), black carbon, sulfate, particle number, NO2, SO2, and O3 in the 24 h prior to the arrhythmia was examined utilizing a case-crossover analysis. In sensitivity analyses, associations with air pollution between 2 and 48 h prior to the AF were examined. Of 176 patients followed for an average of 1.9 years, 49 patients had 328 episodes of AF lasting ≥ 30 s. Positive but nonsignificant associations were found for PM2.5 in the prior 24 h, but stronger associations were found with shorter exposure windows. The odds of AF increased by 26% (95% confidence interval: 8% to 47%) for each 6.0 μg/m(3) increase in PM2.5 in the 2 h prior to the event (p = 0.004). The odds of AF were highest at the upper quartile of mean PM2.5. PM was associated with increased odds of AF onset within hours following exposure in patients with known cardiac disease. Air pollution is an acute trigger of AF, likely contributing to the pollution-associated adverse cardiac outcomes observed in epidemiological studies. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Schrooten, Liesbeth; De Vlieger, Ina; Lefebre, Filip; Torfs, Rudi
We demonstrate that accelerated policies beyond the steady improvement of technologies and the fleet turnover are not always justified by assumptions about health benefits. Between the years 2000 and 2010, particulate matter (PM) exhaust emissions from traffic in Flanders, a region of Belgium, will be reduced by about 44% without taking any extra reduction measures (baseline scenario). The PM emissions from road traffic were calculated using the MIMOSA model. Furthermore, we explored a range of options to increase attempts to reduce PM exhaust emission from traffic in 2010. When installing particle filters on heavy-duty trucks and buses, introducing biodiesel and diesel/hybrid cars, as well as slowing down the increase of private diesel cars, only an extra reduction of about 8% PM can be achieved in Flanders. The costs to achieve this small reduction are very high. To justify these costs, benefits for public health have been calculated and expressed in external costs. We demonstrate that only an enhanced effort to retrofit trucks and buses with particle filters has a net benefit. We have used Monte Carlo techniques to test the validity of this conclusion. It is concluded that a local or national policy that goes beyond European policies is not always beneficial and that additional measures should be assessed carefully.
Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore city.
Sapkota, Amir; Symons, J Morel; Kleissl, Jan; Wang, Lu; Parlange, Marc B; Ondov, John; Breysse, Patrick N; Diette, Gregory B; Eggleston, Peyton A; Buckley, Timothy J
2005-01-01
With increasing evidence of adverse health effects associated with particulate matter (PM), the exposure impact of natural sources, such as forest fires, has substantial public health relevance. In addition to the threat to nearby communities, pollutants released from forest fires can travel thousands of kilometers to heavily populated urban areas. There was a dramatic increase in forest fire activity in the province of Quebec, Canada, during July 2002. The transport of PM released from these forest fires was examined using a combination of a moderate-resolution imaging spectroradiometer satellite image, back-trajectories using a hybrid single-particle Lagrangian integrated trajectory, and local light detection and ranging measurements. Time- and size-resolved PM was evaluated at three ambient and four indoor measurement sites using a combination of direct reading instruments (laser, time-of-flight aerosol spectrometer, nephelometer, and an oscillating microbalance). The transport and monitoring results consistently identified a forest fire related PM episode in Baltimore that occurred the first weekend of July 2002 and resulted in as much as a 30-fold increase in ambientfine PM. On the basis of tapered element oscillating microbalance measurements, the 24 h PM25 concentration reached 86 microg/m3 on July 7, 2002, exceeding the 24 h national ambient air quality standard. The episode was primarily comprised of particles less than 2.5 microm in aerodynamic diameter, highlighting the preferential transport of the fraction of PM that is of greatest health concern. Penetration of the ambient episode indoors was efficient (median indoor-to-outdoor ratio 0.91) such that the high ambient levels were similarly experienced indoors. These results are significant in demonstrating the impact of a natural source thousands of kilometers away on ambient levels of and potential exposures to air pollution within an urban center. This research highlights the significance of transboundary air pollution and the need for studies that assess the public health impacts associated with such sources and transport processes.
NASA Astrophysics Data System (ADS)
Kraus, Michal; Juhásová Šenitková, Ingrid
2017-10-01
Building environmental audit and the assessment of indoor air quality (IAQ) in typical residential buildings is necessary process to ensure users’ health and well-being. The paper deals with the concentrations on indoor dust particles (PM10) in the context of hygrothermal microclimate in indoor environment. The indoor temperature, relative humidity and air movement are basic significant factors determining the PM10 concentration [μg/m3]. The experimental measurements in this contribution represent the impact of indoor physical parameters on the concentration of particulate matter mass concentration. The occurrence of dust particles is typical for the almost two-thirds of interiors of the buildings. Other parameters indoor environment, such as air change rate, volume of the room, roughness and porosity of the building material surfaces, static electricity, light ions and others, were set constant and they are not taken into account in this study. The mass concentration of PM10 is measured during summer season in apartment of residential prefabricated building. The values of global temperature [°C] and relative humidity of indoor air [%] are also monitored. The quantity of particulate mass matter is determined gravimetrically by weighing according to CSN EN 12 341 (2014). The obtained results show that the temperature difference of the internal environment does not have a significant effect on the concentration PM10. Vice versa, the difference of relative humidity exhibits a difference of the concentration of dust particles. Higher levels of indoor particulates are observed for low values of relative humidity. The decreasing of relative air humidity about 10% caused 10µg/m3 of PM10 concentration increasing. The hygienic limit value of PM10 concentration is not exceeded at any point of experimental measurement.
Zhang, Qiang; Quan, Jiannong; Tie, Xuexi; Li, Xia; Liu, Quan; Gao, Yang; Zhao, Delong
2015-01-01
The causes of haze formation in Beijing, China were analyzed based on a comprehensive measurement, including PBL (planetary boundary layer), aerosol composition and concentrations, and several important meteorological parameters such as visibility, RH (relative humidity), and wind speed/direction. The measurement was conducted in an urban location from Nov. 16, 2012 to Jan. 15, 2013. During the period, the visibility varied from >20 km to less than a kilometer, with a minimum visibility of 667 m, causing 16 haze occurrences. During the haze occurrences, the wind speeds were less than 1m/s, and the concentrations of PM2.5 (particle matter with radius less than 2.5 μm) were often exceeded 200 μg/m(3). The correlation between PM2.5 concentration and visibility under different RH values shows that visibility was exponentially decreased with the increase of PM2.5 concentrations when RH was less than 80%. However, when RH was higher than 80%, the relationship was no longer to follow the exponentially decreasing trend, and the visibility maintained in very low values, even with low PM2.5 concentrations. Under this condition, the hygroscopic growth of particles played important roles, and a large amount of water vapor acted as particle matter (PM) for the reduction of visibility. The variations of meteorological parameters (RH, PBL heights, and WS (wind speed)), chemical species in gas-phase (CO, O3, SO2, and NOx), and gas-phase to particle-phase conversions under different visibility ranges were analyzed. The results show that from high visibility (>20 km) to low visibility (<2 km), the averaged PBL decreased from 1.24 km to 0.53 km; wind speeds reduced from 1m/s to 0.5m/s; and CO increased from 0.5 ppmv to 4.0 ppmv, suggesting that weaker transport/diffusion caused the haze occurrences. This study also found that the formation of SPM (secondary particle matter) was accelerated in the haze events. The conversions between SO2 and SO4 as well as NOx to NO3(-) increased, especially under high humidity conditions. When the averaged RH was 70%, the conversions between SO2 and SO4 accounted for about 20% concentration of PM2.5, indicating that formation of secondary particle matter had important contribution for the haze occurrences in Beijing. Copyright © 2014 Elsevier B.V. All rights reserved.
Integrated Science Assessment (ISA) for Particulate Matter ...
EPA announced the availability of the final report, Integrated Science Assessment (ISA) for Particulate Matter (PM). This report is EPA’s latest evaluation of the scientific literature on the potential human health and welfare effects associated with ambient exposures to particulate matter (PM). The development of this document is part of the Agency's periodic review of the national ambient air quality standards (NAAQS) for PM. The recently completed PM ISA and supplementary annexes, in conjunction with additional technical and policy assessments developed by EPA’s Office of Air and Radiation, will provide the scientific basis to inform EPA decisions related to the review of the current PM NAAQS. Key information and judgments formerly contained in an Air Quality Criteria Document (AQCD) for PM are incorporated in this assessment. Additional details of the pertinent literature published since the last review, as well as selected older studies of particular interest, are included in a series of annexes. This ISA thus serves to update and revise the evaluation of the scientific evidence available at the time of the previous review of the NAAQS for PM that was concluded in 2006.
Tobias, Aurelio; Querol, Xavier; Alastuey, Andrés; Amato, Fulvio; Pey, Jorge; Pérez, Noemí; Sunyer, Jordi
2011-01-01
Background: Dozens of studies link acute exposure to particulate matter (PM) air pollution with premature mortality and morbidity, but questions remain about which species and sources in the vast PM mixture are responsible for the observed health effects. Although a few studies exist on the effects of species and sources in U.S. cities, European cities—which have a higher proportion of diesel engines and denser urban populations—have not been well characterized. Information on the effects of specific sources could aid in targeting pollution control and in articulating the biological mechanisms of PM. Objectives: Our study examined the effects of various PM sources on daily mortality for 2003 through 2007 in Barcelona, a densely populated city in the northeast corner of Spain. Methods: Source apportionment for PM ≤ 2.5 μm and ≤ 10 µm in aerodynamic diameter (PM2.5 and PM10) using positive matrix factorization identified eight different factors. Case-crossover regression analysis was used to estimate the effects of each factor. Results: Several sources of PM2.5, including vehicle exhaust, fuel oil combustion, secondary nitrate/organics, minerals, secondary sulfate/organics, and road dust, had statistically significant associations (p < 0.05) with all-cause and cardiovascular mortality. Also, in some cases relative risks for a respective interquartile range increase in concentration were higher for specific sources than for total PM2.5 mass. Conclusions: These results along with those from our multisource models suggest that traffic, sulfate from shipping and long-range transport, and construction dust are important contributors to the adverse health effects linked to PM. PMID:21846610
Woodruff, Tracey J; Parker, Jennifer D; Schoendorf, Kenneth C
2006-05-01
Studies suggest that airborne particulate matter (PM) may be associated with postneonatal infant mortality, particularly with respiratory causes and sudden infant death syndrome (SIDS). To further explore this issue, we examined the relationship between long-term exposure to fine PM air pollution and postneonatal infant mortality in California. We linked monitoring data for PM
Cho, Seung-Hyun; Tong, Haiyan; McGee, John K.; Baldauf, Richard W.; Krantz, Q. Todd; Gilmour, M. Ian
2009-01-01
Background Epidemiologic studies have reported an association between proximity to highway traffic and increased cardiopulmonary illnesses. Objectives We investigated the effect of size-fractionated particulate matter (PM), obtained at different distances from a highway, on acute cardiopulmonary toxicity in mice. Methods We collected PM for 2 weeks in July–August 2006 using a three-stage (ultrafine, < 0.1 μm; fine, 0.1–2.5 μm; coarse, 2.5–10 μm) high-volume impactor at distances of 20 m [near road (NR)] and 275 m [far road (FR)] from an interstate highway in Raleigh, North Carolina. Samples were extracted in methanol, dried, diluted in saline, and then analyzed for chemical constituents. Female CD-1 mice received either 25 or 100 μg of each size fraction via oropharyngeal aspiration. At 4 and 18 hr postexposure, mice were assessed for pulmonary responsiveness to inhaled methacholine, biomarkers of lung injury and inflammation; ex vivo cardiac pathophysiology was assessed at 18 hr only. Results Overall chemical composition between NR and FR PM was similar, although NR samples comprised larger amounts of PM, endotoxin, and certain metals than did the FR samples. Each PM size fraction showed differences in ratios of major chemical classes. Both NR and FR coarse PM produced significant pulmonary inflammation irrespective of distance, whereas both NR and FR ultrafine PM induced cardiac ischemia–reperfusion injury. Conclusions On a comparative mass basis, the coarse and ultrafine PM affected the lung and heart, respectively. We observed no significant differences in the overall toxicity end points and chemical makeup between the NR and FR PM. The results suggest that PM of different size-specific chemistry might be associated with different toxicologic mechanisms in cardiac and pulmonary tissues. PMID:20049117
Concentration variations in primary and secondary particulate matter near a major road in Korea
Ghim, Young Sung; Won, Soo Ran; Choi, Yongjoo; ...
2016-03-31
Here, particle-phase concentrations were measured at 10, 80, and 200 m from the roadside of a national highway near Seoul in January and May 2008. The highway has two lanes each way, with an average hourly traffic volume of 1,070 vehicles. In January 2008, PM 10 concentrations decreased from 10 to 80 m but increased at 200 m. Black carbon (BC) decreased only slightly with distance due to the influence of biomass burning and open burning from the surrounding areas. In May 2008, the effect of secondary formation on both PM 10 and PM 2.5 was significant due to highmore » temperatures compared with January. Because on-road emissions had little effect on secondary formation for a short time, variations in PM 10 concentrations became smaller, and PM 2.5 concentrations increased with distance. The effects of fugitive dust on PM concentrations were greater in May than in January when the mean temperature was below freezing. In the composition variations, the amounts of primary ions, organic carbon (OC), and BC were larger in January, while those of secondary ions and others were larger in PM 10, as well as PM 2.5 in May.« less
Spatial mapping and analysis of aerosols during a forest fire using computational mobile microscopy
NASA Astrophysics Data System (ADS)
Wu, Yichen; Shiledar, Ashutosh; Luo, Yi; Wong, Jeffrey; Chen, Cheng; Bai, Bijie; Zhang, Yibo; Tamamitsu, Miu; Ozcan, Aydogan
2018-02-01
Forest fires are a major source of particulate matter (PM) air pollution on a global scale. The composition and impact of PM are typically studied using only laboratory instruments and extrapolated to real fire events owing to a lack of analytical techniques suitable for field-settings. To address this and similar field test challenges, we developed a mobilemicroscopy- and machine-learning-based air quality monitoring platform called c-Air, which can perform air sampling and microscopic analysis of aerosols in an integrated portable device. We tested its performance for PM sizing and morphological analysis during a recent forest fire event in La Tuna Canyon Park by spatially mapping the PM. The result shows that with decreasing distance to the fire site, the PM concentration increases dramatically, especially for particles smaller than 2 µm. Image analysis from the c-Air portable device also shows that the increased PM is comparatively strongly absorbing and asymmetric, with an aspect ratio of 0.5-0.7. These PM features indicate that a major portion of the PM may be open-flame-combustion-generated element carbon soot-type particles. This initial small-scale experiment shows that c-Air has some potential for forest fire monitoring.
Concentration variations in primary and secondary particulate matter near a major road in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghim, Young Sung; Won, Soo Ran; Choi, Yongjoo
Here, particle-phase concentrations were measured at 10, 80, and 200 m from the roadside of a national highway near Seoul in January and May 2008. The highway has two lanes each way, with an average hourly traffic volume of 1,070 vehicles. In January 2008, PM 10 concentrations decreased from 10 to 80 m but increased at 200 m. Black carbon (BC) decreased only slightly with distance due to the influence of biomass burning and open burning from the surrounding areas. In May 2008, the effect of secondary formation on both PM 10 and PM 2.5 was significant due to highmore » temperatures compared with January. Because on-road emissions had little effect on secondary formation for a short time, variations in PM 10 concentrations became smaller, and PM 2.5 concentrations increased with distance. The effects of fugitive dust on PM concentrations were greater in May than in January when the mean temperature was below freezing. In the composition variations, the amounts of primary ions, organic carbon (OC), and BC were larger in January, while those of secondary ions and others were larger in PM 10, as well as PM 2.5 in May.« less
Perception and reality of particulate matter exposure in New York City taxi drivers
Gany, Francesca; Bari, Sehrish; Prasad, Lakshmi; Leng, Jennifer; Lee, Trevor; Thurston, George D; Gordon, Terry; Acharya, Sudha; Zelikoff, Judith T
2017-01-01
Background Exposure to fine particulate matter (PM2.5) and black carbon (BC) have been linked to negative health risks, but exposure among professional taxi drivers is unknown. This study measured drivers' knowledge, attitudes, and beliefs (KAB) about air pollution compared to direct measures of exposures. Methods Roadside and in-vehicle levels of PM2.5 and BC were continuously measured over a single shift and compared to central site monitoring. Participants completed an air pollution KAB questionnaire. Results Taxicab PM2.5 and BC concentrations were elevated compared to central monitoring. Average PM2.5 concentrations per 15-minute interval were 4 - 49 μg/m3; 1-minute peaks measured up to 452 μg/m3. BC levels were also elevated; reaching > 10 μg/m3. 56 of 100 drivers surveyed believed they were more exposed than non-drivers; 81 believed air pollution causes health problems. Conclusions Air pollution exposure among drivers likely exceeds EPA recommendations. Future studies should focus on reducing exposures and increasing awareness among taxi drivers. PMID:27168392
Ebenstein, Avraham; Fan, Maoyong; Greenstone, Michael; He, Guojun; Zhou, Maigeng
2017-01-01
This paper finds that a 10-μg/m3 increase in airborne particulate matter [particulate matter smaller than 10 μm (PM10)] reduces life expectancy by 0.64 years (95% confidence interval = 0.21–1.07). This estimate is derived from quasiexperimental variation in PM10 generated by China’s Huai River Policy, which provides free or heavily subsidized coal for indoor heating during the winter to cities north of the Huai River but not to those to the south. The findings are derived from a regression discontinuity design based on distance from the Huai River, and they are robust to using parametric and nonparametric estimation methods, different kernel types and bandwidth sizes, and adjustment for a rich set of demographic and behavioral covariates. Furthermore, the shorter lifespans are almost entirely caused by elevated rates of cardiorespiratory mortality, suggesting that PM10 is the causal factor. The estimates imply that bringing all of China into compliance with its Class I standards for PM10 would save 3.7 billion life-years. PMID:28893980
Characterization of particulate matter sources in an urban environment.
Mazzei, F; D'Alessandro, A; Lucarelli, F; Nava, S; Prati, P; Valli, G; Vecchi, R
2008-08-15
Daily time series measurements of elements or compounds are widely used to apportion the contribution of specific sources of particulate matter concentration in the atmosphere. We present results obtained for the urban area of Genoa (Italy) based on several hundred of PM10, PM2.5 and PM1 daily samples collected in sites with different geo-morphological and urbanization characteristics. Elemental concentrations of Na to Pb were obtained through Energy Dispersive X-Ray Fluorescence (ED-XRF), and the contributions of specific sources of particulate matter (PM) concentration were apportioned through Positive Matrix Factorization (PMF). By sampling at different sites we were able to obtain, in each PM fraction, the average and stable values for the tracers of specific sources, in particular traffic (Cu, Zn, Pb) and heavy oil combustion (V, Ni). We could also identify and quote the contamination of anthropogenic PM in "natural" sources (sea, soil dust). Sampling at several sites in the same urban area allowed us to resolve local characteristics as well as to quote average values.
Myatt, Theodore A; Vincent, Michael S; Kobzik, Lester; Naeher, Luke P; MacIntosh, David L; Suh, Helen
2011-10-01
To assess the effect of fine particulate matter (PM(2.5)) from different particle sources on tumor necrosis factor- (TNF-) α, we measured TNF production from rat alveolar macrophages (AM) and human dendritic cells (DC) exposed to PM(2.5) from different sources. Fire-related PM(2.5) samples, rural ambient, and urban indoor and outdoor samples were collected in the Southeast United States. Tumor necrosis factor release was measured from rat AM and human DC following incubation with PM(2.5). Tumor necrosis factor release in AMs was greatest for fire-related PM(2.5) compared with other samples (TNF: P value = 0.005; mortality: P value = 0.005). Tumor necrosis factor releases from the DCs and AMs exposed to fire-associated PM(2.5) were strongly correlated (r = 0.87, P value < 0.0001). Particulate matter exposure produces TNF release consistent with pulmonary inflammation in rat AMs and human DCs, with the response in rat AMs differing by particle source.
Desikan, Anita
2017-03-01
Outdoor air pollution is a known risk factor for mortality and morbidity. The type of air pollutant most reliably associated with disease is particulate matter (PM), especially finer particulate matter that can reach deeper into the lungs like PM 2.5 (particulate matter diameter < 2.5 μm). Some subpopulations may be particularly vulnerable to PM pollution. This review focuses on one subgroup, long-term stroke survivors, and the emerging evidence suggesting that survivors of a stroke may be at a higher risk from the deleterious effects of PM pollution. While the mechanisms for mortality are still under debate, long-term stroke survivors may be vulnerable to similar mechanisms that underlie the well-established association between PM pollution and cardiovascular disease. The fact that long-term stroke survivors of ischemic, but not hemorrhagic, strokes appear to be more vulnerable to the risk of death from higher PM pollution may also bolster the connection to ischemic heart disease. Survivors of an ischemic stroke may be more vulnerable to dying from higher concentrations of PM pollution than the general population. The clinical implications of this association suggest that reduced exposure to PM pollution may result in fewer deaths amongst stroke survivors.
Smith, Rachel B; Fecht, Daniela; Gulliver, John; Beevers, Sean D; Dajnak, David; Blangiardo, Marta; Ghosh, Rebecca E; Hansell, Anna L; Kelly, Frank J; Anderson, H Ross; Toledano, Mireille B
2017-12-05
Objective To investigate the relation between exposure to both air and noise pollution from road traffic and birth weight outcomes. Design Retrospective population based cohort study. Setting Greater London and surrounding counties up to the M25 motorway (2317 km 2 ), UK, from 2006 to 2010. Participants 540 365 singleton term live births. Main outcome measures Term low birth weight (LBW), small for gestational age (SGA) at term, and term birth weight. Results Average air pollutant exposures across pregnancy were 41 μg/m 3 nitrogen dioxide (NO 2 ), 73 μg/m 3 nitrogen oxides (NO x ), 14 μg/m 3 particulate matter with aerodynamic diameter <2.5 μm (PM 2.5 ), 23 μg/m 3 particulate matter with aerodynamic diameter <10 μm (PM 10 ), and 32 μg/m 3 ozone (O 3 ). Average daytime (L Aeq,16hr ) and night-time (L night ) road traffic A-weighted noise levels were 58 dB and 53 dB respectively. Interquartile range increases in NO 2 , NO x , PM 2.5 , PM 10 , and source specific PM 2.5 from traffic exhaust (PM 2.5 traffic exhaust ) and traffic non-exhaust (brake or tyre wear and resuspension) (PM 2.5 traffic non-exhaust ) were associated with 2% to 6% increased odds of term LBW, and 1% to 3% increased odds of term SGA. Air pollutant associations were robust to adjustment for road traffic noise. Trends of decreasing birth weight across increasing road traffic noise categories were observed, but were strongly attenuated when adjusted for primary traffic related air pollutants. Only PM 2.5 traffic exhaust and PM 2.5 were consistently associated with increased risk of term LBW after adjustment for each of the other air pollutants. It was estimated that 3% of term LBW cases in London are directly attributable to residential exposure to PM 2.5 >13.8 μg/m 3 during pregnancy. Conclusions The findings suggest that air pollution from road traffic in London is adversely affecting fetal growth. The results suggest little evidence for an independent exposure-response effect of traffic related noise on birth weight outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R05-OAR-2012-0088; FRL-9783-4] Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate Matter Standards AGENCY: Environmental... submitted a request to approve a section of its particulate matter (PM) rules on February 23, 2012. The PM...
Gaidajis, George; Angelakoglou, Komninos
2009-10-01
The mass concentrations of coarse (PM10) and fine (PM2.5) particulate matter were measured in different classrooms and relevant indoors areas of Democritus University, School of Engineering, Xanthi, with portable aerosol monitoring equipment. Two sampling campaigns were conducted in different seasons. The results indicated that the average concentrations in classrooms ranged from 32-188 microg/m3 and 25-151 microg/m3 for PM10 and PM2.5, respectively. Concentration levels above 300 microg/m3 were usually recorded, while the PM2.5/PM10 ratio was about 0.8. As expected, PM10 and PM2.5 average concentrations were significantly higher in the open-access meeting place of common use, indicating the significance of student trespassing and occasional smoking in the deterioration of indoors air quality.
Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M
2015-02-13
Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%-60% (by weight) of fine particulate matter larger than 1 µm (PM(2.5-1.0)) in outdoor samples and 18% of PM2.5-1.0 in subway samples. Iron-containing particles accounted for only 3%-6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM(10-2.5)) with soil/road dust particles dominating outdoor samples (66%-83%) and iron-containing particles contributing most to subway PM(10-2.5) (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM(10-2.5) than PM(2.5-1.0). Also as expected, the mass fraction of iron-containing particles was substantially less in PM(10-2.5) than in PM(2.5-1.0). Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM(2.5-1.0) and PM(10-2.5) simultaneously and by composition at multiple locations.
Lazaridis, Mihalis; Semb, Arne; Larssen, Steinar; Hjellbrekke, Anne-Gunn; Hov, Oystein; Hanssen, Jan Erik; Schaug, Jan; Tørseth, Kjetil
2002-02-21
Particulate matter (PM) monitoring presents a new challenge to the transboundary air pollution strategies in Europe. Evidence for the role of long-range transport of particulate matter and its significant association with a wide range of adverse health effects has urged for the inclusion of particulate matter within the European Monitoring and Evaluation Programme (EMEP) framework. Here we review available data on PM physico-chemical characteristics within the EMEP framework. In addition we identify future research needs for the characterisation of the background PM in Europe that include detailed harmonised measurements of mass, size and chemical composition (mass closure) of the ambient aerosol.
Exposure to elevated levels of ambient particulate matter (PM) smaller than 2.5 11m (PM2.5) has been associated with adverse health effects in both humans and animals. Specific properties of either fine (0.1-2.5 11m), or ultrafine « 0.1 11m) PM responsible for exposure related he...
Higher fine particulate matter and temperature levels impair exercise capacity in cardiac patients.
Giorgini, Paolo; Rubenfire, Melvyn; Das, Ritabrata; Gracik, Theresa; Wang, Lu; Morishita, Masako; Bard, Robert L; Jackson, Elizabeth A; Fitzner, Craig A; Ferri, Claudio; Brook, Robert D
2015-08-01
Fine particulate matter (PM2.5) air pollution and variations in ambient temperature have been linked to increased cardiovascular morbidity and mortality. However, no large-scale study has assessed their effects on directly measured aerobic functional capacity among high-risk patients. Using a cross-sectional observational design, we evaluated the effects of ambient PM2.5 and temperature levels over 7 days on cardiopulmonary exercise test results performed among 2078 patients enrolling into a cardiac rehabilitation programme at the University of Michigan (from January 2003 to August 2011) using multiple linear regression analyses (controlling for age, sex, body mass index). Peak exercise oxygen consumption was significantly decreased by approximately 14.9% per 10 μg/m(3) increase in ambient PM2.5 levels (median 10.7 μg/m(3), IQR 10.1 μg/m(3)) (lag days 6-7). Elevations in PM2.5 were also related to decreases in ventilatory threshold (lag days 5-7) and peak heart rate (lag days 2-3) and increases in peak systolic blood pressure (lag days 4-5). A 10°C increase in temperature (median 10.5°C, IQR 17.5°C) was associated with reductions in peak exercise oxygen consumption (20.6-27.3%) and ventilatory threshold (22.9-29.2%) during all 7 lag days. In models including both factors, the outcome associations with PM2.5 were attenuated whereas the effects of temperature remained significant. Short-term elevations in ambient PM2.5, even at low concentrations within current air quality standards, and/or higher temperatures were associated with detrimental changes in aerobic exercise capacity, which can be linked to a worse quality of life and cardiovascular prognosis among cardiac rehabilitation patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
The role of air pollution on ST-elevation myocardial infarction: a narrative mini review.
Shahrbaf, Mohammad Amin; Mahjoob, Mohammad Parsa; Khaheshi, Isa; Akbarzadeh, Mohammad Ali; Barkhordari, Elham; Naderian, Mohammadreza; Tajrishi, Farbod Zahed
2018-06-22
ST-elevation myocardial infarction (STEMI) is one of the potential causes of death worldwide. In spite of substantial advances in its diagnosis and treatment, STEMI is still considered as a major public health dilemma in developed and particularly developing countries. One of the triggering factors of STEMI is supposed to be air pollutants like gaseous pollutants including, sulfur dioxide, nitric dioxide, carbon monoxide, ozone and particulate matters (PM) including, PM under 2.5 µm (PM 2.5 ) and PM under 10 µm (PM 10 ). Air pollution can trigger STEMI with various mechanisms such as increasing inflammatory factors and changing the heart rate or blood viscosity. In this article, we aimed to explore research in the field and discuss the relationship between air pollution and STEMI.
PREDICTING POPULATION EXPOSURES TO PM10 AND PM 2.5
An improved model for human exposure to particulate matter (PM), specifically PM10 and PM2.5 is under development by the U.S. EPA/NERL. This model will incorporate data from new PM exposure measurement and exposure factors research. It is intended to be used to predict exposure...
NASA Astrophysics Data System (ADS)
Li, Zhiyuan; Yuan, Zibing; Li, Ying; Lau, Alexis K. H.; Louie, Peter K. K.
2015-12-01
Atmospheric particulate matter (PM) pollution is a major public health concern in Hong Kong. In this study, the spatiotemporal variations of health risks from ambient PM10 from seven air quality monitoring stations between 2000 and 2011 were analyzed. Positive matrix factorization (PMF) was adopted to identify major source categories of ambient PM10 and quantify their contributions. Afterwards, a point-estimated risk model was used to identify the inhalation cancer and non-cancer risks of PM10 sources. The long-term trends of the health risks from classified local and non-local sources were explored. Furthermore, the reason for the increase of health risks during high PM10 days was discussed. Results show that vehicle exhaust source was the dominant inhalation cancer risk (ICR) contributor (72%), whereas trace metals and vehicle exhaust sources contributed approximately 27% and 21% of PM10 inhalation non-cancer risk (INCR), respectively. The identified local sources accounted for approximately 80% of the ICR in Hong Kong, while contribution percentages of the non-local and local sources for INCR are comparable. The clear increase of ICR at high PM days was mainly attributed to the increase of contributions from coal combustion/biomass burning and secondary sulfate, while the increase of INCR at high PM days was attributed to the increase of contributions from the sources coal combustion/biomass burning, secondary nitrate, and trace metals. This study highlights the importance of health risk-based source apportionment in air quality management with protecting human health as the ultimate target.
75 FR 80117 - Methods for Measurement of Filterable PM10
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-21
...This action promulgates amendments to Methods 201A and 202. The final amendments to Method 201A add a particle-sizing device to allow for sampling of particulate matter with mean aerodynamic diameters less than or equal to 2.5 micrometers (PM2.5 or fine particulate matter). The final amendments to Method 202 revise the sample collection and recovery procedures of the method to reduce the formation of reaction artifacts that could lead to inaccurate measurements of condensable particulate matter. Additionally, the final amendments to Method 202 eliminate most of the hardware and analytical options in the existing method, thereby increasing the precision of the method and improving the consistency in the measurements obtained between source tests performed under different regulatory authorities. This action also announces that EPA is taking no action to affect the already established January 1, 2011 sunset date for the New Source Review (NSR) transition period, during which EPA is not requiring that State NSR programs address condensable particulate matter emissions.
[Impacts of airborne particulate matter and its components on respiratory system health].
Cao, L M; Zhou, Y; Zhang, Z; Sun, W W; Mu, G; Chen, W H
2016-12-06
Nowadays, particulate air pollution has been a global environmental problem. Numerous studies has shown that long-term exposure to high level of airborne particulate matter (PM) can damage human health. Respiratory system, as a direct portal to contact with particulate matter, can be more susceptible to airborne particulates. Summarizing latest five-year epidemiological research, the present review is focused on the effects of PM on respiratory system health in different age groups. In detail, we investigated the harmful effect of PM, or its components on three common respiratory diseases, including lung function decline, chronic obstructive pulmonary disease (COPD) and asthma. The result showed that, to a certain degree, PM could induce the decline of lung function, the development and the exacerbation of COPD and asthma by oxidative stress and inflammatory reaction. And it may prompt that exposure to PM can be an improtant risk factor for the respiratory system health.
OPEN PATH OPTICAL SENSING OF PARTICULATE MATTER
The paper discusses the concepts behind recent developments in optical remote sensing (ORS) and the results from experiments. Airborne fugitive and fine particulate matter (PM) from various sources contribute to exceedances of state and federal PM and visibility standards. Recent...
Chen, Kuan-Yuan; Chuang, Kai-Jen; Liu, Hui-Chiao; Lee, Kang-Yun; Feng, Po-Hao; Su, Chien-Ling; Lin, Chii-Lan; Lee, Chun-Nin; Chuang, Hsiao-Chi
2016-01-01
Emerging risk factors for tuberculosis (TB) infection, such as air pollution, play a significant role at both the individual and population levels. However, the association between air pollution and TB remains unclear. The objective of this study was to examine the association between outdoor air pollution and sputum culture conversion in TB patients. In the present study, 389 subjects were recruited from a hospital in Taiwan from 2010 to 2012: 144 controls with non-TB-related pulmonary diseases with negative sputum cultures and 245 culture-positive TB subjects. We observed that a 1 μg/m(3) increase in particulate matter of ≤10 μm in aerodynamic diameter (PM10) resulted in 4% higher odds of TB (odds ratio =1.04, 95% confidence interval =1.01-1.08, P<0.05). The chest X-ray grading of TB subjects was correlated to 1 year levels of PM10 (R (2)=0.94, P<0.05). However, there were no associations of pulmonary cavitation or treatment success rate with PM10. In subjects with TB-positive cultures, annual exposure to ≥50 μg/m(3) PM10 was associated with an increase in the time required for sputum culture conversion (hazard ratio =1.28, 95% confidence interval: 1.07-1.84, P<0.05). In conclusion, chronic exposure to ≥50 μg/m(3) PM10 may prolong the sputum culture conversion of TB patients with sputum-positive cultures.
NASA Astrophysics Data System (ADS)
Schiferl, L. D.; Heald, C. L.; Van Damme, M.; Pierre-Francois, C.; Clerbaux, C.
2015-12-01
Modern agricultural practices have greatly increased the emission of ammonia (NH3) to the atmosphere. Recent controls to reduce the emissions of sulfur and nitrogen oxides (SOX and NOX) have increased the importance of understanding the role ammonia plays in the formation of surface fine inorganic particulate matter (PM2.5) in the United States. In this study, we identify the interannual variability in ammonia concentration, explore the sources of this variability and determine their contribution to the variability in surface PM2.5 concentration. Over the summers of 2008-2012, measurements from the Ammonia Monitoring Network (AMoN) and the Infrared Atmospheric Sounding Interferometer (IASI) satellite instrument show considerable variability in both surface and column ammonia concentrations (+/- 29% and 28% of the mean), respectively. This observed variability is larger than that simulated by the GEOS-Chem chemical transport model, where meteorology dominates the variability in ammonia and PM2.5 concentrations compared to the changes caused by SOX and NOX reductions. Our initial simulation does not include year-to-year changes in ammonia agricultural emissions. We use county-wide information on fertilizer sales and livestock populations, as well as meteorological variations to account for the interannual variability in agricultural activity and ammonia volatilization. These sources of ammonia emission variability are important for replicating observed variations in ammonia and PM2.5, highlighting how accurate ammonia emissions characterization is central to PM air quality prediction.
Jaafar, Malek; Baalbaki, Rima; Mrad, Raya; Daher, Nancy; Shihadeh, Alan; Sioutas, Constantinos; Saliba, Najat A
2014-10-15
Particles captured during dust episodes in Beirut originated from both the African and Arabian deserts. This particular air mixture showed an increase, over non-dust episodes, in particle volume distribution which was mostly noticed for particles ranging in sizes between 2.25 and 5 μm. It also resulted in an increase in average mass concentration by 48.5% and 14.6%, for the coarse and fine fractions, respectively. Chemical analysis of major aerosol components accounted for 93% of fine PM and 71% of coarse PM. Crustal material (CM) dominated the coarse PM fraction, contributing to 39 ± 15% of the total mass. Sea salt (SS) (11 ± 10%) and secondary ions (SI) (11 ± 7%) were the second most abundant elements. In the fine fraction, SI (36 ± 14%) were the most abundant PM constituent, followed by organic matter (OM) (33 ± 7%) and CM (13 ± 2%). Enrichment factors (EF) and correlation coefficients show that biogenic and anthropogenic sources contribute to the elemental composition of particles during dust episodes. This study emphasizes on the role played by the long-range transport of aerosols in changing the chemical composition of the organic and inorganic constituents of urban coarse and fine PM. The chemical reactions between aged urban and dust aerosols are enhanced during transport, leading to the formation of organo-nitrogenated and -sulfonated compounds. Their oligomeric morphologies are further confirmed by SEM-EDX measurements. Copyright © 2014 Elsevier B.V. All rights reserved.
Exposure to particulate matter in traffic: A comparison of cyclists and car passengers
NASA Astrophysics Data System (ADS)
Int Panis, Luc; de Geus, Bas; Vandenbulcke, Grégory; Willems, Hanny; Degraeuwe, Bart; Bleux, Nico; Mishra, Vinit; Thomas, Isabelle; Meeusen, Romain
2010-06-01
Emerging evidence suggests that short episodes of high exposure to air pollution occur while commuting. These events can result in potentially adverse health effects. We present a quantification of the exposure of car passengers and cyclists to particulate matter (PM). We have simultaneously measured concentrations (PNC, PM2.5 and PM10) and ventilatory parameters (minute ventilation (VE), breathing frequency and tidal volume) in three Belgian locations (Brussels, Louvain-la-Neuve and Mol) for 55 persons (38 male and 17 female). Subjects were first driven by car and then cycled along identical routes in a pairwise design. Concentrations and lung deposition of PNC and PM mass were compared between biking trips and car trips. Mean bicycle/car ratios for PNC and PM are close to 1 and rarely significant. The size and magnitude of the differences in concentrations depend on the location which confirms similar inconsistencies reported in literature. On the other hand, the results from this study demonstrate that bicycle/car differences for inhaled quantities and lung deposited dose are large and consistent across locations. These differences are caused by increased VE in cyclists which significantly increases their exposure to traffic exhaust. The VE while riding a bicycle is 4.3 times higher compared to car passengers. This aspect has been ignored or severely underestimated in previous studies. Integrated health risk evaluations of transport modes or cycling policies should therefore use exposure estimates rather than concentrations.
Xu, Ziran; Wang, Shoubing; Wang, Yuanan; Zhang, Jie
2018-03-01
Atmospheric particulate matter (APM), commonly seen and widely excited in environment, appears great enough to influence the biochemical processes in aquatic microorganisms and phytoplankton. Understanding the response of cyanobacteria to various factors is fundamental for eutrophication control. To clarify the response of cyanobacteria to APM, the effects of PM 2.5 , PM 2.5-10 , and PM >10 on Microcystis aeruginosa were researched. Variabilities in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular activity, and kinetic parameters of alkaline phosphatase were evaluated by lab-cultured experiments. Results showed that the PM 2.5 had a slight stimulation impact on the growth and enhanced both of the 48- and 72-h extracellular alkaline phosphatase activity (APA), the affinity of alkaline phosphatase for substrate, and the 72-h maximum enzymatic reaction velocity (V max ). Moreover, the stimulations in extracellular APA and V max enhanced with the increasing exposure concentrations. We also found there were no obvious distinctions on the effects of growth and alkaline phosphatase in M. aeruginosa between PM 2.5-10 and PM >10 exposure groups. Obviously, inhibitory effects on growth existed in 4.0 and 8.0 mg/L PM 2.5-10 and 8.0 mg/L PM >10 at 120 h. Furthermore, PM 2.5-10 and PM >10 exerted inhibitory effects on the extracellular APA during the 72-h exposure. Simultaneously, the V max was notably inhibited and the affinity of alkaline phosphatase for substrate was more inseparable compared with control in PM 2.5-10 and PM >10 treatments. Nevertheless, the inhibitors in extracellular APA and kinetic parameters were unrelated to PM 2.5-10 and PM >10 exposure concentrations. Two-way ANOVA results revealed that there were significant interactions between exposure concentration and diameter of APM on the 120-h cell density, soluble protein content, APA, and 72 h APA of M. aeruginosa. These results in our study would be meaningful to further researches on relationships between APM deposition and cyanobacterial bloom.
Impact of Feed Delivery Pattern on Aerial Particulate Matter and Behavior of Feedlot Cattle.
Mitloehner, Frank M; Dailey, Jeff W; Morrow, Julie L; McGlone, John J
2017-03-01
Fine particulate matter with less than 2.5 microns diameter (PM 2.5 ) generated by cattle in feedlots is an environmental pollutant and a potential human and animal health issue. The objective of this study was to determine if a feeding schedule affects cattle behaviors that promote PM 2.5 in a commercial feedlot. The study used 2813 crossbred steers housed in 14 adjacent pens at a large-scale commercial West Texas feedlot. Treatments were conventional feeding at 0700, 1000, and 1200 (CON) or feeding at 0700, 1000, and 1830 (ALT), the latter feeding time coincided with dusk. A mobile behavior lab was used to quantify behaviors of steers that were associated with generation of PM 2.5 (e.g., fighting, mounting of peers, and increased locomotion). PM 2.5 samplers measured respirable particles with a mass median diameter ≤2.5 μm (PM 2.5 ) every 15 min over a period of 7 d in April and May. Simultaneously, the ambient temperature, humidity, wind speed and direction, precipitation, air pressure, and solar radiation were measured with a weather station. Elevated downwind PM 2.5 concentrations were measured at dusk, when cattle that were fed according to the ALT vs. the CON feeding schedule, demonstrated less PM 2.5 -generating behaviors ( p < 0.05). At dusk, steers on ALT vs. CON feeding schedules ate or were waiting to eat (standing in second row behind feeding cattle) at much greater rates ( p < 0.05). Upwind PM 2.5 concentrations were similar between the treatments. Downwind PM 2.5 concentrations averaged over 24 h were lower from ALT compared with CON pens (0.072 vs. 0.115 mg/m³, p < 0.01). However, dry matter intake (DMI) was less ( p < 0.05), and average daily gain (ADG) tended to be less ( p < 0.1) in cattle that were fed according to the ALT vs. the CON feeding schedules, whereas feed efficiency (aka gain to feed, G:F) was not affected. Although ALT feeding may pose a challenge in feed delivery and labor scheduling, cattle exhibited fewer PM 2.5 -generating behaviors and reduced generation of PM 2.5 when feed delivery times matched the natural desires of cattle to eat in a crepuscular pattern.
Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter
Gao, Jing-Feng; Fan, Xiao-Yan; Pan, Kai-Ling; Li, Hong-Yu; Sun, Li-Xin
2016-01-01
Increasing ammonia emissions could exacerbate air pollution caused by fine particulate matter (PM2.5). Therefore, it is of great importance to investigate ammonia oxidation in PM2.5. This study investigated the diversity, abundance and activity of ammonia oxidizing archaea (AOA), ammonia oxidizing bacteria (AOB) and complete ammonia oxidizers (Comammox) in PM2.5 collected in Beijing-Tianjin-Hebei megalopolis, China. Nitrosopumilus subcluster 5.2 was the most dominant AOA. Nitrosospira multiformis and Nitrosomonas aestuarii were the most dominant AOB. Comammox were present in the atmosphere, as revealed by the occurrence of Candidatus Nitrospira inopinata in PM2.5. The average cell numbers of AOA, AOB and Ca. N. inopinata were 2.82 × 104, 4.65 × 103 and 1.15 × 103 cell m−3 air, respectively. The average maximum nitrification rate of PM2.5 was 0.14 μg (NH4+-N) [m3 air·h]−1. AOA might account for most of the ammonia oxidation, followed by Comammox, while AOB were responsible for a small part of ammonia oxidation. Statistical analyses showed that Nitrososphaera subcluster 4.1 was positively correlated with organic carbon concentration, and Nitrosomonas eutropha showed positive correlation with ammonia concentration. Overall, this study expanded our knowledge concerning AOA, AOB and Comammox in PM2.5 and pointed towards an important role of AOA and Comammox in ammonia oxidation in PM2.5. PMID:27941955
Lability of secondary organic particulate matter
Liu, Pengfei; Li, Yong Jie; Wang, Yan; Gilles, Mary K.; Zaveri, Rahul A.; Bertram, Allan K.
2016-01-01
The energy flows in Earth’s natural and modified climate systems are strongly influenced by the concentrations of atmospheric particulate matter (PM). For predictions of concentration, equilibrium partitioning of semivolatile organic compounds (SVOCs) between organic PM and the surrounding vapor has widely been assumed, yet recent observations show that organic PM can be semisolid or solid for some atmospheric conditions, possibly suggesting that SVOC uptake and release can be slow enough that equilibrium does not prevail on timescales relevant to atmospheric processes. Herein, in a series of laboratory experiments, the mass labilities of films of secondary organic material representative of similar atmospheric organic PM were directly determined by quartz crystal microbalance measurements of evaporation rates and vapor mass concentrations. There were strong differences between films representative of anthropogenic compared with biogenic sources. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH) between 20% and 30%, indicating rapid partitioning above a transition RH but not below. Below the threshold, the characteristic time for equilibration is estimated as up to 1 wk for a typically sized particle. In contrast, for films representing biogenic PM, no RH threshold was observed, suggesting equilibrium partitioning is rapidly obtained for all RHs. The effective diffusion rate Dorg for the biogenic case is at least 103 times greater than that of the anthropogenic case. These differences should be accounted for in the interpretation of laboratory data as well as in modeling of organic PM in Earth’s atmosphere. PMID:27791063
Parker, J L; Larson, R R; Eskelson, E; Wood, E M; Veranth, J M
2008-10-01
Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.
Chirino, Yolanda I; García-Cuellar, Claudia María; García-García, Carlos; Soto-Reyes, Ernesto; Osornio-Vargas, Álvaro Román; Herrera, Luis A; López-Saavedra, Alejandro; Miranda, Javier; Quintana-Belmares, Raúl; Pérez, Irma Rosas; Sánchez-Pérez, Yesennia
2017-04-15
Airborne particulate matter with an aerodynamic diameter ≤10μm (PM 10 ) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM 10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM 10 exposure in A549 lung epithelial cells. Results showed that 10μg/cm 2 of PM 10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM 10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM 10 exposure could contribute to the understanding of PM 10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.
Jedrychowski, Wieslaw; Maugeri, Umberto; Spengler, John D.; Miller, Rachel L.; Mrozek-Budzyn, Dorota; Perzanowski, Matt; Kaim, Irena; Flak, Elzbieta; Mroz, Elzbieta; Majewska, Renata; Perera, Frederica
2011-01-01
Prenatal Paracetamol (Acetaminophen) has been associated with increased risk of allergic disease in early childhood, an association that could be due to increased altered susceptibility induced by air pollutants. The main goal of the study was to test the hypothesis that prenatal Paracetamol exposure increases the risk of developing eczema in early childhood and that this association is stronger for children who are exposed prenatally to higher concentrations of fine particulate matter (PM2.5). The study sample consisted of 322 women recruited from January 2001 to February 2004 in the Krakow inner city area who gave birth to term babies and completed 5-year follow-up. Paracetamol use in pregnancy was collected by interviews and prenatal personal exposure to over 48 hours was measured in all recruited women in the second trimester of PM2.5 pregnancy. After delivery, every three months in the first 24 months of the newborn’s life and every 6 months later, a detailed standardized face-to-face interview on the infant’s health was administered to each mother by a trained interviewer. During the interviews at each of the study periods after birth, a history of eczema was recorded. By Cox proportional hazard regression, prenatal exposure to Paracetamol increased the risk of eczema by 20% and PM2.5 by 6%, albeit non significantly. However, the the joint exposure to Paracetamol and higher prenatal PM2.5 was significant and doubled the risk of eczema symptoms (HR = 2.07, 95%CI: 1.01 – 4.34). The findings suggest that even very small doses of Paracetamol in pregnancy may affect the occurrence of allergy outcomes such as eczema in early childhood but only at the co-exposure to higher fine particulate matter. PMID:21962593
Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event
2014-01-01
Particulate matter (PM) air pollution poses a formidable public health threat to the city of Beijing. Among the various hazards of PM pollutants, microorganisms in PM2.5 and PM10 are thought to be responsible for various allergies and for the spread of respiratory diseases. While the physical and chemical properties of PM pollutants have been extensively studied, much less is known about the inhalable microorganisms. Most existing data on airborne microbial communities using 16S or 18S rRNA gene sequencing to categorize bacteria or fungi into the family or genus levels do not provide information on their allergenic and pathogenic potentials. Here we employed metagenomic methods to analyze the microbial composition of Beijing’s PM pollutants during a severe January smog event. We show that with sufficient sequencing depth, airborne microbes including bacteria, archaea, fungi, and dsDNA viruses can be identified at the species level. Our results suggested that the majority of the inhalable microorganisms were soil-associated and nonpathogenic to human. Nevertheless, the sequences of several respiratory microbial allergens and pathogens were identified and their relative abundance appeared to have increased with increased concentrations of PM pollution. Our findings may serve as an important reference for environmental scientists, health workers, and city planners. PMID:24456276
Regression and multivariate models for predicting particulate matter concentration level.
Nazif, Amina; Mohammed, Nurul Izma; Malakahmad, Amirhossein; Abualqumboz, Motasem S
2018-01-01
The devastating health effects of particulate matter (PM 10 ) exposure by susceptible populace has made it necessary to evaluate PM 10 pollution. Meteorological parameters and seasonal variation increases PM 10 concentration levels, especially in areas that have multiple anthropogenic activities. Hence, stepwise regression (SR), multiple linear regression (MLR) and principal component regression (PCR) analyses were used to analyse daily average PM 10 concentration levels. The analyses were carried out using daily average PM 10 concentration, temperature, humidity, wind speed and wind direction data from 2006 to 2010. The data was from an industrial air quality monitoring station in Malaysia. The SR analysis established that meteorological parameters had less influence on PM 10 concentration levels having coefficient of determination (R 2 ) result from 23 to 29% based on seasoned and unseasoned analysis. While, the result of the prediction analysis showed that PCR models had a better R 2 result than MLR methods. The results for the analyses based on both seasoned and unseasoned data established that MLR models had R 2 result from 0.50 to 0.60. While, PCR models had R 2 result from 0.66 to 0.89. In addition, the validation analysis using 2016 data also recognised that the PCR model outperformed the MLR model, with the PCR model for the seasoned analysis having the best result. These analyses will aid in achieving sustainable air quality management strategies.
Junaid, Muhammad; Syed, Jabir Hussain; Abbasi, Naeem Akhtar; Hashmi, Muhammad Zaffar; Malik, Riffat Naseem; Pei, De-Sheng
2018-01-01
Exposure to particulate emissions poses a variety of public health concerns worldwide, specifically in developing countries. This review summarized the documented studies on indoor particulate matter (PM) emissions and their major health concerns in South Asia. Reviewed literature illustrated the alarming levels of indoor air pollution (IAP) in India, Pakistan, Nepal, and Bangladesh, while Sri Lanka and Bhutan are confronted with relatively lower levels, albeit not safe. To our knowledge, data on this issue are absent from Afghanistan and Maldives. We found that the reported levels of PM 10 and PM 2.5 in Nepal, Pakistan, Bangladesh, and India were 2-65, 3-30, 4-22, 2-28 and 1-139, 2-180, 3-77, 1-40 fold higher than WHO standards for indoor PM 10 (50 μg/m 3 ) and PM 2.5 (25 μg/m 3 ), respectively. Regarding IAP-mediated health concerns, mortality rates and incidences of respiratory and non-respiratory diseases were increasing with alarming rates, specifically in India, Pakistan, Nepal, and Bangladesh. The major cause might be the reliance of approximately 80% population on conventional biomass burning in the region. Current review also highlighted the prospects of IAP reduction strategies, which in future can help to improve the status of indoor air quality and public health in South Asia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ecological effects of particulate matter.
Grantz, D A; Garner, J H B; Johnson, D W
2003-06-01
Atmospheric particulate matter (PM) is a heterogeneous material. Though regulated as un-speciated mass, it exerts most effects on vegetation and ecosystems by virtue of the mass loading of its chemical constituents. As this varies temporally and spatially, prediction of regional impacts remains difficult. Deposition of PM to vegetated surfaces depends on the size distribution of the particles and, to a lesser extent, on the chemistry. However, chemical loading of an ecosystem may be determined by the size distribution as different constituents dominate different size fractions. Coating with dust may cause abrasion and radiative heating, and may reduce the photosynthetically active photon flux reaching the photosynthetic tissues. Acidic and alkaline materials may cause leaf surface injury while other materials may be taken up across the cuticle. A more likely route for metabolic uptake and impact on vegetation and ecosystems is through the rhizosphere. PM deposited directly to the soil can influence nutrient cycling, especially that of nitrogen, through its effects on the rhizosphere bacteria and fungi. Alkaline cation and aluminum availability are dependent upon the pH of the soil that may be altered dramatically by deposition of various classes of PM. A regional effect of PM on ecosystems is linked to climate change. Increased PM may reduce radiation interception by plant canopies and may reduce precipitation through a variety of physical effects. At the present time, evidence does not support large regional threats due to un-speciated PM, though site-specific and constituent-specific effects can be readily identified. Interactions of PM with other pollutants and with components of climate change remain important areas of research in assessment of challenges to ecosystem stability.
Brem, Benjamin T; Durdina, Lukas; Siegerist, Frithjof; Beyerle, Peter; Bruderer, Kevin; Rindlisbacher, Theo; Rocci-Denis, Sara; Andac, M Gurhan; Zelina, Joseph; Penanhoat, Olivier; Wang, Jing
2015-11-17
Aircraft engines emit particulate matter (PM) that affects the air quality in the vicinity of airports and contributes to climate change. Nonvolatile PM (nvPM) emissions from aircraft turbine engines depend on fuel aromatic content, which varies globally by several percent. It is uncertain how this variability will affect future nvPM emission regulations and emission inventories. Here, we present black carbon (BC) mass and nvPM number emission indices (EIs) as a function of fuel aromatic content and thrust for an in-production aircraft gas turbine engine. The aromatics content was varied from 17.8% (v/v) in the neat fuel (Jet A-1) to up to 23.6% (v/v) by injecting two aromatic solvents into the engine fuel supply line. Fuel normalized BC mass and nvPM number EIs increased by up to 60% with increasing fuel aromatics content and decreasing engine thrust. The EIs also increased when fuel naphthalenes were changed from 0.78% (v/v) to 1.18% (v/v) while keeping the total aromatics constant. The EIs correlated best with fuel hydrogen mass content, leading to a simple model that could be used for correcting fuel effects in emission inventories and in future aircraft engine nvPM emission standards.
Ash reduction system using electrically heated particulate matter filter
Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI
2011-08-16
A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.
PM 2.5 Airborne Particulates Near Frac Sand Operations.
Walters, Kristin; Jacobson, Jeron; Kroening, Zachary; Pierce, Crispin
2015-11-01
The rapid growth of hydraulic fracturing for oil and gas extraction in the U.S. has led to 135 active "frac" sand mines, processing plants, and rail transfer stations in Wisconsin. Potential environmental health risks include increased truck traffic, noise, ecosystem loss, and groundwater, light, and air pollution. Emitted air contaminants include fine particulate matter (PM2.5) and respirable crystalline silica. Inhalation of fine dust particles causes increased mortality, cardiovascular disease, lung disease, and lung cancer. In the authors' pilot study, use of a filter-based ambient particulate monitor found PM2.5 levels of 5.82-50.8 µg/m3 in six 24-hour samples around frac sand mines and processing sites. Enforcement of the existing U.S. Environmental Protection Agency annual PM2.5 standard of 12 µg/m3 is likely to protect the public from silica exposure risks as well. PM2.5 monitoring around frac sand sites is needed to ensure regulatory compliance, inform nearby communities, and protect public health.
Find tools for particulate matter, maps of nonattainment areas, an overview of the proposal, and information on designations, monitoring and permitting requirements and a presentation on the 2012 PM NAAQS revision.
ASSESSMENT OF HUMAN EXPOSURE TO AMBIENT PARTICULATE MATTER.
Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in mod...
ACUTE EXPOSURE TO PARTICULATE MATTER IN A RAT MODEL OF HEART FAILURE
Human exposure to ambient particulate matter (PM) has been linked to cardiovascular morbidity and mortality. This association strengthens in people with preexisting cardiopulmonary diseases—especially heart failure (HF). To better characterize the cardiovascular effects of PM, we...
Combined effects of exposure to dim light at night and fine particulate matter on C3H/HeNHsd mice.
Hogan, Matthew K; Kovalycsik, Taylor; Sun, Qinghua; Rajagopalan, Sanjay; Nelson, Randy J
2015-11-01
Air and light pollution contribute to fetal abnormalities, increase prevalence of cancer, metabolic and cardiorespiratory diseases, and central nervous system (CNS) disorders. A component of air pollution, particulate matter, and the phenomenon of dim light at night (dLAN) both result in neuroinflammation, which has been implicated in several CNS disorders. The combinatorial role of these pollutants on health outcomes has not been assessed. Male C3H/HeNHsd mice, with intact melatonin production, were used to model humans exposed to circadian disruption by dLAN and contaminated environmental air. We hypothesized exposure to 2.5 μm of particulate matter (PM2.5) and dLAN (5lx) combines to upregulate neuroinflammatory cytokine expression and alter hippocampal morphology compared to mice exposed to filtered air (FA) and housed under dark nights (LD). We also hypothesized that exposure to PM2.5 and dLAN provokes anxiety-like and depressive-like responses. For four weeks, four groups of mice were simultaneously exposed to ambient concentrated PM2.5 or FA and/or dLAN or LD. Following exposure, mice underwent several behavioral assays and hippocampi were collected for qPCR and morphological analyses. Our results are generally comparable to previous PM2.5 and dLAN reports conducted on mice and implicate PM2.5 and dLAN as potential factors contributing to depression and anxiety. Short-term exposure to PM2.5 and dLAN upregulated neuroinflammatory cytokines and altered CA1 hippocampal structural changes, as well as provoked depressive-like responses (anhedonia). However, combined, PM2.5 and dLAN exposure did not have additive effects, as hypothesized, suggesting a ceiling effect of neuroinflammation may exist in response to multiple pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.
Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Kato, Kazuhiro; Sano, Hiroyuki; Tatsukawa, Toshiyuki; Nakazaki, Hirofumi; Yamasaki, Akira; Shimizu, Eiji
2016-01-01
An important aspect of sand dust emissions in association with respiratory disorders is the quantity of particulate matter. This is usually expressed as particulate matter less than 10 μm (PM10) and 2.5 μm (PM2.5). However, the composition of PM10 and PM2.5 varies. Light detection and ranging is used to monitor sand dust particles originating in East Asian deserts and distinguish them from air pollution aerosols. The objective of this study was to investigate the association between the daily levels of sand dust particles and pulmonary function in schoolchildren in western Japan. In this panel study, the peak expiratory flow (PEF) of 399 schoolchildren was measured daily from April to May 2012. A linear mixed model was used to estimate the association of PEF with the daily levels of sand dust particles, suspended particulate matter (SPM), and PM2.5. There was no association between the daily level of sand dust particles and air pollution aerosols, while both sand dust particles and air pollution aerosols had a significant association with SPM and PM2.5. An increment of 0.018 km(-1) in sand dust particles was significantly associated with a decrease in PEF (-3.62 L/min; 95% confidence interval, -4.66 to -2.59). An increase of 14.0 μg/m(3) in SPM and 10.7 μg/m(3) in PM2.5 led to a significant decrease of -2.16 L/min (-2.88 to -1.43) and -2.58 L/min (-3.59 to -1.57), respectively, in PEF. These results suggest that exposure to sand dust emission may relate to pulmonary dysfunction in children in East Asia. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Particulate matter in rural and urban nursery schools in Portugal.
Nunes, R A O; Branco, P T B S; Alvim-Ferraz, M C M; Martins, F G; Sousa, S I V
2015-07-01
Studies have been showing strong associations between exposures to indoor particulate matter (PM) and health effects on children. Urban and rural nursery schools have different known environmental and social differences which make their study relevant. Thus, this study aimed to evaluate indoor PM concentrations on different microenvironments of three rural nursery schools and one urban nursery school, being the only study comparing urban and rural nursery schools considering the PM1, PM2.5 and PM10 fractions (measured continuously and in terms of mass). Outdoor PM2.5 and PM10 were also obtained and I/O ratios have been determined. Indoor PM mean concentrations were higher in the urban nursery than in rural ones, which might have been related to traffic emissions. However, I/O ratios allowed concluding that the recorded concentrations depended more significantly of indoor sources. WHO guidelines and Portuguese legislation exceedances for PM2.5 and PM10 were observed mainly in the urban nursery school. Copyright © 2015 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... must I use to demonstrate initial compliance with the emission limits for particulate matter and PM10... compliance with the emission limits for particulate matter and PM10? (a) You must conduct each performance... determine compliance with the applicable emission limits for particulate matter in Table 1 to this subpart...
Code of Federal Regulations, 2010 CFR
2010-07-01
... must I use to demonstrate initial compliance with the emission limits for particulate matter and PM10... compliance with the emission limits for particulate matter and PM10? (a) You must conduct each performance... determine compliance with the applicable emission limits for particulate matter in Table 1 to this subpart...
Transparent air filter for high-efficiency PM2.5 capture.
Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi
2015-02-16
Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m(-3)). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.
Transparent air filter for high-efficiency PM2.5 capture
NASA Astrophysics Data System (ADS)
Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi
2015-02-01
Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m-3). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.
The density of dark matter in the Galactic bulge and implications for indirect detection
Hooper, Dan
2016-11-29
A recent study, making use of the number of horizontal branch stars observed in infrared photometric surveys and kinematic measurements of M-giant stars from the BRAVA survey, combined with N-body simulations of stellar populations, has presented a new determination of the dark matter mass within the bulge-bar region of the Milky Way. That study constrains the total mass within themore » $$\\pm 2.2 \\times \\pm 1.4 \\times \\pm 1.2$$ kpc volume of the bulge-bar region to be ($$1.84 \\pm 0.07) \\times 10^{10} \\, M_{\\odot}$$, of which 9-30% is made up of dark matter. Here, we use this result to constrain the the Milky Way's dark matter density profile, and discuss the implications for indirect dark matter searches. Furthermore uncertainties remain significant, these results favor dark matter distributions with a cusped density profile. For example, for a scale radius of 20 kpc and a local dark matter density of 0.4 GeV/cm$^3$, density profiles with an inner slope of 0.69 to 1.40 are favored, approximately centered around the standard NFW value. In contrast, profiles with large flat-density cores are disfavored by this information.« less