Electrically heated particulate matter filter soot control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima
A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.
PM levels in urban area of Bejaia
NASA Astrophysics Data System (ADS)
Benaissa, Fatima; Maesano, Cara Nichole; Alkama, Rezak; Annesi-Maesano, Isabella
2017-04-01
Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. The average city-wide PM10 and PM2.5 concentrations measured during this sampling were 87.8 ± 33.9 and 28.7 ± 10.6 µg/m3 respectively. These results show that particulate matter levels are high and exceed Algerian ambient air quality standards (maximum 80 µg/m3, without specifying the particle size). Further, PM10 and PM2.5 averages were well above the prescribed 24-hour average World Health Organization Air Quality Guidelines (WHO AQG) (50 µg/m3 for PM10 and 25 µg/m3 for PM2.5). The PM1, PM2,5, PM4 and PM7 fractions accounted for 15%, 32 %, 56% and 78% respectively of the PM10 measurements. Our analysis reveals that PM concentration variations in the study region were influenced primarily by traffic. In fact, lower PM10 concentrations (21.7 and 33.1 µg/m3) were recorded in residential sites while higher values (53.1, and 45.2 µg/m3) were registered in city centers. Keywords: Particulate matter, Urban area, vehicle fleet, Bejaia.
Face crack reduction strategy for particulate filters
Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN
2012-01-31
A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion. A control module initiates combustion of PM in the PM filter using a heater and selectively adjusts oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter. A method comprises providing a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion; initiating combustion of PM in the PM filter using a heater; selectively adjusting oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter.
This final rule, published March 10, 2006, establishes requirements for project-level conformity determinations in particulate matter (PM) 2.5 nonattainment and maintenance areas, and revises existing requirements for projects in PM10 areas.
Background/Aim: A previous analysis suggested that U.S. counties with higher county-level prevalence of chronic conditions had stronger associations of mortality with fine particulate matter (PM2.5). This study assesses the modification of the effect of PM2.5 on daily hospitaliz...
ULTRAFINE PARTICULATE MATTER EXPOSURE AUGMENTS ISCHEMIA REPERFUSION INJURY IN MICE
Epidemiological studies have linked ambient particulate matter (PM) levels to an increased incidence of adverse cardiovascular events. Yet little is definitively known about the mechanisms accounting for the cardiovascular events associated with PM exposure. The goal of thi...
ULTRAFINE PARTICULATE MATTER EXPOSURE AUGMENTS ISCHEMIA REPERFUSION INJURY IN MICE
Epidemiological studies have linked ambient particulate matter (PM) levels to an increased incidence of adverse cardiovascular events. Yet little is definitively known about the mechanisms accounting for the cardiovascular events associated with PM-exposure. The goal of this stud...
Alastuey, Andrés; Querol, Xavier; Plana, Feliciano; Viana, Mar; Ruiz, Carmen R; Sánchez de la Campa, Ana; de la Rosa, Jesús; Mantilla, Enrique; García dos Santos, Saul
2006-07-01
A detailed physical and chemical characterization of coarse particulate matter (PM10) and fine particulate matter (PM2.5) in the city of Huelva (in Southwestern Spain) was carried out during 2001 and 2002. To identify the major emission sources with a significant influence on PM10 and PM2.5, a methodology was developed based on the combination of: (1) real-time measurements of levels of PM10, PM2.5, and very fine particulate matter (PM1); (2) chemical characterization and source apportionment analysis of PM10 and PM2.5; and (3) intensive measurements in field campaigns to characterize the emission plumes of several point sources. Annual means of 37, 19, and 16 microg/m3 were obtained for the study period for PM10, PM2.5, and PM1, respectively. High PM episodes, characterized by a very fine grain size distribution, are frequently detected in Huelva mainly in the winter as the result of the impact of the industrial emission plumes on the city. Chemical analysis showed that PM at Huelva is characterized by high PO4(3-) and As levels, as expected from the industrial activities. Source apportionment analyses identified a crustal source (36% of PM10 and 31% of PM2.5); a traffic-related source (33% of PM10 and 29% of PM2.5), and a marine aerosol contribution (only in PM10, 4%). In addition, two industrial emission sources were identified in PM10 and PM2.5: (1) a petrochemical source, 13% in PM10 and 8% in PM2.5; and (2) a mixed metallurgical-phosphate source, which accounts for 11-12% of PM10 and PM2.5. In PM2.5 a secondary source has been also identified, which contributed to 17% of the mass. A complete characterization of industrial emission plumes during their impact on the ground allowed for the identification of tracer species for specific point sources, such as petrochemical, metallurgic, and fertilizer and phosphate production industries.
NASA Astrophysics Data System (ADS)
Tasić, Viša; Jovašević-Stojanović, Milena; Vardoulakis, Sotiris; Milošević, Novica; Kovačević, Renata; Petrović, Jelena
2012-07-01
Accurate monitoring of indoor mass concentrations of particulate matter is very important for health risk assessment as people in developed countries spend approximately 90% of their time indoors. The direct reading, aerosol monitoring device, Turnkey, OSIRIS Particle Monitor (Model 2315) and the European reference low volume sampler, LVS3 (Sven/Leckel LVS3) with size-selective inlets for PM10 and PM2.5 fractions were used to assess the comparability of available optical and gravimetric methods for particulate matter characterization in indoor air. Simultaneous 24-hour samples were collected in an indoor environment for 60 sampling periods in the town of Bor, Serbia. The 24-hour mean PM10 levels from the OSIRIS monitor were well correlated with the LVS3 levels (R2 = 0.87) and did not show statistically significant bias. The 24-hour mean PM2.5 levels from the OSIRIS monitor were moderately correlated with the LVS3 levels (R2 = 0.71), but show statistically significant bias. The results suggest that the OSIRIS monitor provides sufficiently accurate measurements for PM10. The OSIRIS monitor underestimated the indoor PM10 concentrations by approximately 12%, relative to the reference LVS3 sampler. The accuracy of PM10 measurements could be further improved through empirical adjustment. For the fine fraction of particulate matter, PM2.5, it was found that the OSIRIS monitor underestimated indoor concentrations by approximately 63%, relative to the reference LVS3 sampler. This could lead to exposure misclassification in health effects studies relying on PM2.5 measurements collected with this instrument in indoor environments.
Chi, Miao-Ching; Guo, Su-Er; Hwang, Su-Lun; Chou, Chiang-Ting; Lin, Chieh-Mo; Lin, Yu-Ching
2016-01-01
Ambient particulate matter (PM) can trigger adverse reactions in the respiratory system, but less is known about the effect of indoor PM. In this longitudinal study, we investigated the relationships between indoor PM and clinical parameters in patients with moderate to very severe chronic obstructive pulmonary disease (COPD). Indoor air quality (PM2.5 and PM10 levels) was monitored in the patients’ bedroom, kitchen, living room, and front door at baseline and every two months for one year. At each home visit, the patients were asked to complete spirometry and questionnaire testing. Exacerbations were assessed by chart review and questionnaires during home visits. Generalized estimating equation (GEE) analysis (n = 83) showed that the level of wheezing was significantly higher in patients whose living room and kitchen had abnormal (higher than ambient air quality standards in Taiwan) PM2.5 and PM10 levels. Patients who lived in houses with abnormal outdoor PM2.5 levels had higher COPD Assessment Test scores (physical domain), and those who lived in houses with abnormal PM10 levels in the living room and kitchen had higher London Chest Activity of Daily Living scores. Increased PM levels were associated with worse respiratory symptoms and increased risk of exacerbation in patients with moderate to very severe COPD. PMID:28025521
Exposure to elevated levels of ambient particulate matter (PM) smaller than 2.5 11m (PM2.5) has been associated with adverse health effects in both humans and animals. Specific properties of either fine (0.1-2.5 11m), or ultrafine « 0.1 11m) PM responsible for exposure related he...
Evaluation of ground-based particulate matter in association with measurements from space
NASA Astrophysics Data System (ADS)
Nakata, Makiko; Yoshida, Akihito; Sano, Itaru; Mukai, Sonoyo
2017-10-01
Air pollution is problem of deep concern to human health. In Japan, the air pollution levels experienced during the recent period of rapid economic growth have been reduced. However, fine particulate matter (PM2.5) has not yet reached the environmental standards at many monitoring stations. The Japanese environmental quality standard for PM2.5 that was ratified in 2009 lags about four decades behind other air pollutants, including sulfur dioxide, nitrogen dioxide, carbon monoxide, photochemical oxidants, and suspended particulate matter. Recently, trans-national air pollutants have been observed to cause high concentrations of PM2.5 in Japan. To obtain wide distribution of PM2.5, the satellite based PM2.5 products are extremely useful. We investigate PM2.5 concentrations measured using ground samplers in Japan and the satellite based PM2.5 products, taking into consideration various geographical and weather conditions.
Krall, J. R.; Hackstadt, A. J.; Peng, R. D.
2017-01-01
Exposure to particulate matter (PM) air pollution has been associated with a range of adverse health outcomes, including cardiovascular disease (CVD) hospitalizations and other clinical parameters. Determining which sources of PM, such as traffic or industry, are most associated with adverse health outcomes could help guide future recommendations aimed at reducing harmful pollution exposure for susceptible individuals. Information obtained from multisite studies, which is generally more precise than information from a single location, is critical to understanding how PM impacts health and to informing local strategies for reducing individual-level PM exposure. However, few methods exist to perform multisite studies of PM sources, which are not generally directly observed, and adverse health outcomes. We developed SHARE, a hierarchical modeling approach that facilitates reproducible, multisite epidemiologic studies of PM sources. SHARE is a two-stage approach that first summarizes information about PM sources across multiple sites. Then, this information is used to determine how community-level (i.e. county- or city-level) health effects of PM sources should be pooled to estimate regional-level health effects. SHARE is a type of population value decomposition that aims to separate out regional-level features from site-level data. Unlike previous approaches for multisite epidemiologic studies of PM sources, the SHARE approach allows the specific PM sources identified to vary by site. Using data from 2000–2010 for 63 northeastern US counties, we estimated regional-level health effects associated with short-term exposure to major types of PM sources. We found PM from secondary sulfate, traffic, and metals sources was most associated with CVD hospitalizations. PMID:28098412
Introduction: Recent reports indicate that the elderly and those with cardiovascular disease are susceptible to fine and coarse particulate matter (PM 2.5, PM 2.5-10) exposures. Asthmatics are thought to be primarily affected via airway inflammation. We investigated whether mark...
NASA Astrophysics Data System (ADS)
Solis, M.; Nguyen, H.; Adeyan, A.; Adeyan, E.; Taylor, S.; Hardaway, K.; Peterson, E.; Ortega, J.; Marshall, R.
2017-12-01
Over the past five years, the East Bay Academy for Young Scientists (EBAYS) has been investigating air quality at Bay Area Rapid Transit (BART) train stations. In particular, prior EBAYS research has revealed extremely high levels of particulate matter (PM 2.5) at the multi-leveled Embarcadero Station, which is underground and is one of the most frequently visited stations in the entire BART system. During the summer of 2017 data was collected to determine whether or not air quality differed on the three levels of this station. In conducting this study the research team was separated into pairs, each pair in possession of a Dustrak II or AirBeam PM analyzer and each pair assigned to a particular level. Within each measurement trial data was collected for 15 minutes. Measurements were also made on the eastern and western ends of the platforms to detect possible variations in PM concentration. Preliminary results obtained thus far indicate that dangerously high levels of PM 2.5 concentration occur on all three levels of the station. This is especially problematic because it suggests that individuals who spend extensive amounts of time at this station (e.g., station agents and other workers) are exposed to extremely high PM 2.5 concentration levels and as a result are working under conditions that are quite hazardous to their health. Based on observations made during testing, increased levels of PM 2.5 tend to correlate with the departure or arrival of BART trains that results in particulate matter being scattered about the train platform and other levels. Further studies should be conducted to verify this observation and to contribute to better understanding the sources and behavior of PM 2.5 at each level of the station.
Ambient particulate matter and lung function growth in Chinese children.
Roy, Ananya; Hu, Wei; Wei, Fusheng; Korn, Leo; Chapman, Robert S; Zhang, Junfeng Jim
2012-05-01
Exposure to particulate matter (PM) has been associated with deficits in lung function growth among children in Western countries. However, few studies have explored this association in developing countries, where PM levels are often substantially higher. Children (n = 3273) 6-12 years of age were recruited from 8 schools in 4 Chinese cities. The lung function parameters of forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) were measured using computerized spirometers twice a year for up to 3 years (1993-1996). Dichotomous samplers placed in each schoolyard were used to measure PM2.5 and PM10 (PM with diameter ≤ 2.5 μm and ≤ 10 μm, respectively). Multivariable generalized estimating equations were used to examine the association between the quarterly average PM levels and lung function growth during the period of follow-up. Annual average PM2.5 and PM10 levels in the 4 cities ranged from 57 to 158 μg/m and 95 to 268 μg/m, respectively. In multivariable models, an increase of 10 μg/m of PM2.5 was associated with decreases of 2.7 mL FEV1 (95% confidence interval = -3.5 to -2.0), 3.5 mL FVC (-4.3 to -2.7), 1.4 mL/year FEV1 growth (-1.8 to -0.9), and 1.5 mL/year FVC growth (-2.0 to -1.0). Similar results were seen with PM10 exposure. Exposure to ambient particulate matter was associated with decreased growth in lung function among Chinese children.
NASA Astrophysics Data System (ADS)
Shaughnessy, William J.; Venigalla, Mohan M.; Trump, David
2015-12-01
There is an absence of studies that define the relationship between ambient particulate matter (PM) levels and adverse health outcomes among the young and healthy adult sub-group. In this research, the relationship between exposures to ambient levels of PM in the 10 micron (PM10) and 2.5 micron (PM2.5) size fractions and health outcomes in members of the healthy, young-adult subgroup who are 18-39 years of age was examined. Active duty military personnel populations at three strategically selected military bases in the United States were used as a surrogate to the control group. Health outcome data, which consists of the number of diagnoses for each of nine International Classification of Diseases, 9th Revision (ICD-9) categories related to respiratory illness, were derived from outpatient visits at each of the three military bases. Data on ambient concentrations of particulate matter, specifically PM10 and PM2.5, were obtained for these sites. The health outcome data were correlated and regressed with the PM10 and PM2.5 data, and other air quality and weather-related data on a daily and weekly basis for the period 1998 to 2004. Results indicate that at Fort Bliss, which is a US Environmental Protection Agency designated non-attainment area for PM10, a statistically significant association exists between the weekly-averaged number of adverse health effects in the young and healthy adult population and the corresponding weekly-average ambient PM10 concentration. A least squares regression analysis was performed on the Fort Bliss data sets indicated that the health outcome data is related to several environmental parameters in addition to PM10. Overall, the analysis estimates a .6% increase in the weekly rate of emergency room visits for upper respiratory infections for every 10 μg/m3 increase in the weekly-averaged PM10 concentration above the mean. The findings support the development of policy and guidance opportunities that can be developed to mitigate exposures to particulate matter.
Association between ambient particulate matter and disorders of vestibular function.
Han, Changwoo; Lim, Youn-Hee; Jung, Kweon; Hong, Yun-Chul
2017-05-01
Exposure to environmental chemicals has been suggested to alter the physiologic state of the inner and middle ear. However, it is unknown if particulate matter exposure is associated with acute vestibular dysfunction. To estimate the effects of particulate matter exposure on the number of hospital visits related to three major diseases of vestibular dysfunction, Meniere's disease (MD), benign paroxysmal positional vertigo (BPPV), and vestibular neuronitis (VN). Our study subject is from Korean National Health Insurance Service-National Sample Cohort, which is dynamic cohort consist of 1 million participants representing the Korean population. Among total cohort participants, we used the hospital visit data of 210,000 individuals who resided in Seoul from 2007 to 2010. Time series analysis using the Poisson generalized additive model and case-crossover analysis using conditional logistic regression were used to investigate the association between daily particulate matter levels (PM 2.5 , particulate matter <2.5μg/m 3 ; PM 10 , particulate matter <10μg/m 3 ; PM 10-2.5 , PM 10 - PM 2.5 ) and number of MD, BPPV, and VN hospital visits. Time series analysis showed that an interquartile range (IQR) increase in PM 10 and PM 10-2.5 on lag day 1 was associated with an increased risk of MD hospital visits [relative risk (RR), 95% confidence interval (CI), PM 10 : 1.09 (1.02-1.15); PM 10-2.5 : 1.06 (1.02-1.10)]. In addition, elderly individuals (≥60 years old) showed an increased risk of MD hospital visits after particulate matter exposure when compared to younger individuals. An IQR increase in particulate matter on lag day 1 was associated with a marginally significant increase in VN hospital visits [RR (95%CI), PM 2.5 : 1.11 (0.98-1.25); PM 10 : 1.07 (0.99-1.15); PM 10-2.5 : 1.04 (0.99-1.09)]. However, no association between particulate matter exposure and BPPV hospital visits was noted. Case-crossover analyses showed similar results to the time-series analysis across all three diseases. MD hospital visits were associated with ambient particulate matter exposure. Elderly individuals, in particular, were more susceptible to particulate matter exposure than younger individuals. Copyright © 2017 Elsevier Inc. All rights reserved.
Abstract
Epidemiologic studies have shown positive associationsbetween changes in ambient particulate matter (PM) levels in Utah Valley during 1986-1988, and the respiratory health of the local population. Ambient PM reductions coincided withclosure of an open-hearth steel...
Spatial and seasonal variation of particulate matter (PM10 and PM2.5) in Middle Eastern classrooms
NASA Astrophysics Data System (ADS)
Elbayoumi, Maher; Ramli, Nor Azam; Md Yusof, Noor Faizah Fitri; Al Madhoun, Wesam
2013-12-01
Monitoring of PM10 and PM2.5 particularly in school microenvironments is extremely important due to their impact on the global burden of disease. PM10 and PM2.5 levels were monitored inside and outside the classrooms of twelve naturally ventilated schools located in Gaza strip, Palestine. The measurements were carried out using hand held particulate matter instrument during fall, winter and spring seasons from October 2011 to May 2012. The average concentration of indoor PM10 was 349.49 (±196.57) μg m-3 and for PM2.5 was 103.96 (±84.96) μg m-3. The indoor/outdoor ratios for PM10 and PM2.5 were found to be much greater than 1.00 for all case study schools due to resuspension of deposited particles from the floors. Furthermore, strong correlations were found between indoor-outdoor PM10 and PM2.5. The variations of PM10 and PM2.5 concentrations were significant for the three seasons. During winter, the mean indoor PM10 was 1.30 and 2.50 times higher than fall and spring concentrations respectively. Meanwhile, PM2.5 concentration in winter was 3.00 times higher than fall and spring concentrations. In relation to spatial variation, the concentration of PM10 in the lower storey level was significantly higher than the classrooms located in the higher storey level.
Chung, Yeonseung; Dominici, Francesca; Wang, Yun; Coull, Brent A; Bell, Michelle L
2015-05-01
Several epidemiological studies have reported that long-term exposure to fine particulate matter (PM2.5) is associated with higher mortality. Evidence regarding contributions of PM2.5 constituents is inconclusive. We assembled a data set of 12.5 million Medicare enrollees (≥ 65 years of age) to determine which PM2.5 constituents are a) associated with mortality controlling for previous-year PM2.5 total mass (main effect); and b) elevated in locations exhibiting stronger associations between previous-year PM2.5 and mortality (effect modification). For 518 PM2.5 monitoring locations (eastern United States, 2000-2006), we calculated monthly mortality rates, monthly long-term (previous 1-year average) PM2.5, and 7-year averages (2000-2006) of major PM2.5 constituents [elemental carbon (EC), organic carbon matter (OCM), sulfate (SO42-), silicon (Si), nitrate (NO3-), and sodium (Na)] and community-level variables. We applied a Bayesian hierarchical model to estimate location-specific mortality rates associated with previous-year PM2.5 (model level 1) and identify constituents that contributed to the spatial variability of mortality, and constituents that modified associations between previous-year PM2.5 and mortality (model level 2), controlling for community-level confounders. One-standard deviation (SD) increases in 7-year average EC, Si, and NO3- concentrations were associated with 1.3% [95% posterior interval (PI): 0.3, 2.2], 1.4% (95% PI: 0.6, 2.4), and 1.2% (95% PI: 0.4, 2.1) increases in monthly mortality, controlling for previous-year PM2.5. Associations between previous-year PM2.5 and mortality were stronger in combination with 1-SD increases in SO42- and Na. Long-term exposures to PM2.5 and several constituents were associated with mortality in the elderly population of the eastern United States. Moreover, some constituents increased the association between long-term exposure to PM2.5 and mortality. These results provide new evidence that chemical composition can partly explain the differential toxicity of PM2.5.
Ash reduction system using electrically heated particulate matter filter
Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI
2011-08-16
A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.
NASA Astrophysics Data System (ADS)
Snider, G.; Weagle, C. L.; Martin, R. V.; van Donkelaar, A.; Conrad, K.; Cunningham, D.; Gordon, C.; Zwicker, M.; Akoshile, C.; Artaxo, P.; Anh, N. X.; Brook, J.; Dong, J.; Garland, R. M.; Greenwald, R.; Griffith, D.; He, K.; Holben, B. N.; Kahn, R.; Koren, I.; Lagrosas, N.; Lestari, P.; Ma, Z.; Vanderlei Martins, J.; Quel, E. J.; Rudich, Y.; Salam, A.; Tripathi, S. N.; Yu, C.; Zhang, Q.; Zhang, Y.; Brauer, M.; Cohen, A.; Gibson, M. D.; Liu, Y.
2015-01-01
Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM2.5) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short- and long-term exposure to PM2.5 at local-to-global scales, but there are limitations and outstanding questions about the accuracy and precision with which ground-level aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD). We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health-effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN) includes a global federation of ground-level monitors of hourly PM2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM2.5 and PM10, are highly autonomous. Hourly PM2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, water-soluble ions, and metals. These measurements provide, in a variety of regions around the world, the key data required to evaluate and enhance satellite-based PM2.5 estimates used for assessing the health effects of aerosols. Mean PM2.5 concentrations across sites vary by more than 1 order of magnitude. Our initial measurements indicate that the ratio of AOD to ground-level PM2.5 is driven temporally and spatially by the vertical profile in aerosol scattering. Spatially this ratio is also strongly influenced by the mass scattering efficiency.
Chemical analysis of World Trade Center fine particulate matter for use in toxicologic assessment.
McGee, John K; Chen, Lung Chi; Cohen, Mitchell D; Chee, Glen R; Prophete, Colette M; Haykal-Coates, Najwa; Wasson, Shirley J; Conner, Teri L; Costa, Daniel L; Gavett, Stephen H
2003-06-01
The catastrophic destruction of the World Trade Center (WTC) on 11 September 2001 caused the release of high levels of airborne pollutants into the local environment. To assess the toxicity of fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)], which may adversely affect the health of workers and residents in the area, we collected fallen dust samples on 12 and 13 September 2001 from sites within a half-mile of Ground Zero. Samples of WTC dust were sieved, aerosolized, and size-separated, and the PM2.5 fraction was isolated on filters. Here we report the chemical and physical properties of PM2.5 derived from these samples and compare them with PM2.5 fractions of three reference materials that range in toxicity from relatively inert to acutely toxic (Mt. St. Helens PM; Washington, DC, ambient air PM; and residual oil fly ash). X-ray diffraction of very coarse sieved WTC PM (< 53 microm) identified calcium sulfate (gypsum) and calcium carbonate (calcite) as major components. Scanning electron microscopy confirmed that calcium-sulfur and calcium-carbon particles were also present in the WTC PM2.5 fraction. Analysis of WTC PM2.5 using X-ray fluorescence, neutron activation analysis, and inductively coupled plasma spectrometry showed high levels of calcium (range, 22-33%) and sulfur (37-43% as sulfate) and much lower levels of transition metals and other elements. Aqueous extracts of WTC PM2.5 were basic (pH range, 8.9-10.0) and had no evidence of significant bacterial contamination. Levels of carbon were relatively low, suggesting that combustion-derived particles did not form a significant fraction of these samples recovered in the immediate aftermath of the destruction of the towers. Because gypsum and calcite are known to cause irritation of the mucus membranes of the eyes and respiratory tract, inhalation of high doses of WTC PM2.5 could potentially cause toxic respiratory effects.
Urban particulate matter pollution: a tale of five cities.
Pandis, Spyros N; Skyllakou, Ksakousti; Florou, Kalliopi; Kostenidou, Evangelia; Kaltsonoudis, Christos; Hasa, Erion; Presto, Albert A
2016-07-18
Five case studies (Athens and Paris in Europe, Pittsburgh and Los Angeles in the United States, and Mexico City in Central America) are used to gain insights into the changing levels, sources, and role of atmospheric chemical processes in air quality in large urban areas as they develop technologically. Fine particulate matter is the focus of our analysis. In all cases reductions of emissions by industrial and transportation sources have resulted in significant improvements in air quality during the last few decades. However, these changes have resulted in the increasing importance of secondary particulate matter (PM) which dominates over primary in most cases. At the same time, long range transport of secondary PM from sources located hundreds of kilometres from the cities is becoming a bigger contributor to the urban PM levels in all seasons. "Non-traditional" sources including cooking, and residential and agricultural biomass burning contribute an increasing fraction of the now reduced fine PM levels. Atmospheric chemistry is found to change the chemical signatures of a number of these sources relatively fast both during the day and night, complicating the corresponding source apportionment.
Ng, Edward
2017-01-01
Particulate matters (PM) at the pedestrian level significantly raises the health impacts in the compact urban environment of Hong Kong. A detailed investigation of the fine-scale spatial variation of pedestrian-level PM is necessary to assess the health risk to pedestrians in the outdoor environment. However, the collection of PM data is difficult in the compact urban environment of Hong Kong due to the limited amount of roadside monitoring stations and the complicated urban context. In this study, we measured the fine-scale spatial variability of the PM in three of the most representative commercial districts of Hong Kong using a backpack outdoor environmental measuring unit. Based on the measurement data, 13 types of geospatial interpolation methods were examined for the spatial mapping of PM2.5 and PM10 with a group of building geometrical covariates. Geostatistical modelling was adopted as the basis of spatial interpolation of the PM. The results show that the original cokriging with the exponential kernel function provides the best performance in the PM mapping. Using the fine-scale building geometrical features as covariates slightly improves the interpolation performance. The study results also imply that the fine-scale, localized pollution emission sources heavily influence pedestrian exposure to PM. PMID:28869527
Gaidajis, George; Angelakoglou, Komninos
2009-10-01
The mass concentrations of coarse (PM10) and fine (PM2.5) particulate matter were measured in different classrooms and relevant indoors areas of Democritus University, School of Engineering, Xanthi, with portable aerosol monitoring equipment. Two sampling campaigns were conducted in different seasons. The results indicated that the average concentrations in classrooms ranged from 32-188 microg/m3 and 25-151 microg/m3 for PM10 and PM2.5, respectively. Concentration levels above 300 microg/m3 were usually recorded, while the PM2.5/PM10 ratio was about 0.8. As expected, PM10 and PM2.5 average concentrations were significantly higher in the open-access meeting place of common use, indicating the significance of student trespassing and occasional smoking in the deterioration of indoors air quality.
Black Carbon and Particulate Matter (PM2.5) Concentrations in New York City’s Subway Stations
2015-01-01
The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m3, with 1 min average peaks >100 μg/m3, while real time PM2.5 levels ranged from 35 to 200 μg/m3. Mean EC levels ranged from 9 to 12.5 μg/m3. At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m3, respectively. This study shows that both BC soot and PM levels in NYC’s subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted. PMID:25409007
Black carbon and particulate matter (PM2.5) concentrations in New York City's subway stations.
Vilcassim, M J Ruzmyn; Thurston, George D; Peltier, Richard E; Gordon, Terry
2014-12-16
The New York City (NYC) subway is the main mode of transport for over 5 million passengers on an average weekday. Therefore, airborne pollutants in the subway stations could have a significant impact on commuters and subway workers. This study looked at black carbon (BC) and particulate matter (PM2.5) concentrations in selected subway stations in Manhattan. BC and PM2.5 levels were measured in real time using a Micro-Aethalometer and a PDR-1500 DataRAM, respectively. Simultaneous samples were also collected on quartz filters for organic and elemental carbon (OC/EC) analysis and on Teflon filters for gravimetric and trace element analysis. In the underground subway stations, mean real time BC concentrations ranged from 5 to 23 μg/m(3), with 1 min average peaks >100 μg/m(3), while real time PM2.5 levels ranged from 35 to 200 μg/m(3). Mean EC levels ranged from 9 to 12.5 μg/m(3). At street level on the same days, the mean BC and PM2.5 concentrations were below 3 and 10 μg/m(3), respectively. This study shows that both BC soot and PM levels in NYC's subways are considerably higher than ambient urban street levels and that further monitoring and investigation of BC and PM subway exposures are warranted.
NASA Astrophysics Data System (ADS)
Lung, Shih-Chun Candice; Hsiao, Pao-Kuei; Wen, Tzu-Yao; Liu, Chun-Hu; Fu, Chi Betsy; Cheng, Yu-Ting
2014-02-01
Asian residential communities are usually dotted with various spot pollution sources (SPS), such as restaurants, temples, and home factories, with traffic arteries passing through, resulting in higher intra-urban pollution variability compared with their western counterparts. Thus, it is important to characterize spatial variability of pollutant levels in order to assess accurately residents' exposures in their communities. The objectives of this study are to assess the actual pollutant levels and variability within an Asian urban area and to evaluate the influence of vehicle emission and various SPS on the exposure levels within communities. Real-time monitoring was conducted for a total of 123 locations for particulate matter (PM) and CO in Taipei metropolitan, Taiwan. The mean concentrations for PM1, PM2.5, PM10, and CO are 29.8 ± 22.7, 36.0 ± 25.5, 61.9 ± 35.0 μg m-3 and 4.0 ± 2.5 ppm, respectively. The mean values of PM1/PM2.5 and PM2.5/PM10 are 0.80 ± 0.10 and 0.57 ± 0.15, respectively. PM and CO levels at locations near SPS could be increased by 3.5-4.9 times compared with those at background locations. Regression results show that restaurants contribute significantly 6.18, 6.33, 7.27 μg m-3, and 1.64 ppm to community PM1, PM2.5, PM10, and CO levels, respectively; while the contribution from temples are 13.2, 15.1, and 17.2 μg m-3 for PM1, PM2.5 and PM10, respectively. Additionally, construction sites elevate nearby PM10 levels by 14.2 μg m-3. At bus stops and intersections, vehicle emissions increased PM1 and PM2.5 levels by 5 μg m-3. These results demonstrate significant contribution of community sources to air pollution, and thus the importance of assessing intra-community variability in Asian cities for air pollution and health studies. The methodology used is applicable to other Asian countries with similar features.
Particulate Matter Concentrations in East Oakland's High Street Corridor
NASA Astrophysics Data System (ADS)
Lei, P.; Jackson, J.; Lewis, R.; Marigny, A.; Mitchell, J. D.; Nguyen, R.; Philips, B.; Randle, D.; Romero, D.; Spears, D.; Telles, C.; Weissman, D.
2012-12-01
Particulate matter (PM) is a complex mixture of small solid pieces and/or liquid droplets in the air. High concentrations of PM can pose a serious health hazard because inhalation can result in breathing problems and/or aggravate asthma. Long term exposure can increase the likelihood of respiratory problems like asthma and emphysema as well as cancer. The smaller the particles, the deeper they can get into the respiratory system. For this reason, the smallest particles, those smaller than 2.5 micrometers in diameter (PM2.5), are the most dangerous. PM2.5 is largely emitted from motor vehicles burning fuels that don't break down fully. Our research team investigated the levels of PM2.5 as well as particles smaller than 10 micrometers (PM10) and total suspended particulate (TSP) along the northeast-southwest trending High Street Corridor, near Fremont High School in East Oakland, California. Using the Aerocet 531 mass particle counter, team members walked through neighborhoods and along major roads within a 1 mile radius of Fremont High School. The Aerocet 531 recorded two minute average measurements of all the relevant PM sizes, which are reported in mg/m3. Measurements were consistently taken in the morning, between 8:30 and 11:30 am. Preliminary results indicate maximum readings of all PM sizes at sites that are in close proximity to a major freeway (Interstate-880). These results support our initial hypothesis that proximity to major roads and freeways, especially those with high diesel-fuel burning truck traffic, would be the primary factor affecting PM concentration levels. Preliminary median and maximum readings all suggest particulate matter levels below what the EPA would consider unhealthy or risky.
[Impacts of airborne particulate matter and its components on respiratory system health].
Cao, L M; Zhou, Y; Zhang, Z; Sun, W W; Mu, G; Chen, W H
2016-12-06
Nowadays, particulate air pollution has been a global environmental problem. Numerous studies has shown that long-term exposure to high level of airborne particulate matter (PM) can damage human health. Respiratory system, as a direct portal to contact with particulate matter, can be more susceptible to airborne particulates. Summarizing latest five-year epidemiological research, the present review is focused on the effects of PM on respiratory system health in different age groups. In detail, we investigated the harmful effect of PM, or its components on three common respiratory diseases, including lung function decline, chronic obstructive pulmonary disease (COPD) and asthma. The result showed that, to a certain degree, PM could induce the decline of lung function, the development and the exacerbation of COPD and asthma by oxidative stress and inflammatory reaction. And it may prompt that exposure to PM can be an improtant risk factor for the respiratory system health.
First assessment of the PM10 and PM2.5 particulate level in the ambient air of Belgrade city.
Rajsić, Slavica F; Tasić, Mirjana D; Novaković, Velibor T; Tomasević, Milica N
2004-01-01
As the strong negative health effect of exposure to the inhalable particulate matter PM10 in the urban environment has been confirmed, the study of the mass concentrations, physico-chemical characteristics, sources, as well as spatial and temporal variation of atmospheric aerosol particles becomes very important. This work is a pilot study to assess the concentration level of ambient suspended particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade central urban area. Average daily concentrations of PM10 and PM2.5 have been measured at three representative points in the city between June 2002 and December 2002. The influence of meteorological parameters on PM10 and PM2.5 concentrations was analyzed, and possible pollution sources were identified. Suspended particles were collected on Pure Teflon filters by using a Mini-Vol low-volume air sampler (Airmetrics Co., Inc.; 5 l min(-1) flow rate). Particle mass was determined gravimetrically after 48 h of conditioning in a desiccator, in a Class 100 clean room at the temperature T = 20 degrees C and at about 50% constant relative humidity (RH). Analysis of the PM10 data indicated a marked difference between season without heating--(summer; mean value 56 microg m(-3)) and heating season--(winter; mean value 96 microg m3); 62% of samples exceeded the level of 50 microg m(-3). The impact of meteorological factors on PM concentrations was not immediately apparent, but there was a significant negative correlation with the wind speed. The PM10 and PM2.5 mass concentrations in the Belgrade urban area had high average values (77 microg m(-3) and 61 microg m(-3)) in comparison with other European cities. The main sources of particulate matter were traffic emission, road dust resuspension, and individual heating emissions. When the air masses are coming from the SW direction, the contribution from the Obrenovac power plants is evident. During days of exceptionally severe pollution, in both summer and winter periods, high production of secondary aerosols occurred, as can be seen from an increase in PM2.5 in respect to PM10 mass concentration. The results obtained gave us the first impression of the concentration level of particulate matter, with an aerodynamic diameter of less than 10 microm, in the Belgrade ambient air. Due to measured high PM mass concentrations, it is obvious that it would be very difficult to meet the EU standards (EEC 1999) by 2010. It is necessary to continue with PM10 and PM2.5 sampling; and after comprehensive analysis which includes the results of chemical and physical characterization of particles, we will be able to recommend effective control measures in order to improve air quality in Belgrade.
Oh, Hyeon-Ju; Jeong, Na-Na; Chi, Woo-Bae; Seo, Ji-Hoon; Jun, Si-Moon; Sohn, Jong-Ryeul
2015-10-01
Particulate matter (PM) in buildings are mostly sourced from the transport of outdoor particles through a heating, ventilation, and air conditioning (HVAC) system and generation of particle within the building itself. We investigated the concentrations and characteristic of indoor and outdoor particles and airborne bacteria concentrations across four floors of a building located in a high-traffic area. In all the floors we studied (first, second, fifth, and eighth), the average concentrations of particles less than 10 μm (PM10) in winter for were higher than those in summer. On average, a seasonal variation in the PM10 level was found for the first, fifth, and eighth floors, such that higher values occurred in the winter season, compared to the summer season. In addition, in winter, the indoor concentrations of PM10 on the first, fifth, and eighth floors were higher than those of the outdoor PM10. The maximum level of airborne bacteria concentration was found in a fifth floor office, which held a private academy school consisting of many students. Results indicated that the airborne bacteria remained at their highest concentration throughout the weekday period and varied by students' activity. The correlation coefficient (R (2)) and slope of linear approximation for the concentrations of particulate matter were used to evaluate the relationship between the indoor and outdoor particulate matter. These results can be used to predict both the indoor particle levels and the risk of personal exposure to airborne bacteria.
Reactive oxygen species (ROS) activity of ambient fine particles (PM2.5) measured in Seoul, Korea.
Park, Jieun; Park, Eun Ha; Schauer, James J; Yi, Seung-Muk; Heo, Jongbae
2018-05-16
Substantial increase in level of particulate matter has raised concerns in South Korea recently. Ambient particulate matter is classified as Group I carcinogen (IARC, 2013) and multiple epidemiological studies has demonstrated adverse health effects due to exposure of particulate matter. Fine particulate matter (PM 2.5 ) which has a diameter <2.5 μm is likely to penetrate deeply into lung and is known to be eliciting adverse health effects. A number of epidemiological studies have been conducted on adverse health effects of PM-related diseases and mortality rate, yet particulate matter (PM)-induced reactive oxygen species (ROS) activity at the cellular level has not been actively studied in Korea. This study assessed PM-induced oxidative potential by exposure of collected ambient PM 2.5 samples to the rat alveolar macrophage cell line. The characteristics of PM 2.5 in Korea were further characterized by linking chemical constituents and contributing sources to ROS. PM 2.5 mass concentration during the cold season was relatively higher than mass concentration during the warm season and chemical constituents except for Secondary Organic Carbon (SOC) and SO 4 2- which both showed similar trends in both the cold and cold seasons. The concentration of crustal elements was especially high during the cold season which can be an indication of long range transport of Asian dust. Water soluble organic carbon and water soluble transition metals (Cr and Zn) were also shown to be correlated to oxidative potential and metals such as As and V were shown to have a high contribution to ROS activity according to stepwise multiple linear regression. Principal Component Analysis (PCA) results identified six factors that can be interpreted as soil, mobile, industry, secondary inorganic aerosol, secondary organic aerosol and oil combustion. Moreover, through Principal Component Regression (PCR), industry, soil, mobile and SIA were shown to be statistically significant sources in a relation to ROS activity. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Adeniran, J. A.; Yusuf, R. O.; Olajire, A. A.
2017-10-01
This study aims to determine the seasonal variations and composition of suspended particulate matter in different sizes PM1.0, PM2.5, PM10 and the total suspended particles (TSP) emitted at major intra-urban traffic intersections (TIs) of Ilorin metropolis. The concentration levels of PM (PM1.0, PM2.5, PM10) obtained at the TIs during the rush hours (45.1, 77.9, and 513 μg/m3) are higher than the levels obtained for the non-rush hour periods (42.3, 62.7, and 390 μg/m3). The average on-road respiratory deposition dose (RDD) rates of PM1.0, PM2.5 and PM10 during the dry period at TIs types was found to be about 24%, 9% and 25% higher than those obtained during the wet period. Based on EF values calculated, Pb and Zn were anthropogenically-derived while Fe, Mn, Cr, Cu and Mg were of crustal source. Principal component analysis (PCA) has been applied to a set of PM data in order to determine the contribution of different sources. It was found that the main principal factors extracted from particulate emission data were related to exhaust and non-exhaust emissions such as tyre wears, oil and fuel combustion sources.
NASA Astrophysics Data System (ADS)
Karnae, Saritha; John, Kuruvilla
2011-07-01
Corpus Christi is a growing industrialized urban airshed in South Texas impacted by local emissions and regional transport of fine particulate matter (PM 2.5). Positive matrix factorization (PMF2) technique was used to evaluate particulate matter pollution in the urban airshed by estimating the types of sources and its corresponding mass contributions affecting the measured ambient PM 2.5 levels. Fine particulate matter concentrations by species measured during July 2003 through December 2008 at a PM 2.5 speciation site were used in this study. PMF2 identified eight source categories, of which secondary sulfates were the dominant source category accounting for 30.4% of the apportioned mass. The other sources identified included aged sea salt (18.5%), biomass burns (12.7%), crustal dust (10.1%), traffic (9.7%), fresh sea salt (8.1%), industrial sources (6%), and a co-mingled source of oil combustion & diesel emissions (4.6%). The apportioned PM mass showed distinct seasonal variability between source categories. The PM levels in Corpus Christi were affected by biomass burns in Mexico and Central America during April and May, sub-Saharan dust storms from Africa during the summer months, and a continental haze episode during August and September with significant transport from the highly industrialized areas of Texas and the neighboring states. Potential source contribution function (PSCF) analysis was performed and it identified source regions and the influence of long-range transport of fine particulate matter affecting this urban area.
Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Sano, Hiroyuki; Kitano, Hiroya; Saito, Rumiko; Kimura, Yutaka; Aiba, Setsuya; Oshimura, Mitsuo; Shimizu, Eiji
2015-11-09
This study aimed to investigate the effects of particulate matter (PM) on pulmonary function in schoolchildren, as well as the relationships of these effects with interleukin-8. Morning peak expiratory flow (PEF) was measured daily in 399 children during April-May 2012, and in 384 of these children during March-May 2013. PEF's association with the daily levels of suspended particulate matter (SPM) and PM < 2.5 mm (PM2.5) was estimated using a linear mixed model. Interleukin-8 promoter activity was assessed in THP-G8 cells stimulated by fallen PM collected at Tottori University Hospital during four periods (two in 2012 and two in 2013). An increase of 14.0 mg/m³ in SPM led to PEF changes of -2.16 L/min in 2012 and -0.81 L/min in 2013, respectively. An increment of 10.7 mg/m³ in PM2.5 was associated with PEF changes of -2.58 L/min in 2012 and -0.55 L/min in 2013, respectively. These associations were only significant in 2012. Interleukin-8 promoter activity was significantly higher in both periods of 2012 than in 2013. There was a significant association between pulmonary function in schoolchildren and daily levels of SPM and PM2.5, but this association may differ depending on the PM's ability to elicit interleukin-8 production.
Epidemiological analyses of hospital admissions and mortality data have indicated that adverse human health effects are associated with present-day ambient particualte matter (PM) pollution levels. However, the PM mass measurement is chemically non-specific, ignoring the fact th...
EFFECTS OF RESIDUAL OIL FLY ASH ON CARDIAC, PULMONARY, AND THERMOREGULATORY PARAMETERS IN RATS
Epidemiological studies have associated ambient levels of particulate matter (PM) with the incidence of cardiopulmonary morbidity and mortality. Additionally, elevated levels of PM have been associated with reduced lung function. More recent published data have suggested a relati...
Yu, Chao; Di Girolamo, Larry; Chen, Liangfu; Zhang, Xueying; Liu, Yang
2015-01-01
The spatial and temporal characteristics of fine particulate matter (PM2.5, particulate matter <2.5 μm in aerodynamic diameter) are increasingly being studied from satellite aerosol remote sensing data. However, cloud cover severely limits the coverage of satellite-driven PM2.5 models, and little research has been conducted on the association between cloud properties and PM2.5 levels. In this study, we analyzed the relationships between ground PM2.5 concentrations and two satellite-retrieved cloud parameters using data from the Southeastern Aerosol Research and Characterization (SEARCH) Network during 2000-2010. We found that both satellite-retrieved cloud fraction (CF) and cloud optical thickness (COT) are negatively associated with PM2.5 levels. PM2.5 speciation and meteorological analysis suggested that the main reason for these negative relationships might be the decreased secondary particle generation. Stratified analyses by season, land use type, and site location showed that seasonal impacts on this relationship are significant. These associations do not vary substantially between urban and rural sites or inland and coastal sites. The statistically significant negative associations of PM2.5 mass concentrations with CF and COT suggest that satellite-retrieved cloud parameters have the potential to serve as predictors to fill the data gap left by satellite aerosol optical depth in satellite-driven PM2.5 models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyata, Ryohei; Hiraiwa, Kunihiko; Cheng, Jui Chih
Exposure to ambient air particulate matter (particles less than 10 μm or PM{sub 10}) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM{sub 10}. New Zealand White rabbits fed with a high fat diet were subjected to balloon injury to their abdominal aorta followed by PM{sub 10}/saline exposure for 4 weeks ± lovastatin (5 mg/kg/day) treatment. PM{submore » 10} exposure accelerated balloon catheter induced plaque formation and increased intimal macrophages and lipid accumulation while lovastatin attenuated these changes and promoted smooth muscle cell recruitment into plaques. PM{sub 10} impaired vascular acetylcholine (Ach) responses and increased vasoconstriction induced by phenylephrine as assessed by wire myograph. Supplementation of nitric oxide improved the impaired Ach responses. PM{sub 10} increased the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in blood vessels and increased the plasma levels of endothelin-1 (ET-1). Incubation with specific inhibitors for iNOS, COX-2 or ET-1 in the myograph chambers significantly improved the impaired vascular function. Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM{sub 10}. Taken together, statins protect against PM{sub 10}-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties. - Highlights: • Coarse particulate matter (PM{sub 10}) accelerated balloon injury-induced plaque formation. • Lovastatin decreased intimal macrophages, lipid accumulation, and intimal area. • Lovastatin promoted smooth muscle cell recruitment into plaques. • Lovastatin reduced the expression of vasoactive mediators (iNOS, COX-2, and ET-1). • Lovastatin did not reduce blood lipid levels in PM{sub 10}-exposed rabbits.« less
Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming
2011-01-01
Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005–2007. PMID:21776223
Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming
2011-06-01
Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005-2007.
RATIONALE: Exposure to ambient particulate matter (PM) and ozone has been associated with cardiovascular disease (CVD). However, the mechanisms linking PM and ozone exposure to CVD remain poorly understood .OBJECTIVE: This study explored associations between short-term exposures ...
PARTICIPANT RECRUITMENT AND RETENTION FOR THE NERL RTP PM PANEL STUDY
EPA's National Exposure Research Laboratory (NERL) completed a 12 month Particulate Matter (PM) Panel Study in the Research Triangle Park, NC area in May 2001. A primary goal of the study was to compare PM levels measured at an ambient and residential sites with those from per...
ABSTRACT BODY: Epidemiological studies have shown that cardiovascular morbidity and mortality are associated with exposure to elevated levels of ambient particulate matter (PM), notably in people with pre-existing cardiopulmonary disease. To better understand the mechanisms of PM...
Lv, Chenguang; Wang, Xianfeng; Pang, Na; Wang, Lanzhong; Wang, Yuping; Xu, Tengfei; Zhang, Yu; Zhou, Tianran; Li, Wei
2017-06-01
This study aims to examine the effect of short-term changes in the concentration of particulate matter of diameter ≤2.5 µm (PM 2.5 ) and ≤10 µm (PM 10 ) on pediatric hospital admissions for pneumonia in Jinan, China. It explores confoundings factors of weather, season, and chemical pollutants. Information on pediatric hospital admissions for pneumonia in 2014 was extracted from the database of Jinan Qilu Hospital. The relative risk of pediatric hospital admissions for pneumonia was assessed using a case-crossover approach, controlling weather variables, day of the week, and seasonality. The single-pollutant model demonstrated that increased risk of pediatric hospital admissions for pneumonia was significantly associated with elevated PM 2.5 concentrations the day before hospital admission and elevated PM 10 concentrations 2 days before hospital admission. An increment of 10 μg/m 3 in PM 2.5 and PM 10 was correlated with a 6% (95% CI 1.02--1.10) and 4% (95% CI 1.00-1.08) rise in number of admissions for pneumonia, respectively. In two pollutant models, PM 2.5 and PM 10 remained significant after inclusion of sulfur dioxide or nitrogen dioxide but not carbon monoxide. This study demonstrated that short-term exposure to atmospheric particulate matter (PM 2.5 /PM 10 ) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China. This study demonstrated that short-term exposure to atmospheric particulate matter (PM 2.5 /PM 10 ) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China, and suggested the relevance of pollutant exposure levels and their effects. As a specific group, children are sensitive to airborne particulate matter. This study estimated the short-term effects attribute to other air pollutants to provide references for relevant studies.
Temporal variation of fine and coarse particulate matter sources in Jeddah, Saudi Arabia
Lim, Chris C.; Thurston, George D.; Shamy, Magdy; Alghamdi, Mansour; Khoder, Mamdouh; Mohorjy, Abdullah M.; Alkhalaf, Abdulrahman K.; Brocato, Jason; Chen, Lung Chi; Costa, Max
2017-01-01
This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (PM2.5) and coarse (PM2.5–10) particulate matter mass concentrations, elemental constituents, and potential source origins in Jeddah, Saudi Arabia. Air quality samples were collected over one year, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM2.5 (21.9 µg/m3) and PM10 (107.8 µg/m3) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM2.5 (10 µg/m3) and PM10 (20 µg/m3), respectively. Similar to other Middle Eastern locales, PM2.5–10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM2.5 and PM2.5–10: 1) soil/road dust; 2) incineration; and 3) traffic; and for PM2.5 only, 4) residual oil burning. Soil/road dust accounted for a major portion of both the PM2.5 (27%) and PM2.5–10 (77%) mass, and the largest source contributor for PM2.5 was from residual oil burning (63%). Temporal variations of PM2.5–10 and PM2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency), and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM2.5 and PM2.5–10 masses in this city may have implications regarding the toxicity of these particles versus those in the western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting. PMID:28635552
Particulate matter emissions of different brands of mentholated cigarettes.
Gerharz, Julia; Bendels, Michael H K; Braun, Markus; Klingelhöfer, Doris; Groneberg, David A; Mueller, Ruth
2018-06-01
Inhaling particulate matter (PM) in environmental tobacco smoke (ETS) endangers the health of nonsmokers. Menthol, an additive in cigarettes, attenuates respiratory irritation of tobacco smoke. It reduces perceptibility of smoke and therefore passive smokers may inhale ETS unnoticed. To investigate a possible effect of menthol on PM concentrations (PM 10 , PM 2.5 , and PM 1 ), ETS of four mentholated cigarette brands (Elixyr Menthol, Winston Menthol, Reyno Classic, and Pall Mall Menthol Blast) with varying menthol content was analyzed. ETS was generated in a standardized way using an automatic environmental tobacco smoke emitter (AETSE), followed by laser aerosol spectrometry. This analysis shows that the tested cigarette brands, despite having different menthol concentrations, do not show differences with regard to PM emissions, with the exception of Reyno Classic, which shows an increased emission, although the menthol level ranged in the midfield. More than 90% of the emitted particles had a size smaller than or equal to 1 µm. Regardless of the menthol level, the count median diameter (CMD) and the mass median diameter (MMD) were found to be 0.3 µm and 0.5 µm, respectively. These results point out that there is no effect of menthol on PM emission and that other additives might influence the increased PM emission of Reyno Classic. Particulate matter (PM) in ETS endangers the health of nonsmokers and smokers. This study considers the effect of menthol, an additive in cigarettes, on PM emissions. Does menthol increase the amount of PM? Due to the exposure to secondhand smoke nearly 900,000 people die each year worldwide. The aim of the study is to measure the particle concentration (L -1 ), mass concentration (µg m -3 ), and dust mass fractions shown as PM 10 , PM 2.5 , and PM 1 of five different cigarette brands, including four with different menthol concentrations and one menthol-free reference cigarette, in a well-established standardized system.
Snow, Samantha J; De Vizcaya-Ruiz, Andrea; Osornio-Vargas, Alvaro; Thomas, Ronald F; Schladweiler, Mette C; McGee, John; Kodavanti, Urmila P
2014-01-01
Particulate matter (PM)-associated metals can contribute to adverse cardiopulmonary effects following exposure to air pollution. The aim of this study was to investigate how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity differences. Male Wistar Kyoto rats (14 wk) were intratracheally instilled with chemically characterized PM10 and PM2.5 from the north and PM10 from the south of Mexico City (3 mg/kg). Both water-soluble and acid-leachable fractions contained several metals, with levels generally higher in PM10 South. The insoluble and total, but not soluble, fractions of all PM induced pulmonary damage that was indicated by significant increases in neutrophilic inflammation, and several lung injury biomarkers including total protein, albumin, lactate dehydrogenase activity, and γ-glutamyl transferase activity 24 and 72 h postexposure. PM10 North and PM2.5 North also significantly decreased levels of the antioxidant ascorbic acid. Elevation in lung mRNA biomarkers of inflammation (tumor necrosis factor [TNF]-α and macrophage inflammatory protein [MIP]-2), oxidative stress (heme oxygenase [HO]-1, lectin-like oxidized low-density lipoprotein receptor [LOX]-1, and inducibile nitric oxide synthase [iNOS]), and thrombosis (tissue factor [TF] and plasminogen activator inhibitor [PAI]-1), as well as reduced levels of fibrinolytic protein tissue plasminogen activator (tPA), further indicated pulmonary injury following PM exposure. These responses were more pronounced with PM10 South (PM10 South > PM10 North > PM2.5 North), which contained higher levels of redox-active transition metals that may have contributed to specific differences in selected lung gene markers. These findings provide evidence that surface chemistry of the PM core and not the water-soluble fraction played an important role in regulating in vivo pulmonary toxicity responses to Mexico City PM.
Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan
2016-01-01
To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing.
Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan
2016-01-01
To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p < 0.01), NO2 (p < 0.01), PM10 (p < 0.01), SO2(p < 0.01), CO (p < 0.01), and relative humidity (p < 0.05) were significant factors that determine airborne fungal community composition. The results suggest that diverse airborne fungal communities are associated with particulate matters and may provide reliable data for studying the responses of human body to the increasing level of air pollution in Beijing. PMID:27148180
A baseline evaluation of casino air quality after enactment of Nevada's Clean Indoor Air Act.
York, Nancy L; Lee, Kiyoung
2010-01-01
The U.S. Surgeon General reports that there is no safe level of exposure to secondhand smoke (SHS). The purpose of this study was to measure levels of fine particulate matter in nonsmoking casino restaurants after enactment of Nevada's Clean Indoor Air Act (NCIAA). Fine particulate matter<2.5 microm in diameter (PM2.5) concentrations were measured in 16 casino hotel restaurants and gaming areas for a total of 32 venues. A battery-operated SidePak aerosol monitor was discreetly used for at least 30 min in each venue. Nonsmoking restaurant PM2.5 levels ranged from 5 to 101 microg/m3 (M=31; SD=22.9) while gaming areas ranged from 20 to 73 microg/m3 (M=48; SD=15.9). There was a significant difference in PM2.5 between restaurants and gaming areas, t30=-2.54, p=.017. There was also a strong correlation between the levels of restaurant PM2.5 and gaming area PM2.5 (r=.71; p=.005). Fine PM2.5 in all casino areas was above what the Environmental Protection Agency recommends as healthy. This information can be used to educate policy decision makers when discussing potential strengthening of the law.
Cox, Louis A; Popken, Douglas A; Ricci, Paolo F
2013-08-01
Recent studies have indicated that reducing particulate pollution would substantially reduce average daily mortality rates, prolonging lives, especially among the elderly (age ≥ 75). These benefits are projected by statistical models of significant positive associations between levels of fine particulate matter (PM2.5) levels and daily mortality rates. We examine the empirical correspondence between changes in average PM2.5 levels and temperatures from 1999 to 2000, and corresponding changes in average daily mortality rates, in each of 100 U.S. cities in the National Mortality and Morbidity Air Pollution Study (NMMAPS) data base, which has extensive PM2.5, temperature, and mortality data for those 2 years. Increases in average daily temperatures appear to significantly reduce average daily mortality rates, as expected from previous research. Unexpectedly, reductions in PM2.5 do not appear to cause any reductions in mortality rates. PM2.5 and mortality rates are both elevated on cold winter days, creating a significant positive statistical relation between their levels, but we find no evidence that reductions in PM2.5 concentrations cause reductions in mortality rates. For all concerned, it is crucial to use causal relations, rather than statistical associations, to project the changes in human health risks due to interventions such as reductions in particulate air pollution. Copyright © 2013 Elsevier Inc. All rights reserved.
Hasheminassab, Sina; Daher, Nancy; Shafer, Martin M.; Schauer, James J.; Delfino, Ralph J.; Sioutas, Constantinos
2014-01-01
Concurrent indoor and outdoor measurements of fine particulate matter (PM2.5) were conducted at three retirement homes in the Los Angeles Basin during two separate phases (cold and warm) between 2005 and 2006. Indoor-to-outdoor relationships of PM2.5 chemical constituents were determined and sources of indoor and outdoor PM2.5 were evaluated using a molecular marker-based chemical mass balance (MM-CMB) model. Indoor levels of elemental carbon (EC) along with metals and trace elements were found to be significantly affected by outdoor sources. EC, in particular, displayed very high indoor-to-outdoor (I/O) mass ratios accompanied by strong I/O correlations, illustrating the significant impact of outdoor sources on indoor levels of EC. Similarly, indoor levels of polycyclic aromatic hydrocarbons (PAHs), hopanes, and steranes were strongly correlated with their outdoor components and displayed I/O ratios close to unity. On the other hand, concentrations of n-alkanes and organic acids inside the retirement communities were dominated by indoor sources (e.g. food cooking and consumer products), as indicated by their I/O ratios, which exceeded unity. Source apportionment results revealed that vehicular emissions were the major contributor to both indoor and outdoor PM2.5, accounting for 39 and 46% of total mass, respectively. Moreover, the contribution of vehicular sources to indoor levels was generally comparable to its corresponding outdoor estimate. Other water-insoluble organic matter (other WIOM), which accounts for emissions from uncharacterized primary biogenic sources, displayed a wider range of contributions, varying from 2 to 73% of PM2.5, across all sites and phases of the study. Lastly, higher indoor than outdoor contribution of other water-soluble organic matter (other WSOM) was evident at some of the sites, suggesting the production of secondary aerosols as well as direct emissions from primary sources (including cleaning or other consumer products) at the indoor environments. PMID:24880542
Song, Lei; Li, Dan; Gu, Yue; Li, Xiaoping; Peng, Liping
2016-10-01
Epidemiological studies show that particulate matter (PM) with an aerodynamic diameter ≤ 2.5 μm (PM2.5) is associated with cardiorespiratory diseases via the induction of excessive oxidative stress. However, the precise mechanism underlying PM2.5-mediated oxidative stress injury has not been fully elucidated. Accumulating evidence has indicated the microRNA let-7 family might play a role in PM-mediated pathological processes. In this study, we investigated the role of let-7a in oxidative stress and cell injury in human bronchial epithelial BEAS2B (B2B) cells after PM2.5 exposure. The let-7a level was the most significantly decreased in B2B cells after PM2.5 exposure. The overexpression of let-7a suppressed intracellular reactive oxygen species levels and the percentage of apoptotic cells after PM2.5 exposure, while the let-7a level decreased arginase 2 (ARG2) mRNA and protein levels in B2B cells by directly targeting the ARG2 3'-untranslated region. ARG2 expression was upregulated in B2B cells during PM2.5 treatment, and ARG2 knockdown could remarkably reduce oxidative stress and cellular injury. Moreover, its restoration could abrogate the protective effects of let-7a against PM2.5-induced injury. In conclusion, let-7a decreases and ARG2 increases resulting from PM2.5 exposure may exacerbate oxidative stress, cell injury and apoptosis of B2B cells. The let-7a/ARG2 axis is a likely therapeutic target for PM2.5-induced airway epithelial injury. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wahid, Sharifah Norhuda Syed; Ujang, Suriyati
2015-02-01
Daily concentration of particulate matter with aerodynamic diameter less than 10 μm (PM10) could be very harmful to human health such as respiratory and cardiovascular diseases. The purpose of this paper is to describe on the experiences of air pollutants in the state of Pahang, Malaysia during the first quarter of year 2014. Data were gathered from available automatic air quality monitoring stations at Balok Baru, Pahang through the assistance from the Department of Environment. Cumulative sum technique shows that a change occurred at March, 8th with 88 μg/ m3, moderate air quality level. This change point indicated that the PM10 level started to have a potential in moderate or worse level. In addition, time series regression analysis shows that the trend of daily concentrations of Balok Baru station was an upward trend and for additional day, the PM10 level was increased by 0.1117 μg/ m3. It is hoped that this study will give a significant contribution for future researcher in the area of the study on the risk of PM10 or other types of air pollutant to air quality and also human health.
Fine Particulate Matter Concentrations in Urban Chinese Cities, 2005-2016: A Systematic Review.
He, Mike Z; Zeng, Xiange; Zhang, Kaiyue; Kinney, Patrick L
2017-02-14
Background : Particulate matter pollution has become a growing health concern over the past few decades globally. The problem is especially evident in China, where particulate matter levels prior to 2013 are publically unavailable. We conducted a systematic review of scientific literature that reported fine particulate matter (PM 2.5 ) concentrations in different regions of China from 2005 to 2016. Methods : We searched for English articles in PubMed and Embase and for Chinese articles in the China National Knowledge Infrastructure (CNKI). We evaluated the studies overall and categorized the collected data into six geographical regions and three economic regions. Results : The mean (SD) PM 2.5 concentration, weighted by the number of sampling days, was 60.64 (33.27) μg/m³ for all geographic regions and 71.99 (30.20) μg/m³ for all economic regions. A one-way ANOVA shows statistically significant differences in PM 2.5 concentrations between the various geographic regions (F = 14.91, p < 0.0001) and the three economic regions (F = 4.55, p = 0.01). Conclusions: This review identifies quantifiable differences in fine particulate matter concentrations across regions of China. The highest levels of fine particulate matter were found in the northern and northwestern regions and especially Beijing. The high percentage of data points exceeding current federal regulation standards suggests that fine particulate matter pollution remains a huge problem for China. As pre-2013 emissions data remain largely unavailable, we hope that the data aggregated from this systematic review can be incorporated into current and future models for more accurate historical PM 2.5 estimates.
NASA Astrophysics Data System (ADS)
Chien, Lung-Chang; Alamgir, Hassanat; Yu, Hwa-Lung
2015-04-01
Potentially larger regional effects of climate change have been revealed on the elevation of fine particulate matter (≤ 2.5 µg in diameter; PM2.5) in the U.S. In addition, recent research supports a link between diabetes and PM2.5 in both laboratory and epidemiology studies. However, research investigating the potential relationship of the spatial vulnerability of diabetes to concomitant PM2.5 levels is still sparse, and the level of diabetes geographic disparities attributed to PM2.5 levels has yet to be evaluated. We conducted a Bayesian structured additive regression modeling approach to determine whether long-term exposure to PM2.5 is spatially associated with diabetes prevalence after adjusting for the socioeconomic status of county residents. This study utilizes the following data sources from 2004-2010: the Behavioral Risk Factor Surveillance System, the American Community Survey, and the Environmental Protection Agency. We also conducted spatial comparisons with low, median-low, median-high, and high levels of PM2.5 concentrations. When PM2.5 concentrations increased 1 µg/m3, the increase in the relative risk percentage for diabetes ranged from -5.47% (95% credible interval = -6.14, -4.77) to 2.34% (95% CI = 2.01, 2.70), where 1,323 of 3,109 counties (42.55%) displayed diabetes vulnerability with significantly positive relative risk percentages. These vulnerable counties are more likely located in the Southeast, Central, and South Regions of the U.S. A similar spatial vulnerability pattern for concentrations of low PM2.5 levels was also present in these same three regions. A clear cluster of vulnerable counties at median-high PM2.5 level was found in Michigan. This study identifies the spatial vulnerability of diabetes prevalence associated with PM2.5, and thereby provides the evidence needed to prompt and establish enhanced surveillance that can monitor diabetes vulnerability in areas with low PM2.5 pollution.
Underground and ground-level particulate matter concentrations in an Italian metro system
NASA Astrophysics Data System (ADS)
Cartenì, Armando; Cascetta, Furio; Campana, Stefano
2015-01-01
All around the world, many studies and experimental results have assessed elevated concentrations of Particulate Matter (PM) in underground metro systems, with non-negligible implications for human health due to protracted exposure to fine particles. Starting from this consideration, an intensive particulate sampling campaign was carried out in January 2014 measuring the PM concentrations in the Naples (Italy) Metro Line 1, both at station platforms and inside trains. Naples Metro Line 1 is about 18 km long, with 17 stations (3 ground-level and 14 below-ground ones). Experimental results show that the average PM10 concentrations measured in the underground station platforms range between 172 and 262 μg/m3 whilst the average PM2.5 concentrations range between 45 and 60 μg/m3. By contrast, in ground-level stations no significant difference between stations platforms and urban environment measurements was observed. Furthermore, a direct correlation between trains passage and PM concentrations was observed, with an increase up to 42% above the average value. This correlation is possibly caused by the re-suspension of the particles due to the turbulence induced by trains. The main original finding was the real-time estimations of PM levels inside the trains travelling both in ground-level and underground sections of Line 1. The results show that high concentrations of both PM10 (average values between 58 μg/m3 and 138 μg/m3) and PM2.5 (average values between 18 μg/m3 and 36 μg/m3) were also measured inside trains. Furthermore, measurements show that windows left open on trains caused the increase in PM concentrations inside trains in the underground section, while in the ground-level section the clean air entering the trains produced an environmental "washing effect". Finally, it was estimated that every passenger spends on average about 70 min per day exposed to high levels of PM.
Decreasing trends of suspended particulate matter and PM2.5 concentrations in Tokyo, 1990-2010.
Hara, Kunio; Homma, Junichi; Tamura, Kenji; Inoue, Mariko; Karita, Kanae; Yano, Eiji
2013-06-01
In Tokyo, the annual average suspended particulate matter (SPM) and PM2.5 concentrations have decreased in the past two decades. The present study quantitatively evaluated these decreasing trends using data from air-pollution monitoring stations. Annual SPM and PM2.5 levels at 83 monitoring stations and hourly SPM and PM2.5 levels at four monitoring stations in Tokyo, operated by the Tokyo Metropolitan Government, were used for analysis, together with levels of co-pollutants and meteorological conditions. Traffic volume in Tokyo was calculated from the total traveling distance of vehicles as reported by the Ministry of Land, Infrastructure, Transport, and Tourism. High positive correlations between SPM levels and nitrogen oxide levels, sulfur dioxide levels, and traffic volume were determined. The annual average SPM concentration declined by 62.6%from 59.4 microg/m3 in 1994 to 22.2 microg/m3 in 2010, and PM2.5 concentration also declined by 49.8% from 29.3 microg/m3 in 2001 to 14.7 microg/m3 in 2010. Likewise, the frequencies of hourly average SPM and PM2.5 concentrations exceeding the daily guideline values have significantly decreased since 2001 and the hourly average SPM or PM2.5 concentrations per traffic volume for each time period have also significantly decreased since 2001. However SPM and PM2.5 concentrations increased at some monitoring stations between 2004 and 2006 and from 2009 despite strengthened environmental regulations and improvements in vehicle engine performance. The annual average SPM and PM2.5 concentrations were positively correlated with traffic volumes and in particular with the volume of diesel trucks. These results suggest that the decreasing levels of SPM and PM2.5 in Tokyo may be attributable to decreased traffic volumes, along with the effects of stricter governmental regulation and improvements to vehicle engine performance, including the fitting of devices for exhaust emission reduction.
Airborne particulate matter in school classrooms of northern Italy.
Rovelli, Sabrina; Cattaneo, Andrea; Nuzzi, Camilla P; Spinazzè, Andrea; Piazza, Silvia; Carrer, Paolo; Cavallo, Domenico M
2014-01-27
Indoor size-fractioned particulate matter (PM) was measured in seven schools in Milan, to characterize their concentration levels in classrooms, compare the measured concentrations with the recommended guideline values, and provide a preliminary assessment of the efficacy of the intervention measures, based on the guidelines developed by the Italian Ministry of Healthand applied to mitigate exposure to undesirable air pollutants. Indoor sampling was performed from Monday morning to Friday afternoon in three classrooms of each school and was repeated in winter 2011-2012 and 2012-2013. Simultaneously, PM2.5 samples were also collected outdoors. Two different photometers were used to collect the PM continuous data, which were corrected a posteriori using simultaneous gravimetric PM2.5 measurements. Furthermore, the concentrations of carbon dioxide (CO2) were monitored and used to determine the Air Exchange Rates in the classrooms. The results revealed poor IAQ in the school environment. In several cases, the PM2.5 and PM10 24 h concentrations exceeded the 24 h guideline values established by the World Health Organization (WHO). In addition, the indoor CO2 levels often surpassed the CO2 ASHRAE Standard. Our findings confirmed that important indoor sources (human movements, personal clouds, cleaning activities) emitted coarse particles, markedly increasing the measured PM during school hours. In general, the mean PM2.5 indoor concentrations were lower than the average outdoor PM2.5 levels, with I/O ratios generally <1. Fine PM was less affected by indoor sources, exerting a major impact on the PM1-2.5 fraction. Over half of the indoor fine particles were estimated to originate from outdoors. To a first approximation, the intervention proposed to reduce indoor particle levels did not seem to significantly influence the indoor fine PM concentrations. Conversely, the frequent opening of doors and windows appeared to significantly contribute to the reduction of the average indoor CO2 levels.
Indoor Air Quality in the Metro System in North Taiwan.
Chen, Ying-Yi; Sung, Fung-Chang; Chen, Mei-Lien; Mao, I-Fang; Lu, Chung-Yen
2016-12-02
Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO₂), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O₃), airborne particulate matter (PM 10 and PM 2.5 ), bacteria and fungi. Results showed that the CO₂, CO and HCHO levels met the stipulated standards as regulated by Taiwan's Indoor Air Quality Management Act (TIAQMA). However, elevated PM 10 and PM 2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan's Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations.
Hwang, Su-Lun; Guo, Su-Er; Chi, Miao-Ching; Chou, Chiang-Ting; Lin, Yu-Ching; Lin, Chieh-Mo; Chou, Yen-Li
2016-01-01
Objectives: This paper reports on the findings of a population-based study to evaluate the relationship between atmospheric fine particulate matter (PM2.5) levels and hospital admissions for chronic obstructive pulmonary disease (COPD) in southwestern Taiwan over a three-year period, 2008–2010. Methods: Data on hospital admissions for COPD and PM2.5 levels were obtained from the National Health Insurance Research database (NHIRD) and the Environmental Protection Administration from 2008 to 2010, respectively. The lag structure of relative risks (RRs) of hospital admissions for COPD was estimated using a Poisson regression model. Results: During the study period, the overall average hospitalization rate of COPD and mean 24-h average level of PM2.5 was 0.18% and 39.37 μg/m3, respectively. There were seasonal variations in PM2.5 concentrations in southwestern Taiwan, with higher PM2.5 concentrations in both spring (average: 48.54 μg/m3) and winter (49.96 μg/m3) than in summer (25.89 μg/m3) and autumn (33.37 μg/m3). Increased COPD admissions were significantly associated with PM2.5 in both spring (February–April) and winter (October–January), with the relative risks (RRs) for every 10 μg/m3 increase in PM2.5 being 1.25 (95% CI = 1.22–1.27) and 1.24 (95% CI = 1.23–1.26), respectively, at a lag zero days (i.e., no lag days). Lag effects on COPD admissions were observed for PM2.5, with the elevated RRs beginning at lag zero days and larger RRs estimates tending to occur at longer lags (up to six days, i.e., lag 0–5 days). Conclusions: In general, findings reveal an association between atmospheric fine particulate matter (PM2.5) and hospital admissions for COPD in southwestern Taiwan, especially during both spring and winter seasons. PMID:27023589
Sajjadi, Seyed Ali; Zolfaghari, Ghasem; Adab, Hamed; Allahabadi, Ahmad; Delsouz, Mehri
2017-01-01
This paper presented the levels of PM 2.5 and PM 10 in different stations at the city of Sabzevar, Iran. Furthermore, this study was an attempt to evaluate spatial interpolation methods for determining the PM 2.5 and PM 10 concentrations in the city of Sabzevar. Particulate matters were measured by Haz-Dust EPAM at 48 stations. Then, four interpolating models, including Radial Basis Functions (RBF), Inverse Distance Weighting (IDW), Ordinary Kriging (OK), and Universal Kriging (UK) were used to investigate the status of air pollution in the city. Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were employed to compare the four models. The results showed that the PM 2.5 concentrations in the stations were between 10 and 500 μg/m 3 . Furthermore, the PM 10 concentrations for all of 48 stations ranged from 20 to 1500 μg/m 3 . The concentrations obtained for the period of nine months were greater than the standard limits. There was difference in the values of MAPE, RMSE, MBE, and MAE. The results indicated that the MAPE in IDW method was lower than other methods: (41.05 for PM 2.5 and 25.89 for PM 10 ). The best interpolation method for the particulate matter (PM 2.5 and PM 10 ) seemed to be IDW method. •The PM 10 and PM 2.5 concentration measurements were performed in the period of warm and risky in terms of particulate matter at 2016.•Concentrations of PM 2.5 and PM 10 were measured by a monitoring device, environmental dust model Haz-Dust EPAM 5000.•Interpolation is used to convert data from observation points to continuous fields to compare spatial patterns sampled by these measurements with spatial patterns of other spatial entities.
Effect of fireworks display on perchlorate in air aerosols during the Spring Festival
NASA Astrophysics Data System (ADS)
Shi, Yali; Zhang, Ning; Gao, Jianmin; Li, Xin; Cai, Yaqi
2011-02-01
Perchlorate is regarded as a new emerging persistent inorganic environmental contaminant. It can result in important neurodevelopmental deficits and goiter in infants and children because of its inhibition of iodine uptake into the thyroid tissue. Furthermore, its presence in the human body can cause improper regulation of metabolism for adults. It is often used as ingredient in the production of fireworks. So fireworks display may influence the perchlorate levels in atmospheric particulate matter (PM). In this paper perchlorate was determined in air aerosol samples (Inhalable particulate matter (PM10) and larger particulate matter (PM10-100)) collected from two locations (Lanzhou City and Yuzhong County) in Gansu province over a month period (February 1rst to March 4th) during the Spring Festival (February 18th) in 2007 in order to study the effect of fireworks display on perchlorate in air aerosol. The results showed that different concentrations of perchlorate were detected in almost all samples, ranging from
NASA Astrophysics Data System (ADS)
Xu, J.-W.; Martin, R. V.; van Donkelaar, A.; Kim, J.; Choi, M.; Zhang, Q.; Geng, G.; Liu, Y.; Ma, Z.; Huang, L.; Wang, Y.; Chen, H.; Che, H.; Lin, P.; Lin, N.
2015-11-01
We determine and interpret fine particulate matter (PM2.5) concentrations in eastern China for January to December 2013 at a horizontal resolution of 6 km from aerosol optical depth (AOD) retrieved from the Korean geostationary ocean color imager (GOCI) satellite instrument. We implement a set of filters to minimize cloud contamination in GOCI AOD. Evaluation of filtered GOCI AOD with AOD from the Aerosol Robotic Network (AERONET) indicates significant agreement with mean fractional bias (MFB) in Beijing of 6.7 % and northern Taiwan of -1.2 %. We use a global chemical transport model (GEOS-Chem) to relate the total column AOD to the near-surface PM2.5. The simulated PM2.5 / AOD ratio exhibits high consistency with ground-based measurements in Taiwan (MFB = -0.52 %) and Beijing (MFB = -8.0 %). We evaluate the satellite-derived PM2.5 versus the ground-level PM2.5 in 2013 measured by the China Environmental Monitoring Center. Significant agreement is found between GOCI-derived PM2.5 and in situ observations in both annual averages (r2 = 0.66, N = 494) and monthly averages (relative RMSE = 18.3 %), indicating GOCI provides valuable data for air quality studies in Northeast Asia. The GEOS-Chem simulated chemical composition of GOCI-derived PM2.5 reveals that secondary inorganics (SO42-, NO3-, NH4+) and organic matter are the most significant components. Biofuel emissions in northern China for heating increase the concentration of organic matter in winter. The population-weighted GOCI-derived PM2.5 over eastern China for 2013 is 53.8 μg m-3, with 400 million residents in regions that exceed the Interim Target-1 of the World Health Organization.
A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects.
Mukherjee, Arideep; Agrawal, Madhoolika
Fine particulate matter (PM) in the ambient air is implicated in a variety of human health issues throughout the globe. Regulation of fine PM in the atmosphere requires information on the dimension of the problem with respect to variations in concentrations and sources. To understand the current status of fine particles in the atmosphere and their potential harmful health effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 2000 to evaluate the global scenario of the PM 2.5 (particles <2.5 μm in aerodynamic diameter), its exceedance of national and international standards, sources, mechanism of toxicity, and harmful health effects of PM 2.5 and its components. PM 2.5 levels and exceedances of national and international standards were several times higher in Asian countries, while levels in Europe and USA were mostly well below the respective standards. Vehicular traffic has a significant influence on PM 2.5 levels in urban areas; followed by combustion activities (biomass, industrial, and waste burning) and road dust. In urban atmosphere, fine particles are mostly associated with different health effects with old aged people, pregnant women, and more so children being the most susceptible ones. Fine PM chemical constituents severely effect health due to their carcinogenic or mutagenic nature. Most of the research indicated an exceedance of fine PM level of the standards with a diverse array of health effects based on PM 2.5 chemical constituents. Emission reduction policies with epidemiological studies are needed to understand the benefits of sustainable control measures for fine PM mitigation.
Effects of Urban Landscape Pattern on PM2.5 Pollution—A Beijing Case Study
Wu, Jiansheng; Xie, Wudan; Li, Weifeng; Li, Jiacheng
2015-01-01
PM2.5 refers to particulate matter (PM) in air that is less than 2.5μm in aerodynamic diameter, which has negative effects on air quality and human health. PM2.5 is the main pollutant source in haze occurring in Beijing, and it also has caused many problems in other cities. Previous studies have focused mostly on the relationship between land use and air quality, but less research has specifically explored the effects of urban landscape patterns on PM2.5. This study considered the rapidly growing and heavily polluted Beijing, China. To better understand the impact of urban landscape pattern on PM2.5 pollution, five landscape metrics including PLAND, PD, ED, SHEI, and CONTAG were applied in the study. Further, other data, such as street networks, population density, and elevation considered as factors influencing PM2.5, were obtained through RS and GIS. By means of correlation analysis and stepwise multiple regression, the effects of landscape pattern on PM2.5 concentration was explored. The results showed that (1) at class-level, vegetation and water were significant landscape components in reducing PM2.5 concentration, while cropland played a special role in PM2.5 concentration; (2) landscape configuration (ED and PD) features at class-level had obvious effects on particulate matter; and (3) at the landscape-level, the evenness (SHEI) and fragmentation (CONTAG) of the whole landscape related closely with PM2.5 concentration. Results of this study could expand our understanding of the role of urban landscape pattern on PM2.5 and provide useful information for urban planning. PMID:26565799
Effects of Urban Landscape Pattern on PM2.5 Pollution--A Beijing Case Study.
Wu, Jiansheng; Xie, Wudan; Li, Weifeng; Li, Jiacheng
2015-01-01
PM2.5 refers to particulate matter (PM) in air that is less than 2.5 μm in aerodynamic diameter, which has negative effects on air quality and human health. PM2.5 is the main pollutant source in haze occurring in Beijing, and it also has caused many problems in other cities. Previous studies have focused mostly on the relationship between land use and air quality, but less research has specifically explored the effects of urban landscape patterns on PM2.5. This study considered the rapidly growing and heavily polluted Beijing, China. To better understand the impact of urban landscape pattern on PM2.5 pollution, five landscape metrics including PLAND, PD, ED, SHEI, and CONTAG were applied in the study. Further, other data, such as street networks, population density, and elevation considered as factors influencing PM2.5, were obtained through RS and GIS. By means of correlation analysis and stepwise multiple regression, the effects of landscape pattern on PM2.5 concentration was explored. The results showed that (1) at class-level, vegetation and water were significant landscape components in reducing PM2.5 concentration, while cropland played a special role in PM2.5 concentration; (2) landscape configuration (ED and PD) features at class-level had obvious effects on particulate matter; and (3) at the landscape-level, the evenness (SHEI) and fragmentation (CONTAG) of the whole landscape related closely with PM2.5 concentration. Results of this study could expand our understanding of the role of urban landscape pattern on PM2.5 and provide useful information for urban planning.
Multicontaminant air pollution in Chinese cities
Han, Lijian; Zhou, Weiqi; Pickett, Steward TA; Li, Weifeng; Qian, Yuguo
2018-01-01
Abstract Objective To investigate multicontaminant air pollution in Chinese cities, to quantify the urban population affected and to explore the relationship between air pollution and urban population size. Methods We obtained data for 155 cities with 276 million inhabitants for 2014 from China's air quality monitoring network on concentrations of fine particulate matter measuring under 2.5 μm (PM2.5), coarse particulate matter measuring 2.5 to 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2) and ozone (O3). Concentrations were considered as high, if they exceeded World Health Organization (WHO) guideline limits. Findings Overall, 51% (142 million) of the study population was exposed to mean annual multicontaminant concentrations above WHO limits – east China and the megacities were worst affected. High daily levels of four-contaminant mixtures of PM2.5, PM10, SO2 and O3 and PM2.5, PM10, SO2 and NO2 occurred on up to 110 days in 2014 in many cities, mainly in Shandong and Hebei Provinces. High daily levels of PM2.5, PM10 and SO2 occurred on over 146 days in 110 cities, mainly in east and central China. High daily levels of mixtures of PM2.5 and PM10, PM2.5 and SO2, and PM10 and SO2 occurred on over 146 days in 145 cities, mainly in east China. Surprisingly, multicontaminant air pollution was less frequent in cities with populations over 10 million than in smaller cities. Conclusion Multicontaminant air pollution was common in Chinese cities. A shift from single-contaminant to multicontaminant evaluations of the health effects of air pollution is needed. China should implement protective measures during future urbanization. PMID:29695880
Osornio-Vargas, Alvaro R; Bonner, James C; Alfaro-Moreno, Ernesto; Martínez, Leticia; García-Cuellar, Claudia; Ponce-de-León Rosales, Sergio; Miranda, Javier; Rosas, Irma
2003-01-01
Exposure to urban airborne particulate matter (PM) is associated with adverse health effects. We previously reported that the cytotoxic and proinflammatory effects of Mexico City PM10 (less than or equal to 10 micro m mean aerodynamic diameter) are determined by transition metals and endotoxins associated with these particles. However, PM2.5 (less than or equal to 2.5 micro m mean aerodynamic diameter) could be more important as a human health risk because this smaller PM has the potential to reach the distal lung after inhalation. In this study, we compared the cytotoxic and proinflammatory effects of Mexico City PM10 with those of PM2.5 using the murine monocytic J774A.1 cell line in vitro. PMs were collected from the northern zone or the southeastern zone of Mexico City. Elemental composition and bacterial endotoxin on PMs were measured. Tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) production by J774A.1 cells was measured in the presence or absence of recombinant endotoxin-neutralizing protein (rENP). Both northern and southeastern PMs contained endotoxin and a variety of transition metals. Southeastern PM10 contained the highest endotoxin levels, 2-fold higher than that in northern PM10. Northern and southeastern PM2.5 contained the lowest endotoxin levels. Accordingly, southeastern PM10 was the most potent in causing secretion of the proinflammatory cytokines TNF-alpha and IL-6. All PM2.5 and PM10 samples caused cytotoxicity, but northern PMs were the most toxic. Cytokine secretion induced by southeastern PM10 was reduced 50-75% by rENP. These results indicate major differences in PM10 and PM2.5. PM2.5 induces cytotoxicity in vitro through an endotoxin-independent mechanism that is likely mediated by transition metals. In contrast, PM10 with relatively high levels of endotoxin induces proinflammatory cytokine release via an endotoxin-dependent mechanism. PMID:12896848
Chien, Lung-Chang; Alamgir, Hasanat; Yu, Hwa-Lung
2015-03-01
Recent research supports a link between diabetes and fine particulate matter (≤ 2.5μg in diameter; PM2.5) in both laboratory and epidemiology studies. However, research investigating the potential relationship of the spatial vulnerability of diabetes to concomitant PM2.5 levels is still sparse, and the level of diabetes geographic disparities attributed to PM2.5 levels has yet to be evaluated. We conducted a Bayesian structured additive regression modeling approach to determine whether long-term exposure to PM2.5 is spatially associated with diabetes prevalence after adjusting for the socioeconomic status of county residents. This study utilizes the following data sources from 2004 to 2010: the Behavioral Risk Factor Surveillance System, the American Community Survey, and the Environmental Protection Agency. We also conducted spatial comparisons with low, median-low, median-high, and high levels of PM2.5 concentrations. When PM2.5 concentrations increased 1 μg/m(3), the increase in the relative risk percentage for diabetes ranged from -5.47% (95% credible interval = -6.14, -4.77) to 2.34% (95% CI = 2.01, 2.70), where 1323 of 3109 counties (42.55%) displayed diabetes vulnerability with significantly positive relative risk percentages. These vulnerable counties are more likely located in the Southeast, Central, and South Regions of the U.S. A similar spatial vulnerability pattern for concentrations of low PM2.5 levels was also present in these same three regions. A clear cluster of vulnerable counties at median-high PM2.5 level was found in Michigan. This study identifies the spatial vulnerability of diabetes prevalence associated with PM2.5, and thereby provides the evidence needed to prompt and establish enhanced surveillance that can monitor diabetes vulnerability in areas with low PM2.5 pollution. Copyright © 2014 Elsevier B.V. All rights reserved.
ARE MALES MORE SUSCEPTIBLE TO AMBIENT PM THAN FEMALES?
Recent epidemiologic studies of modern air pollution show statistically significant relationships between fluctuations of daily non-trauma mortality and fluctuations of daily ambient particulate matter (PM) levels at low concentrations. A review of historic smoke-fog (smog)episo...
Jo, Eun-Jung; Lee, Woo-Seop; Jo, Hyun-Young; Kim, Chang-Hoon; Eom, Jung-Seop; Mok, Jeong-Ha; Kim, Mi-Hyun; Lee, Kwangha; Kim, Ki-Uk; Lee, Min-Ki; Park, Hye-Kyung
2017-03-01
Both air pollution and weather impact hospitalization for respiratory diseases. However, few studies have investigated the contribution of weather to hospitalization related to the adverse effects of air pollution. This study analyzed the effects of particulate matter (PM) on daily respiratory-related hospital admissions, taking into account meteorological factors. Daily hospital admissions for respiratory diseases (acute bronchitis, allergic rhinitis, and asthma) between 2007 and 2010 were extracted from the National Health Insurance Corporation, Korea. Patients were divided into three age-based groups (0-15, 16-64, and ≥65 years). PM levels were obtained from 19 monitoring stations in Busan. The mean number of patients admitted for acute bronchitis, allergic rhinitis, and asthma was 5.8 ± 11.9, 4.4 ± 6.1, and 3.3 ± 3.3, respectively. During that time, the daily mean PM 10 and PM 2.5 concentrations were 49.6 ± 20.5 and 24.2 ± 10.9 μg/m 3 , respectively. The mean temperature anomaly was 7.0 ± 2.3 °C; the relative humidity was 62.0 ± 18.0%. Hospital admission rates for respiratory diseases increased with increasing PM and temperature, and with decreasing relative humidity. A multivariate analysis including PM, temperature anomaly, relative humidity, and age showed a significant increase in respiratory-related admissions with increasing PM levels and a decreasing relative humidity. Higher PM 2.5 levels had a greater effect on respiratory-related hospital admission than did PM 10 levels. Children and the elderly were the most susceptible to hospital admission for respiratory disease. PM levels and meteorological factors impacted hospitalization for respiratory diseases, especially in children and the elderly. The effect of PM on respiratory diseases increased as the relative humidity decreased. Copyright © 2017 Elsevier Ltd. All rights reserved.
Source apportionment studies on particulate matter in Beijing/China
NASA Astrophysics Data System (ADS)
Suppan, P.; Shen, R.; Shao, L.; Schrader, S.; Schäfer, K.; Norra, S.; Vogel, B.; Cen, K.; Wang, Y.
2013-05-01
More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: a) Examples of long term measurements of PM2.5 filter sampling in 2010/2011 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. b) The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2011, April 30th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and measured dust storm concentration variability at Beijing in the course of time. The results show the importance of intertwine investigations of measurements and modeling, the analysis of local air pollution levels as well as the impact and analysis of advective processes in the greater region of Beijing. Comprehensive investigations on particulate matter are a prerequisite for the knowledge of the source strengths and source attribution to the overall air pollution level. Only this knowledge can help to formulate and to introduce specific reduction measures to reduce coarser as well as finer particulates.
Regression and multivariate models for predicting particulate matter concentration level.
Nazif, Amina; Mohammed, Nurul Izma; Malakahmad, Amirhossein; Abualqumboz, Motasem S
2018-01-01
The devastating health effects of particulate matter (PM 10 ) exposure by susceptible populace has made it necessary to evaluate PM 10 pollution. Meteorological parameters and seasonal variation increases PM 10 concentration levels, especially in areas that have multiple anthropogenic activities. Hence, stepwise regression (SR), multiple linear regression (MLR) and principal component regression (PCR) analyses were used to analyse daily average PM 10 concentration levels. The analyses were carried out using daily average PM 10 concentration, temperature, humidity, wind speed and wind direction data from 2006 to 2010. The data was from an industrial air quality monitoring station in Malaysia. The SR analysis established that meteorological parameters had less influence on PM 10 concentration levels having coefficient of determination (R 2 ) result from 23 to 29% based on seasoned and unseasoned analysis. While, the result of the prediction analysis showed that PCR models had a better R 2 result than MLR methods. The results for the analyses based on both seasoned and unseasoned data established that MLR models had R 2 result from 0.50 to 0.60. While, PCR models had R 2 result from 0.66 to 0.89. In addition, the validation analysis using 2016 data also recognised that the PCR model outperformed the MLR model, with the PCR model for the seasoned analysis having the best result. These analyses will aid in achieving sustainable air quality management strategies.
Dabass, Arvind; Talbott, Evelyn O; Rager, Judith R; Marsh, Gary M; Venkat, Arvind; Holguin, Fernando; Sharma, Ravi K
2018-02-01
There has been no investigation to date of adults with metabolic syndrome examining the association of short and long-term exposure to fine particulate matter (PM 2.5 ) air pollution with cardiovascular-disease related inflammatory marker (WBC and CRP) levels in a nationally representative sample. The goal of this study is to assess the susceptibility of adults with metabolic syndrome to PM 2.5 exposure as suggested by increased cardiovascular-disease related inflammatory marker levels. A cross sectional analysis of adult National Health and Nutrition Examination Survey (NHANES) participants (2000-2008) was carried out with linkage of CDC WONDER meteorological data and downscaler modeled USEPA air pollution data for census tracts in the continental United States. Participants were non-pregnant NHANES adults (2000-2008) with complete data for evaluating presence of metabolic syndrome and laboratory data on WBC and CRP. Exposures studied included short (lags 0-3 days and their averages), long-term (30 and 60 day moving and annual averages) PM 2.5 exposure levels at the census tract level in the continental United States. The main outcomes included CRP and WBC levels the day of NHANES study visit analyzed using multiple linear regression, adjusting for age, gender, race, education, smoking status, history of any cardiovascular disease, maximum apparent temperature and ozone level, for participants with and without metabolic syndrome. A total of 7134 NHANES participants (35% with metabolic syndrome) met the inclusion criteria. After adjusting for confounders, we observed a significant effect of PM 2.5 acutely at lag day 0 on CRP level; a 10µg/m 3 rise in lag day 0 PM 2.5 level was associated with a 10.1% increase (95% CI: 2.2-18.6%) in CRP levels for participants with metabolic syndrome. For those without metabolic syndrome, the change in CRP was -1.3% (95% CI -8.8%, 6.8%). There were no significant associations for WBC count. In this first national study of the effect of PM 2.5 air pollution on levels of cardiovascular-disease related inflammatory markers in adults with metabolic syndrome, CRP levels were found to be significantly increased in those with this condition with increased fine particulate matter levels at lag day 0. With one third of US adults with metabolic syndrome, the health impact of PM 2.5 in this sensitive population may be significant. Copyright © 2017 Elsevier Inc. All rights reserved.
Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Kato, Kazuhiro; Sano, Hiroyuki; Tatsukawa, Toshiyuki; Nakazaki, Hirofumi; Yamasaki, Akira; Shimizu, Eiji
2016-01-01
An important aspect of sand dust emissions in association with respiratory disorders is the quantity of particulate matter. This is usually expressed as particulate matter less than 10 μm (PM10) and 2.5 μm (PM2.5). However, the composition of PM10 and PM2.5 varies. Light detection and ranging is used to monitor sand dust particles originating in East Asian deserts and distinguish them from air pollution aerosols. The objective of this study was to investigate the association between the daily levels of sand dust particles and pulmonary function in schoolchildren in western Japan. In this panel study, the peak expiratory flow (PEF) of 399 schoolchildren was measured daily from April to May 2012. A linear mixed model was used to estimate the association of PEF with the daily levels of sand dust particles, suspended particulate matter (SPM), and PM2.5. There was no association between the daily level of sand dust particles and air pollution aerosols, while both sand dust particles and air pollution aerosols had a significant association with SPM and PM2.5. An increment of 0.018 km(-1) in sand dust particles was significantly associated with a decrease in PEF (-3.62 L/min; 95% confidence interval, -4.66 to -2.59). An increase of 14.0 μg/m(3) in SPM and 10.7 μg/m(3) in PM2.5 led to a significant decrease of -2.16 L/min (-2.88 to -1.43) and -2.58 L/min (-3.59 to -1.57), respectively, in PEF. These results suggest that exposure to sand dust emission may relate to pulmonary dysfunction in children in East Asia. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Exposure to Air Pollution Enhances the Generation of Vascular Microparticles
Epidemiological studies associate exposure to ambient levels of particulate matter (PM) with cardiovascular morbidity and mortality. The biological mechanisms by which PM exposure induces cardiovascular effects remain to be elucidated. One important limitation is the lack of sens...
Spagnolo, Anna Maria; Ottria, Gianluca; Perdelli, Fernanda; Cristina, Maria Luisa
2015-01-01
Background: Exposure to the particulate matter produced in underground railway systems is arousing increasing scientific interest because of its health effects. The aim of our study was to evaluate the airborne concentrations of PM10 and three sub-fractions of PM2.5 in an underground railway system environment in proximity to platforms and in underground commercial areas within the system, and to compare these with the outdoor airborne concentrations. We also evaluated the metal components, the cytotoxic properties of the various fractions of particulate matter (PM) and their capacity to induce oxidative stress. Method: We collected the coarse fraction (5–10 µm) and the fine fractions (1–2.5 µm; 0.5–1 µm; 0.25–0.5 µm). Chemical characterisation was determined by means of spectrometry. Cytotoxicity and oxidative stress were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Reactive Oxygen Species (ROS) assessment. Results: The concentrations of both PM10 and PM2.5 proved to be similar at the three sampling sites. Iron and other transition metals displayed a greater concentration at the subway platform than at the other two sites. The 2.5–10 µm and 1–2.5 µm fractions of PM from all three sampling sites determined a greater increase in ROS; the intensity of oxidative stress progressively declined as particle diameter diminished. Moreover, ROS concentrations were correlated with the concentrations of some transition metals, namely Mn, Cr, Ti, Fe, Cu, Zn, Ni and Mo. All particulate matter fractions displayed lower or similar ROS values between platform level and the outdoor air. Conclusions: The present study revealed that the underground railway environment at platform level, although containing higher concentrations of some particularly reactive metallic species, did not display higher cytotoxicity and oxidative stress levels than the outdoor air. PMID:25872016
Spagnolo, Anna Maria; Ottria, Gianluca; Perdelli, Fernanda; Cristina, Maria Luisa
2015-04-13
Exposure to the particulate matter produced in underground railway systems is arousing increasing scientific interest because of its health effects. The aim of our study was to evaluate the airborne concentrations of PM10 and three sub-fractions of PM2.5 in an underground railway system environment in proximity to platforms and in underground commercial areas within the system, and to compare these with the outdoor airborne concentrations. We also evaluated the metal components, the cytotoxic properties of the various fractions of particulate matter (PM) and their capacity to induce oxidative stress. We collected the coarse fraction (5-10 µm) and the fine fractions (1-2.5 µm; 0.5-1 µm; 0.25-0.5 µm). Chemical characterisation was determined by means of spectrometry. Cytotoxicity and oxidative stress were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Reactive Oxygen Species (ROS) assessment. The concentrations of both PM10 and PM2.5 proved to be similar at the three sampling sites. Iron and other transition metals displayed a greater concentration at the subway platform than at the other two sites. The 2.5-10 µm and 1-2.5 µm fractions of PM from all three sampling sites determined a greater increase in ROS; the intensity of oxidative stress progressively declined as particle diameter diminished. Moreover, ROS concentrations were correlated with the concentrations of some transition metals, namely Mn, Cr, Ti, Fe, Cu, Zn, Ni and Mo. All particulate matter fractions displayed lower or similar ROS values between platform level and the outdoor air. The present study revealed that the underground railway environment at platform level, although containing higher concentrations of some particularly reactive metallic species, did not display higher cytotoxicity and oxidative stress levels than the outdoor air.
World Trade Center fine particulate matter causes respiratory tract hyperresponsiveness in mice.
Gavett, Stephen H; Haykal-Coates, Najwa; Highfill, Jerry W; Ledbetter, Allen D; Chen, Lung Chi; Cohen, Mitchell D; Harkema, Jack R; Wagner, James G; Costa, Daniel L
2003-06-01
Pollutants originating from the destruction of the World Trade Center (WTC) in New York City on 11 September 2001 have been reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate matter [particulate matter with a mass median aerodynamic diameter < 2.5 microm (PM2.5)] has detrimental respiratory effects in mice to contribute to the risk assessment of WTC-derived pollutants. Samples of WTC PM2.5 were derived from settled dust collected at several locations around Ground Zero on 12 and 13 September 2001. Aspirated samples of WTC PM2.5 induced mild to moderate degrees of pulmonary inflammation 1 day after exposure but only at a relatively high dose (100 microg). This response was not as great as that caused by 100 microg PM2.5 derived from residual oil fly ash (ROFA) or Washington, DC, ambient air PM [National Institute of Standards and Technology, Standard Reference Material (SRM) 1649a]. However, this same dose of WTC PM2.5 caused airway hyperresponsiveness to methacholine aerosol comparable to that from SRM 1649a and to a greater degree than that from ROFA. Mice exposed to lower doses by aspiration or inhalation exposure did not develop significant inflammation or hyperresponsiveness. These results show that exposure to high levels of WTC PM2.5 can promote mechanisms of airflow obstruction in mice. Airborne concentrations of WTC PM2.5 that would cause comparable doses in people are high (approximately 425 microg/m3 for 8 hr) but conceivable in the aftermath of the collapse of the towers when rescue and salvage efforts were in effect. We conclude that a high-level exposure to WTC PM2.5 could cause pulmonary inflammation and airway hyperresponsiveness in people. The effects of chronic exposures to lower levels of WTC PM2.5, the persistence of any respiratory effects, and the effects of coarser WTC PM are unknown and were not examined in these studies. Degree of exposure and respiratory protection, individual differences in sensitivity to WTC PM2.5, and species differences in responses must be considered in assessing the risks of exposure to WTC PM2.5.
Understanding Particulate Matter Dynamics in the San Joaquin Valley during DISCOVER-AQ, 2013
NASA Astrophysics Data System (ADS)
Prabhakar, G.; Zhang, X.; Kim, H.; Parworth, C.; Pusede, S. E.; Wooldridge, P. J.; Cohen, R. C.; Zhang, Q.; Cappa, C. D.
2015-12-01
Air quality in the California San Joaquin Valley (SJV) during winter continues to be the worst in the state, failing EPA's 24-hour standard for particulate matter. Despite our improved understanding of the sources of particulate matter (PM) in the valley, air-quality models are unable to predict PM concentrations accurately. We aim to characterize periods of high particulate matter concentrations in the San Joaquin Valley based on ground and airborne measurements of aerosols and gaseous pollutants, during the DISCOVER-AQ campaign, 2013. A highly instrumented aircraft flew across the SJV making three transects in a repeatable pattern, with vertical spirals over select locations. The aircraft measurements were complemented by ground measurements at these locations, with extensive chemically-speciated measurements at a ground "supersite" at Fresno. Hence, the campaign provided a comprehensive three-dimensional view of the particulate and gaseous pollutants around the valley. The vertical profiles over the different sites indicate significant variability in the concentrations and vertical distribution of PM around the valley, which are most likely driven by differences in the combined effects of emissions, chemistry and boundary layer dynamics at each site. The observations suggest that nighttime PM is dominated by surface emissions of PM from residential fuel combustion, while early morning PM is strongly influenced by mixing of low-level, above-surface, nitrate-rich layers formed from dark chemistry overnight to the surface.
Wyss, Annah B; Jones, Anna Ciesielski; Bølling, Anette K; Kissling, Grace E; Chartier, Ryan; Dahlman, Hans Jørgen; Rodes, Charles E; Archer, Janet; Thornburg, Jonathan; Schwarze, Per E; London, Stephanie J
2016-01-01
Few studies have examined particulate matter (PM) exposure from self-reported use of wood stoves and other indoor combustion sources in urban settings in developed countries. We measured concentrations of indoor PM < 2.5 microns (PM2.5) for one week with the MicroPEM™ nephelometer in 36 households in the greater Oslo, Norway metropolitan area. We examined indoor PM2.5 levels in relation to use of wood stoves and other combustion sources during a 7 day monitoring period using mixed effects linear models with adjustment for ambient PM2.5 levels. Mean hourly indoor PM2.5 concentrations were higher (p = 0.04) for the 14 homes with wood stove use (15.6 μg/m3) than for the 22 homes without (12.6 μg/m3). Moreover, mean hourly PM2.5 was higher (p = 0.001) for use of wood stoves made before 1997 (6 homes, 20.2 μg/m3), when wood stove emission limits were instituted in Norway, compared to newer wood stoves (8 homes, 11.9 μg/m3) which had mean hourly values similar to control homes. Increased PM2.5 levels during diary-reported burning of candles was detected independently of concomitant wood stove use. These results suggest that self-reported use of wood stoves, particularly older stoves, and other combustion sources, such as candles, are associated with indoor PM2.5 measurements in an urban population from a high income country.
Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Sano, Hiroyuki; Kitano, Hiroya; Saito, Rumiko; Kimura, Yutaka; Aiba, Setsuya; Oshimura, Mitsuo; Shimizu, Eiji
2015-01-01
This study aimed to investigate the effects of particulate matter (PM) on pulmonary function in schoolchildren, as well as the relationships of these effects with interleukin-8. Morning peak expiratory flow (PEF) was measured daily in 399 children during April–May 2012, and in 384 of these children during March–May 2013. PEF’s association with the daily levels of suspended particulate matter (SPM) and PM < 2.5 μm (PM2.5) was estimated using a linear mixed model. Interleukin-8 promoter activity was assessed in THP-G8 cells stimulated by fallen PM collected at Tottori University Hospital during four periods (two in 2012 and two in 2013). An increase of 14.0 μg/m3 in SPM led to PEF changes of −2.16 L/min in 2012 and −0.81 L/min in 2013, respectively. An increment of 10.7 μg/m3 in PM2.5 was associated with PEF changes of −2.58 L/min in 2012 and −0.55 L/min in 2013, respectively. These associations were only significant in 2012. Interleukin-8 promoter activity was significantly higher in both periods of 2012 than in 2013. There was a significant association between pulmonary function in schoolchildren and daily levels of SPM and PM2.5, but this association may differ depending on the PM’s ability to elicit interleukin-8 production. PMID:26569272
The United States EPA conducted a six week air quality survey of the city of Conakry, Guinea, West Africa in 2004. The study was conducted to assess the background levels of anthropogenic and natural particulate matter (PM) and to investigate the local and regional sources of tho...
The U.S. Environmental Protection Agency's Particulate Matter (PM) Supersites Program (Program) is a nationwide air quality methods, measurement, modeling, and data analysis program initiated through cooperative agreements with leading universities in the United States. The Progr...
Air pollution exposure modeling of individuals
Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...
EVALUATION OF ULTRAFINE PARTICLES AS PART OF A HEALTH EFFECTS EXPOSURE STUDY
Ambient particulate matter (PM) is a complex mixture that includes bioactive and toxic compounds of natural and anthropogenic origin. Numerous epidemiological studies have reported associations between exposure to ambient levels of PM and various indices of cardiopulmonary morbi...
NASA Astrophysics Data System (ADS)
Mathur, Rohit
2008-09-01
During the summer of 2004, extensive wildfires burned in Alaska and western Canada; the fires were the largest on record for Alaska. Smoke from these fires was observed over the continental United States in satellite images, and a variety of chemical tracers associated with the fires were sampled by aircrafts deployed during the International Consortium for Atmospheric Research on Transport and Transformation field experiment. Several recent studies have quantified the impacts of the long-range transport of pollution associated with these fires on tropospheric CO and O3 levels over the eastern United States. This study quantifies the episodic impact of this pollution transport event on surface-level fine particulate matter (PM2.5) concentrations over the eastern United States during mid-July 2004, through the complementary use of remotely sensed, aloft, and surface measurements, in conjunction with a comprehensive regional atmospheric chemistry-transport model. A methodology is developed to assimilate MODIS aerosol optical depths in the model to represent the impacts of the fires. The resultant model predictions of CO and PM2.5 distributions are compared extensively with corresponding surface and aloft measurements. On the basis of the model calculations, a 0.12Tg enhancement in tropospheric PM2.5 mass loading over the eastern United States is estimated on 19 July 2004 due to the fires. This amount is significantly larger (approximately a factor of 8) than the total daily anthropogenic fine particulate matter emissions for the continental United States. Analysis of measured and modeled PM2.5 surface-level concentrations suggests that the transport of particulate matter pollution associated with the fires resulted in a 24-42 % enhancement in median surface-level PM2.5 concentrations across the eastern United States during 19-23 July 2004.
California wildfires of 2008: coarse and fine particulate matter toxicity.
Wegesser, Teresa C; Pinkerton, Kent E; Last, Jerold A
2009-06-01
During the last week of June 2008, central and northern California experienced thousands of forest and brush fires, giving rise to a week of severe fire-related particulate air pollution throughout the region. California experienced PM(10-2.5) (particulate matter with mass median aerodynamic diameter > 2.5 mum to < 10 mum; coarse ) and PM(2.5) (particulate matter with mass median aerodynamic diameter < 2.5 mum; fine) concentrations greatly in excess of the air quality standards and among the highest values reported at these stations since data have been collected. These observations prompt a number of questions about the health impact of exposure to elevated levels of PM(10-2.5) and PM(2.5) and about the specific toxicity of PM arising from wildfires in this region. Toxicity of PM(10-2.5) and PM(2.5) obtained during the time of peak concentrations of smoke in the air was determined with a mouse bioassay and compared with PM samples collected under normal conditions from the region during the month of June 2007. Concentrations of PM were not only higher during the wildfire episodes, but the PM was much more toxic to the lung on an equal weight basis than was PM collected from normal ambient air in the region. Toxicity was manifested as increased neutrophils and protein in lung lavage and by histologic indicators of increased cell influx and edema in the lung. We conclude that the wildfire PM contains chemical components toxic to the lung, especially to alveolar macrophages, and they are more toxic to the lung than equal doses of PM collected from ambient air from the same region during a comparable season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machado, C. M.; Santos, Erickson O.; Fernandes, Karenn S.
Manaus, the capital of the Brazilian state of Amazonas, is developing very rapidly. Its pollution plume contains aerosols from fossil fuel combustion mainly due to vehicular emission, industrial activity, and a thermal power plant. Soil resuspension is probably a secondary source of atmospheric particles. The plume transports from Manaus to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARM site at Manacapuru urban pollutants as well as pollutants from pottery factories along the route of the plume. Considering the effects of particulate matter on health, atmospheric particulate matter was evaluated at this site as partmore » of the ARM Facility’s Green Ocean Amazon 2014/15 (GoAmazon 2014/15) field campaign. Aerosol or particulate matter (PM) is typically defined by size, with the smaller particles having more health impact. Total suspended particulate (TSP) are particles smaller than 100 μm; particles smaller than 2.5 μm are called PM2.5. In this work, the PM2.5 levels were obtained from March to December of 2015, totaling 34 samples and TSP levels from October to December of 2015, totaling 17 samples. Sampling was conducted with PM2.5 and TSP high-volume samplers using quartz filters (Figure 1). Filters were stored during 24 hours in a room with temperature (21,1ºC) and humidity (44,3 %) control, in order to do gravimetric analyses by weighing before and after sampling. This procedure followed the recommendations of the Brazilian Association for Technical Standards local norm (NBR 9547:1997). Mass concentrations of particulate matter were obtained from the ratio between the weighted sample and the volume of air collected. Defining a relationship between particulate matter (PM2.5 and TSP) and respiratory diseases of the local population is an important goal of this project, since no information exists on that topic.« less
Veira, Andreas; Jackson, Peter L; Ainslie, Bruce; Fudge, Dennis
2013-07-01
This study investigates the development and application of a simple method to calculate annual and seasonal PM2.5 and PM10 background concentrations in small cities and rural areas. The Low Pollution Sectors and Conditions (LPSC) method is based on existing measured long-term data sets and is designed for locations where particulate matter (PM) monitors are only influenced by local anthropogenic emission sources from particular wind sectors. The LPSC method combines the analysis of measured hourly meteorological data, PM concentrations, and geographical emission source distributions. PM background levels emerge from measured data for specific wind conditions, where air parcel trajectories measured at a monitoring station are assumed to have passed over geographic sectors with negligible local emissions. Seasonal and annual background levels were estimated for two monitoring stations in Prince George, Canada, and the method was also applied to four other small cities (Burns Lake, Houston, Quesnel, Smithers) in northern British Columbia. The analysis showed reasonable background concentrations for both monitoring stations in Prince George, whereas annual PM10 background concentrations at two of the other locations and PM2.5 background concentrations at one other location were implausibly high. For those locations where the LPSC method was successful, annual background levels ranged between 1.8 +/- 0.1 microg/m3 and 2.5 +/- 0.1 microg/m3 for PM2.5 and between 6.3 +/- 0.3 microg/m3 and 8.5 +/- 0.3 microg/m3 for PM10. Precipitation effects and patterns of seasonal variability in the estimated background concentrations were detectable for all locations where the method was successful. Overall the method was dependent on the configuration of local geography and sources with respect to the monitoring location, and may fail at some locations and under some conditions. Where applicable, the LPSC method can provide a fast and cost-efficient way to estimate background PM concentrations for small cities in sparsely populated regions like northern British Columbia. In rural areas like northern British Columbia, particulate matter (PM) monitoring stations are usually located close to emission sources and residential areas in order to assess the PM impact on human health. Thus there is a lack of accurate PM background concentration data that represent PM ambient concentrations in the absence of local emissions. The background calculation method developed in this study uses observed meteorological data as well as local source emission locations and provides annual, seasonal and precipitation-related PM background concentrations that are comparable to literature values for four out of six monitoring stations.
Wang, Yanhua; Duan, Huawei; Meng, Tao; Shen, Meili; Ji, Qianpeng; Xing, Jie; Wang, Qingrong; Wang, Ting; Niu, Yong; Yu, Tao; Liu, Zhong; Jia, Hongbing; Zhan, Yuliang; Chen, Wen; Zhang, Zhihu; Su, Wenge; Dai, Yufei; Zhang, Xuchun; Zheng, Yuxin
2018-03-01
Exposure to fine particulate matter (PM 2.5 ) pollution is associated with increased morbidity and mortality from respiratory diseases. However, few population-based studies have been conducted to assess the alterations in circulating pulmonary proteins due to long-term PM 2.5 exposure. We designed a two-stage study. In the first stage (training set), we assessed the associations between PM 2.5 exposure and levels of pulmonary damage markers (CC16, SP-A and SP-D) and lung function in a coke oven emission (COE) cohort with 558 coke plant workers and 210 controls. In the second stage (validation set), significant initial findings were validated by an independent diesel engine exhaust (DEE) cohort with 50 DEE exposed workers and 50 controls. Serum CC16 levels decreased in a dose response manner in association with both external and internal PM 2.5 exposures in the two cohorts. In the training set, serum CC16 levels decreased with increasing duration of occupational PM 2.5 exposure history. An interquartile range (IQR) (122.0μg/m 3 ) increase in PM 2.5 was associated with a 5.76% decrease in serum CC16 levels, whereas an IQR (1.06μmol/mol creatinine) increase in urinary 1-hydroxypyrene (1-OHP) concentration was associated with a 5.36% decrease in serum CC16 levels in the COE cohort. In the validation set, the concentration of serum CC16 in the PM 2.5 exposed group was 22.42% lower than that of the controls and an IQR (1.24μmol/mol creatinine) increase in urinary 1-OHP concentration was associated with a 12.24% decrease in serum CC16 levels in the DEE cohort. Serum CC16 levels may be a sensitive marker for pulmonary damage in populations with high PM 2.5 exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Particulate Matter Levels in Ambient Air Adjacent to Industrial Area
NASA Astrophysics Data System (ADS)
Mohamed, R. M. S. R.; Nizam, N. M. S.; Al-Gheethi, A. A.; Lajis, A.; Kassim, A. H. M.
2016-07-01
Air quality in the residential areas adjacent to the industrial regions is of great concern due to the association with human health risks. In this work, the concentrations of particulate matter (PM10) in the ambient air of UTHM campus was investigated tostudy the air qualityand their compliance to the Malaysian Ambient Air Quality Guidelines (AAQG). The PM10 samples were taken over 24 hours from the most significant area at UTHM including Stadium, KolejKediamanTunDr. Ismail (KKTDI) and MakmalBahan. The meteorological parameters; temperature, relative humidity, wind speed and wind direction as well as particulate matterwere estimated by using E-Sampler Particulate Matter (PM10) Collector. The highest concentrations of PM10 (55.56 µg/m3) was recorded at MakmalBahan during the working and weekend days. However, these concentrations are less than 150 pg/m3. It can be concluded that although UTHM is surrounded by the industrial area, the air quality in the campus still within the standards limits.
Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Sano, Hiroyuki; Iwata, Kyoko; Hantan, Degejirihu; Tohda, Yuji; Shimizu, Eiji
2017-03-13
Numerous studies have unmasked the deleterious effects of particulate matter less than 2.5 μm (PM 2.5 ) on health. However, epidemiologic evidence focusing on the effects of PM 2.5 on skin health remains limited. An important aspect of Asian dust (AD) in relationship to health is the amount of PM 2.5 contained therein. Several studies have demonstrated that AD can aggravate skin symptoms. The current study aimed to investigate the effects of short-term exposure to PM 2.5 and AD particles on skin symptoms in schoolchildren. A total of 339 children recorded daily skin symptom scores during February 2015. Light detection and ranging were used to calculate AD particle size. Generalized estimating equation logistic regression analyses were used to estimate the associations among skin symptoms and the daily levels of PM 2.5 and AD particles. Increases in the levels of PM 2.5 and AD particles were not related to an increased risk of skin symptom events, with increases of 10.1 μg/m³ in PM 2.5 and 0.01 km -1 in AD particles changing odds ratios by 1.03 and 0.99, respectively. These results suggest that short-term exposure to PM 2.5 and AD does not impact skin symptoms in schoolchildren.
Apportionment of particulate matter sources in the Rio de Janeiro Metropolitan area
NASA Astrophysics Data System (ADS)
Gioda, A.; Mateus, V.; Ventura, L.; Amaral, B.
2013-05-01
Continuous monitoring of particulate matter (PM) is extremely important in order to observe possible trends and take measures to reduce emissions. In Brazil, few cities have network stations, which make these measurements even more crucial. Furthermore, there is a need to update and create new standards of air quality, which can only be done based on a suitable inventory. Levels of total suspended particles (TSP), PM10 and PM2.5 were monitored in the Metropolitan area of Rio de Janeiro. Mean concentrations of TSP, PM10 and PM2.5 were 70, 60 and 14 μg/m3, respectively. Some of the monitored sampling points exceeded the Brazilian guidelines for PM10 (50 μg/m3) and TSP (80 μg/m3). However, the PM2.5 levels measured in the present study are of extreme concern, since they exceeded the guideline suggested by the World Health Organization (WHO - 10 μg/m3) in almost all the study sites. The average PM2.5/PM10 ratios ranged from 0.1 to 0.3, being more dependent on traffic emissions, while PM10/PTS ratios ranged from 0.6 to 0.7. The particles were composed mainly of soil elements (~50%) and ammonium sulfate and ammonium nitrate (20-40%), which are recognized as secondary inorganic aerosols. Rural areas and sites near the ocean presented the lowest levels for all particle sizes. This is probably due to an enhanced dispersion of the particles by the sea breeze. On the other hand, higher PM concentrations were observed for the sites near industrial areas and heavy traffic, as expected. The monthly distribution profile observed for PM showed clear increases in PM levels from May to September at all stations. This increase is due to the stagnation of the air during winter, which is related to meteorological processes such as low relative humidity and low rainfall. Consequently, due to this stagnation pollutant concentrations show increases. According to the dataset from the Unified Health System there is a clear trend of increased hospitalizations for respiratory diseases in winter, when increased concentrations of PM are observed, which was verified in this study.
Exposure to Diesel Exhaust Enhances the Generation of Vascular Microparticles
Introduction: In the study of the health impacts of traffic-related air pollution, diesel exhaust is a pollutant of particular interest, since it is a major source of particulate matter (PM). Epidemiological studies associate exposure to ambient levels of PM with cardiovascular m...
Technical Data and Reports on Particulate Matter (PM) Measurements and SIP Status
EPA collects data from the states and regions on their air quality, including levels of pollutants such as PM, and state implementation plan (SIP) progress. This information is compiled in a database, and used to create reports, trend charts, and maps.
RECRUITING AND RETAINING PARTICIPANTS FOR AN EXPOSURE STUDY IN SOUTHEAST RALEIGH
The U.S. Environmental Protection Agency (EPA) recently completed a study of African-Americans' exposure to particulate matter (PM) in Southeast Raleigh. A primary goal was to compare PM levels measured at ambient and residential sites with those from personal exposure monitors...
Indoor Air Quality in the Metro System in North Taiwan
Chen, Ying-Yi; Sung, Fung-Chang; Chen, Mei-Lien; Mao, I-Fang; Lu, Chung-Yen
2016-01-01
Indoor air pollution is an increasing health concern, especially in enclosed environments such as underground subway stations because of increased global usage by urban populations. This study measured the indoor air quality of underground platforms at 10 metro stations of the Taipei Rapid Transit system (TRTS) in Taiwan, including humidity, temperature, carbon monoxide (CO), carbon dioxide (CO2), formaldehyde (HCHO), total volatile organic compounds (TVOCs), ozone (O3), airborne particulate matter (PM10 and PM2.5), bacteria and fungi. Results showed that the CO2, CO and HCHO levels met the stipulated standards as regulated by Taiwan’s Indoor Air Quality Management Act (TIAQMA). However, elevated PM10 and PM2.5 levels were measured at most stations. TVOCs and bacterial concentrations at some stations measured in summer were higher than the regulated standards stipulated by Taiwan’s Environmental Protection Administration. Further studies should be conducted to reduce particulate matters, TVOCs and bacteria in the air of subway stations. PMID:27918460
Sun, Jian-Lin; Jing, Xin; Chang, Wen-Jing; Chen, Zheng-Xia; Zeng, Hui
2015-03-01
Halogenated polycyclic aromatic hydrocarbons (HPAHs) have been reported to occur widely in urban air. Nevertheless, knowledge about the human health risk associated with inhalation exposure to HPAHs is scarce so far. In the present study, nine HPAHs and 16 PAHs were determined in atmospheric particulate matter (PM) collected from Shenzhen, China to address this issue. Concentrations of Σ9HPAHs varied from 0.1 to 1.5 ng/m(3) and from 0.09 to 0.4 ng/m(3) in PM10 and PM2.5 samples, respectively. As for individuals, 9-bromoanthracene, 7-bromobenz(a)anthracene, and 9,10-dibromoanthracene were the dominant congeners. Levels of Σ16PAHs in PM10 and PM2.5 samples ranged from 3.2 to 81 ng/m(3) and from 2.8 to 85 ng/m(3), respectively. Among individual PAHs, chrysene, benzo[b]fluoranthene, and indeno[1,2,3-c,d]pyrene were the main congeners. According to the season, concentrations of HPAHs and PAHs in atmospheric PM10/PM2.5 samples show a similar decreasing trend with an order: winter>autumn>spring>summer. The daily intake (DI) of PM10/PM2.5-bound HPAHs and PAHs were estimated. Our results indicated that children have the highest DI levels via inhalation exposure. The incremental lifetime cancer risk (ILCR) induced by PM10/PM2.5-bound HPAHs and PAHs were calculated. The ILCR values showed a similar decreasing trend with an order: adults>children>seniors>adolescent. Overall, the ILCR values induced by HPAHs and PAHs were far below the priority risk level (10(-4)), indicating no obvious cancer risk. To our knowledge, this is the first study to investigate the human health risk associated with inhalation exposure to PM10/PM2.5-bound HPAHs. Copyright © 2014 Elsevier Inc. All rights reserved.
Long-term Exposure to Fine Particulate Matter Air Pollution and Mortality Among Canadian Women.
Villeneuve, Paul J; Weichenthal, Scott A; Crouse, Daniel; Miller, Anthony B; To, Teresa; Martin, Randall V; van Donkelaar, Aaron; Wall, Claus; Burnett, Richard T
2015-07-01
Long-term exposure to fine particulate matter (PM2.5) has been associated with increased mortality, especially from cardiovascular disease. There are, however, uncertainties about the nature of the exposure-response relation at lower concentrations. In Canada, where ambient air pollution levels are substantially lower than in most other countries, there have been few attempts to study associations between long-term exposure to PM2.5 and mortality. We present a prospective cohort analysis of 89,248 women who enrolled in the Canadian National Breast Screening Study between 1980 and 1985, and for whom residential measures of PM2.5 could be assigned. We derived individual-level estimates of long-term exposure to PM2.5 from satellite observations. We linked cohort records to national mortality data to ascertain mortality between 1980 and 2005. We used Cox proportional hazards models to characterize associations between PM2.5 and several causes of death. The hazard ratios (HRs) and 95% confidence intervals (CIs) computed from these models were adjusted for several individual and neighborhood-level characteristics. The cohort was composed predominantly of Canadian-born (82%) and married (80%) women. The median residential concentration of PM2.5 was 9.1 μg/m(3) (standard deviation = 3.4). In fully adjusted models, a 10 μg/m(3) increase in PM2.5 exposure was associated with elevated risks of nonaccidental (HR: 1.12; 95% CI = 1.04, 1.19), and ischemic heart disease mortality (HR: 1.34; 95% CI = 1.09, 1.66). The findings from this study provide additional support for the hypothesis that exposure to very low levels of ambient PM2.5 increases the risk of cardiovascular mortality.
REINVENTING PERSONAL EXPOSURE TO PARTICULATE MATTER
Recent epidemiologic studies of modern air pollution show statistically significant relationships between fluctuations of daily non-trauma mortality and fluctuations of daily ambient particulate matter (PM) levels at low concentrations. A review of historic smoke-fog (smog)episo...
Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations.
Kim, Ki Youn; Kim, Yoon Shin; Roh, Young Man; Lee, Cheol Min; Kim, Chi Nyon
2008-06-15
The aims of this study are to examine the concentrations of PM10 and PM2.5 in areas within the Seoul Metropolitan Subway network and to provide fundamental data in order to protect respiratory health of subway workers and passengers from air pollutants. A total of 22 subway stations located on lines 1-4 were selected based on subway official's guidance. At these stations both subway worker areas (station offices, rest areas, ticket offices and driver compartments) and passengers areas (station precincts, subway carriages and platforms) were the sites used for measuring the levels of PM. The mean concentrations of PM10 and PM2.5 were relatively higher on platforms, inside subway carriages and in driver compartments than in the other areas monitored. The levels of PM10 and PM2.5 for station precincts and platforms exceeded the 24-h acceptable threshold limits of 150 microg/m3 for PM10 and 35 microg/m3 for PM2.5, which are regulated by the U.S. Environmental Protection Agency (EPA). However, levels measured in station and ticket offices fell below the respective threshold. The mean PM10 and PM2.5 concentrations on platforms located underground were significantly higher than those at ground level (p<0.05).
Keeler, Gerald J; Dvonch, Timothy; Yip, Fuyuen Y; Parker, Edith A; Isreal, Barbara A; Marsik, Frank J; Morishita, Masako; Barres, James A; Robins, Thomas G; Brakefield-Caldwell, Wilma; Sam, Mathew
2002-01-01
We report on the research conducted by the Community Action Against Asthma (CAAA) in Detroit, Michigan, to evaluate personal and community-level exposures to particulate matter (PM) among children with asthma living in an urban environment. CAAA is a community-based participatory research collaboration among academia, health agencies, and community-based organizations. CAAA investigates the effects of environmental exposures on the residents of Detroit through a participatory process that engages participants from the affected communities in all aspects of the design and conduct of the research; disseminates the results to all parties involved; and uses the research results to design, in collaboration with all partners, interventions to reduce the identified environmental exposures. The CAAA PM exposure assessment includes four seasonal measurement campaigns each year that are conducted for a 2-week duration each season. In each seasonal measurement period, daily ambient measurements of PM2.5 and PM10 (particulate matter with a mass median aerodynamic diameter less than 2.5 microm and 10 microm, respectively) are collected at two elementary schools in the eastside and southwest communities of Detroit. Concurrently, indoor measurements of PM2.5 and PM10 are made at the schools as well as inside the homes of a subset of 20 children with asthma. Daily personal exposure measurements of PM10 are also collected for these 20 children with asthma. Results from the first five seasonal assessment periods reveal that mean personal PM10 (68.4 39.2 microg/m(3)) and indoor home PM10 (52.2 30.6 microg/m(3)) exposures are significantly greater (p < 0.05) than the outdoor PM10 concentrations (25.8 11.8 microg/m(3)). The same was also found for PM2.5 (indoor PM2.5 = 34.4 21.7 microg/m(3); outdoor PM2.5 = 15.6 8.2 microg/m(3)). In addition, significant differences (p < 0.05) in community-level exposure to both PM10 and PM2.5 are observed between the two Detroit communities (southwest PM10 = 28.9 14.4 microg/m(3)), PM2.5 = 17.0 9.3 microg/m(3); eastside PM10 = 23.8 12.1 microg/m(3), PM2.5 = 15.5 9.0 microg/m(3). The increased levels in the southwest Detroit community are likely due to the proximity to heavy industrial pollutant point sources and interstate motorways. Trace element characterization of filter samples collected over the 2-year period will allow a more complete assessment of the PM components. When combined with other project measures, including concurrent seasonal twice-daily peak expiratory flow and forced expiratory volume at 1 sec and daily asthma symptom and medication dairies for 300 children with asthma living in the two Detroit communities, these data will allow not only investigations into the sources of PM in the Detroit airshed with regard to PM exposure assessment but also the role of air pollutants in exacerbation of childhood asthma. PMID:11929726
Parker, J L; Larson, R R; Eskelson, E; Wood, E M; Veranth, J M
2008-10-01
Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.
NASA Astrophysics Data System (ADS)
Sówka, Izabela; Chlebowska-Styś, Anna; Mathews, Barbara
2018-01-01
It is commonly known, that suspended particulate matter pose a threat to human life and health, negatively influence the flora, climate and also materials. Especially dangerous is the presence of high concentration of particulate matter in the area of cities, where density of population is high. The research aimed at determining the variability of suspended particulate matter concentration (PM1.0, PM2.5 and PM10) in two different thermal seasons, in the area of Poznań city. As a part of carried out work we analyzed the variability of concentrations and also performed a preliminary analysis of their correlation. Measured concentrations of particulate matter were contained within following ranges: PM10 - 8.7-69.6 μg/m3, PM2.5 - 2.2-88.5 μg/m3, PM1.0 - 2.5-22.9 μg/m3 in the winter season and 1.0-42.8 μg/m3 (PM10), 1.2-40.3 μg/m3 (PM2.5) and 2.7-10.4 (PM1.0) in the summer season. Preliminary correlative analysis indicated interdependence between the temperature of air, the speed of wind and concentration of particulate matter in selected measurement points. The values of correlation coefficients between the air temperature, speed of wind and concentrations of particulate matter were respectively equal to: for PM10: -0.59 and -0.55 (Jana Pawła II Street), -0.53 and -0.53 (Szymanowskiego Street), for PM2.5: -0.60 and -0.53 (Jana Pawła II Street) and for PM1.0 -0.40 and -0.59 (Jana Pawła II Street).
Sun, Xiaolin; Wei, Haiying; Young, Dominique E; Bein, Keith J; Smiley-Jewell, Suzette M; Zhang, Qi; Fulgar, Ciara Catherine B; Castañeda, Alejandro R; Pham, Alexa K; Li, Wei; Pinkerton, Kent E
2017-08-15
Airborne particulate matter (PM) is associated with adverse cardiorespiratory effects. To better understand source-orientated PM toxicity, a comparative study of the biological effects of fine PM (diameter≤2.5μm, PM 2.5 ) collected during the winter season from Shanxi Province, China, and the Central Valley, California, United States, was conducted. The overarching hypothesis for this study was to test whether the chemical composition of PM on an equal mass basis from two urban areas, one in China and one in California, can lead to significantly different effects of acute toxicity and inflammation in the lungs of healthy young mice. Male, 8-week old BALB/C mice received a single 50μg dose of vehicle, Taiyuan PM or Sacramento PM by oropharyngeal aspiration and were sacrificed 24h later. Bronchoalveolar lavage, ELISA and histopathology were performed along with chemical analysis of PM composition. Sacramento PM had a greater proportion of oxidized organic material, significantly increased neutrophil numbers and elevated CXCL-1 and TNF-α protein levels compared to the Taiyuan PM. The findings suggest that Sacramento PM 2.5 was associated with a greater inflammatory response compared to that of Taiyuan PM 2.5 that may be due to a higher oxidice. Male, 8-week old BALB/C mice received a single 50μg dose of vehicle, Taiyuan PM or Sacramento PM by oropharyngeal aspiration and were sacrificed 24h later. Bronchoalveolar lavage, ELISA and histopathology were performed along with chemical analysis of PM composition. Sacramento PM had a greater proportion of oxidized organic material, significantly increased neutrophil numbers and elevated CXCL-1 and TNF-α protein levels compared to the Taiyuan PM. The findings suggest that Sacramento PM 2.5 was associated with a greater inflammatory response compared to that of Taiyuan PM 2.5 that may be due to a higher oxidized state of organic carbon and copper content. Copyright © 2017 Elsevier B.V. All rights reserved.
Loffredo, C A; Tang, Y; Momen, M; Makambi, K; Radwan, G N; Aboul-Foutoh, A
2016-03-01
Cairo and Giza governorates of Egypt. Particulate matter under 2.5 μm in diameter (PM2.5) arises from diverse sources, including tobacco smoke from cigarettes and waterpipes, and is recognized as a cause of acute and chronic morbidity and mortality. To measure PM2.5 in workplaces with different intensities of smoking and varying levels of smoking restrictions. We conducted an air sampling study to measure PM2.5 levels in a convenience sample of indoor and outdoor venues in 2005-2006. Using a calibrated SidePak instrument, 3295 individual measurements were collected at 96 venues. Compared to indoor venues where tobacco smoking was banned (PM2.5 levels 72-81 μg/m(3)), places offering waterpipes to patrons of cafes (478 μg/m(3)) and Ramadan tents (612 μg/m(3)) had much higher concentrations, as did venues such as public buildings with poor enforcement of smoking restrictions (range 171-704 μg/m(3)). Both the number of waterpipe smokers and the number of cigarette smokers observed at each venue contributed significantly to the overall burden of PM2.5. Such data will support smoke-free policies and programs aimed specifically at reducing environmental tobacco exposure and improving air quality in general, and will provide a baseline for monitoring the impact of tobacco control policies.
Junaid, Muhammad; Syed, Jabir Hussain; Abbasi, Naeem Akhtar; Hashmi, Muhammad Zaffar; Malik, Riffat Naseem; Pei, De-Sheng
2018-01-01
Exposure to particulate emissions poses a variety of public health concerns worldwide, specifically in developing countries. This review summarized the documented studies on indoor particulate matter (PM) emissions and their major health concerns in South Asia. Reviewed literature illustrated the alarming levels of indoor air pollution (IAP) in India, Pakistan, Nepal, and Bangladesh, while Sri Lanka and Bhutan are confronted with relatively lower levels, albeit not safe. To our knowledge, data on this issue are absent from Afghanistan and Maldives. We found that the reported levels of PM 10 and PM 2.5 in Nepal, Pakistan, Bangladesh, and India were 2-65, 3-30, 4-22, 2-28 and 1-139, 2-180, 3-77, 1-40 fold higher than WHO standards for indoor PM 10 (50 μg/m 3 ) and PM 2.5 (25 μg/m 3 ), respectively. Regarding IAP-mediated health concerns, mortality rates and incidences of respiratory and non-respiratory diseases were increasing with alarming rates, specifically in India, Pakistan, Nepal, and Bangladesh. The major cause might be the reliance of approximately 80% population on conventional biomass burning in the region. Current review also highlighted the prospects of IAP reduction strategies, which in future can help to improve the status of indoor air quality and public health in South Asia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mao, Mao; Zhang, Xiaolin; Yin, Yan
2018-05-28
The situation of criteria atmospheric pollutants, including particulate matter and trace gases (SO₂, NO₂, CO and O₃), over three metropolises (Chongqing, Wuhan, and Nanjing), representing the upstream, midstream and downstream portions of the Yangtze River Basin from September 2015 to August 2016 were analyzed. The maximum annual mean PM 2.5 and PM 10 concentrations were 61.3 and 102.7 μg/m³ in Wuhan, while highest annual average gaseous pollutions occurred in Nanjing, with 49.6 and 22.9 ppb for 8 h O₃ and NO₂, respectively. Compared to a few years ago, SO₂ and CO mass concentrations have dropped to well below the qualification standards, and the O₃ and NO₂ concentrations basically meet the requirements though occasionally is still high. In contrary, about 13%, 25%, 22% for PM 2.5 , and 4%, 17%, 15% for PM 10 exceed the Chinese Ambient Air Quality Standard (CAAQS) Grade II. Particulate matter, especially PM 2.5 , is the most frequent major pollutant to poor air quality with 73%, 64% and 88% accounting for substandard days. Mean PM 2.5 concentrations on PM 2.5 episode days are 2⁻3 times greater than non-episode days. On the basis of calculation of PM 2.5 /PM 10 and PM 2.5 /CO ratios, the enhanced particulate matter pollution on episode days is closely related to secondary aerosol production. Except for O₃, the remaining five pollutants exhibit analogous seasonal patterns, with the highest magnitude in winter and lowest in summer. The results of back trajectories show that air pollution displays synergistic effects on local emissions and long range transport. O₃ commonly demonstrated negative correlations with other pollutants, especially during winter, while moderate to strong positive correlation between particulate matter and NO₂, SO₂, CO were seen. Compared to pollutant substandard ratios over three megacities in eastern China (Beijing, Shanghai, and Guangzhou), the situation in our studied second-tier cities are also severe. The results in this paper provide basic knowledge for pollution status of three cities along Chinese Yangtze River and are conductive to mitigating future negative air quality levels.
Davourie, Julia; Westfall, Luke; Ali, Mohammed; McGough, Doreen
2017-01-01
Life-cycle assessments (LCAs) provide a wealth of industry data to assist in evaluating the environmental impacts of industrial processes and product supply chains. In this investigation, data from a recent LCA covering global manganese alloy production was used to evaluate sources of particulate matter (PM) emissions associated with the manganese alloy supply chain. The analysis is aimed at providing an empirical, industry-averaged breakdown of the contribution that processes and emissions controls have on total emissions, manganese releases and occupational exposure. The assessment shows that 66% of PM emissions associated with manganese production occur beyond manganese facilities. Direct or on-site emissions represent 34% of total PM and occur predominantly as disperse sources during mineral extraction and hauling, and as primary furnace emissions. The largest contribution of manganese-bearing PM at ground-level is associated with fugitive emissions from metal and slag tapping, casting, crushing and screening. The evaluation provides a high-level ranking of emissions by process area, to assist in identifying priority areas for industry-wide initiatives to reduce emissions and occupational exposure of manganese. The range of PM emission levels in industry indicate that further enhancements in PM emissions can be achieved by sharing of best practices in emissions controls, limiting furnace conditions which lead to by-passing of emissions controls and application of secondary emission controls to capture fugitive emissions during tapping and casting. The LCA approach to evaluating PM emissions underscores the important role that process optimization and resource efficiency have on reducing PM emissions throughout the manganese supply chain. Copyright © 2016. Published by Elsevier B.V.
Aneja, Viney P; Pillai, Priya R; Isherwood, Aaron; Morgan, Peter; Aneja, Saurabh P
2017-04-01
This study integrates the relationship between measured surface concentrations of particulate matter 10 μm or less in diameter (PM 10 ), satellite-derived aerosol optical depth (AOD), and meteorology in Roda, Virginia, during 2008. A multiple regression model was developed to predict the concentrations of particles 2.5 μm or less in diameter (PM 2.5 ) at an additional location in the Appalachia region, Bristol, TN. The model was developed by combining AOD retrievals from Moderate Resolution Imaging Spectro-radiometer (MODIS) sensor on board the EOS Terra and Aqua Satellites with the surface meteorological observations. The multiple regression model predicted PM 2.5 (r 2 = 0.62), and the two-variable (AOD-PM 2.5 ) model predicted PM 2.5 (r 2 = 0.4). The developed model was validated using particulate matter recordings and meteorology observations from another location in the Appalachia region, Hazard, Kentucky. The model was extrapolated to the Roda, VA, sampling site to predict PM 2.5 mass concentrations. We used 10 km x 10 km resolution MODIS 550 nm AOD to predict ground level PM 2.5 . For the relevant period in 2008, in Roda, VA, the predicted PM 2.5 mass concentration is 9.11 ± 5.16 μg m -3 (mean ± 1SD). This is the first study that couples ground-based Particulate Matter measurements with satellite retrievals to predict surface air pollution at Roda, Virginia. Roda is representative of the Appalachian communities that are commonly located in narrow valleys, or "hollows," where homes are placed directly along the roads in a region of active mountaintop mining operations. Our study suggests that proximity to heavy coal truck traffic subjects these communities to chronic exposure to coal dust and leads us to conclude that there is an urgent need for new regulations to address the primary sources of this particulate matter.
Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska
NASA Astrophysics Data System (ADS)
Nattinger, K.; Simpson, W. R.; Huff, D.
2015-12-01
Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this study regarding primary versus possible secondary PM2.5 production processes can help in identifying effective PM2.5 control strategies.
Balluz, Lina; Wen, Xiao-Jun; Town, Machell; Shire, Jeffrey D; Qualter, Judy; Mokdad, Ali
2007-01-01
Ischemic heart disease (IHD) is one of the most common health threats to the adult population of the U.S. and other countries. The objective of this study was to examine the association between exposure to elevated annual average levels of Particulate matter 2.5 (PM2.5) air quality index (AQI) and IHD in the general population. We combined data from the Behavioral Risk Factor Surveillance System and the U.S Environmental Protection Agency air quality database. We analyzed the data using SUDAAN software to adjust the effects of sampling bias, weights, and design effects. The prevalence of IHD was 9.6% among respondents who were exposed to an annual average level of PM2.5 AQI > 60 compared with 5.9% among respondents exposed to an annual average PM2.5 AQI < or = 60. The respondents with higher levels of PM2.5 AQI exposure were more likely to have IHD (adjusted odds ratio = 1.72, 95% confidence interval 1.11, 2.66) than respondents with lower levels of exposure after adjusting for age, gender, race/ethnicity, education, smoking, body mass index, diabetes, hypertension, and hypercholesterolemia. Our study suggested that exposure to relatively higher levels of average annual PM2.5 AQI may increase the likelihood of IHD. In addition to encouraging health-related behavioral changes to reduce IHD, efforts should also focus on implementing appropriate measures to reduce exposure to unhealthy AQI levels.
Jiang, Ruoting; Bell, Michelle L.
2008-01-01
Background Biomass fuel is the primary source of domestic fuel in much of rural China. Previous studies have not characterized particle exposure through time–activity diaries or personal monitoring in mainland China. Objectives In this study we characterized indoor and personal particle exposure in six households in northeastern China (three urban, three rural) and explored differences by location, cooking status, activity, and fuel type. Rural homes used biomass. Urban homes used a combination of electricity and natural gas. Methods Stationary monitors measured hourly indoor particulate matter (PM) with an aerodynamic diameter ≤ 10 μm (PM10) for rural and urban kitchens, urban sitting rooms, and outdoors. Personal monitors for PM with an aerodynamic diameter ≤ 2.5 μm (PM2.5) were employed for 10 participants. Time–activity patterns in 30-min intervals were recorded by researchers for each participant. Results Stationary monitoring results indicate that rural kitchen PM10 levels are three times higher than those in urban kitchens during cooking. PM10 was 6.1 times higher during cooking periods than during noncooking periods for rural kitchens. Personal PM2.5 levels for rural cooks were 2.8–3.6 times higher than for all other participant categories. The highest PM2.5 exposures occurred during cooking periods for urban and rural cooks. However, rural cooks had 5.4 times higher PM2.5 levels during cooking than did urban cooks. Rural cooks spent 2.5 times more hours per day cooking than did their urban counterparts. Conclusions These findings indicate that biomass burning for cooking contributes substantially to indoor particulate levels and that this exposure is particularly elevated for cooks. Second-by-second personal PM2.5 exposures revealed differences in exposures by population group and strong temporal heterogeneity that would be obscured by aggregate metrics. PMID:18629313
Jiang, Ruoting; Bell, Michelle L
2008-07-01
Biomass fuel is the primary source of domestic fuel in much of rural China. Previous studies have not characterized particle exposure through time-activity diaries or personal monitoring in mainland China. In this study we characterized indoor and personal particle exposure in six households in northeastern China (three urban, three rural) and explored differences by location, cooking status, activity, and fuel type. Rural homes used biomass. Urban homes used a combination of electricity and natural gas. Stationary monitors measured hourly indoor particulate matter (PM) with an aerodynamic diameter < or = 10 microm (PM10) for rural and urban kitchens, urban sitting rooms, and outdoors. Personal monitors for PM with an aerodynamic diameter < or = 2.5 microm (PM2.5) were employed for 10 participants. Time-activity patterns in 30-min intervals were recorded by researchers for each participant. Stationary monitoring results indicate that rural kitchen PM10 levels are three times higher than those in urban kitchens during cooking. PM10 was 6.1 times higher during cooking periods than during noncooking periods for rural kitchens. Personal PM2.5 levels for rural cooks were 2.8-3.6 times higher than for all other participant categories. The highest PM2.5 exposures occurred during cooking periods for urban and rural cooks. However, rural cooks had 5.4 times higher PM2.5 levels during cooking than did urban cooks. Rural cooks spent 2.5 times more hours per day cooking than did their urban counterparts. These findings indicate that biomass burning for cooking contributes substantially to indoor particulate levels and that this exposure is particularly elevated for cooks. Second-by-second personal PM2.5 exposures revealed differences in exposures by population group and strong temporal heterogeneity that would be obscured by aggregate metrics.
RECRUITING AND RETAINING AFRICAN-AMERICANS FOR AN EXPOSURE STUDY IN SOUTHEAST RALEIGH
The U.S. Environmental Protection Agency (EPA) recently completed a study of African-Americans' exposure to particulate matter (PM) in Southeast Raleigh. A primary goal was to compare PM levels measured at ambient and residential sites with those from personal exposure monitors...
Air Pollution Exposure Modeling for Epidemiology Studies and Public Health
Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...
Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran
NASA Astrophysics Data System (ADS)
Arhami, Mohammad; Hosseini, Vahid; Zare Shahne, Maryam; Bigdeli, Mostafa; Lai, Alexandra; Schauer, James J.
2017-03-01
Frequent air pollution episodes have been reported for Tehran, Iran, mainly because of critically high levels of fine particulate matter (PM2.5). The composition and sources of these particles are poorly known, so this study aims to identify the major components and heavy metals in PM2.5 along with their seasonal trends and associated sources. 24-hour PM2.5 samples were collected at a main residential station every 6 days for a full year from February 2014 to February 2015. The samples were analyzed for ions, organic carbon (including water-soluble and insoluble portions), elemental carbon (EC), and all detectable elements. The dominant mass components, which were determined by means of chemical mass closure, were organic matter (35%), dust (25%), non-sea salt sulfate (11%), EC (9%), ammonium (5%), and nitrate (2%). Organic matter and EC together comprised 44% of fine PM on average (increased to >70% in the colder season), which reflects the significance of anthropogenic urban sources (i.e. vehicles). The contributions of different components varied considerably throughout the year, particularly the dust component that varied from 7% in the cold season to 56% in the hot and dry season. Principal component analyses were applied, resulting in 5 major source factors that explained 85% of the variance in fine PM. Factor 1, representing soil dust, explained 53%; Factor 2 denotes heavy metals mainly found in industrial sources and accounted for 18%; and rest of factors, mainly representing combustion sources, explained 14% of the variation. The levels of major heavy metals were further evaluated, and their trends showed considerable increases during cold seasons. The results of this study provide useful insight to fine PM in Tehran, which could help in identifying their health effects and sources, and also adopting effective control strategies.
Impact of Saharan dust particles on hospital admissions in Madrid (Spain).
Reyes, María; Díaz, Julio; Tobias, Aurelio; Montero, Juan Carlos; Linares, Cristina
2014-01-01
Saharan dust intrusions make a major contribution to levels of particulate matter (PM) present in the atmosphere of large cities. We analysed the impact of different PM fractions during periods with and without Saharan dust intrusions, using time-series analysis with Poisson regression models, based on: concentrations of coarse PM (PM10 and PM10-2.5) and fine PM (PM2.5); and daily all-, circulatory- and respiratory-cause hospital admissions. While periods without Saharan dust intrusions were marked by a statistically significant association between daily mean PM2.5 concentrations and all- and circulatory-cause hospital admissions, periods with such intrusions saw a significant increase in respiratory-cause admissions associated with fractions corresponding to PM10 and PM10-2.5.
Danielsen, Pernille Høgh; Møller, Peter; Jensen, Keld Alstrup; Sharma, Anoop Kumar; Wallin, Håkan; Bossi, Rossana; Autrup, Herman; Mølhave, Lars; Ravanat, Jean-Luc; Briedé, Jacob Jan; de Kok, Theo Martinus; Loft, Steffen
2011-02-18
Combustion of biomass and wood for residential heating and/or cooking contributes substantially to both ambient air and indoor levels of particulate matter (PM). Toxicological characterization of ambient air PM, especially related to traffic, is well advanced, whereas the toxicology of wood smoke PM (WSPM) is poorly assessed. We assessed a wide spectrum of toxicity end points in human A549 lung epithelial and THP-1 monocytic cell lines comparing WSPM from high or low oxygen combustion and ambient PM collected in a village with many operating wood stoves and from a rural background area. In both cell types, all extensively characterized PM samples (1.25-100 μg/mL) induced dose-dependent formation of reactive oxygen species and DNA damage in terms of strand breaks and formamidopyrimidine DNA glycosylase sites assessed by the comet assay with WSPM being most potent. The WSPM contained more polycyclic aromatic hydrocarbons (PAH), less soluble metals, and expectedly also had a smaller particle size than PM collected from ambient air. All four types of PM combined increased the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine dose-dependently in A549 cells, whereas there was no change in the levels of etheno-adducts or bulky DNA adducts. Furthermore, mRNA expression of the proinflammatory genes monocyte chemoattractant protein-1, interleukin-8, and tumor necrosis factor-α as well as the oxidative stress gene heme oxygenase-1 was upregulated in the THP-1 cells especially by WSPM and ambient PM sampled from the wood stove area. Expression of oxoguanine glycosylase 1, lymphocyte function-associated antigen-1, and interleukin-6 did not change. We conclude that WSPM has small particle size, high level of PAH, low level of water-soluble metals, and produces high levels of free radicals, DNA damage as well as inflammatory and oxidative stress response gene expression in cultured human cells.
NASA Astrophysics Data System (ADS)
Luong, K.; Sethy, D.; Yu, I.; Hernandez, N.; Fang, K.; Zhang, W.; Li, J.; Hoang, R.; Munui, K. N.; Sot, R.; Rodriguez, V. A.; Chiu, D.; Sankar, R.; Bonzo, R.
2016-12-01
Previous research has identified high levels of PM 2.5 in Embarcadero Station within the Bay Area Rapid Transit (BART) system. The current study examined PM 2.5 levels within Embarcadero Station to confirm previous results, as well as to determine exposure with respect to a location on the platform. Data collected confirmed the effectiveness of using DustTrak devices to collect elevated PM data. Our research established a model for PM 2.5 levels in a stationary location on the Embarcadero platform over a span of 10 minutes.This allowed us to compare the east and west ends of Embarcadero station platform for levels of PM2.5. A significantly higher level of PM2.5 was found on the east end of the platform, supporting last year's study. This methodology builds on last year's research to show a sustained high level of PM 2.5 on either end of the platform, with a significant elevated levels on the east end. Collecting data from a stationary location provided insight on exposure for an individual waiting in one spot rather than walking along the platform prior to train arrival. While the level of PM 2.5 varied over time, the average PM 2.5 over the 10 minute period were still at unhealthy levels. Our research suggests that location of an individual on the platform does affect their exposure level and therefore recommendations can be made for individuals with higher risk.
Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...
Effect of ambient particulate matter expousre on hemostasis
Epidemiological studies have linked levels of particulate matter (PM) in ambient air to cardiovascular mortality and hospitalizations for myocardial infarction (MI) and stroke. Thrombus formation plays a primary role in potentiating acute cardiovascular events, and this study was...
NASA Astrophysics Data System (ADS)
Pikridas, Michael; Vrekoussis, Mihalis; Mihalopoulos, Nikolaos; Kizas, Christos; Savvides, Chrysanthos; Sciare, Jean
2017-04-01
The Eastern Mediterranean (EM) lies at the crossroad of three different continents (Europe, Asia, and Africa). EM is a densely populated region including several cities with 3M inhabitants or more (e.g. Athens, Istanbul, Izmir, and Cairo). It has been identified as the most polluted area in Europe with respect to particulate matter (PM) mainly due to the combination of high photochemical activity, which causes pollutants to oxidize and partitioning in the particle phase, with the elevated pollutants emissions from neighboring regions. In addition, the proximity to Africa and the Middle East allows frequent transport of dust particles. At the center of the Eastern Mediterranean lies the island of Cyprus, which has received very little attention regarding its PM levels despite being the location in Europe most frequently impacted by air masses from the Middle East. Herewith, we present a historical PM archive that spans 2 decades. It involves ongoing monitoring on a daily basis of particulate matter with diameters smaller than 10 μm (PM10), 2.5 μm (PM2.5), and 1 μm (PM1) conducted in at least one, of the 12 currently existing air quality stations in Cyprus since 1997, 2005, and 2009, respectively. The most extended PM datasets correspond a) to the Agia Marina Xyliatou (AMX) monitoring station established at a remote area at the foothills of mount Troodos and b) that of the inland capital, Nicosia. Based on this long-term dataset, the diurnal, temporal and annual variability is assessed. Prior to 2010, PM10 concentration at all sites remained relatively constant, but at different levels, violating the annual EU legislated PM10 limit of 40 μg m-3. Since 2010, coarse mode levels have decreased at all sites. The reported decrease was equal to 30% at AMX. As a result, since 2010 the observed levels comply with the EU legislation threshold. Satellite observations of Aerosol Optical Thickness (AOT) Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA's Terra satellite support this result, suggesting that it is not due to a systematic bias in the sampling procedure. The amount of dust regionally transported from both Sahara and Middle-East deserts exhibited an increasing trend from 1998 till 2010, resulting in an elevation of the coarse mode by 0.5 μg m-3 annually. However, during 2010 the contribution of regional dust to PM10 declined sharply (by 6.8 μg m-3), similar to the observed coarse mode trend and has remained at this reduced level since. However, PM1, mostly driven by anthropogenic emissions, remained constant at the regional background site of AMX. Our results suggest a sharp decline in the coarse mode concentration since 2010 that cannot be attributed to local, anthropogenic, influence but rather to the unexpected decline in regional dust transport.
Monitoring of cotton dust and health risk assessment in small-scale weaving industry.
Tahir, Muhammad Wajid; Mumtaz, Muhammad Waseem; Tauseef, Shanza; Sajjad, Muqadas; Nazeer, Awais; Farheen, Nazish; Iqbal, Muddsar
2012-08-01
The present study describes the estimation of particulate matter (cotton dust) with different sizes, i.e., PM(1.0), PM(2.5), PM(4.0), and PM(10.0 μm) in small-scale weaving industry (power looms) situated in district Hafizabad, Punjab, Pakistan, and the assessment of health problems of workers associated with these pollutants. A significant difference was found in PM(1.0), PM(2.5), PM(4.0), and PM(10.0) with reference to nine different sampling stations with p values <0.05. Multiple comparisons of particulate matter with respect to size, i.e. PM(1.0), PM(2.5), PM(4.0), and PM(10.0), depict that PM(1.0) differs significantly from PM(2.5), PM(4.0), and PM(10.0), with p values <0.05 and that PM(2.5) differs significantly from PM(1.0) and PM(10.0), with p values <0.05, whereas PM(2.5) differs non-significantly from PM(4.0), with a p value >0.05 in defined sampling stations on an average basis. Majority of the workers were facing several diseases due to interaction with particulate matter (cotton dust) during working hours. Flue, cough, eye, and skin infections were the most common diseases among workers caused by particulate matter (cotton dust).
Ma, Mingyue; Li, Shuyin; Jin, Huanrong; Zhang, Yumin; Xu, Jia; Chen, Dongmei; Kuimin, Chen; Yuan, Zhou; Xiao, Chunling
2015-09-01
Fine particulate matter (PM2.5) pollution is becoming serious in China. This study aimed to investigate the impact of PM2.5 on DNA damage in Shenyang city. The concentration and composition of PM2.5 in traffic policemen's working sites including fields and indoor offices were obtained. Blood samples of field and office policemen were collected to detect DNA damage by Comet assay. Rats were used to further analyzing the oxidative DNA damage. The average concentration of PM2.5 in exposed group was significantly higher than that in control group. Composition analysis revealed that toxic heavy metal and polycyclic aromatic hydrocarbon substances were main elements of this PM2.5. DNA damage in field policemen was significantly higher than those in non-field group. Moreover, animal studies confirmed the oxidative DNA damage induced by PM2.5. Taken together, high DNA damages are found in the Shenyang traffic policemen and rats exposed to high level of airborne PM2.5. Copyright © 2015 Elsevier B.V. All rights reserved.
[Size distribution characteristics of particulate matter in the top areas of coke oven].
Xie, Qiuyan; Zhao, Hongwei; Yu, Tao; Ning, Zhaojun; Li, Jinmu; Niu, Yong; Zheng, Yuxin; Zhao, Xiulan; Duan, Huawei
2015-03-01
To systematically evaluate the environmental exposure information of coke oven workers, we investigated the concentration and size distribution characteristics of the particle matter (PM) in the top working area of coke oven. The aerodynamic particle sizer spectrometer was employed to collect the concentration and size distribution information of PM at a top working area. The PM was divided into PM ≤ 1.0 µm, 1.0 µm < PM ≤ 2.5 µm, 2.5 µm < PM ≤ 5.0 µm, 5.0 µm < PM ≤ 10.0 µm and PM>10.0 µm based on their aerodynamic diameters. The number concentration, surface area concentration, and mass concentration were analyzed between different groups. We also conducted the correlation analysis on these parameters among groups. We found the number and surface area concentration of top area particulate was negatively correlated with particle size, but mass concentration curve showed bimodal type with higher point at PM = 1.0 µm and PM = 5.0 µm. The average number concentration of total particulate matter in the top working area was 661.27 number/cm³, surface area concentration was 523.92 µm²/cm³, and mass concentration was 0.12 mg/m³. The most number of particulate matter is not more than 1 µm (PM(1.0)), and its number concentration and surface area concentration accounted for 96.85% and 67.01% of the total particles respectively. In the correlation analysis, different particle size correlated with the total particulate matter differently. And the characteristic parameters of PM2.5 cannot fully reflect the total information of particles. The main particulate matter pollutants in the top working area of coke oven is PM1.0, and it with PM(5.0) can account for a large proportion in the mass concentration of PM. It suggest that PM1.0 and PM(5.0) should be considered for occupational health surveillance on the particulate matter in the top area of coke oven.
Jahn, Heiko J; Schneider, Alexandra; Breitner, Susanne; Eissner, Romy; Wendisch, Manfred; Krämer, Alexander
2011-07-01
The exposure to ambient particulate matter (PM) pollution is a major threat to public health. Chinese megacities are coined by high levels of PM. Our aims were to examine the concentration levels of PM in megacities (Guangzhou, Hong Kong, and Shenzhen) of the Pearl River Delta (PRD), South China; to compare the results with international and national air quality guidelines; and to assess the health impact in terms of possible reductions in premature deaths due to PM reduction. The Medline(®) data base was used to identify published studies (systematic literature search). Based on our appraisal criteria 13 studies remained in the analysis. Additionally, publicly available data were extracted from data sources provided by municipal authorities of the cities under study. PM data reported in μg/m(3) were abstracted from single studies and municipal reports. If possible, the PM data were stratified for season of data collection (summer/winter half-year) and simple means were calculated for cities, seasons and months. Based on the abstracted data, a health impact assessment (HIA) was done in order to estimate potential preventable premature deaths due to PM pollution in the cities. Almost all PM data exceeded national and international air quality guidelines. Our HIA showed that in Guangzhou ten thousands of premature deaths could be prevented if the PM burden was reduced to these air quality limit values. We identified no suitable epidemiological study reporting PM according to our study protocol. Further epidemiological studies should be carried out to more precisely determine the spatial distribution of PM-related health risks in PRD. Environmental protection measures and public health interventions are required to reduce burden of PM-related diseases in PRD. Copyright © 2011 Elsevier GmbH. All rights reserved.
Ding, Shibin; Yu, Lanlan; An, Baijie; Zhang, Guofu; Yu, Pengxin; Wang, Zhe
2018-05-01
Hepatic fibrosis, characterized by an excessive accumulation of extracellular matrix, is associated with toxic substance exposure, chronic infections, mechanical injury, airborne fine particulate matter (PM 2.5 ) exposure and metabolic disease. This study aimed to investigate the effect and mechanism of long-term, real-world airborne particulate matter (PM) exposure on hepatic fibrosis and further explored whether combination treatment of PM exposure and high-fat diet (HFD) aggravate the adverse effects in mice. Six-week-old male C57BL/6J mice fed with either a standard chow diet (STD) or an HFD were treated with either filtered air (FA) or PM for 18 weeks. Metabolic parameters, histological examination, gene expression analysis, and Western blot analysis were utilized to measure the effect and mechanism of PM exposure on hepatic fibrosis and to further analyze the synergistic effect of HFD. Subchronic airborne PM exposure induces hepatic fibrosis in mice, and combination treatment of PM exposure and HFD accelerate the adverse effect. Meanwhile, subchronic exposure to real-world PM increased the level of hepatic ROS, and the expression of endoplasmic reticulum (ER) stress markers (GRP78 and CHOP), p-SMAD2 and p-SMAD3, as well as up-regulated TGFβ and collagen 1 in liver tissues. Furthermore, PM exposure and HFD displayed the synergistic effects on these changes in liver. Our findings indicate that airborne PM exposure aggravates HFD -induced hepatic fibrosis. The ROS-ER stress-TGFβ/SMADs regulatory axis mediates the effects of airborne PM exposure on accelerating hepatic fibrosis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Development of an assay to assess genotoxicity by particulate matter extract
Priftis, Alexandros; Papikinos, Konstantinos; Koukoulanaki, Marina; Kerasioti, Efthalia; Stagos, Dimitrios; Konstantinopoulos, Konstantinos; Spandidos, Demetrios A.; Kermenidou, Marianthi; Karakitsios, Spyros; Sarigiannis, Dimosthenis; Tsatsakis, Aristides M.; Kouretas, Demetrios
2017-01-01
The current study describes a method for assessing the oxidative potential of common environmental stressors (ambient air particulate matter), using a plasmid relaxation assay where the extract caused single-strand breaks, easily visualised through electrophoresis. This assay utilises a miniscule amount (11 µg) of particulate matter (PM) extract compared to other, cell-based methods (~3,000 µg). The negative impact of air pollution on human health has been extensively recognised. Among the air pollutants, PM plays an eminent role, as reflected in the broad scientific interest. PM toxicity highly depends on its composition (metals and organic compounds), which in turn has been linked to multiple health effects (such as cardiorespiratory diseases and cancer) through multiple toxicity mechanisms; the induction of oxidative stress is considered a major mechanism among these. In this study, the PM levels, oxidative potential, cytotoxicity and genotoxicity of PM in the region of Larissa, Greece were examined using the plasmid relaxation assay. Finally, coffee extracts from different varieties, derived from both green and roasted seeds, were examined for their ability to inhibit PM-induced DNA damage. These extracts also exerted an inhibitory effect on xanthine oxidase and catalase, but had no effect against superoxide dismutase. Overall, this study highlights the importance of assays for assessing the oxidative potential of widespread environmental stressors (PM), as well as the antioxidant capacity of beverages and food items, with the highlight being the development of a plasmid relaxation assay to assess the genotoxicity caused by PM using only a miniscule amount. PMID:28260086
MECHANISMS OF ZN2+-INDUCED SIGNAL INITIATION THROUGH THE EPIDERMAL GROWTH FACTOR RECEPTOR
Zn(2+) is a ubiquitous ambient air contaminant that is found as a constituent of airborne particulate matter (PM). Previous studies have associated Zn(2+) levels in PM with health effects in exposed populations and have shown proinflammatory properties of Zn(2+) exposure in vivo ...
Epidemiological studies indicate that daily ambient particulate matter (PM2.5) concentrations are associated with increased mortality, hospital admissions, and respiratory and cardiovascular effects. It is possible that the observed significant associations are the result of c...
Diesel and biodiesel exhaust particle effects on rat alveolar machrophages with in vitro exposure
We conducted in vitro exposures of Wistar rat alveolar macrophages (AM) to compare and contrast the toxicity of particulate matter (PM) produced in combustion of biodiesel blend (B20) and petroleum diesel (PDEP). The PM contain detectable levels of transition metals and ions howe...
PM2.5 concentrations observed and modeled for the 2016 southern Appalachian wildfire event
During November 2016, wildfires in the southern Appalachian region of the United States burned over 125,00 acres leading to a widespread outbreak of elevated levels of fine particulate matter (PM2.5). Daily average concentrations above the current National Ambient Air Quality Sta...
NASA Astrophysics Data System (ADS)
Trang, N. Ha; Tripathi, N. K.
2014-11-01
Every year, during dry season, Chiang Mai and other northern provinces of Thailand face the problem of haze which is mainly generated by the burning of agricultural waste and forest fire, contained high percentage of particulate matter. Particulate matter 10 (PM10), being very small in size, can be inhaled easily to the deepest parts of the human lung and throat respiratory functions. Due to this, it increases the risk of respiratory diseases mainly in the case of continuous exposure to this seasonal smog. MODIS aerosol images (MOD04) have been used for four weeks in March 2007 for generating the hazard map by linking to in-situ values of PM10. Simple linear regression model between PM10 and AOD got fair correlation with R2 = 0.7 and was applied to transform PM10 pattern. The hazard maps showed the dominance of PM10 in northern part of Chiang Mai, especially in second week of March when PM10 level was three to four times higher than standard. The respiratory disease records and public health station of each village were collected from Provincial Public Health Department in Chiang Mai province. There are about 300 public health stations out of 2070 villages; hence thiessen polygon was created to determine the representative area of each public health station. Within each thiessen polygon, respiratory disease incident rate (RDIR) was calculated based on the number of patients and population. Global Moran's I was computed for RDIR to explore spatial pattern of diseases through four weeks of March. Moran's I index depicted a cluster pattern of respiratory diseases in 2nd week than other weeks. That made sense for a relationship between PM10 and respiratory diseases infections. In order to examine how PM10 affect the human respiratory system, geographically weighted regression model was used to observe local correlation coefficient between RDIR and PM10 across study area. The result captured a high correlation between respiratory diseases and high level of PM10 in northeast districts of Chiang Mai in second week of March.
40 CFR 52.2059 - Control strategy: Particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) [Reserved] (b) EPA approves the PM-10 attainment demonstration...-Wilmington, PA-NJ-DE fine particulate matter (PM2.5) nonattainment area has attained the 2006 24-hour PM2.5...
Mainka, Anna; Zajusz-Zubek, Elwira
2015-07-08
Indoor air quality (IAQ) in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM) is of the greatest interest mainly due to its acute and chronic effects on children's health. In addition, carbon dioxide (CO2) levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total-TSP) and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children) and of localization (urban or rural). To evaluate the children's exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children.
Mainka, Anna; Zajusz-Zubek, Elwira
2015-01-01
Indoor air quality (IAQ) in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM) is of the greatest interest mainly due to its acute and chronic effects on children’s health. In addition, carbon dioxide (CO2) levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total—TSP) and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children) and of localization (urban or rural). To evaluate the children’s exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children. PMID:26184249
Particulate Matter Exposure in a Police Station Located near a Highway.
Chen, Yu-Cheng; Hsu, Chin-Kai; Wang, Chia C; Tsai, Perng-Jy; Wang, Chun-Yuan; Chen, Mei-Ru; Lin, Ming-Yeng
2015-11-13
People living or working near roadways have experienced an increase in cardiovascular or respiratory diseases due to vehicle emissions. Very few studies have focused on the PM exposure of highway police officers, particularly for the number concentration and size distribution of ultrafine particles (UFP). This study evaluated exposure concentrations of particulate matter (PM) in the Sinying police station near a highway located in Tainan, Taiwan, under different traffic volumes, traffic types, and shift times. We focused on periods when the wind blew from the highway toward the police station and when the wind speed was greater than or equal to 0.5 m/s. PM2.5, UFP, and PM-PAHs concentrations in the police station and an upwind reference station were measured. Results indicate that PM2.5, UFP, and PM-PAHs concentrations in the police station can be on average 1.13, 2.17, and 5.81 times more than the upwind reference station concentrations, respectively. The highest exposure level for PM2.5 and UFP was observed during the 12:00 PM-4:00 PM shift while the highest PAHs concentration was found in the 4:00 AM-8:00 AM shift. Thus, special attention needs to be given to protect police officers from exposure to high PM concentration.
Guo, Erbao; Shen, Henggen; He, Lei; Zhang, Jiawen
2017-07-01
In November 2015, the PM 2.5 and PM 10 particulate matter (PM) levels in platforms, station halls, and rail areas of the Shangcheng and Jiashan Road Station were monitored to investigate air pollution in the Shanghai subway system. The results revealed that in subway stations, PM 2.5 and PM 10 concentrations were significantly higher than those in outdoor environments. In addition, particle concentrations in the platforms exceeded maximum levels that domestic safety standards allowed. Particularly on clear days, PM 2.5 and PM 10 concentrations in platforms were significantly higher than maximum standards levels. Owing to the piston effect, consistent time-varying trends were exhibited by PM 2.5 concentrations in platforms, station halls, and rail areas. Platform particle concentrations were higher than the amount in station halls, and they were higher on clear days than on rainy days. The time-varying trends of PM 10 and PM 2.5 concentrations in platforms and station halls were similar to each other. Activities within the station led to most of the inhalable particles within the station area. The mass concentration ratios of PM 2.5 and PM 10 in platforms were within 0.65-0.93, and fine particles were the dominant components.
Bayesian spatio-temporal modeling of particulate matter concentrations in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Manga, Edna; Awang, Norhashidah
2016-06-01
This article presents an application of a Bayesian spatio-temporal Gaussian process (GP) model on particulate matter concentrations from Peninsular Malaysia. We analyze daily PM10 concentration levels from 35 monitoring sites in June and July 2011. The spatiotemporal model set in a Bayesian hierarchical framework allows for inclusion of informative covariates, meteorological variables and spatiotemporal interactions. Posterior density estimates of the model parameters are obtained by Markov chain Monte Carlo methods. Preliminary data analysis indicate information on PM10 levels at sites classified as industrial locations could explain part of the space time variations. We include the site-type indicator in our modeling efforts. Results of the parameter estimates for the fitted GP model show significant spatio-temporal structure and positive effect of the location-type explanatory variable. We also compute some validation criteria for the out of sample sites that show the adequacy of the model for predicting PM10 at unmonitored sites.
Fine Particulate Matter Pollution and Risk of Community-Acquired Sepsis
McClure, Leslie A.; Griffin, Russell; Al-Hamdan, Mohammad Z.; Wang, Henry E.
2018-01-01
While air pollution has been associated with health complications, its effect on sepsis risk is unknown. We examined the association between fine particulate matter (PM2.5) air pollution and risk of sepsis hospitalization. We analyzed data from the 30,239 community-dwelling adults in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort linked with satellite-derived measures of PM2.5 data. We defined sepsis as a hospital admission for a serious infection with ≥2 systemic inflammatory response (SIRS) criteria. We performed incidence density sampling to match sepsis cases with 4 controls by age (±5 years), sex, and race. For each matched group we calculated mean daily PM2.5 exposures for short-term (30-day) and long-term (one-year) periods preceding the sepsis event. We used conditional logistic regression to evaluate the association between PM2.5 exposure and sepsis, adjusting for education, income, region, temperature, urbanicity, tobacco and alcohol use, and medical conditions. We matched 1386 sepsis cases with 5544 non-sepsis controls. Mean 30-day PM2.5 exposure levels (Cases 12.44 vs. Controls 12.34 µg/m3; p = 0.28) and mean one-year PM2.5 exposure levels (Cases 12.53 vs. Controls 12.50 µg/m3; p = 0.66) were similar between cases and controls. In adjusted models, there were no associations between 30-day PM2.5 exposure levels and sepsis (4th vs. 1st quartiles OR: 1.06, 95% CI: 0.85–1.32). Similarly, there were no associations between one-year PM2.5 exposure levels and sepsis risk (4th vs. 1st quartiles OR: 0.96, 95% CI: 0.78–1.18). In the REGARDS cohort, PM2.5 air pollution exposure was not associated with risk of sepsis. PMID:29690517
Fine Particulate Matter Pollution and Risk of Community-Acquired Sepsis.
Sarmiento, Elisa J; Moore, Justin Xavier; McClure, Leslie A; Griffin, Russell; Al-Hamdan, Mohammad Z; Wang, Henry E
2018-04-21
While air pollution has been associated with health complications, its effect on sepsis risk is unknown. We examined the association between fine particulate matter (PM 2.5 ) air pollution and risk of sepsis hospitalization. We analyzed data from the 30,239 community-dwelling adults in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort linked with satellite-derived measures of PM 2.5 data. We defined sepsis as a hospital admission for a serious infection with ≥2 systemic inflammatory response (SIRS) criteria. We performed incidence density sampling to match sepsis cases with 4 controls by age (±5 years), sex, and race. For each matched group we calculated mean daily PM 2.5 exposures for short-term (30-day) and long-term (one-year) periods preceding the sepsis event. We used conditional logistic regression to evaluate the association between PM 2.5 exposure and sepsis, adjusting for education, income, region, temperature, urbanicity, tobacco and alcohol use, and medical conditions. We matched 1386 sepsis cases with 5544 non-sepsis controls. Mean 30-day PM 2.5 exposure levels (Cases 12.44 vs. Controls 12.34 µg/m³; p = 0.28) and mean one-year PM 2.5 exposure levels (Cases 12.53 vs. Controls 12.50 µg/m³; p = 0.66) were similar between cases and controls. In adjusted models, there were no associations between 30-day PM 2.5 exposure levels and sepsis (4th vs. 1st quartiles OR: 1.06, 95% CI: 0.85⁻1.32). Similarly, there were no associations between one-year PM 2.5 exposure levels and sepsis risk (4th vs. 1st quartiles OR: 0.96, 95% CI: 0.78⁻1.18). In the REGARDS cohort, PM 2.5 air pollution exposure was not associated with risk of sepsis.
NASA Astrophysics Data System (ADS)
Yu, J.; Lau, A. K.; Wu, C.; Ng, W.; Yuan, Z.; Wu, D.
2009-12-01
The Pearl River Delta (PRD) is among the most economically fast-developing regions in China. The region has been experiencing increasing levels of particulate matter (PM) pollution. In an effort of establishing long-term trend in chemical characteristics of PM2.5 and understanding PM sources important at regional scale, filter-based samples have been collected at three sites in the PRD concurrently in one-in-six-day schedule since August 2007. We here report observation results of PM2.5 over one-year period (August 2007-June 2008). The three sites include an urban downtown location in Guangzhou, Nansha, a rural receptor site at the mouth of the Pearl River, and Tsuen Wan, an urban background site in Hong Kong. Guangzhou recorded the highest annual average PM2.5 concentration of 78.2 μgm-3, followed by Nansha (65.9 μgm-3) and Tsuen Wan (42.8 μgm-3). Organic matter (OM) and sulfate are the top two constituents, accounting for ~70% of PM2.5 mass. The annual average nitrate contributions were similar at GZ and NS (~13%), but lower at TW (~7%). Inter-site correlations of PM2.5 and major constituents indicate that GZ strongly influenced ambient PM2.5 levels at NS, but GZ’s influence on TW was much reduced. Sulfate, ammonium, and OM showed strong regional characteristics. To the contrary, EC at the three sites had no correlations, suggesting a dominating local origin. Examples of high PM2.5 episodes are also analyzed to identify the conditions conducive for high PM.
Li, Guangdong; Fang, Chuanglin; Wang, Shaojian; Sun, Siao
2016-11-01
Rapid economic growth, industrialization, and urbanization in China have led to extremely severe air pollution that causes increasing negative effects on human health, visibility, and climate change. However, the influence mechanisms of these anthropogenic factors on fine particulate matter (PM 2.5 ) concentrations are poorly understood. In this study, we combined panel data and econometric methods to investigate the main anthropogenic factors that contribute to increasing PM 2.5 concentrations in China at the prefecture level from 1999 to 2011. The results showed that PM 2.5 concentrations and three anthropogenic factors were cointegrated. The panel Fully Modified Least Squares and panel Granger causality test results indicated that economic growth, industrialization, and urbanization increased PM 2.5 concentrations in the long run. The results implied that if China persists in its current development pattern, economic growth, industrialization and urbanization will inevitably lead to increased PM 2.5 emissions in the long term. Industrialization was the principal factor that affected PM 2.5 concentrations for the total panel, the industry-oriented panel and the service-oriented panel. PM 2.5 concentrations can be reduced at the cost of short-term economic growth and industrialization. However, reducing the urbanization level is not an efficient way to decrease PM 2.5 pollutions in the short term. The findings also suggest that a rapid reduction of PM 2.5 concentrations relying solely on adjusting these anthropogenic factors is difficult in a short-term for the heavily PM 2.5 -polluted panel. Moreover, the Chinese government will have to seek much broader policies that favor a decoupling of these coupling relationships.
Balsa, Ana Ines; Caffera, Marcelo; Bloomfield, Juanita
2016-11-01
The ashes and dust resulting from the 2011 eruptions of the Puyehue volcano in Chile more than doubled monthly averages of PM10 concentrations in Montevideo, Uruguay. Few studies have taken advantage of natural experiments to assess the relationship between ambient air pollutant concentrations and birth outcomes. In this study we explored the effect of particulate matter with diameter of ≤ 10 μm (PM10) on perinatal outcomes in Uruguay, a middle-income country in South America with levels of PM10 that in general do not exceed the recommended thresholds. The analyzed outcomes are preterm birth, term birth weight, and term low birth weight. We took advantage of the sharp variation in PM10 concentrations due to the Puyehue eruptions to estimate the associations between mother's exposure to PM10 in each trimester of pregnancy and perinatal outcomes. We use birth registries for 2010-2013 and control for covariates, including maternal and pregnancy characteristics, weather, co-pollutants, and calendar quarter and hospital indicators. A 10-μg/m3 increase in exposure to PM10 during the third trimester was associated with a higher likelihood of a preterm birth [odds ratio (OR) = 1.10; 95% CI: 1.03, 1.19]. The association was robust to different model specifications, and increased with categorical exposure levels (OR for third-trimester PM10 ≥ 70 vs. < 30 μg/m3 = 5.24; 95% CI: 3.40, 8.08). Exposures were not consistently associated with birth weight or low birth weight among term births, though second-trimester exposures were associated with higher birth weight, contrary to expectations. Taking advantage of a natural experiment, we found evidence that exposure to high levels of PM10 during the third trimester of pregnancy may have increased preterm births among women in Montevideo, Uruguay. Citation: Balsa AI, Caffera M, Bloomfield J. 2016. Exposures to particulate matter from the eruptions of the Puyehue Volcano and birth outcomes in Montevideo, Uruguay. Environ Health Perspect 124:1816-1822; http://dx.doi.org/10.1289/EHP235.
Balsa, Ana Ines; Caffera, Marcelo; Bloomfield, Juanita
2016-01-01
Background: The ashes and dust resulting from the 2011 eruptions of the Puyehue volcano in Chile more than doubled monthly averages of PM10 concentrations in Montevideo, Uruguay. Few studies have taken advantage of natural experiments to assess the relationship between ambient air pollutant concentrations and birth outcomes. Objectives: In this study we explored the effect of particulate matter with diameter of ≤ 10 μm (PM10) on perinatal outcomes in Uruguay, a middle-income country in South America with levels of PM10 that in general do not exceed the recommended thresholds. The analyzed outcomes are preterm birth, term birth weight, and term low birth weight. Methods: We took advantage of the sharp variation in PM10 concentrations due to the Puyehue eruptions to estimate the associations between mother’s exposure to PM10 in each trimester of pregnancy and perinatal outcomes. We use birth registries for 2010–2013 and control for covariates, including maternal and pregnancy characteristics, weather, co-pollutants, and calendar quarter and hospital indicators. Results: A 10-μg/m3 increase in exposure to PM10 during the third trimester was associated with a higher likelihood of a preterm birth [odds ratio (OR) = 1.10; 95% CI: 1.03, 1.19]. The association was robust to different model specifications, and increased with categorical exposure levels (OR for third-trimester PM10 ≥ 70 vs. < 30 μg/m3 = 5.24; 95% CI: 3.40, 8.08). Exposures were not consistently associated with birth weight or low birth weight among term births, though second-trimester exposures were associated with higher birth weight, contrary to expectations. Conclusions: Taking advantage of a natural experiment, we found evidence that exposure to high levels of PM10 during the third trimester of pregnancy may have increased preterm births among women in Montevideo, Uruguay. Citation: Balsa AI, Caffera M, Bloomfield J. 2016. Exposures to particulate matter from the eruptions of the Puyehue Volcano and birth outcomes in Montevideo, Uruguay. Environ Health Perspect 124:1816–1822; http://dx.doi.org/10.1289/EHP235 PMID:27152597
Hao, Yongping; Strosnider, Heather; Balluz, Lina; Qualters, Judith R
2016-02-01
Studies on the association between prenatal exposure to fine particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) and term low birth weight (LBW) have resulted in inconsistent findings. Most studies were conducted in snapshots of small geographic areas and no national study exists. We investigated geographic variation in the associations between ambient PM2.5 during pregnancy and term LBW in the contiguous United States. A total of 3,389,450 term singleton births in 2002 (37-44 weeks gestational age and birth weight of 1,000-5,500 g) were linked to daily PM2.5 via imputed birth days. We generated average daily PM2.5 during the entire pregnancy and each trimester. Multi-level logistic regression models with county-level random effects were used to evaluate the associations between term LBW and PM2.5 during pregnancy. Without adjusting for covariates, the odds of term LBW increased 2% [odds ratio (OR) = 1.02; 95% CI: 1.00, 1.03] for every 5-μg/m(3) increase in PM2.5 exposure during the second trimester only, which remained unchanged after adjusting for county-level poverty (OR = 1.02; 95% CI: 1.01, 1.04). The odds did change to null after adjusting for individual-level predictors (OR = 1.00; 95% CI: 0.99, 1.02). Multi-level analyses, stratified by census division, revealed significant positive associations of term LBW and PM2.5 exposure (during the entire pregnancy or a specific trimester) in three census divisions of the United States: Middle Atlantic, East North Central, and West North Central, and significant negative association in the Mountain division. Our study provided additional evidence on the associations between PM2.5 exposure during pregnancy and term LBW from a national perspective. The magnitude and direction of the estimated associations between PM2.5 exposure and term LBW varied by geographic locations in the United States.
Manzano-León, Natalia; Serrano-Lomelin, Jesús; Sánchez, Brisa N.; Quintana-Belmares, Raúl; Vega, Elizabeth; Vázquez-López, Inés; Rojas-Bracho, Leonora; López-Villegas, Maria Tania; Vadillo-Ortega, Felipe; De Vizcaya-Ruiz, Andrea; Perez, Irma Rosas; O’Neill, Marie S.; Osornio-Vargas, Alvaro R.
2015-01-01
Background: Observed seasonal differences in particulate matter (PM) associations with human health may be due to their composition and to toxicity-related seasonal interactions. Objectives: We assessed seasonality in PM composition and in vitro PM pro-inflammatory potential using multiple PM samples. Methods: We collected 90 weekly PM10 and PM2.5 samples during the rainy-warm and dry-cold seasons in five urban areas with different pollution sources. The elements, polycyclic aromatic hydrocarbons (PAHs), and endotoxins identified in the samples were subjected to principal component analysis (PCA). We tested the potential of the PM to induce tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) secretion in cultured human monocytes (THP-1), and we modeled pro-inflammatory responses using the component scores. Results: PM composition varied by size and by season. PCA identified two main components that varied by season. Combustion-related constituents (e.g., vanadium, benzo[a]pyrene, benzo[a]anthracene) mainly comprised component 1 (C1). Soil-related constituents (e.g., endotoxins, silicon, aluminum) mainly comprised component 2 (C2). PM from the rainy-warm season was high in C2. PM (particularly PM2.5) from the dry-cold season was rich in C1. Elevated levels of cytokine production were associated with PM10 and C2 (rainy-warm season), whereas reduced levels of cytokine production were associated with PM2.5 and C1 (dry-cold season). TNFα secretion was increased following exposure to PM with high (vs. low) C2 content, but TNFα secretion in response to PM was decreased following exposure to samples containing ≥ 0.1% of C1-related PAHs, regardless of C2 content. The results of the IL-6 assays suggested more complex interactions between PM components and particle size. Conclusions: Variations in PM soil and PAH content underlie seasonal and PM size–related patterns in TNFα secretion. These results suggest that the mixture of components in PM explains some seasonal differences in associations between health outcomes and PM in epidemiologic studies. Citation: Manzano-León N, Serrano-Lomelin J, Sánchez BN, Quintana-Belmares R, Vega E, Vázquez-López I, Rojas-Bracho L, López-Villegas MT, Vadillo-Ortega F, De Vizcaya-Ruiz A, Rosas Perez I, O’Neill MS, Osornio-Vargas AR. 2016. TNFα and IL-6 responses to particulate matter in vitro: variation according to PM size, season, and polycyclic aromatic hydrocarbon and soil content. Environ Health Perspect 124:406–412; http://dx.doi.org/10.1289/ehp.1409287 PMID:26372663
A preliminary assessment of PM(10) and TSP concentrations in Tuticorin, India.
Sivaramasundaram, K; Muthusubramanian, P
2010-06-01
The respirable particulate matter (RPM; PM(10)) and total suspended particulate matter (TSP) concentrations in ambient air in Tuticorin, India, were preliminarily estimated. Statistical analyses on so-generated database were performed to infer frequency distributions and to identify dominant meteorological factor affecting the pollution levels. Both the RPM and TSP levels were well below the permissible limits set by the US Environmental Protection Agency. As expected, lognormal distribution always fit the data during the study period. However, fit with the normal was also acceptable except for very few seasons. The RPM concentrations ranged between 20.9 and 198.2 mug/m(3), while the TSP concentrations varied from 51.5 to 333.3 mug/m(3) during the study period. There was a better correlation between PM(10-100) and TSP concentrations than that of PM(10) (RPM) and TSP concentrations, but the correlation of RPM fraction was also acceptable. It was found that wind speed was the most important meteorological factor affecting the concentrations of the pollutants of present interest. Significant seasonal variations in the pollutant concentrations of present interest were found at 5% significance level except for TSP concentrations in the year 2006.
78 FR 65590 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Indiana PM2.5
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
...EPA is proposing to approve revisions to Indiana's state implementation plan as requested by the Indiana Department of Environmental Management (IDEM) to EPA on July 12, 2012, and December 12, 2012. The revisions to Indiana's state implementation plan (SIP) implement certain EPA regulations for particulate matter smaller than 2.5 micrometers (PM2.5) by establishing definitions related to PM2.5, defining PM2.5 increment levels, and setting PM2.5 class 1 variances. The revisions also incorporate definitions and regulations that recognize nitrogen oxides (NOX) as an ozone precursor.
Liberda, Eric N; Tsuji, Leonard J S; Peltier, Richard E
2015-11-01
Airborne particulate matter arising from upwind mining activities is a concern for First Nations communities in the western James Bay region of Ontario, Canada. Aerosol chemical components were collected in 2011 from two communities in northern Ontario. The chemical and mass concentration data of particulate matter collected during this study shows a significant difference in PM2.5 in Attawapiskat compared to Fort Albany. Elemental profiles indicate enhanced levels of some tracers thought to arise from mining activities, such as, K, Ni, and crustal materials. Both communities are remote and isolated from urban and industrial pollution sources, however, Attawapiskat First Nation has significantly enhanced levels of particulate matter, and it is likely that some of this arises from upwind mining activities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Talbi, Abdelhamid; Kerchich, Yacine; Kerbachi, Rabah; Boughedaoui, Ménouèr
2018-01-01
Concentrations of particulate matter less than 1 μm, 2.5 μm, 10 μm and their contents of heavy metals were investigated in two different stations, urban and roadside at Algiers (Algeria). Sampling was conducted during two years by a high volume samplers (HVS) equipped with a cascade impactor at four levels stage, for one year sampling. The characterization of the heavy metals associated to the particulate matter (PM) was carried out by X-Ray Fluorescence analysis (XRF). The annual average concentration of PM 1 , PM 2.5 and PM 10 in both stations were 18.24, 32.23 and 60.01 μg m -3 respectively. The PM 1 , PM 2.5 and PM 10 concentrations in roadside varied from 13.46 to 25.59 μg m -3 , 20.82-49.85 μg m -3 and 45.90-77.23 μg m -3 respectively. However in the urban station, the PM 1 , PM 2.5 and PM 10 concentrations varied from 10.45 to 26.24 μg m -3 , 18.53-47.58 μg m -3 and 43.8-91.62 μg m -3 . The heavy metals associated to the PM were confirmed by Scanning Electron Microscopy-Energy Dispersive X-Ray analyses (SEM-EDX). The different spots of PM 2.5 analysis by SEM-EDX shows the presence of nineteen elements with anthropogenic and natural origins, within the heavy metal detected, the lead was found with maximum of 5% (weight percent). In order to determine the source contributions of PM levels at the two sampling sites sampling, principal compound analysis (PCA) was applied to the collected data. Statistical analysis confirmed anthropogenic source with traffic being a significant source and high contribution of natural emissions. At both sites, the PM 2.5 /PM 10 ratio is lower than that usually recorded in developed countries. The study of the back-trajectories of the air masses starting from Sahara shows that desert dust influences the concentration and the composition of the PM measured in Algiers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Jee Young; Magari, Shannon R; Herrick, Robert F; Smith, Thomas J; Christiani, David C
2004-11-01
Particulate air pollution, specifically the fine particle fraction (PM2.5), has been associated with increased cardiopulmonary morbidity and mortality in general population studies. Occupational exposure to fine particulate matter can exceed ambient levels by a large factor. Due to increased interest in the health effects of particulate matter, many particle sampling methods have been developed In this study, two such measurement methods were used simultaneously and compared. PM2.5 was sampled using a filter-based gravimetric sampling method and a direct-reading instrument, the TSI Inc. model 8520 DUSTTRAK aerosol monitor. Both sampling methods were used to determine the PM2.5 exposure in a group of boilermakers exposed to welding fumes and residual fuel oil ash. The geometric mean PM2.5 concentration was 0.30 mg/m3 (GSD 3.25) and 0.31 mg/m3 (GSD 2.90)from the DUSTTRAK and gravimetric method, respectively. The Spearman rank correlation coefficient for the gravimetric and DUSTTRAK PM2.5 concentrations was 0.68. Linear regression models indicated that log, DUSTTRAK PM2.5 concentrations significantly predicted loge gravimetric PM2.5 concentrations (p < 0.01). The association between log(e) DUSTTRAK and log, gravimetric PM2.5 concentrations was found to be modified by surrogate measures for seasonal variation and type of aerosol. PM2.5 measurements from the DUSTTRAK are well correlated and highly predictive of measurements from the gravimetric sampling method for the aerosols in these work environments. However, results from this study suggest that aerosol particle characteristics may affect the relationship between the gravimetric and DUSTTRAK PM2.5 measurements. Recalibration of the DUSTTRAK for the specific aerosol, as recommended by the manufacturer, may be necessary to produce valid measures of airborne particulate matter.
Sun, Yujiao; Xu, Shangwei; Zheng, Danyang; Li, Jie; Tian, Hezhong; Wang, Yong
2018-05-10
In this study, particulate matter (PM) with aerodynamic diameters of ≤2.5 and ≤10 μm (PM 2.5 and PM 10 , respectively), which was found at different concentrations in spring, was collected in Beijing. The chemical composition and bacterial community diversity of PM were determined, and the relationship between them was studied by 16S rRNA sequencing and mathematical statistics. Chemical composition analysis revealed greater relative percentages of total organic compounds (TOC) and secondary ions (NO 3 - , SO 4 2- , and NH 4 + ). The concentrations of Ca 2+ , Na + , Mg 2+ , K + and SO 4 2- increased in high-concentration PM, which was associated with the contribution of soil, dust and soot. Microbiological analysis revealed 1191 operational taxonomic units. Microbial community structure was stable at the phylum level. The most abundant phyla were Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes and Cyanobacteria. Community clustering analysis at the genus level showed that the difference in bacterial community structure between different PM concentrations (clean air vs. smog) was greater than that between different particle sizes. The dominant genera varied in different concentrations of PM. An unclassified genus of Cyanobacteria and Comamonadaceae were most abundant in low- and high-concentration PM, respectively. The microbial community structure was dynamic at the genus level due to different environmental factors. The dominant bacteria in high-concentration PM were widely distributed in soils, indicating that the soil contributed more to the increase in the PM. The individual microbes that were detected did not increase significantly as the PM concentration increased. The bacterial community structure was strongly correlated with K + , Ca 2+ , Na + , Mg 2+ , SO 4 2- and TOC in high-concentration PM and had a good correlation with NO 3 - , Cl - , NH 4 + and TIC in low-concentration PM. Soil and dust contributed to the increase in the concentration of the particles, and the relevant chemical components also produced differences in the bacterial community structure in different concentrations of PM. Copyright © 2018. Published by Elsevier B.V.
Apple, J; Vicente, R; Yarberry, A; Lohse, N; Mills, E; Jacobson, A; Poppendieck, D
2010-10-01
Over one-quarter of the world's population relies on fuel-based lighting. Kerosene lamps are often located in close proximity to users, potentially increasing the risk for respiratory illnesses and lung cancer. Particulate matter concentrations resulting from cook stoves have been extensively studied in the literature. However, characterization of particulate concentrations from fuel-based lighting has received minimal attention. This research demonstrates that vendors who use a single simple wick lamp in high-air-exchange market kiosks will likely be exposed to PM(2.5) concentrations that are an order of magnitude greater than ambient health guidelines. Using a hurricane lamp will reduce exposure to PM(2.5) and PM(10) concentrations by an order of magnitude compared to using a simple wick lamp. Vendors using a single hurricane or pressure lamp may not exceed health standards or guidelines for PM(2.5) and PM(10), but will be exposed to elevated 0.02-0.3 μm particle concentrations. Vendors who change from fuel-based lighting to electric lighting technology for enhanced illumination will likely gain the ancillary health benefit of reduced particulate matter exposure. Vendors exposed only to ambient and fuel-based lighting particulate matter would see over an 80% reduction in inhaled PM(2.5) mass if they switched from a simple wick lamp to an electric lighting technology. Changing lighting technologies to achieve increased efficiency and energy service levels can provide ancillary health benefits. The cheapest, crudest kerosene lamps emit the largest amounts of PM(2.5). Improving affordability and access to better lighting options (hurricane or pressure lamps and lighting using grid or off-grid electricity) can deliver health benefits for a large fraction of the world's population, while reducing the economic and environmental burden of the current fuel-based lighting technologies.
Odman, M Talat; Hu, Yongtao; Russell, Armistead G; Hanedar, Asude; Boylan, James W; Brewer, Patricia F
2009-07-01
A detailed sensitivity analysis was conducted to quantify the contributions of various emission sources to ozone (O3), fine particulate matter (PM2.5), and regional haze in the Southeastern United States. O3 and particulate matter (PM) levels were estimated using the Community Multiscale Air Quality (CMAQ) modeling system and light extinction values were calculated from modeled PM concentrations. First, the base case was established using the emission projections for the year 2009. Then, in each model run, SO2, primary carbon (PC), NH3, NO(x) or VOC emissions from a particular source category in a certain geographic area were reduced by 30% and the responses were determined by calculating the difference between the results of the reduced emission case and the base case. The sensitivity of summertime O3 to VOC emissions is small in the Southeast and ground-level NO(x) controls are generally more beneficial than elevated NO(x) controls (per unit mass of emissions reduced). SO2 emission reduction is the most beneficial control strategy in reducing summertime PM2.5 levels and improving visibility in the Southeast and electric generating utilities are the single largest source of SO2. Controlling PC emissions can be very effective locally, especially in winter. Reducing NH3 emissions is an effective strategy to reduce wintertime ammonium nitrate (NO3NH4) levels and improve visibility; NO(x) emissions reductions are not as effective. The results presented here will help the development of specific emission control strategies for future attainment of the National Ambient Air Quality Standards in the region.
Kant, Nora; Müller, Ruth; Braun, Markus; Gerber, Alexander; Groneberg, David
2016-01-01
Indoor air pollution with harmful particulate matter (PM) is mainly caused by cigarette smoke. Super-Slim-Size-Cigarettes (SSL) are considered a less harmful alternative to King-Size-Cigarettes (KSC) due to longer filters and relatively low contents. We ask if “Combined Mainstream and Sidestream Smoke” (CMSS)-associated PM levels of SSL are lower than of KSC and thus are potentially less harmful. PM concentrations in CMSS (PM10, PM2.5, and PM1) are measured from four cigarette types of the brand Vogue, using an “automatic-environmental-tobacco-smoke-emitter” (AETSE) and laser aerosol spectrometry: SSL-BLEUE, -MENTHE, -LILAS and KSC-La Cigarette and -3R4F reference. This analysis shows that SSL MENTHE emitted the highest amount of PM, and KSC-La Cigarette the lowest. 3R4F reference emitted PM in the middle range, exceeding SSL BLEUE and falling slightly below SSL LILAS. It emerged that PM1 constituted the biggest proportion of PM emission. The outcome shows significant type-specific differences for emitted PM concentrations. Our results indicate that SSL are potentially more harmful for passive smokers than the respective KSC. However, this study cannot give precise statements about the general influence of the size of a cigarette on PM. Alarming is that PM1 is responsible for the biggest proportion of PM pollution, since smaller particles cause more harmful effects. PMID:27509517
Effects of metals within ambient air particulate matter (PM) on human health.
Chen, Lung Chi; Lippmann, Morton
2009-01-01
We review literature providing insights on health-related effects caused by inhalation of ambient air particulate matter (PM) containing metals, emphasizing effects associated with in vivo exposures at or near contemporary atmospheric concentrations. Inhalation of much higher concentrations, and high-level exposures via intratracheal (IT) instillation that inform mechanistic processes, are also reviewed. The most informative studies of effects at realistic exposure levels, in terms of identifying influential individual PM components or source-related mixtures, have been based on (1) human and laboratory animal exposures to concentrated ambient particles (CAPs), and (2) human population studies for which both health-related effects were observed and PM composition data were available for multipollutant regression analyses or source apportionment. Such studies have implicated residual oil fly ash (ROFA) as the most toxic source-related mixture, and Ni and V, which are characteristic tracers of ROFA, as particularly influential components in terms of acute cardiac function changes and excess short-term mortality. There is evidence that other metals within ambient air PM, such as Pb and Zn, also affect human health. Most evidence now available is based on the use of ambient air PM components concentration data, rather than actual exposures, to determine significant associations and/or effects coefficients. Therefore, considerable uncertainties about causality are associated with exposure misclassification and measurement errors. As more PM speciation data and more refined modeling techniques become available, and as more CAPs studies involving PM component analyses are performed, the roles of specific metals and other components within PM will become clearer.
Cell death pathways of particulate matter toxicity.
Peixoto, Milena Simões; de Oliveira Galvão, Marcos Felipe; Batistuzzo de Medeiros, Silvia Regina
2017-12-01
Humans are exposed to various complex mixtures of particulate matter (PM) from different sources. Long-term exposure to high levels of these particulates has been linked to a diverse range of respiratory and cardiovascular diseases that have resulted in hospital admission. The evaluation of the effects of PM exposure on the mechanisms related to cell death has been a challenge for many researchers. Therefore, in this review, we have discussed the effects of airborne PM exposure on mechanisms related to cell death. For this purpose, we have compiled literature data on PM sources, the effects of exposure, and the assays and models used for evaluation, in order to establish comparisons between various studies. The analysis of this collected data suggested divergent responses to PM exposure that resulted in different cell death types (apoptosis, autophagy, and necrosis). In addition, PM induced oxidative stress within cells, which appeared to be an important factor in the determination of cell fate. When the levels of reactive oxygen species were overpowering, the cellular fate was directed toward cell death. This may be the underlying mechanism of the development or exacerbation of respiratory diseases, such as emphysema and chronic obstructive pulmonary diseases. In addition, PM was shown to cause DNA damage and the resulting mutations increased the risk of cancer. Furthermore, several conditions should be considered in the assessment of cell death in PM-exposed models, including the cell culture line, PM composition, and the interaction of the different cells types in in vivo models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Direct contact with particulate matter increases oxidative stress in different brain structures.
Fagundes, Lucas Sagrillo; Fleck, Alan da Silveira; Zanchi, Ana Claudia; Saldiva, Paulo Hilário Nascimento; Rhoden, Cláudia Ramos
2015-01-01
Several experimental and epidemiological studies have demonstrated the neurological adverse effects caused by exposure to air pollution, specifically in relation to pollutant particulate matter (PM). The objective of this study was to investigate the direct effect of PM in increased concentrations in different brain regions, as well as the mechanisms involving its neurotoxicity, by evaluating oxidative stress parameters in vitro. Olfactory bulb, cerebral cortex, striatum, hippocampus and cerebellum of rats were homogenized and incubated with PM < 2.5 μm of diameter (PM2.5) at concentrations of 3, 5 and 10 µg/mg of tissue. The oxidative damage caused by lipid peroxidation of these structures was determined by testing the thiobarbituric acid reactive species (TBA-RS). In addition, we measured the activity of antioxidant enzyme catalase (CAT) and superoxide dismutase (SOD). All PM concentrations were able to damage the cerebellum and hippocampus, strongly enhancing the lipid peroxidation in both structures. PM incubation also decreased the CAT activity of the hippocampus, cerebellum, striatum and olfactory bulb, though it did not generate higher levels of lipid peroxidation in either of the last two structures. PM incubation did not alter any measurement of the cerebral cortex. The cerebellum and hippocampus seem to be more susceptible than other brain structures to in vitro direct PM exposure assay and the oxidative stress pathway catalyzes the neurotoxic effect of PM exposure, as evidenced by high consumption of CAT and high levels of TBA-RS. Thus, PM direct exposure seems to activate toxic neurological effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunasekar, Palur G., E-mail: palur.gunasekar@wpafb.af.mil; Stanek, Lindsay W., E-mail: Stanek.Lindsay@epa.gov
2011-07-15
The 2009 Toxicology and Risk Assessment Conference (TRAC) session on 'Advances in Exposure and Toxicity Assessment of Particulate Matter' was held in April 2009 in West Chester, OH. The goal of this session was to bring together toxicology, geology and risk assessment experts from the Department of Defense and academia to examine issues in exposure assessment and report on recent epidemiological findings of health effects associated with particulate matter (PM) exposure. Important aspects of PM exposure research are to detect and monitor low levels of PM with various chemical compositions and to assess the health risks associated with these exposures.more » As part of the overall theme, some presenters discussed collection methods for sand and dust from Iraqi and Afghanistan regions, health issues among deployed personnel, and future directions for risk assessment research among these populations. The remaining speakers focused on the toxicity of ultrafine PM and the characterization of aerosols generated during ballistic impacts of tungsten heavy alloys.« less
Colman Lerner, Jorge Esteban; Elordi, Maria Lucila; Orte, Marcos Agustin; Giuliani, Daniela; de Los Angeles Gutierrez, Maria; Sanchez, EricaYanina; Sambeth, Jorge Enrique; Porta, Atilio Andres
2018-03-01
In order to estimate air quality at work environments from small and medium-sized enterprises (SMEs), we determined both the concentration of particulate matter (PM 10 and PM 2.5 ) and the presence of polycyclic aromatic hydrocarbons (PAHs), as the heavy metals in the composition of the particulate matter. Three SMEs located in the city of La Plata, Argentina, were selected: an electromechanical repair and car painting center (ERCP), a sewing work room (SWR), and a chemical analysis laboratory (CAL). The results evidenced high levels of PM exceeding the limits allowed by the USEPA and the presence of benzo(k)fluoranthene in all the analyzed sites and benzo(a)pyrene in the most contaminated site (ERCP). Regarding metals, the presence of Cd, Ni, Cu, Pb, and Mn, mainly in the fraction of PM 2.5 , in the same workplace was found. As far as risk assessment at all the workplaces surveyed is concerned, risk values for contracting cancer throughout life for exposed workers (LCR) did not comply with the parameters either of USEPA or of WHO (World Health Organization).
Gunasekar, Palur G; Stanek, Lindsay W
2011-07-15
The 2009 Toxicology and Risk Assessment Conference (TRAC) session on "Advances in Exposure and Toxicity Assessment of Particulate Matter" was held in April 2009 in West Chester, OH. The goal of this session was to bring together toxicology, geology and risk assessment experts from the Department of Defense and academia to examine issues in exposure assessment and report on recent epidemiological findings of health effects associated with particulate matter (PM) exposure. Important aspects of PM exposure research are to detect and monitor low levels of PM with various chemical compositions and to assess the health risks associated with these exposures. As part of the overall theme, some presenters discussed collection methods for sand and dust from Iraqi and Afghanistan regions, health issues among deployed personnel, and future directions for risk assessment research among these populations. The remaining speakers focused on the toxicity of ultrafine PM and the characterization of aerosols generated during ballistic impacts of tungsten heavy alloys. Copyright © 2011 Elsevier Inc. All rights reserved.
Pardo, Michal; Porat, Ziv; Rudich, Assaf; Schauer, James J; Rudich, Yinon
2016-03-01
Exposure to particulate matter (PM) pollution in cities and urban canyons can be harmful to the exposed population. However, the underlying mechanisms that lead to health effects are not yet elucidated. It is postulated that exposure to repeated, small, environmentally relevant concentrations can affect lung homeostasis. This study examines the impact of repeated exposures to urban PM on mouse lungs with focus on inflammatory and oxidative stress parameters. Aqueous extracts from collected urban PM were administered to mice by 5 repeated intra-tracheal instillations (IT). Multiple exposures, led to an increase in cytokine levels in both bronchoalveolar lavage fluid and in the blood serum, indicating a systemic reaction. Lung mRNA levels of antioxidant/phase II detoxifying enzymes decreased by exposure to the PM extract, but not when metals were removed by chelation. Finally, disruption of lung tissue oxidant-inflammatory/defense balance was evidenced by increased levels of lipid and protein oxidation. Unlike response to a single IT exposure to the same dose and source of extract, multiple exposures result in lung oxidative damage and a systemic inflammatory reaction. These could be attributed to compromised capacity to activate the protective Nrf2 tissue defense system. It is suggested that water-soluble metals present in urban PM, potentially from break and tire wear, may constitute major drivers of the pulmonary and systemic responses to multiple exposure to urban PM. Copyright © 2015 Elsevier Ltd. All rights reserved.
Establishing the origin of particulate matter across Europe
NASA Astrophysics Data System (ADS)
Schaap, Martijn; Kranenburg, Richard; Hendriks, Carlijn; Kuenen, Jeroen
2016-04-01
Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. In this paper we like to provide an overview of recent source apportionment studies aimed at PM and its precursors carried out at TNO. The source apportionment module that tracks the origin of modelled particulate matter distributions throughout a LOTOS-EUROS simulation will be explained. To optimally apply this technology dedicated emission inventories, e.g. fuel type specific, need to be generated. Applications to Europe shows that in northwestern Europe the contribution of transport and agricultural emissions dominate the PM mass concentrations, especially during episodic events. In eastern Europe, the domestic and energy sector are much more important. In southern Europe the picture is more mixed, although the frequent high levels of desert dust stand out. Evaluation of the source allocation against experimental data and PMF analyses is challenging as there is only a limited availability of source specific tracers or factors that can be used for direct comparison. Nonetheless, for the available tracers such as vanadium for heavy fuel oil combustion an evaluation is very well possible. The source apportionment technique can also be used to interpret particulate matter formation efficiencies. It will be shown that the conversion rates for the secondary inorganic aerosol precursors (NOx, NH3 and SO2) have changed during the last 20 years. A particular problem is related to the fact that CTMs systematically underestimate observed PM levels, which means that the contribution of certain source categories (natural, agriculture, combustion) are underestimated. Future developments needed to improve the source apportionment information concerning process knowledge, data assimilation as well as model implementation will be discussed. Specific challenges concerning the underlying emission information will be highlighted.
Low exhaust temperature electrically heated particulate matter filter system
Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J.; Bhatia, Garima [Bangalore, IN
2012-02-14
A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.
Particulate Matter Exposure in a Police Station Located near a Highway
Chen, Yu-Cheng; Hsu, Chin-Kai; Wang, Chia C.; Tsai, Perng-Jy; Wang, Chun-Yuan; Chen, Mei-Ru; Lin, Ming-Yeng
2015-01-01
People living or working near roadways have experienced an increase in cardiovascular or respiratory diseases due to vehicle emissions. Very few studies have focused on the PM exposure of highway police officers, particularly for the number concentration and size distribution of ultrafine particles (UFP). This study evaluated exposure concentrations of particulate matter (PM) in the Sinying police station near a highway located in Tainan, Taiwan, under different traffic volumes, traffic types, and shift times. We focused on periods when the wind blew from the highway toward the police station and when the wind speed was greater than or equal to 0.5 m/s. PM2.5, UFP, and PM-PAHs concentrations in the police station and an upwind reference station were measured. Results indicate that PM2.5, UFP, and PM-PAHs concentrations in the police station can be on average 1.13, 2.17, and 5.81 times more than the upwind reference station concentrations, respectively. The highest exposure level for PM2.5 and UFP was observed during the 12:00 PM–4:00 PM shift while the highest PAHs concentration was found in the 4:00 AM–8:00 AM shift. Thus, special attention needs to be given to protect police officers from exposure to high PM concentration. PMID:26580641
Impact of roadside tree lines on indoor concentrations of traffic-derived particulate matter.
Maher, Barbara A; Ahmed, Imad A M; Davison, Brian; Karloukovski, Vassil; Clarke, Robert
2013-12-03
Exposure to airborne particulate pollution is associated with premature mortality and a range of inflammatory illnesses, linked to toxic components within the particulate matter (PM) assemblage. The effectiveness of trees in reducing urban PM10 concentrations is intensely debated. Modeling studies indicate PM10 reductions from as low as 1% to as high as ~60%. Empirical data, especially at the local scale, are rare. Here, we use conventional PM10 monitoring along with novel, inexpensive magnetic measurements of television screen swabs to measure changes in PM10 concentrations inside a row of roadside houses, after temporarily installing a curbside line of young birch trees. Independently, the two approaches identify >50% reductions in measured PM levels inside those houses screened by the temporary tree line. Electron microscopy analyses show that leaf-captured PM is concentrated in agglomerations around leaf hairs and within the leaf microtopography. Iron-rich, ultrafine, spherical particles, probably combustion-derived, are abundant, form a particular hazard to health, and likely contribute much of the measured magnetic remanences. Leaf magnetic measurements show that PM capture occurs on both the road-proximal and -distal sides of the trees. The efficacy of roadside trees for mitigation of PM health hazard might be seriously underestimated in some current atmospheric models.
Numerous studies have reported association between exposure to ambient levels of particulate matter (PM) and adverse health effects, which include respiratory and cardiovascular effects. Diesel exhaust particles (DEP) compose a significant fraction of PM in some areas. Alveolar m...
Kant, Nora; Müller, Ruth; Braun, Markus; Gerber, Alexander; Groneberg, David
2016-08-08
Indoor air pollution with harmful particulate matter (PM) is mainly caused by cigarette smoke. Super-Slim-Size-Cigarettes (SSL) are considered a less harmful alternative to King-Size-Cigarettes (KSC) due to longer filters and relatively low contents. We ask if "Combined Mainstream and Sidestream Smoke" (CMSS)-associated PM levels of SSL are lower than of KSC and thus are potentially less harmful. PM concentrations in CMSS (PM10, PM2.5, and PM₁) are measured from four cigarette types of the brand Vogue, using an "automatic-environmental-tobacco-smoke-emitter" (AETSE) and laser aerosol spectrometry: SSL-BLEUE, -MENTHE, -LILAS and KSC-La Cigarette and -3R4F reference. This analysis shows that SSL MENTHE emitted the highest amount of PM, and KSC-La Cigarette the lowest. 3R4F reference emitted PM in the middle range, exceeding SSL BLEUE and falling slightly below SSL LILAS. It emerged that PM₁ constituted the biggest proportion of PM emission. The outcome shows significant type-specific differences for emitted PM concentrations. Our results indicate that SSL are potentially more harmful for passive smokers than the respective KSC. However, this study cannot give precise statements about the general influence of the size of a cigarette on PM. Alarming is that PM₁ is responsible for the biggest proportion of PM pollution, since smaller particles cause more harmful effects.
Meng, Kai; Wu, Bo; Gao, Jing; Cai, Yumei; Yao, Meiling; Wei, Liangmeng; Chai, Tongjie
2016-01-01
The objective of this study was to obtain insight into the adverse health effects of airborne particulate matter (PM) collected from live bird markets and to determine whether biological material in PM accounts for immune-related inflammatory response. Mice were exposed to a single or repeated dose of PM, after which the expression of toll-like receptors (TLRs), cytokines, and chemokines in the lungs of infected mice were examined by enzyme-linked immunosorbent assay and histopathological analysis. Results after single and repeated PM stimulation with [Formula: see text] indicated that TLR2 and TLR4 played a dominant role in the inflammatory responses of the lung. Further analysis demonstrated that the expression levels of IL-1β, TNF-α, IFN-γ, IL-8, IP-10, and MCP-1 increased significantly, which could eventually contribute to lung injury. Moreover, biological components in PM were critical in mediating immune-related inflammatory responses and should therefore not be overlooked.
Perception and reality of particulate matter exposure in New York City taxi drivers
Gany, Francesca; Bari, Sehrish; Prasad, Lakshmi; Leng, Jennifer; Lee, Trevor; Thurston, George D; Gordon, Terry; Acharya, Sudha; Zelikoff, Judith T
2017-01-01
Background Exposure to fine particulate matter (PM2.5) and black carbon (BC) have been linked to negative health risks, but exposure among professional taxi drivers is unknown. This study measured drivers' knowledge, attitudes, and beliefs (KAB) about air pollution compared to direct measures of exposures. Methods Roadside and in-vehicle levels of PM2.5 and BC were continuously measured over a single shift and compared to central site monitoring. Participants completed an air pollution KAB questionnaire. Results Taxicab PM2.5 and BC concentrations were elevated compared to central monitoring. Average PM2.5 concentrations per 15-minute interval were 4 - 49 μg/m3; 1-minute peaks measured up to 452 μg/m3. BC levels were also elevated; reaching > 10 μg/m3. 56 of 100 drivers surveyed believed they were more exposed than non-drivers; 81 believed air pollution causes health problems. Conclusions Air pollution exposure among drivers likely exceeds EPA recommendations. Future studies should focus on reducing exposures and increasing awareness among taxi drivers. PMID:27168392
Arruti, A; Fernández-Olmo, I; Irabien, A
2011-05-01
Air pollution by particulate matter is well linked with anthropogenic activities; the global economic crisis that broke out in the last year may be a proper indicator of this close relationship. Some economic indicators show the regional effects of the crisis on the Cantabria Region. The present work aims to evaluate the impact of the economic crisis on PM10 levels and composition at the major city of the region, Santander. Some metals linked to anthropogenic activities were measured at Santander and studied by Positive Matrix Factorization; this statistical analysis allowed to identify three main factors: urban background, industrial and molybdenum-related factor. The main results show that the temporal trend of the levels of the industrial tracers found in the present study are well agree with the evolution of the studied economic indicators; nevertheless, the urban background tracers and PM10 concentration levels are not well correlated with the studied economic indicators. Copyright © 2011 Elsevier Ltd. All rights reserved.
McCracken, James P.; Bhatnagar, Aruni; Conklin, Daniel J.
2016-01-01
Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1+/Sca-1+ cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/particulate-matter-induced-vascular-insulin-resistance/. PMID:27016579
Wintertime Air Pollution and the Greek Financial Crisis
NASA Astrophysics Data System (ADS)
Florou, Kalli K.; Pikridas, Michael; Pandis, Spyros N.
2013-04-01
During the last couple of years, because of the current high prices of diesel, Greeks have turned to more traditional ways of residential heating, such as fireplaces and pellet stoves. These combustion sources which use different types of biofuels, instead of fossil fuel or natural gas have become prevalent even in the major Greek cities. Wood combustion (WC) during winter is one of the major sources of organic aerosol in central and northern Europe (Puxbaum et al., 2007). Two field campaigns were conducted during the winter of 2012 and 2013 in two of the largest Greek cities (Patras and Athens) in order to quantify the levels of organic aerosols from domestic WC and to characterize the corresponding particulate matter. The instrumentation used included an Aerodyne High-Resolution Time-of-Flight Mass Spectrometer (HR-ToF-AMS) and a selection of on-line aerosol size distribution and concentration instruments (APS, SMPS, TEOM, MAAP) was deployed. In February of 2012, a significant increase of particulate matter less than 1 μm (PM1) was observed every evening after 6 pm in Patras (Pikridas et al., 2013). The concentration of PM1usually exceeded 80 μg m-3 often reaching values above 150 μg m-3. Organic particulate matter represented more than 90% of the fine PM during these high PM periods. The concentration of black carbon was as high as 10 μg m-3often exceeding the sulfate levels in the same area. High potassium and nitrate levels were also observed during the night. These concentrations were a lot higher (approximately double on average) than the concentrations measured in Patras during previous winters. In January 2013, these measurements were repeated both in Athens and Patras using a number of field stations. Wood burning once more resulted in extremely high nighttime PM levels. The spatial and temporal distribution of fine PM will be discussed and the effects of the change in heating fuels will be quantified. References Pikridas M., Tasoglou A., Florou K. and Pandis S. N. (2013) Characterization of the origin of fine particulate matter in a medium size urban area in the Mediterranean, Atmos. Environ., submitted. H. Puxbaum and Legrand, M., (2007), Summary of the CARBOSOL project: Present and retrospective state of organic versus inorganic aerosol over Europe, J. Geophys. Res., 112, D23S01, doi:10.1029/2006JD008271. Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment Report: Summary for Policymakers, 2007.
Ravikumar, Dwarakanath; Sinha, Parikhit
2017-10-01
With utility-scale photovoltaic (PV) projects increasingly developed in dry and dust-prone geographies with high solar insolation, there is a critical need to analyze the impacts of PV installations on the resulting particulate matter (PM) concentrations, which have environmental and health impacts. This study is the first to quantify the impact of a utility-scale PV plant on PM concentrations downwind of the project site. Background, construction, and post-construction PM 2.5 and PM 10 (PM with aerodynamic diameters <2.5 and <10 μm, respectively) concentration data were collected from four beta attenuation monitor (BAM) stations over 3 yr. Based on these data, the authors evaluate the hypothesis that PM emissions from land occupied by a utility-scale PV installation are reduced after project construction through a wind-shielding effect. The results show that the (1) confidence intervals of the mean PM concentrations during construction overlap with or are lower than background concentrations for three of the four BAM stations; and (2) post-construction PM 2.5 and PM 10 concentrations downwind of the PV installation are significantly lower than the background concentrations at three of the four BAM stations. At the fourth BAM station, downwind post-construction PM 2.5 and PM 10 concentrations increased marginally by 5.7% and 2.6% of the 24-hr ambient air quality standards defined by the U.S. Environmental Protection Agency, respectively, when compared with background concentrations, with the PM 2.5 increase being statistically insignificant. This increase may be due to vehicular emissions from an access road near the southwest corner of the site or a drainage berm near the south station. The findings demonstrate the overall environmental benefit of downwind PM emission abatement from a utility-scale PV installation in desert conditions due to wind shielding. With PM emission reductions observed within 10 months of completion of construction, post-construction monitoring of downwind PM levels may be reduced to a 1-yr period for other projects with similar soil and weather conditions. This study is the first to analyze impact of a utility photovoltaic (PV) project on downwind particulate matter (PM) concentration in desert conditions. The PM data were collected at four beta attenuation monitor stations over a 3-yr period. The post-construction PM concentrations are lower than background concentrations at three of four stations, therefore supporting the hypothesis of post-construction wind shielding from PV installations. With PM emission reductions observed within 10 months of completion of construction, postconstruction monitoring of downwind PM levels may be reduced to a 1-yr period for other PV projects with similar soil and weather conditions.
Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L
2012-08-07
A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels.
In evaluating the health risks from particulate matter (PM), the question remains as to which component(s) of PM are most harmful. We investigated this issue using PM mass, PM constituents, mortality, and the elderly hospital admission data in Philadelphia, PA. Daily paired PM...
Costa, D L; Dreher, K L
1997-01-01
Many epidemiologic reports associate ambient levels of particulate matter (PM) with human mortality and morbidity, particularly in people with preexisting cardiopulmonary disease (e.g., chronic obstructive pulmonary disease, infection, asthma). Because much ambient PM is derived from combustion sources, we tested the hypothesis that the health effects of PM arise from anthropogenic PM that contains bioavailable transition metals. The PM samples studied derived from three emission sources (two oil and one coal fly ash) and four ambient airsheds (St. Louis, MO; Washington; Dusseldorf, Germany; and Ottawa, Canada). PM was administered to rats by intratracheal instillation in equimass or equimetal doses to address directly the influence of PM mass versus metal content on acute lung injury and inflammation. Our results indicated that the lung dose of bioavailable transition metal, not instilled PM mass, was the primary determinant of the acute inflammatory response for both the combustion source and ambient PM samples. Residual oil fly ash, a combustion PM rich in bioavailable metal, was evaluated in a rat model of cardiopulmonary disease (pulmonary vasculitis/hypertension) to ascertain whether the disease state augmented sensitivity to that PM. Significant mortality and enhanced airway responsiveness were observed. Analysis of the lavaged lung fluids suggested that the milieu of the inflamed lung amplified metal-mediated oxidant chemistry to jeopardize the compromised cardiopulmonary system. We propose that soluble metals from PM mediate the array of PM-associated injuries to the cardiopulmonary system of the healthy and at-risk compromised host. PMID:9400700
Kulas, Joshua A; Hettwer, Jordan V; Sohrabi, Mona; Melvin, Justine E; Manocha, Gunjan D; Puig, Kendra L; Gorr, Matthew W; Tanwar, Vineeta; McDonald, Michael P; Wold, Loren E; Combs, Colin K
2018-05-22
Environmental exposure to air pollution has been linked to a number of health problems including organ rejection, lung damage and inflammation. While the deleterious effects of air pollution in adult animals are well documented, the long-term consequences of particulate matter (PM) exposure during animal development are uncertain. In this study we tested the hypothesis that environmental exposure to PM 2.5 μm in diameter in utero promotes long term inflammation and neurodegeneration. We evaluated the behavior of PM exposed animals using several tests and observed deficits in spatial memory without robust changes in anxiety-like behavior. We then examined how this affects the brains of adult animals by examining proteins implicated in neurodegeneration, synapse formation and inflammation by western blot, ELISA and immunohistochemistry. These tests revealed significantly increased levels of COX2 protein in PM2.5 exposed animal brains in addition to changes in synaptophysin and Arg1 proteins. Exposure to PM2.5 also increased the immunoreactivity for GFAP, a marker of activated astrocytes. Cytokine concentrations in the brain and spleen were also altered by PM2.5 exposure. These findings indicate that in utero exposure to particulate matter has long term consequences which may affect the development of both the brain and the immune system in addition to promoting inflammatory change in adult animals. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
EXPOSURE ASSESSMENT FROM THE NERL RESEARCH TRIANGLE PARK PARTICULATE MATTER PANEL STUDY
The U.S. Environmental Protection Agency performed a particulate matter (PM) exposure assessment based on data from the National Exposure Research Laboratory (NERL) Research Triangle Park (RTP) Particulate Matter (PM) Panel Study. This study was a one-year investigation of PM ...
Thurston, George D; Ahn, Jiyoung; Cromar, Kevin R; Shao, Yongzhao; Reynolds, Harmony R; Jerrett, Michael; Lim, Chris C; Shanley, Ryan; Park, Yikyung; Hayes, Richard B
2016-04-01
Outdoor fine particulate matter (≤ 2.5 μm; PM2.5) has been identified as a global health threat, but the number of large U.S. prospective cohort studies with individual participant data remains limited, especially at lower recent exposures. We aimed to test the relationship between long-term exposure PM2.5 and death risk from all nonaccidental causes, cardiovascular (CVD), and respiratory diseases in 517,041 men and women enrolled in the National Institutes of Health-AARP cohort. Individual participant data were linked with residence PM2.5 exposure estimates across the continental United States for a 2000-2009 follow-up period when matching census tract-level PM2.5 exposure data were available. Participants enrolled ranged from 50 to 71 years of age, residing in six U.S. states and two cities. Cox proportional hazard models yielded hazard ratio (HR) estimates per 10 μg/m3 of PM2.5 exposure. PM2.5 exposure was significantly associated with total mortality (HR = 1.03; 95% CI: 1.00, 1.05) and CVD mortality (HR = 1.10; 95% CI: 1.05, 1.15), but the association with respiratory mortality was not statistically significant (HR = 1.05; 95% CI: 0.98, 1.13). A significant association was found with respiratory mortality only among never smokers (HR = 1.27; 95% CI: 1.03, 1.56). Associations with 10-μg/m3 PM2.5 exposures in yearly participant residential annual mean, or in metropolitan area-wide mean, were consistent with baseline exposure model results. Associations with PM2.5 were similar when adjusted for ozone exposures. Analyses of California residents alone also yielded statistically significant PM2.5 mortality HRs for total and CVD mortality. Long-term exposure to PM2.5 air pollution was associated with an increased risk of total and CVD mortality, providing an independent test of the PM2.5-mortality relationship in a new large U.S. prospective cohort experiencing lower post-2000 PM2.5 exposure levels. Thurston GD, Ahn J, Cromar KR, Shao Y, Reynolds HR, Jerrett M, Lim CC, Shanley R, Park Y, Hayes RB. 2016. Ambient particulate matter air pollution exposure and mortality in the NIH-AARP Diet and Health cohort. Environ Health Perspect 124:484-490; http://dx.doi.org/10.1289/ehp.1509676.
NASA Astrophysics Data System (ADS)
Kam, Winnie; Cheung, Kalam; Daher, Nancy; Sioutas, Constantinos
2011-03-01
Elevated concentrations of particulate matter (PM) have been found in a number of worldwide underground transit systems, with major implications regarding exposure of commuters to PM and its associated health effects. An extensive sampling campaign was conducted in May-August 2010 to measure PM concentrations in two lines of the Los Angeles Metro system - an underground subway line (Metro red line) and a ground-level light-rail line (Metro gold line). The campaign goals were to: 1) determine personal PM exposure of commuters of both lines, and 2) measure and compare PM concentrations at station platforms and inside the train. Considering that a commuter typically spent 75% of time inside the train and 25% of time waiting at a station, subway commuters were exposed on average to PM 10 and PM 2.5 concentrations that were 1.9 and 1.8 times greater than the light-rail commuters. The average PM 10 concentrations for the subway line at station platforms and inside the train were 78.0 μg m -3 and 31.5 μg m -3, respectively; for the light-rail line, corresponding PM 10 concentrations were 38.2 μg m -3 and 16.2 μg m -3. Regression analysis demonstrated that personal exposure concentrations for the light-rail line are strongly associated with ambient PM levels ( R2 = 0.61), while PM concentrations for the subway line are less influenced by ambient conditions ( R2 = 0.38) and have a relatively stable background level of about 21 μg m -3. Our findings suggest that local emissions (i.e., vehicular traffic, road dust) are the main source of airborne PM for the light-rail line. The subway line, on the other hand, has an additional source of PM, most likely generated from the daily operation of trains. Strong inter-correlation of PM 10 between the train and station microenvironments shows that airborne PM at stations are the main source of PM inside the trains for both lines ( R2 = 0.91 and 0.81 for subway and light-rail line, respectively). In addition, PM 2.5 and coarse PM (PM 10-2.5) are also strongly correlated for the subway line ( R2 = 0.89) and the light-rail line ( R2 = 0.52-0.92), suggesting that PM 2.5 and coarse PM originate from a common source. Finally, in comparison to worldwide subway systems, the L.A. Metro system is relatively 'clean'. Since the system is comparatively new (in operation since 1993), its ventilation system and braking technology are probably more efficient and more advanced than older subway systems.
NASA Astrophysics Data System (ADS)
Nasir, Zaheer Ahmad; Colbeck, Ian; Ali, Zulfiqar; Ahmad, Shakil
2013-06-01
Around three billion people, largely in low and middle income countries, rely on biomass fuels for their household energy needs. The combustion of these fuels generates a range of hazardous indoor air pollutants and is an important cause of morbidity and mortality in developing countries. Worldwide, it is responsible for four million deaths. A reduction in indoor smoke can have a significant impact on lives and can help achieve many of the Millennium Developments Goals. This letter presents details of a seasonal variation in particulate matter (PM) concentrations in kitchens using biomass fuels as a result of relocating the cooking space. During the summer, kitchens were moved outdoors and as a result the 24 h average PM10, PM2.5 and PM1 fell by 35%, 22% and 24% respectively. However, background concentrations of PM10 within the village increased by 62%. In locations where natural gas was the dominant fuel, the PM concentrations within the kitchen as well as outdoors were considerably lower than those in locations using biomass. These results highlights the importance of ventilation and fuel type for PM levels and suggest that an improved design of cooking spaces would result in enhanced indoor air quality.
PM 10 levels in communities close to and away from opencast coal mining sites in Northeast England
NASA Astrophysics Data System (ADS)
Pless-Mulloli, Tanja; King, Andrew; Howel, Denise; Stone, Ian; Merefield, John
Concerns about levels of particulate matter of less than 10 μm (PM 10) and their potential health effects have been raised by residents living near opencast coal mining sites in the UK. PM 10 levels were measured by TEOM in 5 matched pairs of communities in northeast England, 5 near active opencast sites and 5 further away, to characterise the PM 10 exposure of residents. 14 609 paired 30-min TEOM readings, and weather data were collected during 1996-97, over 6 weeks each in four pairs and for 24 weeks in one pair. Co-located samplers collected PM 10 on an approximately weekly basis and samples were analysed using scanning electron microscopy with energy dispersive analysis (SEM-EDS). The patterns of PM 10 levels over time were similar in Opencast and Control Communities and were mostly similar to readings from nearby automated urban network stations. This suggested regional influences on PM 10 levels. The geometric mean PM 10 was 17.0 μg m -3 in Opencast and 14.9 μg m -3 in Control Communities (arithmetic mean 22.1 μg m -3 in Opencast 18.2 μg m -3 in Control Communities): Opencast Communities thus had 14% higher PM 10 levels than Control Communities on average. While the size distribution and proportion of shale particles indicated the opencast site as contributor to the PM 10 load in adjacent communities, elevated PM 10 levels in Opencast Communities were not positively linked with permitted working hours or wind direction being from the site to the community. No consistent relationship was found between PM 10 levels and wind speed or day of the week.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-29
... Subject to BART 3. BART Determination for Kanoelehua Hill a. BART for NO X and Particulate Matter (PM) b.... The initials PM mean or refer to particulate matter. xxiv. The initials PM2.5 mean or refer to particulate matter with an aerodynamic diameter of less than 2.5 micrometers (fine particulate matter). xxv...
Begum, Bilkis A; Biswas, Swapan K; Hopke, Philip K
2006-04-01
Concentrations and characteristics of airborne particulate matter (PM(10), PM(2.2) and BC) on air quality have been studied at two air quality-monitoring stations in Dhaka, the capital of Bangladesh. One site is at the Farm Gate area, a hot spot with very high pollutant concentrations because of its proximity to major roadways. The other site is at a semi-residential area located at the Atomic Energy Centre, Dhaka Campus, (AECD) with relatively less traffic. The samples were collected using a 'Gent' stacked filter unit in two fractions of 0-2.2 mum and 2.2-10 mum sizes. Samples of fine (PM(2.2)) and coarse (PM(2.2-10)) airborne particulate matter fractions collected from 2000 to 2003 were studied. It has been observed that fine particulate matter has a decreasing trend, from prior year measurements, because of Government policy interventions like phase-wise plans to take two-stroke three-wheelers off the roads in Dhaka and finally banned from January 1, 2003. Other policy interventions were banning of old buses and trucks to ply on Dhaka city promotion of the using compressed natural gas (CNG), introducing air pollution control devices in vehicles, etc. It was found that both local (mostly from vehicular emissions) and possibly some regional emission sources are responsible for high PM(2.2) and BC concentrations in Dhaka. PM(2.2), PM(2.2-10) and black carbon concentration levels depend on the season, wind direction and wind speed. Transport related emissions are the major source of BC and long-range transportation from fossil fuel related sources and biomass burning could be another substantial source of BC.
Particulate matter and preterm birth
Particulate matter (PM) has been variably associated with preterm birth (PTB) (gestation <37 weeks), but the role played by specific chemical components of PM has been little studied. We examined the association between ambient PM <2.5 micrometers in aerodynamic diameter (PM2.S) ...
A population exposure model for particulate matter (PM), called the Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model, has been developed and applied in a case study of daily PM2.5 exposures for the population living in Philadelphia, PA. SHEDS-PM is a probabilisti...
Particulate matter (PM) exposure has been associated with increased plasma fibrinogen. We have found that Spontaneously hypertensive rats respond to PM by increasing fibrinogen and plasminogen activator inhibitor -1 at PM concentration that would cause minimal changes in healthy ...
Properties and cellular effects of particulate matter from direct emissions and ambient sources.
Jin, Wenjie; Su, Shu; Wang, Bin; Zhu, Xi; Chen, Yilin; Shen, Guofeng; Liu, Junfeng; Cheng, Hefa; Wang, Xilong; Wu, Shuiping; Zeng, Eddy; Xing, Baoshan; Tao, Shu
2016-10-14
The pollution of particulate matter (PM) is of great concern in China and many other developing countries. It is generally recognized that the toxicity of PM is source and property dependent. However, the relationship between PM properties and toxicity is still not well understood. In this study, PM samples from direct emissions of wood, straw, coal, diesel combustion, cigarette smoking and ambient air were collected and characterized for their physicochemical properties. Their expression of intracellular reactive oxygen species (ROS) and levels of inflammatory cytokines (i.e., tumor necrosis factor-α (TNF-α)) was measured using a RAW264.7 cell model. Our results demonstrated that the properties of the samples from different origins exhibited remarkable differences. Significant increases in ROS were observed when the cells were exposed to PMs from biomass origins, including wood, straw and cigarettes, while increases in TNF-α were found for all the samples, particularly those from ambient air. The most important factor associated with ROS generation was the presence of water-soluble organic carbon, which was extremely abundant in the samples that directly resulted from biomass combustion. Metals, endotoxins and PM size were the most important properties associated with increases in TNF-α expression levels. The association of the origins of PM particles and physicochemical properties with cytotoxic properties is illustrated using a cluster analysis.
In this action, EPA limits the interstate transport of emissions of nitrogen oxides (NOX) and sulfur dioxide (SO2) that contribute to harmful levels of fine particle matter (PM2.5) and ozone in downwind states.
Epidemiological studies have shown a positive relationship between elevated levels of ambient particulate matter (PM) and rates of morbidity and mortality; these correlations are further strengthened when limited to individuals with preexisting cardiopulmonary diseases. While si...
NASA Astrophysics Data System (ADS)
Cusack, M.; Alastuey, A.; Pérez, N.; Pey, J.; Querol, X.
2012-04-01
The time variability and long term trends of PM2.5 (particulate matter of diameter <2.5 μm) at various regional background (RB) sites across Europe are studied and interpreted in this work. Long-term trends of PM2.5 concentrations are relatively scarce across Europe, with few studies outlining the changes measured in PM2.5 concentrations over a significant period of time. To this end, data on mean annual levels of PM2.5 measured at Montseny (MSY, North East Spain) and various RB sites in Spain and Europe are evaluated and compared, and subsequently analysed for statistically significant trends. The MSY site registered higher average PM2.5 levels than those measured at a selection of other RB sites across Spain, Portugal, Germany and Scandinavia, but lower than those measured in Switzerland, Italy and Austria. Reductions in PM2.5 were observed across all stations in Spain and Europe to varying degrees. MSY underwent a statistically significant reduction since measurements began, indicating a year-on-year gradual decrease (-3.7 μg m-3, calculated from the final year of data compared to the mean). Similar trends were observed in other RB sites across Spain (-1.9 μg m-3). Reductions recorded in PM2.5 across Europe were varied, with many experiencing gradual, year-on-year decreases (-1.8 μg m-3). These reductions have been attributed to various causes: the introduction and implementation of pollution abatement strategies in EU member states, the effect of the current economic crisis on emissions of PM2.5 and the influence of anomalous meteorology observed during the winters of 2009 and 2010. The North Atlantic Oscillation (NAO), a large scale meteorological phenomenon most prevalent during winter, was observed to influence the frequency of Saharan dust intrusions across the Iberian Peninsula. Chemical composition of PM2.5 at MSY is characterised by high levels of organic matter (OM) and sulphate, followed by crustal material, nitrate and ammonia. Sea Spray and finally elemental carbon (EC) comprised a minor part of the total PM2.5 mass. Statistical trend analysis was performed on the various chemical components of PM2.5 recorded at MSY to determine which components were accountable for the decrease in PM2.5 concentration. It is shown that OM underwent the largest decrease over the time period with a statistically significant trend (-1.3 μg m-3 of the mean), followed by sulphate (-0.8 μg m-3), ammonium (-0.5 μg m-3) and nitrate (-0.4 μg m-3). Conversely, sea spray, EC and crustal material reductions were found to be negligible.
Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia.
Lim, Chris C; Thurston, George D; Shamy, Magdy; Alghamdi, Mansour; Khoder, Mamdouh; Mohorjy, Abdullah M; Alkhalaf, Abdulrahman K; Brocato, Jason; Chen, Lung Chi; Costa, Max
2018-02-01
This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (aerodynamic diameter <2.5 μm; PM 2.5 ) and coarse (aerodynamic diameter 2.5-10 μm; PM 2.5-10 ) particulate matter mass concentrations, elemental constituents, and potential source origins in Jeddah, Saudi Arabia. Air quality samples were collected over 1 yr, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM 2.5 (21.9 μg/m 3 ) and PM 10 (107.8 μg/m 3 ) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM 2.5 (10 μg/m 3 ) and PM 10 (20 μg/m 3 ), respectively. Similar to other Middle Eastern locales, PM 2.5-10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM 10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM 2.5 and PM 2.5-10 : (1) soil/road dust, (2) incineration, and (3) traffic; and for PM 2.5 only, (4) residual oil burning. Soil/road dust accounted for a major portion of both the PM 2.5 (27%) and PM 2.5-10 (77%) mass, and the largest source contributor for PM 2.5 was from residual oil burning (63%). Temporal variations of PM 2.5-10 and PM 2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency) and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM 2.5 and PM 2.5-10 masses in this city may have implications regarding the toxicity of these particles versus those in the Western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting. Temporal variations of fine and coarse PM mass, elemental constituents, and sources were examined in Jeddah, Saudi Arabia, for the first time. The main source of PM 2.5-10 is natural windblown soil and road dust, whereas the predominant source of PM 2.5 is residual oil burning, generated from the port and oil refinery located west of the air sampler, suggesting that targeted emission controls could significantly improve the air quality in the city. The compositional differences point to a need for health effect studies to be conducted in this region, so as to directly assess the applicability of the existing guidelines to the Middle East air pollution.
Liang, Linlin; Engling, Guenter; Du, Zhenyu; Cheng, Yuan; Duan, Fengkui; Liu, Xuyan; He, Kebin
2016-05-01
Saccharides are important constituents of atmospheric particulate matter (PM). In order to better understand the sources and seasonal variations of saccharides in aerosols in Beijing, China, saccharide composition was measured in ambient PM samples collected at an urban site in Beijing. The highest concentrations of total saccharides in Beijing were observed in autumn, while an episode with abnormal high total saccharide levels was observed from 15 to 23 June, 2011, due to extensive agricultural residue burning in northern China during the wheat harvest season. Compared to the other two categories of saccharides, sugars and sugar alcohols, anhydrosugars were the predominant saccharide group, indicating that biomass burning contributions to Beijing urban aerosol were significant. Ambient sugar and sugar alcohol levels in summer and autumn were higher than those in spring and winter, while they were more abundant in PM2.5 during winter time. Levoglucosan was the most abundant saccharide compound in both PM2.5 and PM10, the annual contributions of which to total measured saccharides in PM2.5 and PM10 were 61.5% and 54.1%, respectively. To further investigate the sources of the saccharides in ambient aerosols in Beijing, the PM10 datasets were subjected to positive matrix factorization (PMF) analysis. Based on the objective function to be minimized and the interpretable factors identified by PMF, six factors appeared to be optimal as to the probable origin of saccharides in the atmosphere in Beijing, including biomass burning, soil or dust, isoprene SOA and the direct release of airborne fungal spores and pollen. Copyright © 2016 Elsevier Ltd. All rights reserved.
40 CFR 60.43b - Standard for particulate matter (PM).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter (PM). 60.43b Section 60.43b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial-Commercial-Institutional Steam Generating Units § 60.43b Standard for particulate matter (PM). (a...
40 CFR 60.43c - Standard for particulate matter (PM).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter (PM). 60.43c Section 60.43c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial-Commercial-Institutional Steam Generating Units § 60.43c Standard for particulate matter (PM). (a...
Espitia-Pérez, Lyda; da Silva, Juliana; Espitia-Pérez, Pedro; Brango, Hugo; Salcedo-Arteaga, Shirley; Hoyos-Giraldo, Luz Stella; de Souza, Claudia T; Dias, Johnny F; Agudelo-Castañeda, Dayana; Valdés Toscano, Ana; Gómez-Pérez, Miguel; Henriques, João A P
2018-02-01
Epidemiological studies indicate that living in proximity to coal mines is correlated with numerous diseases including cancer, and that exposure to PM 10 and PM 2.5 components could be associated with this phenomenon. However, the understanding of the mechanisms by which PM exerts its adverse effects is still incomplete and comes mainly from studies in occupationally exposed populations. The aims of this study were to: (1) evaluate DNA damage in lymphocytes assessing the cytokinesis-block micronucleus cytome assay (CBMN-cyt) parameters; (2) identify aneugenic or clastogenic effects in lymphocytes of exposed populations using CREST immunostaining for micronuclei; (3) evaluate multi-elemental composition of atmospheric particulate matter; and (4) verify relation between the DNA damage and PM 2.5 and PM 10 levels around the mining area. Analysis revealed a significant increase in micronuclei frequency in binucleated (MNBN) and mononucleated (MNMONO) cells of individuals with residential proximity to open-pit coal mines compared to residents from non-mining areas. Correlation analysis demonstrated a highly significant association between PM 2.5 levels, MNBN frequencies and CREST+ micronuclei induction in exposed residents. These results suggest that PM 2.5 fraction generated in coal mining activities may induce whole chromosome loss (aneuploidy) preferentially, although there are also chromosome breaks. Analysis of the chemical composition of PM 2.5 by PIXE demonstrated that Si, S, K and Cr concentrations varied significantly between coal mining and reference areas. Enrichment factor values (EF) showed that S, Cr and Cu were highly enriched in the coal mining areas. Compared to reference area, mining regions had also higher concentrations of extractable organic matter (EOM) related to nonpolar and polar compounds. Our results demonstrate that PM 2.5 fraction represents the most important health risk for residents living near open-pit mines, underscoring the need for incorporation of ambient air standards based on PM 2.5 measures in coal mining areas. Copyright © 2017. Published by Elsevier Inc.
Svendsen, Erik R; Reynolds, Scott; Ogunsakin, Olalekan A; Williams, Edith M; Fraser-Rahim, Herb; Zhang, Hongmei; Wilson, Sacoby M
2014-01-01
INTRODUCTION The Port of Charleston, one of the busiest US ports, currently operates five terminals. The fifth terminal is being planned for expansion to accommodate container ships from the proposed Panama Canal expansion. Such expansion is expected to increase traffic within local vulnerable North Charleston neck communities by at least 7,000 diesel truck trips per day, more than a 70% increase from the present average rate of 10,000 trucks per day. Our objective was to measure the current particulate matter (PM) concentrations in North Charleston communities as a baseline to contrast against future air pollution after the proposed port expansion. METHODS Saturation study was performed to determine spatial variability of PM in local Charleston neck communities. In addition, the temporal trends in particulate air pollution within the region were determined across several decades. With the BGI sampler, PM samples were collected for 24 hours comparable to the federal reference method protocol. Gravimetric analysis of the PM filter samples was conducted following EPA protocol. RESULTS The range of the PM10 annual average across the region from 1982 to 2006 was 17.0–55.0 μg/m3. On only two occasions were the records of PM10 averaged above the 50.0 μg/m3 national standard. In the case of PM2.5, the annual average for 1999–2006 ranged from 11.0 to 13.5 μg/m3 and no annual average exceeded the 15.0 μg/m3 PM2.5 annual standard. CONCLUSIONS Although ambient PM levels have fallen in the Charleston region since the 1960s due to aggressive monitoring by the stakeholders against air pollution, local air pollution sources within the North Charleston neck communities have consistently contributed to the PM levels in the region for several decades. This baseline assessment of ambient PM will allow for comparisons with future assessments to ascertain the impact of the increased truck and port traffic on PM concentrations. PMID:24653648
Luo, Man; Bao, Zhengqiang; Xu, Feng; Wang, Xiaohui; Li, Fei; Li, Wen; Chen, Zhihua; Ying, Songmin; Shen, Huahao
2018-04-14
The inflammatory cascade can be initiated with the recognition of damaged DNA. Macrophages play an essential role in particulate matter (PM)-induced airway inflammation. In this study, we aim to explore the PM induced DNA damage response of macrophages and its function in airway inflammation. The DNA damage response and inflammatory response were assessed using bone marrow-derived macrophages following PM treatment and mouse model instilled intratracheally with PM. We found that PM induced significant DNA damage both in vitro and in vivo and simultaneously triggered a rapid DNA damage response, represented by nuclear RPA, 53BP1 and γH2AX foci formation. Genetic ablation or chemical inhibition of the DNA damage response sensor amplified the production of cytokines including Cxcl1, Cxcl2 and Ifn-γ after PM stimulation in bone marrow-derived macrophages. Similar to that seen in vitro , mice with myeloid-specific deletion of RAD50 showed higher levels of airway inflammation in response to the PM challenge, suggesting a protective role of DNA damage sensor during inflammation. These data demonstrate that PM exposure induces DNA damage and activation of DNA damage response sensor MRN complex in macrophages. Disruption of MRN complex lead to persistent, unrepaired DNA damage that causes elevated inflammatory response.
Chua, M L; Setyawati, M I; Li, H; Fang, C H Y; Gurusamy, S; Teoh, F T L; Leong, D T; George, S
2017-05-01
We investigated the physicochemical properties (size, shape, elemental composition, and endotoxin) of size resolved particulate matter (PM) collected from the indoor and corridor environments of classrooms. A comparative hazard profiling of these PM was conducted using human microvascular endothelial cells (HMVEC). Oxidative stress-dependent cytotoxicity responses were assessed using quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and high content screening (HCS), and disruption of monolayer cell integrity was assessed using fluorescence microscopy and transwell assay. Scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDX) analysis showed differences in the morphology and elemental composition of PM of different sizes and origins. While the total mass of PM collected from indoor environment was lower in comparison with those collected from the corridor, the endotoxin content was substantially higher in indoor PM (e.g., ninefold higher endotoxin level in indoor PM 8.1-20 ). The ability to induce oxidative stress-mediated cytotoxicity and leakiness in cell monolayer were higher for indoor PM compared to those collected from the corridor. In conclusion, this comparative analysis suggested that indoor PM is relatively more hazardous to the endothelial system possibly because of higher endotoxin content. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kim, Ki Youn; Park, Jae Beom; Kim, Chi Nyon; Lee, Kyung Jong
2006-07-01
The aims of this study were to examine the level of airborne fungi and environmental factors in Seoul metropolitan subway stations and to provide fundamental data to protect the health of subway workers and passengers. The field survey was performed from November in 2004 to February in 2005. A total 22 subway stations located at Seoul subway lines 1-4 were randomly selected. The measurement points were subway workers' activity areas (station office, bedroom, ticket office and driver's seat) and the passengers' activity areas (station precincts, inside train and platform). Air sampling for collecting airborne fungi was carried out using a one-stage cascade impactor. The PM and CO2 were measured using an electronic direct recorder and detecting tube, respectively. In the activity areas of the subway workers and passengers, the mean concentrations of airborne fungi were relatively higher in the workers' bedroom and station precinct whereas the concentration of particulate matter, PM10 and PM2.5, were relatively higher in the platform, inside the train and driver's seat than in the other activity areas. There was no significant difference in the concentration of airborne fungi between the underground and ground activity areas of the subway. The mean PM10 and PM2.5 concentration in the platform located at underground was significantly higher than that of the ground (p<0.05). The levels of airborne fungi in the Seoul subway line 1-4 were not serious enough to cause respiratory disease in subway workers and passengers. This indicates that there is little correlation between airborne fungi and particulate matter.
Epidemiological studies have associated PM exposure with cardiovascular mortality and morbidity, and this effect seems to be enhanced in populations with pre-existing cardiovascular disease. One hypothesis for this exacerbation is that the higher underlying level of oxidative st...
Liu, Xuemei; Qian, Xin; Xing, Jing; Wang, Jinhua; Sun, Yixuan; Wang, Qin'geng; Li, Huiming
2018-04-23
Particulate matter (PM) exposure may contribute to depressive-like response in mice. However, few studies have evaluated the adaptive impacts of long-term PM exposure on depressive-like response associated with systemic inflammation and brain-derived neurotrophic factor (BDNF) signaling pathway. We studied the association among depressive-like behaviors, mRNA levels of pro- and anti-inflammatory cytokines, and the expression of BDNF signaling pathway in mice by long-term PM exposure. C57BL/6 male mice were exposed to ambient air alongside control mice breathing air filtered through a high-efficiency air PM (HEPA) filter. Depressive-like behaviors were assessed together with pro-inflammatory, anti-inflammatory cytokine mRNA levels and the modulation of BDNF pathway in hippocampus and olfactory-bulb of mice exposed to PM for 4, 8, and 12 weeks. Exposure to HEPA filtered air for 4 weeks may exert antidepressant like effects in mice. Pro-inflammatory cytokines were up-regulated while the expression of BDNF, its high-affinity receptor tropomyosin-related kinase B (TrkB), and the transcription factor cAMP-response-element binding protein (CREB) were down-regulated in ambient air mice. However, after 8 weeks, there was no significant difference in the rate of depressive-like behaviors between the two groups. After 12 weeks, mice exposed to ambient air again had a higher rate of depressive-like behaviors, significant up-regulation of pro-inflammatory cytokines, down-regulation of interleukin-10 (IL-10), BDNF, TrkB, and CREB than HEPA mice. Ultrafine PM in brain tissues of mice exposed to ambient air was observed. Our results suggest continuous high-level PM exposure alters the depressive-like response in mice and induces a damage-repair-imbalance reaction.
GHG warming impact on the removal and transport of particulate matter: mean and extreme pollution
NASA Astrophysics Data System (ADS)
Xu, Y.; Lamarque, J. F.
2016-12-01
Particulate matter with a diameter smaller than 2.5 micrometers (PM2.5) poses health threats to human populations. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with a chemistry-climate model, we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the main cause for the increase in the PM2.5 column burden. Regionally, over North America and East Asia, the shift of future precipitation toward heavy intensity events, contributes to weakened wet removal flux. With the daily PM2.5 output, we also find that the well-known poleward shift of jet stream under global warming contributes to more frequent stagnation events (and less frequent cyclone passages) in northern hemispheric mid-latitude, which further enhances the occurrence of extreme pollution events.
Secondhand smoke in cars: assessing children's potential exposure during typical journey conditions.
Semple, Sean; Apsley, Andrew; Galea, Karen S; MacCalman, Laura; Friel, Brenda; Snelgrove, Vicki
2012-11-01
To measure levels of fine particulate matter in the rear passenger area of cars where smoking does and does not take place during typical real-life car journeys. Fine particulate matter (PM(2.5)) was used as a marker of secondhand smoke and was measured and logged every minute of each car journey undertaken by smoking and non-smoking study participants. The monitoring instrument was located at breathing zone height in the rear seating area of each car. Participants were asked to carry out their normal driving and smoking behaviours over a 3-day period. 17 subjects (14 smokers) completed a total of 104 journeys (63 smoking journeys). Journeys averaged 27 min (range 5-70 min). PM(2.5) levels averaged 85 and 7.4 μg/m(3) during smoking and non-smoking car journeys, respectively. During smoking journeys, peak PM(2.5) concentrations averaged 385 μg/m(3), with one journey measuring over 880 μg/m(3). PM(2.5) concentrations were strongly linked to rate of smoking (cigarettes per minute). Use of forced ventilation and opening of car windows were very common during smoking journeys, but PM(2.5) concentrations were still found to exceed WHO indoor air quality guidance (25 μg/m(3)) at some point in the measurement period during all smoking journeys. PM(2.5) concentrations in cars where smoking takes place are high and greatly exceed international indoor air quality guidance values. Children exposed to these levels of fine particulate are likely to suffer ill-health effects. There are increasing numbers of countries legislating against smoking in cars and such measures may be appropriate to prevent the exposure of children to these high levels of secondhand smoke.
Bari, Md Aynul; Kindzierski, Warren B
2017-02-01
With concern about levels and exceedances of Canadian and provincial standards and objectives for fine particulate matter (PM 2.5 ) in recent years, an investigation of air quality characteristics and potential local and long-range sources influencing PM 2.5 concentrations was undertaken in the City of Red Deer, Alberta. The study covered the period May 2009 to December 2015. Comparatively higher concentrations of PM 2.5 were observed in winter (mean: 11.6 μg/m 3 , median: 10 μg/m 3 ) than in summer (mean: 9.0 μg/m 3 , median: 7.0 μg/m 3 ). Exceedances of the 1 h Alberta Ambient Air Quality objective (3-31 times per year > 80 μg/m 3 ) and the 24 h Canada-Wide Standard (2-11 times per year > 30 μg/m 3 ) were found at the Red Deer Riverside air monitoring station, particularly in 2010, 2011 and 2015. Positive matrix factorization (PMF) followed by multiple linear regression (MLR) analysis identified a mixed industry/agriculture factor as the dominant contributor to PM 2.5 (39.3%), followed by an O 3 -rich (biogenic) factor (26.4%), traffic (19.3%), biomass burning (10.5%) and a mixed urban factor (4.4%). In addition to local traffic, the mixed industry/agriculture factor - inferred as mostly upstream oil and gas emission sources surrounding Red Deer - was identified as another potentially important source contributing to wintertime high PM 2.5 pollution days. These findings offer useful preliminary information about current PM 2.5 sources and their potential contributions in Red Deer; and this information can support policy makers in the development of particulate matter control strategies if required. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Y.; Greenwald, R.; Sarnat, J.; Hu, X.; Kewada, P.; Morales, Y.; Goldman, G.; Redman, J.; Russell, A. G.
2011-12-01
Environmental epidemiological studies have established a robust association between chronic exposure to ambient level fine particulate matters (PM2.5) and adverse health effects such as COPD, cardiorespiratory diseases, and premature death. Population exposure to PM2.5 has historically been estimated using ground measurements which are often sparse and unevenly distributed. There has been much interest as well as suspicion in both the air quality management and research communities regarding the value of satellite retrieved AOD as particle air pollution indicators. A critical step towards the future use of satellite aerosol products in air quality monitoring and management is to better understand the AOD-PM2.5 association. The existing EPA and IMPROVE networks are insufficient to validate AOD-estimated PM2.5 surface especially when higher resolution satellite products become available in the near future. As part of DISCOVER-AQ mission, we deployed 15 portable filter-based samplers alongside of ground-based sun photometers of the Distributed Regional Aerosol Gridded Observation Network (DRAGON) in July 2011. Gravimetric analyses were conducted to estimate 24h PM2.5 mass concentrations, using Teflon filters and Personal Environmental Monitors (PEMs) operated at a flow rate of 4 LPM. Pre- and post-sampling filters were weighed at our weigh room laboratory facilities at the Georgia Institute of Technology. Our objectives are (1) to examine if AOD measured by ground-based sun-photometers with the support from ground-based lidars can provide the fine scale spatial heterogeneity observed by ground PM monitors, and (2) whether PM2.5 levels estimated by satellite AOD agree with this true PM2.5 surface. Study design, instrumentation, and preliminary results of measured PM2.5 spatial patterns in July 2011 will be presented as well as discussion of further data analysis and model development.
Lepers, Capucine; André, Véronique; Dergham, Mona; Billet, Sylvain; Verdin, Anthony; Garçon, Guillaume; Dewaele, Dorothée; Cazier, Fabrice; Sichel, François; Shirali, Pirouz
2014-06-01
Airborne particulate matter (PM) toxicity is of growing interest as diesel exhaust particles have been classified as carcinogenic to humans. However, PM is a mixture of chemicals, and respective contribution of organic and inorganic fractions to PM toxicity remains unclear. Thus, we analysed the link between chemical composition of PM samples and bulky DNA adduct formation supported by CYP1A1 and 1B1 genes induction and catalytic activities. We used six native PM samples, collected in industrial, rural or urban areas, either during the summer or winter, and carried out our experiments on the human bronchial epithelial cell line BEAS-2B. Cell exposure to PM resulted in CYP1A1 and CYP1B1 genes induction. This was followed by an increase in EROD activity, leading to bulky DNA adduct formation in exposed cells. Bulky DNA adduct intensity was associated to global EROD activity, but this activity was poorly correlated with CYPs mRNA levels. However, EROD activity was correlated with both metal and polycyclic aromatic hydrocarbon (PAH) content. Finally, principal components analysis revealed three clusters for PM chemicals, and suggested synergistic effects of metals and PAHs on bulky DNA adduct levels. This study showed the ability of PM samples from various origins to generate bulky DNA adducts in BEAS-2B cells. This formation was promoted by increased expression and activity of CYPs involved in PAHs activation into reactive metabolites. However, our data highlight that bulky DNA adduct formation is only partly explained by PM content in PAHs, and suggest that inorganic compounds, such as iron, may promote bulky DNA adduct formation by supporting CYP activity. Copyright © 2013 John Wiley & Sons, Ltd.
Particulate air pollution from combustion and construction in coastal and urban areas of China.
Chen, Bing; Chen, Jinsheng; Zhao, Jinping; Zhang, Fuwang
2011-11-01
In China, the areas that are undergoing rapid urban growth are faced with increasingly more complicated air pollution problems. Sources of air pollution need to be identified and their contributions quantified. In this study, PM2.5 (particulate matter with aerodynamic diameters < or =2.5 microm), PM2.5-10 (particulate matter with aerodynamic diameters 2.5-10 microm), organic carbon (OC), and elemental carbon (EC) concentrations were measured from April to July 2009 at four selected areas in Xiamen (the downtown area, an industrial park, a suburb, and one remote site). The contributions of carbonaceous aerosols to PM2.5 and PM2.5-10 were 20-30% and 10-20%, respectively, indicating that finer particles contained more carbonaceous aerosols. The EC concentrations in PM2.5 at the downtown, industrial, suburb, and remote sites were 2.16 +/- 0.61, 2.05 +/- 0.45, 1.69 +/- 0.54, and 0.65 +/- 0.43 microg m-3, respectively, showing a decrease from the urban and industrial hotspots to the surrounding areas. These data show that carbonaceous aerosols emitted from the combustion of fossil fuels in urban and industrial hotspots influence air quality at the regional scale. Higher levels of PM2.5 and PM2.5-10 were observed at the suburb site compared to the urban and industrial sites. Peak EC concentrations in PM2.5 were observed during the morning and evening rush hours. However, peak PM2.5 levels at the suburb site were observed around noon, which coincides with construction work hours, instead of the morning and evening rush hours when emissions from combustion dominated. These findings indicate that both fuel combustion and construction have exacerbated air pollution in coastal and urban areas in China.
The US EPA National Exposure Research Laboratory (NERL) is currently refining and evaluating a population exposure model for particulate matter (PM), called the Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model. The SHEDS-PM model estimates the population distribu...
Karelin, A O; Lomtev, A Yu; Mozzhukhina, N A; Yeremin, G B; Nikonov, V A
Inhalation of fine particulate matters (PM and PM ) poses a threat for the health of population. Purpose of the study the analysis of the monitoring of fine particulate matters in the atmospheric air of Saint-Petersburg and identification of the main problems of the monitoring. Research methods methods of scientific hypothetical deductive cognition, sanitary-statistical methods, general logical methods and approaches of researches: analysis, synthesis, abstracting, generalization, induction. Results. The article represents the analysis of the monitoring of fine particulate matters in the atmospheric air of Saint- Petersburg. Only 11 in automatic monitoring stations out of 22 there is carried out the control of fine particulate matters: in 7 - PM and PM, and in 4 - PM The average year concentrations were below MAC in all the stations. The maximum concentrations achieved 3 MAC, but the repeatance of cases of exceedence of concentrations more than MAC was very rare. On the average of the city concentrations of PM were decreased from 0,8 MAC in 2006 and 1,1 MAC in 2007 to 0,5 MAC in 2013-14. The executed analysis revealed main problems of the monitoring of fine particulate matters in the Russian Federation. They include the absence of the usage 1of the officially approved methods of controlling of PM and PM in the atmospheric air until March 1, 2016, lack of the modern equipment for measurement of fine particulate matters. Conclusions. Therefore, the state of the monitoring of fine particulate matters in the atmospheric air in the Russian Federation fails to be satisfactory. It is necessary to improve system of the monitoring, create modern Russian appliances, methods and means for measurement of fine particulate matters concentrations in the atmospheric air.
Particulate pollution in different housing types in a UK suburban location.
Nasir, Zaheer Ahmad; Colbeck, Ian
2013-02-15
To investigate the levels of particulate pollution in residential built environments measurements of PM(10), PM(2.5), and PM(1) and concentrations were made between 2004 and 2008 in various residencies in a UK suburban location. Measurements were carried out in three different residential settings (Types I, II and III). In type I non-smoking living rooms, the highest 24-hour mean concentrations were found in summer. When smoking took place in type I residences, the concentrations of PM(10), PM(2.5) and PM(1), during the winter were almost double those in summer. In type II houses the concentrations were higher in the houses with open plan kitchens than in those with separate kitchens. In type III houses, mean concentrations were significantly higher in wood heated living rooms than those using central heating. In kitchens, cooking resulted in substantially higher concentrations of particulate matter with levels above those in smoking living rooms in winter. The hourly maximum values of number concentration were considerably higher in smoking rooms than non-smoking ones. Cooking resulted in increased number concentrations, with the average hourly maximum concentration of 179,110 #/cm(3). Particle mass and number emission rates were determined for a number of activities. In kitchens grilling had the highest average number emission rate, followed by boiling and frying. The results clearly highlight the impact of different forms of dwelling and their use and management by occupants on the levels of particulate matter in naturally ventilated residential built environments. Copyright © 2012 Elsevier B.V. All rights reserved.
Reduction of cooking oil fume exposure following an engineering intervention in Chinese restaurants.
Pan, Chih-Hong; Shih, Tung-Sheng; Chen, Chiou-Jong; Hsu, Jin-Huei; Wang, Shun-Chih; Huang, Chien-Ping; Kuo, Ching-Tang; Wu, Kuen-Yuh; Hu, Howard; Chan, Chang-Chuan
2011-01-01
A new engineering intervention measure, an embracing air curtain device (EACD), was used to increase the capture efficiency of cooker hoods and reduce cooking oil fume (COF) exposure in Chinese restaurants. An EACD was installed in six Chinese restaurants where the cooks complained of COF exposure. Before- and after-installation measurements were taken to compare changes in particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) in kitchen air, and changes in levels of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA). The association between PM and PAHs in air and 8-OHdG and MDA in urine was evaluated by linear mixed-effects regression analysis. Results showed that geometric mean kitchen air levels of PM(10), PM(2.5), PM(1.0) and total particulate PAHs were significantly reduced after the EACDs were introduced. Urinary levels of 8-OHdG and MDA in cooks were also significantly lower after EACD instalment. PM(2.5), PM(1.0) and benzo(a)pyrene (BaP) levels were positively associated with urinary 8-OHdG levels after adjusting for key personal covariates. Urinary MDA levels in cooks were also positively associated with BaP levels after adjusting for key personal covariates. This study demonstrates that the EACD is effective for reducing COF and oxidative stress levels in cooks working in Chinese kitchens.
Ngo, Nicole S.; Gatari, Michael; Yan, Beizhan; Chillrud, Steven N.; Bouhamam, Kheira; Kinneym, Patrick L.
2015-01-01
Few studies examine urban air pollution in sub-Saharan Africa (SSA), yet urbanization rates there are among the highest in the world. In this study, we measured 8-hr average occupational exposure levels of fine particulate matter (PM2.5), black carbon (BC), ultra violet active-particulate matter (UV-PM), and trace elements for individuals who worked along roadways in Nairobi, specifically bus drivers, garage workers, street vendors, and women who worked inside informal settlements. We found BC and re-suspended dust were important contributors to PM2.5 levels for all study populations, particularly among bus drivers, while PM2.5 exposure levels for garage workers, street vendors, and informal settlement residents were not statistically different from each other. We also found a strong signal for biomass emissions and trash burning, which is common in Nairobi’s low-income areas and open-air garages. These results suggest that the large portion of urban residents in SSA who walk along roadways would benefit from air quality regulations targeting roadway emissions from diesel vehicles, dust, and trash burning. This is the first study to measure occupational exposure to urban air pollution in SSA and results imply that roadway emissions are a serious public health concern. PMID:26034383
NASA Astrophysics Data System (ADS)
Ngo, Nicole S.; Gatari, Michael; Yan, Beizhan; Chillrud, Steven N.; Bouhamam, Kheira; Kinney, Patrick L.
2015-06-01
Few studies examine urban air pollution in sub-Saharan Africa (SSA), yet urbanization rates there are among the highest in the world. In this study, we measured 8-hr average occupational exposure levels of fine particulate matter (PM2.5), black carbon (BC), ultra violet active-particulate matter (UV-PM), and trace elements for individuals who worked along roadways in Nairobi, specifically bus drivers, garage workers, street vendors, and women who worked inside informal settlements. We found BC and re-suspended dust were important contributors to PM2.5 levels for all study populations, particularly among bus drivers, while PM2.5 exposure levels for garage workers, street vendors, and informal settlement residents were not statistically different from each other. We also found a strong signal for biomass emissions and trash burning, which is common in Nairobi's low-income areas and open-air garages. These results suggest that the large portion of urban residents in SSA who walk along roadways would benefit from air quality regulations targeting roadway emissions from diesel vehicles, dust, and trash burning. This is the first study to measure occupational exposure to urban air pollution in SSA and results imply that roadway emissions are a serious public health concern.
Ngo, Nicole S; Gatari, Michael; Yan, Beizhan; Chillrud, Steven N; Bouhamam, Kheira; Kinneym, Patrick L
2015-06-01
Few studies examine urban air pollution in sub-Saharan Africa (SSA), yet urbanization rates there are among the highest in the world. In this study, we measured 8-hr average occupational exposure levels of fine particulate matter (PM 2.5 ), black carbon (BC), ultra violet active-particulate matter (UV-PM), and trace elements for individuals who worked along roadways in Nairobi, specifically bus drivers, garage workers, street vendors, and women who worked inside informal settlements. We found BC and re-suspended dust were important contributors to PM 2.5 levels for all study populations, particularly among bus drivers, while PM 2.5 exposure levels for garage workers, street vendors, and informal settlement residents were not statistically different from each other. We also found a strong signal for biomass emissions and trash burning, which is common in Nairobi's low-income areas and open-air garages. These results suggest that the large portion of urban residents in SSA who walk along roadways would benefit from air quality regulations targeting roadway emissions from diesel vehicles, dust, and trash burning. This is the first study to measure occupational exposure to urban air pollution in SSA and results imply that roadway emissions are a serious public health concern.
NASA Astrophysics Data System (ADS)
Yadav, Ravi; Beig, G.; Jaaffrey, S. N. A.
2014-03-01
The city of Udaipur (24.58°N, 73.68°E) in the province of Rajasthan in the Western part of India has a special significance as it is surrounded by the Arawali mountain ranges on one side and desert on the other side. It is located around the foothills of the rocky Arawali range. It is on the world map due to its tourist attraction. The changing pattern in particulate matter (PM2.5 and PM10) during the past three years indicates an alarming increasing trend, posing a threat to its environment & tourism sector which regulates its economy to a period during the monsoon and distribution of particulate matter is found to be governed by the meteorology and changes the trend. The level of PM10, which was already above the threshold level in 2010, further increased in 2012. The trend is found to be rapid during the months of October & November where an increase by 37% is observed in 3 years. The level of PM2.5, which is the most hazardous for respiratory system diseases, has now started to cross the ambient air quality standards set by the World Health Organization. The impact is significant during winter when the inversion layer is down due to colder temperature and foreign tourists are a peak giving rise an increased morbidity rate. The linkages of local weather with an anthropogenically induced trend and long range transport of pollutants have been outlined.
The resolving power of in vitro genotoxicity assays for cigarette smoke particulate matter.
Scott, K; Saul, J; Crooks, I; Camacho, O M; Dillon, D; Meredith, C
2013-06-01
In vitro genotoxicity assays are often used to compare tobacco smoke particulate matter (PM) from different cigarettes. The quantitative aspect of the comparisons requires appropriate statistical methods and replication levels, to support the interpretation in terms of power and significance. This paper recommends a uniform statistical analysis for the Ames test, mouse lymphoma mammalian cell mutation assay (MLA) and the in vitro micronucleus test (IVMNT); involving a hierarchical decision process with respect to slope, fixed effect and single dose comparisons. With these methods, replication levels of 5 (Ames test TA98), 4 (Ames test TA100), 10 (Ames test TA1537), 6 (MLA) and 4 (IVMNT) resolved a 30% difference in PM genotoxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gali, Nirmal Kumar; Yang, Fenhuan; Jiang, Sabrina Yanan; Chan, Ka Lok; Sun, Li; Ho, Kin-fai; Ning, Zhi
2015-03-01
Adverse health effects are associated with exposure to atmospheric particulate matter (PM), which carry various chemical constituents and induce both exogenous and endogenous oxidative stress. This study investigated the spatial and seasonal variability of PM-induced ROS at four sites with different characteristics in Hong Kong. Cytotoxicity, exogenous and endogenous ROS was determined on a dose and time dependent analysis. Large spatial variation of ROS was observed with fine PM at urban site showing highest ROS levels while coarse PM at traffic site ranks the top. No consistent seasonal difference was observed for ROS levels among all sites. The highly heterogeneous distribution of PM-induced ROS demonstrates the differential capability of PM to produce oxidative stress, and the need to use appropriate metrics as surrogates of exposure instead of PM mass in epidemiologic studies. Several transition metals were found associated with ROS by different degree illustrating the complexity of mechanisms involved. Copyright © 2015 Elsevier Ltd. All rights reserved.
Characterization of coarse particulate matter in school gyms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branis, Martin, E-mail: branis@natur.cuni.cz; Safranek, Jiri
2011-05-15
We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM{sub 10-2.5} and PM{sub 2.5-1.0}) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM{sub 10-2.5} 4.1-7.4 {mu}g m{sup -3} andmore » PM{sub 2.5-1.0} 2.0-3.3 {mu}g m{sup -3}) than indoors (average PM{sub 10-2.5} 13.6-26.7 {mu}g m{sup -3} and PM{sub 2.5-1.0} 3.7-7.4 {mu}g m{sup -3}). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM{sub 10-2.5} and 1.4-4.8 for the PM{sub 2.5-1.0} values. Under extreme conditions, the I/O ratios reached 180 (PM{sub 10-2.5}) and 19.1 (PM{sub 2.5-1.0}). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of coarse particulate matter, which can contribute to increased short-term inhalation exposure of exercising children. - Highlights: {yields} We studied concentration, composition and morphology of coarse particles in gyms. {yields} Indoor concentration of coarse particles was high during days with pupils activity. {yields} Effect of outdoor coarse dust on indoor levels was weak and inconsistent. {yields} Six main groups of minerals contributing to indoor resuspended dust were determined. {yields} The most abundant coarse particles were human skin scales.« less
NASA Astrophysics Data System (ADS)
Karagulian, Federico; Belis, Claudio A.; Dora, Carlos Francisco C.; Prüss-Ustün, Annette M.; Bonjour, Sophie; Adair-Rohani, Heather; Amann, Markus
2015-11-01
For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. This study systematically reviewed and analysed available source apportionment studies on particulate matter (of diameter of 10 and 2.5 microns, PM10 and PM2.5) performed in cities to estimate typical shares of the sources of pollution by country and by region. A database with city source apportionment records, estimated with the use of receptor models, was also developed and available at the website of the World Health Organization. Systematic Scopus and Google searches were performed to retrieve city studies of source apportionment for particulate matter. Six source categories were defined. Country and regional averages of source apportionment were estimated based on city population weighting. A total of 419 source apportionment records from studies conducted in cities of 51 countries were used to calculate regional averages of sources of ambient particulate matter. Based on the available information, globally 25% of urban ambient air pollution from PM2.5 is contributed by traffic, 15% by industrial activities, 20% by domestic fuel burning, 22% from unspecified sources of human origin, and 18% from natural dust and salt. The available source apportionment records exhibit, however, important heterogeneities in assessed source categories and incompleteness in certain countries/regions. Traffic is one important contributor to ambient PM in cities. To reduce air pollution in cities and the substantial disease burden it causes, solutions to sustainably reduce ambient PM from traffic, industrial activities and biomass burning should urgently be sought. However, further efforts are required to improve data availability and evaluation, and possibly to combine with other types of information in view of increasing usefulness for policy making.
40 CFR 60.42Da - Standard for particulate matter (PM).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter (PM). 60.42Da Section 60.42Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....42Da Standard for particulate matter (PM). (a) On and after the date on which the initial performance...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-02
... Deterioration and Nonattainment New Source Review; Fine Particulate Matter (PM2.5) AGENCY: Environmental... preconstruction permitting requirements for fine particulate matter (PM 2.5 ) into the Delaware SIP. In addition... fine particulate matter (PM 2.5 ) into the Delaware SIP. In addition, EPA proposed approval of SIP...
40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.2306 Section 52.2306 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a...
40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.2306 Section 52.2306 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a...
40 CFR 60.42Da - Standard for particulate matter (PM).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter (PM). 60.42Da Section 60.42Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....42Da Standard for particulate matter (PM). (a) On and after the date on which the initial performance...
40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.1637 Section 52.1637 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico...
40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.1637 Section 52.1637 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico...
Pun, Vivian Chit; Yu, Ignatius Tak-Sun; Qiu, Hong; Ho, Kin-Fai; Sun, Zhiwei; Louie, Peter K K; Wong, Tze Wai; Tian, Linwei
2014-05-01
Despite an increasing number of recent studies, the overall epidemiologic evidence associating specific particulate matter chemical components with health outcomes has been mixed. The links between components and hospitalizations have rarely been examined in Asia. We estimated associations between exposures to 18 chemical components of particulate matter with aerodynamic diameter less than 10 μm (PM10) and daily emergency cardiorespiratory hospitalizations in Hong Kong, China, between 2001 and 2007. Carbonaceous particulate matter, sulfate, nitrate, and ammonium accounted for two-thirds of the PM10 mass. After adjustment for time-varying confounders, a 3.4-μg/m(3) increment in 2-day moving average of same-day and previous-day nitrate concentrations was associated with the largest increase of 1.32% (95% confidence interval: 0.73, 1.92) in cardiovascular hospitalizations; elevation in manganese level (0.02 μg/m(3)) was linked to a 0.91% (95% confidence interval: 0.19, 1.64) increase in respiratory hospitalizations. Upon further adjustment for gaseous copollutants, nitrate, sodium ion, chloride ion, magnesium, and nickel remained significantly associated with cardiovascular hospitalizations, whereas sodium ion, aluminum, and magnesium, components abundantly found in coarser PM10, were associated with respiratory hospitalizations. Most positive links were seen during the cold season. These findings lend support to the growing body of literature concerning the health associations of particulate matter composition and provide important insight into the differential health risks of components found in fine and coarse modes of PM10.
Masri, Shahir; Garshick, Eric; Hart, Jaime; Bouhamra, Walid; Koutrakis, Petros
2017-01-01
Military personnel deployed to Southwest Asia and Afghanistan were exposed to high levels of ambient particulate matter (PM). However, quantitative ambient exposure data for conducting health studies are limited due to a lack of PM monitoring stations. Since visual range (VR) is proportional to particle light extinction, VR can serve as a surrogate for PM 2.5 (particulate matter with an aerodynamic diameter ≤2.5 µm) concentrations. We used data on VR, relative humidity (RH), and PM 2.5 ground measurements collected in Kuwait from years 2004-2005 to establish the relationship between PM 2.5 and VR. Model validation obtained by regressing trimester average PM 2.5 predictions against PM 2.5 measurements in Kuwait produced an r 2 value of 0.84. Cross validation of urban and rural sites in Kuwait also revealed good model fit. We applied this relationship to location-specific visibility data at 104 regional sites between years 2000-2012 to estimate monthly average PM 2.5 concentrations. Monthly averages at sites in Iraq, Afghanistan, United Arab Emirates, Kuwait, Djibouti, and Qatar ranged from 10 to 365 µg/m3 during this period, while site averages ranged from 22 to 80 µg/m3, indicating considerable spatial and temporal heterogeneity in ambient PM 2.5 across these regions. These data support the use of historical visibility data to estimate location-specific PM 2.5 concentrations for application in epidemiological studies. This study demonstrates the ability to use airport visibility to estimate PM 2.5 concentrations in Southwest Asian and Afghanistan. This supports the use of historical and ongoing visibility data to estimate PM 2.5 exposure in this region of the world, where PM exposure information is otherwise scarce. This is of high utility to epidemiologists investigating the relationship between chronic exposure to PM 2.5 and respiratory diseases among deployed military personnel stationed at various military bases throughout the region. Such information will enable the drafting of improved policies relating to military health.
NASA Astrophysics Data System (ADS)
Sánchez-Soberón, Francisco; Rovira, Joaquim; Mari, Montse; Sierra, Jordi; Nadal, Martí; Domingo, José L.; Schuhmacher, Marta
2015-11-01
Particulate matter (PM) is widely recorded as a source of diseases, being more harmful those particles with smaller size. PM is released to the environment as a consequence of different activities, being one of them cement production. The objective of this pilot study was to characterize PM of different sizes around cement facilities to have a preliminary approach of their origin, and evaluate their potential health risks. For that purpose, three fractions of PM (10, 2.5, and 1) were collected in the nearby area of two cement plants with different backgrounds (urban and rural) in different seasons. Subsequently, main components, outdoor and indoor concentrations, exposure, and human health risks were assessed. Greatest levels of PM1, organic matter, and metals were found in urban location, especially in winter. Consequently, environmental exposure and human health risks registered their highest values in the urban plant during wintertime. Exposure was higher for indoor activities, expressing some metals their peak values in the PM1 fraction. Non-carcinogenic risks were below the safety threshold (HQ < 1). Carcinogenic risks for most of the metals were below the limit of 10-5, except for Cr (VI), which exceeded it in both locations, but being in the range considered as assumable (10-6-10-4).
Yang, Xiaozhe; Feng, Lin; Zhang, Yannan; Hu, Hejing; Shi, Yanfeng; Liang, Shuang; Zhao, Tong; Fu, Yang; Duan, Junchao; Sun, Zhiwei
2018-06-06
Although the strongly causal associations were between fine particulate matter (PM 2.5 ) and cardiovascular disease, the toxic effect and potential mechanism of PM 2.5 on heart was poorly understood. Thus, the aim of this study was to evaluate the cardiac toxicity of PM 2.5 exposure on human cardiomyocytes (AC16). The cell viability was decreased while the LDH release was increased in a dose-dependent way after AC16 exposed to PM 2.5 . The reactive oxygen species (ROS) generation and production of malondialdehyde (MDA) were increased followed by the decreasing in superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). The damage of mitochondria was observed by ultra-structural analysis and MMP measurement. The apoptotic rate of AC16 were markedly elevated which was triggered by PM 2.5 . In addition, the proteins involved in mitochondria- mediated apoptosis pathway were measured. The protein levels of Caspase-3, Caspase-9 and Bax were up-regulated while the anti-apoptotic protein, Bcl-2 was down-regulated after AC16 exposed to PM 2.5 . In summary, our results demonstrated that mitochondria-mediated apoptosis pathway played a critical role in PM 2.5 -induced myocardial cytotoxicity in AC16, which suggested that PM 2.5 may contribute to cardiac dysfunction. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Błaszczak, Barbara
2018-01-01
The paper reports the results of the measurements of water-soluble ions and carbonaceous matter content in the fine particulate matter (PM2.5), as well as the contributions of major sources in PM2.5. Daily PM2.5 samples were collected during heating and non-heating season of the year 2013 in three different locations in Poland: Szczecin (urban background), Trzebinia (urban background) and Złoty Potok (regional background). The concentrations of PM2.5, and its related components, exhibited clear spatiotemporal variability with higher levels during the heating period. The share of the total carbon (TC) in PM2.5 exceeded 40% and was primarily determined by fluctuations in the share of OC. Sulfates (SO42-), nitrates (NO3-) and ammonium (NH4+) dominated in the ionic composition of PM2.5 and accounted together 34% (Szczecin), 30% (Trzebinia) and 18% (Złoty Potok) of PM2.5 mass. Source apportionment analysis, performed by PCA-MLRA model (Principal Component Analysis - Multilinear Regression Analysis), revealed that secondary aerosol, whose presence is related to oxidation of gaseous precursors emitted from fuel combustion and biomass burning, had the largest contribution in observed PM2.5 concentrations. In addition, the contribution of traffic sources together with road dust resuspension, was observed. The share of natural sources (sea spray, crustal dust) was generally lower.
Batterman, S; Du, L; Mentz, G; Mukherjee, B; Parker, E; Godwin, C; Chin, J-Y; O'Toole, A; Robins, T; Rowe, Z; Lewis, T
2012-06-01
This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84±27%, but dropped to 63±33% in subsequent seasons. In months when households were not visited, use averaged only 34±30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. Environmental tobacco smoke (ETS) increased particulate matter (PM) levels by about 14 μg/m3 and was often detected using ETS-specific tracers despite restrictions on smoking in the house as reported on questionnaires administered to caregivers. PM concentrations depended on season, filter usage, relative humidity, air exchange ratios, number of children, outdoor PM levels, sweeping/dusting, and presence of a central air conditioner (AC). Free-standing air filters can be an effective intervention that provides substantial reductions in PM concentrations if the filters are used. However, filter use was variable across the study population and declined over the study duration, and thus strategies are needed to encourage and maintain use of filters. The variability in filter use suggests that exposure misclassification is a potential problem in intervention studies using filters. The installation of a room AC in the bedroom, intended to limit air exchange ratios, along with an air filter, did not lower PM levels more than the filter alone. © 2011 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Gupta, Pawan
Fine particles (PM2.5, particles with aerodynamic diameter less than 2.5 mum) can penetrate deep inside the human lungs and recent scientific studies have shown thousands of deaths occur each year around the world, prematurely, due to a high concentration of particulate matter. Therefore, monitoring and forecasting of surface level fine particulate matter air quality is very important. Typically air quality measurements are made from ground stations. In recent years, linear regression relationships between satellite derived aerosol optical thickness (AOT) and surface measured PM2.5 mass concentration are formed and used to estimate PM2.5 in the areas where surface measurements are not available. This type of simple linear relationships varies with regions and seasons, and does not provide accurate enough estimation of surface level pollution and many studies have shown that AOT alone is not sufficient for PM2.5 mass concentration estimations. Furthermore, AOT represents aerosol loading in the entire column of the atmosphere whereas PM2.5 is measured at the surface; hence, the knowledge of vertical distribution of aerosols coupled with meteorology becomes critical in PM2.5 estimations. In this dissertation I used three years (2004-2006) of coincident hourly PM2.5, MODerate resolution Imaging Spectroradiometer (MODIS) derived AOT, and Rapid Update Cycle (RUC) analyzed meteorological fields to assess PM2.5 air quality in the Southeast United States. I explored the use of two-variate (TVM), multi-variate (MVM) and artificial neural network (ANN) methods for estimating PM2.5 over 85 stations in the region. First, satellite data were analyzed for sampling biases, quality, and impact of clouds. Results show that MODIS-Terra AOT data was available only about 50% of the days in any given month due to cloud over and unfavorable surface conditions, but this produced a sampling bias of less than 2 mugm-3. Results indicate that there is up to three fold improvements in the correlation coefficients (R) while using MVM (that includes meteorology) over different regions and seasons when compared to the TVM and further improvements were noticed when ANN method is applied. The improvement in absolute percentage error of estimation ranges from 5% to 50% over different seasons and regions when compared with TVM models. Overall ANN models performed better than TVM and MVM models. Based on these results, we recommend using meteorological variables along with satellite observations for improving particulate matter air quality assessment from satellite observations in the region.
Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan
2018-05-01
The structural variation of the bacterial community associated with particulate matter (PM) was assessed in an urban area of Beijing during hazy and nonhazy days. Sampling for different PM fractions (PM 2.5 [<2.5 μm], PM 10 [<10 μm], and total suspended particulate) was conducted using three portable air samplers from September 2014 to February 2015. The airborne bacterial community in these samples was analyzed using the Illumina MiSeq platform with bacterium-specific primers targeting the 16S rRNA gene. A total of 1,707,072 reads belonging to 6,009 operational taxonomic units were observed. The airborne bacterial community composition was significantly affected by PM fractions ( R = 0.157, P < 0.01). In addition, the relative abundances of several genera significantly differed between samples with various haze levels; for example, Methylobacillus , Tumebacillus , and Desulfurispora spp. increased in heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature, SO 2 concentration, relative humidity, PM 10 concentration, and CO concentration were significant factors that associated with airborne bacterial community composition. Only six genera increased across PM 10 samples ( Dokdonella , Caenimonas , Geminicoccus , and Sphingopyxis ) and PM 2.5 samples ( Cellulomonas and Rhizobacter ), while a large number of taxa significantly increased in total suspended particulate samples, such as Paracoccus , Kocuria , and Sphingomonas Network analysis indicated that Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Overall, the findings presented here suggest that diverse airborne bacterial communities are associated with PM and provide further understanding of bacterial community structure in the atmosphere during hazy and nonhazy days. IMPORTANCE The results presented here represent an analysis of the airborne bacterial community associated with particulate matter (PM) and advance our understanding of the structural variation of these communities. We observed a shift in bacterial community composition with PM fractions but no significant difference with haze levels. This may be because the bacterial differences are obscured by high bacterial diversity in the atmosphere. However, we also observed that a few genera (such as Methylobacillus , Tumebacillus , and Desulfurispora ) increased significantly on heavy-haze days. In addition, Paracoccus , Rubellimicrobium , Kocuria , and Arthrobacter were the key genera in the airborne PM samples. Accurate and real-time techniques, such as metagenomics and metatranscriptomics, should be developed for a future survey of the relationship of airborne bacteria and haze. Copyright © 2018 American Society for Microbiology.
Fine Particulate Matter (PM2.5) and the Risk of Stroke in the REGARDS Cohort.
McClure, Leslie A; Loop, Matthew S; Crosson, William; Kleindorfer, Dawn; Kissela, Brett; Al-Hamdan, Mohammad
2017-08-01
Ambient particulate matter has been shown to be associated with declining human health, although the association between fine particulate matter (PM 2.5 ) and stroke is uncertain. We utilized satellite-derived measures of PM 2.5 to examine the association between exposure and stroke in the REasons for Geographic And Racial Differences in Stroke (REGARDS) study. We used a time-stratified case-crossover design, with exposure lags of 1 day, 2 days, and 3 days. We examined all strokes, as well as ischemic and hemorrhagic strokes separately. Among 30,239 participants in the REGARDS study, 746 incident events were observed: 72 hemorrhagic, 617 ischemic, and 57 of unknown type. Participants exposed to higher levels of PM 2.5 more often resided in urban areas compared to rural, and in the southeastern United States. After adjustment for temperature and relative humidity, no association was observed between PM 2.5 exposure and stroke, regardless of the lag (1-day lag OR = .99, 95% CI: .83-1.19; 2-day lag OR = .95, 95% CI: .80-1.14; 3-day lag OR = .95, 95% CI = .79-1.13). Similar results were observed for the stroke subtypes. In this large cohort of African-Americans and whites, no association was observed between PM 2.5 and stroke. The ability to examine this association with a large number of outcomes and by stroke subtype helps fill a gap in the literature examining the association between PM 2.5 and stroke. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Yu, Hwa-Lung; Chien, Lung-Chang
2016-01-01
Fine particulate matter <2.5 μm (PM2.5) has been associated with human health issues; however, findings regarding the influence of PM2.5 on respiratory disease remain inconsistent. The short-term, population-based association between the respiratory clinic visits of children and PM2.5 exposure levels were investigated by considering both the spatiotemporal distributions of ambient pollution and clinic visit data. We applied a spatiotemporal structured additive regression model to examine the concentration-response (C-R) association between children's respiratory clinic visits and PM2.5 concentrations. This analysis was separately performed on three respiratory disease categories that were selected from the Taiwanese National Health Insurance database, which includes 41 districts in the Taipei area of Taiwan from 2005 to 2007. The findings reveal a non-linear C-R pattern of PM2.5, particularly in acute respiratory infections. However, a PM2.5 increase at relatively lower levels can elevate the same-day respiratory health risks of both preschool children (<6 years old) and schoolchildren (6-14 years old). In preschool children, same-day health risks rise when concentrations increase from 0.76 to 7.44 μg/m(3), and in schoolchildren, same-day health risks rise when concentrations increase from 0.76 to 7.52 μg/m(3). Changes in PM2.5 levels generally exhibited no significant association with same-day respiratory risks, except in instances where PM2.5 levels are extremely high, and these occurrences do exhibit a significant positive influence on respiratory health that is especially notable in schoolchildren. A significant high relative rate of respiratory clinic visits are concentrated in highly populated areas. We highlight the non-linearity of the respiratory health effects of PM2.5 on children to investigate this population-based association. The C-R relationship in this study can provide a highly valuable alternative for assessing the effects of ambient air pollution on human health.
Choi, Bryan Y; Kobayashi, Leo; Pathania, Shivany; Miller, Courtney B; Locke, Emma R; Stearns, Branden C; Hudepohl, Nathan J; Patefield, Scott S; Suner, Selim; Williams, Kenneth A; Machan, Jason T; Jay, Gregory D
2015-01-01
To measure unhealthy aerosol materials in an Emergency Department (ED) and identify their sources for mitigation efforts. Based on pilot findings of elevated ED particulate matter (PM) levels, investigators hypothesized that unhealthy aerosol materials derive from exogenous (vehicular) sources at ambulance receiving entrances. The Aerosol Environmental Toxicity in Healthcare-related Exposure and Risk program was conducted as an observational study. Calibrated sensors monitored PM and toxic gases at Ambulance Triage Exterior (ATE), Ambulance Triage Desk (ATD), and control Public Triage Desk (PTD) on a 3/3/3-day cycle. Cassette sampling characterized PM; meteorological and ambulance traffic data were logged. Descriptive and multiple linear regression analyses assessed for interactions between aerosol material levels, location, temporal variables, ambulance activity, and meteorological factors. Sensors acquired 93,682 PM0.3, 90,250 PM2.5, and 93,768 PM5 measurements over 366 days to generate a data set representing at least 85.6% of planned measurements. PM0.3, PM2.5, and PM5 mean counts were lowest in PTD; 56%, 224%, and 223% higher in ATD; and 996%, 200%, and 63% higher in ATE, respectively (all p < .001). Qualitative analyses showed similar PM compositions in ATD and ATE. On multiple linear regression analysis, PM0.3 counts correlated primarily with location; PM2.5 and PM5 counts correlated most strongly with location and ambulance presence. PM < 2.5 and toxic gas concentrations at ATD and PTD patient care areas did not exceed hazard levels; PM0.3 counts did not have formal safety thresholds for comparison. Higher levels of PM were linked with ED ambulance areas, although their health impact is unclear. © The Author(s) 2015.
Clark, Nigel N; Jarrett, Ronald P; Atkinson, Christopher M
1999-09-01
Diesel particulate matter (PM) is a significant contributor to ambient air PM 10 and PM 2.5 particulate levels. In addition, recent literature argues that submicron diesel PM is a pulmonary health hazard. There is difficulty in attributing PM emissions to specific operating modes of a diesel engine, although it is acknowledged that PM production rises dramatically with load and that high PM emissions occur during rapid load increases on turbocharged engines. Snap-acceleration tests generally identify PM associated with rapid transient operating conditions, but not with high load. To quantify the origin of PM during transient engine operation, continuous opacity measurements have been made using a Wager 650CP full flow exhaust opacity meter. Opacity measurements were taken while the vehicles were operated over transient driving cycles on a chassis dynamometer using the West Virginia University (WVU) Transportable Heavy Duty Vehicle Emissions Testing Laboratories. Data were gathered from Detroit Diesel, Cummins, Caterpillar, and Navistar heavy-duty (HD) diesel engines. Driving cycles used were the Central Business District (CBD) cycle, the WVU 5-Peak Truck cycle, the WVU 5-Mile route, and the New York City Bus (NYCB) cycle. Continuous opacity measurements, integrated over the entire driving cycle, were compared to total integrated PM mass. In addition, the truck was subjected to repeat snap-acceleration tests, and PM was collected for a composite of these snap-acceleration tests. Additional data were obtained from a fleet of 1996 New Flyer buses in Flint, MI, equipped with electronically controlled Detroit Diesel Series 50 engines. Again, continuous opacity, regulated gaseous emissions, and PM were measured. The relationship between continuous carbon monoxide (CO) emissions and continuous opacity was noted. In identifying the level of PM emissions in transient diesel engine operation, it is suggested that CO emissions may prove to be a useful indicator and may be used to apportion total PM on a continuous basis over a transient cycle. The projected continuous PM data will prove valuable in future mobile source inventory prediction.
Sun, Jian-lin; Chang, Wen-jing; Chen, Zheng-xia; Zeng, Hui
2015-05-01
Concentrations of halogenated polycyclic aromatic hydrocarbons ( HPAHs) in atmospheric PM10 and PM2.5 samples collected from Shenzhen were determined using GC-MS. Total concentrations of nine HPAHs in atmospheric PM10 and PM2.5 samples ranged from 118 to 1,476 pg · m(-3) and 89 to 407 pg · m(-3), respectively. In PM10 and PM(2.5) samples, the concentration of 9-BrAnt was the highest, followed by 7-BrBaA and 9, 10-Br2Ant. Seasonal levels of total HPAHs in atmospheric PM10 and PM2.5 samples in Shenzhen decreased in the following order: winter > autumn > spring > summer, whereas concentrations of individual HPAHs showed different seasonal levels. Meteorological conditions, including temperature, precipitation, and relative humidity, might be important factors affecting the seasonal levels of HPAHs in atmospheric PM10 and PM2.5 In addition, there were significant correlations between concentrations of HPAHs and parent PAHs. Finally, the toxic equivalency quotients (TEQs) of HPAHs were estimated. The TEQs of HPAHs in atmospheric PM10 and PM2.5 samples ranged from 17.6 to 86.2 pg · m(-3) and 14.6 to 70.4 pg · m(-3), respectively. Among individual HPAHs, 7-BrBaA contributed greatly to the total TEQs of HPAHs. Our results indicated that the total TEQs of HPAHs were lower than parent PAHs in atmospheric PM10 and PM2.5 samples in Shenzhen.
Genotoxicity and physicochemical characteristics of traffic-related ambient particulate matter.
de Kok, Theo M; Hogervorst, Janneke G; Briedé, Jacco J; van Herwijnen, Marcel H; Maas, Lou M; Moonen, Edwin J; Driece, Hermen A; Kleinjans, Jos C
2005-08-01
Exposure to ambient particulate matter (PM) has been linked to several adverse health effects. Since vehicular traffic is a PM source of growing importance, we sampled total suspended particulate (TSP), PM(10), and PM(2.5) at six urban locations with pronounced differences in traffic intensity. The mutagenicity, DNA-adduct formation, and induction of oxidative DNA damage by the samples were studied as genotoxicological parameters, in relation to polycyclic aromatic hydrocarbon (PAH) levels, elemental composition, and radical-generating capacity (RGC) as chemical characteristics. We found pronounced differences in the genotoxicity and chemical characteristics of PM from the various locations, although we could not establish a correlation between traffic intensity and any of these characteristics for any of the PM size fractions. Therefore, the differences between locations may be due to local sources of PM, other than traffic. The concentration of total (carcinogenic) PAHs correlated positively with RGC, direct and S9-mediated mutagenicity, as well as the induction of DNA adducts and oxidative DNA damage. The interaction between total PAHs and transition metals correlated positively with DNA-adduct formation, particularly from the PM(2.5) fraction. RGC was not associated with one specific PM size fraction, but mutagenicity and DNA reactivity after metabolic activation were relatively high in PM(10) and PM(2.5), when compared with TSP. We conclude that the toxicological characteristics of urban PM samples show pronounced differences, even when PM concentrations at the sample sites are comparable. This implies that emission reduction strategies that take chemical and toxicological characteristics of PM into account may be useful for reducing the health risks associated with PM exposure. Copyright 2005 Wiley-Liss, Inc.
Using ZIP code-level mortality data, the association of cardiovascular mortality with PM2.5 and PM10-2.5,measured at a central monitoring site, was determined for three populations at different distances from the monitoring site but with similar numbers of d...
Macintyre, Helen L; Heaviside, Clare; Neal, Lucy S; Agnew, Paul; Thornes, John; Vardoulakis, Sotiris
2016-12-01
Exposure to particulate air pollution is known to have negative impacts on human health. Long-term exposure to anthropogenic particulate matter is associated with the equivalent of around 29,000 deaths a year in the UK. However, short-lived air pollution episodes on the order of a few days are also associated with increased daily mortality and emergency hospital admissions for respiratory and cardiovascular conditions. The UK experienced widespread high levels of particulate air pollution in March-April 2014; observations of hourly mean PM 2.5 concentrations reached up to 83μgm -3 at urban background sites. We performed an exposure and health impact assessment of the spring air pollution, focusing on two episodes with the highest concentrations of PM 2.5 (12-14 March and 28 March-3 April 2014). Across these two episodes of elevated air pollution, totalling 10days, around 600 deaths were brought forward from short-term exposure to PM 2.5 , representing 3.9% of total all-cause (excluding external) mortality during these days. Using observed levels of PM 2.5 from other years, we estimate that this is 2.0 to 2.7 times the mortality burden associated with typical urban background levels of PM 2.5 at this time of year. Our results highlight the potential public health impacts and may aid planning for health care resources when such an episode is forecast. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Yangyang; Lamarque, Jean-François
2018-03-01
Particulate matter with the diameter smaller than 2.5 μm (PM2.5) poses health threats to human population. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with Community Earth System Model 1 (CESM1), we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5%-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the primary cause of the increase in the PM2.5 column burden. Regionally over North America and East Asia, a shift of future precipitation toward more frequent heavy events contributes to weakened wet removal fluxes. Our results suggest climate change impact needs to be accounted for to define the future emission standards necessary to meet air quality standard.
Elemental composition of PM 10 and PM 2.5 in urban environment in South Brazil
NASA Astrophysics Data System (ADS)
Braga, C. F.; Teixeira, E. C.; Meira, L.; Wiegand, F.; Yoneama, M. L.; Dias, J. F.
The purpose of the present study is to analyze the elemental composition and the concentrations of PM 10 and PM 2.5 in the Guaíba Hydrographic Basin with HV PM 10 and dichotomous samplers. Three sampling sites were selected: 8° Distrito, CEASA and Charqueadas. The sampling was conducted from October 2001 to December 2002. The mass concentrations of the samplers were evaluated, while the elemental concentrations of Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu and Zn were determined using the Particle-Induced X-ray Emission (PIXE) technique. Factor Analysis and Canonical Correlation Analysis were applied to the chemical and meteorological variables in order to identify the sources of particulate matter. Industrial activities such as steel plants, coal-fired power plants, hospital waste burning, vehicular emissions and soil were identified as the sources of the particulate matter. Concentration levels higher than the daily and the annual average air quality standards (150 and 50 μg m -3, respectively) set by the Brazilian legislation were not observed.
Fine particulate matter air pollution and atherosclerosis: Mechanistic insights.
Bai, Yuntao; Sun, Qinghua
2016-12-01
Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous plaque in the arteries. Its etiology is very complicated and its risk factors primarily include genetic defects, smoking, hyperlipidemia, hypertension, lack of exercise, and infection. Recent studies suggest that fine particulate matter (PM2.5) air pollution may also contribute to the development of atherosclerosis. The present review integrates current experimental evidence with mechanistic pathways whereby PM2.5 exposure can promote the development of atherosclerosis. PM2.5-mediated enhancement of atherosclerosis is likely due to its pro-oxidant and pro-inflammatory effects, involving multiple organs, different cell types, and various molecular mediators. Studies about the effects of PM2.5inhalation on atherosclerosis may yield a better understanding of the link between air pollution and major cardiovascular diseases, and provide useful information for policy makers to determine acceptable levels of PM2.5 air quality. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Copyright © 2016 Elsevier B.V. All rights reserved.
Linares, C; Carmona, R; Tobías, A; Mirón, I J; Díaz, J
2015-05-01
Approximately, 20 % of particulate and aerosol emissions into the urban atmosphere are of natural origin (including wildfires and Saharan dust). During these natural episodes, PM10 and PM2.5 levels usually exceed World Health Organisation (WHO) health protection thresholds. This study sought to evaluate the possible effect of advections of particulate matter from biomass fuel combustion on daily specific-cause mortality among the general population and the segment aged ≥ 75 years in Madrid. Ecological time-series study in the city of Madrid from January 01, 2004 to December 31, 2009. The dependent variable analysed was daily mortality due to natural (ICD-10:A00-R99), circulatory (ICD-10:I00-I99), and respiratory (ICD-10:J00-J99) causes in the population, both general and aged ≥ 75 years. The following independent and control variables were considered: a) daily mean PM2.5 and PM10 concentrations; b) maximum daily temperature; c) daily mean O3 and NO2 concentrations; d) advection of particulate matter from biomass combustion ( http://www.calima.ws/ ), using a dichotomous variable and e) linear trend and seasonalities. We conducted a descriptive analysis, performed a test of means and, to ascertain relative risk, fitted a model using autoregressive Poisson regression and stratifying by days with and without biomass advection, in both populations. Of the 2192 days analysed, biomass advection occurred on 56, with mean PM2.5 and PM10 values registering a significant increase during these days. PM10 had a greater impact on organic mortality with advection (RRall ages = 1.035 [1.011-1.060]; RR ≥ 75 years = 1.066 [1.031-1.103]) than did PM2.5 without advection (RRall ages = 1.017 [1.009-1.025]; RR ≥ 75 years = 1.012 [1.003-1.022]). Among specific causes, respiratory-though not circulatory-causes were associated with PM10 on days with advection in ≥ 75 year age group. PM10, rather than PM2.5, were associated with an increase in natural cause mortality on days with advection of particulate matter from biomass combustion, particularly in the ≥ 75 year age group.
Zhang, Xinyu; Hou, Jie
2017-01-01
Background In October 2013, the International Agency for Research on Cancer classified the particulate matter from outdoor air pollution as a group 1 carcinogen and declared that particulate matter can cause lung cancer. Fine particular matter (PM2.5) pollution is becoming a serious public health concern in urban areas of China. It is essential to emphasize the importance of the public’s awareness and knowledge of modifiable risk factors of lung cancer for prevention. Objective The objective of our study was to explore the public’s awareness of the association of PM2.5 with lung cancer risk in China by analyzing the relationship between the daily PM2.5 concentration and searches for the term “lung cancer” on an Internet big data platform, Baidu. Methods We collected daily PM2.5 concentration data and daily Baidu Index data in 31 Chinese capital cities from January 1, 2014 to December 31, 2016. We used Spearman correlation analysis to explore correlations between the daily Baidu Index for lung cancer searches and the daily average PM2.5 concentration. Granger causality test was used to analyze the causal relationship between the 2 time-series variables. Results In 23 of the 31 cities, the pairwise correlation coefficients (Spearman rho) between the daily Baidu Index for lung cancer searches and the daily average PM2.5 concentration were positive and statistically significant (P<.05). However, the correlation between the daily Baidu Index for lung cancer searches and the daily average PM2.5 concentration was poor (all r2s<.1). Results of Granger causality testing illustrated that there was no unidirectional causality from the daily PM2.5 concentration to the daily Baidu Index for lung cancer searches, which was statistically significant at the 5% level for each city. Conclusions The daily average PM2.5 concentration had a weak positive impact on the daily search interest for lung cancer on the Baidu search engine. Well-designed awareness campaigns are needed to enhance the general public’s awareness of the association of PM2.5 with lung cancer risk, to lead the public to seek more information about PM2.5 and its hazards, and to cope with their environment and its risks appropriately. PMID:28974484
Kim, Yong Ho; Krantz, Q Todd; McGee, John; Kovalcik, Kasey D; Duvall, Rachelle M; Willis, Robert D; Kamal, Ali S; Landis, Matthew S; Norris, Gary A; Gilmour, M Ian
2016-11-01
The Cleveland airshed comprises a complex mixture of industrial source emissions that contribute to periods of non-attainment for fine particulate matter (PM 2.5 ) and are associated with increased adverse health outcomes in the exposed population. Specific PM sources responsible for health effects however are not fully understood. Size-fractionated PM (coarse, fine, and ultrafine) samples were collected using a ChemVol sampler at an urban site (G.T. Craig (GTC)) and rural site (Chippewa Lake (CLM)) from July 2009 to June 2010, and then chemically analyzed. The resulting speciated PM data were apportioned by EPA positive matrix factorization to identify emission sources for each size fraction and location. For comparisons with the ChemVol results, PM samples were also collected with sequential dichotomous and passive samplers, and evaluated for source contributions to each sampling site. The ChemVol results showed that annual average concentrations of PM, elemental carbon, and inorganic elements in the coarse fraction at GTC were ∼2, ∼7, and ∼3 times higher than those at CLM, respectively, while the smaller size fractions at both sites showed similar annual average concentrations. Seasonal variations of secondary aerosols (e.g., high NO 3 - level in winter and high SO 4 2- level in summer) were observed at both sites. Source apportionment results demonstrated that the PM samples at GTC and CLM were enriched with local industrial sources (e.g., steel plant and coal-fired power plant) but their contributions were influenced by meteorological conditions and the emission source's operation conditions. Taken together the year-long PM collection and data analysis provides valuable insights into the characteristics and sources of PM impacting the Cleveland airshed in both the urban center and the rural upwind background locations. These data will be used to classify the PM samples for toxicology studies to determine which PM sources, species, and size fractions are of greatest health concern. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Lijun; Guo, Changyi; Jia, Xiaodong; Xu, Huihui; Pan, Meizhu; Xu, Dong; Shen, Xianbiao; Zhang, Jianghua; Tan, Jianguo; Qian, Hailei; Dong, Chunyang; Shi, Yewen; Zhou, Xiaodan; Wu, Chen
2018-01-01
The aim of this study was to perform an exposure assessment of PM2.5 (particulate matter less than 2.5μm in aerodynamic diameter) among children and to explore the potential sources of exposure from both indoor and outdoor environments. In terms of real-time exposure measurements of PM2.5, we collected data from 57 children aged 8-12 years (9.64 ± 0.93 years) in two schools in Shanghai, China. Simultaneously, questionnaire surveys and time-activity diaries were used to estimate the environment at home and daily time-activity patterns in order to estimate the exposure dose of PM2.5 in these children. Principle component regression analysis was used to explore the influence of potential sources of PM2.5 exposure. All the median personal exposure and microenvironment PM2.5 concentrations greatly exceeded the daily 24-h PM2.5 Ambient Air Quality Standards of China, the USA, and the World Health Organization (WHO). The median Etotal (the sum of the PM2.5 exposure levels in different microenvironment and fractional time) of all students was 3014.13 (μg.h)/m3. The concentration of time-weighted average (TWA) exposure of all students was 137.01 μg/m3. The median TWA exposure level during the on-campus period (135.81 μg/m3) was significantly higher than the off-campus period (115.50 μg/m3, P = 0.013 < 0.05). Besides ambient air pollution and meteorological conditions, storey height of the classroom and mode of transportation to school were significantly correlated with children's daily PM2.5 exposure. Children in the two selected schools were exposed to high concentrations of PM2.5 in winter of 2013 in Shanghai. Their personal PM2.5 exposure was mainly associated with ambient air conditions, storey height of the classroom, and children's transportation mode to school.
Suspended particulate matter in railway coaches
NASA Astrophysics Data System (ADS)
Leutwyler, M.; Siegmann, K.; Monn, Ch
Measurements of particles <10 μm (PM 10) and particle-bound polycyclic aromatic hydrocarbons (pPAH) were performed in different passenger train coaches between Zürich and Berne, the most busy intercity connection in Switzerland. All trains are electrified and the indoor air quality is regulated by a mechanical ventilation system. In the smoker sections, pPAH levels were on average about 250 ng m -3, PM 10 levels about 950 μg m -3. In the non-smoker section, pPAH levels were about 45 ng m -3 and PM 10 levels about 210 μg m -3. Our observations suggest that smoking is the most important source of pPAH and PM 10. The spatial variation within the coaches indicates that pPAHs spread out from the smoker compartments into the non-smoker compartments. For PM 10, resuspended material may also be a source of airborne PM 10 but the contribution within this non-stop connection with most of the passengers being seated all the time was probably small. The influence of outdoor PM 10 and pPAH on indoor levels was negligible. Both pollutants, pPAH and PM 10 were largely elevated in the smoker as well as in the non-smoker compartments. Despite this fact, a questionnaire on the quality of travelling showed that most of the passengers felt well and only a small proportion felt uneasy.
40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.1489 Section 52.1489 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the...
40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.1489 Section 52.1489 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the...
Source apportionment of PM2.5 across China using LOTOS-EUROS
NASA Astrophysics Data System (ADS)
Timmermans, R.; Kranenburg, R.; Manders, A.; Hendriks, C.; Segers, A.; Dammers, E.; Zhang, Q.; Wang, L.; Liu, Z.; Zeng, L.; Denier van der Gon, H.; Schaap, M.
2017-09-01
China's population is exposed to high levels of particulate matter (PM) due to its strong economic growth and associated urbanization and industrialization. To support policy makers to develop cost effective mitigation strategies it is of crucial importance to understand the emission sources as well as formation routes responsible for high pollution levels. In this study we applied the LOTOS-EUROS model with its module to track the contributions of predefined source sectors to China for the year 2013 using the MEIC emission inventory. It is the first application of the model system to a region outside Europe. The source attribution was aimed to provide insight in the sector and area of origin of PM2.5 for the cities of Beijing and Shanghai. The source attribution shows that on average about half of the PM2.5 pollution in both cities originates from the municipality itself. About a quarter of the PM2.5 comes from the neighbouring provinces, whereas the remaining quarter is attributed to long range transport from anthropogenic and natural components. Residential combustion, transport, and industry are identified as the main sources with comparable contributions allocated to these sectors. The importance of the sectors varies throughout the year and differs slightly between the cities. During winter, urban contributions from residential combustion are dominant, whereas industrial and traffic contributions with a larger share of regional transport are more important during summer. The evaluation of the model results against satellite and in-situ observations shows the ability of the LOTOS-EUROS model to capture many features of the variability in particulate matter and its precursors in China. The model shows a systematic underestimation of particulate matter concentrations, especially in winter. This illustrates that modelling particulate matter remains challenging as it comes to components like secondary organic aerosol and suspended dust as well as emissions and formation of PM during winter time haze situations. All in all, the LOTOS-EUROS system proves to be a powerful tool for policy support applications outside Europe as the intermediate complexity of the model allows the assessment of the area and sector of origin over decadal time periods.
Zhang, Zhi-Dan; Xi, Ben-Ye; Cao, Zhi-Guo; Jia, Li-Ming
2014-08-01
Taking Populus tomentosa as an example, a methodology called elution-weighing-particle size-analysis (EWPA) was proposed to evaluate quantitatively the ability of retaining fine particulate matter (PM2.5, diameter d ≤ 2.5 μm) and atmospheric particulate matter by plant leaves using laser particle size analyzer and balance. This method achieved a direct, accurate measurement with superior operability about the quality and particle size distribution of atmospheric particulate matter retained by plant leaves. First, a pre-experiment was taken to test the stability of the method. After cleaning, centrifugation and drying, the particulate matter was collected and weighed, and then its particle size distribution was analyzed by laser particle size analyzer. Finally, the mass of particulate matter retained by unit area of leaf and stand was translated from the leaf area and leaf area index. This method was applied to a P. tomentosa stand which had not experienced rain for 27 days in Beijing Olympic Forest Park. The results showed that the average particle size of the atmospheric particulate matter retained by P. tomentosa was 17.8 μm, and the volume percentages of the retained PM2.5, inhalable particulate matter (PM10, d ≤ 10 μm) and total suspended particle (TSP, d ≤ 100 μm) were 13.7%, 47.2%, and 99.9%, respectively. The masses of PM2.5, PM10, TSP and total particulate matter were 8.88 x 10(-6), 30.6 x 10(-6), 64.7 x 10(-6) and 64.8 x 10(-6) g x cm(-2) respectively. The retention quantities of PM2.5, PM10, TSP and total particulate matter by the P. tomentosa stand were 0.963, 3.32, 7.01 and 7.02 kg x hm(-2), respectively.
Spatio-temporal variability of particulate matter in the key part of Gansu Province, Western China.
Guan, Qingyu; Cai, Ao; Wang, Feifei; Yang, Liqin; Xu, Chuanqi; Liu, Zeyu
2017-11-01
To investigate the spatial and temporal behaviors of particulate matter in Lanzhou, Jinchang and Jiayuguan during 2014, the hourly concentrations of PM2.5 and PM10 were collected from the Ministry of Environmental Protection (MEP) in this study. The analysis indicated that the mean annual PM10 (PM2.5) concentrations during 2014 were 115 ± 52 μg/m 3 (57 ± 28 μg/m 3 ), 104 ± 75 μg/m 3 (38 ± 22 μg/m 3 ) and 114 ± 72 μg/m 3 (32 ± 17 μg/m 3 ) in Lanzhou, Jinchang and Jiayuguan, respectively, all of which exceeded the Chinese national ambient air quality II standards for PM. Higher values for both PM fractions were generally observed in spring and winter, and lower concentrations were found in summer and autumn. Besides, the trend of seasonal variation of particulate matter (PM) in each city monitoring site is consistent with the average of the corresponding cities. Anthropogenic activities along with the boundary layer height and wind scale contributed to diurnal variations in PM that varied bimodally (Lanzhou and Jinchang) or unimodally (Jiayuguan). With the arrival of dust events, the PM10 concentrations changed dramatically, and the PM10 concentrations during dust storm events were, respectively, 19, 43 and 17 times higher than the levels before dust events in Lanzhou, Jinchang and Jiayuguan. The ratios (PM2.5/PM10) were lowest, while the correlations were highest, indicating that dust events contributed more coarse than fine particles, and the sources of PM are similar during dust storms. The relationships between local meteorological parameters and PM concentrations suggest a clear association between the highest PM concentrations, with T ≤ 7 °C, and strong winds (3-4 scale). However, the effect of relative humidity is complicated, with more PM10 and PM2.5 exceedances being registered with a relative humidity of less than 40% and 40-60% in Lanzhou, while higher exceedances in Jinchang appeared at a relative humidity of 80-100%. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hsu, Der-Jen; Huang, Hsiao-Lin
2009-12-01
Although airborne pollutants in urban buses have been studied in many cities globally, long-distance buses running mainly on highways have not been addressed in this regard. This study investigates the levels of volatile organic compounds (VOCs), carbon monoxide (CO), carbon dioxide (CO 2) and particulate matter (PM) in the long-distance buses in Taiwan. Analytical results indicate that pollutants levels in long-distance buses are generally lower than those in urban buses. This finding is attributable to the driving speed and patterns of long-distance buses, as well as the meteorological and geographical features of the highway surroundings. The levels of benzene, toluene, ethylbenzene and xylene (BTEX) found in bus cabins exceed the proposed indoor VOC guidelines for aromatic compounds, and are likely attributable to the interior trim in the cabins. The overall average CO level is 2.3 ppm, with higher average level on local streets (2.9 ppm) than on highways (2.2 ppm). The average CO 2 level is 1493 ppm, which is higher than the guideline for non-industrial occupied settings. The average PM level in this study is lower than those in urban buses and IAQ guidelines set by Taiwan EPA. However, the average PM 10 and PM 2.5 is higher than the level set by WHO. Besides the probable causes mentioned above, fewer passenger movements and less particle re-suspension from bus floor might also cause the lower PM levels. Measurements of particle size distribution reveal that more than 75% of particles are in submicron and smaller sizes. These particles may come from the infiltration from the outdoor air. This study concludes that air exchange rates in long-distance buses should be increased in order to reduce CO 2 levels. Future research on long-distance buses should focus on the emission of VOCs from brand new buses, and the sources of submicron particles in bus cabins.
Allen, Katryn; Yang, Hui-yu; Nan, Bin; Morishita, Masako; Mukherjee, Bhramar; Dvonch, J. Timothy; Spino, Catherine; Fink, Gregory D.; Rajagopalan, Sanjay; Sun, Qinghua; Brook, Robert D.; Harkema, Jack R.
2013-01-01
Background: High ambient levels of ozone (O3) and fine particulate matter (PM2.5) are associated with cardiovascular morbidity and mortality, especially in people with preexisting cardiopulmonary diseases. Enhanced susceptibility to the toxicity of air pollutants may include individuals with metabolic syndrome (MetS). Objective: We tested the hypothesis that cardiovascular responses to O3 and PM2.5 will be enhanced in rats with diet-induced MetS. Methods: Male Sprague-Dawley rats were fed a high-fructose diet (HFrD) to induce MetS and then exposed to O3, concentrated ambient PM2.5, or the combination of O3 plus PM2.5 for 9 days. Data related to heart rate (HR), HR variability (HRV), and blood pressure (BP) were collected. Results: Consistent with MetS, HFrD rats were hypertensive and insulin resistant, and had elevated fasting levels of blood glucose and triglycerides. Decreases in HR and BP, which were found in all exposure groups, were greater and more persistent in HFrD rats compared with those fed a normal diet (ND). Coexposure to O3 plus PM2.5 induced acute drops in HR and BP in all rats, but only ND rats adapted after 2 days. HFrD rats had little exposure-related changes in HRV, whereas ND rats had increased HRV during O3 exposure, modest decreases with PM2.5, and dramatic decreases during O3 plus PM2.5 coexposures. Conclusions: Cardiovascular depression in O3- and PM2.5-exposed rats was enhanced and prolonged in rats with HFrD-induced MetS. These results in rodents suggest that people with MetS may be prone to similar exaggerated BP and HR responses to inhaled air pollutants. Citation: Wagner JG, Allen K, Yang HY, Nan B, Morishita M, Mukherjee B, Dvonch JT, Spino C, Fink GD, Rajagopalan S, Sun Q, Brook RD, Harkema JR. 2014. Cardiovascular depression in rats exposed to inhaled particulate matter and ozone: effects of diet-induced metabolic syndrome. Environ Health Perspect 122:27–33; http://dx.doi.org/10.1289/ehp.1307085 PMID:24169565
Contribution of forest fires to concentrations of particulate matter in Singapore
NASA Astrophysics Data System (ADS)
Spracklen, D. V.; Reddington, C.; Yoshioka, M.; Arnold, S.; Balasubramanian, R.
2013-12-01
Singapore is regularly exposed to substantial levels of transboundary air pollution arising from uncontrolled forest and peat fires from specific regions within Southeast Asia. This air pollution has detrimental impacts on the lives of Singapore residents and on sensitive ecosystems. In June 2013, forest fires resulted in concentrations of particulate matter greatly exceeding levels recommended for human health, causing substantial public concern. We apply two different methods to quantify the impact of forest fires on the concentrations of particulate matter with diameter less than 2.5 micrometres (PM2.5) in Singapore. Firstly, we use a global aerosol model (GLOMAP) in combination with fire emissions from GFED3 to simulate PM2.5 concentrations over the period 1998-2009. We evaluate simulated PM2.5 concentrations against long-term observations from Singapore. To identify the contributions of fires from different source regions to PM2.5 concentrations we run multiple simulations with and without fire emissions from specific regions across Southeast Asia. Secondly, we apply an atmospheric back trajectory model in combination with the GFED3 fire emissions to calculate exposure of air masses arriving in Singapore to fire emissions. Both methods use meteorology from the European Centre for Medium Range Weather Forecasts and are consistent with the large-scale atmospheric flow from the assimilated observations. We find that both methods give consistent results, with forest fires increasing PM2.5 concentrations in Singapore predominately during April to October. Forest and peat fires in Sumatra and Kalimantan cause the greatest degradation of air quality in Singapore. The contribution of fires to PM2.5 concentrations in Singapore exhibits strong interannual variability. During years with a strong contribution from fires, our simulations show that the prevention of fires in southern Sumatra would reduce regional PM2.5 concentrations around Singapore by more than a factor of two, potentially allowing Singapore to meet World Health Organisation guidelines for annual mean concentrations of PM2.5. Acting to reduce forest and peat fires in southern Sumatra, in particular provinces of Lampung, South Sumatra and Jambi, and southern Kalimantan would likely have the greatest environmental benefits to Singapore and surrounding regions.
Wang, Rong; Xiao, Xue; Shen, Zhenxing; Cao, Lei; Cao, Yongxiao
2017-02-01
Regarding the human health effects, airborne fine particulate matter 2.5 (PM 2.5 ) is an important environmental risk factor. However, the underlying molecular mechanisms are largely unknown. The present study examined the hypothesis that PM 2.5 causes bronchial hyperreactivity by upregulated muscarinic receptors via the mitogen-activated protein kinase (MAPK) pathway. The isolated rat bronchi segments were cultured with different concentration of PM 2.5 for different time. The contractile response of the bronchi segments were recorded by a sensitive myograph. The mRNA and protein expression levels of M 3 muscarinic receptors were studied by quantitative real-time PCR and immunohistochemistry, respectively. The muscarinic receptors agonist, carbachol induced a remarkable contractile response on fresh and DMSO cultured bronchial segments. Compared with the fresh or DMSO culture groups, 1.0 µg/mL of PM 2.5 cultured for 24 h significantly enhanced muscarinic receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction. In addition, the expression levels of mRNA and protein for M 3 muscarinic receptors in bronchi of PM 2.5 group were higher than that of fresh or DMSO culture groups. SB203580 (p38 inhibitor) and U0126 (MEK1/2 inhibitor) significantly inhibited the PM 2.5 -induced enhanced contraction and increased mRNA and protein expression of muscarinic receptors. However, JNK inhibitor SP600125 had no effect on PM 2.5 -induced muscarinic receptor upregulation and bronchial hyperreactivity. In conclusion, airborne PM 2.5 upregulates muscarinic receptors, which causes subsequently bronchial hyperreactivity shown as enhanced contractility in bronchi. This process may be mediated by p38 and MEK1/2 MAPK pathways. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 371-381, 2017. © 2016 Wiley Periodicals, Inc.
Mahapatra, Parth Sarathi; Jain, Sumeet; Shrestha, Sujan; Senapati, Shantibhusan; Puppala, Siva Praveen
2018-03-15
Endotoxin associated with ambient PM (particulate matter) has been linked to adverse respiratory symptoms, but there have been few studies of ambient endotoxin and its association with co-pollutants and inflammation. Our aim was to measure endotoxin associated with ambient PM 10 (particulate matter with aerodynamic diameter<10μm) in summer 2016 at four locations in Chitwan, Nepal, and investigate its association with meteorology, co-pollutants, and inflammatory activity. PM 10 concentrations were recorded and filter paper samples were collected using E-samplers; PM 1, PM 2.5 , black carbon (BC), methane (CH 4 ), and carbon monoxide (CO) were also measured. The Limulus amebocyte lysate (LAL) assay was used for endotoxin quantification and the nuclear factor kappa B (NFκB) activation assay to assess inflammatory activity. The mean concentration of PM 10 at the different locations ranged from 136 to 189μg/m 3 , and of endotoxin from 0.29 to 0.53EU/m 3 . Pollutant presence was positively correlated with endotoxin. Apart from relative humidity, meteorological variations had no significant impact on endotoxin concentration. NF-κB activity was negatively correlated with endotoxin concentration. To the best of our knowledge, this study provides the first measurements of ambient endotoxin associated with PM 10 in Nepal. Endotoxin and co-pollutants were positively associated indicating a similar source. Endotoxin was negatively correlated with inflammatory activity as a result of a time-limited forest fire event during the sampling period. Studies of co-pollutants suggested that the higher levels of endotoxin related to biomass burning were accompanied by increased levels of anti-inflammatory agents, which suppressed the endotoxin inflammatory effect. Copyright © 2017. Published by Elsevier B.V.
Zhang, Jingjing; Fulgar, Ciara C; Mar, Tiffany; Young, Dominique E; Zhang, Qi; Bein, Keith J; Cui, Liangliang; Castañeda, Alejandro; Vogel, Christoph F A; Sun, Xiaolin; Li, Wei; Smiley-Jewell, Suzette; Zhang, Zunzhen; Pinkerton, Kent E
2018-05-28
Asthma is a global and increasingly prevalent disease. According to the World Health Organization, approximately 235 million people suffer from asthma. Studies suggest that fine particulate matter (PM2.5) can induce innate immune responses, promote allergic sensitization, and exacerbate asthmatic symptoms and airway hyper-responsiveness. Recently, severe asthma and allergic sensitization have been associated with T-helper cell type 17 (TH17) activation. Few studies have investigated the links between PM2.5 exposure, allergic sensitization, asthma, and TH17 activation. This study aimed to determine whether 1) low-dose extracts of PM2.5 from California (PMCA) or China (PMCH) enhance allergic sensitization in mice following exposure to house dust mite (HDM) allergen; 2) eosinophilic or neutrophilic inflammatory responses result from PM and HDM exposure; and 3) TH17-associated cytokines are increased in the lung following exposure to PM and/or HDM.Ten-week old male BALB/c mice (n = 6-10/group) were intranasally instilled with phosphate-buffered saline (PBS), PM+PBS, HDM, or PM+HDM, on Days 1, 3, and 5 (sensitization experiments), and PBS or HDM on Days 12-14 (challenge experiments). Pulmonary function, bronchoalveolar lavage cell differentials, plasma immunoglobulin (Ig) protein levels, and lung tissue pathology, cyto-/chemo-kine proteins, and gene expression were assessed on Day 15.Results indicated low-dose PM2.5 extracts can enhance allergic sensitization and TH17-associated responses. While PMCA+HDM significantly decreased pulmonary function, and significantly increased neutrophils, Igs, and TH17-related protein and gene levels compared to HDM, there were no significant differences between HDM and PMCH+HDM treatments. This may result from greater copper and oxidized organic content in PMCA versus PMCH.
Haikerwal, Anjali; Akram, Muhammad; Sim, Malcolm R; Meyer, Mick; Abramson, Michael J; Dennekamp, Martine
2016-01-01
The 2006-2007 wildfire period was one of the most extensive and long lasting fires in Australian history with high levels of fine particulate matter (PM2.5 ). Large populations were exposed to smoke for over 2 months. The study aimed to investigate the association between wildfire-related PM2.5 exposure and emergency department (ED) visits for asthma. A time-stratified case-crossover design was used to investigate associations between daily average PM2.5 and ED attendances for asthma from December 2006 to January 2007. ED data were obtained from the Victorian Emergency Minimum Dataset. Smoke dispersion during the wildfire event was modelled using a validated chemical transport model. Exposure data (daily average PM2.5 , temperature and relative humidity) were modelled for the study period. Various lag periods were investigated. There were 2047 ED attendances for asthma during the study period. After adjusting for temperature and relative humidity, an interquartile range increase in PM2.5 levels of 8.6 μg/m(3) was associated with an increase in ED attendances for asthma by 1.96% (95%CI: 0.02, 3.94) on the day of exposure. Lag periods up to 2 days prior did not show any association. A strong association was observed among women 20 years and older (5.08% 95%CI: 1.76, 8.51). Wildfire-related PM2.5 was associated with increased risk of ED attendance for asthma during the wildfire event. It is important to understand the role of wildfire PM2.5 as a trigger for asthma presentations. © 2015 Asian Pacific Society of Respirology.
Health Impacts and Economic Costs of Air Pollution in the Metropolitan Area of Skopje.
Martinez, Gerardo Sanchez; Spadaro, Joseph V; Chapizanis, Dimitris; Kendrovski, Vladimir; Kochubovski, Mihail; Mudu, Pierpaolo
2018-03-29
Urban outdoor air pollution, especially particulate matter, remains a major environmental health problem in Skopje, the capital of the former Yugoslav Republic of Macedonia. Despite the documented high levels of pollution in the city, the published evidence on its health impacts is as yet scarce. we obtained, cleaned, and validated Particulate Matter (PM) concentration data from five air quality monitoring stations in the Skopje metropolitan area, applied relevant concentration-response functions, and evaluated health impacts against two theoretical policy scenarios. We then calculated the burden of disease attributable to PM and calculated the societal cost due to attributable mortality. In 2012, long-term exposure to PM 2.5 (49.2 μg/m³) caused an estimated 1199 premature deaths (CI95% 821-1519). The social cost of the predicted premature mortality in 2012 due to air pollution was estimated at between 570 and 1470 million euros. Moreover, PM 2.5 was also estimated to be responsible for 547 hospital admissions (CI95% 104-977) from cardiovascular diseases, and 937 admissions (CI95% 937-1869) for respiratory disease that year. Reducing PM 2.5 levels to the EU limit (25 μg/m³) could have averted an estimated 45% of PM-attributable mortality, while achieving the WHO Air Quality Guidelines (10 μg/m³) could have averted an estimated 77% of PM-attributable mortality. Both scenarios would also attain significant reductions in attributable respiratory and cardiovascular hospital admissions. Besides its health impacts in terms of increased premature mortality and hospitalizations, air pollution entails significant economic costs to the population of Skopje. Reductions in PM 2.5 concentrations could provide substantial health and economic gains to the city.
The distribution of particulate matter (PM) concentrations has an impact on human health effects and the setting of PM regulations. Since PM is commonly sampled on less than daily schedules, the magnitude of sampling errors needs to be determined. Daily PM data from Spokane, W...
Assessment of inter-city transport of particulate matter in the Beijing-Tianjin-Hebei region
NASA Astrophysics Data System (ADS)
Chang, Xing; Wang, Shuxiao; Zhao, Bin; Cai, Siyi; Hao, Jiming
2018-04-01
The regional transport of particulate matter with diameter less than 2.5 µm (PM2.5) plays an important role in the air pollution of the Beijing-Tianjin-Hebei (BTH) region in China. However, previous studies on regional transport of PM2.5 mainly aim at province level, which is insufficient for the development of an optimal joint PM2.5 control strategy. In this study, we calculate PM2.5 inflows and outflows through the administrative boundaries of three major cities in the BTH region, i.e., Beijing, Tianjin and Shijiazhuang, using the WRF (Weather Research and Forecasting model)-CMAQ (Community Multiscale Air Quality) modeling system. The monthly average inflow fluxes indicate the major directions of PM2.5 transport. For Beijing, the PM2.5 inflow fluxes from Zhangjiakou (in the northwest) and Baoding (in the southwest) constitute 57 % of the total in winter, and Langfang (in the southeast) and Baoding constitute 73 % in summer. Based on the net PM2.5 fluxes and their vertical distributions, we find there are three major transport pathways in the BTH region: the northwest-southeast pathway in winter (at all levels below 1000 m), the northwest-southeast pathway in summer (at all levels below 1000 m), and the southwest-northeast pathway in both winter and in summer (mainly at 300-1000 m). In winter, even if surface wind speeds are low, the transport at above 300 m can still be strong. Among the three pathways, the southwest-northeast happens along with PM2.5 concentrations 30 and 55 % higher than the monthly average in winter and summer, respectively. Analysis of two heavy pollution episodes in January and July in Beijing show a much (8-16 times) stronger transport than the monthly average, emphasizing the joint air pollution control of the cities located on the transport pathways, especially during heavy pollution episodes.
Leong, Y J; Sanchez, N P; Wallace, H W; Karakurt Cevik, B; Hernandez, C S; Han, Y; Flynn, J H; Massoli, P; Floerchinger, C; Fortner, E C; Herndon, S; Bean, J K; Hildebrandt Ruiz, L; Jeon, W; Choi, Y; Lefer, B; Griffin, R J
2017-08-01
The sources of submicrometer particulate matter (PM 1 ) remain poorly characterized in the industrialized city of Houston, TX. A mobile sampling approach was used to characterize PM 1 composition and concentration across Houston based on high-time-resolution measurements of nonrefractory PM 1 and trace gases during the DISCOVER-AQ Texas 2013 campaign. Two pollution zones with marked differences in PM 1 levels, character, and dynamics were established based on cluster analysis of organic aerosol mass loadings sampled at 16 sites. The highest PM 1 mass concentrations (average 11.6 ± 5.7 µg/m 3 ) were observed to the northwest of Houston (zone 1), dominated by secondary organic aerosol (SOA) mass likely driven by nighttime biogenic organonitrate formation. Zone 2, an industrial/urban area south/east of Houston, exhibited lower concentrations of PM 1 (average 4.4 ± 3.3 µg/m 3 ), significant organic aerosol (OA) aging, and evidence of primary sulfate emissions. Diurnal patterns and backward-trajectory analyses enable the classification of airmass clusters characterized by distinct PM sources: biogenic SOA, photochemical aged SOA, and primary sulfate emissions from the Houston Ship Channel. Principal component analysis (PCA) indicates that secondary biogenic organonitrates primarily related with monoterpenes are predominant in zone 1 (accounting for 34% of the variability in the data set). The relevance of photochemical processes and industrial and traffic emission sources in zone 2 also is highlighted by PCA, which identifies three factors related with these processes/sources (~50% of the aerosol/trace gas concentration variability). PCA reveals a relatively minor contribution of isoprene to SOA formation in zone 1 and the absence of isoprene-derived aerosol in zone 2. The relevance of industrial amine emissions and the likely contribution of chloride-displaced sea salt aerosol to the observed variability in pollution levels in zone 2 also are captured by PCA. This article describes an urban-scale mobile study to characterize spatial variations in submicrometer particulate matter (PM 1 ) in greater Houston. The data set indicates substantial spatial variations in PM 1 sources/chemistry and elucidates the importance of photochemistry and nighttime oxidant chemistry in producing secondary PM 1 . These results emphasize the potential benefits of effective control strategies throughout the region, not only to reduce primary emissions of PM 1 from automobiles and industry but also to reduce the emissions of important secondary PM 1 precursors, including sulfur oxides, nitrogen oxides, ammonia, and volatile organic compounds. Such efforts also could aid in efforts to reduce mixing ratios of ozone.
Background: Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure–response relationships remain unclear. Object...
NASA Astrophysics Data System (ADS)
Strandgren, J.; Mei, L.; Vountas, M.; Burrows, J. P.; Lyapustin, A.; Wang, Y.
2014-10-01
The Aerosol Optical Depth (AOD) spatial resolution effect is investigated for the linear correlation between satellite retrieved AOD and ground level particulate matter concentrations (PM2.5). The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) for obtaining AOD with a high spatial resolution of 1 km and provides a good dataset for the study of the AOD spatial resolution effect on the particulate matter concentration prediction. 946 Environmental Protection Agency (EPA) ground monitoring stations across the contiguous US have been used to investigate the linear correlation between AOD and PM2.5 using AOD at different spatial resolutions (1, 3 and 10 km) and for different spatial scales (urban scale, meso-scale and continental scale). The main conclusions are: (1) for both urban, meso- and continental scale the correlation between PM2.5 and AOD increased significantly with increasing spatial resolution of the AOD, (2) the correlation between AOD and PM2.5 decreased significantly as the scale of study region increased for the eastern part of the US while vice versa for the western part of the US, (3) the correlation between PM2.5 and AOD is much more stable and better over the eastern part of the US compared to western part due to the surface characteristics and atmospheric conditions like the fine mode fraction.
NASA Astrophysics Data System (ADS)
Cusack, M.; Alastuey, A.; Pérez, N.; Pey, J.; Querol, X.
2012-09-01
The time variability and long term trends of PM2.5 (particulate matter of diameter < 2.5 μm) at various regional background (RB) sites across Europe are studied and interpreted in this work. Data on mean annual levels of PM2.5 measured at Montseny (MSY, North East Spain) and various RB sites in Spain and Europe are evaluated and compared, and subsequently analysed for statistically significant trends. The MSY site registered higher average PM2.5 levels than those measured at a selection of other RB sites across Spain, Portugal, Germany and Scandinavia by percentage compared to the mean of all the stations in these countries, but lower than those measured in Switzerland, Italy and Austria. Reductions in PM2.5 were observed across all stations in Spain and Europe to varying degrees (7-49%). MSY underwent a statistically significant reduction since measurements began, indicating a year-on-year gradual decrease (-3.7 μg m-3, calculated from the final year of data compared to the mean). Similar trends were observed in other RB sites across Spain (-1.9 μg m-3). Reductions recorded in PM2.5 across Europe were varied, with many experiencing gradual, year-on-year decreases (-1.8 μg m-3). These reductions have been attributed to various causes: the introduction and implementation of pollution abatement strategies in EU member states, the effect of the current economic crisis on emissions of PM2.5 and the influence of meteorology observed during the winters of 2009 and 2010. In addition, the North Atlantic Oscillation (NAO), a large scale meteorological phenomenon most prevalent during winter, was observed to influence the frequency of Saharan dust intrusions across the Iberian Peninsula. Chemical composition of PM2.5 at MSY is characterised by high levels of organic matter (OM) and sulphate, followed by crustal material, nitrate and ammonia. Sea Spray and elemental carbon (EC) comprised a minor part of the total PM2.5 mass. Statistical trend analysis was performed on the various chemical components of PM2.5 recorded at MSY to determine which components were accountable for the decrease in PM2.5 concentration. It is shown that OM underwent the largest decrease over the time period with a statistically significant trend (-1.3 μg m-3 compared to the mean), followed by sulphate (-0.8 μg m-3), ammonium (-0.5 μg m-3) and nitrate (-0.4 μg m-3). Conversely, sea spray, EC and crustal material reductions were found to be negligible.
Kravitz-Wirtz, Nicole; Crowder, Kyle; Hajat, Anjum; Sass, Victoria
2016-01-01
Research examining racial/ethnic disparities in pollution exposure often relies on cross-sectional data. These analyses are largely insensitive to exposure trends and rarely account for broader contextual dynamics. To provide a more comprehensive assessment of racial-environmental inequality over time, we combine the 1990 to 2009 waves of the Panel Study of Income Dynamics (PSID) with spatially- and temporally-resolved measures of nitrogen dioxide (NO 2 ) and particulate matter (PM 2.5 and PM 10 ) in respondents' neighborhoods, as well as census data on the characteristics of respondents' metropolitan areas. Results based on multilevel repeated measures models indicate that Blacks and Latinos are, on average, more likely to be exposed to higher levels of NO 2 , PM 2.5 , and PM 10 than Whites. Despite nationwide declines in levels of pollution over time, racial and ethnic disparities persist and cannot be fully explained by individual-, household-, or metropolitan-level factors.
The effect of sand storms on acute asthma in Riyadh, Saudi Arabia.
Alangari, Abdullah A; Riaz, Muhammad; Mahjoub, Mohamed Osman; Malhis, Nidal; Al-Tamimi, Saleh; Al-Modaihsh, Abdullah
2015-01-01
Major sand storms are frequent in the Middle East. This study aims to investigate the role of air particulate matter (PM) level in acute asthma in children in Riyadh, Saudi Arabia. An aerosol spectrometer was used to evaluate PM < 10μm in diameter (PM10) and PM < 2.5 μm in diameter (PM2.5) concentrations in the air every 30 minutes throughout February and March 2012 in Riyadh. Data on children 2-12 years of age presenting to the emergency department of a major children's hospital with acute asthma during the same period were collected including their acute asthma severity score. The median with interquartile range (IQR) levels of PM10 and PM2.5 were 454 μg/m(3) (309,864) and 108 μg/m(3) (72,192) respectively. There was no correlation between the average daily PM10 levels and the average number of children presenting with acute asthma per day (r = -0.14, P = 0.45), their daily asthma score (r = 0.014, P = 0.94), or admission rate ( r= -0.08, P = 0.65). This was also true for average daily PM2.5 levels. In addition, there was no difference in these variables between days with PM10 >1000 μg/m(3), representing major sand storms, plus the following 5 days and other days with PM10< 1000 μg/m(3). Sand storms, even major ones, had no significant impact on acute asthma exacerbations in children in Riyadh, Saudi Arabia. The very high levels of PM, however, deserve further studying especially of their long-term effects.
Emissions of particulate matter from animal houses in the Netherlands
NASA Astrophysics Data System (ADS)
Winkel, Albert; Mosquera, Julio; Groot Koerkamp, Peter W. G.; Ogink, Nico W. M.; Aarnink, André J. A.
2015-06-01
In the Netherlands, emissions from animal houses represent a major source of ambient particulate matter (PM). The objective of the present paper was to provide accurate and up to date concentrations and emission rates of PM10 and PM2.5 for commonly used animal housing systems, under representative inside and outside climate conditions and ventilation rates. We set up a national survey which covered 13 housing systems for poultry, pigs, and dairy cattle, and included 36 farms. In total, 202 24-h measurements were carried out, which included concentrations of inhalable PM, PM10, PM2.5, and CO2, ventilation rate, temperature, and relative humidity. On an animal basis, geometric mean emission rates of PM10 ranged from 2.2 to 12.0 mg h-1 in poultry and from 7.3 to 22.5 mg h-1 in pigs. The mean PM10 emission rate in dairy cattle was 8.5 mg h-1. Geometric mean emission rates of PM2.5 ranged from 0.11 to 2.41 mg h-1 in poultry and from 0.21 to 1.56 mg h-1 in pigs. The mean PM2.5 emission rate in dairy cattle was 1.65 mg h-1. Emissions are also reported per Livestock Unit and Heat Production Unit. PM emission rates increased exponentially with increasing age in broilers and turkeys and increased linearly with increasing age in weaners and fatteners. In laying hens, broiler breeders, sows, and dairy cattle, emission levels were variable throughout the year.
Development of intelligent monitoring purifier for indoor PM 2.5
NASA Astrophysics Data System (ADS)
Lou, Guanting; Zhu, Rong; Guo, Jiangwei; Wei, Yongqing
2018-03-01
The particulate matter 2.5 (PM2.5) refers to tiny particles or droplets in the air that are two and one half microns or less in width. PM2.5 is an air pollutant that is a concern for people’s health when levels in air are high. The intelligent monitoring purifier was developed to detect indoor PM2.5 concentration before and after purification and the monitoring data could be displayed on the LCD screen, displaying different color patterns according to the concentrations. Through the Bluetooth transport module, real-time values could also display on the mobile phone and voice broadcast PM2.5 concentration level in the air. When PM2.5 concentration is higher than the setting threshold, the convection fan rotation and the speed can be remote controlled with mobile phone through the Bluetooth transport. Therefore, the efficiency and scope of the purification could be enhanced and further better air quality could be achieved.
Identification of the sources of PM10 in a subway tunnel using positive matrix factorization.
Park, Duckshin; Lee, Taejeong; Hwang, Doyeon; Jung, Wonseok; Lee, Yongil; Cho, KiChul; Kim, Dongsool; Lees, Kiyoung
2014-12-01
The level of particulate matter of less than 10 μm diameter (PM10) at subway platforms can be significantly reduced by installing a platform screen-door system. However, both workers and passengers might be exposed to higher PM10 levels while the cars are within the tunnel because it is a more confined environment. This study determined the PM10 levels in a subway tunnel, and identified the sources of PM10 using elemental analysis and receptor modeling. Forty-four PM10 samples were collected in the tunnel between the Gireum and Mia stations on Line 4 in metropolitan Seoul and analyzed using inductively coupled plasma-atomic emission spectrometry and ion chromatography. The major PM10 sources were identified using positive matrix factorization (PMF). The average PM10 concentration in the tunnels was 200.8 ± 22.0 μg/m3. Elemental analysis indicated that the PM10 consisted of 40.4% inorganic species, 9.1% anions, 4.9% cations, and 45.6% other materials. Iron was the most abundant element, with an average concentration of 72.5 ± 10.4 μg/m3. The PM10 sources characterized by PMF included rail, wheel, and brake wear (59.6%), soil combustion (17.0%), secondary aerosols (10.0%), electric cable wear (8.1%), and soil and road dust (5.4%). Internal sources comprising rail, wheel, brake, and electric cable wear made the greatest contribution to the PM10 (67.7%) in tunnel air. Implications: With installation of a platform screen door, PM10 levels in subway tunnels were higher than those on platforms. Tunnel PM10 levels exceeded 150 µg/m3 of the Korean standard for subway platform. Elemental analysis of PM10 in a tunnel showed that Fe was the most abundant element. Five PM10 sources in tunnel were identified by positive matrix factorization. Railroad-related sources contributed 68% of PM10 in the subway tunnel.
NASA Technical Reports Server (NTRS)
Al-Hamdan, Mohammad Z.; Crosson, William L.; Limaye, Ashutosh S.; Rickman, Douglas L.; Quattrochi, Dale A.; Estes, Maurice G.; Qualters, Judith R.; Niskar, Amanda S.; Sinclair, Amber H.; Tolsma, Dennis D.;
2007-01-01
This study describes and demonstrates different techniques for surfacing daily environmental / hazards data of particulate matter with aerodynamic diameter less than or equal to 2.5 micrometers (PM2.5) for the purpose of integrating respiratory health and environmental data for the Centers for Disease Control and Prevention (CDC s) pilot study of Health and Environment Linked for Information Exchange (HELIX)-Atlanta. It described a methodology for estimating ground-level continuous PM2.5 concentrations using B-Spline and inverse distance weighting (IDW) surfacing techniques and leveraging National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectrometer (MODIS) data to complement The Environmental Protection Agency (EPA) ground observation data. The study used measurements of ambient PM2.5 from the EPA database for the year 2003 as well as PM2.5 estimates derived from NASA s satellite data. Hazard data have been processed to derive the surrogate exposure PM2.5 estimates. The paper has shown that merging MODIS remote sensing data with surface observations of PM2.5 not only provides a more complete daily representation of PM2.5 than either data set alone would allow, but it also reduces the errors in the PM2.5 estimated surfaces. The results of this paper have shown that the daily IDW PM2.5 surfaces had smaller errors, with respect to observations, than those of the B-Spline surfaces in the year studied. However the IDW mean annual composite surface had more numerical artifacts, which could be due to the interpolating nature of the IDW that assumes that the maxima and minima can occur only at the observation points. Finally, the methods discussed in this paper improve temporal and spatial resolutions and establish a foundation for environmental public health linkage and association studies for which determining the concentrations of an environmental hazard such as PM2.5 with good accuracy levels is critical.
Kundu, Shuvashish; Stone, Elizabeth. A.
2014-01-01
The composition and sources of fine particulate matter (PM2.5) were investigated in rural and urban locations in Iowa, located in the agricultural and industrial Midwestern United States from April 2009 to December 2012. Major chemical contributors to PM2.5 mass were sulfate, nitrate, ammonium, and organic carbon. Non-parametric statistical analyses demonstrated that the two rural sites had significantly enhanced levels of crustal materials (Si, Al) driven by agricultural activities and unpaved roads. Meanwhile, the three urban areas had enhanced levels of secondary aerosol (nitrate, sulfate, and ammonium) and combustion (organic and elemental carbon). The heavily industrialized Davenport site had significantly higher levels of PM2.5 and trace metals (Fe, Pb, Zn), demonstrating the important local impact of industrial point sources on air quality. Sources of PM2.5 were evaluated by the multi-variant positive matrix factorization (PMF) source apportionment model. For each individual site, seven to nine factors were identified: secondary sulfate (accounting for 29–30% of PM2.5), secondary nitrate (17–24%), biomass burning (9–21%), gasoline combustion (6–16), diesel combustion (3–9%), dust (6–11%), industry (0.4–5%) and winter salt (2–6%). Source contributions demonstrated a clear urban enhancement in PM2.5 from gasoline engines (by a factor of 1.14) and diesel engines (by a factor of 2.3), which is significant due to the well-documented negative health impacts of vehicular emissions. This study presents the first source apportionment results from the state of Iowa and is broadly applicable to understanding the differences in anthropogenic and natural sources in the urban-rural continuum of particle air pollution. PMID:24736797
Giorgini, Paolo; Rubenfire, Melvyn; Das, Ritabrata; Gracik, Theresa; Wang, Lu; Morishita, Masako; Bard, Robert L; Jackson, Elizabeth A; Fitzner, Craig A; Ferri, Claudio; Brook, Robert D
2015-10-01
Fine particulate matter air pollution (PM2.5) and extreme temperatures have both been associated with alterations in blood pressure (BP). However, few studies have evaluated their joint haemodynamic actions among individuals at high risk for cardiovascular events. We assessed the effects of short-term exposures during the prior week to ambient PM2.5 and outdoor temperature levels on resting seated BP among 2078 patients enrolling into a cardiac rehabilitation programme at the University of Michigan (from 2003 to 2011) using multiple linear regression analyses adjusting for age, sex, BMI, ozone and the same-day alternate environmental factor (i.e. PM2.5 or temperature). Mean PM2.5 and temperature levels were 12.6 ± 8.2 μg/m and 10.3 ± 10.4°C, respectively. Each standard deviation elevation in PM2.5 concentration during lag days 4-6 was associated with significant increases in SBP (2.1-3.5 mmHg) and DBP (1.7-1.8 mmHg). Conversely, higher temperature levels (per 10.4°C) during lag days 4-6 were associated with reductions in both SBP (-3.6 to -2.3 mmHg) and DBP (-2.5 to -1.8 mmHg). There was little evidence for consistent effect modification by other covariates (e.g. demographics, seasons, medication usage). Short-term exposures to PM2.5, even at low concentrations within current air quality standards, are associated with significant increases in BP. Contrarily, higher ambient temperatures prompt the opposite haemodynamic effect. These findings demonstrate that both ubiquitous environmental exposures have clinically meaningful effects on resting BP among high-risk cardiac patients.
Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals
NASA Technical Reports Server (NTRS)
Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel
2014-01-01
To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.
Beckerman, Bernardo S; Jerrett, Michael; Serre, Marc; Martin, Randall V; Lee, Seung-Jae; van Donkelaar, Aaron; Ross, Zev; Su, Jason; Burnett, Richard T
2013-07-02
Airborne fine particulate matter exhibits spatiotemporal variability at multiple scales, which presents challenges to estimating exposures for health effects assessment. Here we created a model to predict ambient particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) across the contiguous United States to be applied to health effects modeling. We developed a hybrid approach combining a land use regression model (LUR) selected with a machine learning method, and Bayesian Maximum Entropy (BME) interpolation of the LUR space-time residuals. The PM2.5 data set included 104,172 monthly observations at 1464 monitoring locations with approximately 10% of locations reserved for cross-validation. LUR models were based on remote sensing estimates of PM2.5, land use and traffic indicators. Normalized cross-validated R(2) values for LUR were 0.63 and 0.11 with and without remote sensing, respectively, suggesting remote sensing is a strong predictor of ground-level concentrations. In the models including the BME interpolation of the residuals, cross-validated R(2) were 0.79 for both configurations; the model without remotely sensed data described more fine-scale variation than the model including remote sensing. Our results suggest that our modeling framework can predict ground-level concentrations of PM2.5 at multiple scales over the contiguous U.S.
Concentrations, sources and geochemistry of airborne particulate matter at a major European airport.
Amato, Fulvio; Moreno, Teresa; Pandolfi, Marco; Querol, Xavier; Alastuey, Andrés; Delgado, Ana; Pedrero, Manuel; Cots, Nuria
2010-04-01
Monitoring of aerosol particle concentrations (PM(10), PM(2.5), PM(1)) and chemical analysis (PM(10)) was undertaken at a major European airport (El Prat, Barcelona) for a whole month during autumn 2007. Concentrations of airborne PM at the airport were close to those at road traffic hotspots in the nearby Barcelona city, with means measuring 48 microg PM(10)/m(3), 21 microg PM(2.5)/m(3) and 17 microg PM(1)/m(3). Meteorological controls on PM at El Prat are identified as cleansing daytime sea breezes with abundant coarse salt particles, alternating with nocturnal land-sourced winds which channel air polluted by industry and traffic (PM(1)/PM(10) ratios > 0.5) SE down the Llobregat Valley. Chemical analyses of the PM(10) samples show that crustal PM is dominant (38% of PM(10)), followed by total carbon (OC + EC, 25%), secondary inorganic aerosols (SIA, 20%), and sea salt (6%). Local construction work for a new airport terminal was an important contributor to PM(10) crustal levels. Source apportionment modelling PCA-MLRA identifies five factors: industrial/traffic, crustal, sea salt, SIA, and K(+) likely derived from agricultural biomass burning. Whereas most of the atmospheric contamination concerning ambient air PM(10) levels at El Prat is not attributable directly to aircraft movement, levels of carbon are unusually high (especially organic carbon), as are metals possibly sourced from tyre detritus/smoke in runway dust (Ba, Zn, Mo) and from brake dust in ambient PM(10) (Cu, Sb), especially when the airport is at its most busy. We identify microflakes of aluminous alloys in ambient PM(10) filters derived from corroded fuselage and wings as an unequivocal and highly distinctive tracer for aircraft movement.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-25
... Tennessee SIP the PM 2.5 SILs and SMC. See 78 FR 23704. Tennessee's May 10, 2013, final SIP revision... the administrative change to replace the term ``particulate matter'' with ``PM 2.5 , PM 10 ''\\2... matter'' with ``PM 10 .'' In the April 22, 2013, proposed rulemaking, EPA explained that TDEC had...
Wang, Xuying; Guo, Yuming; Li, Guoxing; Zhang, Yajuan; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan; Chen, Liangfu
2016-06-01
This study explored the association between particulate matter with an aerodynamic diameter of less than 10 μm (PM10) and the cause-specific respiratory mortality. We used the ordinary kriging method to estimate the spatial characteristics of ambient PM10 at 1-km × 1-km resolution across Beijing during 2008-2009 and subsequently fit the exposure-response relationship between the estimated PM10 and the mortality due to total respiratory disease, chronic lower respiratory disease, chronic obstructive pulmonary disease (COPD), and pneumonia at the street or township area levels using the generalized additive mixed model (GAMM). We also examined the effects of age, gender, and season in the stratified analysis. The effects of ambient PM10 on the cause-specific respiratory mortality were the strongest at lag0-5 except for pneumonia, and an inter-quantile range increase in PM10 was associated with an 8.04 % (95 % CI 4.00, 12.63) increase in mortality for total respiratory disease, a 6.63 % (95 % CI 1.65, 11.86) increase for chronic lower respiratory disease, and a 5.68 % (95 % CI 0.54, 11.09) increase for COPD, respectively. Higher risks due to the PM10 exposure were observed for females and elderly individuals. Seasonal stratification analysis showed that the effects of PM10 on mortality due to pneumonia were stronger during spring and autumn. While for COPD, the effect of PM10 in winter was statistically significant (15.54 %, 95 % CI 5.64, 26.35) and the greatest among the seasons. The GAMM model evaluated stronger associations between concentration of PM10. There were significant associations between PM10 and mortality due to respiratory disease at the street or township area levels. The GAMM model using high-resolution PM10 could better capture the association between PM10 and respiratory mortality. Gender, age, and season also acted as effect modifiers for the relationship between PM10 and respiratory mortality.
MONITORING OF PARTICULATE MATTER OUTDOORS
Recent studies of the size and composition of atmospheric particulate matter (PM) have demonstrated the usefulness of separating atmospheric PM into its fine and coarse components. The need to measure the mass and composition of fine and coarse PM separately has been emphasized b...
IN VIVO MECHANISMS OF PARTICULATE MATTER (PM)-INDUCED LUNG AND VASCULAR INJURY
Insight into the mechanisms by which ambient particulate matter (PM) mediates its adverse cardiopulmonary effects can provide biological plausibility to epidemiological associations between PM exposure and health effects. Current information on mechanisms of pulmonary injury have...
NASA Astrophysics Data System (ADS)
Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan
2016-09-01
Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.
Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan
2016-09-14
Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.
Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan
2016-01-01
Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5. PMID:27624276
Mészáros, D; Markos, J; FitzGerald, D G; Walters, E H; Wood-Baker, R
2015-01-01
Particulate matter with a diameter below 10 µ (PM10) has been a major concern in the Tamar Valley, Launceston, where wood heaters are extensively used. We examined the relationship between PM10 levels, meteorological variables, respiratory medications and hospital admissions for respiratory disease over the decade 1992-2002. PM10 levels were provided by the Department of Primary Industry Water, Parks and Environment, and meteorological variables from the Bureau of Meteorology. We obtained hospital discharge codes for the Launceston General Hospital. Poisson regression was used for statistical analyses. Mean daily PM10 levels declined from 50.7 to 16.5 μg/m(3). Hospitalisations for asthma decreased from 29 to 21 per month, whereas chronic obstructive pulmonary disease (COPD) increased and bronchitis/bronchiolitis remained unchanged. We found a 10 μg/m(3) increase in PM10 to be associated with a 4% increase in admissions for acute bronchitis/bronchiolitis (p0.05), but no association with asthma or COPD was found. All respiratory diseases showed seasonal patterns of hospitalisation. This is the first long-term study in Australia to demonstrate an association between PM10 levels and respiratory diseases. Reducing exposure to PM10 may decrease hospital admissions for respiratory diseases. Better preventive measures, including sustained public health initiatives to combat air pollution, are required to reduce respiratory morbidity.
Levels of PM2.5/PM10 and associated metal(loid)s in rural households of Henan Province, China.
Wu, Fuyong; Wang, Wei; Man, Yu Bon; Chan, Chuen Yu; Liu, Wenxin; Tao, Shu; Wong, Ming Hung
2015-04-15
Although a majority of China's rural residents use solid fuels (biomass and coal) for household cooking and heating, clean energy such as electricity and liquid petroleum gas is becoming more popular in the rural area. Unfortunately, both solid fuels and clean energy could result in indoor air pollution. Daily respirable particulate matter (PM≤10 μm) and inhalable particulate matter (PM≤2.5 μm) were investigated in kitchens, sitting rooms and outdoor area in rural Henan during autumn (Sep to Oct 2012) and winter (Jan 2013). The results showed that PM (PM2.5 and PM10) and associated metal(loid)s varied among the two seasons and the four types of domestic energy used. Mean concentrations of PM2.5 and PM10 in kitchens during winter were 59.2-140.4% and 30.5-145.1% higher than those during autumn, respectively. Similar with the trends of PM2.5 and PM10, concentrations of As, Pb, Zn, Cd, Cu, Ni and Mn in household PM2.5 and PM10 were apparently higher in winter than those in autumn. The highest mean concentrations of PM2.5 and PM10 (368.5 and 588.7 μg m(-3)) were recorded in sitting rooms in Baofeng during winter, which were 5.7 and 3.9 times of corresponding health based guidelines for PM2.5 and PM10, respectively. Using coal can result in severe indoor air pollutants including PM and associated metal(loid)s compared with using crop residues, electricity and gas in rural Henan Province. Rural residents' exposure to PM2.5 and PM10 would be roughly reduced by 13.5-22.2% and 8.9-37.7% via replacing coal or crop residues with electricity. The present study suggested that increased use of electricity as domestic energy would effectively improve indoor air quality in rural China. Copyright © 2015 Elsevier B.V. All rights reserved.
Source apportionment and air quality impact assessment studies in Beijing/China
NASA Astrophysics Data System (ADS)
Suppan, P.; Schrader, S.; Shen, R.; Ling, H.; Schäfer, K.; Norra, S.; Vogel, B.; Wang, Y.
2012-04-01
More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: Examples of long term measurements of PM2.5 filter sampling in 2005 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. Further experimental studies include the operation of remote sensing systems to determine continuously the MLH (by a ceilometer) and gaseous air pollutants near the ground (by DOAS systems) as well as at the 320 m measurement tower (adhesive plates at different heights for passive particle collection) in cooperation with the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences (CAS). The influence of the MLH on the air pollution concentration could be demonstrated and will be discussed. The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2006, April 3rd until 12th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and measured dust storm concentration variability at Beijing in the course of time. The results show the importance of intertwine investigations of measurements and modeling, the analysis of local air pollution levels as well as the impact and analysis of advective process in the greater region of Beijing. Comprehensive investigations on particulate matter are a prerequisite for the knowledge of the source strengths and source attribution to the overall air pollution level. Only this knowledge can help to formulate and to introduce specific reduction measures to reduce coarser as well as finer particulates.
NASA Astrophysics Data System (ADS)
Dimitriou, Konstantinos; Kassomenos, Pavlos
2013-11-01
Particulate air pollution is associated with adverse health effects to the population exposed. The aim of this paper is the identification of local and regional sources, affecting PM10 and PM2.5 levels in four large cities of southern Europe, namely: Lisbon, Madrid, Marseille, and Rome. Air pollution data from seven sampling sites of the European Union network were used. These stations were selected due to their ability of monitoring PM2.5 concentrations and providing reliable series of data. Each station's background was also taken into account. Pearson correlation coefficients and primal component analysis components were extracted separately for cold and warm periods in order to define the relationships among particle matters (PMs) and gaseous pollutants (CO, NO2, SO2, and O3) and evaluate the contributions of local sources. Possible seasonal variations of PM2.5/PM10 ratio daily values were also used as markers of PM sources, influencing particulate size distribution. Particle emissions were primarily attributed to traffic and secondarily to natural sources. Minimum daily values of PM2.5/PM10 ratio were observed during warm periods, particularly at suburban stations with rural background, due to dust resuspension and also due to the increase of biogenic coarse PM (pollen, dust, etc.). Hybrid Single-Particle Lagrangian Integrated Trajectory Model trajectory model was used in order to compute the 4-day backward trajectories of the air masses that affected the four cities which are under study during days with recorded PM10 exceedances, within a 5-year period (2003-2007), at 300, 750, and 1,500 m above ground level (AGL). The trajectories were then divided to clusters with a K-means analysis. In all four cities, the influence of slow-moving air masses was associated with a large fraction of PM10 exceedances and with high average and maximum daily mean PM10 concentrations, principally at the 300 m AGL analysis. As far the issue of the increased PM10 concentrations, the results were weaker in Marseille and particularly in Rome, probably due to their greater distance from Northwest Africa, in comparison to Madrid and Lisbon. Dust intrusions from the Sahara desert and transportation of Mediterranean/Atlantic sea spray, were characterized as primary regional sources of exogenous PM10 in all four cities. Continental trajectories from the industrialized northern Italy affected PM10 levels particularly in Marseille and Rome, due to their more eastern geographical position.
Gupta, A K; Nag, Subhankar; Mukhopadhyay, U K
2006-04-01
In this study, the relationship between inhalable particulate (PM(10)), fine particulate (PM(2.5)), coarse particles (PM(2.5 - 10)) and meteorological parameters such as temperature, relative humidity, solar radiation, wind speed were statistically analyzed and modelled for urban area of Kolkata during winter months of 2003-2004. Ambient air quality was monitored with a sampling frequency of twenty-four hours at three monitoring sites located near traffic intersections and in an industrial area. The monitoring sites were located 3-5 m above ground near highly trafficked and congested areas. The 24 h average PM(10) and PM(2.5) samples were collected using Thermo-Andersen high volume samplers and exposed filter papers were extracted and analysed for benzene soluble organic fraction. The ratios between PM(2.5) and PM(10) were found to be in the range of 0.6 to 0.92 and the highest ratio was found in the most polluted urban site. Statistical analysis has shown a strong positive correlation between PM(10) and PM(2.5) and inverse correlation was observed between particulate matter (PM(10) and PM(2.5)) and wind speed. Statistical analysis of air quality data shows that PM(10) and PM(2.5) are showing poor correlation with temperature, relative humidity and solar radiation. Regression equations for PM(10) and PM(2.5) and meteorological parameters were developed. The organic fraction of particulate matter soluble in benzene is an indication of poly aromatic hydrocarbon (PAH) concentration present in particulate matter. The relationship between the benzene soluble organic fraction (BSOF) of inhalable particulate (PM(10)) and fine particulate (PM(2.5)) were analysed for urban area of Kolkata. Significant positive correlation was observed between benzene soluble organic fraction of PM(10) (BSM10) and benzene soluble organic fraction of PM(2.5) (BSM2.5). Regression equations for BSM10 and BSM2.5 were developed.
Continuous weeklong measurements of indoor particle levels in a Minnesota Tribal Casino Resort.
Zhou, Zheng; Bohac, David; Boyle, Raymond G
2016-08-24
Secondhand smoke (SHS) exposure for workers and patrons in hospitality venues is a persistent and significant public health concern. We designed this study to provide a comprehensive assessment of SHS exposure inside an Indian Tribal Casino in Minnesota. Real-time fine particulate matter (PM2.5) concentrations were measured at multiple locations for up to 7 days. The field monitoring provided information on the day of week and time of day variation of SHS exposure, as well as comparisons between smoking and non-smoking areas. Indoor PM2.5 level was nearly 13 times the concurrent outdoor PM2.5 level. Gaming floor hourly PM2.5 level was highest on Saturday night, averaged at 62.9 μg/m(3). Highest PM2.5 concentration was observed in smoking-permitted employee break room, reaching 600 μg/m(3). PM2.5 readings in non-smoking sections exhibited same temporal pattern as the readings in smoking sections. The results show that indoor concentration of PM2.5 is substantially higher than the outdoor level, posing health risks to casino workers and patrons. SHS can migrate into adjacent non-smoking areas very quickly. The casino's ventilation system did not fully eliminate SHS. A completely smoke-free casino would be the only way to fully protect non-smoking patrons and employees from the dangers of tobacco smoke.
Estimating the Causal Effect of Low Levels of Fine Particulate Matter on Hospitalization.
Makar, Maggie; Antonelli, Joseph; Di, Qian; Cutler, David; Schwartz, Joel; Dominici, Francesca
2017-09-01
In 2012, the EPA enacted more stringent National Ambient Air Quality Standards (NAAQS) for fine particulate matter (PM2.5). Few studies have characterized the health effects of air pollution levels lower than the most recent NAAQS for long-term exposure to PM2.5 (now 12 μg/m). We constructed a cohort of 32,119 Medicare beneficiaries residing in 5138 US ZIP codes who were interviewed as part of the Medicare Current Beneficiary Survey (MCBS) between 2002 and 2010 and had 1 year of follow-up. We considered four outcomes: all-cause hospitalizations, hospitalizations for circulatory diseases and respiratory diseases, and death. We found that increasing exposure to PM2.5 from levels lower than 12 μg/m to levels higher than 12 μg/m is associated with increases in all-cause admission rates of 7% (95% CI = 3%, 10%) and in circulatory admission hazard rates of 6% (95% CI = 2%, 9%). When we restricted analysis to enrollees with exposure always lower than 12 μg/m, we found that increasing exposure from levels lower than 8 μg/m to levels higher than 8 μg/m increased all-cause admission hazard rates by 15% (95% CI = 8%, 23%), circulatory by 18% (95% CI = 10%, 27%), and respiratory by 21% (95% CI = 9%, 34%). In a nationally representative sample of Medicare enrollees, changes in exposure to PM2.5, even at levels consistently below standards, are associated with increases in hospital admissions for all causes and cardiovascular and respiratory diseases. The robustness of our results to inclusion of many additional individual level potential confounders adds validity to studies of air pollution that rely entirely on administrative data.
Particulate matter neurotoxicity in culture is size-dependent
Exposure to particulate matter (PM) air pollution produces inflammatory damage to the cardiopulmonary system. This toxicity appears to be inversely related to the size of the PM particles, with the ultrafine particle being more inflammatory than larger sizes. Exposure to PM has m...
A POPULATION EXPOSURE MODEL FOR PARTICULATE MATTER: SHEDS-PM
The US EPA National Exposure Research Laboratory (NERL) has developed a population exposure and dose model for particulate matter (PM) that will be publicly available in Fall 2002. The Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model uses a probabilistic approach ...
MASS CONCENTRATION RELATIONSHIPS FROM THE NERL RTP PARTICULATE MATTER PANEL STUDY
The National Exposure Research Laboratory's (NERL) Research Triangle Park (RTP) Particulate Matter (PM) Panel Study has completed a one-year investigation of personal, residential and ambient PM-related mass concentrations in two potentially susceptible subpopulations. PM2.5, P...
Source apportionment of ambient PM10 and PM2.5 in Haikou, China
NASA Astrophysics Data System (ADS)
Fang, Xiaozhen; Bi, Xiaohui; Xu, Hong; Wu, Jianhui; Zhang, Yufen; Feng, Yinchang
2017-07-01
In order to identify the sources of PM10 and PM2.5 in Haikou, 60 ambient air samples were collected in winter and spring, respectively. Fifteen elements (Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb), water-soluble ions (SO42 - and NO3-), and organic carbon (OC) and elemental carbon (EC) were analyzed. It was clear that the concentration of particulate matter was higher in winter than in spring. The value of PM2.5/PM10 was > 0.6. Moreover, the proportions of TC, ions, Na, Al, Si and Ca were more high in PM10 and PM2.5. The SOC concentration was estimated by the minimum OC/EC ratio method, and deducted from particulate matter compositions when running CMB model. According to the results of CMB model, the resuspended dust (17.5-35.0%), vehicle exhaust (14.9-23.6%) and secondary particulates (20.4-28.8%) were the major source categories of ambient particulate matter. Additionally, sea salt also had partial contribution (3-8%). And back trajectory analysis results showed that particulate matter was greatly affected by regional sources in winter, while less affected in spring. So particulate matter was not only affected by local sources, but also affected by sea salt and regional sources in coastal cities. Further research could focuses on establishing the actual secondary particles profiles and identifying the local and regional sources of PM at once by one model or analysis method.
Phosri, Arthit; Ueda, Kayo; Tasmin, Saira; Kishikawa, Reiko; Hayashi, Masahiko; Hara, Keiichiro; Uehara, Yamato; Phung, Vera Ling Hui; Yasukouchi, Shusuke; Konishi, Shoko; Honda, Akiko; Takano, Hirohisa
2017-07-01
Previous studies have revealed the interactive effects of airborne pollen and particulate matter on the daily consultations for pollinosis, but it is uncertain which compositions are responsible. This study aimed to investigate the interactive effects of specific PM 2.5 compositions and airborne pollen on the daily number of clinic visits for pollinosis in Fukuoka. We obtained daily data on pollen concentrations, PM 2.5 compositions, PM 2.5 mass, gaseous pollutants (SO 2 , NO 2 , CO, and O 3 ), and weather variables monitored in Fukuoka between February and April, 2002-2012. In total, 73,995 clinic visits for pollinosis were made at 10 clinics in Fukuoka Prefecture during the study period. A time-stratified case-crossover design was applied to examine the interactive effects. The concentrations of PM 2.5 and its compositions were stratified into low (<15th percentile), moderate (15th-85th percentile), and high (>85th percentile) levels, and the association between airborne pollen and daily clinic visits for pollinosis was analyzed within each level. We found a significant interaction between specific PM 2.5 compositions and airborne pollen. Specifically, the odds ratio of daily clinic visits for pollinosis per interquartile increase in pollen concentration (39.8 grains/cm 2 ) at the average cumulative lag of 0 and 2 days during high levels of non-sea-salt Ca 2+ was 1.446 (95% CI: 1.323-1.581), compared to 1.075 (95% CI: 1.067-1.083) when only moderate levels were observed. This result remained significant when other air pollutants were incorporated into the model and was fairly persistent even when different percentile cut-off points were used. A similar interaction was found when we stratified the data according to non-sea-salt SO 4 2- levels. This finding differed from estimates made according to PM 2.5 and NO 3 - levels, which predicted that the effects of pollen were strongest in the lower levels. Associations between airborne pollen and daily clinic visits for pollinosis could be enhanced by high levels of specific PM 2.5 compositions, especially non-sea-salt Ca 2+ . Copyright © 2017 Elsevier Inc. All rights reserved.
Particulate matter levels in a South American megacity: the metropolitan area of Lima-Callao, Peru.
Silva, Jose; Rojas, Jhojan; Norabuena, Magdalena; Molina, Carolina; Toro, Richard A; Leiva-Guzmán, Manuel A
2017-11-13
The temporal and spatial trends in the variability of PM 10 and PM 2.5 from 2010 to 2015 in the metropolitan area of Lima-Callao, Peru, are studied and interpreted in this work. The mean annual concentrations of PM 10 and PM 2.5 have ranges (averages) of 133-45 μg m -3 (84 μg m -3 ) and 35-16 μg m -3 (26 μg m -3 ) for the monitoring sites under study. In general, the highest annual concentrations are observed in the eastern part of the city, which is a result of the pattern of persistent local winds entering from the coast in a south-southwest direction. Seasonal fluctuations in the particulate matter (PM) concentrations are observed; these can be explained by subsidence thermal inversion. There is also a daytime pattern that corresponds to the peak traffic of a total of 9 million trips a day. The PM 2.5 value is approximately 40% of the PM 10 value. This proportion can be explained by PM 10 re-suspension due to weather conditions. The long-term trends based on the Theil-Sen estimator reveal decreasing PM 10 concentrations on the order of -4.3 and -5.3% year -1 at two stations. For the other stations, no significant trend is observed. The metropolitan area of Lima-Callao is ranked 12th and 16th in terms of PM 10 and PM 2.5 , respectively, out of 39 megacities. The annual World Health Organization thresholds and national air quality standards are exceeded. A large fraction of the Lima population is exposed to PM concentrations that exceed protection thresholds. Hence, the development of pollution control and reduction measures is paramount.
Dust storms are significant contributors to ambient levels of particulate matter (PM) in many areas of the world. Central Asia, an area that is relatively understudied in this regard, is anticipated to be affected by dust storms due to its proximity to several major deserts that ...
Honda, Trenton; Eliot, Melissa N; Eaton, Charles B; Whitsel, Eric; Stewart, James D; Mu, Lina; Suh, Helen; Szpiro, Adam; Kaufman, Joel D; Vedal, Sverre; Wellenius, Gregory A
2017-08-01
Long-term exposure to ambient particulate matter (PM) has been previously linked with higher risk of cardiovascular events. This association may be mediated, at least partly, by increasing the risk of incident hypertension, a key determinant of cardiovascular risk. However, whether long-term exposure to PM is associated with incident hypertension remains unclear. Using national geostatistical models incorporating geographic covariates and spatial smoothing, we estimated annual average concentrations of residential fine (PM 2.5 ), respirable (PM 10 ), and course (PM 10-2.5 ) fractions of particulate matter among 44,255 post-menopausal women free of hypertension enrolled in the Women's Health Initiative (WHI) clinical trials. We used time-varying Cox proportional hazards models to evaluate the association between long-term average residential pollutant concentrations and incident hypertension, adjusting for potential confounding by sociodemographic factors, medical history, neighborhood socioeconomic measures, WHI study clinical site, clinical trial, and randomization arm. During 298,383 person-years of follow-up, 14,511 participants developed incident hypertension. The adjusted hazard ratios per interquartile range (IQR) increase in PM 2.5 , PM 10 , and PM 10-2.5 were 1.13 (95% CI: 1.08, 1.17), 1.06 (1.03, 1.10), and 1.01 (95% CI: 0.97, 1.04), respectively. Statistically significant concentration-response relationships were identified for PM 2.5 and PM 10 fractions. The association between PM 2.5 and hypertension was more pronounced among non-white participants and those residing in the Northeastern United States. In this cohort of post-menopausal women, ambient fine and respirable particulate matter exposures were associated with higher incidence rates of hypertension. These results suggest that particulate matter may be an important modifiable risk factor for hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barnes, Natasha Maria; Ng, Tsz Wai; Ma, Kwok Keung; Lai, Ka Man
2018-03-27
Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM 0.3 and PM 2.5 ), total volatile organic compounds (TVOCs), carbon monoxide (CO), carbon dioxide (CO₂), airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM 0.3 , PM 2.5 , TVOCs, CO, and CO₂ during engine idling. In general, during driving PM 2.5 levels in-cabin reduced overtime, but not PM 0.3 . For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ) level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC) concentration positively correlated with the age of the vehicle. Carbon monoxide (CO) levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO₂ level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked.
Barnes, Natasha Maria; Ng, Tsz Wai; Ma, Kwok Keung; Lai, Ka Man
2018-01-01
Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM0.3 and PM2.5), total volatile organic compounds (TVOCs), carbon monoxide (CO), carbon dioxide (CO2), airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM0.3, PM2.5, TVOCs, CO, and CO2 during engine idling. In general, during driving PM2.5 levels in-cabin reduced overtime, but not PM0.3. For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ) level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC) concentration positively correlated with the age of the vehicle. Carbon monoxide (CO) levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO2 level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked. PMID:29584686
Kim, Jee Young; Mukherjee, Sutapa; Ngo, Long C; Christiani, David C
2004-05-01
Residual oil fly ash (ROFA) is a chemically complex mixture of compounds, including metals that are potentially carcinogenic because of their ability to cause oxidative injury. In this study, we investigated the association between exposure to particulate matter with an aerodynamic mass median diameter
Kim, Jee Young; Mukherjee, Sutapa; Ngo, Long C; Christiani, David C
2004-01-01
Residual oil fly ash (ROFA) is a chemically complex mixture of compounds, including metals that are potentially carcinogenic because of their ability to cause oxidative injury. In this study, we investigated the association between exposure to particulate matter with an aerodynamic mass median diameter
Chang, M-C Oliver; Shields, J Erin
2017-06-01
To reliably measure at the low particulate matter (PM) levels needed to meet California's Low Emission Vehicle (LEV III) 3- and 1-mg/mile particulate matter (PM) standards, various approaches other than gravimetric measurement have been suggested for testing purposes. In this work, a feasibility study of solid particle number (SPN, d50 = 23 nm) and black carbon (BC) as alternatives to gravimetric PM mass was conducted, based on the relationship of these two metrics to gravimetric PM mass, as well as the variability of each of these metrics. More than 150 Federal Test Procedure (FTP-75) or Supplemental Federal Test Procedure (US06) tests were conducted on 46 light-duty vehicles, including port-fuel-injected and direct-injected gasoline vehicles, as well as several light-duty diesel vehicles equipped with diesel particle filters (LDD/DPF). For FTP tests, emission variability of gravimetric PM mass was found to be slightly less than that of either SPN or BC, whereas the opposite was observed for US06 tests. Emission variability of PM mass for LDD/DPF was higher than that of both SPN and BC, primarily because of higher PM mass measurement uncertainties (background and precision) near or below 0.1 mg/mile. While strong correlations were observed from both SPN and BC to PM mass, the slopes are dependent on engine technologies and driving cycles, and the proportionality between the metrics can vary over the course of the test. Replacement of the LEV III PM mass emission standard with one other measurement metric may imperil the effectiveness of emission reduction, as a correlation-based relationship may evolve over future technologies for meeting stringent greenhouse standards. Solid particle number and black carbon were suggested in place of PM mass for the California LEV III 1-mg/mile FTP standard. Their equivalence, proportionality, and emission variability in comparison to PM mass, based on a large light-duty vehicle fleet examined, are dependent on engine technologies and driving cycles. Such empirical derived correlations exhibit the limitation of using these metrics for enforcement and certification standards as vehicle combustion and after-treatment technologies advance.
Masri, Shahir; Garshick, Eric; Coull, Brent A; Koutrakis, Petros
2017-01-01
In order to study effects of ambient particulate matter (PM) it was previously necessary to have access to a comprehensive air monitoring network. However, there are locations in the world where PM levels are above generally accepted exposure standards but lack a monitoring infrastructure. This is true in Iraq and other locations in Southwest Asia and Afghanistan where U.S. and other coalition troops were deployed beginning in 2001. Since aerosol optical depth (AOD), determined by satellite, and visibility are both highly related to atmospheric PM 2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) concentrations, we employed a novel approach that took advantage of historic airport visibility measurements to calibrate the AOD-visibility relationship and determine visibility spatially and temporally (2006-2007) over an approximately 17,000 km 2 region of Iraq. We obtained daily visibility predictions that were highly associated with satellite-based 1x1 km AOD daily observations (R 2 =0.87). Based on a previously derived calibration between PM 2.5 and visibility, we were able to predict spatially and temporally resolved PM 2.5 concentrations. Variability of PM 2.5 among sites was high, with daily concentrations differing by as much as ~30 μg/m3. This study demonstrates the feasibility of characterizing historic PM 2.5 exposures in Iraq and other locations in Southwest Asia and Afghanistan with similar climate characteristics. This is of utility for epidemiologists seeking to assess the potential health effects related to PM 2.5 exposures among previously deployed military personnel and of the population of the region. This study demonstrates the ability to utilize aerosol optical depth to successfully estimate visibility spatially and temporally in Southwest Asia and Afghanistan. This enables for the estimation of spatially resolved PM 2.5 concentrations in the region. The ability to caracterize PM 2.5 concentrations in Southwest Asia and Afghanistan is highly important for epidemiologists investigating the relationship between chronic exposure to PM 2.5 and respiratory diseases among military personnel deployed to the region. This information will better position policy makers to draft meaningful legislation relating to military health.
Momoh, Abuh; E. Mhlongo, Sphiwe; Abiodun, Olukoga; Muzerengi, Confidence; Mudanalwo, Matamela
2013-01-01
Objective: The purpose of this study was to estimate the levels of Suspended Particulate Matter (SPM) in ambient air within Mukula mine and the potential risks to mineworkers and inhabitants of the adjoining Mukula community’s health. Methods : An SPM was used to measure the levels of particulate matter (PM10) in and around the mining site. One-way Analysis of Variance (ANOVA) was used to determine significance level of PM10 in ambient air. Results: Suspended particulate matter in the air ranged from 60.25 to 1820.45 µg/m3. The lowest value of SPM was more than four times the required World Health Organisation’s allowable level in ambient air, which the mine workers and locals would be inhaling. Conclusion: Continuous inhalation of mine dusts by mine workers and locals could result in pulmonary fibrosis, silicosis and lung cancer. The findings from this study support the need to have in place the necessary control measures that will drastically reduce SPM in the air. Such measure includes wet drilling and blasting, sprinkling of water on the mine roads and planting of vegetation around the mines and neighbouring communities. PMID:24550971
Momoh, Abuh; E Mhlongo, Sphiwe; Abiodun, Olukoga; Muzerengi, Confidence; Mudanalwo, Matamela
2013-11-01
Objective : The purpose of this study was to estimate the levels of Suspended Particulate Matter (SPM) in ambient air within Mukula mine and the potential risks to mineworkers and inhabitants of the adjoining Mukula community's health. Methods : An SPM was used to measure the levels of particulate matter (PM10) in and around the mining site. One-way Analysis of Variance (ANOVA) was used to determine significance level of PM10 in ambient air. Results : Suspended particulate matter in the air ranged from 60.25 to 1820.45 µg/m(3). The lowest value of SPM was more than four times the required World Health Organisation's allowable level in ambient air, which the mine workers and locals would be inhaling. Conclusion : Continuous inhalation of mine dusts by mine workers and locals could result in pulmonary fibrosis, silicosis and lung cancer. The findings from this study support the need to have in place the necessary control measures that will drastically reduce SPM in the air. Such measure includes wet drilling and blasting, sprinkling of water on the mine roads and planting of vegetation around the mines and neighbouring communities.
Nayek, Sukanta; Padhy, Pratap Kumar
2018-06-01
More than 85% of the rural Indian households use traditional solid biofuels (SBFs) for daily cooking. Burning of the easily available unprocessed solid fuels in inefficient earthen cooking stoves produce large quantities of particulate matters. Smaller particulates, especially with aerodynamic diameter of 2.5 μm or less (PM 2.5 ), largely generated during cooking, are considered to be health damaging in nature. In the present study, kitchen level exposure of women cooks to fine particulate matters during lunch preparation was assessed considering kitchen openness as surrogate to the ventilation condition. Two-way ANCOVA analysis considering meal quantity as a covariate revealed no significant interaction between the openness and the seasons explaining the variability of the personal exposure to the fine particulate matters in rural kitchen during cooking. Multiple linear regression analysis revealed the openness as the only significant predictor for personal exposure to the fine particulate matters. In the present study, the annual average fine particulate matter exposure concentration was found to be 974 μg m -3 .
Respiratory dose analysis for components of ambient particulate matter
Particulate matter (PM) in the atmosphere is a complex mixture of particles with different sizes and chemical compositions. Although PM is known to induce health effects, specific attributes of PM that may cause health effects are somewhat ambiguous. Dose of each specific compone...
Respiratory dose analysis for components of ambient particulate matter#
Particulate matter (PM) in the atmosphere is a complex mixture of particles with different sizes and chemical compositions. Although PM is known to cause health hazard, specific attributes of PM that may cause health effects are somewhat ambiguous. The dose of each specific compo...
Twardella, D; Fromme, H; Dietrich, S; Dietrich, W C
2009-02-01
The aims of the research project were (I) to describe the exposure to particulate matter in Bavarian schools and identify predictors of increased exposure and (II) to evaluate whether exposure can be reduced by improving the ventilation and/or cleaning routine. Air quality was measured in 46 schools, two classrooms each, in the City of Munich and Dachau county. Each classroom was measured on one school day in both winter 2004/2005 and summer 2005. The continuously generated data on particulate matter during the teaching hours were summarised to daily medians and the possible association of the median concentration with classroom characteristics was tested using non-parametric methods. In winter, the median PM (2.5) concentration was 18.8 microg/m (3), in summer 12.7 microg/m (3). The median PM (10) concentration was 91.5 microg/m (3) in winter and 64.9 microg/m (3) in summer. Determinants of a high particulate matter concentration were the winter period, an increased number of pupils or decreased room size, a high CO(2) concentration, and a low class level. Following this survey, a pilot study on the effects of improved cleaning and ventilation routines was conducted in autumn 2005. Three conditions were tested in two classrooms of one school: (a) standard, (b) improved airing (3 min during short and 20 min during long breaks), and (c) improved airing and improved cleaning (thorough cleaning once and vacuuming before wet wiping). Each condition was implemented for 2 weeks and particulate matter concentrations measured concurrently. In both rooms a reduction of both PM (2.5) and PM (10) concentration was found following improved airing and a further reduction occurred when improved cleaning was introduced in addition. However, in a linear regression accounting for other factors (room, physical activity of the pupils, outdoor concentration of particulate matter) the effect of improved airing was no longer significant, while the effect of improved cleaning remained at a reduction of 6 microg/m (3) for PM (2.5) and of 30 microg/m (3) for PM (10). The research projects show, that exposure to particulate matter in schools is high and indicate that, in particular, improved cleaning may be an effective measure to reduce the indoor particulate matter concentration. More and larger studies are needed to prove the efficacy of this measure.
Variations of PM2.5, PM10 mass concentration and health assessment in Islamabad, Pakistan
NASA Astrophysics Data System (ADS)
Memhood, Tariq; Tianle, Z.; Ahmad, I.; Li, X.; Shen, F.; Akram, W.; Dong, L.
2018-04-01
Sparse information appears in lack of awareness among the people regarding the linkage between particulate matter (PM) and mortality in Pakistan. The current study is aimed to investigate the seasonal mass concentration level of PM2.5 and PM10 in ambient air of Islamabad to assess the health risk of PM pollution. The sampling was carried out with two parallel medium volume air samplers on Whatman 47 mm quartz filter at a flow rate of 100L/min. Mass concentration was obtained by gravimetric analysis. A noticeable seasonal change in PM10 and PM2.5 mass concentration was observed. In case of PM2.5, the winter was a most polluted and spring was the cleanest season of 2017 in Islamabad with 69.97 and 40.44 μgm‑3 mean concentration. Contrary, highest (152.42 μgm‑3) and lowest (74.90 μgm‑3) PM10 mass concentration was observed in autumn and summer respectively. Air Quality index level for PM2.5 and PM10 was remained moderated to unhealthy and good to sensitive respectively. Regarding health risk assessment, using national data for mortality rates, the excess mortality due to PM2.5 and PM10 exposure has been calculated and amounts to over 198 and 98 deaths annually for Islamabad. Comparatively estimated lifetime risk for PM2.5 (1.16×10-6) was observed higher than PM10 (7.32×10-8).
Chen, Gongbo; Knibbs, Luke D; Zhang, Wenyi; Li, Shanshan; Cao, Wei; Guo, Jianping; Ren, Hongyan; Wang, Boguang; Wang, Hao; Williams, Gail; Hamm, N A S; Guo, Yuming
2018-02-01
PM 1 might be more hazardous than PM 2.5 (particulate matter with an aerodynamic diameter ≤ 1 μm and ≤2.5 μm, respectively). However, studies on PM 1 concentrations and its health effects are limited due to a lack of PM 1 monitoring data. To estimate spatial and temporal variations of PM 1 concentrations in China during 2005-2014 using satellite remote sensing, meteorology, and land use information. Two types of Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 aerosol optical depth (AOD) data, Dark Target (DT) and Deep Blue (DB), were combined. Generalised additive model (GAM) was developed to link ground-monitored PM 1 data with AOD data and other spatial and temporal predictors (e.g., urban cover, forest cover and calendar month). A 10-fold cross-validation was performed to assess the predictive ability. The results of 10-fold cross-validation showed R 2 and Root Mean Squared Error (RMSE) for monthly prediction were 71% and 13.0 μg/m 3 , respectively. For seasonal prediction, the R 2 and RMSE were 77% and 11.4 μg/m 3 , respectively. The predicted annual mean concentration of PM 1 across China was 26.9 μg/m 3 . The PM 1 level was highest in winter while lowest in summer. Generally, the PM 1 levels in entire China did not substantially change during the past decade. Regarding local heavy polluted regions, PM 1 levels increased substantially in the South-Western Hebei and Beijing-Tianjin region. GAM with satellite-retrieved AOD, meteorology, and land use information has high predictive ability to estimate ground-level PM 1 . Ambient PM 1 reached high levels in China during the past decade. The estimated results can be applied to evaluate the health effects of PM 1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Motta, Valeria; Favero, Chiara; Dioni, Laura; Iodice, Simona; Battaglia, Cristina; Angelici, Laura; Vigna, Luisella; Pesatori, Angela Cecilia; Bollati, Valentina
2016-04-01
Exposure to particulate air pollution is associated with increased blood pressure (BP), a well-established risk factor for cardiovascular disease. To elucidate the mechanisms underlying this relationship, we investigated whether the effects of particulate matter of less than 10μm in aerodynamic diameter (PM10) on BP are mediated by microRNAs. We recruited 90 obese individuals and we assessed their PM10 exposure 24 and 48h before the recruitment day. We performed multivariate linear regression models to investigate the effects of PM10 on BP. Using the TaqMan® Low-Density Array, we experimentally evaluated and technically validated the expression levels of 377 human miRNAs in peripheral blood. We developed a mediated moderation analysis to estimate the proportion of PM10 effects on BP that was mediated by miRNA expression. PM10 exposure 24 and 48h before the recruitment day was associated with increased systolic BP (β=1.22mmHg, P=0.019; β=1.24mmHg, P=0.019, respectively) and diastolic BP (β=0.67mmHg, P=0.044; β=0.91mmHg, P=0.007, respectively). We identified nine miRNAs associated with PM10 levels 48h after exposure. A conditional indirect effect (CIE=-0.1431) of PM10 on diastolic BP, which was mediated by microRNA-101, was found in individuals with lower values of mean body mass index. Our data provide evidence that miRNAs are a molecular mechanism underlying the BP-related effects of air pollution exposure, and indicate miR-101 as epigenetic mechanism to be further investigated. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Exaggerated effects of particulate matter air pollution in genetic type II diabetes mellitus.
Liu, Cuiqing; Bai, Yuntao; Xu, Xiaohua; Sun, Lixian; Wang, Aixia; Wang, Tse-Yao; Maurya, Santosh K; Periasamy, Muthu; Morishita, Masako; Harkema, Jack; Ying, Zhekang; Sun, Qinghua; Rajagopalan, Sanjay
2014-05-30
Prior experimental and epidemiologic data support a link between exposure to fine ambient particulate matter (<2.5 μm in aerodynamic diameter, PM2.5) and development of insulin resistance/Type II diabetes mellitus. This study was designed to investigate whether inhalational exposure of concentrated PM2.5 in a genetically susceptible animal model would result in abnormalities in energy metabolism and exacerbation of peripheral glycemic control. KKay mice, which are susceptible to Type II DM, were assigned to either concentrated ambient PM2.5 or filtered air (FA) for 5-8 weeks via a whole body exposure system. Glucose tolerance, insulin sensitivity, oxygen consumption and heat production were evaluated. At euthanasia, blood, spleen and visceral adipose tissue were collected to measure inflammatory cells using flow cytometry. Standard immnunohistochemical methods, western blotting and quantitative PCR were used to assess targets of interest. PM2.5 exposure influenced energy metabolism including O2 consumption, CO2 production, respiratory exchange ratio and thermogenesis. These changes were accompanied by worsened insulin resistance, visceral adiposity and inflammation in spleen and visceral adipose depots. Plasma adiponectin were decreased in response to PM2.5 exposure while leptin levels increased. PM2.5 exposure resulted in a significant increase in expression of inflammatory genes and decreased UCP1 expression in brown adipose tissue and activated p38 and ERK pathways in the liver of the KKay mice. Concentrated ambient PM2.5 exposure impairs energy metabolism, concomitant with abnormalities in glucose homeostasis, increased inflammation in insulin responsive organs, brown adipose inflammation and results in imbalance in circulating leptin/adiponectin levels in a genetically susceptible diabetic model. These results provide additional insights into the mechanisms surrounding air pollution mediated susceptibility to Type II DM.
NASA Astrophysics Data System (ADS)
Zhang, Boen; Jiao, Limin; Xu, Gang; Zhao, Suli; Tang, Xin; Zhou, Yue; Gong, Chen
2018-06-01
Though it is recognized that meteorology has a great impact on the diffusion, accumulation and transport of air pollutants, few studies have investigated the impacts on different-sized particulate matter concentrations. We conducted a systematic comparative analysis and used the framework of generalized additive models (GAMs) to explore the influences of critical meteorological parameters, wind and precipitation, on PM2.5, PM10 and PM2.5-10 concentrations in Wuhan during 2013-2016. Overall, results showed that the impacts of wind and precipitation on different-sized PM concentrations are significantly different. The fine PM concentrations decreased gradually with the increase of wind speed, while coarse PM concentrations would increase due to dust resuspension under strong wind. Wind direction exerts limited influence on coarse PM concentrations. Wind speed was linearly correlated with log-transformed PM2.5 concentrations, but nonlinearly correlated with log-transformed PM10 and PM2.5-10 concentrations. We also found the PM2.5 and PM2.5-10 concentrations decreased by nearly 60 and 15% when the wind speed was up to 6 m/s, respectively, indicating a stronger negative impact of wind-speed on fine PM than coarse PM. The scavenging efficiency of precipitation on PM2.5-10 was over twice as high as on PM2.5. Our findings may help to understand the impacts of meteorology on different PM concentrations as well as discriminate and forecast variation in particulate matter concentrations.
Meteorological factors for PM10 concentration levels in Northern Spain
NASA Astrophysics Data System (ADS)
Santurtún, Ana; Mínguez, Roberto; Villar-Fernández, Alejandro; González Hidalgo, Juan Carlos; Zarrabeitia, María Teresa
2013-04-01
Atmospheric particulate matter (PM) is made up of a mixture of solid and aqueous species which enter the atmosphere by anthropogenic and natural pathways. The levels and composition of ambient air PM depend on the climatology and on the geography (topography, soil cover, proximity to arid zones or to the coast) of a given region. Spain has particular difficulties in achieving compliance with the limit values established by the European Union (based on recommendations from the World Health Organization) for particulate matter on the order of 10 micrometers of diameter or less (PM10), but not only antropogenical emissions are responsible for this: some studies show that PM10 concentrations originating from these kinds of sources are similar to what is found in other European countries, while some of the geographical features of the Iberian Peninsula (such as African mineral dust intrusion, soil aridity or rainfall) are proven to be a factor for higher PM concentrations. This work aims to describe PM10 concentration levels in Cantabria (Northern Spain) and their relationship with the following meteorological variables: rainfall, solar radiation, temperature, barometric pressure and wind speed. Data consists of daily series obtained from hourly data records for the 2000-2010 period, of PM10 concentrations from 4 different urban-background stations, and daily series of the meteorological variables provided by Spanish National Meteorology Agency. The method used for establishing the relationships between these variables consists of several steps: i) fitting a non-stationary probability density function for each variable accounting for long-term trends, seasonality during the year and possible seasonality during the week to distinguish between work and weekend days, ii) using the marginal distribution function obtained, transform the time series of historical values of each variable into a normalized Gaussian time series. This step allows using consistently time series models, iii) fitting of a times series model (Autoregressive moving average, ARMA) to the transformed historical values in order to eliminate the temporal autocorrelation structure of each stochastic process, obtaining a white noise for each variable, and finally, iv) the calculation of cross correlations between white noises at different time lags. These cross correlations allow characterization of the true correlation between signals, avoiding the problems induced by data scaling or autocorrelations inherent to each signal. Results provide the relationship and possible contribution to PM10 concentration levels associated with each meteorological variable. This information can be used to improve PM10 concentration levels forecasting using existing meteorological forecasts.
Hong, Yu-Jue; Huang, Yen-Ching; Lee, I-Long; Chiang, Che-Ming; Lin, Chitsan; Jeng, Hueiwang Anna
2015-01-01
This study was conducted to assess (1) levels of volatile organic compounds (VOCs) and particulate matter (PM) in a dental clinic in southern Taiwan and (2) dental care personnel's health risks associated with due to chronic exposure to VOCs. An automatic, continuous sampling system and a multi-gas monitor were employed to quantify the air pollutants, along with environmental comfort factors, including temperature, CO2, and relative humidity at six sampling sites in the clinic over eight days. Specific VOC compounds were identified and their concentrations were quantified. Both non-carcinogenic and carcinogenic VOC compounds were assessed based on the US Environmental Protection Agency's Principles of Health Risk Assessment in terms of whether those indoor air pollutants increased health risks for the full-time dental care professionals at the clinic. Increased levels of VOCs were recorded during business hours and exceeded limits recommended by the Taiwan Environmental Protection Agency. A total of 68 VOC compounds were identified in the study area. Methylene methacrylate (2.8 ppm) and acetone (0.176 ppm) were the only two non-carcinogenic compounds that posed increased risks for human health, yielding hazard indexes of 16.4 and 4.1, respectively. None of the carcinogenic compounds increased cancer risk. All detected PM10 levels ranged from 20 to 150 μg/m(3), which met the Taiwan EPA and international limits. The average PM10 level during business hours was significantly higher than that during non-business hours (P = 0.04). Improved ventilation capacity in the air conditioning system was recommended to reduce VOCs and PM levels.
Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.
Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John
2017-01-28
The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.
Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings
Miller, Shelly L.; Facciola, Nick A.; Toohey, Darin; Zhai, John
2017-01-01
The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055–0.1 μm) and fine (0.1–0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design. PMID:28134841
Non-exhaust PM emissions from electric vehicles
NASA Astrophysics Data System (ADS)
Timmers, Victor R. J. H.; Achten, Peter A. J.
2016-06-01
Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.
Wang, Huixia; Shi, Hui; Wang, Yanhui
2015-01-01
This paper investigated the spatial and temporal variations in the amounts of PM accumulated on leaves of Ligustrum lucidum, a common evergreen tree species in North China. The effects of rainfall and wind on the amounts of PM deposited on foliage were also determined. The amounts of PM (g·m−2) retained by leaves of L. lucidum differed significantly among the sites (from 0.96 to 5.56) and over time (from 2.51 to 4.48). The largest amounts of PM on foliage of L. lucidum were observed on plants growing at the most polluted site. During the year, the highest and lowest accumulation of PM occurred in November and August, respectively. A considerable proportion of the accumulated PM on leaves was removed by rainfall events (28–48% of PM) and strong winds (27–36% of PM), and more precipitation or higher maximum wind speed could remove more PM from leaves. Rainfall removed mainly large and coarse particles, while fine particles adhered more strongly to the foliage. These results suggested that the effects of local weather conditions (e.g., rainfall, strong wind), different seasons, and pollution levels should be considered in evaluating total PM accumulation on leaves. PMID:25685849
Wang, Huixia; Shi, Hui; Wang, Yanhui
2015-01-01
This paper investigated the spatial and temporal variations in the amounts of PM accumulated on leaves of Ligustrum lucidum, a common evergreen tree species in North China. The effects of rainfall and wind on the amounts of PM deposited on foliage were also determined. The amounts of PM (g · m(-2)) retained by leaves of L. lucidum differed significantly among the sites (from 0.96 to 5.56) and over time (from 2.51 to 4.48). The largest amounts of PM on foliage of L. lucidum were observed on plants growing at the most polluted site. During the year, the highest and lowest accumulation of PM occurred in November and August, respectively. A considerable proportion of the accumulated PM on leaves was removed by rainfall events (28-48% of PM) and strong winds (27-36% of PM), and more precipitation or higher maximum wind speed could remove more PM from leaves. Rainfall removed mainly large and coarse particles, while fine particles adhered more strongly to the foliage. These results suggested that the effects of local weather conditions (e.g., rainfall, strong wind), different seasons, and pollution levels should be considered in evaluating total PM accumulation on leaves.
Yongqiang Liu; John J. Qu; Xianjun Hao; Wanting Wang
2005-01-01
Wildfires can lead to severe environmental consequences by releasing large amounts of particulate matter (PM) and precursors of ozone (Sandberg et al., 1999; Riebau and Fox, 2001). The Southeast has the most burned area among various U.S. regions (Stanturf et al., 2002) and has regionally some of the highest levels of PM and ozone in the nation. Fires have been found...
NASA Astrophysics Data System (ADS)
Xu, Y.; Lamarque, J. F.; Wu, X.
2017-12-01
Particulate matter with the diameter smaller than 2.5 micrometers (PM2.5) poses health threats to human populations. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with Community Earth System Model 1 (CESM1), we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the primary cause for the increase in the PM2.5 column burden. Regionally over North America and East Asia, a shift of future precipitation toward more frequent heavy events contributes to weakened wet removal fluxes. Based on the daily model output, the frequency and intensity of extreme pollution events are also studied. We found that both stagnation frequency and rainfall changes serve to worsen extreme pollution in the future.
High exhaust temperature, zoned, electrically-heated particulate matter filter
Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima
2015-09-22
A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.
Shepherd, T A; Zhao, Y; Li, H; Stinn, J P; Hayes, M D; Xin, H
2015-03-01
As an integral part of the Coalition for Sustainable Egg Supply (CSES) Project, this study simultaneously monitored air emissions of 3 commercially operated egg production systems at the house level and associated manure storage over 2 single-cycle flocks (18 to 78 wk of age). The 3 housing systems were 1) a conventional cage house (CC) with a 200,000-hen capacity (6 hens in a cage at a stocking density of 516 cm2/hen), 2) an enriched colony house (EC) with a 50,000-hen capacity (60 hens per colony at a stocking density of 752 cm2/hen), and 3) an aviary house (AV) with a 50,000-hen capacity (at a stocking density of 1253 to 1257 cm2/hen). The 3 hen houses were located on the same farm and were populated with Lohmann white hens of the same age. Indoor environment and house-level gaseous (ammonia [NH3] and greenhouse gasses [GHG], including carbon dioxide [CO2], methane [CH4], and nitrous oxide [N2O]) and particulate matter (PM10, PM2.5) emissions were monitored continually. Gaseous emissions from the respective manure storage of each housing system were also monitored. Emission rates (ERs) are expressed as emission quantities per hen, per animal unit (AU, 500 kg live BW), and per kilogram of egg output. House-level NH3 ER (g/hen/d) of EC (0.054) was significantly lower than that of CC (0.082) or AV (0.112) (P<0.05). The house-level CO2 ER (g/hen/d) was lower for CC (68.3) than for EC and AV (74.4 and 74.0, respectively), and the CH4 ER (g/hen/d) was similar for all 3 houses (0.07 to 0.08). The house-level PM ER (mg/hen/d), essentially representing the farm-level PM ER, was significantly higher for AV (PM10 100.3 and PM2.5 8.8) than for CC (PM10 15.7 and PM2.5 0.9) or EC (PM10 15.6 and PM2.5 1.7) (P<0.05). The farm-level (house plus manure storage) NH3 ER (g/hen/d) was significantly lower for EC (0.16) than for CC (0.29) or AV (0.30) (P<0.05). As expected, the magnitudes of GHG emissions were rather small for all 3 production systems. Data from this study enable comparative assessment of conventional vs. alternative hen housing systems regarding air emissions and enhance the U.S. national air emissions inventory for farm animal operations. © The Author 2015. Published by Oxford University Press on behalf of Poultry Science Association.
Shepherd, T. A.; Zhao, Y.; Li, H.; Stinn, J. P.; Hayes, M. D.; Xin, H.
2015-01-01
As an integral part of the Coalition for Sustainable Egg Supply (CSES) Project, this study simultaneously monitored air emissions of 3 commercially operated egg production systems at the house level and associated manure storage over 2 single-cycle flocks (18 to 78 wk of age). The 3 housing systems were 1) a conventional cage house (CC) with a 200,000-hen capacity (6 hens in a cage at a stocking density of 516 cm2/hen), 2) an enriched colony house (EC) with a 50,000-hen capacity (60 hens per colony at a stocking density of 752 cm2/hen), and 3) an aviary house (AV) with a 50,000-hen capacity (at a stocking density of 1253 to 1257 cm2/hen). The 3 hen houses were located on the same farm and were populated with Lohmann white hens of the same age. Indoor environment and house-level gaseous (ammonia [NH3] and greenhouse gasses [GHG], including carbon dioxide [CO2], methane [CH4], and nitrous oxide [N2O]) and particulate matter (PM10, PM2.5) emissions were monitored continually. Gaseous emissions from the respective manure storage of each housing system were also monitored. Emission rates (ERs) are expressed as emission quantities per hen, per animal unit (AU, 500 kg live BW), and per kilogram of egg output. House-level NH3 ER (g/hen/d) of EC (0.054) was significantly lower than that of CC (0.082) or AV (0.112) (P < 0.05). The house-level CO2 ER (g/hen/d) was lower for CC (68.3) than for EC and AV (74.4 and 74.0, respectively), and the CH4 ER (g/hen/d) was similar for all 3 houses (0.07 to 0.08). The house-level PM ER (mg/hen/d), essentially representing the farm-level PM ER, was significantly higher for AV (PM10 100.3 and PM2.5 8.8) than for CC (PM10 15.7 and PM2.5 0.9) or EC (PM10 15.6 and PM2.5 1.7) (P < 0.05). The farm-level (house plus manure storage) NH3 ER (g/hen/d) was significantly lower for EC (0.16) than for CC (0.29) or AV (0.30) (P < 0.05). As expected, the magnitudes of GHG emissions were rather small for all 3 production systems. Data from this study enable comparative assessment of conventional vs. alternative hen housing systems regarding air emissions and enhance the U.S. national air emissions inventory for farm animal operations. PMID:25737568
Sgrigna, G; Baldacchini, C; Esposito, R; Calandrelli, R; Tiwary, A; Calfapietra, C
2016-04-01
This study reports application of monitoring and characterization protocol for particulate matter (PM) deposited on tree leaves, using Quercus ilex as a case study species. The study area is located in the industrial city of Terni in central Italy, with high PM concentrations. Four trees were selected as representative of distinct pollution environments based on their proximity to a steel factory and a street. Wash off from leaves onto cellulose filters were characterized using scanning electron microscopy and energy dispersive X-ray spectroscopy, inferring the associations between particle sizes, chemical composition, and sampling location. Modeling of particle size distributions showed a tri-modal fingerprint, with the three modes centered at 0.6 (factory related), 1.2 (urban background), and 2.6μm (traffic related). Chemical detection identified 23 elements abundant in the PM samples. Principal component analysis recognized iron and copper as source-specific PM markers, attributed mainly to industrial and heavy traffic pollution respectively. Upscaling these results on leaf area basis provided a useful indicator for strategic evaluation of harmful PM pollutants using tree leaves. Copyright © 2016. Published by Elsevier B.V.
Comparative toxicity assessment of particulate matter (PM) from different sources will potentially inform the understanding of regional differences in PM-induced cardiac health effects by identifying PM sources linked to highest potency components. Conventional low-throughput in...
NASA Astrophysics Data System (ADS)
Plocoste, Thomas; Calif, Rudy; Jacoby-Koaly, Sandra
2017-11-01
A good knowledge of the intermittency of atmospheric pollutants is crucial for air pollution management. We consider here particulate matter PM 10 and ground-level ozone O3 time series in Guadeloupe archipelago which experiments a tropical and humid climate in the Caribbean zone. The aim of this paper is to study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. Firstly, we estimate their Fourier power spectra and consider their scaling properties in the physical space. The power spectra computed follows a power law behavior for both considered pollutants. Thereafter we study the scaling behavior of PM 10 and O3 time series. Contrary to numerous studies where the multifractal detrended fluctuation analysis is frequently applied, here, the classical structure function analysis is used to extract the scaling exponent or multifractal spectrum ζ(q) ; this function provides a full characterization of a process at all intensities and all scales. The obtained results show that PM 10 and O3 possess intermittent and multifractal properties. The singularity spectrum MS(α) also confirms both pollutants multifractal features. The originality of this work comes from a statistical modeling performed on ζ(q) and MS(α) by a lognormal model to compute the intermittency parameter μ. By contrast with PM 10 which mainly depends on puffs of Saharan dust (synoptic-scale), O3 is more intermittent due to variability of its local precursors. The results presented in this paper can help to better understand the mechanisms governing the dynamics of PM 10 and O3 in Caribbean islands context.
Yamazaki, Shin; Shima, Masayuki; Yoda, Yoshiko; Oka, Katsumi; Kurosaka, Fumitake; Shimizu, Shigeta; Takahashi, Hironobu; Nakatani, Yuji; Nishikawa, Jittoku; Fujiwara, Katsuhiko; Mizumori, Yasuyuki; Mogami, Akira; Yamada, Taku; Yamamoto, Nobuharu
2014-03-01
In January 2013, extremely high concentrations of fine particles (PM2.5) were observed around Beijing, China. In Japan, the health effects of transboundary air pollution have been a matter of concern. We examined the association between the levels of outdoor PM2.5 and other air pollutants with primary care visits (PCVs) at night due to asthma attack in Himeji City, western Japan. A case-crossover study was conducted in a primary care clinic in Himeji City, Japan, involving 112 subjects aged 0-80 years who visited the clinic due to an asthma attack between 9 p.m. and 6 a.m. during the period January-March, 2013. Daily concentrations of particulate matter, ozone, nitrogen dioxide, and some meteorological elements were measured, and a conditional logistic regression model was used to estimate the odds ratios (OR) of PCVs per unit increment in air pollutants or meteorological elements. Of the 112 subjects, 76 (68 %) were aged <15 years. We did not note any association between daily PM2.5 levels and PCVs due to asthma attack at night. A positive relation between ozone and PCVs due to asthma attack was detected. The OR per 10 ppb increment in daily mean ozone the day before the visit was 2.31 (95 % confidence interval 1.16-4.61). These findings do not support an association between daily mean concentration of PM2.5 and PCVs at night. However, we did find evidence suggesting that ozone is associated with PCVs.
Yang, Hongxi; Li, Shu; Sun, Li; Zhang, Xinyu; Hou, Jie; Wang, Yaogang
2017-10-03
In October 2013, the International Agency for Research on Cancer classified the particulate matter from outdoor air pollution as a group 1 carcinogen and declared that particulate matter can cause lung cancer. Fine particular matter (PM 2.5 ) pollution is becoming a serious public health concern in urban areas of China. It is essential to emphasize the importance of the public's awareness and knowledge of modifiable risk factors of lung cancer for prevention. The objective of our study was to explore the public's awareness of the association of PM 2.5 with lung cancer risk in China by analyzing the relationship between the daily PM 2.5 concentration and searches for the term "lung cancer" on an Internet big data platform, Baidu. We collected daily PM 2.5 concentration data and daily Baidu Index data in 31 Chinese capital cities from January 1, 2014 to December 31, 2016. We used Spearman correlation analysis to explore correlations between the daily Baidu Index for lung cancer searches and the daily average PM 2.5 concentration. Granger causality test was used to analyze the causal relationship between the 2 time-series variables. In 23 of the 31 cities, the pairwise correlation coefficients (Spearman rho) between the daily Baidu Index for lung cancer searches and the daily average PM 2.5 concentration were positive and statistically significant (P<.05). However, the correlation between the daily Baidu Index for lung cancer searches and the daily average PM 2.5 concentration was poor (all r 2 s <.1). Results of Granger causality testing illustrated that there was no unidirectional causality from the daily PM 2.5 concentration to the daily Baidu Index for lung cancer searches, which was statistically significant at the 5% level for each city. The daily average PM 2.5 concentration had a weak positive impact on the daily search interest for lung cancer on the Baidu search engine. Well-designed awareness campaigns are needed to enhance the general public's awareness of the association of PM 2.5 with lung cancer risk, to lead the public to seek more information about PM 2.5 and its hazards, and to cope with their environment and its risks appropriately. ©Hongxi Yang, Shu Li, Li Sun, Xinyu Zhang, Jie Hou, Yaogang Wang. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 03.10.2017.
MODELING ENVIRONMENTAL EXPOSURES TO PARTICULATE MATTER AND PESTICIDES
This presentation describes initial results from on-going research at EPA on modeling human exposures to particulate matter and residential pesticides. A first generation probabilistic population exposure model for Particulate Matter (PM), specifically for predicting PM1o and P...
40 CFR 52.427 - Control strategy: Particulate matter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) Determination of attainment. EPA has determined, as of May 16, 2012, that based on... fine particulate matter (PM2.5) nonattainment area has attained the 2006 24-hour PM2.5 national ambient...
40 CFR 52.427 - Control strategy: Particulate matter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) Determination of attainment. EPA has determined, as of May 16, 2012, that based on... fine particulate matter (PM2.5) nonattainment area has attained the 2006 24-hour PM2.5 national ambient...
Assessing the Capacity of Plant Species to Accumulate Particulate Matter in Beijing, China
Mo, Li; Ma, Zeyu; Xu, Yansen; Sun, Fengbin; Lun, Xiaoxiu; Liu, Xuhui; Chen, Jungang; Yu, Xinxiao
2015-01-01
Air pollution causes serious problems in spring in northern China; therefore, studying the ability of different plants to accumulate particulate matter (PM) at the beginning of the growing season may benefit urban planners in their attempts to control air pollution. This study evaluated deposits of PM on the leaves and in the wax layer of 35 species (11 shrubs, 24 trees) in Beijing, China. Differences in the accumulation of PM were observed between species. Cephalotaxus sinensis, Euonymus japonicus, Broussonetia papyriferar, Koelreuteria paniculata and Quercus variabilis were all efficient in capturing small particles. The plants exhibiting high amounts of total PM accumulation (on leaf surfaces and/or in the wax layer), also showed comparatively high levels of PM accumulation across all particle sizes. A comparison of shrubs and trees did not reveal obvious differences in their ability to accumulate particles based on growth form; a combination of plantings with different growth forms can efficiently reduce airborne PM concentrations near the ground. To test the relationships between leaf traits and PM accumulation, leaf samples of selected species were observed using a scanning electron microscope. Growth forms with greater amounts of pubescence and increased roughness supported PM accumulation; the adaxial leaf surfaces collected more particles than the abaxial surfaces. The results of this study may inform the selection of species for urban green areas where the goal is to capture air pollutants and mitigate the adverse effects of air pollution on human health. PMID:26506104
Abu-Elmagd, Muhammad; Alghamdi, Mansour A.; Shamy, Magdy; Khoder, Mamdouh I.; Costa, Max; Assidi, Mourad; Kadam, Roaa; Alsehli, Haneen; Gari, Mamdooh; Pushparaj, Peter Natesan; Kalamegam, Gauthaman; Al-Qahtani, Mohammed H.
2017-01-01
Particulate matter (PM) contains heavy metals that affect various cellular functions and gene expression associated with a range of acute and chronic diseases in humans. However, the specific effects they exert on the stem cells remain unclear. Here, we report the effects of PM collected from the city of Jeddah on proliferation, cell death, related gene expression and systems of biological analysis in bone marrow mesenchymal stem cells (BM-MSCs), with the aim of understanding the underlying mechanisms. PM2.5 and PM10 were tested in vitro at various concentrations (15 to 300 µg/mL) and durations (24 to 72 h). PMs induced cellular stress including membrane damage, shrinkage and death. Lower concentrations of PM2.5 increased proliferation of BM-MSCs, while higher concentrations served to decrease it. PM10 decreased BM-MSCs proliferation in a concentration-dependent manner. The X-ray fluorescence spectrometric analysis showed that PM contains high levels of heavy metals. Ingenuity Pathway Analysis (IPA) and hierarchical clustering analyses demonstrated that heavy metals were associated with signaling pathways involving cell stress/death, cancer and chronic diseases. qRT-PCR results showed differential expression of the apoptosis genes (BCL2, BAX); inflammation associated genes (TNF-α and IL-6) and the cell cycle regulation gene (p53). We conclude that PM causes inflammation and cell death, and thereby predisposes to chronic debilitating diseases. PMID:28425934
Laura, Angelici; Mirko, Piola; Tommaso, Cavalleri; Giorgia, Randi; Francesca, Cortini; Roberto, Bergamaschi; Andrea, Baccarelli A; Alberto, Bertazzi Pier; Cecilia, Pesatori Angela; Valentina, Bollati
2016-01-01
Background Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the central nervous system, characterized by recurrent relapses of inflammation that cause mild to severe disability. Exposure to airborne particulate matter (PM) has been associated with acute increases in systemic inflammatory responses and neuroinflammation. In the present study, we hypothesize that exposure to PM < 10 µm in diameter (PM10) might increase the occurrence of MS-related hospitalizations. Methods We obtained daily concentrations of PM10 from 53 monitoring sites covering the study area and we identified 8287 MS-related hospitalization through hospital admission-discharge records of the Lombardy region, Italy, between 2001 and 2009. We used a Poisson regression analysis to investigate the association between exposure to PM10 and risk of hospitalization. Results A higher RR of hospital admission for MS relapse was associated with exposure to PM10 at different time intervals. The maximum effect of PM10 on MS hospitalization was found for exposure between days 0 and 7: Hospital admission for MS increased 42% (95%CI 1.39–1.45) on the days preceded by one week with PM10 levels in the highest quartile. The p-value for trend across quartiles was < 0.001. Conclusions These data support the hypothesis that air pollution may have a role in determining MS occurrence and relapses. Our findings could open new avenues for determining the pathogenic mechanisms of MS and potentially be applied to other autoimmune diseases. PMID:26624240
Shen, Yen-Ling; Liu, Wen-Te; Lee, Kang-Yun; Chuang, Hsiao-Chi; Chen, Hua-Wei; Chuang, Kai-Jen
2018-02-01
Recent studies suggest that exposure to air pollution might be associated with severity of sleep-disordered breathing (SDB). However, the association between air pollution exposure, especially particulate matter with aerodynamic diameters <= 2.5 μm (PM 2.5 ), and SDB is still unclear. We collected 4312 participants' data from the Taipei Medical University Hospital's Sleep Center and air pollution data from the Taiwan Environmental Protection Administration. Associations of particulate matter with aerodynamic diameters <=10 μm (PM 10 ), PM 2.5 , nitrogen dioxide (NO 2 ), ozone (O 3 ) and sulfur dioxide (SO 2 ) with apnea-hypopnea index (AHI) and oxygen desaturation index (ODI) were investigated by generalized additive models. We found that an interquartile range (IQR) increase in 1-year mean PM 2.5 (3.4 μg/m 3 ) and NO 2 (2.7 ppb) was associated with a 4.7% and 3.6% increase in AHI, respectively. We also observed the association of an IQR increase in 1-year mean PM 2.5 with a 2.5% increase in ODI. The similar pattern was found in the association of daily mean PM 2.5 exposure with increased AHI. Moreover, participants showed significant AHI and ODI responses to air pollution levels in spring and winter. We concluded that exposure to PM 2.5 was associated with SDB. Effects of air pollution on AHI and ODI were significant in spring and winter. Copyright © 2017 Elsevier Ltd. All rights reserved.
Overexpression of HO-1 assisted PM2.5-induced apoptosis failure and autophagy-related cell necrosis.
Zhou, Wei; Yuan, Xiaoyan; Zhang, Li; Su, Baoting; Tian, Dongdong; Li, Yang; Zhao, Jun; Wang, Yimei; Peng, Shuangqing
2017-11-01
Severe smog/haze events accompanied by extremely high concentrations of airborne fine particulate matter (PM2.5) have emerged frequently in China and the potential health risks have attracted ever-growing attention. During these episodes, a surge in hospital visits for acute respiratory symptoms and respiratory diseases exacerbation has been reported to be associated with acute exposure to high-levels of particulate matters. To investigate cell fate determination and the underlying pathogenic mechanisms during severe haze episodes or smog events, we exposed human lung epithelial cells (BEAS-2B) to PM2.5 (0-400μg/mL) for 24h and found that high doses of PM2.5 caused cell necrosis and autophagy dysfunction, while co-treatment with the autophagy inhibitor 3-MA could partially reduce PM2.5-induced cell necrosis. Exposure to PM2.5 also increased the expression and mitochondrial transposition of heme oxygenase 1 (HO-1), which consequently reduced the release of cytochrome C from mitochondria to cytosol. Knockdown of HO-1 by siRNA attenuated the mitochondrial accumulation of HO-1, reversed HO-1-induced the reduction of cytochrome C release and promoted PM2.5-induced cell apoptosis. In contrast to necrosis, PM2.5-induced autophagy was independent of HO-1. In conclusion, our results demonstrate that acute exposure to high PM2.5 concentrations causes autophagy-related cell necrosis. The decrease in cytochrome C release and apoptosis by upregulation of HO-1 maybe assist PM2.5-induced autophagy-related cell necrosis. Further, this study reveals dual roles for HO-1 in PM2.5-induced cytotoxicity and presents a possible explanation for the onset of acute respiratory symptoms under extreme particulate air pollution. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Khan, M. F.; Latif, M. T.; Saw, W. H.; Amil, N.; Nadzir, M. S. M.; Sahani, M.; Tahir, N. M.; Chung, J. X.
2015-08-01
The health implications of PM2.5 in tropical regions of Southeast Asia are significant as PM2.5 can pose serious health concerns. PM2.5 is strongly influenced by the monsoon. We quantitatively characterize the health risks posed to human populations by selected heavy metals in PM2.5. Monsoonal effects as well as factors influencing the sources of PM2.5 were also determined. Apportionment analysis of PM2.5 was undertaken using US EPA positive matrix factorization (PMF) 5.0 and a mass closure model. Overall, 48 % of the samples exceeded the World Health Organization (WHO) 24 h guideline. The mass closure model identified four sources of PM2.5: (a) mineral matter (MIN) (35 %), (b) secondary inorganic aerosol (SIA) (11 %), (c) sea salt (SS) (7 %), (d) trace elements (TE) (2 %) and (e) undefined (UD) (45 %). PMF 5.0 identified five potential sources and motor vehicle emissions and biomass burning were dominant followed by marine and sulfate aerosol, coal burning, nitrate aerosol, and mineral and road dust. The non-carcinogenic risk level for four selected metals (Pb, As, Cd and Ni) in PM2.5 and in the identified major sources by PMF > 5.0, with respect to inhalation follows the order of PM2.5 > coal burning > motor vehicle emissions/biomass burning > mineral/road dust. The lifetime cancer risk follows the order of As > Ni > Pb > Cd for mineral/road dust, coal burning and overall of PM2.5 concentration and As > Pb > Ni > Cd for motor vehicle/biomass burning. Overall, the associated cancer risk posed by the exposure of toxic metals in PM2.5 is three to four in 1 000 000 people in this location.
Wang, Yi; Eliot, Melissa N.; Wellenius, Gregory A.
2014-01-01
Background Stroke is a leading cause of death and long‐term disability in the United States. There is a well‐documented association between ambient particulate matter air pollution (PM) and cardiovascular disease morbidity and mortality. Given the pathophysiologic mechanisms of these effects, short‐term elevations in PM may also increase the risk of ischemic and/or hemorrhagic stroke morbidity and mortality, but the evidence has not been systematically reviewed. Methods and Results We provide a comprehensive review of all observational human studies (January 1966 to January 2014) on the association between short‐term changes in ambient PM levels and cerebrovascular events. We also performed meta‐analyses to evaluate the evidence for an association between each PM size fraction (PM2.5, PM10, PM2.5‐10) and each outcome (total cerebrovascular disease, ischemic stroke/transient ischemic attack, hemorrhagic stroke) separately for mortality and hospital admission. We used a random‐effects model to estimate the summary percent change in relative risk of the outcome per 10‐μg/m3 increase in PM. Conclusions We found that PM2.5 and PM10 are associated with a 1.4% (95% CI 0.9% to 1.9%) and 0.5% (95% CI 0.3% to 0.7%) higher total cerebrovascular disease mortality, respectively, with evidence of inconsistent, nonsignificant associations for hospital admission for total cerebrovascular disease or ischemic or hemorrhagic stroke. Current limited evidence does not suggest an association between PM2.5‐10 and cerebrovascular mortality or morbidity. We discuss the potential sources of variability in results across studies, highlight some observations, and identify gaps in literature and make recommendations for future studies. PMID:25103204
Analysis of airborne particulate matter (PM2.5) over Hong Kong using remote sensing and GIS.
Shi, Wenzhong; Wong, Man Sing; Wang, Jingzhi; Zhao, Yuanling
2012-01-01
Airborne fine particulates (PM(2.5); particulate matter with diameter less than 2.5 μm) are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM(2.5) and its correlation with meteorological parameters in Hong Kong, during 2007-2008. Significant diurnal variations of PM(2.5) concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM(2.5) concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM(2.5) were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM(2.5) emissions. To understand the spatial pattern of PM(2.5) concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM(2.5) vertical profiles. A Geographic Information Systems (GIS) prototype was developed to integrate atmospheric PM(2.5) vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM(2.5) concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies.
Analysis of Airborne Particulate Matter (PM2.5) over Hong Kong Using Remote Sensing and GIS
Shi, Wenzhong; Wong, Man Sing; Wang, Jingzhi; Zhao, Yuanling
2012-01-01
Airborne fine particulates (PM2.5; particulate matter with diameter less than 2.5 μm) are receiving increasing attention for their potential toxicities and roles in visibility and health. In this study, we interpreted the behavior of PM2.5 and its correlation with meteorological parameters in Hong Kong, during 2007–2008. Significant diurnal variations of PM2.5 concentrations were observed and showed a distinctive bimodal pattern with two marked peaks during the morning and evening rush hour times, due to dense traffic. The study observed higher PM2.5 concentrations in winter when the northerly and northeasterly winds bring pollutants from the Chinese mainland, whereas southerly monsoon winds from the sea bring fresh air to the city in summer. In addition, higher concentrations of PM2.5 were observed in rush hours on weekdays compared to weekends, suggesting the influence of anthropogenic activities on fine particulate levels, e.g., traffic-related local PM2.5 emissions. To understand the spatial pattern of PM2.5 concentrations in the context of the built-up environment of Hong Kong, we utilized MODerate Resolution Imaging Spectroradiometer (MODIS) Aerosol Optical Thickness (AOT) 500 m data and visibility data to derive aerosol extinction profile, then converted to aerosol and PM2.5 vertical profiles. A Geographic Information Systems (GIS) prototype was developed to integrate atmospheric PM2.5 vertical profiles with 3D GIS data. An example of the query function in GIS prototype is given. The resulting 3D database of PM2.5 concentrations provides crucial information to air quality regulators and decision makers to comply with air quality standards and in devising control strategies. PMID:22969323
Li, Huaqiong; Fang, Crystal Hay Yu; Shi, Wenxiong; Gurusamy, Subramaniam; Li, Shuzhou; Krishnan, Manoj N; George, Saji
2015-11-04
Although building constructions are a recurring part of urbanization, the health risk of particulate matters (PM) originating from such activities have seldom been subjected to detailed studies. We sought to characterize the relative risk of air borne PM collected from different heights (ground and top floor) of a building adjacent to a building under early phase of construction. We determined the physico-chemical properties such as size and shape, elemental composition and surface charge of the PM. The oxidative stress dependent cytotoxic and pro-inflammatory responses were assessed in BEAS-2B and RAW 264.7 cell lines using high-content-screening platforms. In comparison to top floor, the total mass of PM collected from ground floor was two-three folds higher and the mass fraction was dominated by PM20-35. Elemental analysis showed abundance of Si, Al, K, Ca and Fe in bigger PM while for PM0.25-0.5 it was mostly constituted by C and crystals rich in S and K. PM caused NFκB activation, secretion of pro-inflammatory cytokines and cytotoxicity wherein PM0.25-0.5 was the most potent among the tested PM. Estimated exposure level and lung burden together with the data on hazard potential were used for developing a MATLAB based risk-assessment model which suggested that the potential for health risk is relatively higher at the ground floor. Our studies demonstrated differences in, relative abundance of PM, their physicochemical and biological properties collected from different heights adjacent to a construction site and showed that relative health risk is higher at the ground floor. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Fan, Tianteng; Fang, Shona C; Cavallari, Jennifer M; Barnett, Ian J; Wang, Zhaoxi; Su, Li; Byun, Hyang-Min; Lin, Xihong; Baccarelli, Andrea A; Christiani, David C
2014-12-16
In occupational settings, boilermakers are exposed to high levels of metallic fine particulate matter (PM2.5) generated during the welding process. The effect of welding PM2.5 on heart rate variability (HRV) has been described, but the relationship between PM2.5, DNA methylation, and HRV is not known. In this repeated-measures panel study, we recorded resting HRV and measured DNA methylation levels in transposable elements Alu and long interspersed nuclear element-1 (LINE-1) in peripheral blood leukocytes under ambient conditions (pre-shift) and right after a welding task (post-shift) among 66 welders. We also monitored personal PM2.5 level in the ambient environment and during the welding procedure. The concentration of welding PM2.5 was significantly higher than background levels in the union hall (0.43 mg/m3 vs. 0.11 mg/m3, p < 0.0001). The natural log of transformed power in the high frequency range (ln HF) had a significantly negative association with PM2.5 exposure (β = -0.76, p = 0.035). pNN10 and pNN20 also had a negative association with PM2.5 exposure (β = -0.16%, p = 0.006 and β = -0.13%, p = 0.030, respectively). PM2.5 was positively associated with LINE-1 methylation [β = 0.79%, 5-methylcytosince (%mC), p = 0.013]; adjusted for covariates. LINE-1 methylation did not show an independent association with HRV. Acute decline of HRV was observed following exposure to welding PM2.5 and evidence for an epigenetic response of transposable elements to short-term exposure to high-level metal-rich particulates was reported.
Source influence on emission pathways and ambient PM2.5 pollution over India (2015-2050)
NASA Astrophysics Data System (ADS)
Venkataraman, Chandra; Brauer, Michael; Tibrewal, Kushal; Sadavarte, Pankaj; Ma, Qiao; Cohen, Aaron; Chaliyakunnel, Sreelekha; Frostad, Joseph; Klimont, Zbigniew; Martin, Randall V.; Millet, Dylan B.; Philip, Sajeev; Walker, Katherine; Wang, Shuxiao
2018-06-01
India is currently experiencing degraded air quality, and future economic development will lead to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015-2050, under specific pathways of diffusion of cleaner and more energy-efficient technologies. The impacts of individual source sectors on PM2.5 concentrations were assessed through systematic simulations of spatially and temporally resolved particulate matter concentrations, using the GEOS-Chem model, followed by population-weighted aggregation to national and state levels. We find that PM2.5 pollution is a pan-India problem, with a regional character, and is not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 annual standard (40 µg m-3). Sources related to human activities were responsible for the largest proportion of the present-day population exposure to PM2.5 in India. About 60 % of India's mean population-weighted PM2.5 concentrations come from anthropogenic source sectors, while the remainder are from other
sources, windblown dust and extra-regional sources. Leading contributors are residential biomass combustion, power plant and industrial coal combustion and anthropogenic dust (including coal fly ash, fugitive road dust and waste burning). Transportation, brick production and distributed diesel were other contributors to PM2.5. Future evolution of emissions under regulations set at current levels and promulgated levels caused further deterioration of air quality in 2030 and 2050. Under an ambitious prospective policy scenario, promoting very large shifts away from traditional biomass technologies and coal-based electricity generation, significant reductions in PM2.5 levels are achievable in 2030 and 2050. Effective mitigation of future air pollution in India requires adoption of aggressive prospective regulation, currently not formulated, for a three-pronged switch away from (i) biomass-fuelled traditional technologies, (ii) industrial coal-burning and (iii) open burning of agricultural residue. Future air pollution is dominated by industrial process emissions, reflecting larger expansion in industrial, rather than residential energy demand. However, even under the most active reductions envisioned, the 2050 mean exposure, excluding any impact from windblown mineral dust, is estimated to be nearly 3 times higher than the WHO Air Quality Guideline.
2015-12-30
FINAL REPORT Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM...Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M...report contains color. 14. ABSTRACT This project consists of demonstrating the performance and viability of two devices to condition aircraft turbine
Rodosthenous, Rodosthenis S; Coull, Brent A; Lu, Quan; Vokonas, Pantel S; Schwartz, Joel D; Baccarelli, Andrea A
2016-03-08
Air pollution from particulate matter (PM) has been linked to cardiovascular morbidity and mortality; however the underlying biological mechanisms remain to be uncovered. Gene regulation by microRNAs (miRNAs) that are transferred between cells by extracellular vesicles (EVs) may play an important role in PM-induced cardiovascular risk. This study sought to determine if ambient PM2.5 levels are associated with expression of EV-encapsulated miRNAs (evmiRNAs), and to investigate the participation of such evmiRNAs in pathways related to cardiovascular disease (CVD). We estimated the short- (1-day), intermediate- (1-week and 1-month) and long-term (3-month, 6-month, and 1-year) moving averages of ambient PM2.5 levels at participants' addresses using a validated hybrid spatio-temporal land-use regression model. We collected 42 serum samples from 22 randomly selected participants in the Normative Aging Study cohort and screened for 800 miRNAs using the NanoString nCounter® platform. Mixed effects regression models, adjusted for potential confounders were used to assess the association between ambient PM2.5 levels and evmiRNAs. All p-values were adjusted for multiple comparisons. In-silico Ingenuity Pathway Analysis (IPA) was performed to identify biological pathways that are regulated by PM-associated evmiRNAs. We found a significant association between long-term ambient PM2.5 exposures and levels of multiple evmiRNAs circulating in serum. In the 6-month window, ambient PM2.5 exposures were associated with increased levels of miR-126-3p (0.74 ± 0.21; p = 0.02), miR-19b-3p (0.52 ± 0.15; p = 0.02), miR-93-5p (0.78 ± 0.22; p = 0.02), miR-223-3p (0.74 ± 0.22; p = 0.02), and miR-142-3p (0.81 ± 0.21; p = 0.03). Similarly, in the 1-year window, ambient PM2.5 levels were associated with increased levels of miR-23a-3p (0.83 ± 0.23; p = 0.02), miR-150-5p (0.90 ± 0.24; p = 0.02), miR-15a-5p (0.70 ± 0.21; p = 0.02), miR-191-5p (1.20 ± 0.35; p = 0.02), and let-7a-5p (1.42 ± 0.39; p = 0.02). In silico pathway analysis on PM2.5-associated evmiRNAs identified several key CVD-related pathways including oxidative stress, inflammation, and atherosclerosis. We found an association between long-term ambient PM2.5 levels and increased levels of evmiRNAs circulating in serum. Further observational studies are warranted to confirm and extend these important findings in larger and more diverse populations, and experimental studies are needed to elucidate the exact roles of evmiRNAs in PM-induced CVD.
NASA Astrophysics Data System (ADS)
Rodes, Charles E.; Lawless, Phil A.; Thornburg, Jonathan W.; Williams, Ronald W.; Croghan, Carry W.
2010-04-01
This analysis provides the initial summary of PM 2.5 mass concentrations relationships for all seasons and participants for a general population in the Detroit Exposure and Aerosol Research Study (DEARS). The summary presented highlights the utility of the new methodologies applied, in addition to summarizing the particulate matter (PM) data. Results include the requirement to adjust the exposure data for monitor wearing compliance and measured environmental tobacco smoke (ETS) levels, even though the study design specified a non-smoking household. A 40% wearing compliance acceptance level was suggested as necessary to balance minimizing exposure misclassification (from poor compliance) and having sufficient data to conduct robust statistical analyses. An ETS threshold level equivalent to adding more than 1.5 μg m -3 to the collected sample was found to be necessary to detect changes in the personal exposure factor ( Fpex). It is not completely clear why such a large threshold level was necessary. Statistically significant spatial PM 2.5 gradients were identified in three of the six DEARS neighborhoods in Wayne County. These were expected, given the number of strong, localized PM sources in the Detroit (Michigan) metro area. Some residential outdoor bias levels compared with the central site at Allen Park exceeded 15%. After adjusting for ETS biases, the outdoor contributions to the personal exposure were typically larger by factors from 1.75 to 2.2 compared with those of the non-outdoor sources. The outdoor contribution was larger in the summer than in the winter, which is consistent with the fractions of time spent outdoors in the summer vs. the winter (6.7% vs. 1.1% of the time). Mean personal PM 2.5 cloud levels for the general population DEARS cohort ranged from 1.5 to 3.8 (after ETS adjustment) and were comparable to those reported previously. The personal exposure collections indoors were typically at least 13 times greater than those contributed outdoors.
Trasande, Leonardo; Malecha, Patrick; Attina, Teresa M.
2016-01-01
Background: Preterm birth (PTB) rates (11.4% in 2013) in the United States remain high and are a substantial cause of morbidity. Studies of prenatal exposure have associated particulate matter ≤ 2.5 μm in diameter (PM2.5) and other ambient air pollutants with adverse birth outcomes; yet, to our knowledge, burden and costs of PM2.5-attributable PTB have not been estimated in the United States. Objectives: We aimed to estimate burden of PTB in the United States and economic costs attributable to PM2.5 exposure in 2010. Methods: Annual deciles of PM2.5 were obtained from the U.S. Environmental Protection Agency. We converted PTB odds ratio (OR), identified in a previous meta-analysis (1.15 per 10 μg/m3 for our base case, 1.07–1.16 for low- and high-end scenarios) to relative risk (RRs), to obtain an estimate that better represents the true relative risk. A reference level (RL) of 8.8 μg/m3 was applied. We then used the RR estimates and county-level PTB prevalence to quantify PM2.5-attributable PTB. Direct medical costs were obtained from the 2007 Institute of Medicine report, and lost economic productivity (LEP) was estimated using a meta-analysis of PTB-associated IQ loss, and well-established relationships of IQ loss with LEP. All costs were calculated using 2010 dollars. Results: An estimated 3.32% of PTBs nationally (corresponding to 15,808 PTBs) in 2010 could be attributed to PM2.5 (PM2.5 > 8.8 μg/m3). Attributable PTBs cost were estimated at $5.09 billion [sensitivity analysis (SA): $2.43–9.66 B], of which $760 million were spent for medical care (SA: $362 M–1.44 B). The estimated PM2.5 attributable fraction (AF) of PTB was highest in urban counties, with highest AFs in the Ohio Valley and the southern United States. Conclusions: PM2.5 may contribute substantially to burden and costs of PTB in the United States, and considerable health and economic benefits could be achieved through environmental regulatory interventions that reduce PM2.5 exposure in pregnancy. Citation: Trasande L, Malecha P, Attina TM. 2016. Particulate matter exposure and preterm birth: estimates of U.S. attributable burden and economic costs. Environ Health Perspect 124:1913–1918; http://dx.doi.org/10.1289/ehp.1510810 PMID:27022947
Trasande, Leonardo; Malecha, Patrick; Attina, Teresa M
2016-12-01
Preterm birth (PTB) rates (11.4% in 2013) in the United States remain high and are a substantial cause of morbidity. Studies of prenatal exposure have associated particulate matter ≤ 2.5 μm in diameter (PM2.5) and other ambient air pollutants with adverse birth outcomes; yet, to our knowledge, burden and costs of PM2.5-attributable PTB have not been estimated in the United States. We aimed to estimate burden of PTB in the United States and economic costs attributable to PM2.5 exposure in 2010. Annual deciles of PM2.5 were obtained from the U.S. Environmental Protection Agency. We converted PTB odds ratio (OR), identified in a previous meta-analysis (1.15 per 10 μg/m3 for our base case, 1.07-1.16 for low- and high-end scenarios) to relative risk (RRs), to obtain an estimate that better represents the true relative risk. A reference level (RL) of 8.8 μg/m3 was applied. We then used the RR estimates and county-level PTB prevalence to quantify PM2.5-attributable PTB. Direct medical costs were obtained from the 2007 Institute of Medicine report, and lost economic productivity (LEP) was estimated using a meta-analysis of PTB-associated IQ loss, and well-established relationships of IQ loss with LEP. All costs were calculated using 2010 dollars. An estimated 3.32% of PTBs nationally (corresponding to 15,808 PTBs) in 2010 could be attributed to PM2.5 (PM2.5 > 8.8 μg/m3). Attributable PTBs cost were estimated at $5.09 billion [sensitivity analysis (SA): $2.43-9.66 B], of which $760 million were spent for medical care (SA: $362 M-1.44 B). The estimated PM2.5 attributable fraction (AF) of PTB was highest in urban counties, with highest AFs in the Ohio Valley and the southern United States. PM2.5 may contribute substantially to burden and costs of PTB in the United States, and considerable health and economic benefits could be achieved through environmental regulatory interventions that reduce PM2.5 exposure in pregnancy. Citation: Trasande L, Malecha P, Attina TM. 2016. Particulate matter exposure and preterm birth: estimates of U.S. attributable burden and economic costs. Environ Health Perspect 124:1913-1918; http://dx.doi.org/10.1289/ehp.1510810.
Peng, Roger D.; Butz, Arlene M.; Hackstadt, Amber J.; Williams, D'Ann L.; Diette, Gregory B.; Breysse, Patrick N.; Matsui, Elizabeth C.
2016-01-01
Recent intervention studies targeted at reducing indoor air pollution have demonstrated both the ability to improve respiratory health outcomes and to reduce particulate matter (PM) levels in the home. However, these studies generally do not address whether it is the reduction of PM levels specifically that improves respiratory health. In this paper we apply the method of principal stratification to data from a randomized air cleaner intervention designed to reduce indoor PM in homes of children with asthma. We estimate the health benefit of the intervention amongst study subjects who would experience a substantial reduction in PM in response to the intervention. For those subjects we find an increase in symptom-free days that is almost three times as large as the overall intention-to-treat effect. We also explore the presence of treatment effects amongst those subjects whose PM levels would not respond to the air cleaner. This analysis demonstrates the usefulness of principal stratification for environmental intervention trials and its potential for much broader application in this area. PMID:27695203
Peng, Roger D; Butz, Arlene M; Hackstadt, Amber J; Williams, D'Ann L; Diette, Gregory B; Breysse, Patrick N; Matsui, Elizabeth C
2015-02-01
Recent intervention studies targeted at reducing indoor air pollution have demonstrated both the ability to improve respiratory health outcomes and to reduce particulate matter (PM) levels in the home. However, these studies generally do not address whether it is the reduction of PM levels specifically that improves respiratory health. In this paper we apply the method of principal stratification to data from a randomized air cleaner intervention designed to reduce indoor PM in homes of children with asthma. We estimate the health benefit of the intervention amongst study subjects who would experience a substantial reduction in PM in response to the intervention. For those subjects we find an increase in symptom-free days that is almost three times as large as the overall intention-to-treat effect. We also explore the presence of treatment effects amongst those subjects whose PM levels would not respond to the air cleaner. This analysis demonstrates the usefulness of principal stratification for environmental intervention trials and its potential for much broader application in this area.
Nafees, Asaad Ahmed; Taj, Tahir; Kadir, Muhammad Masood; Fatmi, Zafar; Lee, Kiyoung; Sathiakumar, Nalini
2012-09-01
To determine particulate matter smaller than 2.5 μm (PM(2.5)) levels at various hospitality and entertainment venues of Karachi, Pakistan. This was a descriptive cross-sectional study conducted at various locations in Karachi, during July 2009. Sampling was performed at 20 enclosed public places, including hospitality (restaurants and cafés) and entertainment (snooker/billiard clubs and gaming zones) venues. PM(2.5) levels were measured using an aerosol monitor. All entertainment venues had higher indoor PM(2.5) levels as compared to the immediate outdoors. The indoor PM(2.5) levels ranged from 25 to 390 μg/m(3) and the outdoor PM(2.5) levels ranged from 18 to 96 μg/m(3). The overall mean indoor PM(2.5) level was 138.8 μg/m(3) (± 112.8). Among the four types of venues, the highest mean indoor PM(2.5) level was reported from snooker/billiard clubs: 264.7 μg/m(3) (± 85.4) and the lowest from restaurants: 66.4 μg/m(3) (± 57.6) while the indoor/outdoor ratio ranged from 0.97 to 10.2, highest being at the snooker/billiard clubs. The smoking density ranged from 0.21 to 0.57, highest being at gaming zones. The indoor PM(2.5) concentration and smoking density were not significantly correlated (Spearman's correlation coefficient = 0.113; p = 0.636). This study demonstrates unacceptably high levels of PM(2.5) exposure associated with secondhand smoke (SHS) at various entertainment venues of Karachi even after 8 years since the promulgation of smoke-free ordinance (2002) in Pakistan; however, better compliance may be evident at hospitality venues. The results of this study call for effective implementation and enforcement of smoke-free environment at public places in the country.
Exposure to fine particulate matter (PM) air pollution causes adverse cardiopulmonary outcomes. Yet the limited capacity to readily identify contributing PM sources and associated PM constituents in any given ambient air shed impedes risk assessment efforts. The health effects of...
Exposure to particulate matter (PM) is associated with excess mortality and morbidity, especially in individuals with cardiopulmonary disease. These epidemiologic findings are the cornerstone of EPA's revision of the PM National Ambient Quality Standards to include PM less tha...
Design and evaluation of a low-volume total suspended particulate sampler
USDA-ARS?s Scientific Manuscript database
The regulation of particulate matter (PM) emitted by agricultural sources, e.g., cotton gins, feed mills, and concentrated animal feeding operations (CAFOs), is based on downwind concentrations of particulate matter less than 10 and 2.5 'm (PM10 and PM2.5) aerodynamic equivalent diameter (AED). Both...
USDA-ARS?s Scientific Manuscript database
The study of health impacts, emission estimation of particulate matter (PM), and development of new control technologies require knowledge of PM characteristics. Among these PM characteristics, the particle size distribution (PSD) is perhaps the most important physical parameter governing particle b...
SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS
Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...
Because the harmful health effects of airborne particulate matter (PM) are not well understood, various researchers are investigating ambient PM in order to assess its hazardous components. Current hypotheses acknowledge that PM related morbidity and mortality may be a result ...
The purpose of this SOP is to describe the procedures for calibrating Harvard particulate matter (PM) samplers. This procedure applies directly to the Harvard particulate matter (PM) samplers used during the Arizona NHEXAS project and the "Border" study. Keywords: lab; equipmen...
Exposure to air pollution-derived particulate matter (PM) causes adverse cardiovascular health outcomes, with increasing evidence implicating soluble components of PM; however, the enormous number of unique PM samples from different air sheds far exceeds the capacity of conventio...
Cellular oxidative response from exposure to size-resolved ambient particulate matter
Recent studies suggest that particulate matter (PM) derived from different sources may differ in toxicity. The goal of this study was to characterize the in vitro effects of ambient PM and PM components from eight different locations in the U.S. and to investigate the effects of ...
40 CFR 60.672 - Standard for particulate matter (PM).
Code of Federal Regulations, 2011 CFR
2011-07-01
... compliance requirements in Table 2 of this subpart. This exemption from the stack PM concentration limit does... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities must meet the stack emission limits and compliance requirements in Table 2 of this subpart within 60...
40 CFR 60.672 - Standard for particulate matter (PM).
Code of Federal Regulations, 2010 CFR
2010-07-01
... compliance requirements in Table 2 of this subpart. This exemption from the stack PM concentration limit does... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities must meet the stack emission limits and compliance requirements in Table 2 of this subpart within 60...
..To the Editor"': Of the three major particulate matter (PM) size fractions (ultrafme, fine and coarse),coarse PM (PM2.5- 10) has been the least examined in terms of its health effects on susceptible populations, this despite having characteristics that make it particula...
A systematic analysis of PM2.5 in Beijing and its sources from 2000 to 2012
NASA Astrophysics Data System (ADS)
Lv, Baolei; Zhang, Bin; Bai, Yuqi
2016-01-01
Particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) is the main air pollutant in Beijing. To have a comprehensive understanding of concentrations, compositions and sources of PM2.5 in Beijing, recent studies reporting ground-based observations and source apportionment results dated from 2000 to 2012 in this typical large city of China are reviewed. Statistical methods were also used to better enable data comparison. During the last decade, annual average concentrations of PM2.5 have decreased and seasonal mean concentrations declined through autumn and winter. Generally, winter is the most polluted season and summer is the least polluted one. Seasonal variance of PM2.5 levels decreased. For diurnal variance, PM2.5 generally increases at night and decreases during the day. On average, organic matters, sulfate, nitrate and ammonium are the major compositions of PM2.5 in Beijing. Fractions of organic matters increased from 2000 to 2004, and decreased afterwards. Fractions of sulfate, nitrate and ammonium decreased in winter and remained largely unchanged in summer. Concentrations of organic carbon and elemental carbon were always higher in winter than in summer and they barely changed during the last decade. Concentrations of sulfate, nitrate and ammonium exhibited significant increasing trend in summer but in reverse in winter. On average they were higher in winter than in summer before 2005, and took a reverse after 2005. Receptor model results show that vehicle, dust, industry, biomass burning, coal combustion and secondary products were major sources and they all increased except coal combustions and secondary products. The growth was decided both changing social and economic activities in Beijing, and most likely growing emissions in neighboring Hebei province. Explicit descriptions of the spatial variations of PM2.5 concentration, better methods to estimate secondary products and ensemble source apportionments models to reduce uncertainties would remain being open questions for future studies.
Russell, Brook T; Wang, Dewei; McMahan, Christopher S
2017-08-01
Fine particulate matter (PM 2.5 ) poses a significant risk to human health, with long-term exposure being linked to conditions such as asthma, chronic bronchitis, lung cancer, atherosclerosis, etc. In order to improve current pollution control strategies and to better shape public policy, the development of a more comprehensive understanding of this air pollutant is necessary. To this end, this work attempts to quantify the relationship between certain meteorological drivers and the levels of PM 2.5 . It is expected that the set of important meteorological drivers will vary both spatially and within the conditional distribution of PM 2.5 levels. To account for these characteristics, a new local linear penalized quantile regression methodology is developed. The proposed estimator uniquely selects the set of important drivers at every spatial location and for each quantile of the conditional distribution of PM 2.5 levels. The performance of the proposed methodology is illustrated through simulation, and it is then used to determine the association between several meteorological drivers and PM 2.5 over the Eastern United States (US). This analysis suggests that the primary drivers throughout much of the Eastern US tend to differ based on season and geographic location, with similarities existing between "typical" and "high" PM 2.5 levels.
Organic Components and Elemental Carbon in Soils and Ambient Particles near Phoenix, AZ
NASA Astrophysics Data System (ADS)
Fraser, M. P.; Jia, Y.; Clements, A.
2008-12-01
In the desert southwest, fugitive dust emissions contribute significantly to ambient aerosol concentrations. Wind erosion from the arid land is a primary contributor to ambient particulate matter (PM) concentrations but, in regions including Central Arizona, desert lands have been converted for agriculture use and thus agriculture processes constitute another contributor. As the metropolitan Phoenix region expands into these agricultural lands, urban sources and construction also contributes to the ambient PM load. In an effort to identify and access relative contribution of these and other major PM sources in the region, a series of ambient PM samples and soil samples were collected near Higley, AZ, a suburb of Phoenix which has seen rapid urbanization onto agricultural lands between January and May 2008. The soil samples collected were resuspended and samples of resuspended dust were collected to represent particles smaller than 2.5 microns and 10 microns in aerodynamic diameter (PM2.5 and PM10 respectively). The size segregated soil and ambient PM samples were analyzed for bulk mass, elemental and organic carbon content, and a number of specific compounds including ions, metals, alkanes, organic acids, polycyclic aromatic hydrocarbons, and saccharides. The saccharide contribution to soil organic carbon has been studied to elucidate key factors in the soil carbon balance and markers have been developed for tracing fungal metabolites, plant growth and budding and organic matter decay. Using organic markers, the contribution of various sources to PM10 and PM2.5 levels have been determined by positive matrix factorization (PMF) of the ambient aerosol marker concentrations quantified from PM samples. Subsequently, samples of local soil from native and agricultural fields and local roadways wers size- segregated and analyzed in an effort to create a source profile for the dust in the area. A chemical mass balance model has been used to compare with the PMF results where sampled and resuspended agricultural soil, native soil and road dusts are used to characterize direct emissions of these sources to ambient fine and coarse particulate matter.
Yi, Honghong; Hao, Jiming; Duan, Lei; Li, Xinghua; Guo, Xingming
2006-09-01
In this investigation, the collection efficiency of particulate emission control devices (PECDs), particulate matter (PM) emissions, and PM size distribution were determined experimentally at the inlet and outlet of PECDs at five coal-fired power plants. Different boilers, coals, and PECDs are used in these power plants. Measurement in situ was performed by an electrical low-pressure impactor with a sampling system, which consisted of an isokinetic sampler probe, precut cyclone, and two-stage dilution system with a sample line to the instruments. The size distribution was measured over a range from 0.03 to 10 microm. Before and after all of the PECDs, the particle number size distributions display a bimodal distribution. The PM2.5 fraction emitted to atmosphere includes a significant amount of the mass from the coarse particle mode. The controlled and uncontrolled emission factors of total PM, inhalable PM (PM10), and fine PM P(M2.5) were obtained. Electrostatic precipitator (ESP) and baghouse total collection efficiencies are 96.38-99.89% and 99.94%, respectively. The minimum collection efficiency of the ESP and the baghouse both appear in the particle size range of 0.1-1 microm. In this size range, ESP and baghouse collection efficiencies are 85.79-98.6% and 99.54%. Real-time measurement shows that the mass and number concentration of PM10 will be greatly affected by the operating conditions of the PECDs. The number of emitted particles increases with increasing boiler load level because of higher combustion temperature. During test run periods, the data reproducibility is satisfactory.
ENSO-related PM10 variability on the Korean Peninsula
NASA Astrophysics Data System (ADS)
Wie, Jieun; Moon, Byung-Kwon
2017-10-01
Particulate matter, defined as particles of less than 10 μm in diameter (PM10), was analyzed over the Korean Peninsula from 2001 to 2015 to examine the influence of the El Niño-Southern Oscillation (ENSO) on subseasonal PM10 variability. The PM10 data were obtained from 151 air quality monitoring stations provided by the Korea Environment Corporation (KECO). Lead-lag correlation analysis, which was performed to investigate the connection between NDJF (November-February) NINO3 index and seasonal mean PM10 data, did not yield any statistically significant correlations. However, using five-pentad moving-averaged PM10 data, statistically significant correlations between NDJF NINO3 index and PM10 variability were found in four subseasonal periods, with alternating positive and negative correlations. In the periods during which PM10 levels on the Korean Peninsula were positively (negatively) correlated with the ENSO index, the positive PM10 anomalies are associated with El Niño (La Niña) years, which implies that the occurrence of high-PM10 events could be modulated by the ENSO phase. In addition, this ENSO-related PM10 variation is negatively correlated with ENSO-related precipitation in the Korean Peninsula, indicating that more (less) wet deposition leads to lower (higher) PM10 level. Therefore, we conclude that the ENSO-induced precipitation anomalies over the Korean Peninsula are mainly responsible for ENSO-related PM10 variations. This study will be helpful for further identifying detailed chemistry-climate processes that control PM10 concentrations.
Carlsen, Hanne Krage; Zoëga, Helga; Valdimarsdóttir, Unnur; Gíslason, Thórarinn; Hrafnkelsson, Birgir
2012-02-01
Air pollutants in Iceland's capital area include hydrogen sulfide (H2S) emissions from geothermal power plants, particle pollution (PM10) and traffic-related pollutants. Respiratory health effects of exposure to PM and traffic pollutants are well documented, yet this is one of the first studies to investigate short-term health effects of ambient H2S exposure. The aim of this study was to investigate the associations between daily ambient levels of H2S, PM10, nitrogen dioxide (NO2) and ozone (O3), and the use of drugs for obstructive pulmonary diseases in adults in Iceland's capital area. The study period was 8 March 2006 to 31 December 2009. We used log-linear Poisson generalized additive regression models with cubic splines to estimate relative risks of individually dispensed drugs by air pollution levels. A three-day moving average of the exposure variables gave the best fit to the data. Final models included significant covariates adjusting for climate and influenza epidemics, as well as time-dependent variables. The three-day moving average of H2S and PM10 levels were positively associated with the number of individuals who were dispensed drugs at lag 3-5, corresponding to a 2.0% (95% confidence interval [CI] 0.4, 3.6) and 0.9% (95% CI 0.1, 1.8) per 10 μg/m3 pollutant concentration increase, respectively. Our findings indicated that intermittent increases in levels of particle matter from traffic and natural sources and ambient H2S levels were weakly associated with increased dispensing of drugs for obstructive pulmonary disease in Iceland's capital area. These weak associations could be confounded by unevaluated variables hence further studies are needed. Copyright © 2012 Elsevier Inc. All rights reserved.
Particulate Matter (PM) Pollution
Particulate matter (PM) is one of the air pollutants regulated by the National Ambient Air Quality Standards (NAAQS). Reducing emissions of inhalable particles improves public health as well as visibility.
Chen, Kuan-Yuan; Chuang, Kai-Jen; Liu, Hui-Chiao; Lee, Kang-Yun; Feng, Po-Hao; Su, Chien-Ling; Lin, Chii-Lan; Lee, Chun-Nin; Chuang, Hsiao-Chi
2016-01-01
Emerging risk factors for tuberculosis (TB) infection, such as air pollution, play a significant role at both the individual and population levels. However, the association between air pollution and TB remains unclear. The objective of this study was to examine the association between outdoor air pollution and sputum culture conversion in TB patients. In the present study, 389 subjects were recruited from a hospital in Taiwan from 2010 to 2012: 144 controls with non-TB-related pulmonary diseases with negative sputum cultures and 245 culture-positive TB subjects. We observed that a 1 μg/m(3) increase in particulate matter of ≤10 μm in aerodynamic diameter (PM10) resulted in 4% higher odds of TB (odds ratio =1.04, 95% confidence interval =1.01-1.08, P<0.05). The chest X-ray grading of TB subjects was correlated to 1 year levels of PM10 (R (2)=0.94, P<0.05). However, there were no associations of pulmonary cavitation or treatment success rate with PM10. In subjects with TB-positive cultures, annual exposure to ≥50 μg/m(3) PM10 was associated with an increase in the time required for sputum culture conversion (hazard ratio =1.28, 95% confidence interval: 1.07-1.84, P<0.05). In conclusion, chronic exposure to ≥50 μg/m(3) PM10 may prolong the sputum culture conversion of TB patients with sputum-positive cultures.
Assessment of population exposure to particulate matter pollution in Chongqing, China.
Wang, Shuxiao; Zhao, Yu; Chen, Gangcai; Wang, Fei; Aunan, Kristin; Hao, Jiming
2008-05-01
To determine the population exposure to PM(10) in Chongqing, China, we developed an indirect model by combining information on the time activity patterns of various demographic subgroups with estimates of the PM(10) concentrations in different microenvironments (MEs). The spatial and temporal variations of the exposure to PM(10) were illustrated in a geographical information system (GIS). The population weighted exposure (PWE) for the entire population was 229, 155 and 211 microg/m(3), respectively, in winter, summer and as the annual average. Indoor PM(10) level at home was the largest contributor to the PWE, especially for the rural areas where high pollution levels were found due to solid fuels burning. Elder people had higher PM(10) exposure than adults and youth, due to more time spent in indoor MEs. The highest health risk due to particulate was found in the city zone and northeast regions, suggesting that pollution abatement should be prioritized in these areas.
NASA Astrophysics Data System (ADS)
Dimitrova, R.; Lurponglukana, N.; Fernando, H. J. S.; Runger, G. C.; Hyde, P.; Hedquist, B. C.; Anderson, J.; Bannister, W.; Johnson, W.
2012-03-01
Statistically significant correlations between increase of asthma attacks in children and elevated concentrations of particulate matter of diameter 10 microns and less (PM10) were determined for metropolitan Phoenix, Arizona. Interpolated concentrations from a five-site network provided spatial distribution of PM10 that was mapped onto census tracts with population health records. The case-crossover statistical method was applied to determine the relationship between PM10 concentration and asthma attacks. For children ages 5-17, a significant relationship was discovered between the two, while children ages 0-4 exhibited virtually no relationship. The risk of adverse health effects was expressed as a function of the change from the 25th to 75th percentiles of mean level PM10 (36 μg m-3). This increase in concentration was associated with a 12.6% (95% CI: 5.8%, 19.4%) increase in the log odds of asthma attacks among children ages 5-17. Neither gender nor other demographic variables were significant. The results are being used to develop an asthma early warning system for the study area.
NASA Astrophysics Data System (ADS)
Dimitrova, R.; Lurponglukana, N.; Fernando, H. J. S.; Runger, G. C.; Hyde, P.; Hedquist, B. C.; Anderson, J.; Bannister, W.; Johnson, W.
2011-10-01
Statistically significant correlations between increase of asthma attacks in children and elevated concentrations of particulate matter of diameter 10 microns and less (PM10) were determined for metropolitan Phoenix, Arizona. Interpolated concentrations from a five-site network provided spatial distribution of PM10 that was mapped onto census tracts with population health records. The case-crossover statistical method was applied to determine the relationship between PM10 concentration and asthma attacks. For children ages 5-17, a significant relationship was discovered between the two, while children ages 0-4 exhibited virtually no relationship. The risk of adverse health effects was expressed as a function of the change from the 25th to 75th percentiles of mean level PM10 (36 μg m-3). This increase in concentration was associated with a 12.6% (95% CI: 5.8%, 19.4%) increase in the log odds of asthma attacks among children ages 5-17. Neither gender nor other demographic variables were significant. The results are being used to develop an asthma early warning system for the study area.
Zhang, Hang; Yao, Yugang; Chen, Yang; Yue, Cong; Chen, Jiahong; Tong, Jian; Jiang, Yan; Chen, Tao
2016-04-29
Recent studies have shown an association between congenital heart defects and air fine particle matter (PM2.5), but the molecular mechanisms remain elusive. It is well known that a number of organic compounds in PM2.5 can act as AhR agonists, and activation of AhR can antagonize Wnt/β-catenin signaling. Therefore, we hypothesized that PM2.5 could activate AhR and then repress the expression of wnt/β-catenin targeted genes essential for cardiogenesis, resulting in heart defects. To test this hypothesis, we investigated the effects of extractable organic matter (EOM) from PM2.5 on AhR and Wnt/β-catenin signal pathways in zebrafish embryos. We confirmed that EOM could cause malformations in the heart and decreased heart rate in zebrafish embryos at 72hpf, and found that the EOM-induced heart defects were rescued in embryos co-exposed with EOM plus AhR antagonist CH223191 or β-catenin agonist CHIR99021. We further found that EOM had increased the expression levels of AhR targeted genes (Cyp1a1, Cyp1b1 and Ahrra) and reduced the mRNA levels of β-catenin targeted genes (axin2, nkx2.5 and sox9b). The mRNA expression level of Rspo2, a β-catenin upstream gene, was also decreased in embryos exposed to EOM. Supplementation with CH223191 or CHIR99021 attenuated most of the EOM-induced expression changes of genes involved in both AhR and wnt/β-catenin signal pathways. However, the mRNA expression level of AhR inhibitor Ahrrb, which did not change by EOM treatment alone, was increased in embryos co-exposed to EOM plus CH223191 or CHIR99021. We conclude that the activation of AhR by EOM from PM2.5 might repress wnt/β-catenin signaling, leading to heart defects in zebrafish embryos. Furthermore, our results indicate that the cardiac developmental toxicity of PM2.5 might be prevented by targeting AhR or wnt/β-catenin signaling. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event
2014-01-01
Particulate matter (PM) air pollution poses a formidable public health threat to the city of Beijing. Among the various hazards of PM pollutants, microorganisms in PM2.5 and PM10 are thought to be responsible for various allergies and for the spread of respiratory diseases. While the physical and chemical properties of PM pollutants have been extensively studied, much less is known about the inhalable microorganisms. Most existing data on airborne microbial communities using 16S or 18S rRNA gene sequencing to categorize bacteria or fungi into the family or genus levels do not provide information on their allergenic and pathogenic potentials. Here we employed metagenomic methods to analyze the microbial composition of Beijing’s PM pollutants during a severe January smog event. We show that with sufficient sequencing depth, airborne microbes including bacteria, archaea, fungi, and dsDNA viruses can be identified at the species level. Our results suggested that the majority of the inhalable microorganisms were soil-associated and nonpathogenic to human. Nevertheless, the sequences of several respiratory microbial allergens and pathogens were identified and their relative abundance appeared to have increased with increased concentrations of PM pollution. Our findings may serve as an important reference for environmental scientists, health workers, and city planners. PMID:24456276
2017-03-06
WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non -volatile Particulate Matter (PM...Engine Volatile and Non -Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non
NASA Astrophysics Data System (ADS)
Pierce, J. R.; Volckens, J.; Ford, B.; Jathar, S.; Long, M.; Quinn, C.; Van Zyl, L.; Wendt, E.
2017-12-01
Atmospheric particulate matter with diameter smaller than 2.5 μm (PM2.5) is a pollutant that contributes to the development of human disease. Satellite-derived estimates of surface-level PM2.5 concentrations have the potential to contribute greatly to our understanding of how particulate matter affects health globally. However, these satellite-derived PM2.5 estimates are often uncertain due to a lack of information about the ratio of surface PM2.5 to aerosol optical depth (AOD), which is the primary aerosol retrieval made by satellite instruments. While modelling and statistical analyses have improved estimates of PM2.5:AOD, large uncertainties remain in situations of high PM2.5 exposure (such as urban areas and in wildfire-smoke plumes) where the health impacts of PM2.5 may be the greatest. Surface monitoring networks for co-incident PM2.5 and AOD measurements are extremely rare, even in the North America. To provide constraints for the PM2.5:AOD relationship, we have developed a relatively low-cost (<$1000) monitor for citizen use that provides sun-photometer AOD measurements and filter-based PM2.5 measurements. The instrument is solar-powered, lightweight (< 1kg), and operated wirelessly via smartphone application (iOS and Android). Sun photometry is performed across 4 discrete wavelengths that match those reported by the Aerosol Robotic Network (AERONET). Aerosol concentration is reported using both time-integrated filter mass (analyzed in an academic laboratory and reported as a 24-48hr average) and a continuous PM sensor within the instrument. Citizen scientists use the device to report daily AOD and PM2.5 measurements made in their backyards to a central server for data display and download. In this presentation, we provide an overview of (1) AOD and PM2.5 measurement calibration; (2) citizen recruiting and training efforts; and (3) results from our pilot citizen-science measurement campaign.
NASA Astrophysics Data System (ADS)
Shen, Guofeng; Xue, Miao; Yuan, Siyu; Zhang, Jie; Zhao, Qiuyue; Li, Bing; Wu, Haisuo; Ding, Aijun
2014-02-01
Ambient particulate matter was collected in a megacity, Nanjing in western YRD during the spring and summer periods. Chemical compositions of fine PM including organic carbon, elemental carbon, elements and water soluble ions were analyzed. The light extinction coefficients were reconstructed following the IMPROVE formula. Organic matter was the most abundant composition in PM2.5 (20-25% of total mass), followed by the inorganic ions. During the spring time, geological materials contributed 25% of the total PM2.5. Estimated light extinction coefficient ranged from 133 to 560 Mm-1 with the deciview haze index value of 26-40 dv, indicating strong light extinction by PM and subsequently low visibility in the city. Reconstructed ammonium sulfate, ammonium nitrate, organic matter and light absorption carbon in fine PM contributed significantly (37 ± 10, 16 ± 6, 15 ± 4 and 10 ± 3%, respectively) to the total light extinction of PM, while soil (5-7%) and sea salt fractions (2-4%) in fine PM and coarse PM (6-11%) had relatively minor influences. The results of backward air trajectory showed that the site was strongly influenced by the air from the eastern (39%) and southeastern (29%) areas during the sampling period. Air plumes from the Southeastern had both high PM mass pollution and large light extinction, while the air mass originating from the Northwestern resulted in high PM mass loading but relatively lower light extinction.
Samek, Lucyna; Furman, Leszek; Mikrut, Magdalena; Regiel-Futyra, Anna; Macyk, Wojciech; Stochel, Grażyna; van Eldik, Rudi
2017-11-01
Submicron particulate matter containing particles with an aerodynamic diameter ≤1 μm (PM1) are not monitored continuously by Environmental Protection Agencies around the World and are seldom studied. Numerous studies have indicated that people exposed to ultrafine (≤100 nm), submicron and fine particulate matter containing particles with an aerodynamic diameter ≤2.5 μm (PM2.5), can suffer from respiratory track diseases, cardiovascular, immunological or heart diseases and others. Inorganic pollutants containing redox active transition metals and small gaseous molecules, are involved in the generation of reactive oxygen and reactive nitrogen species. Inhalation of this kind of particles can affect immune-toxicity. Environmental pollution may aggravate the course of autoimmune diseases, in particular influence the mechanisms of the autoimmune system. Important factors that influence the toxicity of particulate matter, are particle size distribution, composition and concentration. This report deals with the composition of PM1 and PM2.5 fractions collected in Krakow, Poland. In spring 2015, the mean concentrations of PM1 and PM2.5 were 19 ± 14 and 27 ± 19 μg/m 3 , respectively. The PM2.5 fraction contained approximately 70 ± 17% of submicron particulate matter. In spring 2016, the mean concentrations of PM1 and PM2.5 were 12 ± 5 and 22 ± 12 μg/m 3 , respectively. The PM2.5 fraction contained approximately 60 ± 15% of submicron particulate matter. The concentrations of the elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr and Pb in both fractions were determined by X-ray fluorescence spectrometry. Most of the analyzed metals had higher concentrations in the fine fraction than in the submicron one. Concentrations of V and As were below the detection limit in both fractions, whereas concentrations of Mn and Ca were below the detection limits in the PM1 fraction. The results are discussed in terms of the consequences they may have on the APARIC project presently underway in Krakow. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tecer, Lokman Hakan; Süren, Pinar; Alagha, Omar; Karaca, Ferhat; Tuncel, Gürdal
2008-04-01
In this work, the effect of meteorological parameters and local topography on mass concentrations of fine (PM2.5) and coarse (PM2.5-10) particles and their seasonal behavior was investigated. A total of 236 pairs of samplers were collected using an Anderson Dichotomous sampler between December 2004 and October 2005. The average mass concentrations of PM2.5, PM2.5-10, and particulate matter less than 10 microm in aerodynamic diameter (PM10) were found to be 29.38, 23.85, and 53.23 microg/m3, respectively. The concentrations of PM2.5 and PM10 were found to be higher in heating seasons (December to May) than in summer. The increase of relative humidity, cloudiness, and lower temperature was found to be highly related to the increase of particulate matter (PM) episodic events. During non-rainy days, the episodic events for PM2.5 and PM10 were increased by 30 and 10.7%, respectively. This is a result of the extensive use of fuel during winter for heating purposes and also because of stagnant air masses formed because of low temperature and low wind speed over the study area.
NASA Astrophysics Data System (ADS)
Kraus, Michal; Juhásová Šenitková, Ingrid
2017-10-01
Building environmental audit and the assessment of indoor air quality (IAQ) in typical residential buildings is necessary process to ensure users’ health and well-being. The paper deals with the concentrations on indoor dust particles (PM10) in the context of hygrothermal microclimate in indoor environment. The indoor temperature, relative humidity and air movement are basic significant factors determining the PM10 concentration [μg/m3]. The experimental measurements in this contribution represent the impact of indoor physical parameters on the concentration of particulate matter mass concentration. The occurrence of dust particles is typical for the almost two-thirds of interiors of the buildings. Other parameters indoor environment, such as air change rate, volume of the room, roughness and porosity of the building material surfaces, static electricity, light ions and others, were set constant and they are not taken into account in this study. The mass concentration of PM10 is measured during summer season in apartment of residential prefabricated building. The values of global temperature [°C] and relative humidity of indoor air [%] are also monitored. The quantity of particulate mass matter is determined gravimetrically by weighing according to CSN EN 12 341 (2014). The obtained results show that the temperature difference of the internal environment does not have a significant effect on the concentration PM10. Vice versa, the difference of relative humidity exhibits a difference of the concentration of dust particles. Higher levels of indoor particulates are observed for low values of relative humidity. The decreasing of relative air humidity about 10% caused 10µg/m3 of PM10 concentration increasing. The hygienic limit value of PM10 concentration is not exceeded at any point of experimental measurement.
Wilker, Elissa H; Martinez-Ramirez, Sergi; Kloog, Itai; Schwartz, Joel; Mostofsky, Elizabeth; Koutrakis, Petros; Mittleman, Murray A; Viswanathan, Anand
2016-06-30
Long-term exposure to ambient air pollution has been associated with impaired cognitive function and vascular disease in older adults, but little is known about these associations among people with concerns about memory loss. To examine associations between exposures to fine particulate matter and residential proximity to major roads and markers of small vessel disease. From 2004-2010, 236 participants in the Massachusetts Alzheimer's Disease Research Center Longitudinal Cohort participated in neuroimaging studies. Residential proximity to major roads and estimated 2003 residential annual average of fine particulate air pollution (PM2.5) were linked to measures of brain parenchymal fraction (BPF), white matter hyperintensities (WMH), and cerebral microbleeds. Associations were modeled using linear and logistic regression and adjusted for clinical and lifestyle factors. In this population (median age [interquartile range] = 74 [12], 57% female) living in a region with median 2003 PM2.5 annual average below the current Environmental Protection Agency (EPA) standard, there were no associations between living closer to a major roadway or for a 2μg/m3 increment in PM2.5 and smaller BPF, greater WMH volume, or a higher odds of microbleeds. However, a 2μg/m3 increment in PM2.5 was associated with -0.19 (95% Confidence Interval (CI): -0.37, -0.005) lower natural log-transformed WMH volume. Other associations had wide confidence intervals. In this population, where median 2003 estimated PM2.5 levels were below the current EPA standard, we observed no pattern of association between residential proximity to major roads or 2003 average PM2.5 and greater burden of small vessel disease or neurodegeneration.
Wilker, Elissa H.; Martinez-Ramirez, Sergi; Kloog, Itai; Schwartz, Joel; Mostofsky, Elizabeth; Koutrakis, Petros; Mittleman, Murray A.; Viswanathan, Anand
2016-01-01
Background Long-term exposure to ambient air pollution has been associated with impaired cognitive function and vascular disease in older adults, but little is known about these associations among people with concerns about memory loss. Objective To examine associations between exposures to fine particulate matter and residential proximity to major roads and markers of small vessel disease. Methods From 2004—2010, 236 participants in the Massachusetts Alzheimer’s Disease Research Center Longitudinal Cohort participated in neuroimaging studies. Residential proximity to major roads and estimated 2003 residential annual average of fine particulate air pollution (PM2.5) were linked to measures of brain parenchymal fraction (BPF), white matter hyperintensities (WMH), and cerebral microbleeds. Associations were modeled using linear and logistic regression and adjusted for clinical and lifestyle factors. Results In this population (median age [interquartile range]=74[12], 57% female) living in a region with median 2003 PM2.5 annual average below the current Environmental Protection Agency (EPA) standard, there were no associations between living closer to a major roadway or for a 2 μg/m3 increment in PM2.5 and smaller BPF, greater WMH volume, or a higher odds of microbleeds. However, a 2 μg/m3 increment in PM2.5 was associated with −0.19 (95% Confidence Interval (CI): −0.37, −0.005) lower natural log-transformed WMH volume. Other associations had wide confidence intervals. Conclusions In this population, where median 2003 estimated PM2.5 levels were below the current EPA standard, we observed no pattern of association between residential proximity to major roads or 2003 average PM2.5 and greater burden of small vessel disease or neurodegeneration. PMID:27372639
Basagaña, Xavier; Jacquemin, Bénédicte; Karanasiou, Angeliki; Ostro, Bart; Querol, Xavier; Agis, David; Alessandrini, Ester; Alguacil, Juan; Artiñano, Begoña; Catrambone, Maria; de la Rosa, Jesús D; Díaz, Julio; Faustini, Annunziata; Ferrari, Silvia; Forastiere, Francesco; Katsouyanni, Klea; Linares, Cristina; Perrino, Cinzia; Ranzi, Andrea; Ricciardelli, Isabella; Samoli, Evangelia; Zauli-Sajani, Stefano; Sunyer, Jordi; Stafoggia, Massimo
2015-02-01
Few recent studies examined acute effects on health of individual chemical species in the particulate matter (PM) mixture, and most of them have been conducted in North America. Studies in Southern Europe are scarce. The aim of this study is to examine the relationship between particulate matter constituents and daily hospital admissions and mortality in five cities in Southern Europe. The study included five cities in Southern Europe, three cities in Spain: Barcelona (2003-2010), Madrid (2007-2008) and Huelva (2003-2010); and two cities in Italy: Rome (2005-2007) and Bologna (2011-2013). A case-crossover design was used to link cardiovascular and respiratory hospital admissions and total, cardiovascular and respiratory mortality with a pre-defined list of 16 PM10 and PM2.5 constituents. Lags 0 to 2 were examined. City-specific results were combined by random-effects meta-analysis. Most of the elements studied, namely EC, SO4(2-), SiO2, Ca, Fe, Zn, Cu, Ti, Mn, V and Ni, showed increased percent changes in cardiovascular and/or respiratory hospitalizations, mainly at lags 0 and 1. The percent increase by one interquartile range (IQR) change ranged from 0.69% to 3.29%. After adjustment for total PM levels, only associations for Mn, Zn and Ni remained significant. For mortality, although positive associations were identified (Fe and Ti for total mortality; EC and Mg for cardiovascular mortality; and NO3(-) for respiratory mortality) the patterns were less clear. The associations found in this study reflect that several PM constituents, originating from different sources, may drive previously reported results between PM and hospital admissions in the Mediterranean area. Copyright © 2014 Elsevier Ltd. All rights reserved.
Phthalate levels in Norwegian indoor air related to particle size fraction.
Rakkestad, Kirsten Eline; Dye, Christian Jarle; Yttri, Karl Espen; Holme, Jørn Andreas; Hongslo, Jan Kenneth; Schwarze, Per Everhard; Becher, Rune
2007-12-01
Phthalates are found in numerous consumer products, including interior materials like polyvinyl chloride (PVC). Several studies have identified phthalates in indoor air. A recent case-control study demonstrated associations between allergic symptoms in children and the concentration of phthalates in dust collected from their homes. Here we have analyzed the content of selected phthalates in particulate matter (PM): PM(10) and PM(2.5) filter samples collected in 14 different indoor environments. The results showed the presence of the phthalates di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), dicyclohexyl phthalate (DCHP) and diethyl hexyl phthalate (DEHP) in the samples. The dominating phthalate in both PM(10) and PM(2.5) samples from all locations was DBP. More than a 10-fold variation in the mean concentration of total phthalates between sampling sites was observed. The highest levels of total phthalates were detected in one children's room, one kindergarten, in two primary schools, and in a computer room. The relative contribution of total phthalates in PM(10) and PM(2.5) was 1.1 +/- 0.3% for both size fractions. The contribution of total phthalates in PM(2.5) to total phthalates in PM(10) ranged from 23-81%, suggesting different sources. Of the phthalates that were analyzed in the PM material, DBP was found to be the major phthalate in rubber from car tyres. However, our analyses indicate that tyre wear was of minor importance for indoor levels of both DBP as well as total phthalates. Overall, these results support the notion that inhalation of indoor PM contributes to the total phthalate exposure.
NASA Astrophysics Data System (ADS)
Kumar, S.; Goyal, P.
2015-12-01
The incessant exposure to criteria air pollutants at different level of concentrations is associated with adverse birth outcomes. The present study advocates the importance of the early period of pregnancy (first trimester) for association between growth in term of small gestational age (SGA) and birth weight (BW) with PM2.5 and PM10 for megacity Delhi. The association of PM10 and PM2.5 average concentration, SGA, pre term birth (PTB) and lower birth weight (LBW < 2500g or 5.5 pounds) outcomes have been investigated among 1749 live births in a large hospital during the year 2012 New Delhi, India. The air pollutants PM2.5 and PM10 have been used in single pollutant logistic regression models to estimate odds ratios (OR) for these outcomes. Growth in term of SGA is associated with PM2.5 levels (OR = 0.99, confidence interval (CI) = 0.99 - 1.0) and PM10 levels (OR= 0.99, CI= 0.99 - 1.001) in the first trimester of pregnancy. Birth weight outcome in terms of lower birth weight (LBW) has been found to be significantly associated with PM2.5 (OR= 0.99, CI = 0.98 - 1.00) exposure in the first trimester. A very significant decrease of 0.1% has been observed in growth of infant in terms of SGA with per 10 mg/m3 increase in PM2.5. Also, 0.1 % statistically significant adverse association of BW in terms of LBW has been found with per 10 mg/m3 increased vulnerability of PM2.5 during first trimester of gestation.
The purpose of this SOP is to describe the procedures for calibrating Harvard particulate matter (PM) samplers. This procedure applies directly to the Harvard particulate matter (PM) samplers used during the Arizona NHEXAS project and the Border study. Keywords: lab; equipment;...
USDA-ARS?s Scientific Manuscript database
Particulate matter (PM) is a major air pollutant emitted from animal production and has significant impacts on health and the environment. Abatement of PM emissions is imperative and effective PM control technologies are strongly needed. In this work, an electrostatic spray wet scrubber (ESWS) techn...
40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter (PM-10) Group III SIP. (a) On September 14, 1988, the Governor of Hawaii submitted a revision to the... necessary to satisfy the requirements of the PM-10 Group III SIP. (b) The Hawaii Department of Health has...
Outdoor particulate matter (PM) and associated cardiovascular diseases in the Middle East.
Nasser, Zeina; Salameh, Pascale; Nasser, Wissam; Abou Abbas, Linda; Elias, Elias; Leveque, Alain
2015-01-01
Air pollution is a widespread environmental concern. Considerable epidemiological evidence indicates air pollution, particularly particulate matter (PM), as a major risk factor for cardiovascular diseases (CVD) in the developed countries. The main objective of our review is to assess the levels and sources of PM across the Middle East area and to search evidence for the relationship between PM exposure and CVD. An extensive review of the published literature pertaining to the subject (2000-2013) was conducted using PubMed, Medline and Google Scholar databases. We reveal that low utilization of public transport, ageing vehicle fleet and the increasing number of personal cars in the developing countries all contribute to the traffic congestion and aggravate the pollution problem. The annual average values of PM pollutants in the Middle East region are much higher than the World Health Organization 2006 guidelines (PM2.5 = 10 μg/m(3), PM10 = 20 μg/m(3)). We uncover evidence on the association between PM and CVD in 4 Middle East countries: Iran, Kingdom of Saudi Arabia, Qatar and the United Arab Emirates. The findings are in light of the international figures. Ambient PM pollution is considered a potential risk factor for platelet activation and atherosclerosis and has been found to be linked with an increased risk for mortality and hospital admissions due to CVD. This review highlights the importance of developing a strategy to improve air quality and reduce outdoor air pollution in the developing countries, particularly in the Middle East. Future studies should weigh the potential impact of PM on the overall burden of cardiac diseases. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China.
Xu, Yong; Hu, Jianlin; Ying, Qi; Hao, Hongke; Wang, Dexiang; Zhang, Hongliang
2017-10-01
A high-resolution inventory of primary atmospheric pollutants from coal-fired power plants in Shaanxi in 2012 was built based on a detailed database compiled at unit level involving unit capacity, boiler size and type, commission time, corresponding control technologies, and average coal quality of 72 power plants. The pollutants included SO 2 , NO x , fine particulate matter (PM 2.5 ), inhalable particulate matter (PM 10 ), organic carbon (OC), elemental carbon (EC), carbon monoxide (CO) and non-methane volatile organic compounds (NMVOC). Emission factors for SO 2 , NO x , PM 2.5 and PM 10 were adopted from standardized official promulgation, supplemented by those from local studies. The estimated annual emissions of SO 2 , NO x , PM 2.5 , PM 10 , EC, OC, CO and NMVOC were 152.4, 314.8, 16.6, 26.4, 0.07, 0.27, 64.9 and 2.5kt, respectively. Small units (<100MW), which accounted for ~60% of total unit numbers, had less coal consumption but higher emission rates compared to medium (≥100MW and <300MW) and large units (≥300MW). Main factors affecting SO 2 , NO x , PM 2.5 and PM 10 emissions were decontamination efficiency, sulfur content and ash content of coal. Weinan and Xianyang were the two cities with the highest emissions, and Guanzhong Plain had the largest emission density. Despite the projected growth of coal consumption, emissions would decrease in 2030 due to improvement in emission control technologies and combustion efficiencies. SO 2 and NO x emissions would experience significant reduction by ~81% and ~84%, respectively. PM 2.5 , PM 10 , EC and OC would be decreased by ~43% and CO and NMVOC would be reduced by ~16%. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation
Tarantini, Letizia; Bonzini, Matteo; Apostoli, Pietro; Pegoraro, Valeria; Bollati, Valentina; Marinelli, Barbara; Cantone, Laura; Rizzo, Giovanna; Hou, Lifang; Schwartz, Joel; Bertazzi, Pier Alberto; Baccarelli, Andrea
2009-01-01
Background Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined. Objectives We aimed at identifying short- and long-term effects of PM exposure on DNA methylation, a major genomic mechanism of gene expression control, in workers in an electric furnace steel plant with well-characterized exposure to PM with aerodynamic diameters < 10 μm (PM10). Methods We measured global genomic DNA methylation content estimated in Alu and long interspersed nuclear element-1 (LINE-1) repeated elements, and promoter DNA methylation of iNOS (inducible nitric oxide synthase), a gene suppressed by DNA methylation and induced by PM exposure in blood leukocytes. Quantitative DNA methylation analysis was performed through bisulfite PCR pyrosequencing on blood DNA obtained from 63 workers on the first day of a work week (baseline, after 2 days off work) and after 3 days of work (postexposure). Individual PM10 exposure was between 73.4 and 1,220 μg/m3. Results Global methylation content estimated in Alu and LINE-1 repeated elements did not show changes in postexposure measures compared with baseline. PM10 exposure levels were negatively associated with methylation in both Alu [β = −0.19 %5-methylcytosine (%5mC); p = 0.04] and LINE-1 [β = −0.34 %5mC; p = 0.04], likely reflecting long-term PM10 effects. iNOS promoter DNA methylation was significantly lower in postexposure blood samples compared with baseline (difference = −0.61 %5mC; p = 0.02). Conclusions We observed changes in global and gene specific methylation that should be further characterized in future investigations on the effects of PM. PMID:19270791
High particulate matter emission from additive-free Natural American Spirit cigarettes.
Iffland, Yvonne; Müller, Ruth; Groneberg, David; Gerber, Alexander
2016-01-01
Involuntary exposure to health-threatening environmental tobacco smoke (Combined Mainstream and Side-stream Smoke, CMSS) is a worldwide problem, causing premature death of thousands of people. CMSS consists of particulate matter (PM), one of the main sources of indoor air pollution. PM constitutes a considerable health risk for passive smokers. It is important to inform the public about brand-specific differences in CMSS-associated PM, especially in the case of brands without additives, which are therefore promoted as natural and less health-threatening. Mean concentrations and the area under the curve of PM 10 , PM 2.5 and PM 1 generated by Natural American Spirit cigarettes without additives and the 3R4F standard research cigarette (University of Kentucky, USA) were measured, analyzed and compared with each other. An automatic environmental tobacco smoke emitter was used to smoke 100 cigarettes, 20 of each brand, according to a standardized smoking protocol. This study could show that CMSS-associated PM released from tobacco brands without additives, which are therefore promoted as natural and less harmful, are higher than expected. It is highly improbable that Natural American Spirit tobacco products are a less harmful choice-at least not for passive smokers as this study could show. We conclude, the CMSS-associated PM level of every single customized brand should be measured because the origin of the tobacco and not the amount of CO, tar and nicotine (given as product information) seem to be responsible for the brand-specific PM release. This data is urgently needed to adequately inform the public about CMSS-associated PM exposure and the related health risk especially for passive smokers.
Elemental composition of particulate matter and the association with lung function.
Eeftens, Marloes; Hoek, Gerard; Gruzieva, Olena; Mölter, Anna; Agius, Raymond; Beelen, Rob; Brunekreef, Bert; Custovic, Adnan; Cyrys, Josef; Fuertes, Elaine; Heinrich, Joachim; Hoffmann, Barbara; de Hoogh, Kees; Jedynska, Aleksandra; Keuken, Menno; Klümper, Claudia; Kooter, Ingeborg; Krämer, Ursula; Korek, Michal; Koppelman, Gerard H; Kuhlbusch, Thomas A J; Simpson, Angela; Smit, Henriëtte A; Tsai, Ming-Yi; Wang, Meng; Wolf, Kathrin; Pershagen, Göran; Gehring, Ulrike
2014-09-01
Negative effects of long-term exposure to particulate matter (PM) on lung function have been shown repeatedly. Spatial differences in the composition and toxicity of PM may explain differences in observed effect sizes between studies. We conducted a multicenter study in 5 European birth cohorts-BAMSE (Sweden), GINIplus and LISAplus (Germany), MAAS (United Kingdom), and PIAMA (The Netherlands)-for which lung function measurements were available for study subjects at the age of 6 or 8 years. Individual annual average residential exposure to copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc within PM smaller than 2.5 μm (PM2.5) and smaller than 10 μm (PM10) was estimated using land-use regression models. Associations between air pollution and lung function were analyzed by linear regression within cohorts, adjusting for potential confounders, and then combined by random effects meta-analysis. We observed small reductions in forced expiratory volume in the first second, forced vital capacity, and peak expiratory flow related to exposure to most elemental pollutants, with the most substantial negative associations found for nickel and sulfur. PM10 nickel and PM10 sulfur were associated with decreases in forced expiratory volume in the first second of 1.6% (95% confidence interval = 0.4% to 2.7%) and 2.3% (-0.1% to 4.6%) per increase in exposure of 2 and 200 ng/m, respectively. Associations remained after adjusting for PM mass. However, associations with these elements were not evident in all cohorts, and heterogeneity of associations with exposure to various components was larger than for exposure to PM mass. Although we detected small adverse effects on lung function associated with annual average levels of some of the evaluated elements (particularly nickel and sulfur), lower lung function was more consistently associated with increased PM mass.
NASA Astrophysics Data System (ADS)
Horemans, Benjamin; Van Grieken, René
2010-04-01
Thoracic (PM 10), fine thoracic (PM 2.5) and sub-micrometer (PM 1) airborne particulate matter was sampled during day and night. In total, about 100 indoor and outdoor samples were collected for each fraction at ten different office environments. Energy-dispersive X-ray fluorescence spectrometry and ion chromatography were applied for the quantification of some major and minor elements and ions in the collected aerosols. During daytime, mass concentrations were in the ranges: 11-29, 8.1-24, and 6.6-18 μg m -3, with averages of 20 ± 1, 15.0 ± 0.9, and 11.0 ± 0.8 μg m -3, respectively. At night, mass concentrations were found to be significantly lower for all fractions. Indoor PM 1 concentrations exceeded the corresponding outdoor levels during office hours and were thought to be elevated by office printers. Particles with diameters between 1 and 2.5 μm and 2.5 and 10 μm were mainly associated with soil dust elements and were clearly subjected to distinct periods of settling/resuspension. Indoor NO 3- levels were found to follow specific microclimatic conditions at the office environments, while daytime levels of sub-micrometer Cl - were possibly elevated by the use of Cl-containing cleaning products. Indoor carbon black concentrations were sometimes as high as 22 μg m -3 and were strongly correlated with outdoor traffic conditions.
NASA Astrophysics Data System (ADS)
Kliucininkas, Linas; Krugly, Edvinas; Stasiulaitiene, Inga; Radziuniene, Inga; Prasauskas, Tadas; Jonusas, Arunas; Kauneliene, Violeta; Martuzevicius, Dainius
2014-11-01
Emissions from the fuel combustion in the energy production are causes of concern due to associated health risks, but little information is available on the impact of residential fuel burning on indoor air quality, where most of the human exposure occurs. In this complex study, concentrations of size-segregated particulate matter (PM), monocyclic and polycyclic aromatic compounds (MAHs and PAHs) at indoor and outdoor sites in six urban homes in the city of Kaunas, Lithuania, were determined over winter and summer sampling campaigns, specifically targeting the impact of the local fuel burning to the indoor air quality. PM levels observed in Kaunas during winter measurement campaign were higher compared to those in many other European settlements utilizing biomass for energy production. The particle size distribution analysis revealed that the major part of the PM mass in winter period consisted of fine particles (PM2.5). Both MAH and PAH levels were higher in winter. The indoor to outdoor ratios (I/O) of MAHs and PAHs revealed specific patterns depending on the presence of emissions sources indoors. Irrespectively of the season, I/O values were <1, suggesting that in case of the absence of an indoor pollution, the dominant source of organic compounds was from the outdoor environment. In homes with no PAH source inside, the I/O ratio equalled ranged from 0.05 to 0.36, suggesting the penetrated portion of outdoor combustion particles to the indoor air.
Understanding the Rising Phase of the PM2.5 Concentration Evolution in Large China Cities
Lv, Baolei; Cai, Jun; Xu, Bing; Bai, Yuqi
2017-01-01
Long-term air quality observations are seldom analyzed from a dynamic view. This study analyzed fine particulate matter (PM2.5) pollution processes using long-term PM2.5 observations in three Chinese cities. Pollution processes were defined as linearly growing PM2.5 concentrations following the criteria of coefficient of determination R2 > 0.8 and duration time T ≥ 18 hrs. The linear slopes quantitatively measured pollution levels by PM2.5 concentrations rising rates (PMRR, μg/(m3·hr)). The 741, 210 and 193 pollution processes were filtered out, respectively, in Beijing (BJ), Shanghai (SH), and Guangzhou (GZ). Then the relationships between PMRR and wind speed, wind direction, 24-hr backward points, gaseous pollutants (CO, NO2 and SO2) concentrations, and regional PM2.5 levels were studied. Inverse relationships existed between PMRR and wind speed. The wind directions and 24-hr backward points converged in specific directions indicating long-range transport. Gaseous pollutants concentrations increased at variable rates in the three cities with growing PMRR values. PM2.5 levels at the upwind regions of BJ and SH increased at high PMRRs. Regional transport dominated the PM2.5 pollution processes of SH. In BJ, both local contributions and regional transport increased during high-PMRR pollution processes. In GZ, PM2.5 pollution processes were mainly caused by local emissions. PMID:28440282
Reduced PM2.5 in Trujillo, Peru, on El Dia Sin Autos ("The Day Without Cars").
Cassidy, Brandon E; Aguilar-Villalobos, Manuel; Ryan, P Barry; Naeher, Luke P
2010-01-01
Street-level and rooftop (three-story building) concentrations of particulate matter < or = 2.5 microm in diameter (PM2.5) were measured in downtown Trujillo, Peru, in July and August 2003 to determine the PM2.5 concentration reduction on days with normal traffic conditions (32 days) versus a day when motor vehicles were temporarily banned from the downtown district (8:00 a.m. to 6:00 p.m., July 15) known as El Dia Sin Autos ("The Day Without Cars"). The mean 8:00 a.m. to 6:00 p.m. street-level PM2.5 concentration during the motor vehicle ban (21.4 microg/m3; one day) was 49% lower than when vehicles were not impeded (42.2 +/- 7.8 microg/m3--mean +/- 1 standard deviation; 20 days). The rooftop monitoring station indicated a 20% decrease in PM2.5 concentrations (24.8 +/- 2.6 microg/m3 vs. 19.9 +/- 6.0 microg/m3) when motor vehicles were not present within historic downtown Trujillo. Temperature, relative humidity, and wind speed during the motor vehicle ban and during normal traffic were not significantly different (p > .05).
NASA Astrophysics Data System (ADS)
Beekmann, M.; Prévôt, A. S. H.; Drewnick, F.; Sciare, J.; Pandis, S. N.; Denier van der Gon, H. A. C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; von der Weiden-Reinmüller, S.-L.; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q. J.; Michoud, V.; Slowik, J. G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J. L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.
2015-08-01
A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.
NASA Astrophysics Data System (ADS)
Beekmann, M.; Prévôt, A. S. H.; Drewnick, F.; Sciare, J.; Pandis, S. N.; Denier van der Gon, H. A. C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; von der Weiden-Reinmüller, S.-L.; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q. J.; Michoud, V.; Slowik, J. G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J. L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.
2015-03-01
A detailed characterization of air quality in Paris (France), a megacity of more than 10 million inhabitants, during two one month intensive campaigns and from additional one year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in-situ measurements during short intensive and longer term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by a comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions contributed less than 20% in winter and 40% in summer to carbonaceous fine PM, unexpectedly little for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e. from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only controlling part of its own average and peak PM levels has important implications for air pollution regulation policies.
Brook, Robert D; Shin, Hwashin H; Bard, Robert L; Burnett, Richard T; Vette, Alan; Croghan, Carry; Thornburg, Jonathan; Rodes, Charles; Williams, Ron
2011-05-01
Levels of fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM(2.5))] are associated with alterations in arterial hemodynamics and vascular function. However, the characteristics of the same-day exposure-response relationships remain unclear. We aimed to explore the effects of personal PM(2.5) exposures within the preceding 24 hr on blood pressure (BP), heart rate (HR), brachial artery diameter (BAD), endothelial function [flow-mediated dilatation (FMD)], and nitroglycerin-mediated dilatation (NMD). Fifty-one nonsmoking subjects had up to 5 consecutive days of 24-hr personal PM(2.5) monitoring and daily cardiovascular (CV) measurements during summer and/or winter periods. The associations between integrated hour-long total personal PM(2.5) exposure (TPE) levels (continuous nephelometry among compliant subjects with low secondhand tobacco smoke exposures; n = 30) with the CV outcomes were assessed over a 24-hr period by linear mixed models. We observed the strongest associations (and smallest estimation errors) between HR and TPE recorded 1-10 hr before CV measurements. The associations were not pronounced for the other time lags (11-24 hr). The associations between TPE and FMD or BAD did not show as clear a temporal pattern. However, we found some suggestion of a negative association with FMD and a positive association with BAD related to TPE just before measurement (0-2 hr). Brief elevations in ambient TPE levels encountered during routine daily activity were associated with small increases in HR and trends toward conduit arterial vasodilatation and endothelial dysfunction within a few hours of exposure. These responses could reflect acute PM(2.5)-induced autonomic imbalance and may factor in the associated rapid increase in CV risk among susceptible individuals.
Delamater, Paul L; Finley, Andrew O; Banerjee, Sudipto
2012-05-15
There is now a large body of literature supporting a linkage between exposure to air pollutants and asthma morbidity. However, the extent and significance of this relationship varies considerably between pollutants, location, scale of analysis, and analysis methods. Our primary goal is to evaluate the relationship between asthma hospitalizations, levels of ambient air pollution, and weather conditions in Los Angeles (LA) County, California, an area with a historical record of heavy air pollution. County-wide measures of carbon monoxide (CO), nitrogen dioxide (NO(2)), ozone (O(3)), particulate matter<10 μm (PM(10)), particulate matter<2.5 μm (PM(2.5)), maximum temperature, and relative humidity were collected for all months from 2001 to 2008. We then related these variables to monthly asthma hospitalization rates using Bayesian regression models with temporal random effects. We evaluated model performance using a goodness of fit criterion and predictive ability. Asthma hospitalization rates in LA County decreased between 2001 and 2008. Traffic-related pollutants, CO and NO(2), were significant and positively correlated with asthma hospitalizations. PM(2.5) also had a positive, significant association with asthma hospitalizations. PM(10), relative humidity, and maximum temperature produced mixed results, whereas O(3) was non-significant in all models. Inclusion of temporal random effects satisfies statistical model assumptions, improves model fit, and yields increased predictive accuracy and precision compared to their non-temporal counterparts. Generally, pollution levels and asthma hospitalizations decreased during the 9 year study period. Our findings also indicate that after accounting for seasonality in the data, asthma hospitalization rate has a significant positive relationship with ambient levels of CO, NO(2), and PM(2.5). Copyright © 2012 Elsevier B.V. All rights reserved.
Wu, Chang-Fu; Lin, Hung-I; Ho, Chi-Chang; Yang, Tzu-Hui; Chen, Chu-Chih; Chan, Chang-Chuan
2014-08-01
Land use regression (LUR) models are increasingly used to evaluate intraurban variability in population exposure to fine particulate matter (PM2.5). However, most of these models lack information on PM2.5 elemental compositions and vertically distributed samples. The purpose of this study was to evaluate intraurban exposure to PM2.5 concentrations and compositions for populations in an Asian city using LUR models, with special emphasis on examining the effects of having measurements on different building stories. PM2.5 samples were collected at 20 sampling sites below the third story (low-level sites). Additional vertically stratified sampling sites were set up on the fourth to sixth (mid-level sites, n=5) and seventh to ninth (high-level sites, n=5) stories. LUR models were built for PM2.5, copper (Cu), iron (Fe), potassium (K), manganese (Mn), nickel (Ni), sulfur (S), silicon (Si), and zinc (Zn). The explained concentration variance (R(2)) of the PM2.5 model was 65%. R(2) values were >69% in the Cu, Fe, Mn, Ni, Si, and Zn models and <44% in the K and S models. Sampling height from ground level was a significant predictor in the PM2.5 and Si models. This finding stresses the importance of collecting vertically stratified information on PM2.5 mass concentrations to reduce potential exposure misclassification in future health studies. In addition to traffic variables, some models identified gravel-plant, industrial, and port variables with large buffer zones as important predictors, indicating that PM from these sources had significant effects at distant places. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Deepthi, Y.; Nagendra, S. S.; Gummadi, S. N.
2017-12-01
Exposure to Particulate Matter (PM) that are typically generated from heavy biomass usage in cooking and from unpaved roads is a major health risk in the rural areas of developing countries. To understand the exposure levels in such areas, PM (PM10, PM2.5 and PM1) characterizations was carried out through indoor monitoring in a rural site of south India with varied cooking fuels such as only biomass, biomass plus LPG and only LPG in different types of housing namely indoor kitchen without partition (IKWO), indoor kitchen with partition (IKWP), separate enclosed kitchen outside house (SEKO) and open kitchen (OK). Results indicated that use of biomass resulted in the highest PM10 concentrations of 179.51±21µg/m3 followed by combination of biomass and LPG (101.99±21 µg/m3) and LPG (77.48±9µg/m3). Similar patterns were observed in PM2.5 and PM1 with highest emissions from biomass burning. The PM concentrations of biomass households and combination of biomass and LPG households were 233.7 % and 80.2 % respectively higher than those using cleaner fuels (LPG). The monitoring also revealed that kitchen configuration is an important determinant for indoor exposures especially for biomass households. Among biomass users, average PM10, PM2.5 and PM1 concentrations in all type of houses were above the human permissible limit with IKWP having highest concentrations followed by IKWO>SEKO>OK. Thus, biomass household have high concentrations compared to LPG because of nature of combustion of solid biomass. Also, PM concentrations were higher in enclosed indoor kitchens (IKWO and IKWP) compared to SEKO and OK type kitchen configurations. It is evident from above discussions that type of fuel and kitchen setups are major attributes impacting Indoor air pollution (IAP) in rural areas and any policy intervention to minimize IAP must give due consideration to these two factors.
Chemical fractionation and health risk assessment of particulate matter-bound metals in Pune, India.
Jan, Rohi; Roy, Ritwika; Yadav, Suman; Satsangi, P Gursumeeran
2018-02-01
The present study deals with the assessment of sequential extraction of particulate matter (PM)-bound metals and the potential health risks associated with them in a growing metropolitan city (Pune) of India. The average mass concentration of both PM 2.5-10 and PM 2.5 exceeded the National Ambient Air Quality Standards. Significant seasonal variation in mass concentration was found for both size fractions of PM with higher values in winter season and lower in monsoon. Chemical species of the studied trace metals in PM exhibited significant differences, due to difference in sources of pollution. Metals such as Cd, Pb, and Cr in both size fractions and Zn and Co in fine fraction were more efficiently extracted in mobile fractions showing their mobile nature while Ni and Fe showed reduced mobility. Fe showed the highest concentrations among all the analyzed elements in both coarse (PM 2.5-10 ) and fine (PM 2.5 ) PM, while Cd showed least concentration in both size fractions. PCA identified industrial emissions, vehicular activity, coal combustion, diesel exhaust, waste incineration, electronic waste processing, constructional activities, soil, and road dust as probable contributors responsible for the metallic fraction of PM. All the metals showed varying contamination in PM samples. The contamination was higher for fine particles than coarse ones. The average global contamination factor was found to be 27.0-34.3 in coarse and fine PM, respectively. The hazard quotient (HQ) estimated for Cd, Co, and Ni (both total and easily accessible concentrations) exceeded the safe level (HQ = 1), indicating that these metals would result in non-carcinogenic health effects to the exposed population. The HQ ranged from 9.1 × 10 -5 for Cu (coarse) to 8.3 for Ni (fine) PM. The cancer risk for Cd, Ni, and Cr in both sized PM were much higher than the acceptable limits of USEPA.
Particle size distribution and air pollution patterns in three urban environments in Xi'an, China.
Niu, Xinyi; Guinot, Benjamin; Cao, Junji; Xu, Hongmei; Sun, Jian
2015-10-01
Three urban environments, office, apartment and restaurant, were selected to investigate the indoor and outdoor air quality as an inter-comparison in which CO2, particulate matter (PM) concentration and particle size ranging were concerned. In this investigation, CO2 level in the apartment (623 ppm) was the highest among the indoor environments and indoor levels were always higher than outdoor levels. The PM10 (333 µg/m(3)), PM2.5 (213 µg/m(3)), PM1 (148 µg/m(3)) concentrations in the office were 10-50% higher than in the restaurant and apartment, and the three indoor PM10 levels all exceeded the China standard of 150 µg/m(3). Particles ranging from 0.3 to 0.4 µm, 0.4 to 0.5 µm and 0.5 to 0.65 µm make largest contribution to particle mass in indoor air, and fine particles number concentrations were much higher than outdoor levels. Outdoor air pollution is mainly affected by heavy traffic, while indoor air pollution has various sources. Particularly, office environment was mainly affected by outdoor sources like soil dust and traffic emission; apartment particles were mainly caused by human activities; restaurant indoor air quality was affected by multiple sources among which cooking-generated fine particles and the human steam are main factors.
A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper entitled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Re...
40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group III SIP. 52.634 Section 52.634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter...
40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.146 Section 52.146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.146 Particulate matter...
Canada-United States Transboundary Particulate Matter Science Assessment
This 2004 document summarizes the findings of the Canada-U.S. subcommittee on Scientific Cooperation concerning the transboundary transport of particulate matter (PM) and PM precursors between the two countries.
NASA Astrophysics Data System (ADS)
Traversi, D.; Alessandria, L.; Schilirò, T.; Gilli, G.
2011-07-01
Particulate pollution is an environmental concern that is widespread and difficult to resolve. Recently various regulatory improvements around the world have been agreed upon to tackle this problem, especially as related to the fine fraction of particulates, which more closely correlates to human health effects than other fractions. The size-fractionation of inhalable particles and their organic composition represent a new area of research that has been poorly explored thus far. Endotoxins are a type of natural organic compound that can be found in particulate matter. They are correlated with Gram-negative bacterial contamination. Health outcomes associated with exposure to these toxins are not specific and often overlap with the health effects of PM (Particulate Matter) exposure, including asthma, bronchitis, acute respiratory distress syndrome and organic dust toxic syndrome. Very little information is available on the endotoxin distribution in different PM10 size fractions. This study examined PM10 size fractions and their endotoxin content. Sampling was conducted at five different locations: one urban, two rural and two rural sites that were highly influenced by large-scale farm animal production facilities. For each location, six different PM10 fractions were evaluated. PM10 sub-fractions were categorised as follows: PM 10-7.2 (1.15-31.30 μg m -3); PM 7.2-3.0 (1.86-30.73 μg m -3); PM 3.0-1.5 (1.74-13.90 μg m -3); PM 1.5-0.95 (0.24-10.57 μg m -3); PM 0.95-0.49 (1.22-14.33 μg m -3) and PM <0.49 (13.15-85.49 μg m -3). The ranges of endotoxin levels determined were: PM 10-7.2 (0.051-5.401 endotoxin units (EU) m -3); PM 7.2-3.0 (0.123-7.801 EU m -3); PM 3.0-1.5 (0.057-1.635 EU m -3); PM 1.5-0.95 (0.040-2.477 EU m -3); PM 0.95-0.49 (0.007-3.159 EU m -3) and PM <0.49 (0.039-3.975 EU m -3). Our results indicated consistency of the PM1 fraction at all of the sites and the predominant presence of endotoxins in the coarse fraction. The observed abatement of the PM10 and endotoxin levels was very high (above 1:10) as little as 50 m from the pollution source. This kind of model is useful to both improve our knowledge about PM10 endotoxin distribution and to evaluate the potential risks for the health of neighbouring populations.
Controls on mineral dust emissions at four arid locations in the western USA
NASA Astrophysics Data System (ADS)
Engelbrecht, Johann P.; Gillies, John A.; Etyemezian, Vicken; Kuhns, Hampden; Baker, Sophie E.; Zhu, Dongzi; Nikolich, George; Kohl, Steven D.
Dust emission measurements from unique military sources, including tracked and wheeled military vehicles, low flying rotary-winged aircraft, and artillery backblast, were conducted in the course of four field campaigns in 2005-2008, at Yuma Proving Ground (YPG) in Arizona (twice), Yakima Test Center (YTC) in Washington State, and Ft. Carson in Colorado. This paper reports on the observed relationships between levels of dust emission, and the mineralogy, particle size, and chemical composition of the surface sediment and associated airborne mineral dust. We propose a mechanism for the generation of fine particulate matter, providing an explanation for high emissions in certain regions. PM10 (particulate matter with aerodynamic diameter of <10 μm) and PM2.5 (particulate matter with aerodynamic diameter of <2.5 μm) filter as well as bulk samples were collected for laboratory analysis in the course of the field campaigns. Analytical techniques applied include X-ray diffraction, Scanning Electron Microscopy, laser particle size analysis, as well as X-ray fluorescence spectrometry, Ion Chromatography, and Automated Colorimetry. Previous work has shown YTC has higher dust emission factors than YPG and Ft. Carson. The results presented in this paper demonstrate that the high PM10 and PM2.5 emissions measured at YTC can be explained by the high silt and low clay content of the surface sediment, attributed to glacial loess. In the other test areas, the abrasion of microscopic clay and oxide coatings, from and by silicate mineral grains, is considered a factor in the generation of fine particulate matter.
Acute decrease in HDL cholesterol associated with exposure to welding fumes.
Rice, Mary Berlik; Cavallari, Jenn; Fang, Shona; Christiani, David
2011-01-01
To investigate acute changes in circulating lipids after exposure to relatively high levels of particulate matter through welding. Using a repeated measures panel study, lipid levels before and after welding and personal exposures to fine particulate matter (PM2.5) were measured in 36 male welders over 63 exposure and/or control days. There was a trend toward decrease in HDL (-2.3 mg/dL, P = 0.08) 18 hours after welding. This effect became significant (-2.6 mg/dL, P = 0.05) after adjustment for possible confounders. The effect was strongest (-4.3 mg/dL, P = 0.02) among welders who did not weld the day before the study. There were no significant changes in other lipids associated with welding or PM2.5 exposure. Welding exposure was associated with an acute decrease in circulating HDL, which may relate to the inflammatory and proatherosclerotic effects of fine particle exposure.
NASA Astrophysics Data System (ADS)
Hwang, Sung Ho; Park, Wha Me; Park, Jae Bum; Nam, Taegyun
2017-10-01
In this study, the concentrations of particulate matter 10 μm or less in diameter (PM10) and carbon dioxide (CO2) were measured in 100 underground subway stations, and the potential health risks of PM10, and environmental factors affecting these concentrations were analyzed. The concentrations were measured from May 2014 to September 2015 in stations along Seoul Metro lines 1-4. There were significantly different PM10 concentrations among the underground subway stations along lines 1, 2, 3, and 4. The PM10 concentrations were associated with the CO2 concentrations, construction years, station depths, and numbers of passengers. The underground PM10 concentrations were significantly higher than the outdoor PM10 concentrations. In addition, the PM10 concentrations were higher in the stations that were constructed in the 1970s than in those constructed after the 1970s. The PM10 and CO2 concentrations varied significantly, depending on the construction year and number of passengers. The hazard quotient is higher than the acceptable level of 1.0 μg kg-1 day for children, indicating that they are at risk of exposure to unsafe PM10 levels when travelling by the metro. Therefore, stricter management may be necessary for the stations constructed in the 1970s as well as those with higher numbers of passengers.
Van Ryswyk, Keith; Anastasopolos, Angelos T; Evans, Greg; Sun, Liu; Sabaliauskas, Kelly; Kulka, Ryan; Wallace, Lance; Weichenthal, Scott
2017-05-16
System-representative commuter air pollution exposure data were collected for the metro systems of Toronto, Montreal, and Vancouver, Canada. Pollutants measured included PM 2.5 (PM = particulate matter), PM 10 , ultrafine particles, black carbon, and the elemental composition of PM 2.5 . Sampling over three weeks was conducted in summer and winter for each city and covered each system on a daily basis. Mixed-effect linear regression models were used to identify system features related to particulate exposures. Ambient levels of PM 2.5 and its elemental components were compared to those of the metro in each city. A microenvironmental exposure model was used to estimate the contribution of a 70 min metro commute to daily mean exposure to PM 2.5 elemental and mass concentrations. Time spent in the metro was estimated to contribute the majority of daily exposure to several metallic elements of PM 2.5 and 21.2%, 11.3% and 11.5% of daily PM 2.5 exposure in Toronto, Montreal, and Vancouver, respectively. Findings suggest that particle air pollutant levels in Canadian metros are substantially impacted by the systems themselves, are highly enriched in steel-based elements, and can contribute a large portion of PM 2.5 and its elemental components to a metro commuter's daily exposure.
Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J
2016-06-01
Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.
Martin, Rachael; Dowling, Kim; Pearce, Dora C; Florentine, Singarayer; McKnight, Stafford; Stelcer, Eduard; Cohen, David D; Stopic, Attila; Bennett, John W
2017-06-01
Mine wastes and tailings are considered hazardous to human health because of their potential to generate large quantities of highly toxic emissions of particulate matter (PM). Human exposure to As and other trace metals in PM may occur via inhalation of airborne particulates or through ingestion of contaminated dust. This study describes a laboratory-based method for extracting PM 2.5-10 (coarse) and PM 2.5 (fine) particles from As-rich mine waste samples collected from an historical gold mining region in regional, Victoria, Australia. We also report on the trace metal and metalloid content of the coarse and fine fraction, with an emphasis on As as an element of potential concern. Laser diffraction analysis showed that the proportions of coarse and fine particles in the bulk samples ranged between 3.4-26.6 and 0.6-7.6 %, respectively. Arsenic concentrations were greater in the fine fraction (1680-26,100 mg kg -1 ) compared with the coarse fraction (1210-22,000 mg kg -1 ), and Co, Fe, Mn, Ni, Sb and Zn were found to be present in the fine fraction at levels around twice those occurring in the coarse. These results are of particular concern given that fine particles can accumulate in the human respiratory system. Our study demonstrates that mine wastes may be an important source of metal-enriched PM for mining communities.
Seok, Jin Kyung; Lee, Jeong-Won; Kim, Young Mi; Boo, Yong Chool
2018-01-01
Airborne particulate matter with a diameter of < 10 µm (PM10) causes oxidative damage, inflammation, and premature skin aging. In this study, we evaluated whether polyphenolic antioxidants attenuate the inflammatory responses of PM10-exposed keratinocytes. Primary human epidermal keratinocytes were exposed in vitro to PM10 in the absence or presence of punicalagin and (-)-epigallocatechin-3-gallate (EGCG), which are the major polyphenolic antioxidants found in pomegranate and green tea, respectively. Assays were performed to determine cell viability, production of reactive oxygen species (ROS), and expression of NADPH oxidases (NOX), proinflammatory cytokines, and matrix metalloproteinase (MMP)-1. PM10 decreased cell viability and increased ROS production in a dose-dependent manner. It also increased the expression levels of NOX-1, NOX-2, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, and MMP-1. Punicalagin was not cytotoxic up to 300 μM, and (-)-EGCG was cytotoxic above 30 μM, respectively. Further, punicalagin (3-30 μM) and EGCG (3-10 μM) rescued the viability of PM10-exposed cells. They also attenuated ROS production and the expression of NOX-1, NOX-2, TNF-α, IL-1β, IL-6, IL-8, and MMP-1 stimulated by PM10. This study demonstrates that polyphenolic antioxidants, such as punicalagin and (-)-EGCG, rescue keratinocyte viability and attenuate the inflammatory responses of these cells due to airborne particles. © 2018 S. Karger AG, Basel.
Li, Lixin; Losser, Travis; Yorke, Charles; Piltner, Reinhard
2014-09-03
Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW)-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed) faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate spatiotemporal interpolation results.
Li, Lixin; Losser, Travis; Yorke, Charles; Piltner, Reinhard
2014-01-01
Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW)-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed) faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate spatiotemporal interpolation results. PMID:25192146
Kim, Kyoung-Nam; Lim, Youn-Hee; Bae, Hyun Joo; Kim, Myounghee; Jung, Kweon; Hong, Yun-Chul
2016-01-01
Background: Previous studies have associated short-term air pollution exposure with depression. Although an animal study showed an association between long-term exposure to particulate matter ≤ 2.5 μm (PM2.5) and depression, epidemiological studies assessing the long-term association are scarce. Objective: We aimed to determine the association between long-term PM2.5 exposure and major depressive disorder (MDD). Methods: A total of 27,270 participants 15–79 years of age who maintained an address within the same districts in Seoul, Republic of Korea, throughout the entire study period (between 2002 and 2010) and without a previous MDD diagnosis were analyzed. We used three district-specific exposure indices as measures of long-term PM2.5 exposure. Cox proportional hazards models adjusted for potential confounding factors and measured at district and individual levels were constructed. We further conducted stratified analyses according to underlying chronic diseases such as diabetes mellitus, cardiovascular disease, and chronic obstructive pulmonary disease. Results: The risk of MDD during the follow-up period (2008–2010) increased with an increase of 10 μg/m3 in PM2.5 in 2007 [hazard ratio (HR) = 1.44; 95% CI: 1.17, 1.78], PM2.5 between 2007 and 2010 (HR = 1.59; 95% CI: 1.02, 2.49), and 12-month moving average of PM2.5 until an event or censor (HR = 1.47; 95% CI: 1.14, 1.90). The association between long-term PM2.5 exposure and MDD was greater in participants with underlying chronic diseases than in participants without these diseases. Conclusion: Long-term PM2.5 exposure increased the risk of MDD among the general population. Individuals with underlying chronic diseases are more vulnerable to long-term PM2.5 exposure. Citation: Kim KN, Lim YH, Bae HJ, Kim M, Jung K, Hong YC. 2016. Long-term fine particulate matter exposure and major depressive disorder in a community-based urban cohort. Environ Health Perspect 124:1547–1553; http://dx.doi.org/10.1289/EHP192 PMID:27129131
Modeling Exposures to the Oxidative Potential of PM10
2012-01-01
Differences in the toxicity of ambient particulate matter (PM) due to varying particle composition across locations may contribute to variability in results from air pollution epidemiologic studies. Though most studies have used PM mass concentration as the exposure metric, an alternative which accounts for particle toxicity due to varying particle composition may better elucidate whether PM from specific sources is responsible for observed health effects. The oxidative potential (OP) of PM < 10 μm (PM10) was measured as the rate of depletion of the antioxidant reduced glutathione (GSH) in a model of human respiratory tract lining fluid. Using a database of GSH OP measures collected in greater London, U.K. from 2002 to 2006, we developed and validated a predictive spatiotemporal model of the weekly GSH OP of PM10 that included geographic predictors. Predicted levels of OP were then used in combination with those of weekly PM10 mass to estimate exposure to PM10 weighted by its OP. Using cross-validation (CV), brake and tire wear emissions of PM10 from traffic within 50 m and tailpipe emissions of nitrogen oxides from heavy-goods vehicles within 100 m were important predictors of GSH OP levels. Predictive accuracy of the models was high for PM10 (CV R2=0.83) but only moderate for GSH OP (CV R2 = 0.44) when comparing weekly levels; however, the GSH OP model predicted spatial trends well (spatial CV R2 = 0.73). Results suggest that PM10 emitted from traffic sources, specifically brake and tire wear, has a higher OP than that from other sources, and that this effect is very local, occurring within 50–100 m of roadways. PMID:22731499
Luong, Ly M T; Phung, Dung; Sly, Peter D; Morawska, Lidia; Thai, Phong K
2017-02-01
While the effects of ambient air pollution on health have been studied extensively in many developed countries, few studies have been conducted in Vietnam, where the population is exposed to high levels of airborne particulate matter. The aim of our study was to examine the short-term effects of PM 10 , PM 2.5 , and PM 1 on respiratory admissions among young children in Hanoi. Data on daily admissions from the Vietnam National Hospital of Paediatrics and daily records of PM 10 , PM 2.5 , PM 1 and other confounding factors as NO 2 , SO 2 , CO, O 3 and temperature were collected from September 2010 to September 2011. A time-stratified case-crossover design with individual lag model was applied to evaluate the associations between particulate air pollution and respiratory admissions. Significant effects on daily hospital admissions for respiratory disease were found for PM 10 , PM 2.5 and PM 1 . An increase in 10μg/m 3 of PM 10 , PM 2.5 or PM 1 was associated with an increase in risk of admission of 1.4%, 2.2% or 2.5% on the same day of exposure, respectively. No significant difference between the effects on males and females was found in the study. The study demonstrated that infants and young children in Hanoi are at increased risk of respiratory admissions due to the high level of airborne particles in the city's ambient air. Copyright © 2016 Elsevier B.V. All rights reserved.
Investigation of Indoor Air Quality in Houses of Macedonia.
Vilčeková, Silvia; Apostoloski, Ilija Zoran; Mečiarová, Ľudmila; Burdová, Eva Krídlová; Kiseľák, Jozef
2017-01-01
People who live in buildings are exposed to harmful effects of indoor air pollution for many years. Therefore, our research is aimed to investigate the indoor air quality in family houses. The measurements of indoor air temperature, relative humidity, total volatile organic compounds (TVOC), particulate matters (PM) and sound pressure level were carried out in 25 houses in several cities of the Republic of Macedonia. Mean values of indoor air temperature and relative humidity ranged from 18.9 °C to 25.6 °C and from 34.1% to 68.0%, respectively. With regard to TVOC, it can be stated that excessive occurrence was recorded. Mean values ranged from 50 μg/m³ to 2610 μg/m³. Recommended value (200 μg/m³) for human exposure to TVOC was exceeded in 32% of houses. Mean concentrations of PM 2.5 (particular matter with diameter less than 2.5 μm) and PM 10 (diameter less than 10 μm) are determined to be from 16.80 μg/m³ to 30.70 μg/m³ and from 38.30 μg/m³ to 74.60 μg/m³ individually. Mean values of sound pressure level ranged from 29.8 dB(A) to 50.6 dB(A). Dependence between characteristics of buildings (Year of construction, Year of renovation, Smoke and Heating system) and data from measurements (Temperature, Relative humidity, TVOC, PM 2.5 and PM 10 ) were analyzed using R software. Van der Waerden test shows dependence of Smoke on TVOC and PM 2.5 . Permutational multivariate analysis of variance shows the effect of interaction of Renovation and Smoke.
Investigation of Indoor Air Quality in Houses of Macedonia
Vilčeková, Silvia; Apostoloski, Ilija Zoran; Mečiarová, Ľudmila; Krídlová Burdová, Eva; Kiseľák, Jozef
2017-01-01
People who live in buildings are exposed to harmful effects of indoor air pollution for many years. Therefore, our research is aimed to investigate the indoor air quality in family houses. The measurements of indoor air temperature, relative humidity, total volatile organic compounds (TVOC), particulate matters (PM) and sound pressure level were carried out in 25 houses in several cities of the Republic of Macedonia. Mean values of indoor air temperature and relative humidity ranged from 18.9 °C to 25.6 °C and from 34.1% to 68.0%, respectively. With regard to TVOC, it can be stated that excessive occurrence was recorded. Mean values ranged from 50 μg/m3 to 2610 μg/m3. Recommended value (200 μg/m3) for human exposure to TVOC was exceeded in 32% of houses. Mean concentrations of PM2.5 (particular matter with diameter less than 2.5 µm) and PM10 (diameter less than 10 µm) are determined to be from 16.80 µg/m3 to 30.70 µg/m3 and from 38.30 µg/m3 to 74.60 µg/m3 individually. Mean values of sound pressure level ranged from 29.8 dB(A) to 50.6 dB(A). Dependence between characteristics of buildings (Year of construction, Year of renovation, Smoke and Heating system) and data from measurements (Temperature, Relative humidity, TVOC, PM2.5 and PM10) were analyzed using R software. Van der Waerden test shows dependence of Smoke on TVOC and PM2.5. Permutational multivariate analysis of variance shows the effect of interaction of Renovation and Smoke. PMID:28045447
NASA Astrophysics Data System (ADS)
Liao, Z.; Fan, S.
2016-12-01
This study investigated the particulate matter characteristics within different circulation types (CTs) in the megacity of Shanghai during the period 2001-2015, and provided a quantitative evaluation of atmospheric circulation influences on PM10 pollution across a wide range of spatial and temporal scales, from local to region and daily to interannual. Ten CTs were identified over the Asian-Pacific region by objective Lamb Weather Type approach and each resulting CT was characterized with distinct local meteorology and air mass source. The PM10 loadings in the CTs associated with continental westerly flow were significant higher than that in the CTs linked to marine easterly air masses. Regional backgrounds that transported by the synoptic flows were more responsible for the distinct PM10 levels in different CTs. The locally-produced PM10 generally stabilized in range of 20-25 μg m-3, but enhanced to 41.2 μg m-3 in case of anticyclone type. There were distinct PM10 trends in different CTs (ranged from -3.74 to -0.28 μg m-3 yr-1), indicating the different background trends. Overall, the PM10 concentrations have decreased (-2.33 μg m-3 yr-1) in the studied period and the estimated locally-produced trend (-0.79 μg m-3 yr-1) accounted for 33.9% of overall downward trend. The occurrence frequency presented an increase (0.15 % yr-1) for anticyclone type, but a decrease (-0.10 % yr-1) for the type N associated with invasion of cold air. The 15-yr frequency change of atmospheric circulation induced an increase in PM10 level (0.17 μg m-3) in Shanghai. On the contrary, controls on the pollutant emission had always positive effects and hence should be always encouraged.
Kaiser, Reinhard; Romieu, Isabelle; Medina, Sylvia; Schwartz, Joel; Krzyzanowski, Michal; Künzli, Nino
2004-01-01
Background The impact of outdoor air pollution on infant mortality has not been quantified. Methods Based on exposure-response functions from a U.S. cohort study, we assessed the attributable risk of postneonatal infant mortality in 23 U.S. metropolitan areas related to particulate matter <10 μm in diameter (PM10) as a surrogate of total air pollution. Results The estimated proportion of all cause mortality, sudden infant death syndrome (normal birth weight infants only) and respiratory disease mortality (normal birth weight) attributable to PM10 above a chosen reference value of 12.0 μg/m3 PM10 was 6% (95% confidence interval 3–11%), 16% (95% confidence interval 9–23%) and 24% (95% confidence interval 7–44%), respectively. The expected number of infant deaths per year in the selected areas was 106 (95% confidence interval 53–185), 79 (95% confidence interval 46–111) and 15 (95% confidence interval 5–27), respectively. Approximately 75% of cases were from areas where the current levels are at or below the new U.S. PM2.5 standard of 15 μg/m3 (equivalent to 25 μg/m3 PM10). In a country where infant mortality rates and air pollution levels are relatively low, ambient air pollution as measured by particulate matter contributes to a substantial fraction of infant death, especially for those due to sudden infant death syndrome and respiratory disease. Even if all counties would comply to the new PM2.5 standard, the majority of the estimated burden would remain. Conclusion Given the inherent limitations of risk assessments, further studies are needed to support and quantify the relationship between infant mortality and air pollution. PMID:15128459
Ambient fine particulate matter air pollution and leisure-time physical inactivity among US adults.
An, R; Xiang, X
2015-12-01
There is mounting evidence documenting the adverse health effects of short- and long-term exposure to ambient fine particulate matter (PM2.5) air pollution, but population-based evidence linking PM2.5 and health behaviour remains lacking. This study examined the relationship between ambient PM2.5 air pollution and leisure-time physical inactivity among US adults 18 years of age and above. Retrospective data analysis. Participant-level data (n = 2,381,292) from the Behavioral Risk Factor Surveillance System 2003-2011 surveys were linked with Wide-ranging Online Data for Epidemiologic Research air quality data by participants' residential county and interview month/year. Multilevel logistic regressions were performed to examine the effect of ambient PM2.5 air pollution on participants' leisure-time physical inactivity, accounting for various individual and county-level characteristics. Regressions were estimated on the overall sample and subsamples stratified by sex, age cohort, race/ethnicity and body weight status. One unit (μg/m(3)) increase in county monthly average PM2.5 concentration was found to be associated with an increase in the odds of physical inactivity by 0.46% (95% confidence interval = 0.34%-0.59%). The effect was similar between the sexes but to some extent (although not always statistically significant) larger for younger adults, Hispanics, and overweight/obese individuals compared with older adults, non-Hispanic whites or African Americans, and normal weight individuals, respectively. Ambient PM2.5 air pollution is found to be associated with a modest but measurable increase in individuals' leisure-time physical inactivity, and the relationship tends to differ across population subgroups. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Exposure to particulate matter in India: A synthesis of findings and future directions.
Pant, Pallavi; Guttikunda, Sarath K; Peltier, Richard E
2016-05-01
Air pollution poses a critical threat to human health with ambient and household air pollution identified as key health risks in India. While there are many studies investigating concentration, composition, and health effects of air pollution, investigators are only beginning to focus on estimating or measuring personal exposure. Further, the relevance of exposures studies from the developed countries in developing countries is uncertain. This review summarizes existing research on exposure to particulate matter (PM) in India, identifies gaps and offers recommendations for future research. There are a limited number of studies focused on exposure to PM and/or associated health effects in India, but it is evident that levels of exposure are much higher than those reported in developed countries. Most studies have focused on coarse aerosols, with a few studies on fine aerosols. Additionally, most studies have focused on a handful of cities, and there are many unknowns in terms of ambient levels of PM as well as personal exposure. Given the high mortality burden associated with air pollution exposure in India, a deeper understanding of ambient pollutant levels as well as source strengths is crucial, both in urban and rural areas. Further, the attention needs to expand beyond the handful large cities that have been studied in detail. Copyright © 2016 Elsevier Inc. All rights reserved.
High time-resolution aerosol sampling was conducted for one month during July–August 2007 in Dearborn, MI, a non-attainment area for fine particulate matter (PM2.5) National Ambient Air Quality Standards (NAAQS). Measurements of more than 30 PM2.5 species were made using a suite o...
The Research Triangle Park (RTP) Particulate Matter (PM) Panel Study represented a one-year investigation of personal, residential and ambient PM mass concentrations across distances as large as 70 km in central North Carolina. One of the primary goals of this effort was to est...
Canada-United States Transboundary Particulate Matter Science Assessment 2013
This 2013 document summarizes the findings of the Canada-U.S. subcommittee on Scientific Cooperation concerning the transboundary transport of particulate matter (PM) and PM precursors between the two countries.
Yap, Poh-Sin; Garcia, Cynthia
2015-04-01
We examined the impact of Rule 4901, aimed at reducing residential wood burning, on particulate matter levels and hospitalizations in the San Joaquin Valley Air Basin (SJVAB). Using general linear mixed models and generalized estimating equation models, we compared levels of particulate matter and of hospital admissions (age groups = 45-64 and ≥ 65 years) in the SJVAB for cardiovascular disease (CVD), ischemic heart disease (IHD), and chronic obstructive pulmonary disease during the burn seasons before (2000-2003) and after (2003-2006) implementation. After implementation, we observed reductions of 12%, 11%, and 15% in particulate matter 2.5 micrometers in diameter or smaller (PM2.5), and 8%, 7%, and 11% in coarse particles, in the entire SJVAB and in rural and urban regions of the air basin, respectively. Among those aged 65 years and older, Rule 4901 was estimated to prevent 7%, 8%, and 5% of CVD cases, and 16%, 17%, and 13% of IHD cases, in the entire SJVAB and in rural and urban regions, respectively. The study suggests that Rule 4901 is effective at reducing wintertime ambient PM2.5 levels and decreasing hospital admissions for heart disease among people aged 65 years and older.
The UK particulate matter air pollution episode of March-April 2014: more than Saharan dust
NASA Astrophysics Data System (ADS)
Vieno, M.; Heal, M. R.; Twigg, M. M.; MacKenzie, I. A.; Braban, C. F.; Lingard, J. J. N.; Ritchie, S.; Beck, R. C.; Móring, A.; Ots, R.; Di Marco, C. F.; Nemitz, E.; Sutton, M. A.; Reis, S.
2016-04-01
A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK.
Rizky, Zuly Prima; Yolla, Patricia Bebby; Ramdhan, Doni Hikmat
2016-03-01
Exposure to fine particulate matter (PM2.5) in both the short and long term has been known to cause deaths and health effects, especially related to the heart, blood vessels, and lungs. Based on this information, researchers conducted this study at a motor vehicle testing center unit at Pulo Gadung, in Jarkarta, to determine the concentration of PM2.5 that workers were exposed to. The major source of PM2.5 in this area is from the exhaust of gas emissions from motor vehicles, which is one of the largest contributors to the levels of PM in urban areas. Ten mechanics were picked from 16 mechanics that work in this station. Four administration workers from different posts were also picked to participate. The researcher conducted the PM2.5 personal exposure measurement during weekdays from 6 to 14 April 2015 (2 workers/day). This research was conducted to measure the particle number concentration with size <2.5 μm. The average personal exposure concentrations of PM2.5 in the study period received by the group of mechanics amounted to 149.01 μm/m3 while the administrative officer group that consisted of four administrative workers were exposed to an average of 103.28 μm/m3. Once converted and compared with the World Health Organization Air Quality Guidelines, the PM2.5 exposure of the mechanics and administrative officers exceeded the recommended exposure (25 μm/m3).
Fleischer, Nancy L; Merialdi, Mario; van Donkelaar, Aaron; Vadillo-Ortega, Felipe; Martin, Randall V; Betran, Ana Pilar; Souza, João Paulo
2014-04-01
Inhaling fine particles (particulate matter with diameter ≤ 2.5 μm; PM2.5) can induce oxidative stress and inflammation, and may contribute to onset of preterm labor and other adverse perinatal outcomes. We examined whether outdoor PM2.5 was associated with adverse birth outcomes among 22 countries in the World Health Organization Global Survey on Maternal and Perinatal Health from 2004 through 2008. Long-term average (2001-2006) estimates of outdoor PM2.5 were assigned to 50-km-radius circular buffers around each health clinic where births occurred. We used generalized estimating equations to determine associations between clinic-level PM2.5 levels and preterm birth and low birth weight at the individual level, adjusting for seasonality and potential confounders at individual, clinic, and country levels. Country-specific associations were also investigated. Across all countries, adjusting for seasonality, PM2.5 was not associated with preterm birth, but was associated with low birth weight [odds ratio (OR) = 1.22; 95% CI: 1.07, 1.39 for fourth quartile of PM2.5 (> 20.2 μg/m3) compared with the first quartile (< 6.3 μg/m3)]. In China, the country with the largest PM2.5 range, preterm birth and low birth weight both were associated with the highest quartile of PM2.5 only, which suggests a possible threshold effect (OR = 2.54; CI: 1.42, 4.55 and OR = 1.99; CI: 1.06, 3.72 for preterm birth and low birth weight, respectively, for PM2.5 ≥ 36.5 μg/m3 compared with PM2.5 < 12.5 μg/m3). Outdoor PM2.5 concentrations were associated with low birth weight but not preterm birth. In rapidly developing countries, such as China, the highest levels of air pollution may be of concern for both outcomes.
Air Pollution Measurements by Citizen Scientists and NASA Satellites: Data Integration and Analysis
NASA Astrophysics Data System (ADS)
Gupta, P.; Maibach, J.; Levy, R. C.; Doraiswamy, P.; Pikelnaya, O.; Feenstra, B.; Polidori, A.
2017-12-01
PM2.5, or fine particulate matter, is a category of air pollutant consisting of solid particles with effective aerodynamic diameter of less than 2.5 microns. These particles are hazardous to human health, as their small size allows them to penetrate deep into the lungs. Since the late 1990's, the US Environmental Protection Agency has been monitoring PM2.5 using a network of ground-level sensors. Due to cost and space restrictions, the EPA monitoring network remains spatially sparse. That is, while the network spans the extent of the US, the distance between sensors is large enough that significant spatial variation in PM concentration can go undetected. To increase the spatial resolution of monitoring, previous studies have used satellite data to estimate ground-level PM concentrations. From imagery, one can create a measure of haziness due to aerosols, called aerosol optical depth (AOD), which then can be used to estimate PM concentrations using statistical and physical modeling. Additionally, previous research has identified a number of meteorological variables, such as relative humidity and mixing height, which aide in estimating PM concentrations from AOD. Although the high spatial resolution of satellite data is valuable alone for forecasting air quality, higher resolution ground-level data is needed to effectively study the relationship between PM2.5 concentrations and AOD. To this end, we discuss a citizen-science PM monitoring network deployed in California. Using low-cost PM sensors, this network achieves higher spatial resolution. We additionally discuss a software pipeline for integrating resulting PM measurements with satellite data, as well as initial data analysis.
Barrow Black Carbon Source and Impact Study Final Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Tate
2014-07-01
The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 samplermore » operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.« less
Gourdji, Shannon
2018-05-28
In urbanized regions with expansive impervious surfaces and often low vegetation cover, air pollution due to motor vehicles and other combustion sources, is a problem. The poor air quality days in Montreal, Quebec are mainly due to fine particulate matter and ozone. Businesses using wood ovens are a source of particulates. Careful vegetation selection and increased green roof usage can improve air quality. This paper reviews different green roofs and the capability of plants in particulate matter (PM), ozone (O 3 ) as well as nitrogen dioxide (NO 2 ) level reductions. Both the recommended green roof category and plants to reduce these pollutants in Montreal's zone 5 hardiness region are provided. Green roofs with larger vegetation including shrubs and trees, or intensive green roofs, remove air pollutants to a greater extent and are advisable to implement on existing, retrofitted or new buildings. PM is most effectively captured by pines. The small Pinus strobus 'Nana', Pinus mugho var. pumilio, Pinus mugho 'Slowmound' and Pinus pumila 'Dwarf Blue' are good candidates for intensive green roofs. Drought tolerant, deciduous broadleaved trees with low biogenic volatile organic compound emissions including Japanese Maple or Acer palmatum 'Shaina' and 'Mikawa-Yatsubusa' are options to reduce O 3 levels. Magnolias are tolerant to NO 2 and it is important in their metabolic pathways. The small cold-tolerant Magnolia 'Genie' is a good option to remove NO 2 in urban settings and to indirectly reduce O 3 formation. Given the emissions by Montreal businesses' wood ovens, calculations performed based on their respective complex roof areas obtained via Google Earth Pro indicates 88% Pinus mugho var. pumilio roof coverage can annually remove 92.37 kg of PM 10 of which 35.10 kg is PM 2.5 . The removal rates are 4.00 g/m 2 and 1.52 g/m 2 for PM 10 and PM 2.5 , respectively. This paper provides insight to addressing air pollution through urban rooftop greening. Copyright © 2018 Elsevier Ltd. All rights reserved.
Removal efficiency of particulate matters at different underlying surfaces in Beijing.
Liu, Jiakai; Mo, Lichun; Zhu, Lijuan; Yang, Yilian; Liu, Jiatong; Qiu, Dongdong; Zhang, Zhenming; Liu, Jinglan
2016-01-01
Particulate matter (PM) pollution has been increasingly becoming serious in Beijing and has drawn the attention of the local government and general public. This study was conducted during early spring of 2013 and 2014 to monitor the concentration of PM at three different land surfaces (bare land, urban forest, and lake) in the Olympic Park in Beijing and to analyze its effect on the concentration of meteorological factors and the dry deposition onto different land cover types. The results showed that diurnal variation of PM concentrations at the three different land surfaces had no significant regulations, and sharp short-term increases in PM10 (particulate matter having an aerodynamic diameter <10 μm) occurred occasionally. The concentrations also differed from one land cover type to another at the same time, but the regulation was insignificant. The most important meteorological factor influencing the PM concentration is relative humidity; it is positively correlated with the PM concentration. While in the forests, the wind speed and irradiance also influenced the PM concentration by affecting the capture capacity of trees and dry deposition velocity. Other factors were not correlated with or influenced by the PM concentration. In addition, the hourly dry deposition in unit area (μg/m(2)) onto the three types of land surfaces and the removal efficiency based on the ratio of dry deposition and PM concentration were calculated. The results showed that the forest has the best removal capacity for both PM2.5 (particulate matter having an aerodynamic diameter <2.5 μm) and PM10 because of the faster deposition velocity and relatively low resuspension rate. The lake's PM10 removal efficiency is higher than that of the bare land because of the relatively higher PM resuspension rates on the bare land. However, the PM2.5 removal efficiency is lower than that of the bare land because of the significantly lower dry deposition velocity.
Higher fine particulate matter and temperature levels impair exercise capacity in cardiac patients.
Giorgini, Paolo; Rubenfire, Melvyn; Das, Ritabrata; Gracik, Theresa; Wang, Lu; Morishita, Masako; Bard, Robert L; Jackson, Elizabeth A; Fitzner, Craig A; Ferri, Claudio; Brook, Robert D
2015-08-01
Fine particulate matter (PM2.5) air pollution and variations in ambient temperature have been linked to increased cardiovascular morbidity and mortality. However, no large-scale study has assessed their effects on directly measured aerobic functional capacity among high-risk patients. Using a cross-sectional observational design, we evaluated the effects of ambient PM2.5 and temperature levels over 7 days on cardiopulmonary exercise test results performed among 2078 patients enrolling into a cardiac rehabilitation programme at the University of Michigan (from January 2003 to August 2011) using multiple linear regression analyses (controlling for age, sex, body mass index). Peak exercise oxygen consumption was significantly decreased by approximately 14.9% per 10 μg/m(3) increase in ambient PM2.5 levels (median 10.7 μg/m(3), IQR 10.1 μg/m(3)) (lag days 6-7). Elevations in PM2.5 were also related to decreases in ventilatory threshold (lag days 5-7) and peak heart rate (lag days 2-3) and increases in peak systolic blood pressure (lag days 4-5). A 10°C increase in temperature (median 10.5°C, IQR 17.5°C) was associated with reductions in peak exercise oxygen consumption (20.6-27.3%) and ventilatory threshold (22.9-29.2%) during all 7 lag days. In models including both factors, the outcome associations with PM2.5 were attenuated whereas the effects of temperature remained significant. Short-term elevations in ambient PM2.5, even at low concentrations within current air quality standards, and/or higher temperatures were associated with detrimental changes in aerobic exercise capacity, which can be linked to a worse quality of life and cardiovascular prognosis among cardiac rehabilitation patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Secondhand smoke levels in Scottish pubs: the effect of smoke‐free legislation
Semple, Sean; Creely, Karen S; Naji, Audrey; Miller, Brian G; Ayres, Jon G
2007-01-01
Objective To compare levels of particulate matter, as a marker of secondhand smoke (SHS) levels, in pubs before and 2 months after the implementation of Scottish legislation to prohibit smoking in substantially enclosed public places. Design Comparison of SHS levels before and after the legislation in a random selection of 41 pubs in 2 Scottish cities. Methods Fine particulate matter <2.5 μm in diameter (PM2.5) was measured discreetly for 30 min in each bar on 1 or 2 visits in the 8 weeks preceding the starting date of the Smoking, Health and Social Care (Scotland) Act 2005 and then again 2 months after the ban. Repeat visits were undertaken on the same day of the week and at approximately the same time of the day. Results PM2.5 levels before the introduction of the legislation averaged 246 μg/m3 (range 8–902 μg/m3). The average level reduced to 20 μg/m3 (range 6–104 μg/m3) in the period after the ban. Levels of SHS were reduced in all 53 post‐ban visits, with the average reduction being 86% (range 12–99%). PM2.5 concentrations in most pubs post‐ban were comparable to the outside ambient air PM2.5 level. Conclusions This study has produced the largest dataset of pre‐ and post‐ban SHS levels in pubs of all worldwide smoke‐free legislations introduced to date. Our results show that compliance with the Smoking, Health and Social Care (Scotland) Act 2005 has been high and this has led to a marked reduction in SHS concentrations in Scottish pubs, thereby reducing both the occupational exposure of workers in the hospitality sector and that of non‐smoking patrons. PMID:17400951
Libalova, Helena; Milcova, Alena; Cervena, Tereza; Vrbova, Kristyna; Rossnerova, Andrea; Novakova, Zuzana; Topinka, Jan; Rossner, Pavel
2018-03-01
Polycyclic aromatic hydrocarbons (PAHs) associated with particulate matter (PM) may induce oxidative damage via reactive oxygen species (ROS) generation. However, the kinetics of ROS production and the link with antioxidant response induction has not been well studied. To elucidate the differences in oxidative potential of individual PAH compounds and extractable organic matter (EOM) from PM containing various PAH mixtures, we studied ROS formation and antioxidant response [total antioxidant capacity (TAC) and expression of HMOX1 and TXNRD1] in human alveolar basal epithelial cells (A549 cells) and human embryonic lung fibroblasts (HEL12469 cells). We treated the cells with three concentrations of model PAHs (benzo[a]pyrene, B[a]P; 3-nitrobenzanthrone, 3-NBA) and EOM from PM <2.5 μm (PM2.5). ROS levels were evaluated at 8 time intervals (30 min-24 h). In both cell lines, B[a]P treatment was associated with a time-dependent decrease of ROS levels. This trend was more pronounced in HEL12469 cells and was accompanied by increased TAC. A similar response was observed upon 3-NBA treatment in HEL12469 cells. In A549 cells, however, this compound significantly increased superoxide levels. This response was accompanied by the decrease of TAC as well as HMOX1 and TXNRD1 expression. In both cell lines, a short-time exposure to EOMs tended to increase ROS levels, while a marked decrease was observed after longer treatment periods. This was accompanied by the induction of HMOX1 and TXNRD1 expression in HEL12469 cells and increased TAC in A549 cells. In summary, our data indicate that in the studied cell lines B[a]P and EOMs caused a time-dependent decrease of intracellular ROS levels, probably due to the activation of the antioxidant response. This response was not detected in A549 cells following 3-NBA treatment, which acted as a strong superoxide inducer. Pro-oxidant properties of EOMs are limited to short-time exposure periods. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of chimneys on indoor air concentrations of PM 10 and benzo[a]pyrene in Xuan Wei, China
NASA Astrophysics Data System (ADS)
Tian, Linwei; Lan, Qing; Yang, Dong; He, Xingzhou; Yu, Ignatius T. S.; Hammond, S. Katharine
This paper reports the effect of chimneys in reducing indoor air pollution in a lung cancer epidemic area of rural China. Household indoor air pollution concentrations were measured during unvented burning (chimneys blocked) and vented burning (chimneys open) of bituminous coal in Xuan Wei, China. Concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM 10) and of benzo[a]pyrene (BaP) were measured in 43 homes during normal activities. The use of chimneys led to significant decreases in indoor air concentrations of particulate matter with an aerodynamic diameter of 10 μm or less (PM 10) by 66% and of benzo[a]pyrene (BaP) by 84%. The average BaP content of PM 10 also decreased by 55% with the installation of a chimney. The reduction of indoor pollution levels by the installation of a chimney supports the epidemiology findings on the health benefits of stove improvement. However, even in the presence of a chimney, the indoor air concentrations for both PM 10 and BaP still exceeded the indoor air quality standards of China. Movement up the energy ladder to cleaner liquid or gaseous fuels is probably the only sustainable indoor air pollution control measure.
Kumar, Awkash; Ketzel, Matthias; Patil, Rashmi S; Dikshit, Anil Kumar; Hertel, Ole
2016-06-01
Megacities in India such as Mumbai and Delhi are among the most polluted places in the world. In the present study, the widely used operational street pollution model (OSPM) is applied for assessing pollutant loads in the street canyons of Chembur, a suburban area just outside Mumbai city. Chembur is both industrialized and highly congested with vehicles. There are six major street canyons in this area, for which modeling has been carried out for NOx and particulate matter (PM). The vehicle emission factors for Indian cities have been developed by Automotive Research Association of India (ARAI) for PM, not specifically for PM10 or PM2.5. The model has been applied for 4 days of winter season and for the whole year to see the difference of effect of meteorology. The urban background concentrations have been obtained from an air quality monitoring station. Results have been compared with measured concentrations from the routine monitoring performed in Mumbai. NOx emissions originate mainly from vehicles which are ground-level sources and are emitting close to where people live. Therefore, those emissions are highly relevant. The modeled NOx concentration compared satisfactorily with observed data. However, this was not the case for PM, most likely because the emission inventory did not contain emission terms due to resuspended particulate matter.
[Effects of carbon components of fine particulate matter (PM2.5) on atherogenic index of plasma].
Fan, Jiao; Qin, Xiaolei; Xue, Xiaodan; Han, Bin; Bai, Zhipeng; Tang, Naijun; Zhang, Liwen
2014-01-01
To evaluate associations between carbon constituents of fine particulate matter (PM2.5) and atherogenic index of plasma (AIP). We collected subjects from two communities by a system sampling, and 112 people aged over 60 years old without cardiovascular disease were recruited. The levels of cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) of objects, and personal exposure to PM2.5 were measured on December, 2011. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) of PM2.5 were detected and AIP was calculated according to its definition. The value of AIP among the 112 subjects was 0.05 ± 0.26. Personal exposure concentration of PM2.5 and its carbon components (TC,OC and EC) were (164.75 ± 110.67), (53.86 ± 29.65), (44.93 ± 26.37) and (9.49 ± 5.75) µg/m(3), respectively. The Pearson analysis showed the linear relationship between TC,OC,EC and AIP, all significant positive correlations. The correlation coefficients were TC (r = 0.307, P < 0.05),OC (r = 0.287, P < 0.05) and EC (r = 0.252, P < 0.05), respectively. The multiple logistic regression analysis showed that when the AIP risk categories were selected as dependent variable and low risk group as reference group, the regression coefficient of TC,OC and EC was separately 1.03 (95%CI:1.01-1.05), 1.03 (95%CI:1.01-1.05), 1.12 (95%CI:1.02-1.22) in the high risk group; while there was no statistical significance of the regression coefficient and OR in the middle risk group. There was stable associations between the carbon constituents (TC,OC and EC) of fine Particulate Matter (PM2.5) and AIP. The findings suggested that carbon components of PM2.5 should be considered as risk factors of atherogenic.
Woodward, NC; Pakbin, P; Saffari, A; Shirmohammadi, F; Haghani, A; Sioutas, C; Cacciottolo, M; Morgan, TE; Finch, CE
2017-01-01
Traffic-related air pollution (TRAP) is associated with lower cognition and reduced white matter volume in older adults, specifically for particulate matter <2.5 μm diameter (PM2.5). Rodents exposed to TRAP have shown microglial activation and neuronal atrophy. We further investigated age differences of TRAP exposure, with focus on hippocampus for neuritic atrophy, white matter degeneration, and microglial activation. Young and middle-aged mice (3 and 18 month female C57BL/6J) were exposed to nanoscale-PM (nPM, <0.2 μm diameter). Young mice showed selective changes in the hippocampal CA1 region, with neurite atrophy (−25%), decreased MBP (−50%), and increased Iba1 (+50%), with dentate gyrus relatively unaffected. Exposure to nPM of young mice decreased GluA1 protein (−40%) and increased TNFa mRNA (10×). Older controls had age changes approximating nPM effects on young, with no response to nPM, suggesting an age ceiling effect. The CA1 selective vulnerability in young mice parallels CA1 vulnerability in Alzheimer’s disease. We propose that TRAP associated human cognitive and white matter changes involve hippocampal responses to nPM that begin at younger ages. PMID:28212893
Patel, Disa; Shibata, Tomoyuki; Wilson, James; Maidin, Alimin
2016-02-01
Particulate matter (PM) contributes to an increased risk of respiratory and cardiovascular illnesses, cancer, and preterm birth complications. This project assessed PM exposure in Eastern Indonesia's largest city, where air quality has not been comprehensively monitored. We examined the efficacy of wearing masks as an individual intervention effort to reduce in-transit PM exposures. Handheld particulate counters were used to investigate ambient air quality for spatial analysis, as well as the differences in exposure to PM2.5 and PM10 (μg/m(3)) by different transportation methods [e.g. motorcycle (n=97), pete-pete (n=53), and car (n=55); note: n=1 means 1m(3) of air sample]. Mask efficacy to reduce PM exposure was evaluated [e.g. surgical masks (n=39), bandanas (n=52), and motorcycle masks (n=39)]. A Monte Carlo simulation was used to provide a range of uncertainty in exposure assessment. Overall PM10 levels (91±124 μg/m(3)) were elevated compared to the World Health Organization (WHO)'s 24-hour air quality guideline (50 μg/m(3)). While average PM2.5 levels (9±14 μg/m(3)) were below the WHO's guideline (25 μg/m(3)), measurements up to 139 μg/m(3) were observed. Compared to cars, average motorcycle and pete-pete PM exposures were four and three times higher for PM2.5, and 13 and 10 times higher for PM10, respectively. Only surgical masks were consistent in lowering PM2.5 and PM10 (p<0.01). Young children (≤5) were the most vulnerable age group, and could not reach the safe dosage even when wearing surgical masks. Individual interventions can effectively reduce individual PM exposures; however, policy interventions will be needed to improve the overall air quality and create safer transportation. Copyright © 2015 Elsevier B.V. All rights reserved.
Pirozzi, Cheryl S; Mendoza, Daniel L; Xu, Yizhe; Zhang, Yue; Scholand, Mary Beth; Baughman, Robert P
2018-05-26
This study aimed to determine if short-term exposure to particulate matter (PM 2.5 ) and ozone (O₃) is associated with increased symptoms or lung function decline in fibrotic sarcoidosis. Sixteen patients with fibrotic sarcoidosis complicated by frequent exacerbations completed pulmonary function testing and questionnaires every three months for one year. We compared 7-, 10-, and 14-day average levels of PM 2.5 and O₃ estimated at patient residences to spirometry (forced expiratory volume in 1 s (FEV1), to forced vital capacity (FVC), episodes of FEV1 decline > 10%) and questionnaire outcomes (Leicester cough questionnaire (LCQ), Saint George Respiratory Questionnaire (SGRQ), and King's Sarcoidosis Questionnaire (KSQ)) using generalized linear mixed effect models. PM 2.5 level averaged over 14 days was associated with lower KSQ general health status (score change -6.60 per interquartile range (IQR) PM 2.5 increase). PM 2.5 level averaged over 10 and 14 days was associated with lower KSQ lung specific health status (score change -6.93 and -6.91, respectively). PM 2.5 levels were not associated with FEV₁, FVC, episodes of FEV₁ decline > 10%, or respiratory symptoms measured by SGRQ or LCQ. Ozone exposure was not associated with any health outcomes. In this small cohort of patients with fibrotic sarcoidosis, PM 2.5 exposure was associated with increased severity of respiratory and quality of life symptoms.
Introduction
An exposure assessment study was conducted in Atlanta, GA during fall 1999 and spring 2000 to examine the short-term effects of exposure to particulate matter and gaseous air pollutants on heart rate variability (HRV). Characterization of particulate matter (PM...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-09
... requirement for inclusion of condensable emissions of particulate matter (condensables) within the definition of ``regulated new source review (NSR) pollutant'' for fine particulate matter (PM 2.5 ) and particulate matter emissions less than or equal to ten micrometers in diameter (PM 10 ). In addition, because...
The NERL Particulate Matter Longitudinal Panel Studies were used to characterize temporal variations of personal exposure to PM and related co-pollutants, including that of PM measured at ambient sites. These studies were fundamental in understanding the associations between p...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-06
... ENVIRONMENTAL PROTECTION AGENCY [EPA-R05-OAR-2008-0398; FRL-9145-9] Adequacy Status of the Indianapolis, Indiana Submitted Annual Fine Particulate Matter Attainment Demonstration for Transportation... (MVEBs) for fine particulate matter (PM 2.5 ) and oxides of nitrogen (NOx) as a precursor to PM 2.5 in...
77 FR 63234 - Approval and Promulgation of Implementation Plans; North Carolina 110(a)(1) and (2...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-16
... and 2006 Fine Particulate Matter National Ambient Air Quality Standards AGENCY: Environmental... SIP addresses emissions of particulate matter generally, and does not distinguish between PM 10 and PM 2.5. The Commenter also references the particulate matter maximum emission rates for two coal-fired...
Recent analysis of ambient fine particulate matter (PM2.5) has found that significant portions of the organic matter contained therein are of biogenic origin. Radiocarbon (C-14) measurements of the bulk organic matter in fine particles collected near Nashville, TN, found that 40...
Impact of smoking on in-vehicle fine particle exposure during driving
NASA Astrophysics Data System (ADS)
Sohn, Hongji; Lee, Kiyoung
2010-09-01
Indoor smoking ban in public places can reduce secondhand smoke (SHS) exposure. However, smoking in cars and homes has continued. The purpose of this study was to assess particulate matter less than 2.5 μm (PM 2.5) concentration in moving cars with different window opening conditions. The PM 2.5 level was measured by an aerosol spectrometer inside and outside moving cars simultaneously, along with ultrafine particle (UFP) number concentration, speed, temperature and humidity inside cars. Two sport utility vehicles were used. Three different ventilation conditions were evaluated by up to 20 repeated experiments. In the pre-smoking phase, average in-vehicle PM 2.5 concentrations were 16-17 μg m -3. Regardless of different window opening conditions, the PM 2.5 levels promptly increased when smoking occurred and decreased after cigarette was extinguished. Although only a single cigarette was smoked, the average PM 2.5 levels were 506-1307 μg m -3 with different window opening conditions. When smoking was ceased, the average PM 2.5 levels for 15 min were several times higher than the US National Ambient Air Quality Standard of 35 μg m -3. It took longer than 10 min to reach the level of the pre-smoking phase. Although UFP levels had a similar temporal profile of PM 2.5, the increased levels during the smoking phase were relatively small. This study demonstrated that the SHS exposure in cars with just a single cigarette being smoked could exceed the US EPA NAAQS under realistic window opening conditions. Therefore, the findings support the need for public education against smoking in cars and advocacy for a smoke-free car policy.
Whitlow, Thomas H; Hall, Andrew; Zhang, K Max; Anguita, Juan
2011-01-01
We monitored curbside airborne particulate matter (PM) concentrations and its proinflammatory capacity during 3 weekends when vehicle traffic was excluded from Park. Ave., New York City. Fine PM concentration peaked in the morning regardless of traffic while ultrafine PM was 58% lower during mornings without traffic. Ultrafine PM concentration varied linearly with traffic flow, while fine PM spiked sharply in response to random traffic events that were weakly correlated with the traffic signal cycle. Ultrafine PM concentrations decayed exponentially with distance from a cross street with unrestricted traffic flow, reaching background levels within 100 m of the source. IL-6 induction was typically highest on Friday afternoons but showed no clear relationship to the presence of traffic. The coarse fraction (>2.5 μm) had the greatest intrinsic inflammatory capacity, suggesting that coarse PM still warrants attention even as the research focus is shifting to nano-particles. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ng, Kar Yong; Awang, Norhashidah
2018-01-06
Frequent haze occurrences in Malaysia have made the management of PM 10 (particulate matter with aerodynamic less than 10 μm) pollution a critical task. This requires knowledge on factors associating with PM 10 variation and good forecast of PM 10 concentrations. Hence, this paper demonstrates the prediction of 1-day-ahead daily average PM 10 concentrations based on predictor variables including meteorological parameters and gaseous pollutants. Three different models were built. They were multiple linear regression (MLR) model with lagged predictor variables (MLR1), MLR model with lagged predictor variables and PM 10 concentrations (MLR2) and regression with time series error (RTSE) model. The findings revealed that humidity, temperature, wind speed, wind direction, carbon monoxide and ozone were the main factors explaining the PM 10 variation in Peninsular Malaysia. Comparison among the three models showed that MLR2 model was on a same level with RTSE model in terms of forecasting accuracy, while MLR1 model was the worst.
Associations of short-term exposure to fine particulate matter (PM2.5) with daily mortality may be due to specific PM2.5 chemical components. Objectives: Daily concentrations of PM2.5 chemical species were measured over five consecutive years in Denver, CO to investigate whethe...
Motivated by growing concerns about the detrimental effects of fine particulate matter (PM2.5) on human health, the U.S. Environmental Protection Agency (EPA) recently promulgated a National Ambient Air Quality Standard (NAAQS) for PM2.5. The PM2.5 standard includes a 24-hour li...
Behavior of the main sources that contribute to ambient PM2.5 in Santiago since 1998
NASA Astrophysics Data System (ADS)
Barraza, F.; Lambert, F.; Jorquera, H.; Villalobos, A. M.; Gallardo, L.
2016-12-01
Santiago's inhabitants have been exposed to high concentrations of fine particle matter (PM2.5) for decades. To contribute to a solution for this long-standing problem it is necessary to clearly identify and quantify the agents that contribute to ambient levels of PM2.5. We present an analysis of a long historical elemental concentrations database measured in air filter particles taken in central Santiago from April 1998 to August 2012 (1243 daily samples). We identify and quantify the main sources that contribute to PM2.5 levels using the source-receptor models PMF 5.0 and UNMIX 6.0. . The 6 main sources that contribute to outdoor PM2.5 levels were: vehicles (13.26±0.42 µg/m3), industrial sulfates (6.60±0.0.47 µg/m3), copper smelters (5.12±0.29 µg/m3), residential wood burning (4.38±0.36 µg/m3), marine aerosols (3.39±0.24 µg/m3), and urban dust (1.07±0.42 µg/m3). The unexplained fraction amounts to 1.76±0.90 µg/m3). The similar results obtained with both receptor models suggest a robust estimation of the main Santiago PM2.5 source apportionment. The analysis of the time series of these sources shows that their absolute contribution to PM2.5 levels has been decreasing during the last decade (except for urban dust which is increasing), and shows the effectiveness of government emission reduction policies. However, these improvements have not been sufficient to reduce PM2.5 concentrations to daily levels below the Chilean standard of 50 µg/m3, let alone the WHO standard of 25 µg/m3.
Human health risk due to variations in PM10-PM2.5 and associated PAHs levels
NASA Astrophysics Data System (ADS)
Sosa, Beatriz S.; Porta, Andrés; Colman Lerner, Jorge Esteban; Banda Noriega, Roxana; Massolo, Laura
2017-07-01
WHO (2012) reports that chronic exposure to air pollutants, including particulate matter (PM), causes the death of 7 million people, constituting the most important environmental risk for health in the world. IARC classifies contaminated outdoor air as carcinogenic, Group 1 category. However, in our countries there are few studies regarding air pollution levels and possible associated effects on public health. The current study determined PM and associated polycyclic aromatic hydrocarbons (PAHs) levels in outdoor air, identified their possible emission sources and analysed health risks in the city of Tandil (Argentina). PM10 and PM2.5 samples were collected using a low volume sampler (MiniVol TAS) in three areas: city centre, industrial and residential. Concentrations were determined by gravimetric methods and the content of the US EPA 16 priority PAHs was found by high performance liquid chromatography (HPLC). Description of the main emission sources and selection of monitoring sites resulted from spatial analysis and the IVE (International Vehicle Emissions) model was used in the characterisation of the traffic flow. Median values of 35.7 μgm-3 and 9.6 μgm-3 in PM10 and PM2.5 respectively and characteristic profiles were found for each area. Local values PAHs associated to PM10 and PM2.5, in general, were lower than 10ngm-3. The estimated Unit Risk for the three areas exceeds US EPA standards (9 × 10-5). The number of deaths attributable to short term exposure to outdoor PM10 was 4 cases in children under 5 years of age, and 21 cases in total population, for a relative risk of 1.037.
2015 Soft Condensed Matter Physics: Self-Assembly and Active Matter GRC/GRS
2015-10-20
or decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O...were Minorities – 0% Hispanic, 14% Asian and 0% African American. Approximately 29% of the participants at the 2015 meeting were women. In designing ...Trees" 8:10 pm - 8:30 pm Discussion 8:30 pm - 9:10 pm Todd Yeates (University of California, Los Angeles, USA) "Using Ideas in Symmetry to Design
Short-Term Health Impact Assessment of Urban PM10 in Bejaia City (Algeria).
Benaissa, Fatima; Maesano, Cara Nichole; Alkama, Rezak; Annesi-Maesano, Isabella
2016-01-01
We used Health Impact Assessment (HIA) to analyze the impact on a given population's health outcomes in terms of all-causes mortality and respiratory and cardiovascular hospitalizations attributable to short-term exposure to particulate matter less than 10 μm diameter (PM10) in Bejaia city, for which health effects of air pollution have never been investigated. Two scenarios of PM10 reduction were considered: first, a scenario where the PM10 annual mean is decreased by 5 µg/m(3), and then a scenario where this PM10 mean is decreased to 20 µg/m(3) (World Health Organization annual air quality guideline (WHO-AQG)). Annual mean level of PM10 (81.7 µg/m(3)) was calculated from objective measurements assessed in situ. Each year, about 4 and 55 deaths could be postponed with the first and the second scenarios successfully. Furthermore, decreasing PM10 annual mean by 5 µg/m(3) would avoid 5 and 3 respiratory and cardiac hospitalizations, respectively, and not exceeding the PM10 WHO-AQG (20 µg/m(3)) would result in a potential gain of 36 and 23 per 100000 respiratory and cardiac hospitalizations, respectively. Lowering in current levels of PM10 has a nonnegligible impact in terms of public health that it is expected to be higher in the case of long-term effects.
Particulate matter from tobacco versus diesel car exhaust: an educational perspective
Invernizzi, G; Ruprecht, A; Mazza, R; Rossetti, E; Sasco, A; Nardini, S; Boffi, R
2004-01-01
Methods: A 60 m3 garage was chosen to assess PM emission from three smouldering cigarettes (lit sequentially for 30 minutes) and from a TDCi 2000cc, idling for 30 minutes. Results: Particulate was measured with a portable analyser with readings every two minutes. Background PM10, PM2.5, and PM1 levels (mean (SD)) were 15 (1), 13 (0.7), and 7 (0.6) µg/m3 in the car experiment and 36 (2), 28 (1), and 14 (0.8) µg/m3 in the ETS experiment, respectively. Mean (SD) PM recorded in the first hour after starting the engine were 44 (9), 31 (5), and 13 (1) µg/m3, while mean PM in the first hour after lighting cigarettes were 343 (192), 319 (178), and 168 (92) µg/m3 for PM10, PM2.5, and PM1, respectively (p < 0.001, background corrected). Conclusions: ETS is a major source of PM pollution, contributing to indoor PM concentrations up to 10-fold those emitted from an idling ecodiesel engine. Besides its educational usefulness, this knowledge should also be considered from an ecological perspective. PMID:15333875
NASA Astrophysics Data System (ADS)
Arruti, A.; Fernández-Olmo, I.; Irabien, A.
2011-07-01
The aim of this study was to determine the major components (Na, Ca, K, Mg, Fe, Al, NH 4+, SO 42-, NO 3-, Cl - and TC) and trace-metal levels (As, Ni, Cd, Pb, Ti, V, Cr, Mn, Cu, Mo, Rh and Hg) in PM 10 and PM 2.5 at an Atlantic coastal city (Santander, Cantabria region, Northern Spain). Additional samples were collected in other urban sites of the Cantabria region to assess the metal content found in different urban environments within the region. To control for the mass attributed to inland regional background particulate matter, samples were also collected in Los Tojos village. The spatial variability of the major PM components shows that PM origins are different at inland and coastal sites. In the coastal city of Santander, the most important contributors are (i) the marine aerosol and (ii) the secondary inorganic aerosol (SIA) and the total carbon (TC) in PM 10 and PM 2.5, respectively. Additionally, the influence of the coastal location on the ionic balance of PM is also studied. The trace metal spatial variability is studied using the coefficient of divergence (COD), which shows that the levels of trace metals at the three studied urban sites are mainly influenced by local emission sources. The main local tracers are identified as follows: Mn in the Santander area; Mo, Cr and Pb at Reinosa; and Ni and V at Castro Urdiales. A more detailed source apportionment study of the local trace metals at Santander is conducted by Principal Component Analysis (PCA) and Positive Matrix Factorisation (PMF); these two receptor models report complementary information. From these statistical analyses, the identified sources of trace metals in PM 10 are urban background sources, industrial sources and traffic. The industrial factor was dominated by Mn, Cu and Pb, which are trace metals used in steel production and manganese-ferroalloy production plant. With respect to PM 2.5, the identified emission sources of trace metals are combustion processes as well as traffic and industrial sources.
NASA Astrophysics Data System (ADS)
Bari, Md. Aynul; MacNeill, Morgan; Kindzierski, Warren B.; Wallace, Lance; Héroux, Marie-Ève; Wheeler, Amanda J.
2014-08-01
Exposure to coarse particulate matter (PM), i.e., particles with an aerodynamic diameter between 2.5 and 10 μm (PM10-2.5), is of increasing interest due to the potential for health effects including asthma, allergy and respiratory symptoms. Limited information is available on indoor and outdoor coarse PM and associated endotoxin exposures. Seven consecutive 24-h samples of indoor and outdoor coarse PM were collected during winter and summer 2010 using Harvard Coarse Impactors in a total of 74 Edmonton homes where no reported smoking took place. Coarse PM filters were subsequently analyzed for endotoxin content. Data were also collected on indoor and outdoor temperature, relative humidity, air exchange rate, housing characteristics and occupants' activities. During winter, outdoor concentrations of coarse PM (median = 6.7 μg/m3, interquartile range, IQR = 3.4-12 μg/m3) were found to be higher than indoor concentrations (median 3.4 μg/m3, IQR = 1.6-5.7 μg/m3); while summer levels of indoor and outdoor concentrations were similar (median 4.5 μg/m3, IQR = 2.3-6.8 μg/m3, and median 4.7 μg/m3, IQR = 2.1-7.9 μg/m3, respectively). Similar predictors were identified for indoor coarse PM in both seasons and included corresponding outdoor coarse PM concentrations, whether vacuuming, sweeping or dusting was performed during the sampling period, and number of occupants in the home. Winter indoor coarse PM predictors also included the number of dogs and indoor endotoxin concentrations. Summer median endotoxin concentrations (indoor: 0.41 EU/m3, outdoor: 0.64 EU/m3) were 4-fold higher than winter concentrations (indoor: 0.12 EU/m3, outdoor: 0.16 EU/m3). Other than outdoor endotoxin concentrations, indoor endotoxin concentration predictors for both seasons were different. Winter endotoxin predictors also included presence of furry pets and whether the vacuum had a high efficiency particulate air (HEPA) filter. Summer endotoxin predictors were problems with mice in the previous 12 months and mean indoor relative humidity levels.
Hogrefe, Christian; Isukapalli, Sastry S.; Tang, Xiaogang; Georgopoulos, Panos G.; He, Shan; Zalewsky, Eric E.; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal
2011-01-01
The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1–0.25 μg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1–2% of the value of the annual PM2.5 NAAQS of 15 μg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions. PMID:21305893
Indoor air quality at nine shopping malls in Hong Kong.
Li, W M; Lee, S C; Chan, L Y
2001-06-12
Hong Kong is one of the most attractive shopping paradises in the world. Many local people and international tourists favor to spend their time in shopping malls in Hong Kong. Good indoor air quality is, therefore, very essential to shoppers. In order to characterize the indoor air quality in shopping malls, nine shopping malls in Hong Kong were selected for this study. The indoor air pollutants included carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC), formaldehyde (HCHO), respirable particulate matter (PM10) and total bacteria count (TBC). More than 40% of the shopping malls had 1-h average CO2 levels above the 1000 ppm of the ASHRAE standard on both weekdays and weekends. Also, they had average weekday PM10 concentrations that exceeded the Hong Kong Indoor Air Quality Objective (HKIAQO). The highest indoor PM10 level at a mall was 380 microg/m3. Of the malls surveyed, 30% had indoor airborne bacteria levels above 1000 cfu/m3 set by the HKIAQO. The elevated indoor CO2 and bacteria levels could result from high occupancy combined with insufficient ventilation. The increased PM10 levels could be probably attributed to illegal smoking inside these establishments. In comparison, the shopping malls that contained internal public transport drop-off areas, where vehicles were parked with idling engines and had major entry doors close to heavy traffic roads had higher CO and PM10 indoor levels. In addition, the extensive use of cooking stoves without adequate ventilation inside food courts could increase indoor CO2, CO and PM10 levels.
Elevated plasma endothelin-1 and pulmonary arterial pressure in children exposed to air pollution.
Calderón-Garcidueñas, Lilian; Vincent, Renaud; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Garrido-García, Luis; Camacho-Reyes, Laura; Valencia-Salazar, Gildardo; Paredes, Rogelio; Romero, Lina; Osnaya, Hector; Villarreal-Calderón, Rafael; Torres-Jardón, Ricardo; Hazucha, Milan J; Reed, William
2007-08-01
Controlled exposures of animals and humans to particulate matter (PM) or ozone air pollution cause an increase in plasma levels of endothelin-1, a potent vasoconstrictor that regulates pulmonary arterial pressure. The primary objective of this field study was to determine whether Mexico City children, who are chronically exposed to levels of PM and O(3) that exceed the United States air quality standards, have elevated plasma endothelin-1 levels and pulmonary arterial pressures. We conducted a study of 81 children, 7.9 +/- 1.3 years of age, lifelong residents of either northeast (n = 19) or southwest (n = 40) Mexico City or Polotitlán (n = 22), a control city with PM and O(3) levels below the U.S. air quality standards. Clinical histories, physical examinations, and complete blood counts were done. Plasma endothelin-1 concentrations were determined by immunoassay, and pulmonary arterial pressures were measured by Doppler echocardiography. Mexico City children had higher plasma endothelin-1 concentrations compared with controls (p < 0.001). Mean pulmonary arterial pressure was elevated in children from both northeast (p < 0.001) and southwest (p < 0.05) Mexico City compared with controls. Endothelin-1 levels in Mexico City children were positively correlated with daily outdoor hours (p = 0.012), and 7-day cumulative levels of PM air pollution < 2.5 mum in aerodynamic diameter (PM(2.5)) before endothelin-1 measurement (p = 0.03). Chronic exposure of children to PM(2.5) is associated with increased levels of circulating endothelin-1 and elevated mean pulmonary arterial pressure.
Pérez-Prieto, L A; Delagarde, R
2012-09-01
Grazing management is a key factor in pasture-based dairy systems, which can be improved given advanced knowledge of the effects of pregrazing pasture mass (PM) on the performance of dairy cows. The aim of this study was to quantify the effects of PM on the pasture intake, milk production, milk composition, and grazing behavior of strip- or rotational-grazing dairy cows, based on a meta-analysis of published research papers. A database was created that included experiments in which the effects of PM on pasture intake and milk production of dairy cows were studied. Papers were selected only if at least 2 PM were compared under similar experimental conditions, particularly the same pasture allowance (SPA). The final database included 15 papers with 27 PM comparisons. For analytical purposes, the database was subdivided into 3 subsets that varied according to the estimation height at which pasture allowance was determined; that is, where PM were compared at the SPA above ground level (SPA(0) subset), above 2 to 3 cm (SPA(3) subset), and above 4 to 5 cm (SPA(5) subset). Statistical analyses were conducted on the entire database (global analysis) and within each subset using linear model procedures. An interaction between PM and estimation height was found for pasture intake and milk production in the global analysis. On the basis of the predictive equations, pasture intake increased by 1.58 kg of dry matter/d per tonne increase in PM when PM were compared at SPA(0), was not affected by PM when PM were compared at SPA(3), and decreased by 0.65 kg of dry matter/d per tonne increase in PM when PM were compared at SPA(5). This is consistent with the effect of PM on milk production, which was positive and negative (1.04 and -0.79 kg/t of PM, respectively) when PM were compared at SPA(0) and SPA(5), respectively. Grazing time was only slightly affected by PM, irrespective of estimation height, because the effect of PM on pasture intake was mainly dependent on the variation in pasture intake rate. Pasture intake rate increased with increasing PM at SPA(0) but decreased with increasing PM at SPA(5). This meta-analysis clearly demonstrates that the effects of PM on pasture intake, milk production, and behavior of strip-grazing dairy cows depend largely on the height at which the PM and pasture allowance are measured. These results have methodological implications for future grazing research because it can be recommended that PM be compared at similar levels of pasture availability (i.e., at the same pasture allowance above 2 to 3 cm) to avoid possible misinterpretations of results. They also reveal the benefits of improving grazing management and intake prediction through modeling in pasture-based dairy systems. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Strak, Maciej; Steenhof, Maaike; Godri, Krystal J.; Gosens, Ilse; Mudway, Ian S.; Cassee, Flemming R.; Lebret, Erik; Brunekreef, Bert; Kelly, Frank J.; Harrison, Roy M.; Hoek, Gerard; Janssen, Nicole A. H.
2011-08-01
Numerous epidemiological studies have shown health effects related to short- and long-term exposure to elevated levels of ambient particulate matter (PM). It is not clear however which specific characteristics (e.g., size, components) or sources of PM are responsible for the observed effects. The aim of RAPTES (Risk of Airborne Particles: a Toxicological-Epidemiological hybrid Study) was to investigate which specific physical, chemical or oxidative characteristics of ambient PM are associated with adverse effects of PM on health. This was done by performing experimental exposure of human volunteers to air pollution at several real-world settings that had high contrast and low correlation between several PM characteristics. For this goal, eight sites in the Netherlands that differed in local PM emission sources were chosen for extensive air pollution characterization. Measurement sites included an underground train station, three different road traffic sites, an animal farm, a sea harbor, a site located in the vicinity of steelworks, and an urban background site. Five- to six-hours average concentration measurements at each site were made between June 2007 and October 2009. We measured PM 10, PM 2.5, particle number concentration (PNC), oxidative potential of PM, absorbance, endotoxin content, as well as elemental and chemical composition of PM, and gaseous pollutants concentrations. This paper presents a detailed characterization of particulate air pollution at the sampling sites. We found significant differences in all PM characteristics between the sites. The underground train station, compared to each outdoor location, had substantially higher concentrations of nearly all PM characteristics. The average PM 10 and PM 2.5 mass concentrations at the underground train station were 394 μg m -3 and 137 μg m -3, respectively, which was 14.1 and 7.6 times higher than the urban background. The sum of the concentrations of trace metals in fine and coarse PM was nearly 20 times above the outdoor levels. Elemental carbon (EC) was elevated at the underground site in the fine but also in the coarse mode, in contrast to the traffic sites where EC was predominantly found in fine PM. The highest concentrations and contrasts in PNC were at the traffic sites (between 45,000 and 80,000 particles cm -3), which was several times higher than measured at any other site. Correlations of PNC with metals, PM 10, PM 2.5 and absorbance were low to moderate, while correlations between PM 10, PM 2.5 and the metals Cu and Fe were high. After excluding the underground train station data, correlations between PM10, EC and metals decreased whereas the correlation between PNC and EC increased. We conclude that we were able to successfully identify and characterize real-world situations with very different particle characteristics. High contrast and low correlations between PM characteristics, as well as consistency of these differences across sampling campaigns, provide a good basis for identifying health relevant PM characteristics in the upcoming analysis.
PM Levels, Composition and Evolution in a Highly Industrialised Area. Objectives of Improvement
NASA Astrophysics Data System (ADS)
Minguillon, M. C.; Querol, X.; Alastuey, A.; Monfort, E.; Mantilla, E.; Miro, J. V.
2007-05-01
Evolution of levels and speciation of PM10 in the ceramic producing area of Castello (East Spain) was studied from April 2002 until December 2005. To this end, daily PM10 sampling was carried out at three urban sites and one suburban site of the area and chemical analyses were made in about 35 % of the samples. Average PM10 levels varied between 27-36 µg/m3 for the study period. The major constituent was mineral matter, exceeding by 5-12 µg/m3 the usual ranges of annual mineral loads in PM10 at similar Spanish urban or regional background sites with no industrial influence. Based on this comparison and on the efficiency of emission abatement techniques, a reduction target of 3-5 µgPM10/m3 of the annual mean seems to be achievable at the urban sites. Moreover, levels of Li, Sc, Co, Zn, As, Se, Rb, Zr, Cd, Cs, Ce, Tl and Pb were higher than the usual range of concentration in urban areas of Spain. Of these elements, Zr, Zn, Pb and As may be considered as tracers of the ceramic emissions from the study area. Their levels showed a simultaneous decrease with the progressive implementation of emission abatement techniques in frit (glaze component for the manufacture of glazed tiles) fusion kilns of the area. Given the high proportion of facilities with implemented abatement techniques at the end of the study period, the reduction margin for these elements is very low.
Integrated Science Assessment (ISA) for Particulate Matter ...
EPA announced the availability of the final report, Integrated Science Assessment (ISA) for Particulate Matter (PM). This report is EPA’s latest evaluation of the scientific literature on the potential human health and welfare effects associated with ambient exposures to particulate matter (PM). The development of this document is part of the Agency's periodic review of the national ambient air quality standards (NAAQS) for PM. The recently completed PM ISA and supplementary annexes, in conjunction with additional technical and policy assessments developed by EPA’s Office of Air and Radiation, will provide the scientific basis to inform EPA decisions related to the review of the current PM NAAQS. Key information and judgments formerly contained in an Air Quality Criteria Document (AQCD) for PM are incorporated in this assessment. Additional details of the pertinent literature published since the last review, as well as selected older studies of particular interest, are included in a series of annexes. This ISA thus serves to update and revise the evaluation of the scientific evidence available at the time of the previous review of the NAAQS for PM that was concluded in 2006.
Konishi, Shoko; Ng, Chris Fook Sheng; Stickley, Andrew; Nishihata, Shinichi; Shinsugi, Chisa; Ueda, Kayo; Takami, Akinori; Watanabe, Chiho
2014-11-15
Pollen from Japanese cedar (sugi) and cypress (hinoki) trees is responsible for the growing prevalence of allergic rhinitis, especially pollinosis in Japan. Previous studies have suggested that air pollutants enhance the allergic response to pollen in susceptible individuals. We conducted a time-stratified case-crossover study to examine the potential modifying effects of PM2.5 and suspended particulate matter (SPM) on the association between pollen concentration and daily consultations for pollinosis. A total of 11,713 daily pollinosis cases (International Classification of Diseases, ICD-10, J30.1) from January to May, 2001-2011, were obtained from a clinic in Chiyoda, Tokyo. Daily pollen counts and the daily mean values of air pollutants (PM2.5, SPM, SO2, NO2, CO, and O3) were collected from monitoring stations across Tokyo. The effects of pollen were stratified by the level of PM2.5 and SPM to examine the interaction effect of pollen and particulate pollutants. We found a statistically significant interaction between pollen concentration and PM2.5/SPM. On days with a high level of PM2.5 (>95th percentile), an interquartile increase in the mean cumulative pollen count (an average of 28 pollen grains per cm(2) during lag-days 0 to 5) corresponded to a 10.30% (95%CI: 8.48%-12.16%) increase in daily new pollinosis cases, compared to 8.04% (95%CI: 7.28%-8.81%) on days with a moderate level of PM2.5 (5th-95th percentile). This interaction persisted when different percentile cut-offs were used and was robust to the inclusion of other air pollutants. A similar interaction pattern was observed between SPM and pollen when a less extreme cut-off for SPM was used to stratify the effect of pollen. Our study showed the acute effect of pollen was greater when the concentration of air particulate pollutant, specifically PM2.5 and SPM, was higher. These findings are consistent with the notion that particulate air pollution may act as an adjuvant that promotes allergic disease (i.e. pollinosis). Copyright © 2014 Elsevier B.V. All rights reserved.
Characterization of particulate matter sources in an urban environment.
Mazzei, F; D'Alessandro, A; Lucarelli, F; Nava, S; Prati, P; Valli, G; Vecchi, R
2008-08-15
Daily time series measurements of elements or compounds are widely used to apportion the contribution of specific sources of particulate matter concentration in the atmosphere. We present results obtained for the urban area of Genoa (Italy) based on several hundred of PM10, PM2.5 and PM1 daily samples collected in sites with different geo-morphological and urbanization characteristics. Elemental concentrations of Na to Pb were obtained through Energy Dispersive X-Ray Fluorescence (ED-XRF), and the contributions of specific sources of particulate matter (PM) concentration were apportioned through Positive Matrix Factorization (PMF). By sampling at different sites we were able to obtain, in each PM fraction, the average and stable values for the tracers of specific sources, in particular traffic (Cu, Zn, Pb) and heavy oil combustion (V, Ni). We could also identify and quote the contamination of anthropogenic PM in "natural" sources (sea, soil dust). Sampling at several sites in the same urban area allowed us to resolve local characteristics as well as to quote average values.
Myatt, Theodore A; Vincent, Michael S; Kobzik, Lester; Naeher, Luke P; MacIntosh, David L; Suh, Helen
2011-10-01
To assess the effect of fine particulate matter (PM(2.5)) from different particle sources on tumor necrosis factor- (TNF-) α, we measured TNF production from rat alveolar macrophages (AM) and human dendritic cells (DC) exposed to PM(2.5) from different sources. Fire-related PM(2.5) samples, rural ambient, and urban indoor and outdoor samples were collected in the Southeast United States. Tumor necrosis factor release was measured from rat AM and human DC following incubation with PM(2.5). Tumor necrosis factor release in AMs was greatest for fire-related PM(2.5) compared with other samples (TNF: P value = 0.005; mortality: P value = 0.005). Tumor necrosis factor releases from the DCs and AMs exposed to fire-associated PM(2.5) were strongly correlated (r = 0.87, P value < 0.0001). Particulate matter exposure produces TNF release consistent with pulmonary inflammation in rat AMs and human DCs, with the response in rat AMs differing by particle source.
Stafoggia, Massimo; Schwartz, Joel; Badaloni, Chiara; Bellander, Tom; Alessandrini, Ester; Cattani, Giorgio; De' Donato, Francesca; Gaeta, Alessandra; Leone, Gianluca; Lyapustin, Alexei; Sorek-Hamer, Meytar; de Hoogh, Kees; Di, Qian; Forastiere, Francesco; Kloog, Itai
2017-02-01
Health effects of air pollution, especially particulate matter (PM), have been widely investigated. However, most of the studies rely on few monitors located in urban areas for short-term assessments, or land use/dispersion modelling for long-term evaluations, again mostly in cities. Recently, the availability of finely resolved satellite data provides an opportunity to estimate daily concentrations of air pollutants over wide spatio-temporal domains. Italy lacks a robust and validated high resolution spatio-temporally resolved model of particulate matter. The complex topography and the air mixture from both natural and anthropogenic sources are great challenges difficult to be addressed. We combined finely resolved data on Aerosol Optical Depth (AOD) from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, ground-level PM 10 measurements, land-use variables and meteorological parameters into a four-stage mixed model framework to derive estimates of daily PM 10 concentrations at 1-km2 grid over Italy, for the years 2006-2012. We checked performance of our models by applying 10-fold cross-validation (CV) for each year. Our models displayed good fitting, with mean CV-R2=0.65 and little bias (average slope of predicted VS observed PM 10 =0.99). Out-of-sample predictions were more accurate in Northern Italy (Po valley) and large conurbations (e.g. Rome), for background monitoring stations, and in the winter season. Resulting concentration maps showed highest average PM 10 levels in specific areas (Po river valley, main industrial and metropolitan areas) with decreasing trends over time. Our daily predictions of PM 10 concentrations across the whole Italy will allow, for the first time, estimation of long-term and short-term effects of air pollution nationwide, even in areas lacking monitoring data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore city.
Sapkota, Amir; Symons, J Morel; Kleissl, Jan; Wang, Lu; Parlange, Marc B; Ondov, John; Breysse, Patrick N; Diette, Gregory B; Eggleston, Peyton A; Buckley, Timothy J
2005-01-01
With increasing evidence of adverse health effects associated with particulate matter (PM), the exposure impact of natural sources, such as forest fires, has substantial public health relevance. In addition to the threat to nearby communities, pollutants released from forest fires can travel thousands of kilometers to heavily populated urban areas. There was a dramatic increase in forest fire activity in the province of Quebec, Canada, during July 2002. The transport of PM released from these forest fires was examined using a combination of a moderate-resolution imaging spectroradiometer satellite image, back-trajectories using a hybrid single-particle Lagrangian integrated trajectory, and local light detection and ranging measurements. Time- and size-resolved PM was evaluated at three ambient and four indoor measurement sites using a combination of direct reading instruments (laser, time-of-flight aerosol spectrometer, nephelometer, and an oscillating microbalance). The transport and monitoring results consistently identified a forest fire related PM episode in Baltimore that occurred the first weekend of July 2002 and resulted in as much as a 30-fold increase in ambientfine PM. On the basis of tapered element oscillating microbalance measurements, the 24 h PM25 concentration reached 86 microg/m3 on July 7, 2002, exceeding the 24 h national ambient air quality standard. The episode was primarily comprised of particles less than 2.5 microm in aerodynamic diameter, highlighting the preferential transport of the fraction of PM that is of greatest health concern. Penetration of the ambient episode indoors was efficient (median indoor-to-outdoor ratio 0.91) such that the high ambient levels were similarly experienced indoors. These results are significant in demonstrating the impact of a natural source thousands of kilometers away on ambient levels of and potential exposures to air pollution within an urban center. This research highlights the significance of transboundary air pollution and the need for studies that assess the public health impacts associated with such sources and transport processes.
Desikan, Anita
2017-03-01
Outdoor air pollution is a known risk factor for mortality and morbidity. The type of air pollutant most reliably associated with disease is particulate matter (PM), especially finer particulate matter that can reach deeper into the lungs like PM 2.5 (particulate matter diameter < 2.5 μm). Some subpopulations may be particularly vulnerable to PM pollution. This review focuses on one subgroup, long-term stroke survivors, and the emerging evidence suggesting that survivors of a stroke may be at a higher risk from the deleterious effects of PM pollution. While the mechanisms for mortality are still under debate, long-term stroke survivors may be vulnerable to similar mechanisms that underlie the well-established association between PM pollution and cardiovascular disease. The fact that long-term stroke survivors of ischemic, but not hemorrhagic, strokes appear to be more vulnerable to the risk of death from higher PM pollution may also bolster the connection to ischemic heart disease. Survivors of an ischemic stroke may be more vulnerable to dying from higher concentrations of PM pollution than the general population. The clinical implications of this association suggest that reduced exposure to PM pollution may result in fewer deaths amongst stroke survivors.
NASA Astrophysics Data System (ADS)
Kwok, Roger Hiu Fung
Air pollution in Hong Kong (HK) causes problems in visibility and public health, which are worsening over past few years. Out of particulate matters (PM) inhalable into respiratory system, 30% is contributed by sulfate (SO4), 40% by organic carbon (OC), and 10% by elemental carbon (EC). A meso-scale numerical modeling system CMAQ is devised to simulate the air quality in January (winter), April (spring), July (summer) and October (autumn) 2004, driven by meteorology simulated by MM5 and emission sources in China including Hong Kong. Observational and measurement data from Hong Kong Environmental Protection Department Air Quality network are compared with the model results. With respect to pollutant concentration level, model-observation agreement is reasonably well, especially in PM species sulfate, organic carbon (OC) and elemental carbon (EC); and gaseous species SO2, NOx and ozone. In terms of PM composition, the model agrees with the measurement in fractions of sulfate, OC and EC. Higher PM level in autumn and winter is associated with northeasterly winds due to continental outflow. To further investigate emission sources contributing to HK, a source apportioning method called Tagged Species Source Apportionment (TSSA) algorithm is applied to study contributions to level of SO4, SO2 and EC in HK. It is found that while sources beyond PRD are observed in entire HK during January and October 2004, emitting sectors are different among western HK, downtown area, and the east countryside. Specifically, power plants and vehicles from HK and Shenzhen affect the western new towns, while power plants, vehicles and ships within HK determine the downtown pollutants' level. The countryside is mainly influenced by sources beyond PRD.